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ABSTRACT

Federated Learning (FL), an emerging decentralized Machine
Learning (ML) approach, offers a promising avenue for training
models on distributed data while safeguarding individual
privacy. Nevertheless, when imple- mented in real ML
applications, adversarial attacks that aim to deteriorate the
quality of the local training data and to compromise the
performance of the resulting model still remaining a challenge. In
this paper, we propose and develop an approach that integrates
Reputation and Trust techniques into the conventional FL. These
techniques incur a novel local models’ pre-processing step
performed before the aggregation procedure, in which we cluster
the local model updates in their parameter space and employ
clustering results to evaluate trust towards each of the local
clients. The trust value is updated in each aggregation round,
and takes into account retrospective evaluations performed in
the previous rounds that allow considering the history of updates
to make the assessment more informative and reliable. Through
our empirical study on a traffic signs classification computer
vision application, we verify our novel approach that allow to
identify local clients compromised by adversarial attacks and
submitting updates detrimental to the FL performance. The local
updates provided by non-trusted clients are excluded from
aggregation, which allows to enhance FL security and
robustness to the models that might be trained on corrupted
data.

Keywords: Federated learning, reputation, trust, adversarial
attacks, intelligent transportation system.

I. INTRODUCTION

In today’s Machine Learning (ML) research, Federated
Learning (FL) has become increasingly popular because it
offers a way to balance the need for valuable insights from
data while also protecting privacy and security [1]. FL works
by training models on multiple devices without sharing the
actual data, keeping it private. This decentralized approach
means that local model training is performed on the individual
devices, and only the models are communicated to get com-
bined centrally. This allows for additional valuable insights to
be gained from different models while keeping individual data
confidential.

However, the decentralized nature of FL brings complex
issues to the security and communication. Exchange between
edge devices and central aggregator may face challenges
such as limited bandwidth, fluctuating network latency, and
variations in device capabilities [2]. Moreover, maintaining the
integrity and confidentiality of the FL process is crucial, as it is
vulnerable to malicious activities such as ML model poisoning

and data breaches [3]. Addressing these challenges is essential to

ensure the effectiveness and security of FL systems.

In this paper, we delve into the nuanced intersection of the
security and communication within FL frameworks, advocat-
ing for the incorporation of Reputation and Trust techniques
as a means to mitigate malicious clients challenge [4], [5].
Reputation and Trust techniques, widely studied in the context
of decentralized systems [6], hold promise in fostering collab-
orative environments while mitigating risks inherent in such
distributed settings. By assigning Reputation and Trust values
based on historical behavior and the quality of contributions,
we aim to identify and exclude malicious clients from the
aggregation process.

We verify our novel approach on Intelligent Transportation
System (ITS) computer vision-based traffic signs classifica-
tion use case. In our empirical study, we employ real-world
traffic sign dataset within the FL framework and purposefully
poisoning a specified number of clients by adversarial attacks
such as label flipping and introducing noise into training data.
Through our experiments, we demonstrate the capacity of Rep-
utation and Trust techniques to effectively detect compromised
local clients, which contributes to improving FL security and
robustness to adversarial attacks against the local data, as well
as to reducing the drop in performance of the resulting global
model.

II. RELATED FEDERATED LEARNING SECURITY AND
ROBUSTNESS IMPROVEMENT TECHNIQUES

FL is a promising approach for training ML models. Its
primary advantage is the preservation of client data privacy.
In FL only the model updates instead of the data itself get
transmitted to an aggregator agent over a network [7].

Despite such feature as the ability to preserve the local data
privacy, FL still faces various security threats relevant to ML
systems in general. Particularly, concerns arise regarding data
integrity and the validity of the transferred model. On the one
hand, data poisoning may occur if the data utilized in an ML
system becomes corrupted, either due to adversarial attacks
against it, or because of the unintentional harmful conditions,
such as a poor network connection or a storage damage. On the
other hand, the risk of reverse engineering attacks against the
ML model itself poses a threat to FL
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. Given that the model is transmitted over a network, questions
arise about the validity of the acquired model on the
aggregation agent.

Various attempts have been made to mitigate these issues.
One area of research is focused on investigating the impact of
modifying server aggregation strategies on ML model robust-
ness. An adjustable aspect of FL is the model aggregation algo-
rithm employed on the server. The selection of the aggregation
strategy significantly influences the robustness of the whole
system [8], impacting the model’s capabilities of withstanding
possible outliers in the training data. Consequently, utilizing a
specific aggregation strategy may serve as a potential way to
enhance the overall robustness of the ML model.

Federated Average (FedAvg) stands as a widely employed
conventional aggregation strategy. McMahan et al. [9] ex-
amined the FL setup with FedAvg on the CIFAR dataset,
employing various neural network architectures, including two
distinct convolutional neural networks (CNN), a two-layer
character long short-term memory (LSTM), and a large-scale
word-level LSTM. The experimental results demonstrated that
the FedAvg enables the convergence of client models in fewer
rounds compared to federated stochastic gradient descent
(SGD) strategy.

Multi-Krum [10] represents an aggregation strategy that is
specifically designed to mitigate the malicious parties in FL.
The essence of the approach is in excluding a parameterized
number of ML model contributors whose models deviate
the farthest from the mean value during centralized model
aggregation. The Euclidean distance serves as the metric
for calculating the distance between the aggregated models,
allowing the identification of the potentially compromised
contributors.

A novel approach to the FL aggregation process — robust
federated aggregation — was introduced by Pillutla ef al. [8].
The core idea behind it is to enhance FL resilience to corrupted
updates, thereby mitigating the impact of poisoned data in
ML systems, as the sensitivity to the corrupted model updates
poses a vulnerability. Robust federated aggregation is based
on the Geometric Median (GM) method and is proposed by
the authors as a solution which offers greater robustness to
ML model outliers compared to the FedAvg and the pure
GM. Additionally, two other approaches to FL aggregation
— trimmed mean and FedMGDA — were proposed in [11] and
[12], respectively. These aggregation algorithms also aim to
address limitations and bottlenecks of the conventional FL
aggregation.

In addition to examining the effects of applying various ag-
gregation strategies, other studies concentrate on the network
exchange process in ML systems utilizing FL. In [13] and
[14], the authors aim to reduce communication burdens.

Lu et al. [15] in their study aimed at enhancing the
overall robustness of ML in Industrial Internet of Things (IoT)
applications from an architectural standpoint. Authors explore
FL as a component of the data sharing mechanism along
with the blockchain technology. A significant difference from

the traditional data sharing in this context lies in the role
of the blockchain module in establishing secure connections
among IoT devices. However, the incorporation of blockchain
into the data transmission process introduces additional threats
typical of blockchain systems. Among these concerns is the
increased complexity involved in setting up and deploying
such architectures. Additionally, as noted by the authors in
their study, there is a potential challenge regarding data privacy
within the blockchain itself.

Li et al. [16] in their work focused on addressing the chal-
lenges stemming from systems and statistical heterogeneity
within FL networks. Authors propose the FedProx framework,
seeking to mitigate the impact of such heterogeneity on
federated optimization. FedProx allows the variable amounts
of computations among participating clients and utilizes a
proximal term to stabilize the optimization process. Empirical
evaluations that were conducted across diverse FL datasets val-
idated the theoretical analysis, demonstrating that the FedProx
framework significantly enhances convergence behavior in
heterogeneous networks that are close to real-world conditions.
Kang et al. [17] focused on addressing privacy concerns,
particularly regarding the differential privacy (DP) require-
ments in SGD-based FL frameworks. Authors introduced
NbAFL — a novel framework that ensures DP under distinct
protection levels by adapting various amounts of artificial
noises, thereby offering a tradeoff between convergence per-
formance and privacy protection. Researchers provided theo-
retical convergence bounds for the loss function of the trained
FL model in NbAFL, which helped to identify the optimal
aggregation times for a given protection level. Proposed K-
random scheduling strategy also demonstrated effectiveness in
retaining convergence performance while preserving privacy.

Felix et al. [18] investigated the resilience of clustered FL
systems against Byzantine attacks, where some participants
behave maliciously. Through analysis of different clustering
strategies and their impact on system robustness, the authors
provided techniques for enhancing the security and scalability
of FL frameworks. The study provides practical guidance
for designing robust and efficient FL systems capable of
withstanding adversarial behavior in real-world scenarios.

In [19], authors conducted the overview the past five years
of FL research, investigating attacks in FL systems ranging
from privacy to data poisoning attacks. Different attack vectors
and their implications were identified, which would help to
develop robust defense mechanisms.

Our novel approach offers Reputation and Trust techniques
for the client ML models. This design aims at mitigating
reverse engineering attacks on the FL by identifying compro-
mised ML models before the centralized aggregation process.
A key advantage is that, on the one hand, ML models of
malicious participants can be completely excluded from the
aggregation, mitigating the harmful effect on the resulting
centralized model. On the other hand, no additional network
communication overhead is introduced, which is crucial for
the ML-based applications that are often dealing with the
poor network conditions. The approach can also be combined
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Fig. 1. Flower framework workflow employed in our empirical study. The
diagram illustrates the collaborative training cycle between local clients and
the central aggregation server, showcasing the FL process major training stages

with the encryption-based strategies for FL. Additionally,
this design allows for more in-depth behavioral analysis of
potentially malicious participants. Such parties can not only
simply be excluded from the aggregation process but also
receive the model that would help to adjust their Reputation
and Trust score based on their further response in the next
aggregation round.

III. SYSTEM ARCHITECTURE AND WORKFLOW

The system architecture described herein represents a com-
prehensive simulation framework for FL, implemented on a
single local machine utilizing the Flower framework [20]. Our
architecture encompasses six Python files, each serving distinct
functionalities crucial for orchestrating FL system locally.
Leveraging Flower, our system facilitates the emulation of FL
scenarios within a controlled environment. This framework en-
ables the evaluation of FL algorithms, the study of Reputation
and Trust techniques, and the visualization of experimental
outcomes, all within the confines of a single local machine
environment. Below, we provide detailed explanations of each
module within the system, elucidating their roles and func-
tionalities in orchestrating FL system.

Load Dataset is tasked with the initial loading and pre-
processing of datasets from separate folders corresponding to
individual clients. Its functionality extends to pre-processing
tasks, such as injecting noise or introducing poisoned data into
specific clients’ training datasets.

Flower Client embodies the Flower client class, equipped
with methods to manage local model parameters and com-
municate with the aggregation server. These methods include
setting and retrieving parameters, training and testing local
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Fig. 2. Reputation and Trust-based techniques for detecting and excluding
anomalous local models updates from FL aggregation procedure. The Rep-
utation and Trust indicators calculated based on local models’ clustering. If
Trust towards local client drops below an established threshold, their updates
are excluded from FL aggregation

Network defines the structure of the local neural network
utilized by Flower clients for training models on their private
datasets. This component plays a crucial role in enabling
clients to independently train models on their local data.

Reputation And Trust Strategy introduces FL strategy that
extends the FedAvg strategy within the Flower framework. It
incorporates techniques to calculate the Reputation and Trust
of each client, aggregate model parameters, determine client
participation in aggregation based on Reputation and Trust
metrics, and evaluate aggregate loss and accuracy.

Plots serves as the visualization hub, offering functions to
represent output data graphically. This includes visualizing
client accuracies across rounds and tracking the Reputation
and Trust of clients throughout the FL process.

Controller acts as the central orchestrator, coordinating
interactions between the various components of the system.
It initiates the loading of datasets, creation of Flower clients,
setup of the Reputation and Trust strategy, execution of FL
system using the Flower framework, and presentation of
experimental outcomes through visualizations generated by
various functions in Plots.

Collectively, these Python files form a comprehensive and
modular system architecture, enabling the implementation
and execution of FL system using Flower framework. This
architecture facilitates the evaluation of different FL strategies
and provides a platform for analyzing and visualizing results
of the empirical study.

The workflow diagram illustrates the training process col-
laboration between local clients and the central aggregation
server within the Flower framework, as applied in our study
(Figure 1). It consists of two critical verticals: the aggregation
server side and the local client side, each representing key
stages of the FL process.
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At the aggregation server side, the global model architec-
ture, CNN in our case, is set up at the aggregation server.
Then, the FL strategy is initialized to establish the rules for the
collaborative training which is Reputation and Trust strategy in
our case (Figure 2). Next, the aggregation server selects clients
to join and sends out the initial global ML model for local
training. Generally all clients are selected in the first round
unless specified. After local training, clients send their ML
model updates back to the aggregation server for combining
and configuring clients for the next round according to the
FL strategy. The clients with anomalous updates are removed
from the aggregation during the configuration process. The
process of receiving clients’ model parameters and selecting
clients for next round keeps on repeating for each round.

On the local client side, all the flower clients are initialized.
The data is pre-processed and segregated among the clients for
training and validation. After assigning data, clients receive

loba] model parameters from the aggregation server, and train
ﬁlelr mOCE)élfé using t[fle rgﬂogal %goggla arcrhltectufe.rghents
then send their updates back to the aggregation server for

integration. Even at the client side receiving global model
arameters and sending local mode] parameters from and
o the aggregation server happens in each round. Finally,

the results processing and FL effectiveness evaluation stage
examines how well the FL process achieves its goals by
visualizing various evaluation matrices.

IV. REPUTATION AND TRUST-BASED AGGREGATION IN
FEDERATED LEARNING

Our proposed solution to enhance security within FL sys-
tems involves leveraging Reputation and Trust techniques [6],
[4], [5]. At the aggregation server, before computing the final
model, we employ K-means clustering on the clients” model
parameters to group them based on similarity. Subsequently,
we calculate the reputation R for each client based on the
normalized Euclidean distance d from the major cluster center.
Initially, R is determined in (1), where R™ represents the
reputation value for the i- th unit after the first local training
round, and di denotes the truth value of the client which
is one minus normalized Euclidean distance. R is updated
in each aggregation round; if d > a where a is a speci-
fied threshold (¢ = 0.5 in our case), R increases linearly,
otherwise if d < a, it decreases exponentially. Lastly, we
utilize exponential smoothing to update parameters, blending
the current round’s reputation with the previous one based on
a smoothing factor8(0.75 in our case). The reputation for the
current time moment t is calculated as defined in (2), (3) and
(4), adjusting R based on the previous reputation value B2,
This approach penalizes units providing low-quality models
and requires consistent positive contributions over time to
build reputation.

R'=d; Rde0,1]CR
! {

(D

(R 4 d;) + (R 1), if d > a,
(R +d;) — e 1=DERTYY i d < a

D
1TR_1R¢:'.-'j.[?_i—k(l—ii)'nz_l

_ 3
ifR<0 ° )

Rt — {1.
0,
The trust indicator is derived from R and regulates how
changes in R influence trust towards the local unit. If the
trust falls below a predefined threshold 8, the client’s model
is excluded from current and subsequent aggregation rounds.
In (4), (5) and (6), we depict the calculation of the trust
indicator Trust' ;for the i-th local unit at time t, considering
R, the trust value d; and previous rounds trust value. For
the first round, the previous round’s trust value is assigned
to 0 for all clients. We use the same exponential smoothing
formula for the trust calculation as well but with 8 value as
0.85. This mechanism ensures that trust is maintained towards
units consistently providing high-quality contributions, while
excluding those with lower reputation or questionable models
from participating further in the FL process.

Tr”‘#; - \/(RE)Z + (112 B \/(l - Rf)z +(1—d;)? (4)

Trustt = - Trustt + (1 — ) oTru.stE*I

1,
T'f'(!h’fg = {[}

V. DATASET AND EXPERIMENTAL SETUP

For the experimental studies, we investigate the ITS com-
puter vision-based traffic signs classification use case [21].
We employ a traffic sign dataset containing images with two
distinct labels: 0 for “stop sign” and 1 for “other traffic sign”,
each with dimensions of 224x224 pixels. The dataset is dis-
tributed across 12 different clients, with each client allocated
approximately 120 images, ensuring a relatively equal distri-
bution of images for both labels. To perform empirical study
of adversarial scenarios, we intentionally poison the training
data for clients with IDs 11 and 12 by flipping their labels.

For training and validation purposes, each client utilize 90%
of its allocated data for training and the remaining 10% for
validation. This dataset composition and partitioning scheme
facilitates the evaluation of our FL framework’s performance
under realistic conditions, including the presence of malicious
clients.

We utilize a CNN architecture for the local training process
on each client. The model architecture consists of two con-
volutional layers, each followed by max-pooling layers, and
three fully connected layers. Dropout layers are incorporated to
prevent overfitting, and ReLU activation functions are applied
to introduce non-linearity.

Our FL process is performed over 10 rounds, mimicking
the iterative nature of FL in real-world applications. During
each round, clients perform local training on their respective
datasets and communicate their model parameters and gradient
updates to the aggregation server.

To enhance the security and reliability of FL, we integrate
Reputation and Trust techniques into the FL framework. These

(3)

if Trust > 1,

6
if Trust <0 ©)
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Fig. 3. Results demonstrated by the FL integrated with our Reputation and Trust indicators to manage the aggregation procedure: (a) — reputation values
for each of the clients, calculated in each subsequent aggregation round; (b) — trust values for each of the clients, calculated in each subsequent aggregation
round; (c) — accuracy over the local validation data for each of the clients, demonstrated after each subsequent aggregation round; (d) — average accuracy
accross all the local clients, demonstrated after each subsequent aggregation round. Local data possessed by clients 11 and 12 is poisoned by the adversarial

label flipping attack

techniques aim to evaluate the performance and behavior of
individual clients based on their contributions to the global
model and adherence to expected norms. Clients with higher
Reputation and Trust scores are prioritized during model
aggregation, while those exhibiting suspicious behavior are
subject to penalties or exclusion from aggregation process.

VI. REPUTATION AND TRUST STRATEGY VERIFICATION
AND RESULTS

To integrate Reputation and Trust techniques into our FL
environment, we implemented a systematic approach that
leveraged client behavior analysis and dynamic adaptation.
Below is the description of our implementation.

A. Warm-up Rounds for Reputation and Trust Calculation

We initiated the FL process with three warm-up rounds,
allowing the system to initialize and calculate Reputation
and Trust scores for each client. During these rounds, clients
continued to participate in the aggregation process, but no
actions were taken based on their trust values. This phase
served as a preparation stage for the subsequent application
of trust-based exclusion policies.

B. Client Removal Based on Low Trust

Following the warm-up rounds, starting from the fourth
round, we introduced a policy to remove the client with the

lowest trust score from the aggregation process. This proac-
tive approach aimed to mitigate the influence of potentially
untrustworthy clients on the integrity of the global model.
By systematically excluding clients with low trust values,
we sought to safeguard the quality and reliability of the FL
process.

C. Dynamic Trust Threshold for Client Exclusion

In subsequent rounds beyond the warm-up phase, we em-
ployed a dynamic trust threshold to determine whether a
client needs to be excluded from the aggregation process.
Clients whose trust values fell below the predefined threshold,
set at 0.15 in our experiment, were automatically eliminated
from participating in model aggregation. This threshold-based
approach allowed for adaptive client management, ensuring
that only reliable and trustworthy clients contributed to the
collaborative learning process.

D. Evaluation and Result Analysis

Upon completing the FL process, we conducted a compre-
hensive analysis of the outcomes and performance metrics.
Specifically, we plotted three graphs to visualize the results
obtained through the Reputation and Trust strategy:

- Reputation value of each client for each subsequent
round. This graph depicts the evolution of reputation
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scores for individual clients over the course of the FL pro-
cess, providing insights into their relative consistency and
similarity among each other. Notably, clients 11 and 12
(adversarial clients) began with relatively high reputation
values close to 0.5, but experienced a sharp decline below
the threshold within a few rounds. Conversely, client 4
initially possessed a reputation value of 0 but notably
improved its standing within just three rounds of the FL
process (Figure 3(a)).

- Trust Value of each client for each subsequent round.
The trust graph offers a compelling narrative, particularly
showcasing clients 11 and 12 with consistently low trust
values from the initial rounds. Conversely, other clients
demonstrated an ability to improve their trust values
over subsequent rounds, contrasting with the persistent
low trust observed in clients 11 and 12. Notably, the
Reputation and Trust strategy implemented in round 4 led
to the removal of client 12 due to its lowest trust value,
followed by the exclusion of client 11 in round 6 as its
trust value fell below the threshold. Despite fluctuations,
other clients managed to maintain their trust values above
the threshold, ensuring their retention within the cluster
(Figure 3(b)).

- Accuracy of individual client for each subsequent
round. Initially, all clients exhibited accuracies ranging
from 40 to 50%. Remarkably, the majority of clients, bar-
ring adversarial clients, demonstrated a steady improve-
ment in accuracy over the span of 10 rounds. Notably,
the decline in accuracy observed in clients 11 and 12
can be attributed to their reception of global updates
from the server, albeit updating these parameters with
poisoned data, thereby adversely affecting performance
on validation data devoid of such contamination (Figure
3(e)).

- Average accuracy across all clients for each subse-
quent round. Finally, we analyzed the average accuracy
of clients’ local ML models across different rounds,
demonstrating the impact of trust-based client exclusion
on the overall performance and convergence of the FL
system (Figure 3(d)).

Overall, the implementation of Reputation and Trust tech-
niques yielded valuable insights into client behavior and fa-
cilitated the effective management of participant contributions
in the FL process.

VII. CONCLUSION

In this paper, we proposed and developed a novel approach
to identify adversarial attacks in FL by incorporating our
Reputation and Trust techniques into the aggregation pro-
cedure. Without compromising the confidentiality of each
client’s local data, our approach enabled us to calculate and
quantify trust towards each of the clients. The developed trust
evaluation calculus takes into account the past local model
updates’ evaluations that each local client has submitted for
aggregation. This makes the trust assessment process more
comprehensive and reliable since it considers the contributions

of each client in the previous rounds. We verify our approach
experimentally by applying the strategy to a real-world ITS
computer vision-based traffic sign classification application.
Our results demonstrated that our Reputation and Trust-
equipped FL aggregation could successfully identify clients
that compromised by adversarial attacks against the training
data and eliminate them from the aggregation, enhancing FL
security and robustness to adversarial actions. In addition, our
approach does not impose any extra communication burdens
on the FL cyberinfrastructure as it employs only the local
model updates that are an ordinary FL round communica-
tion component, which open avenues for its complementary
employment to other FL security improvement methods and
techniques.
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