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ABSTRACT 

Federated Learning (FL), an emerging decentralized Machine 
Learning (ML) approach, offers a promising avenue for training 
models on distributed data while safeguarding individual 
privacy. Nevertheless, when imple- mented in real ML 
applications, adversarial attacks that aim to deteriorate the 
quality of the local training data and to compromise the 
performance of the resulting model still remaining a challenge. In 
this paper, we propose and develop an approach that integrates 
Reputation and Trust techniques into the conventional FL. These 
techniques incur a novel local models’ pre-processing step 
performed before the aggregation procedure, in which we cluster 
the local model updates in their parameter space and employ 
clustering results to evaluate trust towards each of the local 
clients. The trust value is updated in each aggregation round, 
and takes into account retrospective evaluations performed in 
the previous rounds that allow considering the history of updates 
to make the assessment more informative and reliable. Through 
our empirical study on a traffic signs classification computer 
vision application, we verify our novel approach that allow to 
identify local clients compromised by adversarial attacks and 
submitting updates detrimental to the FL performance. The local 
updates provided by non-trusted clients are excluded from 
aggregation, which allows to enhance FL security and 
robustness to the models that might be trained on corrupted 
data. 

Keywords: Federated learning, reputation, trust, adversarial 
attacks, intelligent transportation system. 

I. INTRODUCTION 
In today’s Machine Learning (ML) research, Federated 

Learning (FL) has become increasingly popular because it 
offers a way to balance the need for valuable insights from 
data while also protecting privacy and security [1]. FL works 
by training models on multiple devices without sharing the 
actual data, keeping it private. This decentralized approach 
means that local model training is performed on the individual 
devices, and only the models are communicated to get com- 
bined centrally. This allows for additional valuable insights to 
be gained from different models while keeping individual data 
confidential. 

However, the decentralized nature of FL brings complex 
issues to the security and communication. Exchange between 
edge devices and central aggregator may face challenges 
such as limited bandwidth, fluctuating network latency, and 
variations in device capabilities [2]. Moreover, maintaining the 
integrity and confidentiality of the FL process is crucial, as it is 
vulnerable to malicious activities such as ML model poisoning 

and data breaches [3]. Addressing these challenges is essential to 
ensure the effectiveness and security of FL systems. 

In this paper, we delve into the nuanced intersection of the 
security and communication within FL frameworks, advocat- 
ing for the incorporation of Reputation and Trust techniques 
as a means to mitigate malicious clients challenge [4], [5]. 
Reputation and Trust techniques, widely studied in the context 
of decentralized systems [6], hold promise in fostering collab- 
orative environments while mitigating risks inherent in such 
distributed settings. By assigning Reputation and Trust values 
based on historical behavior and the quality of contributions, 
we aim to identify and exclude malicious clients from the 
aggregation process. 

We verify our novel approach on Intelligent Transportation 
System (ITS) computer vision-based traffic signs classifica- 
tion use case. In our empirical study, we employ real-world 
traffic sign dataset within the FL framework and purposefully 
poisoning a specified number of clients by adversarial attacks 
such as label flipping and introducing noise into training data. 
Through our experiments, we demonstrate the capacity of Rep- 
utation and Trust techniques to effectively detect compromised 
local clients, which contributes to improving FL security and 
robustness to adversarial attacks against the local data, as well 
as to reducing the drop in performance of the resulting global 
model. 

II. RELATED FEDERATED LEARNING SECURITY AND 
ROBUSTNESS IMPROVEMENT TECHNIQUES 

FL is a promising approach for training ML models. Its 
primary advantage is the preservation of client data privacy. 
In FL only the model updates instead of the data itself get 
transmitted to an aggregator agent over a network [7]. 

Despite such feature as the ability to preserve the local data 
privacy, FL still faces various security threats relevant to ML 
systems in general. Particularly, concerns arise regarding data 
integrity and the validity of the transferred model. On the one 
hand, data poisoning may occur if the data utilized in an ML 
system becomes corrupted, either due to adversarial attacks 
against it, or because of the unintentional harmful conditions, 
such as a poor network connection or a storage damage. On the 
other hand, the risk of reverse engineering attacks against the 
ML model itself poses a threat to FL 
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. Given that the model is transmitted over a network, questions 
arise about the validity of the acquired model on the 
aggregation agent. 

Various attempts have been made to mitigate these issues. 
One area of research is focused on investigating the impact of 
modifying server aggregation strategies on ML model robust- 
ness. An adjustable aspect of FL is the model aggregation algo- 
rithm employed on the server. The selection of the aggregation 
strategy significantly influences the robustness of the whole 
system [8], impacting the model’s capabilities of withstanding 
possible outliers in the training data. Consequently, utilizing a 
specific aggregation strategy may serve as a potential way to 
enhance the overall robustness of the ML model. 

Federated Average (FedAvg) stands as a widely employed 
conventional aggregation strategy. McMahan et al. [9] ex- 
amined the FL setup with FedAvg on the CIFAR dataset, 
employing various neural network architectures, including two 
distinct convolutional neural networks (CNN), a two-layer 
character long short-term memory (LSTM), and a large-scale 
word-level LSTM. The experimental results demonstrated that 
the FedAvg enables the convergence of client models in fewer 
rounds compared to federated stochastic gradient descent 
(SGD) strategy. 

Multi-Krum [10] represents an aggregation strategy that is 
specifically designed to mitigate the malicious parties in FL. 
The essence of the approach is in excluding a parameterized 
number of ML model contributors whose models deviate 
the farthest from the mean value during centralized model 
aggregation. The Euclidean distance serves as the metric 
for calculating the distance between the aggregated models, 
allowing the identification of the potentially compromised 
contributors. 

A novel approach to the FL aggregation process – robust 
federated aggregation – was introduced by Pillutla et al. [8]. 
The core idea behind it is to enhance FL resilience to corrupted 
updates, thereby mitigating the impact of poisoned data in 
ML systems, as the sensitivity to the corrupted model updates 
poses a vulnerability. Robust federated aggregation is based 
on the Geometric Median (GM) method and is proposed by 
the authors as a solution which offers greater robustness to 
ML model outliers compared to the FedAvg and the pure 
GM. Additionally, two other approaches to FL aggregation 
– trimmed mean and FedMGDA – were proposed in [11] and 
[12], respectively. These aggregation algorithms also aim to 
address limitations and bottlenecks of the conventional FL 
aggregation. 

In addition to examining the effects of applying various ag- 
gregation strategies, other studies concentrate on the network 
exchange process in ML systems utilizing FL. In [13] and 
[14], the authors aim to reduce communication burdens. 

Lu et al. [15] in their study aimed at enhancing the 
overall robustness of ML in Industrial Internet of Things (IoT) 
applications from an architectural standpoint. Authors explore 
FL as a component of the data sharing mechanism along 
with the blockchain technology. A significant difference from 

the traditional data sharing in this context lies in the role 
of the blockchain module in establishing secure connections 
among IoT devices. However, the incorporation of blockchain 
into the data transmission process introduces additional threats 
typical of blockchain systems. Among these concerns is the 
increased complexity involved in setting up and deploying 
such architectures. Additionally, as noted by the authors in 
their study, there is a potential challenge regarding data privacy 
within the blockchain itself. 

Li et al. [16] in their work focused on addressing the chal- 
lenges stemming from systems and statistical heterogeneity 
within FL networks. Authors propose the FedProx framework, 
seeking to mitigate the impact of such heterogeneity on 
federated optimization. FedProx allows the variable amounts 
of computations among participating clients and utilizes a 
proximal term to stabilize the optimization process. Empirical 
evaluations that were conducted across diverse FL datasets val- 
idated the theoretical analysis, demonstrating that the FedProx 
framework significantly enhances convergence behavior in 
heterogeneous networks that are close to real-world conditions. 
Kang et al. [17] focused on addressing privacy concerns, 
particularly regarding the differential privacy (DP) require- 
ments in SGD-based FL frameworks. Authors introduced 
NbAFL – a novel framework that ensures DP under distinct 
protection levels by adapting various amounts of artificial 
noises, thereby offering a tradeoff between convergence per- 
formance and privacy protection. Researchers provided theo- 
retical convergence bounds for the loss function of the trained 
FL model in NbAFL, which helped to identify the optimal 
aggregation times for a given protection level. Proposed K- 
random scheduling strategy also demonstrated effectiveness in 
retaining convergence performance while preserving privacy. 

Felix et al. [18] investigated the resilience of clustered FL 
systems against Byzantine attacks, where some participants 
behave maliciously. Through analysis of different clustering 
strategies and their impact on system robustness, the authors 
provided techniques for enhancing the security and scalability 
of FL frameworks. The study provides practical guidance 
for designing robust and efficient FL systems capable of 
withstanding adversarial behavior in real-world scenarios. 

In [19], authors conducted the overview the past five years 
of FL research, investigating attacks in FL systems ranging 
from privacy to data poisoning attacks. Different attack vectors 
and their implications were identified, which would help to 
develop robust defense mechanisms. 

Our novel approach offers Reputation and Trust techniques 
for the client ML models. This design aims at mitigating 
reverse engineering attacks on the FL by identifying compro- 
mised ML models before the centralized aggregation process. 
A key advantage is that, on the one hand, ML models of 
malicious participants can be completely excluded from the 
aggregation, mitigating the harmful effect on the resulting 
centralized model. On the other hand, no additional network 
communication overhead is introduced, which is crucial for 
the ML-based applications that are often dealing with the 
poor network conditions. The approach can also be combined 
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Fig. 1. Flower framework workflow employed in our empirical study. The 
diagram illustrates the collaborative training cycle between local clients and 
the central aggregation server, showcasing the FL process major training stages 

 
 

with the encryption-based strategies for FL. Additionally, 
this design allows for more in-depth behavioral analysis of 
potentially malicious participants. Such parties can not only 
simply be excluded from the aggregation process but also 
receive the model that would help to adjust their Reputation 
and Trust score based on their further response in the next 
aggregation round. 

III. SYSTEM ARCHITECTURE AND WORKFLOW 

The system architecture described herein represents a com- 
prehensive simulation framework for FL, implemented on a 
single local machine utilizing the Flower framework [20]. Our 
architecture encompasses six Python files, each serving distinct 
functionalities crucial for orchestrating FL system locally. 
Leveraging Flower, our system facilitates the emulation of FL 
scenarios within a controlled environment. This framework en- 
ables the evaluation of FL algorithms, the study of Reputation 
and Trust techniques, and the visualization of experimental 
outcomes, all within the confines of a single local machine 
environment. Below, we provide detailed explanations of each 
module within the system, elucidating their roles and func- 
tionalities in orchestrating FL system. 

Load Dataset is tasked with the initial loading and pre- 
processing of datasets from separate folders corresponding to 
individual clients. Its functionality extends to pre-processing 
tasks, such as injecting noise or introducing poisoned data into 
specific clients’ training datasets. 

Flower Client embodies the Flower client class, equipped 
with methods to manage local model parameters and com- 
municate with the aggregation server. These methods include 
setting and retrieving parameters, training and testing local 

models, and transmitting updates to the aggregation server. 
Fig. 2. Reputation and Trust-based techniques for detecting and excluding 
anomalous local models updates from FL aggregation procedure. The Rep- 
utation and Trust indicators calculated based on local models’ clustering. If 
Trust towards local client drops below an established threshold, their updates 
are excluded from FL aggregation 

Network defines the structure of the local neural network 
utilized by Flower clients for training models on their private 
datasets. This component plays a crucial role in enabling 
clients to independently train models on their local data. 

Reputation And Trust Strategy introduces FL strategy that 
extends the FedAvg strategy within the Flower framework. It 
incorporates techniques to calculate the Reputation and Trust 
of each client, aggregate model parameters, determine client 
participation in aggregation based on Reputation and Trust 
metrics, and evaluate aggregate loss and accuracy. 

Plots serves as the visualization hub, offering functions to 
represent output data graphically. This includes visualizing 
client accuracies across rounds and tracking the Reputation 
and Trust of clients throughout the FL process. 

Controller acts as the central orchestrator, coordinating 
interactions between the various components of the system. 
It initiates the loading of datasets, creation of Flower clients, 
setup of the Reputation and Trust strategy, execution of FL 
system using the Flower framework, and presentation of 
experimental outcomes through visualizations generated by 
various functions in Plots. 

Collectively, these Python files form a comprehensive and 
modular system architecture, enabling the implementation 
and execution of FL system using Flower framework. This 
architecture facilitates the evaluation of different FL strategies 
and provides a platform for analyzing and visualizing results 
of the empirical study. 

The workflow diagram illustrates the training process col- 
laboration between local clients and the central aggregation 
server within the Flower framework, as applied in our study 
(Figure 1). It consists of two critical verticals: the aggregation 
server side and the local client side, each representing key 
stages of the FL process. 
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At the aggregation server side, the global model architec- 
ture, CNN in our case, is set up at the aggregation server. 
Then, the FL strategy is initialized to establish the rules for the 

 

  

collaborative training which is Reputation and Trust strategy in 
our case (Figure 2). Next, the aggregation server selects clients 
to join and sends out the initial global ML model for local 
training. Generally all clients are selected in the first round 
unless specified. After local training, clients send their ML 
model updates back to the aggregation server for combining 
and configuring clients for the next round according to the 
FL strategy. The clients with anomalous updates are removed 
from the aggregation during the configuration process. The 
process of receiving clients’ model parameters and selecting 
clients for next round keeps on repeating for each round. 

On the local client side, all the flower clients are initialized. 
The data is pre-processed and segregated among the clients for 
training and validation. After assigning data, clients receive 
global model parameters from the aggregation server, and train 

   
  

 

The trust indicator is derived from R and regulates how 
changes in R influence trust towards the local unit. If the 
trust falls below a predefined threshold β, the client’s model 
is excluded from current and subsequent aggregation rounds. 
In (4), (5) and (6), we depict the calculation of the trust 
indicator Trustt for the i-th local unit at time t, considering 
R, the trust value di and previous rounds trust value. For 
the first round, the previous round’s trust value is assigned 
to 0 for all clients. We use the same exponential smoothing 
formula for the trust calculation as well but with β value as 
0.85. This mechanism ensures that trust is maintained towards 
units consistently providing high-quality contributions, while 
excluding those with lower reputation or questionable models 
from participating further in the FL process. their ML models using the global model architecture. Clients     

then send their updates back to the aggregation server for 
 

      

parameters and sending local model parameters from and       
      to the aggregation server happens in each round. Finally, 

the results processing and FL effectiveness evaluation stage 
 

 
 

  
 

  

visualizing various evaluation matrices. 

IV. REPUTATION AND TRUST-BASED AGGREGATION IN 
FEDERATED LEARNING 

Our proposed solution to enhance security within FL sys- 
tems involves leveraging Reputation and Trust techniques [6], 
[4], [5]. At the aggregation server, before computing the final 
model, we employ K-means clustering on the clients’ model 
parameters to group them based on similarity. Subsequently, 
we calculate the reputation R for each client based on the 
normalized Euclidean distance d from the major cluster center. 
Initially, R is determined in (1), where Rt0 represents the 

V. DATASET AND EXPERIMENTAL SETUP 
For the experimental studies, we investigate the ITS com- 

puter vision-based traffic signs classification use case [21]. 
We employ a traffic sign dataset containing images with two 
distinct labels: 0 for “stop sign” and 1 for “other traffic sign”, 
each with dimensions of 224x224 pixels. The dataset is dis- 
tributed across 12 different clients, with each client allocated 
approximately 120 images, ensuring a relatively equal distri- 
bution of images for both labels. To perform empirical study 
of adversarial scenarios, we intentionally poison the training 
data for clients with IDs 11 and 12 by flipping their labels. 

reputation value for the i 
i- th unit after the first local training For training and validation purposes, each client utilize 90% 

round, and di denotes the truth value of the client which 
is one minus normalized Euclidean distance. R is updated 
in each aggregation round; if d ≥ α where α is a speci- 
fied threshold (α = 0.5 in our case), R increases linearly, 
otherwise if d < α, it decreases exponentially. Lastly, we 
utilize exponential smoothing to update parameters, blending 
the current round’s reputation with the previous one based on 
a smoothing factorβ(0.75 in our case). The reputation for the 
current time moment t is calculated as defined in (2), (3) and 
(4), adjusting R based on the previous reputation value Rt−1. 
This approach penalizes units providing low-quality models 
and requires consistent positive contributions over time to 
build reputation.  

  

of its allocated data for training and the remaining 10% for 
validation. This dataset composition and partitioning scheme 
facilitates the evaluation of our FL framework’s performance 
under realistic conditions, including the presence of malicious 
clients. 

We utilize a CNN architecture for the local training process 
on each client. The model architecture consists of two con- 
volutional layers, each followed by max-pooling layers, and 
three fully connected layers. Dropout layers are incorporated to 
prevent overfitting, and ReLU activation functions are applied 
to introduce non-linearity. 

Our FL process is performed over 10 rounds, mimicking 
the iterative nature of FL in real-world applications. During 
each round, clients perform local training on their respective 
datasets and communicate their model parameters and gradient 
updates to the aggregation server. 

To enhance the security and reliability of FL, we integrate 
 

integration. Even at the client side receiving global model 

examines how well the FL process achieves its goals by 

Reputation and Trust techniques into the FL framework. These 
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Fig. 3. Results demonstrated by the FL integrated with our Reputation and Trust indicators to manage the aggregation procedure: (a) – reputation values 
for each of the clients, calculated in each subsequent aggregation round; (b) – trust values for each of the clients, calculated in each subsequent aggregation 
round; (c) – accuracy over the local validation data for each of the clients, demonstrated after each subsequent aggregation round; (d) – average accuracy 
accross all the local clients, demonstrated after each subsequent aggregation round. Local data possessed by clients 11 and 12 is poisoned by the adversarial 
label flipping attack 

 

techniques aim to evaluate the performance and behavior of 
individual clients based on their contributions to the global 
model and adherence to expected norms. Clients with higher 
Reputation and Trust scores are prioritized during model 
aggregation, while those exhibiting suspicious behavior are 
subject to penalties or exclusion from aggregation process. 

VI. REPUTATION AND TRUST STRATEGY VERIFICATION 
AND RESULTS 

To integrate Reputation and Trust techniques into our FL 
environment, we implemented a systematic approach that 
leveraged client behavior analysis and dynamic adaptation. 
Below is the description of our implementation. 

A. Warm-up Rounds for Reputation and Trust Calculation 
We initiated the FL process with three warm-up rounds, 

allowing the system to initialize and calculate Reputation 
and Trust scores for each client. During these rounds, clients 
continued to participate in the aggregation process, but no 
actions were taken based on their trust values. This phase 
served as a preparation stage for the subsequent application 
of trust-based exclusion policies. 

B. Client Removal Based on Low Trust 
Following the warm-up rounds, starting from the fourth 

round, we introduced a policy to remove the client with the 

lowest trust score from the aggregation process. This proac- 
tive approach aimed to mitigate the influence of potentially 
untrustworthy clients on the integrity of the global model. 
By systematically excluding clients with low trust values, 
we sought to safeguard the quality and reliability of the FL 
process. 

C. Dynamic Trust Threshold for Client Exclusion 
In subsequent rounds beyond the warm-up phase, we em- 

ployed a dynamic trust threshold to determine whether a 
client needs to be excluded from the aggregation process. 
Clients whose trust values fell below the predefined threshold, 
set at 0.15 in our experiment, were automatically eliminated 
from participating in model aggregation. This threshold-based 
approach allowed for adaptive client management, ensuring 
that only reliable and trustworthy clients contributed to the 
collaborative learning process. 

D. Evaluation and Result Analysis 
Upon completing the FL process, we conducted a compre- 

hensive analysis of the outcomes and performance metrics. 
Specifically, we plotted three graphs to visualize the results 
obtained through the Reputation and Trust strategy: 

• Reputation value of each client for each subsequent 
round. This graph depicts the evolution of reputation 
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scores for individual clients over the course of the FL pro- 
cess, providing insights into their relative consistency and 
similarity among each other. Notably, clients 11 and 12 
(adversarial clients) began with relatively high reputation 
values close to 0.5, but experienced a sharp decline below 
the threshold within a few rounds. Conversely, client 4 
initially possessed a reputation value of 0 but notably 
improved its standing within just three rounds of the FL 
process (Figure 3(a)). 

• Trust Value of each client for each subsequent round. 
The trust graph offers a compelling narrative, particularly 
showcasing clients 11 and 12 with consistently low trust 
values from the initial rounds. Conversely, other clients 
demonstrated an ability to improve their trust values 
over subsequent rounds, contrasting with the persistent 
low trust observed in clients 11 and 12. Notably, the 
Reputation and Trust strategy implemented in round 4 led 
to the removal of client 12 due to its lowest trust value, 
followed by the exclusion of client 11 in round 6 as its 
trust value fell below the threshold. Despite fluctuations, 
other clients managed to maintain their trust values above 
the threshold, ensuring their retention within the cluster 
(Figure 3(b)). 

• Accuracy of individual client for each subsequent 
round. Initially, all clients exhibited accuracies ranging 
from 40 to 50%. Remarkably, the majority of clients, bar- 
ring adversarial clients, demonstrated a steady improve- 
ment in accuracy over the span of 10 rounds. Notably, 
the decline in accuracy observed in clients 11 and 12 
can be attributed to their reception of global updates 
from the server, albeit updating these parameters with 
poisoned data, thereby adversely affecting performance 
on validation data devoid of such contamination (Figure 
3(c)). 

• Average accuracy across all clients for each subse- 
quent round. Finally, we analyzed the average accuracy 
of clients’ local ML models across different rounds, 
demonstrating the impact of trust-based client exclusion 
on the overall performance and convergence of the FL 
system (Figure 3(d)). 

Overall, the implementation of Reputation and Trust tech- 
niques yielded valuable insights into client behavior and fa- 
cilitated the effective management of participant contributions 
in the FL process. 

VII. CONCLUSION 
In this paper, we proposed and developed a novel approach 

to identify adversarial attacks in FL by incorporating our 
Reputation and Trust techniques into the aggregation pro- 
cedure. Without compromising the confidentiality of each 
client’s local data, our approach enabled us to calculate and 
quantify trust towards each of the clients. The developed trust 
evaluation calculus takes into account the past local model 
updates’ evaluations that each local client has submitted for 
aggregation. This makes the trust assessment process more 
comprehensive and reliable since it considers the contributions 

of each client in the previous rounds. We verify our approach 
experimentally by applying the strategy to a real-world ITS 
computer vision-based traffic sign classification application. 
Our results demonstrated that our Reputation and Trust- 
equipped FL aggregation could successfully identify clients 
that compromised by adversarial attacks against the training 
data and eliminate them from the aggregation, enhancing FL 
security and robustness to adversarial actions. In addition, our 
approach does not impose any extra communication burdens 
on the FL cyberinfrastructure as it employs only the local 
model updates that are an ordinary FL round communica- 
tion component, which open avenues for its complementary 
employment to other FL security improvement methods and 
techniques. 
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