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Abstract

Noise Contrastive Estimation (NCE) is a widely

used method for training generative models, typ-

ically used as an alternative to Maximum Like-

lihood Estimation (MLE) when exact computa-

tions of probability are hard. NCE trains gen-

erative models by discriminating between data

and appropriately chosen noise distributions. Al-

though NCE is statistically consistent, it suffers

from slow convergence and high variance when

there is small overlap between the noise and data

distributions. Both these problems are related to

the flatness of the NCE loss landscape. We pro-

pose an innovative approach to circumvent slow

convergence rates by quick inference of the opti-

mal normalizing constant at every gradient step.

This allows the rest of the parameters to have

more freedom during NCE optimization. We ana-

lyze the use of both binary search and the Bennett

Acceptance Ratio (BAR) for quick computation

of the normalizing constant and show improved

performance for both methods on convex and non-

convex settings.

1. Introduction

Noise Contrastive Estimation (NCE) is a statistical method

used to learn parameterized probability distributions that

are specified up to a constant of proportionality. It was

first proposed by Gutmann & Hyvärinen (2010; 2012)

and has seen some recent attention for training Energy

Based Models (EBMs), where probabilities are modelled as

pθ̃(x) ∝ exp(Eθ̃(x)) for some parametric family Eθ̃. The

main idea behind NCE loss is to train a classifier to discrim-
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inate between samples from a desired distribution P∗ and

an appropriately chosen noise distribution Q (Dyer, 2014;

Gutmann & Hyvärinen, 2010; 2012; Rhodes et al., 2020).

If the model is considered expressive enough, the optimal

discriminator will learn an estimate of the ratios of densities

p∗(x)/q(x) from which the densities p∗(x) can be success-

fully extracted (Sugiyama et al., 2012; Menon & Ong, 2016).

The NCE training regime is especially advantageous as it

avoids the computation of a partition function (as opposed

to the Maximum Likelihood Estimation (MLE) framework)

that is quite often intractable (Gutmann & Hirayama, 2012).

Although NCE provides computational advantages over

MLE, it suffers from low rate of convergence and asymp-

totically high variance. One of the primary reasons behind

both problems is the phenomenon known as density chasm

(Rhodes et al., 2020). The NCE loss optimization landscape

is flat near the optimum distribution and poses problems

for first order (eg. gradient descent) and second order (eg.

Newton’s method) optimization methods, as observed in Liu

et al. (2021). The flat region is especially prevalent when

the data and noise distributions are well separated, that is,

the KL-divergence between the two distributions is large.

In this work, we propose a method that improves the rate

of convergence of NCE loss by enhancing the ability of

NCE to self-normalize. Specifically, we change the update

to the log of the partition function so that it yields better

estimates of an appropriate constant value at each gradient

descent step. We show that the correct constant value can

be easily calculated using binary search or approximated

through a method developed in statistical physics known as

the Bennett Acceptance Ratio (BAR) (Bennett, 1976).

Particularly, our contributions are the following:

• We show that the NCE objective function is always con-

vex along the log partition function coordinate (keeping

the other parameters θ̃ constant) and the optimal value

of this coordinate can be calculated up to machine pre-

cision using binary search at every gradient descent

step.

• We show that we get improvements in NCE optimiza-

tion if we increase the learning rate of the log partition
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function parameter.

• We get further improvements if we use the BAR for-

mulation to update the log partition function parameter

rather than the NCE gradient. We also show that binary

search of the log partition function provides the best

improvement in NCE optimization, albeit, at a slightly

higher cost than applying just the BAR update.

• We validate our methods on both convex and non-

convex settings, seeing consistent improvements over

vanilla NCE optimization.

2. Related works

NCE has become a predominant area of research in both

NLP (Mnih & Teh, 2012; Mnih & Kavukcuoglu, 2013;

Dyer, 2014; Kong et al., 2020; Jozefowicz et al., 2016;

Oord et al., 2018) and computer vision (Hjelm et al., 2018;

Henaff, 2020; Tian et al., 2020; Feeney & Hughes, 2023).

A major empirically observed issue with NCE is that a

fixed noise distribution Q is not sufficient to learn good

generative models. The two predominant approaches to

solve this issue have been to either anneal between the noise

and data distributions (Rhodes et al., 2020; Chehab et al.,

2024; Gelman & Meng, 1998), or iteratively updating the

noise distribution Q to yield a more informative loss (Xu,

2022; Gao et al., 2020; Goodfellow et al., 2014).

For a fixed Q, a recent work provided certain solutions to

overcome the density chasm problem by using normalized

gradient descent and an exponential loss function that is

better behaved (Liu et al., 2021). It’s important to note that

while these improvements are substantial, the approach is

orthogonal to our proposed method and theoretically, both

the methods may be combined.

3. NCE objective function and optimization

strategy

3.1. Vanilla Noise Contrastive Estimation

The NCE objective function is designed to learn parameter-

ized energy based models of the form pθ̃(x) ∝ exp(Eθ̃(x)).
The NCE method defines an additional parameter F that rep-

resent the log of the partition function so that the learnt den-

sity then becomes pθ = exp(Eθ̃(x)− F ) where θ = [θ̃, F ].
It is used when we have access to samples from a desired

distribution P∗ that we would like to learn.

From here on we use a short hand notation to represent

densities, for eg. pθ(x) = pθ The NCE objective for θ is

then defined as the following:

Definition 3.1. The NCE loss of θ such that θ = [θ̃, F ] w.r.t

to data distribution P∗ and noise distribution Q is:

LNCE(θ) = −
1

2
Ep∗

[

log
pθ

pθ + q

]

−
1

2
Eq

[

log
q

pθ + q

]

(1)

Note that LNCE(θ) can be computed without the condition

that pθ is normalized. The crucial property of NCE loss

is that it is consistent and has a unique global minima

at θ = θ∗, with the corresponding constant F satisfy-

ing F ∗ = log
∫

x
exp(Eθ̃(x))dx (Gutmann & Hyvärinen,

2012)1, provided that support of Q contains that of P∗.

3.2. Exponential families

For some of our experiments, we work with parameter es-

timation setting for distributions in the exponential family,

where the density of distributions Pθ is given by

pθ(x) = exp(⟨T̃ (x), θ̃⟩ − F ). (2)

where T̃ (x) is sufficient statistics of x. Since we want to

pay special attention to the normalizing constant, we will

assume that the last coordinate of θ and T (x) correspond

to the normalizing constant, that is, T (x) = [T̃ (x),−1] and

θ = [θ̃, F ]. We will further assume that the data distribution

corresponds to some distribution P∗ = Pθ∗ in the family,

with a normalizing constant given by exp(F∗) for some F∗.

Further, in case of exponential families, the NCE loss func-

tion is well known to be convex (Uehara et al. (2020), Liu

et al. (2021)) allowing for a nice analysis of convergence

rates to the right parameter values. The proof for convexity

is provided in Appendix A.1 for completeness.

3.3. Optimization of the Normalizing Constant

The NCE loss has two very distinct facets, one correspond-

ing to finding a function proportional to the density of p∗
and the other corresponding to finding the correct partition

function. Since NCE is self-normalizing, it optimizes for

both the parameters and the normalizing constant. The opti-

mization dynamics are very different in both of these direc-

tions, suggesting that separating these two directions might

be beneficial for improving optimization. In particular, we

would like to take the advantage of following observation:

Lemma 3.2. For any energy based parameterized family of

distributions where pθ(x) is given by

pθ(x) = exp(Eθ̃(x)− F ),

the function LNCE(θ) is convex as a function of F , for any

fixed θ̃.

1The result holds even in an non-parametric setting.
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The partial derivative of LNCE with respect to F is given by

∂

∂F
LNCE(θ) =

1

2
Ep∗

[

q

pθ + q

]

−
1

2
Eq

[

pθ
pθ + q

]

=
1

2

∫

x

q(p∗ − pθ)

pθ + q
dx (3)

Similarly, the second derivative is given by

∂2

∂F 2
LNCE(θ) =

1

2

∫

x

q(pθ)(p∗ + q)

(pθ + q)2
dx ≥ 0, (4)

which shows convexity. If we look more closely at Equa-

tion 3 we see that it has limits of − 1
2 when F → −∞

(pθ → ∞) and 1
2 when F → ∞ (pθ → 0). In particular,

the NCE gradient is a monotonically increasing function

which takes values from
[

− 1
2 ,

1
2

]

. Therefore, for fixed value

of θ, there is a unique value of F where the loss LNCE is

minimized, and it can be computed to machine precision

by using binary search or approximated using the Bennett

Acceptance Ratio (introduced in Section 3.4). Furthermore,

the optimization surface for exponential families remains

convex when we get this optimal value of F (proof Ap-

pendix A.2). This raises the following question - does con-

vergence performance of NCE increase when we treat the

constant separately and optimize it using one of the afore-

mentioned methods?

3.4. Bennett Acceptance Ratio

The Bennett Acceptance Ratio is a method developed in

statistical physics for the estimation of the ratio of parti-

tion functions between two energy distributions. The BAR

method has been mainly used on Boltzmann distributions

with densities of the form p(x) ∝ exp(−βE(x)), where

β is a constant dependant on temperature of the physical

system being modelled. This method, however, is easily

adaptable to EBMs by substituting E(x) = −βE(x).

Now, we provide the application of this method on EBMs.

Consider two densities p(x) and q(x) modelled as EBMs

p(x) ∝ exp(Ep(x)) and q(x) ∝ exp(Eq(x)), where the

partition functions are given by:

Zp\q =

∫

x

exp(Ep\q(x))dx (5)

There exists appropriate weighting functions W such that:

W (∆E) exp(Ep(x)) = W (−∆E) exp(Eq(x)) (6)

where: ∆E = Ep(x)− Eq(x)

An example of such a weighting function can be the canon-

ical Metropolis function used in Monte Carlo sampling,

given by W (∆E) = min{1, exp(∆E)}.

Taking Equation 6, integrating over all configurations and

multiplying and dividing by partition functions we get:

Zp

Zq

=
Eq[W (−∆E)]

Ep[W (∆E)]
(7)

Bennett (1976) found an optimal weight function that would

minimize the variance of the estimate and showed that it is

of the form

Zp

Zq

=
Eq[σ(∆E − c)]

Ep[σ(−∆E + c)]
(8)

where σ is the sigmoid function and c = log[Zp/Zq] =
logZp − logZq. Since c also contains the log of the ratio

of the partition functions, the equation can be solved itera-

tively through fixed point iteration to make it self consistent.

Representing our estimate of logZp as F̂p, the update to the

estimate would be:

F̂p = F̂p−(logEp[σ(−∆E+ĉ)]−logEq[σ(∆E−ĉ)]) (9)

with ĉ = F̂p − logZq or equivalently:

∆F̂p = − logEp

[

q

p̂+ q

]

+ logEq

[

p̂

q + p̂

]

(10)

Equation 10 could also be viewed as the update applied to

the log partition function coordinate when optimizing it with

gradient descent optimizers. We show in Section 4.1 that an

update of this form can be applied to the constant to yield

better convergence rates than the vanilla NCE objective

function.

3.5. Training Noise Contrastive Estimation with the

BAR and binary search

We provide here an easy way to apply the BAR update to

the log partition function of our parameterized probability

density function. We take the terms in Equation 3, and scale

the magnitude of those terms with log to yield a BAR-like

update that is of the form:

∇F = log
1

2
Ep∗

[

q

pθ + q

]

− log
1

2
Eq

[

pθ
pθ + q

]

(11)

Notice, this is not exactly a BAR update as the data samples

are not from the density specified by pθ but from the density

we want to learn p∗. To apply such an update, we just need

to take the log of the gradients provided by each summand

of the NCE objective function. The gradients of the rest

of the parameters θ̃ are kept the same. In practice, we see

best performance when we update the log of the partition
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function using a naive Stochastic Gradient Descent (SGD)

optimizer as it does not modify the magnitude of the up-

date. The other parameters θ̃ are optimized using the same

optimizer as the vanilla NCE baselines in our experiments.

The training method with a BAR update is provided in Al-

gorithm 1. Note that, in practice, we apply the BAR update

only once as we have noticed that to be enough to provide a

performance boost over vanilla NCE.

Algorithm 1 Training NCE with BAR update

Input: Model parameters θ = [θ̃, F ], noise distribution Q,

data samples D

Initialize θ̃ optimizer

Initialize F optimizer as SGD

for epoch← 1 to epochmax do
xp∗ ← D.sample()
xq ← Q.sample()

LData(xp∗)← − 1
2

∑

xp∗
log pθ(x)

pθ(x)+q(x)

LNoise(xq)← −
1
2

∑

xq
log q(x)

pθ(x)+q(x)

LNCE(xq, xp∗)← LNoise(xq) + LData(xp∗)

∇F ← log|∇FLData(xp∗)| − log|∇FLNoise(xq)|

∇θ̃ ← ∇θ̃LNCE(xq, xp∗)
F ← Update(F,∇F )
θ̃ ← Update(θ̃,∇θ̃)

Output: Updated model parameters θ = [θ̃, F ]

A binary search update for the log of the partition function

(at a constant value of θ̃) requires only one forward pass

through the model as we only need to keep track of chang-

ing loss values with the change of the log of the partition

function parameter. This results in very rapid computation

of the ideal F with binary search.

4. Experimental results

We experimentally verify our method in both non-convex

and convex settings. For all our experiments, we compare

the performance of the BAR and binary search update of

the log partition function coordinate to base NCE and NCE

with increased learning rate on the log partition function

coordinate. To implement binary search, we keep updat-

ing the log partition function parameter until the binary

search loop returns the same value of the parameter (within

a threshold) consecutively. Note that, while we compare our

methods to vanilla NCE, our approach is orthogonal to other

improvements to the NCE objective (Liu et al., 2021) and

therefore could, in principle, be used in conjunction with

these improvements.

4.1. BAR leads to quicker convergence on logZ values

than NCE

First, we establish that BAR and binary search converge

faster than NCE in a one dimensional setting, where the only

parameter is F , the log of the partition function. Figure 1

show the trajectories of F while estimating the log partition

function using BAR, binary search, and NCE respectively.

The figure represent a total of 100 runs with a batch of 512
samples for each run. The data distribution is a mixture of 10
standard Gaussians in R

20, where the means are randomly

sampled and evenly distributed on a circle of radius 4 in

the (x1, x2)-plane. The noise distribution is a standard

Gaussian.

Figure 1. Trajectories of 100 runs for BAR, NCE and Binary

Search. The y axis denotes predicted values of logZ and x axis

denotes iterations.

Here, we can observe that for almost all runs BAR converges

to a precision of 10−6 in less than 6 updates - a lot faster

than NCE. In fact, in this case it is even quicker than binary

search which takes around 20 steps to achieve same level

of accuracy! Note that in the population limit with infinite

precision, BAR will always converge in just one update.

In fact, it has been theoretically proven that the iterative

BAR procedure should converge with a finite number of

samples (Meng & Wong, 1996). We provide a proof in

Appendix B for completeness. Note that the convergence

proof is also applicable to situations when data samples do

not correspond to the density function used to compute the

log of the partition function parameter.

In certain cases, we empirically observe that BAR is prone

to oscillations around the true value. This is in the setting

where the data and noise distributions have low overlap

and their ratios are not well defined due to the constraints

of numerical precision. In such cases, we show that the

provided value is no further from the optimal value than the

previous one during the iterative procedure.
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4.2. Binary search and BAR updates perform better

than NCE in convex settings

Following Liu et al. (2021), we run experiments in two

convex settings. In first setting, we look at the exponential

family given by T (x) = [x,−1] and q(x) = e−
x2

2 , repre-

senting normal distributions with unit variance. The data

and noise distributions are Gaussian with means separated

by a distance of 16. In the second setting, the data and

noise distributions are 16 dimensional Gaussians that share

the same mean, but the noise is chosen to have an identity

covariance matrix, while the data has a diagonal covari-

ance matrix, with entries in [6, 12]. The exponential family

corresponds to T (x) = [x2
1, . . . , x

2
d, x1, . . . xd, 1]. The ad-

vantage of working in this setting is that we know what the

best parameters θ∗ are and we can evaluate performance of

different methods through a comparison of distance of the

learnt parameters θ from θ∗.

In both settings, we find that performing a BAR update or

binary searching for optimal value of F (log of the partition

function parameter) performs better than doing a joint gra-

dient descent on the NCE loss. Although the results shown

are obtained using SGD for optimization, we found that

using other optimizers leads to similar trends, as long as the

F parameter is handled separately. While using BAR, the

log partition function coordinate F is updated using Equa-

tion (11), and the optimization algorithm is only used for θ̃
coordinates. We keep a learning rate of 1 for all parameters

of the model in this setting.

Figure 2. Results for estimating 1d Gaussian distribution at a dis-

tance of 16 from the noise Gaussian. Parameter distance ∥θ−θ∗∥2
is plotted along y axis and training steps along x. Mean results

over 5 runs are shown with standard deviation being the shaded

region

First, we consider the 1d case with low overlap: Gaussians

with unit variance and a mean distance of 16. We expect

NCE to perform poorly in this setting and so the gains

made by our methods should become more visible. We also

provide results for 1d cases with better overlap along with

optimization trajectories in Appendix C.

Figure 2 shows the distance of learnt parameters from the

Figure 3. Results for estimating 16d Gaussian distribution. Param-

eter distance ∥θ − θ∗∥2 is plotted along y axis and training steps

along x. Mean results over 5 runs are shown with standard devia-

tion being the shaded region

true parameters. BAR and binary search do much better than

vanilla NCE in this setting, indicated by the much lower

parameter distance values with binary search showing the

best performance. Of note, is the high variance in the perfor-

mance of binary search along multiple runs. We conjecture

that the main cause of these fluctuations is the low overlap

between the two distributions. Due to the low overlap, the

optimal value of the log partition function constant at each

step is highly dependant on the points sampled and hence

can vary largely from batch to batch. In contrast, for settings

of good overlap, the value of the ideal log partition function

constant would not vary as much and be less dependant on

the batch of samples. We observe much lower variance in

settings of good overlap for binary search. The results from

the BAR update to the log partition function coordinate, on

the other hand, has low variance in both settings. This could

possibly be attributed to BAR being explicitly formulated

to minimize variance of its estimates (Bennett, 1976).

The 16d case demonstrates better overlap, but with higher

dimensions. Here, we can observe the benefit of using these

methods over vanilla NCE scaling with dimensions. In this

experiment we train the model parameters with a learning

rate of 0.1, but also include an additional case where the

learning rate of the log of the partition function parameter

for base NCE is higher than the rest of the parameters.

Figure 3 shows results for this setting. BAR and binary

search show much quicker convergence over vanilla NCE

justifying the use of these methods even in settings with

good overlap.

4.3. Binary Search and BAR show greater performance

with neural networks

For non convex settings, we train neural networks on the

NCE objective function. We train models on toy 2D systems

where the optimization surface is relatively simple and also

show performance trends on higher dimension datasets such
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Figure 4. Log of the NCE loss while training the Neural Network on the 8-Gaussians toy system with the different methods mentioned in

the legend. The other parameters of the neural network are trained with a learning rate of 10−3

Figure 5. Energy density function on the 8-Gaussian 2D toy system learnt by the neural network through NCE (left), BAR (center), and

Binary search (right). Ground truth energy has the same intensity for all 8 Gaussians.

as MNIST. For all of our experiments we also compare

to using NCE with a higher learning rate on the log of

the partition function coordinate (F ) as we observe that

even making just that minor adjustment leads to improved

performance with NCE.

For 2D toy systems, we train a neural network to learn

density functions on the 8-gaussians and pinwheel toy 2D

system using an isotropic Gaussian with diagonal covari-

ance values of 2 as the base noise distribution. The neural

network is a very basic 2 layer MLP with 128 and 64 hidden

dimensions and leaky relu as activation function. The loss

curves and learnt energy functions on the 8-Gaussians toy

system are shown in Figure 11 and Figure 12. The marginal

gains in the loss for binary search and BAR is not entirely

surprising as this is a relatively easy task with low dimen-

sions and good overlap. However, on visualization of the

learnt energy function we can qualitatively say that BAR

and binary search have made more progress than NCE with

the same number of steps. We provide additional results on

the pinwheel toy system in Appendix D.1 that indicate the

same trend.

Figure 6. NCE loss of all the methods while training on the MNIST

dataset

Finally, we compare our methods to vanilla NCE on the

MNIST dataset to check performance in high dimensions

and low overlap setting. Following Rhodes et al. (2020)
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we use a resnet-18 neural network and quadratic heads.

Thus, we represent the log density ratio log(pθ) − log(q)
as f⊤Wf + b⊤f + c, where f denotes the resnet feature

map. As is done in Rhodes et al. (2020) we restrict the

matrix to W ≻ 0. Finally, the distribution q is chosen

to be a Gaussian with matching mean and covariance to a

dequantized version of the MNIST dataset.

Figure 6 shows the loss curves of training the neural net-

works with the various methods discussed above. We ob-

serve that both BAR and binary search make significant

progress over the usual NCE. They optimize the neural

network to a loss that is 2-3 orders of magnitude better

than that obtained with base NCE. To ensure that this phe-

nomenon does not happen due to learning rate differences,

we also compare to NCE trained with a higher learning rate

for the log partition function coordinate parameter. Note

that this is the same learning rate we use for the BAR up-

date. This curve follows previously observed trends where

it does better than base NCE but is still outperformed by the

BAR/binary search update.

5. Conclusion

In this work, we aim to improve NCE training dynamics

through explicit treatment of the log partition function coor-

dinate. We notice that the NCE objective function is always

convex along that coordinate when the rest of the parame-

ters are kept fixed. We observe a measurable improvement

in training dynamics when we solve for that optimal value

of the log partition function parameter explicitly using bi-

nary search or approximate it using the Bennett Acceptance

Ratio. Empirical results across various settings, both with

low and high overlap and in both convex and non-convex

scenarios, consistently demonstrate superior performance

compared to the NCE baseline.

While we have strong empirical evidence that such updates

work over the NCE baseline, we do not currently have a

working theory on why it shows this behaviour and so we

will be exploring that further to get a more principled un-

derstanding of the optimization dynamics. We are also

interested in seeing what the effects of these updates would

be when used along with other recent improvements in the

NCE objective function such as those suggested by Liu et al.

(2021). Finally, we would like to explore applying these

developments to calculating partition functions of physical

systems so that we can obtain important thermodynamic

quantites such as the free energy.
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A. Convexity proofs

A.1. NCE objective is convex for exponential families

Proof of NCE loss being convex on the exponential family:

The NCE loss is given by:

LNCE(pθ) = −
1

2
Ep∗

[

log
pθ

pθ + q

]

−
1

2
Eq

[

log
q

pθ + q

]

(12)

pθ = exp(T (x)⊺θ) where T (x) = [T̃ (x),−1] and θ = [θ̃, F ]. The gradient of the objective function is:

∇θpθ(x) =pθ(x).T (x)

∇θL(θ) =−
1

2
∇θ

[

Ep∗
log

pθ
pθ + q

+ Eq log
q

pθ + q

]

=
1

2
∇θ

[

Ep∗
log

pθ + q

pθ
+ Eq log

pθ + q

q

]

=
1

2

[

Ep∗

pθ
(pθ + q)

−pθ − q + pθ
p2

∇θpθ + Eq

q

pθ + q

1

q
∇θpθ

]

=
1

2

∫

x

q

pθ + q
(pθ − p∗)T (x)dx

(13)

The corresponding Hessian for the objective is:

∇2
θL(θ) =

1

2

∫

x

(

−
q(pθ − p∗)

(pθ + q)2
∇θpθ +

q

pθ + q
∇θpθ

)

T (x)dx

=
1

2

∫

x

q

pθ + q
·
p∗ + q

pθ + q
· pθ · T (x)T (x)

⊤dx =
1

2

∫

x

(p∗ + q)pθq

(pθ + q)2
T (x)T (x)⊤dx

(14)

Since the Hessian is Positive Semi-Definite, the objective function is convex for exponential family of distributions.

A.2. Binary search update of logZ is convex for exponential families

We work with pθ = exp(T (x)⊺θ − Fθ). Note that here Fθ is a function of θ and samples in our batch. We know that we

can find a value of Fθ upto machine precision that makes the NCE derivative (Equation 3) go to zero. Here, we show this

update still maintains a convex surface for exponential families.

The gradient of the objective function in this representation is

∇θpθ(x) =pθ(x).(T (x)−∇θFθ)

∇θL(θ) =−
1

2
∇θ

[

Ep∗
log

pθ
pθ + q

+ Eq log
q

pθ + q

]

=
1

2
∇θ

[

Ep∗
log

pθ + q

pθ
+ Eq log

pθ + q

q

]

=
1

2

[

Ep∗

pθ
(pθ + q)

−pθ − q + pθ
p2

∇θpθ + Eq

q

pθ + q

1

q
∇θpθ

]

=
1

2

∫

x

q(pθ − p∗)

pθ + q
(T (x)−∇θFθ)dx

(15)

The Hessian then is:

∇2
θL(θ) =

1

2

∫

x

(

−
q(pθ − p∗)

(pθ + q)2
∇θpθ +

q

pθ + q
∇θpθ

)

(T (x)−∇θFθ)dx−
1

2

∫

x

q(pθ − p∗)

pθ + q
∇2

θFθdx

=
1

2

∫

x

q

pθ + q
·
p∗ + q

pθ + q
· pθ · (T (x)−∇θFθ)(T (x)−∇θFθ)

⊤dx−
1

2

∫

x

q(pθ − p∗)

pθ + q
∇2

θFθdx

=
1

2

∫

x

(p∗ + q)pθq

(pθ + q)2
(T (x)−∇θFθ)(T (x)−∇θFθ)

⊤dx−
1

2

∫

x

q(pθ − p∗)

pθ + q
∇2

θFθdx

(16)
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The right integral becomes zero on the binary search update to Fθ and the left integral is positive semi definite, therefore the

optimization surface remains convex after the binary search update.

B. Comments on convergence of BAR

Lemma B.1. Let xi, yi ∈ R for i = 1, . . . , n. Let f, q be any functions that are positive on the set {x1, . . . , xn, y1, . . . , yn},
satisfying Bennette’s ratio condition, that is

1
n

∑

i
q(xi)

f(xi)+q(xi)

1
n

∑

i
f(yi)

f(yi)+q(yi)

= 1. (17)

Then for any function g such that g(x) = Z · f(x), the value Z̄ obtained by using the bar update rule

log Z̄ = logZ + log

(

1

n

∑

i

q(xi)

g(xi) + q(xi)

)

− log

(

1

n

∑

i

g(yi)

g(yi) + q(xi)

)

satisfies
∣

∣log Z̄
∣

∣ ≤ |logZ|.

Proof. Let F = logZ. Then g(x) = eF f(x). Since f(x) and q(x) are positive, it follows that

min(1, eF )(f(x) + q(x)) ≤ eF f(x) + q(x) ≤ max(1, eF )(f(x) + q(x)).

Therefore,

1

max(1, eF )

(

1

n

∑

i

q(xi)

f(xi) + q(xi)

)

≤

(

1

n

∑

i

q(xi)

g(xi) + q(xi)

)

≤
1

min(1, eF )

(

1

n

∑

i

q(xi)

f(xi) + q(xi)

)

,

and similarly,

eF

max(1, eF )

(

1

n

∑

i

f(xi)

f(xi) + q(xi)

)

≤

(

1

n

∑

i

g(xi)

g(xi) + q(xi)

)

≤
eF

min(1, eF )

(

1

n

∑

i

f(xi)

f(xi) + q(xi)

)

.

Combining both the inequalities,

1

eF
min(1, eF )

max(1, eF )





1
n

∑

i
q(xi)

f(xi)+q(xi)

1
n

∑

i
f(xi)

f(xi)+q(xi)



 ≤

1
n

∑

i
q(xi)

g(xi)+q(xi)

1
n

∑

i
g(xi)

g(xi)+q(xi)

≤
1

eF
max(1, eF )

min(1, eF )





1
n

∑

i
q(xi)

f(xi)+q(xi)

1
n

∑

i
f(xi)

f(xi)+q(xi)





Note that max(1, eF ) = e|F | min(1, eF ). Further, since f satisfies Equation (17), we get

−F − |F | ≤ log

(

1

n

∑

i

q(xi)

g(xi) + q(xi)

)

− log

(

1

n

∑

i

g(yi)

g(yi) + q(xi)

)

≤ −F + |F |.

Adding F = logZ to the expression, we get

−|F | ≤ logZ + log

(

1

n

∑

i

q(xi)

g(xi) + q(xi)

)

− log

(

1

n

∑

i

g(yi)

g(yi) + q(xi)

)

− logZ∗ ≤ |F |.

Note that the middle term is precisely log Z̄, giving us

∣

∣log Z̄
∣

∣ ≤ |F |,

which completes the proof since F = logZ.
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Figure 7. BAR shows oscillating behavior in case of low overlap between data and noise distributions.

Specifically, when xi are samples from some distribution P∗ and yi are samples from some distribution Q, and if pθ where

θ = [θ̃, F∗] satisfies the Bennette’s ratio condition, then for any other F , the BAR update specified in Equation (10), given

by

F̄ = F + logEp∗

[

q

pθ̃,F + q

]

− logEq

[

pθ̃,F
pθ̃,F + q

]

satisfies
∣

∣F̄ − F∗

∣

∣ ≤ |F − F∗|, in population as well as when the expectations are estimated using a finite number of

samples.

This proof shows that the BAR update is almost a contraction mapping, and the statement of lemma is tight unless further

assumptions are made on xi and yi. Experimentally, in low overlap cases, we encounter situations where BAR update is not

a contraction mapping as shown in the Figure 7.
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C. Supplementary Results on Exponential Family

Figure 8. NCE loss (left), parameter distance (center), and an example parameter trajectory for 1d setting where the means of the two

distributions are at a distance of 1 from each other. The orange dot in the trajectory figures represents the optimal value of the parameters

in that setting.

Figure 9. NCE loss (left), parameter distance (center), and an example parameter trajectory for 1d setting where the means of the two

distributions are at a distance of 4 from each other. The orange dot in the trajectory figures represents the optimal value of the parameters

in that setting.

Figure 10. NCE loss (left), parameter distance (center), and an example parameter trajectory for 1d setting where the means of the two

distributions are at a distance of 16 from each other. The orange dot in the figure on the right represents the optimal value of the learn

parameters.

Results for NCE, BAR and binary search on varying levels of overlap in 1d exponential family settings. All experiments

show a consistent improvement of BAR and binary search over base NCE. While, there isnt much to take from the trajectory

plots, its worthwhile to note that both BAR and binary search make a big jump towards the right value of Z in the initial

steps itself for a high overlap problem (Figure 8). We also notice in Figure 9, the parameter distance of BAR is lower than

that of binary search. This is an indication that there is still some task specific variance between the performance of BAR

and binary search that needs to be explored more.
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D. Supplementary Results on Neural Networks

D.1. Neural Network training on toy 2D pinwheel system

Figure 11. Log of the NCE loss while training the Neural Network on the 8-Gaussians toy system with the different methods mentioned in

the legend. The other parameters of the neural network are trained with a learning rate of 1e− 3

Figure 12. Energy density function on the Pinwheel 2D toy system learnt by the neural network through NCE (left), BAR (center), and

Binary search (right). Ground truth energy has the same intensity for all 5 pinwheel petals.
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D.2. Example of generated samples after training on MNIST

Figure 13. MNIST images sampled from a learnt energy function

We show in Figure 13 some generated samples via running MCMC chains on the energy function learnt by the neural

network that used the BAR update for its log partition function parameter while training.
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