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Abstract

Message passing graph neural networks (GNNs)

are a popular learning architectures for graph-

structured data. However, one problem GNNs ex-

perience is oversquashing, where a GNN has diffi-

culty sending information between distant nodes.

Understanding and mitigating oversquashing has

recently received significant attention from the re-

search community. In this paper, we continue this

line of work by analyzing oversquashing through

the lens of the effective resistance between nodes

in the input graph. Effective resistance intuitively

captures the ªstrengthº of connection between

two nodes by paths in the graph, and has a rich

literature spanning many areas of graph theory.

We propose to use total effective resistance as a

bound of the total amount of oversquashing in a

graph and provide theoretical justification for its

use. We further develop an algorithm to identify

edges to be added to an input graph to minimize

the total effective resistance, thereby alleviating

oversquashing. We provide empirical evidence

of the effectiveness of our total effective resis-

tance based rewiring strategies for improving the

performance of GNNs.

1. Introduction

Graph neural networks (GNNs) are powerful tools for graph

learning and optimization tasks (Scarselli et al., 2008). One

major framework for GNNs is message passing, where node

and edge features are repeatedly aggregated locally through

node neighborhoods. While it has proven successful, mes-

sage passing also suffers from several problem related to

the topology of the graph. The number of layers of a GNN

defines the radius of the neighborhood of a node from which
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information will be aggregated. When the number of lay-

ers is too small, the message passing will only be done

locally, and the GNN will not be able to capture informa-

tion from nodes outside this neighborhood. This problem

is known as underreaching. On the other hand, choosing

a large number of layers can lead to oversmoothing, where

node features might be smoothed out and become indistin-

guishable (Cai & Wang, 2020; Oono & Suzuki, 2020). A

third issue is oversquashing (Alon & Yahav, 2021), where as

larger neighborhoods are considered, information from long-

range interactions passing through certain bottlenecks of the

graph will have negligible impact on the training of GNNs.

This behaviour was named oversquashing as information

from potentially exponentially many (with respect to the

number of layers) nodes will be squashed into fixed-sized

node vectors.

Understanding when oversquashing occurs is an active area

of research. Recently, oversquashing has been analyzed

using different techniques such as graph curvature (Topping

et al., 2021) and information theory (Banerjee et al., 2022).

Moreover, various rewiring techniques have been proposed

to alleviate oversquashing, where edges are added or re-

moved or edge weights are changed to decrease bottlenecks

in the graph before applying GNNs (Arnaiz-RodrÂıguez et al.,

2022; Deac et al., 2022; Karhadkar et al., 2022; Topping

et al., 2021).

In this paper, we propose to analyze oversquashing through

the lens of effective resistance. The concept of effective re-

sistance originates from Electrical Engineering (Kirchhoff,

1847), where the effective resistance between two nodes u
and v in an electrical network is the difference in voltage

between u and v when a unit of current is inserted at u and

removed at v. Since then, effective resistance has taken

on a new life in Graph Theory, where effective resistance

has been shown to be tied to many properties of the graph

underlying the electrical network (Doyle & Snell, 1984;

Lyons & Peres, 2017). For example, the effective resistance

between a pair of vertices is proportional to the commute

time between two verticesÐthe expected number of steps in

a random walk from one vertex to the other and back (Chan-

dra et al., 1996). The effective resistance between the end

points of an edge is proportional to the probability of the

edge being included in a random spanning tree of the graph

(Biggs, 1997). Furthermore, effective resistance is closely
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related to the Cheeger constant for graphs that measures

bottlenecks in graphs (MÂemoli et al., 2022). Because of

its various connections to many other objects (e.g., random

walks and Laplacians), effective resistance has been widely

used in practice; e.g., (Spielman & Srivastava, 2011; Alev

et al., 2018; Ahmad et al., 2021).

These properties suggest that the effective resistance is a

measure of how ªwell-connectedº two nodes are (see Sec-

tion 3). In this paper, we will show that the effective resis-

tance can also be used to bound the amount oversquashing

between two nodes in a GNN. In particular, the lower the

effective resistance between a pair of nodes, the less over-

squashing is experienced by a graph neural network sending

messages between these nodes.

Contributions. In this paper, we propose to use effective re-

sistance as a way to quantify oversquashing in graph neural

networks. We then show how this perspective can be used

to modify input graphs to alleviate oversquashing.

• In Section 3, we prove that the information passed from

one node to another by any number of layers of a GNN

is upper bounded by a quantity related to the effective

resistance between the nodes.

• In Section 4, we utilize total effective resistance as

a global measure of oversquashing and develop a

rewiring algorithm for minimizing total effective resis-

tance by adding edges to the graphs.

• In Section 5, we empirically demonstrate that our

rewiring technique is effective in alleviating over-

squashing. Our method outperforms the curvature

based method SDRF from (Topping et al., 2021) and

has similar performance compared to the spectral gap

based method FoSR from (Karhadkar et al., 2022).

All missing technical details and proofs are in the Appendix.

More on related work. Alon & Yahav (2021) were the

first to study the oversquashing problem in GNNs, although

they did not provide a theoretical analysis of the problem.

Topping et al. (2021) were the first to introduce a method

for quantitatively analyzing the oversquashing problem. In-

spired by Xu et al. (2018), Topping et al. proposed using

norm of the Jacobian between node features at different lev-

els of a GNN as a measure of oversquashing. Intuitively the

norm of the Jacobian represents the ability of the features at

one node to influence the features at another. They proved an

upper bound on the norm of the Jacobian for certain nodes

by the Balanced Forman Curvature of an edge. However,

their theoretical analysis has the limitation that their final

upper bound of the Jacobian via curvature only applies to

nodes within 2-hop neighborhoods. In contrast, our analysis

(Lemma 3.2 and Theorem 3.3) applies to any two nodes at

any layer of the GNN. Banerjee et al. (2022) proposed an

approach for analyzing the oversquashing problem using

techniques from information theory.

Di Giovanni et al. (2023) also analyzed oversquashing using

the commute time between a pair of nodes in a concurrent

work. Both ours and their papers use similar approaches and

reach the conclusion that large effective resistance between

a pair of nodes results in more oversquashing. Additionally,

they provide an analysis of how the width and depth of a

GNN affect oversquashing.

In addition to analyzing the oversquashing problem, there

has also been a line of research on ways to alleviate over-

squashing. One of the most popular approaches is rewiring

the graph: adding, removing, or reweighting the edges of

the graph to improve the topology of the graph. For exam-

ple, Alon & Yahav (2021) proposed using a fully connected

graph in the last layer of a GNN.

A popular, generic approach to rewiring is to optimize some

quantity measuring the graph topology. For example, Top-

ping et al. (2021) proposed a rewiring technique to alleviate

the oversquashing problem by increasing the curvature of

edges in the graph. However, the most common approach

has been to try to increase the spectral gap of the graph:

the smallest eigenvalue of the Laplacian. Intuitively, the

spectral gap is proportional to bottlenecks of graphs through

the Cheeger inequality (Chung, 1996), so increasing the

spectral gap decreases the bottleneck. However, there was

previously no theoretical work directly tying the spectral

gap to oversquashing (see Section 3.2). Some approaches to

decrease the spectral gap have been to add edges (Karhad-

kar et al., 2022), flip edges (Banerjee et al., 2022), reweight

edges (Arnaiz-RodrÂıguez et al., 2022), or use an expander

to perform a GNN layer (Deac et al., 2022). Our rewiring

technique is most similar to the approach of Karhadkar et al.

(2022): we add edges to minimize the total effective resis-

tance. Conceptually speaking, however, our approach may

lead to better results as the total effective resistance reflects

the entire spectrum of the graph Laplacian, including the

spectral gap. See our discussion in Section 3.2.

Particularly relevant to this paper are rewiring techniques

that incorporate information about effective resistance

(Arnaiz-RodrÂıguez et al., 2022; Banerjee et al., 2022). These

papers observe that edges with high effective resistance of-

ten appear in the bottleneck of the graph, so they target these

edges in different ways. Banerjee et al. (2022) flip edges

with probability proportional to their effective resistance to

increase the spectral gap. Arnaiz-RodrÂıguez et al. (2022)

reweight edges proportionally to their effective resistance.

While our paper and these papers both study effective re-

sistance as it relates to oversquashing, we make different

observations about the relationship between oversquashing

and effective resistance. In short, these papers observes that
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edges of high effective resistance are important to the global

topology of the graph so propose to target these edges. In

contrast, our paper observes that oversquashing is in part

the result of pairs of vertices with high effective resistance

so propose to decrease total resistance. In particular, while

the approach of Arnaiz-RodrÂıguez et al. (2022) is effective,

its effectiveness can not be attributed to decreasing total

resistance, as the reweighted graph will have approximately

the same effective resistance between all pairs of nodes as

the original graph (see Theorem 1 of (Arnaiz-RodrÂıguez

et al., 2022).)

Additionally, while not a rewiring technique, Velingker et al.

(2022) propose node and edge features based on effective

resistance as a way of incorporating information about the

graph topology into GNNs.

2. Background

This section reviews some definitions from Spectral Graph

Theory; see books by Chung (1997) and Spielman (2019)

for a more thorough introduction.

2.1. Matrices and Spectra of Graphs.

Let G = (V,E) be a connected, undirected, unweighted

graph with n vertices and m edges. Let A be the adja-

cency matrix and D be the degree matrix. The Laplacian

is L = D − A. Additionally, let Â = D−1/2AD−1/2

be the normalized adjacency matrix and L̂ = I − Â =
D−1/2LD−1/2 be the normalized Laplacian.

The matrices L̂ and Â have the same orthonormal basis of

eigenvectors {zi : 1 ≤ i ≤ n} (up to choice of basis) but

different eigenvalues. The eigenvalues λi of L̂ are in the

range [0, 2], and the eigenvalues of Â are µi = 1−λi, which

are in the range [−1, 1]. The matrix Â always has eigenvalue

1 and has eigenvalue −1 if and only if G is bipartite. We

use the notational convention that λn ≥ · · · ≥ λ2 > λ1 = 0
and µn ≤ · · · ≤ µ2 < µ1 = 1. z1, the µ1-eigenvector of

Ã satisfies z1(v) =
√

dv/2m, where dv is the degree of a

vertex v.

2.2. Graph Neural Networks

Consider a graph G with node features X ∈ R
n×d. We let

xv ∈ R
d denote the row in X corresponding to the vertex

v ∈ V . A Graph Neural Network (GNN) updates the node

features by iteratively aggregating features of nodes in the

neighborhood. More precisely, the feature vectors at each

layer are iteratively computed by

h(0)v := xv, h
(l+1)
v = ϕl



h(l)v ,
∑

u∈N (v)

Âuvψl

(

h(l)u

)





for learnable functions ϕl and ψl. Note that this is a strict

subset of the more general class of Message-Passing Neural

Networks (Gilmer et al., 2017).

Relational GNNs. In the process of graph rewiring, the

structure of the underlying graph will be changed. In or-

der to retain information of the original graph and also ex-

ploit the new graph structure induced from graph rewiring,

we use relational GNNs (R-GNNs) (Battaglia et al., 2018)

to accommodate both information. The idea of using R-

GNNs for rewired graphs was introduced in (Karhadkar

et al., 2022). In the framework of R-GNNs, for a graph G,

there exists a set R of relation types such that each edge

{u, v} ∈ E is associated with an edge type r ∈ R. For

each v ∈ V and r ∈ R, we let Nr(v) ⊆ N (v) denote the

collection of all neighbors of v incident to an edge of type

r. An R-GNN is a function of the form

h(l+1)
v = ϕl



h(l)v ,
∑

r∈R

∑

j∈Nr(v)

Âuvψ
r
l

(

h(l)u

)





for learnable functions ϕl and ψr
l .

3. Effective Resistance and Oversquashing

a b u v

Figure 1. Two examples where effective resistance can be easily

computed. For vertices u and v connected by several vertex-

disjoint paths p, Ru,v = (
∑

uv-paths p
length(p)−1)−1. Left:

Ra,b = 6, the length of the path. Right: Ru,v = 10/9.

Let u and v be vertices of G. The effective resistance

between u and v is defined

Ru,v = (1u − 1v)
TL+(1u − 1v),

where 1v is the indicator vector of the vertex v and L+ is

the pseudoinverse of L. The effective resistance can also be

computed using the normalized Laplacian L̂. This follows

from a formula for effective resistance given by LovÂasz

(1993, Corollary 3.2), but is somewhat non-standard. We

provide a different proof in Appendix A.1 for completeness.

Lemma 3.1. Let G be a connected graph. Let u and v be

two vertices. Then

Ru,v =

(
1√
du

1u − 1√
dv

1v

)T

L̂+

(
1√
du

1u − 1√
dv

1v

)

.

Intuitively, the effective resistance is a measure of how

ªwell-connectedº two vertices u and v are. While ªwell-

connectedº-ness is informal, there are many theorems which
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suggest such a connection. For example, if u and v are con-

nected by k edge-disjoint paths of length at most l, then

the effective resistance Ru,v is a most l/k. Therefore, the

more and shorter paths connecting u and v, the smaller the

effective resistance between u and v. See the Introduction

for more intuition behind effective resistance.

3.1. Effective Resistance and the Jacobian of GNNs.

As a way of measuring oversquashing in graph neural net-

works, Topping et al. (2021) proposed upper bounding the

2-norm of the Jacobian between node features ∥∂h(r)u /∂xv∥;

here, both h
(r)
u and xv are vectors, so ∂h

(r)
u /∂xv is the Ja-

cobian matrix. The Jacobian captures the influence of initial

feature vector xv at vertex v upon the feature vector h
(r)
u at

vertex u at the rth layer of the GNN. A smaller upper bound

on the partial derivative indicates that that the features at the

node v can have less influence on the features at the node u.

We adopt this way of analysis and establish a bound on the

norm of the Jacobian matrix via the effective resistance.

First, we show how the norm of the Jacobian is upper

bounded by the powers of the normalized adjacency ma-

trix.

Lemma 3.2. Let u, v ∈ V and let r ∈ N. Assume that

∥∇ϕl∥ ≤ α and max{∥∇ψl∥ , 1} ≤ β for all l = 0, . . . , r,
where ∇f denotes the Jacobian of a map f . Then

∥
∥
∥
∥
∥

∂h
(r)
u

∂xv

∥
∥
∥
∥
∥
≤ (2αβ)r

r∑

l=0

(Âl)uv.

This result is different from Lemma 1 in (Topping et al.,

2021) in which the two vertices u and v are required to be

exactly distance r apart from each other; while our result is

for any two vertices.

We can now use Lemma 3.2 to establish a new bound via

effective resistance. Recall that µn ≤ · · · ≤ µ2 < µ1 = 1
denote the eigenvalues of Â.

Theorem 3.3. Let G be a non-bipartite graph. Let u, v ∈
V . Let ∥∇ϕl∥ ≤ α and max{∥∇ψl∥ , 1} ≤ β. Let

dmin = min{du, dv} and dmax = max{du, dv}. Let

max{|µ2|, |µn|} ≤ µ. Then

∥
∥
∥
∥
∥

∂h
(r)
u

∂xv

∥
∥
∥
∥
∥
≤ (2αβ)r

dmax

2

(
2

dmin

(

r + 1 +
µr+1

1− µ

)

−Ru,v

)

Theorem 3.3 intuitively suggests that vertices with low ef-

fective resistance have a better influence over each other in

message passing; that is, the node feature h
(r)
u at node u

in level r is more affected by the initial node feature xv at

node v. Intuitively this makes sense, as effective resistance

is tied to the number and length of paths connecting u and v.

The more and shorter paths connecting u and v, the lower

the effective resistance between u and v is. This implies that

there are more ways for a GNN to send messages between u
and v, and indeed, by Theorem 3.3, the less oversquashing

between u and v.

Sketch of proof of Theorem 3.3. Lemma 3.2 allows us to

bound the Jacobian by a sum of entries of powers of the

adjacency matrix. Therefore, we need a way of connect-

ing powers of the adjacency matrix to effective resistance.

For this, we use the following two lemmas, which them-

selves may be of independent interest. Detailed proofs of

the theorem and the lemmas can be found in Appendix A.3.

Let Âr denote the restriction of Â to the space orthogonal to

the eigenvector z1, i.e. Âr =
∑n

i=2 µiziz
T
i . Recall that the

eigenvalues of Âr are in the range [−1, 1), and (−1, 1) if G
is not bipartite. The pseudoinverse of L̂ can be characterized

as follows.

Lemma 3.4. Let G be a connected, non-bipartite graph.

Then L̂+ =
∑∞

j=0 Â
j
r.

This characterization of L̂+ allows us to prove the following

relationship between the effective resistance and powers of

the normalized adjacency matrix Â (not just Âr.)

Lemma 3.5. Let G be a non-bipartite graph. Let u and v
be two vertices in G. Then

Ru,v =

∞∑

i=0

(
1

du
(Âi)uu +

1

dv
(Âi)vv −

2√
dvdu

(Âi)uv

)

.

The upper bound in Theorem 3.3 follows from Lemma 3.2

and Lemma 3.5.

Total Resistance We now take our analysis one step fur-

ther and summarize message passing rate between all pairs

of nodes at any given layer of GNN using the notion of total

effective resistanceRtotÐthe sum of the effective resistance

between all pairs of vertices.

As the partial derivative between a pair of vertices is

bounded above by a function of the effective resistance,

the total resistance bounds the sum of the Jacobian between

all pairs of vertices in the graph. The following corollary

follows immediately from Theorem 3.3.

Corollary 3.6. Let G be a non-bipartite graph. Let

∥∇ϕl∥ ≤ α and max{∥∇ψl∥ , 1} ≤ β. Let

dmin = minv∈V dv and dmax = maxv∈V dv. Let

max{|µ2|, |µn|} ≤ µ. Then

∑

u ̸=v∈V

∥
∥
∥
∥
∥

∂h
(r)
u

∂xv

∥
∥
∥
∥
∥

≤(2αβ)r
dmax

2

(
n · (n− 1)

dmin

(

r + 1 +
µr+1

1− µ

)

−Rtot

)

.
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Comparison with Curvature Bounds. Theorem 3.3 and

Corollary 3.6 are inspired by Theorem 4 in (Topping et al.,

2021), which bounds the Jacobian matrix between vertex

features by the Balanced Forman curvature of an edge. In

some ways, the effective resistance and Balanced Forman

curvature of an edge are similar, as both measure how con-

nected the endpoints are. However, our analysis generalizes

the previous bound in several important ways.

(1) Our analysis can be applied to any pair of vertices in a

graph, not just those vertices at distance 2.

(2) Effective resistance can be used to bound the oversquash-

ing between node features after an arbitrary number of layers

of a GNN, unlike Balanced Forman Curvature which can

only measure oversqushing after 2 consecutive layers.

In short, the reason for both of these generalizations is

that effective resistance measures the global connectivity

between a pair of vertices, while Balanced Forman curvature

only measures the local connectivity between a pair of nodes.

See Figure 2 for an illustration.

Figure 2. The edges {a, b} and {u, v} have the same Balanced

Forman curvature of Ric(a, b) = Ric(u, v)−6/5. However, their

effective resistance are different (Ra,b = 1 and Ru,v = 3/5). This

shows how the curvature only measure local connectivity and does

not distinguish global connectivity as effective resistance does.

Comparison with Commute Time Bounds Concurrently

to this work, Di Giovanni et al. (2023) showed that over-

squashing between a pair of nodes u and v could be bounded

by the commute time τ(u, v)Ðthe expected number of

steps in a random walk from u to v and back to u. The

commute time and effective resistance are proportional:

τ(u, v) = 2mRu,v (Chandra et al., 1996); thus, our The-

orem 3.3 and their Theorem 5.5 are analogous. Indeed,

both theorems agree that oversquashing occurs between

nodes with large effective resistance/commute time. The

two theorems also use similar techniques to connect effec-

tive resistance/commute time to the Jacobian of a GNN. The

main differences between our theorems are the result of

differences in the quantities we bound (both are related to

the Jacobian of the GNN) and differences in assumptions

about the GNN.

3.2. Effective Resistance and the Spectral Gap

Let 0 = σ1 ≤ σ2 ≤ · · ·σn denote the eigenvalues of the

(un-normalized) Laplacian L. The second eigenvalue σ2 is

called the spectral gap1of the graph G. The spectral gap

is often used as a measure of the ªbottleneckº of a graph.

This is because the spectral gap is proportional to the size

of the sparsest cut in the graph, a classic result known as

Cheeger’s Inequality (Chung, 1996).

Previous research has attempted to connect oversquashing to

the spectral gap of the graph (Topping et al., 2021; Banerjee

et al., 2022). This has motivated rewiring heuristics aimed

at raising at the spectral gap (Arnaiz-RodrÂıguez et al., 2022;

Banerjee et al., 2022; Deac et al., 2022; Karhadkar et al.,

2022). However, unlike our theoretical analysis for effective

resistance (Theorem 3.3 and Corollary 3.6), while the use of

spectral gap for measuring oversquashing is intuitive, there

was previously no theoretical evidence for how the spectral

gap directly bounds information passing between nodes.

In this section, we first discuss the connections between

spectral gap and effective resistance in order to derive a

first-step theoretical justification for using spectral gap for

bounding oversquashing. Then, we discuss potential limita-

tions of only using the spectral gap.

The following existing result shows that the worst-case ef-

fective resistance between any pair of nodes is proportional

to the spectral gap.

Theorem 3.7 (Theorem 4.2, (Chandra et al., 1996)). Let

Rmax denote the maximum effective resistance between any

pair of vertices in G. Then

1

nσ2
≤ Rmax ≤ 2

σ2
.

Corollary 3.6 and Theorem 3.7 combine to reinforce the

idea that low spectral gap is tied to oversquashing, as seen

by the following corollary.

Corollary 3.8. Under the same assumptions as in Corol-

lary 3.6, one has that

∑

u ̸=v∈V

∥
∥
∥
∥
∥

∂h
(r)
u

∂xv

∥
∥
∥
∥
∥

≤(2αβ)r
dmax

2

(
n · (n− 1)

dmin

(

r + 1 +
µr+1

1− µ

)

− 1

nσ2

)

.

1 In this section, we focus on the spectral gap and eigenvalues
of the unnormalized Laplacian, while previous papers studying
oversquashing have focused on the spectral gap of the normalized
Laplacian. There are variants of Cheeger’s inequality for both the
normalized and unnormalized spectral gap (Chung, 1997), so both
spectral gaps provide a measure of the connectivity and bottleneck

of a graph. The eigenvalues of L and L̂ are also closely related as
follows: dminλk ≤ σk ≤ dmaxλk.
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Of course, the bound above is looser than the bound using

Rtot in Corollary 3.6. Furthermore, the following result

suggests that oversquashing behavior of the graph is tied

not just to the spectral gap, but rather to the entire spectrum

of the Laplacian. Therefore, raising the entire spectrum of

the Laplacian, not just the spectral gap, could potentially

further reduce oversquashing.

Theorem 3.9 (Section 2.5, (Ghosh et al., 2008)). Let G be

a connected graph with n vertices, Laplacian L, and total

resistance Rtot. Then

Rtot = n · trL+ = n

n∑

i=2

1

σi

The higher eigenvalues of L also carry topological meaning

about the graph. Just as the spectral gap λ2 measures the

obstruction to bipartitioning a graph (the ªbottleneckº), the

kth smallest eigenvalue λk of L̂ is related to partitioning a

graph into k parts (Lee et al., 2014). See Footnote 1 for the

relationship between the eigenvalues λk and σk.

4. Minimizing Total Resistance by Rewiring

Motivated by Corollary 3.6, we propose to address over-

squashing by ªrewiringº a graph to minimize its total resis-

tance. Adding any edge to the graph will decrease its total

resistance (a result known as Rayleigh Monotonicity), so in

this section, we (1) derive a formula to determine how much

adding a specific edge decreases the total resistance and (2)

propose a rewiring method that greedily adds the edge to

the graph that most decreases total resistance. Note that our

ªrewiringº just refers to adding edges, while some previous

usage of the term ªrewiringº might refer to replacing one

edge with another (Topping et al., 2021; Banerjee et al.,

2022).

Change to Rtot after adding one edge. We first need a

new notion. The biharmonic distance between a pair of

vertices u and v is

Bu,v =
√

(1u − 1v)T (L+)2(1u − 1v).

The biharmonic distance was first introduced in the con-

text of geometry processing (Lipman et al., 2010). How-

ever, before it was properly named, it was discovered

that the squared biharmonic distance between u and v
is proportional to the partial derivative of the total resis-

tance with respect to the weight of the edge {u, v}, i.e.

∂Rtot/∂wu,v = −n · B2
u,v (Ghosh et al., 2008). This sug-

gests that the biharmonic distance can be used as a measure

for the effect an edge has on the global connectivity of the

graph.

The following theorem may be seen as the unweighted and

combinatorial analogue of the previous result (but is proved

using completely different means.) This theorem allows us

to calculate how much the total resistance decreases when

an (unweighted) edge {u, v} is added to the graph.

Theorem 4.1. Let G be a connected graph with n vertices.

Let {u, v} be an edge not in G. The difference in total

resistance after adding the edge {u, v} to G is

Rtot(G)−Rtot(G ∪ {u, v}) = n · B2
u,v

1 +Ru,v

Sketch of proof of Theorem 4.1. Note that adding the edge

{u, v} to G changes the Laplacian from L to L + (1u −
1v)(1u − 1v)

T . Hence by Theorem 3.9 we need to compare

the traces of the pseudoinverses of L and L+(1u−1v)(1u−
1v)

T . This naturally leads us Woodbury’s formula:

Lemma 4.2 (Woodbury’s Formula). Let A be an invertible

matrix. Let x be a vector. Then

(A+ xxT )−1 = A−1 −A−1x(1 + xTA−1x)−1xTA−1.

As L is singular, we cannot apply Woodbury’s Formula

directly to L+ (1u − 1v)(1u − 1v)
T . Hence, we consider

the variant of the Laplacian L + 11T

n , where 1 is the all-

ones vector. If G is connected, then L+ 11T

n is invertible.

Moreover, it can be shown that

Lemma 4.3 ((Ghosh et al., 2008)). Let G be a connected

graph. Then

• Ru,v = (1u − 1v)
T (L+ 11T

n )−1(1u − 1v);

• B2
u,v = (1u − 1v)

T (L+ 11T

n )−2(1u − 1v);

• Rtot = n · tr(L+ 11T

n )−1 − n.

We can therefore apply Lemma 4.2 to compute (L+ 11T

n +
(1u − 1v)(1u − 1v)

T )−1, take the trace, and conclude the

theorem. See Appendix A.4 for all the details.

Figure 3 shows the value n · B2

u,v

1+Ru,v
for edges in various

graphs.

Rewiring heuristic. Motivated by Theorem 4.1, we pro-

pose the following heuristic, Greedy Total Resistance

(GTR) rewiring, to minimize the total resistance: repeat-

edly add the edge {u, v} that maximizes B2
u,v/(1 +Ru,v).

For disconnected graphs, the effective resistance and bihar-

monic distance between vertices in different components

is not meaningful. Therefore, we only add edges between

vertices that are already in the same connected component.

While we could also use Theorem 4.1 to determine which

edge to remove to most decrease the total resistance, we
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

∆Rtot

0 5 10 15 20 25 30 35 40

∆Rtot

0 1 2 3 4 5 6 7 8

∆Rtot

Figure 3. When an edge {u, v} is added to a graph, it decreases the total resistance by ∆Rtot := n · (B2

u,v/(1 +Ru,v)) (Theorem 4.1).

This figure shows the value ∆Rtot for various pairs of vertices in graphs with n = 8 vertices. Edges originally in the graph are black,

and edges not in the graph are colored according to ∆Rtot. Left: For pairs of vertices with equal effective resistance Ru,v = 2, edges

towards the center of the graph have the highest biharmonic distance Bu,v . Center: The pairs of vertices that maximize ∆Rtot are those at

opposite ends of the path. Right: The pairs of vertices that maximize ∆Rtot are on opposite sides of the cycle.

will only add edges in this paper. A PyTorch Geometric

implementation of the GTR algorithm is available online2.

See Appendix E for plots of how much GTR decreases total

resistance for various datasets.

Time complexity. GTR can naively be implemented in

O(n3) time, but there are more sophisticated algorithms that

take timeO(m poly log n+n2 poly log n). See Appendix B

for an asymptotic and empirical analysis of its runtime.

Adding multiple edges. While Theorem 4.1 tells us which

single edge most decreases the total resistance when added

to the graph, unfortunately, we cannot use this formula to

determine which set of k ≥ 2 edges most decrease the total

resistance of the graph. In Appendix C, we give an example

of a graph where the two edges that most decrease the total

resistance are not the two edges that maximize the formula

in Theorem 4.1.

Another challenge for designing recursive algorithms to add

multiple edges is that the amount an edge decreases the total

resistance is non-monotonic with respect to subgraphs. By

non-monotonic, we mean that for nested graphsH ⊂ G, the

amount an edge decreases the total resistance when added

to G can be more than the amount the same edge would

decrease the total resistance when added to H . Appendix C

gives an example where this is the case. Intuitively, this

means that an edge can become more important to the global

topology of a graph when more edges are added. This is

in contrast to the effective resistance, which only decreases

with the addition of more edges.

The best algorithm we know for computing the set of k
edges that most decrease the total resistance is a brute-force

search over all O(
((n2)

k

)
) sets of k edges. It was recently

2https://github.com/blackmit/gtr_rewiring

shown that finding the k edges that most decrease the total

resistance is NP-Hard (Kooij & Achterberg, 2023). Because

of this, it is reasonable to use a heuristic rather than exactly

compute the best edges to add to decrease total resistance.

5. Experiments

We primarily compare our new GTR rewiring algorithm

with the FoSR (for ªfirst-order spectral rewiringº) algorithm

proposed by Karhadkar et al. (2022), as FoSR is the rewiring

strategy with the best performance. FoSR aims at reduc-

ing oversquashing in graphs by increasing the spectral gap.

FoSR is perhaps the rewiring heuristic most similar to GTR

for two reasons. First, it only changes the topology of the

graph by adding edges. Second, it is designed to increase

the spectral gap of the graph, which will necessarily increase

the total resistance of the graph.

5.1. Spectral Gap vs. Total Resistance

0 10 20 30 40 50
Index i

0.00

0.05

0.10

0.15

0.20

0.25

Ei
ge

nv
al

ue
 

i

FOSR
GTR

FoSR GTR

σ2 0.085 0.075

Rtot 4250377 4114024

Figure 4. A comparision of the largest connected component of

Cora after adding 50 edges with FoSR and GTR. Left: A plot of

the smallest 50 eigenvalues of the Laplacian. Right: The spectral

gap and total resistance.

To compare FoSR and GTR, we use both methods to add

50 edges to the largest connected component of the Cora

citation network (McCallum et al., 2000). Figure 4 shows

the 50 smallest eigenvalue after rewiring. FoSR increases

the first few eigenvalues (including the spectral gap) more,
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while GTR increases the larger eigenvalues more. In total,

GTR does more to decrease the total resistance of the graph.

5.2. Graph Classification

We evaluate our rewiring heuristic, GTR, as a preprocessing

step for training a graph neural network to perform graph

classification. We compare GTR with the following rewiring

method: making the last layer fully connected (Last FA)

and making all layers fully connected (All FA) from (Alon

& Yahav, 2021), DIGL from (Gasteiger et al., 2019), SDRF

from (Topping et al., 2021), and FOSR (Karhadkar et al.,

2022). We also report results for no rewiring (None). We

conduct the same experiment as in (Karhadkar et al., 2022)

for GTR; see Table 1 for results. All results except for GTR

and those marked with an asterisk are taken from Table 1 of

(Karhadkar et al., 2022).

Datasets. We test GTR on the same set of graph classifica-

tion benchmarks as Karhadkar et al. (2022). All datasets are

from the TUDataset (Morris et al., 2020).

Experiments. We compare four types of graph convolu-

tions: GCN (Kipf & Welling, 2017), Relational-GCN (R-

GCN) (Battaglia et al., 2018), GIN (Xu et al., 2019), and

Relational-GIN (R-GIN). Relational graph neural networks

perform different aggregation steps for edges of different

types. In the case of GTR, we use two edge types: original

graph edges and new edges added by the rewiring algo-

rithms. We tune the number of edges added by GTR and fix

all other hyperparameters. Full experimental details can be

found in Appendix D.

Results. Test accuracies are presented in Table 1 and the

number of edges added for each graph are reported in Ap-

pendix D. We observe the following: (1) In general, both our

GTR and FoSR outperform the rewiring strategies DIGL,

SDRF, or no rewiring at all. In particular, for the case of

relational versions of GNNs (i.e., R-GCN and R-GIN), these

two approaches often out-perform no-rewiring or SDRF by

a large margin. Note that SDRF adds edges based on a local

curvature criterion; while both FoSR and our GTR can add

any edges, taking the global connectivity of graph into ac-

count. Table 1 shows that both global strategies outperform

the local SDRF, especially for the relation-GNN cases. (2)

The performance of our GTR and FoSR are similar for the

GIN and R-GIN architectures. On R-GCN however, GTR

not only outperforms FoSR, but often by a large margin.

5.3. Edge Ablation

In Appendix F, we repeat the experiment from Section 5.2

but vary the number of edges added. In particular, our

experiments suggest that there is no optimal number of edges

to add that works across datasets. Moreover, performance

does not necessarily increase as total resistance decreases,

which we can see by comparing FoSR and GTR to Every

Layer FA in Table 1. Therefore, we recommend treating

the number of edges added as a hyperparameter to be tuned

during training.

5.4. Hidden Dimension Ablation

Another method for address oversquashing is to increase

the hidden dimension of the GNN (Alon & Yahav, 2021;

Di Giovanni et al., 2023). To compare this method with

rewiring, in Appendix G, we repeat the experiment from

Section 5.2 but vary both the number of edges added and the

hidden dimension. We conclude that rewiring and increas-

ing the hidden dimension are complementary methods for

addressing oversquashing, as doing either or both increases

the performance of GNNs.

6. Concluding Remarks

In this paper, we have provided theoretical evidence that

effective resistance can be used as a bound on oversquash-

ing between a pair of nodes in a graph, and that the total

resistance can be used as a bound of total oversquashing

in a graph. We have also empirically demonstrated that

lowering total resistance improves the performance of graph

neural networks. Indeed, rewiring techniques based on total

effective resistance can significantly improve performance

of GNN / R-GNNs for graph classification tasks, reinforcing

the notion that improving the connectivity of a graph can

improve the performance of graph neural networks.

Limitations and future work. We provide theoretical evi-

dence (Theorem 3.3) showing that total effective resistance

can be used to bound the amount of oversquashing in a

graph. This is in contrast to previous work on oversquash-

ing which relates oversquashing to the spectral gap through

intuition alone. While we prove that the spectral gap can

also be used to bound oversquashing (Corollary 3.8), the

bound for total resistance is tighter than the bound for the

spectral gap.

Despite the theoretical strength of using total resistance over

spectral gap for measuring oversquashing, more research is

needed to contrast the effects of the two on oversquashing. A

challenge to this task is that the total resistance and spectral

gap are intimately linked; for example, adding edges to the

graph will necessarily both decrease the total resistance and

increase the spectral gap. The oversquashing issue becomes

more prominent for graphs with long range interactions

(e.g., (Dwivedi et al., 2022)). Hence it will be interesting

to explore a much broader family of graph benchmarks to

study the pros and cons of different rewiring methods.

Finally, we also note that currently we employ a greedy

approach to identify a collection of edges to be inserted

into an input graph as shortcuts. As discussed in Section 4,
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Table 1. Results of different combinations of rewiring and convolutions on different graph classification datasets. First, second, and third

best results are colored. See Section 5.2 for discussion. All results except for GTR are from (Karhadkar et al., 2022), with the exception

of R-GIN FoSR results marked with an asterisk (∗); these are the best runs from the edge ablation study (Section 5.3).

GCN

Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

None 72.15± 2.44 70.98± 0.74 27.67± 1.16 68.26± 1.10 49.77± 0.82 33.78± 0.49
Last FA 70.05± 2.03 71.02± 0.96 26.47± 1.20 68.49± 0.95 48.98± 0.95 33.32± 0.44

Every FA 70.45± 1.96 60.04± 0.93 18.33± 1.04 48.49± 1.04 48.17± 0.80 51.80± 0.42
DIGL 79.70± 2.15 70.76± 0.77 35.72± 1.12 76.04± 0.78 64.39± 0.91 54.50± 0.41
SDRF 71.05± 1.87 70.92± 0.79 28.37± 1.17 68.62± 0.85 49.40± 0.90 33.45± 0.47
FoSR 80.00± 1.57 73.42± 0.81 25.07± 0.994 70.33± 0.72 49.66± 0.86 33.84± 0.58
GTR 79.10± 1.86 72.59± 2.48 27.52± 0.99 68.99± 0.61 49.92± 0.99 33.05± 0.40

R-GCN

Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

None 69.25± 2.09 69.52± 0.73 28.60± 1.19 49.85± 0.65 50.01± 0.92 33.60± 1.05
Last FA 70.55± 1.81 69.53± 0.82 28.23± 1.14 49.80± 0.63 50.65± 0.96 34.73± 1.19

Every FA 70.50± 1.84 71.67± 0.88 33.40± 1.14 49.95± 0.59 50.50± 0.89 33.62± 0.98
DIGL 73.40± 2.00 68.23± 0.85 28.28± 1.21 50.00± 0.62 49.67± 0.84 16.93± 1.44
SDRF 72.30± 2.22 69.11± 0.76 33.48± 1.25 58.62± 0.65 53.64± 1.04 67.99± 0.39
FoSR 84.45± 1.57 73.80± 0.69 35.66± 1.151 76.59± 0.53 64.05± 1.12 70.65± 0.48
GTR 85.50± 1.47 75.78± 0.76 41.33± 1.28 80.18± 0.60 65.09± 0.93 74.34± 0.41

GIN

Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

None 77.70± 3.60 70.80± 0.83 33.80± 1.12 86.79± 1.06 70.18± 0.99 72.99± 0.38
Last FA 83.45± 1.74 72.30± 0.67 47.40± 1.39 90.22± 0.48 70.91± 0.79 75.06± 0.41

Every FA 72.55± 3.02 70.38± 0.91 28.38± 1.05 50.36± 0.65 49.16± 0.87 32.89± 0.39
DIGL 79.70± 2.15 70.76± 0.77 35.72± 1.20 76.04± 0.77 64.39± 0.91 54.50± 0.41
SDRF 78.40± 2.80 69.81± 0.79 35.82± 1.09 86.44± 0.59 69.72± 1.15 72.96± 0.42
FoSR 78.00± 2.22 75.11± 0.82 29.20± 1.38 87.35± 0.60 71.21± 0.92 73.28± 0.42
GTR 77.60± 2.84 73.13± 0.69 30.57± 1.42 86.98± 0.66 71.28± 0.86 72.93± 0.42

R-GIN

Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

None 83.05± 1.44 70.50± 0.81 39.02± 1.17 87.97± 0.56 68.89± 0.87 75.54± 0.32
Last FA 80.60± 1.64 70.30± 0.84 48.18± 1.40 90.00± 0.65 69.71± 1.03 75.43± 0.49

Every FA 83.05± 1.52 71.05± 0.91 54.95± 1.33 56.86± 0.94 71.48± 0.88 75.43± 0.48
DIGL 81.45± 1.49 71.31± 0.76 37.60± 1.20 74.43± 0.72 63.93± 0.95 54.71± 0.42
SDRF 82.70± 1.78 70.70± 0.82 39.58± 1.33 86.83± 0.52 70.21± 0.81 76.48± 0.39
FoSR 86.15± 1.49 75.25± 0.86∗ 45.55± 0.13 90.94± 0.47∗

71.96± 0.69∗
77.20± 0.38∗

GTR 86.10± 1.76 75.64± 0.74 50.03± 1.32 90.41± 0.41 71.49± 0.93 77.45± .039

finding the k best edges to add to decrease total resistance

is NP-Hard (Kooij & Achterberg, 2023), and it is not clear

whether such a greedy strategy even leads to an approxi-

mation algorithm of selecting the optimal set of k edges to

minimizing total effective resistance. We leave the prob-

lem of identifying efficient approximation algorithms for

the optimal edges or better heuristics for minimizing total

effective resistance as a future direction to investigate.
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A. Proofs

A.1. Proof of Lemma 3.1

Lemma 3.1. Let G be a connected graph. Let u and v be two vertices. Then

Ru,v =

(
1√
du

1u − 1√
dv

1v

)T

L̂+

(
1√
du

1u − 1√
dv

1v

)

.

Proof. We will prove this using an alternative but well-known characterization of effective resistance in terms of uv-flows.

First, we must define another matrix associated with a graph. Let ∂ be the n×m boundary matrix of the graph G, where

n := |V | and m := |E|. The matrix ∂ is defined such that for an edge e = {u, v}, the column ∂1e = 1u − 1v. (The order

of u and v is arbitrary for what follows.)

Many of the definitions in this paper can alternatively be expressed in terms of the boundary matrix. The Laplacian can be

expressed L = ∂∂T , the normalized Laplacian L̂ = D−1/2∂(D−1/2∂)T , and the effective resistance Ru,v = min{∥f∥2 :
∂f = (1u − 1v)}. Phrased differently, the effective resistance between u and v is the minimum squared-2-norm of any

uv-flow. This characterization of the effective resistance follows from the general fact that for any matrix AAT and any

vector x ∈ imA we have that xT (AAT )+x = (A+x)T (A+x) = min{∥y∥2 : Ay = x}. The proof of the current lemma

just applies this fact twice.

Ru,v =(1u − 1v)
TL+(1u − 1v)

=min{∥f∥2 : ∂f = (1u − 1v)}
=min{∥f∥2 : D−1/2∂f = D−1/2(1u − 1v)} (as D−1/2 is bijective)

=

(
1√
du

1u − 1√
dv

1v

)T

L̂+

(
1√
du

1u − 1√
dv

1v

)

.

A.2. Proof of Lemma 3.2

Lemma 3.2. Let u, v ∈ V and let r ∈ N. Assume that ∥∇ϕl∥ ≤ α and max{∥∇ψl∥ , 1} ≤ β for all l = 0, . . . , r, where

∇f denotes the Jacobian of a map f . Then

∥
∥
∥
∥
∥

∂h
(r)
u

∂xv

∥
∥
∥
∥
∥
≤ (2αβ)r

r∑

l=0

(Âl)uv.

Proof. We prove this by induction on the layer r. For the base case of r = 0, either u = v or u ̸= v; in the first case

∂h
(0)
u

∂xv
=
∂xv
∂xv

= Idd×d,

and in the second case,

∂h
(0)
u

∂xv
=
∂xu
∂xv

= 0d×d.

Therefore,
∥
∥
∥
∥
∥

∂h
(0)
u

∂xv

∥
∥
∥
∥
∥
≤ max{∥Idd×d∥ , ∥0d×d∥} = 1. (1)

12
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Assume that the statement holds for some r ≥ 0. We now prove the inductive case of r + 1.

∥
∥
∥
∥
∥

∂h
(r+1)
u

∂xv

∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥
∥

∇1ϕr ·
∂h

(r)
u

∂xv
+∇2ϕr ·

∑

w∈N (u)

Âuw · ∇ψr ·
∂h

(r)
w

∂xv

∥
∥
∥
∥
∥
∥

≤ ∥∇1ϕr∥ ·
∥
∥
∥
∥
∥

∂h
(r)
u

∂xv

∥
∥
∥
∥
∥
+ ∥∇2ϕr∥ ·

∑

w∈N (u)

Âuw ∥∇ψr∥ ·
∥
∥
∥
∥
∥

∂h
(r)
w

∂xv

∥
∥
∥
∥
∥

(as Âuw positive ∀ u, w)

≤ α ·
∥
∥
∥
∥
∥

∂h
(r)
u

∂xv

∥
∥
∥
∥
∥
+ αβ ·

∑

w∈N (u)

Âuw ·
∥
∥
∥
∥
∥

∂h
(r)
w

∂xv

∥
∥
∥
∥
∥

≤ 2r(αβ)r+1
r∑

l=0

(Âl)uv + 2r(αβ)r+1
r∑

l=0

∑

w∈N (u)

Âuw(Â
l)wv (induction)

= 2r(αβ)r+1
r∑

l=0

(Âl)uv + 2r(αβ)r+1
r+1∑

l=1

(Âl)uv (definition of matrix multiplication)

≤ (2αβ)r+1
r+1∑

l=0

(Âl)uv.

Here ∇ϕr = [∇1ϕr|∇2ϕr] and ∇ψr denote the Jacobian matrices for ϕr and ψr, respectively. ∇1ϕr corresponds to partial

derivatives w.r.t. the first several arguments in ϕr corresponding to h
(r)
v in the formula ϕr

(

h
(r)
v ,

∑

u∈N (v) Âuvψl

(

h
(r)
u

))

and ∇2ϕr is defined similarly. In the second inequality, we used the fact for 2-norm that ∥[A|B]∥ ≥ max{∥A∥ , ∥B∥}. In

the third inequality, we used the fact that β ≥ 1 and in this way we have that α ≤ αβ.

A.3. Proof of Theorem 3.3

In this section, we provide proofs of Lemma 3.4, Lemma 3.5 and Theorem 3.3.

Lemma 3.4. Let G be a connected, non-bipartite graph. Then L̂+ =
∑∞

j=0 Â
j
r.

Proof. First, recall that the eigenvalues of Âr are in the range (−1, 1) if G is not bipartite. Also note that any number

µ ∈ (−1, 1) satisfies
∑∞

j=0 µ
j = 1

1−µ . We prove the lemma by applying this fact to the spectral decomposition of L̂+.

L̂+ =
n∑

i=2

1

λi
ziz

T
i =

n∑

i=2

1

1− µi
ziz

T
i

=

n∑

i=2

(

∞∑

j=0

µj
i )ziz

T
i =

∞∑

j=0

Âj
r.

Based on Lemma 3.4, we then prove Lemma 3.5 below.

Lemma 3.5. Let G be a non-bipartite graph. Let u and v be two vertices in G. Then

Ru,v =

∞∑

i=0

(
1

du
(Âi)uu +

1

dv
(Âi)vv −

2√
dvdu

(Âi)uv

)

.

Proof. Observe that

( 1√
du

1u − 1√
dv

1v
)T
Âi

r

( 1√
du

1u − 1√
dv

1v
)

=
( 1√

du
1u − 1√

dv
1v
)T
Âi
( 1√

du
1u − 1√

dv
1v
)

13
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for all i ≥ 0 as ( 1√
du

1u − 1√
dv
1v)

T z1 = 0. We use this equation to alternatively express the effective resistance.

Ru,v =(
1√
du

1u − 1√
dv

1v)
T L̂+(

1√
du

1u − 1√
dv

1v)

=

∞∑

i=0

(
1√
du

1u − 1√
dv

1v)
T Âi

r(
1√
du

1u − 1√
dv

1v) (Lemma 3.4)

=

∞∑

i=0

(
1√
du

1u − 1√
dv

1v)
T Âi(

1√
du

1u − 1√
dv

1v) (Above observation)

=

∞∑

i=0

(
1

du
(Âi)uu +

1

dv
(Âi)vv −

2√
dudv

(Âi)uv

)

Now, we finish proving Theorem 3.3 as follows.

Theorem 3.3. Let G be a non-bipartite graph. Let u, v ∈ V . Let ∥∇ϕl∥ ≤ α and max{∥∇ψl∥ , 1} ≤ β. Let dmin =
min{du, dv} and dmax = max{du, dv}. Let max{|µ2|, |µn|} ≤ µ. Then

∥
∥
∥
∥
∥

∂h
(r)
u

∂xv

∥
∥
∥
∥
∥
≤ (2αβ)r

dmax

2

(
2

dmin

(

r + 1 +
µr+1

1− µ

)

−Ru,v

)

Proof. Now, we will combine the equation for effective resistance of Lemma 3.5 with the bound on the Jacobian matrix of

Lemma 3.2. This gives us the bound

∥
∥
∥
∥
∥

∂h
(r)
u

∂xv

∥
∥
∥
∥
∥
≤ (2αβ)r

r∑

l=0

(Âl)uv.

≤ (2αβ)r ·
√
dudv
2

·
(

1

du

∞∑

l=0

(Âl)uu +
1

dv

∞∑

l=0

(Âl)vv −
2√
dudv

∞∑

l=r+1

(Âl)uv −Ru,v

)

≤ (2αβ)r · dmax

2
·
(

1

du

∞∑

l=0

(Âl)uu +
1

dv

∞∑

l=0

(Âl)vv −
2√
dudv

∞∑

l=r+1

(Âl)uv −Ru,v

)

We now simplify some of the terms in this bound. First, we partition the sums in the right-hand side of this equation as

1

du

∞∑

l=0

(Âl)uu +
1

dv

∞∑

l=0

(Âl)vv −
2√
dudv

∞∑

l=r+1

(Âl)uv

=

(

1

du

r∑

l=0

(Âl)uu +
1

dv

r∑

l=0

(Âl)vv

)

+

(

1

du

∞∑

l=r+1

(Âl)uu +
1

dv

∞∑

l=r+1

(Âl)vv −
2√
dudv

∞∑

l=r+1

(Âl)uv

)

=

(

1

du

r∑

l=0

(Âl)uu +
1

dv

r∑

l=0

(Âl)vv

)

+

(
1√
du

1u − 1√
dv

1v

)T ∞∑

l=r+1

Âl

(
1√
du

1u − 1√
dv

1v

)

Let µ = max{|µ2|, |µn|}. We can bound the second term in the above equation using the Courant-Fischer Theorem, which

says for a symmetric matrix B with maximum eigenvalue λmax and any vector x, one has that xTBx ≤ xTx · λmax. Then,

we have that

14
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(
1√
du

1u − 1√
dv

1v

)T ∞∑

l=r+1

Âl

(
1√
du

1u − 1√
dv

1v

)

≤
(

1

du
+

1

dv

) ∞∑

l=r+1

µl ≤ µr+1

(
1

du
+

1

dv

) ∞∑

l=0

µl

≤ µr+1

(
1

du
+

1

dv

)
1

1− µ
(as µ ∈ (−1, 1))

≤ µr+1 2

dmin

1

1− µ

We now bound the first term. Again, we rely on the Courant-Fischer theorem, and note that Âl
uu = 1Tu Â

l1u; however, as

1Tu z1 ̸= 0, we only get a bound of Âl
uu ≤ 1 · 1Tu 1u = 1. Thus,

1

du

r∑

l=0

(Âl)uu +
1

dv

r∑

l=0

(Âl)vv ≤ 2

dmin
(r + 1).

A.4. Proof of Theorem 4.1

In this section, we prove Theorem 4.1, which gives a formula for how much the effective resistance changes when an edge is

added. Recall that our strategy is to apply Woodbury’s formula to compute (L+ 11T

n + (1u − 1v)(1u − 1v)
T )−1. Before

doing this, we provide a proof for Lemma 4.3.

Lemma 4.3 ((Ghosh et al., 2008)). Let G be a connected graph. Then

• Ru,v = (1u − 1v)
T (L+ 11T

n )−1(1u − 1v);

• B2
u,v = (1u − 1v)

T (L+ 11T

n )−2(1u − 1v);

• Rtot = n · tr(L+ 11T

n )−1 − n.

Proof. By Equation (7) of (Ghosh et al., 2008), one has that

L+ =

(

L+
11T

n

)−1

− 11T

n
.

Then, we have that

(L+)2 =

(

L+
11T

n

)−2

− 11T

n

(

L+
11T

n

)−1

−
(

L+
11T

n

)−1
11T

n
+

11T

n
.

Note that vectors of the form 1u − 1v are orthogonal to the all-ones vector 1, i.e., (1u − 1v)
T 1 = 1T (1u − 1v) = 0. Hence

Ru,v = (1u − 1v)
TL+(1u − 1v) = (1u − 1v)

T (L+
11T

n
)−1(1u − 1v),

and

B2
u,v = (1u − 1v)

T (L+)2(1u − 1v) = (1u − 1v)
T (L+

11T

n
)−2(1u − 1v).

Now, by Theorem 3.9, one has that

Rtot = n · trL+ = n · tr
((

L+
11T

n

)−1

− 11T

n

)

= n · tr
(

L+
11T

n

)−1

− n.
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Theorem 4.1. Let G be a connected graph with n vertices. Let {u, v} be an edge not in G. The difference in total resistance

after adding the edge {u, v} to G is

Rtot(G)−Rtot(G ∪ {u, v}) = n · B2
u,v

1 +Ru,v

Proof of Theorem 4.1. Adding the edge {u, v} to G changes the Laplacian from L to L+ (1u − 1v)(1u − 1v)
T . Then, by

Lemma 4.3, we can find the difference in the total resistance by considering difference of Rtot(G) = n · tr(L+ 11T

n )−1 − n

and Rtot(G ∪ {u, v}) = n · tr(L + 11T

n + (1u − 1v)(1u − 1v)
T )−1 − n. The difference of these is the trace of the third

term in Woodbury’s formula, which simplifies to the quantity in the statement as follows.

Rtot(G)−Rtot(G ∪ {u, v})

=n · tr
(

L+
11T

n

)−1

− n · tr
(

L+
11T

n
+ (1u − 1v)(1u − 1v)

T

)−1

=n · tr





(

1 + (1u − 1v)
T

(

L+
11T

n

)−1

(1u − 1v)

)−1

·
((

L+
11T

n

)−1

(1u − 1v)

)((

L+
11T

n

)−1

(1u − 1v)

)T




=n ·
(

1 + (1u − 1v)
T

(

L+
11T

n

)−1

(1u − 1v)

)−1

︸ ︷︷ ︸
c

· tr





((

L+
11T

n

)−1

(1u − 1v)

)((

L+
11T

n

)−1

(1u − 1v)

)T


 .

For the coefficient term c, one has that
(

1 + (1u − 1v)
T

(

L+
11T

n

)−1

(1u − 1v)

)

= (1 +Ru,v).

For the trace term, one has that

tr





((

L+
11T

n

)−1

(1u − 1v)

)((

L+
11T

n

)−1

(1u − 1v)

)T




= (1u − 1v)

(

L+
11T

n

)−2

(1u − 1v)
T

= B2
u,v

by the fact that tr(xxT ) = xTx for any vector x.

B. Runtime Analysis of GTR

B.1. Asymptotic Analysis

The time complexity for GTR rewiring depends on the time it takes to (step 1) compute the effective resistance and

biharmonic distance for each pair of vertices, (step 2) find the pair of vertices maximizing Ru,v/(1 +B2
u,v), and (step 3)

update the effective resistance and biharmonic distance. If we are adding k edges to the graph, the naive implementation

for GTR takes O(n3 + kn2) time. We can compute L+ and L2+ in O(n3) time using the singular value decomposition,

which we can use to compute all pairs effective resistance and biharmonic distance in time O(n2). In total, step (1) would

take O(n3 + n2) time. Step (2) would take O(n2) time to iterate over all pairs of vertices. Finally, for step (3), we can

update L+ and L2+ in O(n2) time. This is because adding the edge {u, v} to G only causes a constant-rank change to

the Laplacian; the Laplacian changes from L to L+ (1u − 1v)(1u − 1v)
T and the squared Laplacian changes from L2 to

L2 + L(1u − 1v)(1u − 1v)
T + (1u − 1v)(1u − 1v)

TL + (1u − 1v)(1u − 1v)
T . The pseudoinverse of L+ and L2+ can

then be updated in O(n2) using Woodbury’s Formula (see Lemma 4.2). 3

3In general, Woodbury’s Formula cannot be used to update the pseudoinverse of a matrix; however, in the special case of adding
an edge to a connected graph, it can be used to update the pseudoinverse of L and L2. In short, this is because the vector 1u − 1v is
orthogonal to the kernels of L and L2. See the discussion in Appendix A.4.
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However, more efficient implementations for GTR are possible thanks to nearly-linear time Laplacian solvers: algorithms for

solving linear systems of the form Lx = b in O(m poly log n) time (Spielman & Teng, 2004; Jambulapati & Sidford, 2021).

Using these algorithms, the pseudoinverses L+ and L2+ could be computed in O(n ·m poly log n) by using Laplacian

solvers to find the columns of the matrix. Alternatively, all-pairs effective resistance and biharmonic distance can be estimated

in time O(m poly log n+ n2 poly log n) using an algorithm that combines Laplacian solvers and Johnson-Lindenstrauss

random projection (Spielman & Srivastava, 2011).

B.2. Experimental Analysis

We implemented the GTR algorithm in PyTorch Geometric; our analysis is available here: https://github.com/

blackmit/gtr_rewiring. The fastest implementation of GTR we found was to use the naive algorithm; this is

because we can calculate the pseudoinverse of the Laplacian using a GPU. The following table contains the amount of time

needed to compute 50 edges using each algorithm.

MUTAG PROTEINS ENZYMES IMDB-BINARY REDDIT-BINARY COLLAB

FoSR 0.10 1.00 0.37 0.51 199.20 15.94

GTR 12.86 68.10 35.76 57.23 349.98 423.79

Table 2. Time in seconds to compute 50 additional edges to add to the graph using both FoSR and GTR

C. Counterexamples to the Optimality of GTR.

Theorem 4.1 proves that GTR adds the single edge that most decreases the total resistance; however, GTR will not necessarily

add the k edges that most decrease total resistance for k > 1. Figure 5 gives an example where this is the case.

GTR Optimal

Figure 5. The path on 5 vertices is a counterexample showing that GTR does not add the k edges that most decrease Rtot when k > 1.

Left: The two edges added by GTR. GTR first adds the edge connecting the first and last vertex in the path. The total resistance of this

graph is Rtot ≈ 8.18. Right: The two edges that most deceases the total resistance. The total resistance of this graph is Rtot ≈ 7.67.

The amount an edge decreases the total resistance can increase as more edges are added to the graph. Figure 6 gives such an

example. This can be interpreted as an edge becoming more important for the global topology of the graph as the graph

changes.

Figure 6. The path on 20 vertices is an example showing that the amount an edge decreases the total resistance is not monotonic. Top:

Adding the red edge would decrease the total resistance by ≈ 30.33. Bottom: After adding the edge connecting the first and last vertex in

the path, adding the red edge would decrease the total resistance by ≈ 40.17

D. Experimental Details

We use the same configuration of hyperparameters as in (Karhadkar et al., 2022). We use randomly generated 80%/10%/10%
train/validation/test splits of the data. We use the Adam optimizer and the ReduceLROnPlateau scheduler in Torch that

reduces the learning rate after 10 epochs without an improvement in the validation accuracy. We use a stopping patience

of 100 epochs of the validation loss. For the hyperparameter search, we consider average accuracies over 10 randomly
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generated splits of the data. For the test results, we report the average test accuracy and 95% confidence intervals over 100

randomly generated splits.

Table 3. Number of edges added by GTR of FoSR for each dataset. Note that FoSR only contains the number of edges when our run in

the edge ablation experiment (Section 5.3) outperformed the run in (Karhadkar et al., 2022). The number of edges added by FoSR for all

other experiments can be found in the appendix to (Karhadkar et al., 2022).

GCN

Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

GTR 45 25 20 5 5 5

R-GCN

Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

GTR 50 10 40 20 40 25

GIN

Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

GTR 25 5 5 5 15 25

R-GIN

Rewiring Mutag Proteins Enzymes Reddit-Binary IMDB-Binary Collab

FoSR - 20 - 25 50 20

GTR 15 5 50 5 20 30

Table 4. Hyperparameters for Graph Classifcation. These are consistent across all GNN types. These are the same as used in the

experiments in (Karhadkar et al., 2022)

Hyperparameters

Number of Hidden Layers 4

Dimension of Hidden Layers 64

Dropout 0.5

Learning Rate 1.0× 10−3

E. Total Resistance vs. Number of Edges Added

Figure 7 shows the decrease in average total resistance across a dataset as edges are added to a graph by GTR or FoSR. GTR

seems to outperform FoSR in decreasing total resistance.

F. Edge Ablation

Figure 8 shows the effect of adding between 0 and 50 edges on the classification accuracy across different graph classification

datasets. We used the R-GIN architecture for the experiments and followed the same experimental procedure as described in

Appendix D.

We see a variety of behaviors across the datasets. For some datasets like Proteins or IMDB-Binary, we see an initial large

jump in accuracy after adding a few edges, but generally see little improvement by adding more edges. For Enzymes,

the accuracy almost only increases as we add more edges, suggesting that the optimal number of edges was greater than

the maximum of 50 we tested. The variety of behaviors suggest that there is no optimal number of edges to add that will

maximize performance across datasets. Our experiments also suggest that, while adding some number of edges helps for all

datasets, performance doesn’t continue to increase as more edges are added.

For almost all datasets, we see the greatest rate of improvement in accuracy after adding a few edges. A possible explanation

might be that the rate total resistance decreases is greatest for the first few edges added, as we see in Figure 7.

G. Hidden Dimension Ablation

Figure 9 shows the effect of adding between 0 and 30 edges and using a hidden dimension of 32, 64, or 128 on graph

classification accuracy. We used the R-GIN architecture for these experiments and followed the same experimental
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procedure as described in Appendix D. Generally, we see that both rewiring and increasing the hidden dimension improve

the classification accuracy.
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Figure 7. Plots of average total resistance vs. number of edges added. For disconnected graphs, plots show the sum of effective resistances

for all pairs of vertices in the same connected component, as effective resistance between vertices in different connected components is

ill-defined. As FoSR adds edges between different connected components and GTR does not, it would not be meaningful to compare

total effective resistance for datasets with disconnected graphs (i.e., Proteins, Enzymes, and IMDB-Binary) as FoSR may connect these

disconnected componets, which is why FoSR curves are not reported for these datasets.
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Figure 8. Plots of graph classification accuracy vs. number of edges added by GTR or FoSR.
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Figure 9. Plots of graph classification accuracy vs. hidden dimension for a variable number of edges added by GTR.
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