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Abstract This paper reviews a set of Bayesian model updating methodologies for
quantification of uncertainty in multi-modal models for estimating failure proba-
bilities in rare hazard events. Specifically, a two-stage Bayesian regression model is
proposed to fuse an analytical capacity model with experimentally observed capacity
data to predict failure probability of residential building roof systems under severe
wind loading. The ultimate goals are to construct fragility models accounting for
uncertainties due to model inadequacy (epistemic uncertainty) and lack of experi-
mental data (aleatory uncertainty) in estimating failure (exceedance) probabilities
and number of damaged buildings in building portfolios. The proposed approach is
illustrated on a case study involving a sample residential building portfolio under
scenario hurricanes to compare the exceedance probability and aggregate expected
loss to determine the most cost-effective wind mitigation options.

1 Introduction

In wind engineering and insurance underwriting it is of interest to predict the failure
probability of built structures under hurricane force winds. Fragility functions, or
conditional probability of failure under a given wind loading, are used to model the
failure occurrence. Failure is assumed to occur when the wind pressure exceeds the
component capacity for a given mode of failure. Fragility curve for a residential
structure depend on many factors, including shape of roof (gable or hip), frame
material (wood or masonry), number of stories, roof to wall connection type (toe-
nail or hurricane clip) and terrain roughness. For example, HAZUS [28], a commonly
used hazard analysis software package for loss estimate analysis, contains hundreds of
fragility curves for single family residential structures, depending on the combination
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of these factors. One of the main challenges in predicting failures of built structures
against extreme hurricane events from available loss data, that come in the form of
either insurance claims or field surveys, is that extreme events are rare therefore the
loss data is highly sparse, resulting in large uncertainties in performance predictions.
The lack of available data of component performance in high wind speed domains
is particularly problematic. This region is referred to as the low-probability high-
consequence event and is thought to have significant influence in a cost-benefit
assessment [13, 6, 15]. In order to reduce uncertainty in the predictions it is of interest
to combine physics-based failure prediction functions for structural components
with data from field surveys or insurance claims. This chapter presents a review of
Bayesian model updating approaches to deal with uncertainty in predicting failure in
rare but high consequence events. Specifically, we study methods to develop fragility
functions of building components that can in turn be used quantify uncertainty of
failure probabilities against extreme wind loading and make decisions for aggregate
wind loss of building inventories. Many of the ideas presented in this chapter have
been previously discussed in the author’s earlier research, including [27, 31] and
[32].

2 Models to Predict Hurricane Risk

The probability of failure 𝑃 𝑓 of a structural component for a certain failure mode is
defined as:

𝑃 𝑓 =

∫
𝐹𝑣𝑝(𝑣)𝑑𝑣 (1)

in which 𝑝(𝑣) is the probability density function of the hazard, in this case hurricane
wind speed 𝑣, and 𝐹𝑣 is the fragility function, the probability that the structure fails
at this wind speed. Fragility analysis using this equation uncouples the hazard (prob-
ability distribution of wind load) from the structure reliability (fragility function),
thus, the analyses for determining hazard likelihood and fragility of various compo-
nents can be conducted separately. It is often the case that accurate information on
hazard is not available, hence it is desirable to make safety decisions against a range
of hazard intensities through the use of fragility analysis [14]. The fragility is the
conditional probability that capacity of the component is less than a wind load 𝐷𝑣
for a given wind speed 𝑣

𝐹𝑣 = 𝑃 (𝐶 ≤ 𝐷𝑣) =
∫
𝜂∈Ω

𝑓 (𝜂) 𝑑𝜂

in which 𝑓 (𝜂) is the joint probability density function of the parameters 𝜂 that define
the capacity and wind load models, and Ω is the set of values of 𝜂 such that𝐶 ≤ 𝐷𝑣.
The integral is usually evaluated using numerical integration or first-order reliability
methods (Madsen et al. [16]). In wind engineering, fragility functions are often
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assumed to follow certain probability function, where the lognormal distribution is
one of the most commonly used distribution (Rosowsky and Ellingwood [23], Li and
Ellingwood [14]):

𝐹𝑣 = Φ [ln (𝐷𝑣/𝑚)/𝜁] (2)

in which Φ[•] is the standard normal probability integral, 𝑚 is the median capacity,
and 𝜁 is the logarithmic standard deviation of capacity. Li and Ellingwood [14] found
the fragility curves for hurricane winds but did not provide bounds on the curve.
Gardoni et al., [7] Straub and der Kiureghian [26] considered quantifying uncertainty
in fragility by provided confidence bounds, however, the application was limited to
earthquake loss analysis.

In a recent survey of hurricane vulnerability analysis methods Pita et al.,[19]
mentioned that uncertainty in the loss estimates depends on the wind speed domain
under study. Uncertainty is typically larger in the lower and the higher wind speed
ranges. The former uncertainty is because insurance claim data typically employed to
fit fragility functions do not include any damage lower than the deductibles, while the
latter one is because there is scarce past loss data due to the rare occurrence of strong
hurricanes. To circumvent issues with scarce performance data, researchers have
investigated physics-based analytical approaches to model building vulnerability. For
example Ellingwood et al., [5] and Zhang et al., [29] developed capacity models of
building components from which fragility curves can be found to assess the response
of a light-frame wooden construction exposed to extreme winds and earthquakes.
It is assumed that the severity of a catastrophe is based on annual probability of
exceeding the design hazard or its return period.

Most analytical approaches to estimate the load carrying capacity of building
components based on Newtonian-mechanics principles do not account for uncer-
tainty that arises due to modeling assumptions (Mottershead and Friswell, [18]).
Several assumptions made at the modeling stage can contribute significantly to
model uncertainty that results in biased capacity predictions: variation of material
properties during manufacture, inexact modeling of material constitutive behavior,
inaccurate modeling of the boundary conditions, and insufficient refinement in spa-
tial discretization of distributed parameters. To correct the bias between computer
predicted deterministic model and experimental observations, a model-updating
method is employed. The major purpose of model updating is to modify the model
parameters to obtain a better agreement between numerical results and the test data.
According to Straub and der Kiureghian [26], the uncertainties in the model gives
rise to statistical dependence among observations and can have significant effect on
fragility. Gardoni et al., [7] have used Bayesian framework for constructing univariate
and multivariate predictive capacity model based on experimental observations and
develop fragility curves with uncertainty bounds. Beck and Au [3] have proposed
a Bayesian framework for finding probability distribution of the model parameters
for structural analysis and Beck and Katafygiotis [4] have used an adaptive Markov
chain Monte Carlo simulation to find updated posterior probability using a sampling
based approach rather than closed-form expressions.
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In engineering statistics improving the predictive accuracy of computer models
with physical or experimental data has been studied extensively and referred to as
model updating and model calibration (Kennedy and O’Hagan [12], Reese et al., [22],
Qian and Wu [20]). Vanli and Jung [27] have used the probabilistic model updating
method to improve the accuracy of damage size and location prediction of a structural
health monitoring system with help of a finite element analysis method. Model
uncertainty is typically categorized into the forms epistemic and aleatory uncertainty.
Epistemic uncertainty derives from a lack of knowledge about the appropriate value
to use for a quantity that is assumed to have a fixed value in the context of a
particular analysis. Aleatory uncertainty arises because the system under study can
behave in many different ways (e.g. many different accidents are possible at a power
station). Thus, aleatory uncertainty is a property of the system under study and
epistemic uncertainty is a property of the analysis (Helton et al., [11] ). Often,
some type of random sampling through a set of event trees is used to sample
from aleatory uncertainty and random sampling from the input distributions is used
to sample from epistemic uncertainty. In addition, to provide a better coverage
of low probability/high consequence events and enhance the effectiveness of the
computational effort, importance sampling is recommended as a more effective
sampling procedure than random sampling.

3 Bayesian Model Updating for Hurricane Risk

The parameters of both functions 𝑝(𝑣) and 𝐹𝑣are determined from data and therefore
are subject to estimation error. In this study we represent the fragility function in
terms of random parameters using a Bayesian approach and evaluate the integral
in Equation (1) with respect to the posterior distribution of the parameters. A two-
stage Bayesian model updating approach (Reese et al., [22]) is presented to fuse
capacity predictions from an analytical model and capacity data from experiments.
The Bayesian posterior distribution of the capacity is used to develop posterior
distribution and confidence bounds of fragility functions, total failure probability
and aggregate hurricane loss.

3.1 Bayesian Two-stage Regression Model

Suppose 𝐶 (𝒙) is the capacity defined as a function of 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑑), a 𝑑 × 1
feature (regressor) vector that contains the variables denoting the number and types
of clips/nails and wood of the roof to wall connection. A polynomial regression is
used to represent the relation between the connection capacity and the connection
features:

𝐶 (𝒙) = 𝜷′𝒙 + 𝜖 (3)
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where 𝜷 = (𝛽1, 𝛽2, . . . , 𝛽𝑑), a 𝑑 × 1 vector of unknown parameters (regression
coefficients) that quantifies the effects of these variables on capacity. Polynomial
regression model is a class of multiple linear regression models, that are linear
in the regression parameters, but contain polynomial functions of the independent
variables, including, 𝑥, 𝑥2, and 𝑥1𝑥2 (Montgomery et al., [17]). A normally distributed
random error term 𝜖 ∼ 𝑁

(
0, 𝜎2) is assumed to capture all un-modeled sources of

variation.
A first stage of the model describes the analytical capacities (described in Section

3.2) as a function of the features using Bayesian regression. A second stage of the
model updates the first stage model with the experimental observations of capacity.
The same model form as in Equation (3) is assumed in both first and second stages.
Bayesian inference relies on specifying prior probability distributions on the un-
known parameters and developing posterior distributions (conditional on observed
data). In the first stage a non-informative prior is assumed on the analytical capacity
model parameters as 𝑝

(
𝜷, 𝜎2) ∝ 1/𝜎2. The random error is assumed to be normally

distributed, therefore, the likelihood function is derived based on this assumption
and the regression model structure. Based on the regression model and the random
error distribution, the likelihood function for an individual capacity for a regressor
vector 𝒙 is

𝑝

(
𝐶 (𝒙)

��𝜷, 𝜎2
)
= 𝑁

(
𝜷′𝒙, 𝜎2

)
. (4)

The first stage model posterior distributions of 𝜷 and 𝜎2 are obtained by updating
the noninformative prior with the observed analytical capacity data (Gelman et al.,
[9], pp 355-356) using the Bayes’ theorem. Let 𝑪𝑎 =

(
𝑐𝑎1, . . . , 𝑐𝑎𝑛1

)
be the vector

of analytical capacity data for 𝑛1 different connection configurations (e.g., wood
type, connection type), specified by a 𝑛1 × 𝑑 matrix𝑿1 of regressor where each row
represents the features of a specific connection. The posteriors are therefore obtained
as

𝑝

(
𝜷|𝜎2,𝑪𝑎

)
= 𝑀𝑉𝑁 (𝝁1,𝚺1)

𝑝

(
𝜎2��𝑪𝑎) = 𝐼𝑛𝑣 − 𝜒2

(
𝜈1, 𝑠

2
1

)
where 𝑀𝑉𝑁 (𝝁1,𝚺1) denotes a 𝑑-dimensional multivariate normal probability
distribution with mean vector 𝝁1 and variance-covariance matrix 𝚺1, and 𝐼𝑛𝑣 −
𝜒2 (𝜈1, 𝑠

2
1
)

denotes a scaled-inverse chi-square distribution with degree of freedom
𝜈1 and scale parameter 𝑠21. The parameters of the posterior distributions are

𝝁1 =
(
𝑿′

1𝑿1
)−1

𝑿′
1𝑪𝑎

𝚺1 = 𝜎2 (
𝑿′

1𝑿1
)−1

𝜈1 = 𝑛1 − 𝑑
𝑠21 = (𝑛1 − 𝑑)−1 (𝑪𝑎 − 𝑿1𝝁1 )′ (𝑪𝑎 − 𝑿1𝝁1)
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The second stage model posteriors are obtained by taking the posteriors of the first
stage as the prior of the parameters and updating the priors with the experimental
data. The second stage posteriors are therefore the informative prior distributions on
the parameters 𝜷 and 𝜎2 as follows:

𝑝

(
𝜷
��𝜎2

)
= 𝑀𝑉𝑁

(
𝜷0, 𝜎

2𝚲0

)
𝑝

(
𝜎2

)
= 𝐼𝑛𝑣 − 𝜒2

(
𝜈0, 𝑠

2
0

)
.

in which, 𝜷0,𝚲0, 𝜈0 and 𝑠20 are the parameters of the prior distributions to be specified
by the user according to the posterior of the first stage. We tune the parameters of
the priors of the second stage so that they are equal to those of the posterior of the
first stage as

𝜷0 = 𝝁1

𝚲0 =
(
𝑿′

1𝑿1
)−1

𝜈0 = 𝜈1

𝑠20 = 𝑠21.

These set of priors are referred to as conjugate priors for a normal regression
model (Gelman et al., [9]). When the prior is conjugate for the likelihood model,
the posterior distribution follows the same parametric form as the prior distribution.
Conjugate family has the convenience that the posterior can be represented as a
closed-form expression. Let 𝑪𝑒 = (𝑐𝑒1, . . . , 𝑐𝑒𝑛2 ) be the vector of capacity measure-
ments obtained for 𝑛2 different connection configurations, under a set of regressors
specified by a 𝑛2 × 𝑑 matrix 𝑿2. Note that in general the number of data 𝑛1 and 𝑛2
and the connector configurations given in the regressor matrices 𝑿1and 𝑿2 of the
first and second stages can be different. By using these priors and assuming a normal
likelihood function for the observed experimental capacity data 𝑪𝑒, it can be shown
that the posteriors of 𝜷 and 𝜎2 for the second stage are:

𝑝

(
𝜷
��𝜎2,𝑪𝑒,𝑪𝑎

)
= 𝑀𝑉𝑁 (𝝁2,𝚺2) (5)

𝑝

(
𝜎2��𝑪𝑒,𝑪𝑎) = 𝐼𝑛𝑣 − 𝜒2

(
𝜈2, 𝑠

2
2

)
(6)

for which the parameters are defined as

𝝁2 =

(
𝚲−1

0 + 𝑿′
2𝑿2

)−1 (
𝚲0𝜷0 + 𝑿′

2𝑪𝑒
)

(7)

𝚺2 = 𝜎2 (𝑿′
2𝑿2

)−1 (8)
𝜈2 = 𝑛2 + 𝜈1 (9)

𝑠22 =
1
𝜈2

[
𝜈1𝑠

2
1 + (𝑪𝑒 − 𝑿2𝝁2)′ (𝑪𝑒 − 𝑿2𝝁2) + (𝝁1 − 𝝁2)′ 𝚲0 (𝝁1 − 𝝁2)

]
.(10)
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Equations (7) to (10) show how the noninformative prior on 𝜷 and 𝜎2 is updated
with 𝑛1 analytical capacity data 𝑪𝑎 (first stage) and 𝑛2 experimental capacity data 𝑪𝑒
(second stage). Note that the dependence of the posteriors on the analytical capacity
𝑪𝑎 is through the parameters 𝑠21 and 𝝁1.

Note that the normality assumption of the error term in the Bayesian regression
models is made to satisfy the conjugate prior condition and to obtain the posterior
distributions in closed-form. However, this assumption does not have to be satisfied
in applications and for such cases a typical approach is to apply a variable trans-
formation on the response variable in the form 𝑐 = 𝑓𝑇 (𝑐̃) so that the regression on
the transformed variable has normal errors ([20], pp 161). Here 𝑐̃ is the untrans-
formed capacity data, c is the transformed capacity to be used in the regression
analysis and 𝑓𝑇 (.) is a suitable transformation function. The Bayesian model is fitted
to the transformed capacity data and the prediction on the original (untransformed)
capacity is obtained by applying the inverse transformation. In the case study pre-
sented in Section 4.2 the experimental data required a logarithmic transformation,
𝑓𝑇 (𝑐̃) = log (𝑐̃), be used.

3.2 Posterior Predictive Distribution

We make inferences about the capacity of a component based on the posterior
probability (predictive) distribution of the capacity𝐶 (𝒙) from the two-stage updating
of the model (3) and using the posteriors we developed for the parameters. The
posterior predictive distribution of the capacity from the two-stage updated model is
(Gelman et al., [9], pp 358-359) obtained from the likelihood given by specified by
Equation (4) and the posteriors of parameters 𝒃𝒆𝒕𝒂 and 𝜎2 given by the Equations
(5) and (6), respectively, by computing the following integral

𝑝 (𝐶 (𝒙) |𝑪𝑒,𝑪𝑑) =
∫

𝑝

(
𝐶 (𝒙)

��𝜷, 𝜎2
)
𝑝

(
𝜷
��𝜎2,𝑪𝑒,𝑪𝑎

)
𝑝

(
𝜎2��𝑪𝑒,𝑪𝑎) 𝑑𝜷𝑑𝜎2.

(11)
This equation obtains the predictive distribution, by integrating the likelihood func-
tion 𝑝

(
𝐶 (𝒙)

��𝜷, 𝜎2) , a conditional distribution based on specific values of parameters
𝜷 and 𝜎2, over the posteriors 𝑝

(
𝜷
��𝜎2,𝑪𝑒,𝑪𝑎

)
and 𝑝

(
𝜎2

��𝑪𝑒,𝑪𝑎 ) . Through this in-
tegration the Bayesian predictive distribution accounts for uncertainty in the model
parameters. The fragility at a given wind load defined by Equation (2) is determined
by integrating the predictive distribution (11) of the capacity to find the probability
that capacity is less than the wind load, 𝐹𝑣 = 𝑃(𝐶 (𝒙) ≤ 𝐷𝑣), as follows

𝐹𝑣 =

∫ 𝐷𝑣

0
𝑝 (𝐶 (𝒙) |𝑪𝑒,𝑪𝑎) 𝑑𝐶. (12)

in which the wind load 𝐷𝑣 for the bound of the integral is determined according to
ANSI/ASCE-7 [4] for given wind speed v and roof configuration (as discussed in
the case study). Based on (4), the fragility conditional on 𝜷, 𝜎2 is
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𝐹𝑣 |𝜷, 𝜎2 = 𝑃(𝐶 (𝒙) ≤ 𝐷𝑣 |𝜷, 𝜎2) = Φ

(
𝐷𝑣 − 𝜷′𝒙

𝜎

)
(13)

where, as before,Φ (.) is the cumulative distribution function of the standard normal.
In structural reliability literature [16], sometimes this is expressed as 𝐹𝑣 |𝜷, 𝜎2 = 1−
Φ (𝛾𝑣) where 𝛾𝑣 = (𝜷′𝒙 − 𝐷𝑣) /𝜎 is the reliability index. To obtain the unconditional
fragility, this expression is averaged over the posteriors, similarly as in Equation (11):

𝐹𝑣 =

∫
Φ

(
𝐷𝑣 − 𝜷′𝒙

𝜎

)
𝑝

(
𝜷
��𝜎2,𝑪𝑒,𝑪𝑎

)
𝑝

(
𝜎2��𝑪𝑒,𝑪𝑎) 𝑑𝜷𝑑𝜎2.

Fragility curve is obtained point-by-point by finding 𝐹𝑣 for a range of wind
speeds using the computational approach presented in Section 3.3. The case study
will illustrate the application of this integration.

3.3 Computational Methods to Estimate Rare Event Probabilities

In this section we discuss how to compute the probability of failure by computing
the convolution integral (1) from the fragility curve 𝐹𝑣 and the probability density
function 𝑝 (𝑣). Specifically, we highlight here the computational challenges in finding
probabilities of rare events and propose an efficient computational approach to
overcome some of them.

In many applications, in particular to compute the probability of failure, the
predictive distribution of capacity or the fragility function is typically not needed to
be obtained in closed-form. A common approach is to use Monte Carlo simulation
[12] to estimate this distribution from randomly generated realizations, and will be
used in this chapter. Samples of𝐶 can be drawn from the predictive distribution (11)
using the following steps (i) Draw 𝜎2 from distribution (6); (ii) Conditional on 𝜎2,
draw 𝜷 from distribution (5); (iii) Conditional on 𝜎2 and 𝜷, draw𝐶 from distribution
(4); (iv) Conditional on 𝜎2and 𝜷, find 𝐹𝑣 using (13).

Figure 1 shows, as an illustration, a histogram of wind speed values from a given
distribution𝑝 (𝑣) overlayed with the fragility curve 𝐹𝑣 for a specific roof to wall
connection (2 hurricane clips and SYP wood) evaluated with this approach. We
discuss the definition in more detail in the case study below how the fragility curve
and the wind speed probability distribution are defined. As it can be seen, the two
distributions overlap only at the right tail of the wind speed distribution (with very few
common occurrences) that makes integration with standard Monte Carlo methods
very challenging resulting in large sampling errors. To reduce the computational
effort involved with standard Monte Carlo, we use importance sampling (Rubinstein
and Kroese [24], pp. 135) to estimate 𝑃 𝑓 .

In importance sampling a proposal distribution 𝑔 (𝑣) is used in place of the density
function of wind speed 𝑝 (𝑣) in the integral to find the expectation of the weighted
fragility as follows:
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Fig. 1 Wind speed distribution and the fragility curve for a roof-to-wall connection with SYP wood
and 2 hurricane clips

𝑃 𝑓 =

∫ ∞

0
𝐹𝑣
𝑝 (𝑣)
𝑔 (𝑣) 𝑔 (𝑣) 𝑑𝑣 =

∫ ∞

0
𝐹∗
𝑣 𝑔 (𝑣) 𝑑𝑣 (14)

The new integral can be viewed as the convolution of the weighted fragility
𝐹∗
𝑣 = [𝑝 (𝑣) /𝑔 (𝑣)] 𝐹𝑣 with the proposal distribution 𝑔 (𝑣). As proposal distribution,

in this study we use a Weibull distribution “translated” to the right so that samples
in the right-tail (low probability) region of wind speed can be generated more
frequently and failure probability can be more adequately estimated. It turns out that
if the amount of translation is chosen carefully, the Monte Carlo integration will
result in high precision with reasonable computational burden. We use Algorithm 1
below to obtain the probability of failure based on importance sampling.

Algorithm 1:Obtain posterior distribution and estimate of probability of
failure

1. Given wind speed distribution 𝑝 (𝑣) and proposal distribution 𝑔 (𝑣). Set Monte
Carlo simulation counter 𝑖 = 1.
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2. Simulate wind speed 𝑣𝑖 from 𝑔 (𝑣)
3. Compute wind load 𝐷𝑣𝑖
4. Simulate 𝜎2 from the posterior 𝐼𝑛𝑣 − 𝜒2 (𝜈2, 𝑠

2
2
)

5. Simulate 𝜷 from the posterior 𝑀𝑉𝑁 (𝝁2,𝚺2) based on the simulated 𝜎2

6. Find failure probability 𝐹𝑣𝑖 from Equation (11).
7. Go to step 4. Repeat 𝑚 times. The simulated fragility values are

(
𝐹1
𝑣𝑖
. . . , 𝐹𝑚𝑣𝑖

)
8. Compute weighted fragility values 𝐹 𝑗𝑣𝑖∗ = 𝐹

𝑗
𝑣𝑖 𝑝(𝑣𝑖)/𝑔 (𝑣𝑖) for 𝑗 = 1, 2, . . . , 𝑚, a

random draw from posterior of fragility at wind load 𝐷𝑣𝑖
9. Find the 𝛼/2-th and (1 − 𝛼/2)-th quantiles of the posterior

(
𝐹1∗
𝑣𝑖 ,
. . . , 𝐹𝑚∗

𝑣𝑖

)
; this

is a 100 (1 − 𝛼) % confidence interval on the true fragility at wind load 𝐷𝑣𝑖 .
10. Find the failure probability in 𝑖-th simulation as

𝑃 𝑓𝑖 =
1
𝑚

𝑚∑︁
𝑗=1

𝐹
𝑗∗
𝑣𝑖

11. If 𝑖 < 𝑀 then set 𝑖 = 𝑖 + 1 and go to Step 2 to continue with drawing a new wind
speed 𝑣𝑖 . If 𝑖 = 𝑀 then go to Step 12.

12. The sampled values
(
𝑃 𝑓1 , . . . , 𝑃 𝑓𝑀

)
is a random draw from the posterior of the

failure probability. The importance sampling estimate of the probability of failure
is

𝑃̂ 𝑓 =
1
𝑀

𝑀∑︁
𝑖=1

𝑃 𝑓𝑖

13. Find the 𝛼/2-th and (1−𝛼/2)-th quantiles of the posterior. This is a 100 (1 − 𝛼) %
confidence interval on the true failure probability.

4 Case Study: Miami-Dade County Residential Building
Inventory Wind Loss Estimation

In this section we present the proposed Bayesian multimodal analysis method to esti-
mate failure probability of roof systems under hurricane wind loading. Catastrophic
failures of one and two story, light-frame residential buildings are the most frequently
observed types of loss in a hurricane. The failure of roof-to-wall connections is a
dominant cause of the breach of the building envelope (roof sheathing). Breach of
the building envelope constitutes a significant component of hurricane loss because
possible subsequent water and wind damage to the interior and the contents of the
building can be very high. Roof-to-wall connections play a key role in load transfer
from roof to walls during heavy wind and is the most commonly failing component
under hurricane winds under tension load due to uplift forces acting on the roof
[25, 23].
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A gable roof, site-built (one or two story) residential building is considered as the
model building, as shown in Figure 2, with dimensions 𝐵 = 17.1 meters, 𝐿 = 13.4
meters, ℎ1 = 3.05 meters and ℎ2 = 2.8 meters. The house considered in this ex-
ample is adopted from Florida Public Hurricane Loss Projection Model [13]. The
roof-to-wall connections are at every connection between the rafter and the top plate.
With this configuration, there are 31 connections on each side of the house and end
trusses have 8 connections, therefore, the roof structure has a total of 70 connections.
The roof-to-wall connection types considered in this chapter are toe nails and clips,
representing houses built in 1990s and after 2006, respectively, and will be referred
to as “unmitigated” and “mitigated” houses. Mishra et al., [31] estimated the proba-
bility of failure for the first connection. Mishra et al., [32] presented a system-level
reliability analysis of the roof system to estimate probability of failure for a given
damage severity (e.g., failure of 10% of the connections). Roof system components
representing mitigation actions (hurricane clips) and no mitigation (toe-nailing the
rafters) are considered to evaluate the benefit of mitigations.

4.1 Bayesian two-stage model to predict failure probability of roof
systems under hurricane winds

This section illustrates the application of the two-stage Bayesian updating approach
for finding the predictive distribution of the capacity of a roof-to-wall connection
and finding the probability of failure against wind loading. The analytical capacity
model for the connections is described in detail in [31] based on the failure mode

Fig. 2 The schematic of the house considered in the analyses
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of nail pull out for toenails and the failure modes of nail pull out, clip tearing and
wood rupture following for hurricane clips. The nail pullout force is determined by
the individual contribution from each nail in the clip. According to this formula, the
analytical capacity 𝐶𝑎[kN] is the smallest of resistances against three failure modes:
the combined resistance offered by the nails, the resistance against wood rupture
and the resistance against clip deformation. The experimental capacity 𝐶𝑒 [kN] data
for toe nails (reported in [21]) and for clips (reported in [1]) are used for Bayesian
updating of analytical capacity models. We will compare the proposed Bayesian
model updating approach to the traditional lognormal fragility method [14].

We considered the capacity data for Spruce Pine Fir (SPF), Southern Yellow Pine
(SYP) and Douglas Fir (DF) wood types and 1, 2 and 4 hurricane clip configurations
and the toe-nail connection. For the hurricane clips capacity, we fit a second order
polynomial as the regression model to capacity data (after applying some suitable
transformation)

𝐶 (𝒙) = 𝛿0 + 𝛿1𝑥1 + 𝛿11𝑥
2
1 + 𝛿2𝑥2 + 𝛿3𝑥3 + 𝜖 (15)

where 𝐶 (𝒙) is the connection capacity, 𝜷 = (𝛿0, 𝛿1, , 𝛿2, 𝛿3, 𝛿11) is the vec-
tor of regression coefficients, containing 5 parameters to be estimated, and 𝒙 =

(1, 𝑥1, 𝑥2, 𝑥3, 𝑥
2
1) is the vector of regressors. The regressor 𝑥1 denotes the number

of clips (takes values of 1, 2 and 4) and 𝑥2, 𝑥3 the dummy regressors that specify
the 3 wood types: for SPF (𝑥2, 𝑥3) = (0, 0), for SYP (𝑥2, 𝑥3) = (1, 0) and for DF
(𝑥2, 𝑥3) = (0, 1). A quadratic term 𝑥2

1 for the number of connections is included to
accommodate for possible curvature in capacity due to varying number of connec-
tions. The quadratic term and the first order term for the dummy variables, (e.g.𝑥2
and 𝑥2

2), cannot be included together in the regression model due to multicollinear-
ity between these terms. For the toenails, no information on a feature is available,
therefore, 𝐶 (𝒙) = 𝛿0, with only 1 parameter (intercept) to be estimated.

We implemented the analytical capacity models of the clips and toe nails for the
failure models. Figure 3 shows the analytical and experimental capacity data, for
each of the 1, 2, and 4 clips and SPF, SYP and DF combinations. For the 1 and 2 clip
cases, 5 capacity data are available for all 3 wood types, for the 4 clip case, 5 capacity
data are available for SPF and SYP, thus, the regressor matrices 𝑿1 and 𝑿2 are 40×5
matrices and data vectors 𝑪𝑒 and 𝑪𝑎 are both length 40 (i.e., 𝑛1 = 𝑛2 = 40). For
the toe nail case, 13 capacity data is available for an 8 mm diameter toe nail and
SYP wood, therefore, 𝑿1and 𝑿2 are 13× 1 vectors of 1’s and 𝑪𝑒 and 𝑪𝑎 are 13× 1
vectors (i.e., 𝑛1 = 𝑛2 = 13).

To determine the wind load 𝐷𝑣 [kN] acting on the connection, the wind load
acting on the roof is evaluated using the ASCE-7 [2] methodology. The net force is
the force acting on a single interior truss. Thus, truss of the roof is assumed to be
simply supported, with two supports on both ends of the truss (see Figure 2). Hence
to find the wind load acting on each support, this force is divided equally into the
support locations. Figure 4(a) shows the wind load as a function of wind speed.

The probability distribution 𝑝(𝑣) of wind speed in Miami-Dade county that
incorporates the uncertainty in the wind loading. In this study, we assume a Weibull
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Fig. 3 Experimental and analytical capacities for different wood and hurricane clip combinations.

(a) (b)

Fig. 4 (a)Calculated wind loads on the roof for a range of wind speeds (b) Lognormal fragility
curve fitted to capacity data for two hurricane clips made out of SYP wood.

distribution with scale parameter 68.33 and shape parameter 1.738 as discussed in
[14] as the hurricane wind speed distribution. Figure 1, shown previously, compares
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the Weibull wind speed PDF and the Fragility function with SYP wood and 2
hurricane clips.

The Bayesian predictive distribution of the capacity for the SYP wood 2 hurricane
clips connection and the toe nail connection are show in Figure 5. Figure 4(b) shows
the fragility curve based on the lognormal approach of Equation (2) fitted to data for
the connection with SYP wood and 2 clips. The parameters of the lognormal curve
estimated for SYP wood and 2 clips are median 𝑚 = 3.1532 kN and logarithmic
standard deviation 𝜁 = 0.1046 kN. Figure 5 compares the Bayesian predictive dis-
tribution of capacity (solid curve), lognormal capacity distribution (dashed curve),
deterministic capacity (vertical line), and the measured capacity data (triangles).
The fragility is calculated from these predictive distributions. Lognormal method
uses the median capacity and logarithmic standard deviation of the data, therefore
distribution mostly covers the observed data. By contrast, Bayesian updated model
is a compromise between the experimental data (green markers) and the analytical
model (red line), which is evidenced from the fact that the peak of the probability dis-
tribution of the updated model (blue curve) is moved from the lognormal distribution
(black curve) towards the analytical capacity (red line).

(a) (b)

Fig. 5 Predictive distribution function of capacity of (a) SYP wood and 2 clips (b) toenails.

The results of Algorithm 1 to generate the posterior of probability of failure is
illustrated in Figure 6 with data of SYP-2 clips connection and 𝐷𝑣 = 3 kN. The
predictive density curves of capacity with different realizations of 𝜷 and 𝜎2 from
their posteriors are shown in Figure 6(a) and the vertical line indicates 3 kN load.
The fragility 𝐹𝑣 = 𝑃 (𝐶𝑢 < 𝐷𝑣) at this wind load is the area to the left of the line
under the density curves. Figure 6(b) is the histogram of the fragility values found
from 10,000 simulated capacity distributions. The 2.5th and 97.5th percentiles of
the fragility values, shown as vertical lines, specify a 95% confidence interval on
the true fragility. The procedure in Algorithm 1 is repeated for a range of wind
loads to find the fragility and confidence the bounds. Figure 7 shows the fragility
curves along with the confidence intervals obtained with the updated model for 2
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hurricane clips and toe nails cases. For clips, the analytical capacity is higher than
the measured values thus the fragility of the updated model is lower than that from
the lognormal approach (which considers only the measured data). For toenails, the
analytical model underestimates the capacity therefore the fragility of the updated
model is higher than that from the lognormal approach. In addition, with much
lower capacities than hurricane clips, the fragility of toenails are much higher at
lower forces than those of hurricane clips.

(a) (b)

Fig. 6 (a) Predictive distribution function of capacity of SYP wood and 2 clips with random
parameters. The vertical line indicates 3kN force (b) Fragility values found with distribution
functions at 3 kN wind force and Monte Carlo estimate of 2.5th and 97.5th percentiles.

(a) (b)

Fig. 7 (a) Fragility curves and their uncertainty bounds from the Bayesian approach. Fragility
curve with lognormal approach is shown with black line. (a) For SYP wood and 2 clips. (b) For
toenails.

We obtained the estimates of the probability of failure using Algorithm 1. 10,000
Monte Carlo simulations are performed and Equation (14) was evaluated using



16 O. Arda Vanli

the fragility curve of the updated model. Samples are drawn from the posterior
of the probability of failure 𝑃 𝑓 of connections with different wood types. Figure
8 shows the median and upper 95-th percentile of probability of failure from the
Bayesian approach and the mean failure probability from the lognormal approach,
in increasing order of the median 𝑃 𝑓 . It can be seen that with the Bayesian approach
(median) is more conservative than lognormal approach in reliability prediction for
all cases, however, the upper prediction bound encompass the lognormal approach
results. Overall, reliability decreases with fewer clips and the toe-nail has the lowest
reliability. The wood types are ordered as DF, SYP and SPF in decreasing order of
reliability.

Fig. 8 Probability of failure (median and 95-th percentile) of a single roof-to-wall connection for
different connection types using proposed Bayesian and existing lognormal approaches.

4.2 Bayesian Wind Loss Estimation for an Inventory of Buildings

To accurately account for the building stock subject to the wind loading, the building
inventory is developed using digitized building footprints in Open Street Map [30].



Title Suppressed Due to Excessive Length 17

Figure 9 shows the building stock in a Miami-Date County, FL region extracted
from the OSB Buildings repository, where an inventory of 𝑛 = 100 single-family
wood frame, gable roof type residential buildings are shown. It is assumed that all
residential buildings in this region can be represented using the roof model shown
in Figure 2 and discussed in Section 4 for all houses.

In this section we will model the aggregate loss of this building inventory using the
Bayesian posterior distribution of failure probabilities computed using Algorithm 1.
We will compute the exceedance probability of aggregate loss in the building inven-
tory and the associated uncertainty bounds from the failure probability distribution.
The exceedance probability will in turn be used to compare mitigation options, that
is, for a given loss value if the exceedance probability of a connection type much
smaller than an alternative then it is preferred. As the mitigation options it toe-nail
connection type will be compared to the SYP wood and 2-clips connection. The
aggregate loss will be computed by assuming that all houses in the region use a
specific connection type in each roof-to-wall connection.

Exceedance probability (EP) curve is a graphical representation of the probability
that a certain level of loss will be exceeded over a future time period [8]. For
illustration purposes, for the sake of illustration, we assume each house in the
inventory is worth $100,000 and the damage ratio is 20% due to failure of a single
roof to wall connection, that is, the loss per house due to a connection failure is
𝐿0 = 0.20 × 100, 000 = $20,000.

The probability of failure 𝑃 𝑓 is computed using Algorithm 1 for the roof-to-wall
connections and the wind speed distribution of this region. Note that it is assumed
the probability of the hurricane affecting all buildings throughout the region is equal
and the connections are identical, therefore 𝑃 𝑓 is the same for all houses in the
inventory. Letting 𝑤 denote the number of failed clips and assuming it follows a
binomial distribution 𝑝 (𝑤) with failure probability 𝑃 𝑓 , we have

𝑝 (𝑤) =
(
𝐾

𝑤

)
𝑃𝑤𝑓

(
1 − 𝑃 𝑓

)𝐾−𝑤
, 𝑓 𝑜𝑟 𝑤 = 0, 1, . . . , 𝐾 (16)

where 𝐾 = 𝑁 × 𝑛 in which 𝑁 is the number of connections per house and 𝑛 is the
number of houses in the inventory. The aggregate loss in the inventory is 𝐿 = 𝐿0𝑤
therefore the expected loss is 𝐸 [𝐿] = 𝐿0𝐸 [𝑤] = 𝐿0𝐾𝑃 𝑓 . The probability that the
aggregate loss exceeds a specific value 𝑙, or the exceedence probability, is

𝐸𝑃𝑙 = 𝑃(𝐿 > 𝑙) = 𝑃(𝑤 > 𝑙/𝐿0) =
𝑀∑︁

𝑤=⌊𝑙/𝐿0 ⌋
𝑝(𝑤) (17)

where ⌊𝑥⌋ is the floor function, giving as output the greatest integer less than
or equal to 𝑥. For example, the exceedance probability for 1 million dollars in this
inventory can be found from the probability mass function as:
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𝐸𝑃$1×106 = 𝑃 (𝑤 > $1, 000, 000/$20, 000) = 𝑃 (𝑤 > 50) =
𝐾∑︁
𝑤=50

𝑝(𝑤)

Note that more than a single connection may fail during a hurricane per single
building. For any loss value 𝑙, the posterior distribution of the exceedance probability
𝐸𝑃𝑙 , is generated using Equations (16) and (17) and the posterior distribution of 𝑃 𝑓 .
From the posterior distribution of 𝐸𝑃𝑙 , the median, and 95-th percentile are used
as an estimate of EP and upper confidence bound, respectively for each 𝑙. Figure
10 shows the median and the 95-th percentile of the exceedance probability for loss
values in the range of 0 to $200,000 from the Bayesian and lognormal approaches.
To create these figures, EP estimates and upper bounds for the building inventory
are computed using the Bayesian approach by assuming that 𝑁 = 2 hurricane clips
and SYP wood or toenails are used for each connection of each house. Lognormal
approach uses a constant total probability of failure to find EP. By contrast, the
Bayesian approach considers the distribution of 𝑃 𝑓 therefore is able to provide an
estimate of the median loss and an upper confidence bound on loss.

With the Bayesian approach the median aggregate loss in the building inventory
that will be exceeded in a 100-year return hurricane (i.e., an annual probability
of exceedance 10−2) with 2-clips configuration is almost zero with a 95% upper
confidence bound of $61K. For toenails, the Bayesian approach estimates the median
aggregate loss as $93K with a 95% upper confidence bound of $128K. The lognormal
approach gives the aggregate loss with 2-clips as $29K and with toenails as $69K. In
estimating the exceedance probability for a given loss, the Bayesian approach is less
conservative (provides smaller estimates of probability) than the lognormal approach
for the clips, while it is more conservative (provides larger estimates of probability)
for the toenails. This is partly because the lognormal approach looks at only the
measured capacity while the Bayesian approach considers both the measured and
the analytical capacity.

5 Conclusions

This chapter presented Bayesian model updating approaches for quantification of
uncertainty in predicting failure in rare but high consequence events. Specifically, a
two-stage Bayesian regression model is discussed to fuse an analytical capacity model
with experimentally observed capacity data to quantify uncertainties in performance
of residential building roof systems under high velocity wind conditions. It is shown
how the model updating approach can be used for decision making about various
mitigation options of buildings, such as strengthening roof to wall connections
in a regional aggregate loss analysis. In order to conduct regional aggregate loss
analysis with a realistic information about house inventories we discussed how OSM
Buildings repository can be integrated into the analysis.

A case study for quantifying Miami-Dade County hurricane wind risk is pre-
sented to show how analytical capacity models of connections can be updated with
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experimental data available from the literature and how the reliability of roof systems
under various mitigated and unmitigated configurations can be assessed using the
posterior distribution of probability of failure. It is shown that proposed Bayesian
capacity model has lower bias compared to the analytical prediction model, which
in turn results in the better estimation of the exceedance probabilities. An aggregate
loss analysis with associated confidence bounds for a given wind model and building
portfolio is presented to translate the posterior distribution of the capacity model
into monetary terms, which has significant implications for policy and insurance
underwriting applications.

The methodology incorporated uncertainty in the capacity models only and the
wind speed Weibull probability models are known without any error. As further
future work, the uncertainty in the wind speed models can also be considered in
the failure probability and aggregate loss calculations within the proposed Bayesian
framework.
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(a)

(b)

Fig. 9 (a) Single family, gable roof building inventory of a region in Miami-Dade County (b) The
study region containing 100 buildings.
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(a)

(b)

Fig. 10 (a) Exceedance probability curves for total loss using the Bayesian (median and 95th
percentile) and lognormal approaches. (a) SYP wood and 2 clips. (b) Toe nails.


