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Abstract

Traditional software reliability growth models only consider defect discovery data, yet the primary concern of software engineers is
defect removal. Past attempts to model defect resolution emphasize approaches based on differential equations and queueing theory.
However, these models do not explicitly identify the activities performed to remove defects and resources allocated to these activities
according to their severity. Models should consider these practical factors to enable more detailed resource allocation and planning.

This paper presents a model to predict the number of defects resolved according to the discrete Cox proportional hazard model with
covariates, demonstrating the approach with covariates on the number of low, medium, and high severity defects that were discovered
but not resolved in successive intervals. A comparison with differential equation-based and distributional approaches reveals that the
covariate model performs better on each goodness of fit measure considered and requires less time to apply. The covariate model also
better tracks unresolved defects and exhibits low predictive error, even when as little as 10-20% of testing has been completed. These
results suggest that collecting information on defect resolution activities and the corresponding effort dedicated could substantially
improve defect resolution modeling to guide process improvement.

Keywords: Software defect resolution; Software defect severity; Software defect tracking; Software reliability; Software reliability modeling.

Nomenclature SSE Sum of squares error
Notation

Acr onynts . o N(t) Number of defects detected by time t
AIC Akalk'e mformatmp crlte'rloTl N,.(t) Number of defects resolved by time t
BIC Bayesmfl information criterion m(t) Mean number of defects detected by time t
GEV Gener.allz.ed extreme.value m,.(t) Mean number of defects resolved by time t
LL Log-'hkehho'od functlon o Mean number of defects resolved by time
MLE Max1m}1m-11ke11hooq estimation m? () t assuming common discovery and
MTTR Mean time to resolution resolution rate b
MVF Mean value function

A(t) Defect discovery rate at time t

NASA Natlo'ne}I Aeronautlcs and Space A.(t) Defect resolution rate at time ¢t
Administration . .
) Defect resolution rate at time t
NHPP Non-homogeneous Poisson process b . .
o A7 (t) assuming common discovery and
PSSE Predictive sum of squares error

luti te b
SRGM Software reliability growth model resolution rate
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D Set of defects discovered

R Set of defects resolved

t; Time at which i defect was discovered
t7 Time at which i defect was resolved

. Time between discovery and resolution of
@ i™ defect

E[T,] Mean time to defect resolution

n Total number of defects or intervals

w Interval width

m Number of covariates

Xnxm Matrix of observed covariates

Xixj Effort dedicated to activity j in interval i

Vi Number of defects resolved in interval i
s Number of severity s defects resolved in

Vi interval i

Pix; Probability defect is resolved in interval i

h() Baseline hazard function

Bm Vector of covariate coefficients

1. Introduction

Software reliability growth models (SRGM) to
characterize the defect discovery process during testing
have been the subject of study since the early 1970s [1].
While models to describe defect resolution were proposed
as early as 1975 [2], defect resolution models [3] only
began to receive consistent attention after 2000. Metrics-
based models to characterize the number of defects
detected in successive intervals [4] as a function of test
activities is another topic that has recently enjoyed more
thorough study. Since defect resolution, not discovery, is
the true source of increased software reliability, defect
resolution models to explicitly consider the activities
performed to resolve defects of different severities are
needed to allocate effort during software defect tracking.

Most past papers are based on NHPP SRGM, which
we call defect discovery models. In contrast, the most
common class of defect resolution models is based on the
integrated defect discovery and resolution process
modeling framework [3]. Queueing theoretic models of
discovery and resolution [5,6] have also been proposed,
including multi-priority queuing models [7] for the mean
time to resolution according to defect severity, but were
limited to homogeneous rates for fielded software and did
not consider time-varying rates characteristic of a
software testing process over a defined test schedule.
Before this, most defect severity models were limited to
NHPP SRGM for defect discovery composed of separate
mean value functions [8] as well as homogeneous [9] and
heterogeneous [10] mixtures of mean value functions.
Recent research has demonstrated that metrics-based
models [4], [11], also known as covariate models,
characterize the defect discovery process in terms of the
underlying test activities very well, suggesting covariate
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models may also effectively characterize the defect
resolution process.

This paper presents a software defect resolution
model based on the discrete Cox proportional hazard
model with covariates and compares it with the software
defect resolution models that performed best in a recent
study connecting SRGM to defect tracking databases
[12], including (i) an integrated defect discovery and
resolution process model and (ii) a distributional
approach that shifts the defect discovery model by the
mean time to defect resolution. Novel models were
enabled by a NASA software defect tracking data set [13],
including the times when defects were discovered and
resolved. This previous study concluded that more
complex integrated defect discovery and resolution
process models did not characterize the defect resolution
process better. It was also observed that a semi-Markov
process model of the defect tracking lifecycle did not
significantly improve estimates of the mean time to defect
resolution. Therefore, while the semi-Markov process
model more closely represented the defect tracking
process, it only attained marginal improvements in
prediction because of sample size and data quality issues.
Hence, it was concluded that better data collection
practices could improve the utility of the semi-Markov
process model. Despite the lack of disciplined data
collection practices by software practitioners, it is
necessary to create models that predict robustly and are
not computationally intensive. Toward this end, the
software defect resolution model based on the discrete
Cox proportional hazard model with covariates can rely
solely on information on open defects (discovered but not
yet resolved) of different severity to predict the total
number of defects resolved as well as more fine-grained
predictions of the number of defects of a specific severity
resolved.

Based on the observations above, this paper seeks to
enhance the utility of covariate models and encourage
their adoption, making the following primary
contributions:

o A software defect resolution model incorporating
covariates based on a discrete Cox proportional
hazard rate to predict the removal of defects by
severity in terms of activities or metrics
associated with defect removal

e A method to assess the predictive ability of
alternative models in terms of the number of
open defects by severity

Our results indicate that the defect resolution model
incorporating covariates outperformed differential
equation-based and distributional approaches by order of
magnitude on all measures of goodness of fit and required
less runtime to apply. The covariate defect resolution
model also achieved compelling visual fits to the number
of open defects and achieved greater predictive accuracy
earlier in the testing schedule. Thus, while covariates for
the activities performed to resolve defects and the effort
dedicated to these activities are not needed, they could
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certainly improve the accuracy of models and promote
process assessment and improvement.

The remainder of the paper is organized as follows:
Section 2 summarizes related research. Section 3
describes defect discovery and resolution models. Section
4 describes model assessment techniques. Section 5
provides illustrations comparing the predictive accuracy
and performance of alternative models. Section 6 offers
conclusions and identifies future research.

2. Related Research

This section summarizes past research on defect
discovery and resolution models for software. A
chronology of contributions spanning the past 45 years is
provided. Related developments are grouped logically,
wherever possible. Models explicitly drawing upon
queueing theory are also discussed. Since covariate
SRGM are employed to characterize defect resolution for
the first time in this paper, we also review key
developments related to this class of models. The section
concludes with a statement of the paper’s novel
contributions.

Early studies that sought to characterize software
defect discovery and resolution include Schneidewind’s
[2] defect discovery model based on a discrete
exponential mean value function and time lag resolution.
Xie and Zhao [14] extended this model by assuming the
defect resolution rate is proportional to the number of
unresolved defects, demonstrating the Poisson thinning
process could model the difference between unresolved
defects. The inflection S-shaped model was proposed by
Ohba [15] to describe scenarios where some defects
needed to be resolved before others could be reached. In
contrast, the delayed S-shaped model was developed by
Yamada et al. [16] by incorporating a time delay to model
this dependence. Kapur and Younes [17] modeled leading
and dependent defects. Two SRGM with imperfect
debugging were proposed by Yamada et al. [18], where
new defects could be introduced when other defects were
resolved. A non-homogeneous continuous-time Markov
chain was employed by Gokhale et al. [19] to model
defect repair and analyze the impact of fault removal
policies on the number of defects remaining when testing
was completed. More recent studies include Huang et al.
[20], who showed that applying a time-dependent delay
function can derive several existing SRGM. An
integrated defect discovery and resolution process
modeling framework was proposed by Lo and Huang [3],
where the defect resolution process was expressed in
terms of a time-varying resolution intensity as well as the
difference between the number of defects discovered and
resolved. Ullah et al. [21] conducted a comparative
analysis of SRGM on discovery and resolution data sets
from several dozen open-source software projects. Liu et
al. [22] proposed an approach to estimate the parameters
of a defect removal model for semi-grouped data
consisting of the approximate times at which defects were

LJRRS/Vol. 7/ Issue 1/2024 /61

discovered and resolved, while Yang et al. [23] modeled
defect detection and correction of a multi-release open-
source software and related optimal release problems.
Cinque et al. [24] proposed an NHPP SRGM for
debugging data documented in a bug-tracking system
with defects of varying severity, improving the accuracy
of predictions when debugging activities did not follow
the modeling assumptions closely. Vizarreta et al. [25]
found the inflection S-shaped model characterized the
defect resolution of four successive releases of an open-
source software-defined network controller well and
subsequently [26] fit cumulative distribution functions
for the time to resolution by the severity of defects. Xie et
al. [27] proposed a defect resolution model in which
defect resolution times are allowed to follow a variety of
common distributions.

Applications of queueing theory to software defect
discovery and resolution include the work of Dohi et al.
[5], who proposed a model of software failure
occurrences as an M/G/8 infinite server queue, unifying
previously proposed software reliability growth models,
including general order statistics models [28]. Dobhi et al.
[6] subsequently presented Bayesian estimation
techniques for their infinite server queueing model and
demonstrated improved goodness of fit over general order
statistics models. Gokhale and Mullen [7] developed
multi-priority queuing models for the software defect
resolution process, considering the effect of queuing
system structures, priority levels, and priority disciplines
on the time to resolve defects of different severities. Lin
et al. [29] implemented simulation procedures for G/G/8
and G/G/m infinite server queues for software defect
detection and removal. Huang and Huang [30] showed
how to incorporate finite and infinite server queueing
models into software reliability modeling for defect
detection and removal, assuming perfect and imperfect
debugging. Zhang et al. [31] incorporated testing effort
functions into finite server queueing defect detection and
removal models. Kapur et al. [32] developed an M*/G/8
infinite server queue, where the mean time between
defect discovery and removal varies according to defect
severity. Later, Huang and Kuo [33] proposed an
extended finite server M/M/c queueing model to address
limited testing resources. Tokuno et al. [34] developed
performability measures for models based on infinite
server queuing to quantify the capacity of a software
process to complete tasks within a time limit. Okamura
and Dohi [35] proposed a generalized bivariate fault
detection and correction process, a model with hyper-
Erlang distributions, and expectation maximization
algorithms to estimate model parameters.

Early covariate models for software reliability
include the work of Khoshgoftaar et al. [36-38], who
applied alternative estimation techniques for applied
nonlinear regression with software metrics [39] as
explanatory variables to predict the number of faults in a
program module. Evanco and Lacovara [40] presented
multiple regression models based on ordinary least
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squares regression, Poisson, binomial, ordered response,
and proportional hazards models for software reliability
and subsequently [41] integrated the Poisson regression
into a modified form of the Goel- Okumoto model [42].
Cid and Achcar [43] presented a Bayesian approach to the
superposition of several independent NHPP in the
presence of covariates. Ray et al. [44] developed a
software reliability model for covariates based on
hierarchical Bayesian methods. Gandy and Jensen [45]
proposed a non-parametric software reliability model
based on a multivariate counting process with additive
intensity, incorporating covariates for open-source
software composed of multiple sub-projects. Ishii et al.
[46] used a bivariate NHPP SRGM to characterize defect
discovery as a function of software testing activities such
as calendar time, the number of test cases executed, and
test execution time, while Kapur et al. [47] developed a
bivariate NHPP SRGM including testing time and
coverage metrics according to the Cobb-Douglas
production function. Rinsaka et al. [11] combined the
proportional hazards model and NHPP to produce a
generalized defect detection process enabling a time-
dependent covariate structure. Shibata et al. [4] extended
this model to a cumulative Bernoulli trial process.
Okamura et al. [48,49] proposed an SRGM for multiple
test metrics based on logistic regression and a parameter
estimation method based on logistic regression and the
expectation-maximization algorithm. The logit and Cox
proportional hazards [51] covariate models were
generalized by Kuwa and Dohi [50]. Okamura and Dohi
[52] extended a covariate model integrating Poisson
regression and the non-homogeneous Poisson process to
accommodate time series data on defect detection and
software metrics of multiple modules. A unified model
combining NHPP SRGM and generalized linear models
was proposed by Okamura and Dohi [53] to encompass
several common SRGM and the logistic and Poisson
regression covariate SRGM. Wiper et al. [54] presented a
neural network regression method incorporating
covariates composed of software metrics to estimate
inter-failure times or the number of failures with a
Bayesian approach. Torrado et al. [55] developed a semi-
parametric Bayesian model incorporating Gaussian
processes to estimate software failures in successive time
intervals, assuming that the software updates are
performed after each interval and that information on
software metrics is available. Nagaraju et al. [56]
presented NHPP SRGM incorporating covariates based
on the discrete Cox proportional hazards model and
formulated the optimal test activity allocation problem to
maximize defect discovery.

In contrast to past studies, this paper is the first to
apply a covariate model to software defect resolution. The
predictive and computational performance is compared
with (i) the most common alternative, namely an
integrated defect discovery and resolution process model
[3], and (i) a distributional approach [12], which
demonstrated better predictive and computational
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performance than the integrated defect discovery and
resolution process modeling approach. While queuing
models offer additional rigor and possess intuitive appeal,
this class of models was not considered because the data
did not exhibit statistical evidence that either a priority or
mixed queueing discipline was employed by the project
to handle defects of low, medium, and high severity.
Moreover, it was not possible to speak with members of
the original project team to understand the queuing
discipline employed during project execution or other
relevant factors to construct a satisfactory model.
Nevertheless, this paper is one of the few considering
defect resolution by severity. It is also the first to apply
covariate models to the resolution of defects of each
severity level.

3. Software Defect Discovery and
Resolution: Models Incorporating
Severity

This section describes three methods to model the
software defect resolution process, including (i) the
integrated defect discovery and resolution process
modeling framework of Lo and Huang [3], (ii) the
distributional approach developed by Nafreen et al. [12],
and (iii) the NHPP SRGM incorporating covariates based
on the discrete Cox proportional hazards model of
Nagaraju et al. [56], which is adapted to characterize
defect resolution. Each model requires a pair of time
series indicating the time defects were discovered and
resolved, which can be unambiguously determined from
a defect tracking database. Defect resolution models
enable insights for software practitioners that can be
made during the software testing process, including the
average amount of time required to remove all defects of
a specified severity discovered up to (i) the present time
t and (ii) present time t as well as all additional defects
anticipated to be discovered.

3.1 Integrated  defect
resolution processes

discovery and

The integrated defect discovery and resolution processes
modeling framework [3] expresses the defect discovery
and resolution rates as a system of differential equations
possessing the below form

20 = 1) (w - m()) (1)
20 = 2.0 (m(E) = m, (6)) @)

where m(t) (m,(t)) denotes the mean value function of
the number of defects discovered (resolved) by time ¢,
A(t) (A,-(t)) the defect discovery (resolution) rate, and
w > 0 is the number of defects that would be discovered
and resolved with indefinite testing. Therefore, Equation
(2) expresses the instantaneous rate of change in defect
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resolution as the product of the defect resolution intensity
multiplied by the number of defects discovered but
unresolved at time ¢.

Non-homogeneous Poisson process models were
applied to the defect discovery data because failure times
were the only information recorded in the defect tracking
database, not the testing effort or underlying activities.
Analysis of the NASA data set [13] employed in this
study found that among the Jelinski-Moranda [1],
inflection S-shaped [15], Yamada Delayed S-shaped [16],
Goel-Okumoto [42], Weibull [57], and Geometric model
[58], the inflection S-shaped model characterized the
overall defect discovery process and the discovery
process of high, medium, and low severity defects best.

Thus, the mean value function for defect discovery is

_,—bt
m(t) = 01— 3)

where b is a constant defect discovery rate, c¢ the
inflection

c= 1Ti r € (0,1] 4)
and r is the inflection rate.

Assuming defect resolution intensity A,.(t) = b,
identical to parameter b of Equation (3), solution of
Equation (2) produces the MVF of the defect resolution
process

ml(t) = w (1—e‘bt +(1+c¢) log( L )e‘bt) (5)

c+ebt

The log-likelihood function of defect resolution
times data is

LL(6, ) = —m2(th + x) + L1, log (A2(t])) (6)

where m2(t% + x) is the MVF of the defect resolution
process evaluated at the time at which the last defect was
resolved (t};) plus any additional time (x) [59] since this
most recent defect was resolved, and

by — AmRD)

HOEES, (7
The defect resolution process is fit by substituting
Equations (5) and (7) as well as the resolution data
directly into Equation (6) and maximizing.

3.2 Distributional approach

The distributional approach [12] fits the time distribution
between discovery and resolution of each defect. Online
application of the distributional approach uses defect
discovery and resolution data available up to time t. Since
defect resolution is not immediate, the number of defects
discovered may be strictly greater than the number of
defects resolved. Maximum likelihood estimation
techniques for censored data are employed with the
following likelihood function to enable an unbiased
estimate of the time to resolve defects.
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Lik(01T) = Tiex f (ta; 0) x Mies 1 - ®
where k is the number of defects in the set R that were
discovered and resolved before time T, (n — k) the
number of defects in set D discovered by time T but
unresolved, and 6 the parameters of the distribution being
fit to the data. Moreover, t(;) denotes the time between
discovery t; and resolution t! of the i defect so that
tq) =t{ —t;, whereas 1 — F(T —t;) is the probability
that a defect discovered at time ¢; is still unresolved at
time T.

Given defect discovery and resolution data up until
time t, Equation (8) is maximized with multiple
alternative distributions and the one exhibiting the best fit
is used to make predictions. The mean of this distribution
is interpreted as the mean time to resolution (MTTR).
Therefore, the MVF of the number of defects resolved by
time £ may be expressed as

m,(t) = m(t — E[T,]) 9)

which shifts the mean value function of the defect
discovery process to the right by the mean time to resolve
defects (E[T;]).

3.3 Covariate approach

The discrete Cox proportional hazard NHPP SRGM [56]
links m covariates to the number of events in each of n
successive intervals. In modeling defect resolution, these
covariates can be (i) defect resolution activities or (ii)
metrics related to defect resolution, such as the number of
defects of each severity unresolved by the end of interval
i. The covariates are denoted Xpx.;,, Where x; =
(%i1, Xi2, -+ » Xim) corresponds to the duration each
activity was performed or the value of the metrics in
interval i.
The MVF of defects resolved through interval n is

m(X) = o Xisq Pix, (10)

where the probability a defect is resolved in interval i, after
going unresolved in the first (i — 1) intervals is as:

Pix, = (1= (1= h@®)** x T4 (1 -

11
h(k))g(xk) (1n

h(-) is baseline hazard function, and

9&i; B) = exp(Bixin + Boxiz + -+ BmXim)  (12)

Three examples of hazard functions are the Geometric:
A(k) = b, Negative binomial of order two: A(k) =

2
ﬁ, and Discrete Weibull of order two: A(k) =1 —
b**==D? \where b € (0,1) in all three cases.

The discrete Cox proportional hazard NHPP SRGM

possesses the following log-likelihood function:
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LL(O, B, w) = —w Xizq Pix; + Xi=1 ¥i In(w) +
Y yiln(pix,) — iy In(y)

where y,, is the number of defects resolved in each of the
n intervals and y; is the number of defects resolved in
interval i. Given covariates x and defect resolution vector
y, model fitting identifies the numerical estimates & (the
total number of defects to be resolved), B (vector of
covariate coefficients), and b (hazard function
parameter).

4. Model Assessment

Model assessment quantifies how well a model performs
on a data set. This section provides a self-contained
summary of complementary measures, including the sum
of squares error [60] and the predictive sum of squares
error [61], as well as the Akaike information criterion [62]
and Bayesian information criterion [63]. Lower values of
these measures are preferred. Ideally, a single model
performs best on all measures. However, this rarely
occurs in practice. If no single model outperforms all of
its competitors on all measures model selection becomes
subjective based on expert experience and factors such as
the amount of data available, testing stage, and predictive
horizon.

(13)

4.1 Sum of squares error (SSE)

SSE measures the disagreement between the empirical
defect resolution time data and estimates of a defect
resolution model.

SSE = 31, (N,(D) — (D))’ (14)

where N,.(i) is the number of defects resolved by time t;
or the end of interval i and #i,.(i) is the model estimate
of the number of defects resolved.

4.2 Predictive sum of squares error (PSSE)

PSSE fits a model to the first k < n failure times or
intervals and computes the disagreement between
empirical data and model estimates on the remaining n —
k times or intervals not used to perform model fitting.

PSSE = %y (N, (1) — (D)) (15)
SSE is the special case where k = 0.
4.3 Akaike Information Criterion (AIC)

The Akaike Information Criterion is an information-
theoretic measure of goodness of- fit, which is based on
the concept of entropy, measuring the information lost
when a model is applied. The AIC quantifies the tradeoff
between a model’s complexity and characterization of the
observed data. The AIC of model i is a function of the
number of model parameters (p) and maximized log-
likelihood.
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AIC; =2p—2LL(O | T) (16)

4.4 Bayesian information criterion (BIC)

BIC is similar to AIC, but the penalty term also includes
the sample size (n). The BIC of model i is

BIC; = plog(n) — 2LL(B | T) (17)

5. Illustrations

This section compares the alternative defect discovery
and resolution models described in Section 3 according to
the model assessment techniques given in Section 4 and
their computational performance. Section 5.1 describes
the data extracted from a NASA defect tracking database
to which the models were applied. Section 5.2 conducts a
retrospective analysis common in historical defect
discovery modeling papers using all available data. Next,
we describe the steps of the distributional approach to
determine the mean time to resolution, and the covariates
and interval width were selected for the covariate
approach. Tradeoffs between the goodness of fit and
runtime posed by the interval width of the covariate
approach are also examined. Section 5.3 performs a novel
analysis based on the defect and resolution discovery
processes, namely an analysis of the open defects for
progress tracking throughout the testing process. Section
5.4 assesses predictive accuracy. Each analysis is
performed on the entire dataset consisting of defects of all
three severities and analyses broken down by low,
medium, and high severity.

5.1 Data Description

The dataset [13] considered was extracted from a defect-
tracking database employed by NASA on a major project
spanning multiple years. After cleaning, the database
consisted of n = 455 rows, each of which corresponded
to a defect, including low (n; = 61), medium (n, =
381), and high severity (n, = 13) defects. The database
also documented when the defect entered any of the 13
possible states from discovery to resolution. However, a
recent study [12] demonstrated that the sample size was
too small to apply a semi-Markov process model of the
defect tracking process. Therefore, for this study, we
created two-time series, one composed of the time each
defect was discovered and a second for the time each
defect was resolved. Unlike past defect discovery and
resolution modeling efforts, the information contained in
rows of the database also allowed us to compute the
individual times between resolution and discovery,
enabling the application of the distributional and
covariate approaches.

5.2 Retrospective Analysis

Figure 1 shows N(t) and N,(t) (the discovery and
resolution counting processes) and the corresponding
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discovery and resolution model fit the three approaches
described in Section 3.
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Figure 1. Defect discovery and resolution processes with models
fitted to all data

The first counting process (left step function)
indicates when the defects were discovered. The fit of the
inflection S-shaped model (Equation (3)) is also shown.
The second counting process (right step function)
indicates when defects were resolved. The fits of the
differential equation-based (Equation (5)), distributional
(Equation (9)), and covariate model (Equation (10)) are
also shown.

Intuition suggests that information on unresolved
defects of all severities would be needed to accurately
characterize the overall defect resolution process
consisting of low, medium, and high-severity defects.
Therefore, the defect resolution data was discretized into
intervals of 20-time units for the covariate model. The
covariates of the i interval

X; =< X{iows Xi;mediums Xi,high =
were determined as the number of defects of a given
severity discovered by the beginning of interval i but not
yet resolved and y; was the number of defects of any
severity resolved in that interval. Based on this division of
resolution time data into intervals of 20-time units, the
covariate model with Discrete Weibull hazard rate and
parameters
Brow = 0.0202, Byeqium = 0.0519, By;gn = 0.1003

achieved the best fit, suggesting that high-severity defects
contributed most to defect resolution, followed by
medium and low-severity defects. Thus, while medium
severity defects were the most common, followed by low
and high severity, respectively, high severity defects most
significantly influenced the defect resolution process as
characterized by the covariate model parameters. Careful
examination of the data indicated that defects were often
resolved in batches. Therefore, one plausible explanation
for the numerical parameters is that low and medium-
severity defects were often resolved when high-severity
defects were resolved. Still, high-severity defects drove
the defect resolution planning process.

Table 1 summarizes the performance of each model
concerning the goodness of fit measures described in Section
4.
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Table 1. Comparison of defect resolution models

Approach SSE PSSE Runtime
90%) AIC BIC )

D-E 3.77 2.99 3.54 3.83 175.2
x 10* x 103 x 10* | x10*

L. . 3.43 1.68 3.32 3.64 150.1
Distributional % 10* % 10 % 10* % 10*

c . 1.72 7.94 1.29 1.45 110.2
ovariate x10° | x10%2 | x10° | x 10

Values in bold indicate the best model concerning
each measure. Specifically, the discrete Cox proportional
hazard model with covariates denoting the number of
defects of high, medium, and low severity discovered but
unresolved achieved an order of magnitude lower sum of
squares error, PSSE, AIC, and BIC and required less time
to apply.

5.2.1 Distributional Approach:

The mean time to resolution used to plot the mean value
function of the defect resolution curve for the distributional
approach in Figure 1 (E [Tr] = 59.74) was determined with
the special case of Equation (8), composed of all discovery
and resolution times for high, medium, and low severity
defects through the time at which the n” defect was resolved.
Seventeen possible distributions were considered, including
the Beta, Birnbaum- Saunders, Exponential, Extreme value,
Gamma, Generalized extreme value, Generalized Pareto,
Inverse Gaussian, Logistic, Log-logistic, Lognormal,
Nakagami, Normal, Rayleigh, Rician, t location-scale, and
Weibull distributions. The generalized extreme value (GEV)
distribution possessing the following maximum likelihood
estimates
T™ ~ GEV(u = 57.4437,0 = 22.6722,§ = —0.0959)

exhibited the best fit for the times between defect
discovery and resolution for the Akaike and Bayesian
Information Criterion.

Figure 2 shows the fitted Generalized extreme value
distribution and histogram of times between defect
discovery and resolution. Thus, the plot of the
distributional approach is simply the inflexion S-shaped
model that was fit to the defect discovery data given by
equation (3) shifted to the right by the mean time to
resolution (E[T,]), as defined in Equation (9).
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Figure 2. Empirical distribution of time between defect discovery and
resolution of all defects
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5.2.2 Covariate data analysis methodology:

Dividing resolution time data into 20-unit intervals for the
covariate model considered in Figure 1 and Table 1 is
arbitrary. Thus, to assess interval width on the accuracy
of the covariate model, Figure 3a shows the SSE of
predictions made with widths w € {5,10, ...,100} as well
as intervals of width one. Figure 3a indicates that a width
25 or less performed best and that decreasing w from five
to one did not significantly decrease the SSE. Moreover,
since the time of the last resolution was t;, = 2096, there
were 21 intervals for w = 100, and 2096 intervals for
w = 1. In cases where t;,/w was not an integer; the width
of the final interval was reduced. For example, the width
of'the final interval was 96 when w = 100. Since this was
the final interval and most defects had been discovered
and resolved, this modest amount of non-uniformity in
the width of the intervals did not impact the model fit
substantially.

Figure 3a also shows that intervals of width 15 <
w < 25 did not substantially increase the time required to
fit the model to achieve an order of magnitude
improvement in model fit over the alternative approaches,
whereas the differential equation-based and distributional
approaches required 886.2 and 749.5 seconds to apply
respectively and the SSE was an order of magnitude
worse as noted in Table 1. To demonstrate that smaller
intervals are also justified from an information theoretical
standpoint, Figure 3b shows the impact of interval width
on BIC and AIC.

Since smaller values are preferred, intervals of unit
width achieved the best fit. Nevertheless, intervals of
width 20 may be adequate since the relative error between
the BIC of models with widths 20 and 1 was just 0.0251
((1450.1-1414.6)/1414.6) and the relative error in the
AIC of models with widths twenty and one was 0.2169
((1290.1- 1060.1)/1060.1). While the relative error of the
AIC is not as small as the BIC's, it should be noted that
AIC does not penalize the sample size. Thus, BIC may be
a better measure of goodness of fit because decreasing w
from twenty to one increases the sample size by a factor
of twenty. The slight decrease in BIC from twenty to one
suggests that the penalty associated with this increase in
sample nullifies most gains in maximum likelihood

attained.
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Figure 3. (a) Impact of interval width on SSE and time required to fit
Covariate models (b) Impact of interval width on BIC and AIC of
Covariate models

5.2.3 Retrospective analysis by severity:

Since the response variable of the covariate model is the
vector of defects y,, resolved in each of the n intervals,
the model is not capable of simultaneously predicting the
number of defects of low, medium, and high severity
defects resolved in each interval with Equation (13).
However, it is straightforward to apply Equation (13)
with the three covariates X; as inputs and y,, , the vector
of defects resolved in each of the n intervals, where y; is
the number of defects of severity s € {1,2,3} resolved in
interval i as the response.

Table 2 summarizes the performance of each
resolution model for low, medium, and high-severity
defects, respectively.

Table 2. Comparison of defect resolution models by severity

PSSE Runtime
Approach S | SSE (90%) AIC | BIC )
5.12 6.02 4.82 5.22

x10% | x10% | x103| x 103

D | e e
. x 103 | x 102 x 103 | x 10° .
Covariate 9.16 | 1.62 | 1.76 | 1.97 14.1
x10%| x10' | x10%| x10?
3.10 6.29 294 | 3.23
x 10* | x 103 x 10*| x 10*
D-E Based 247 | 526 | 278 | 3.04 145.6
Distributional 2 124.7

. x10* | x 103 x 10* | x 10*
Covariate 573 | 5.54 | 1.09 | 1.25 913
x103| x10% | x10%| x103
107 | 386 | 1.04 | 1.09
x 103 | x 102 x 103 | x 103
Dli)s tﬁg} atliS;:lal L l921 | s1z | 932 | 104 5.2
. x 10% | x 102 x 102 | x 103
Covariate 1.72 | 9.08 | 3.59 | 4.45 33

x10%| x10' | x10'| x10?!

Values in bold indicate the model that performed best
concerning each measure. Table 2 indicates that the
discrete Cox proportional hazard model with covariates
and second-order Discrete Weibull hazard function
outperformed the alternatives by an order of magnitude
for each of the three severities and exhibited better
runtime performance.

Figure 4 shows the generalized Pareto, generalized
extreme value, and exponential distributions that best fit
the times between discovery and resolution of low,
medium, and high severity defects according to the BIC
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and AIC and the corresponding histogram of times
between defect discovery and resolution. The primary
observation derived from these fitted distributions was
that the mean time to resolution of low, medium, and high
severity defects were 70.27, 66.19, and 54.76 days,
indicating that higher severity defects were resolved more
quickly. This suggests that, on average, higher-severity
defects received more attention. Efforts to document the
effort dedicated to resolving these defects will further
enhance the applicability of the covariate approach.
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Figure 4. (a) Empirical distribution of time between discovery and
resolution of low severity defects (b) Empirical distribution of time
between discovery and resolution of medium severity defects (c)
Empirical distribution of time between discovery and resolution of
high-severity defects

5.3 Analysis of unresolved defects

To provide an alternative perspective, Figure 5 shows the
number of unresolved defects at the end of each interval
and the predictions of the fitted models. Increases
(decreases) in the step function indicate times at which
defects were discovered (resolved) more quickly than

LJRRS/Vol. 7/ Issue 1/2024 /@7

they were resolved (discovered). Thus, the value on the
y-axis represents the difference between the number of
defects discovered by time t (N(t)) and the number of
defects resolved by time t (N,(t)). At the peak (t =
1200), nearly 50 defects were unresolved.

——Covariate Approach
——Empirical (Overall defects)
-~ Differential Equation Based Approach
Distributional Approach

35+

Unresolved Defects (N'{1)-
o
5

GD-.P 200 400 ED‘D 800 10‘00 12‘0!3 14‘00 1600 1800 2000
Time (1)
Figure 5. Open defects (discovered but not yet resolved) and fitted models
Figure 5 indicates that the differential equation-
based and distributional approaches only capture primary
trends according to their parametric form, whereas the
covariate approach tracks the unresolved defects
remarkably well. The number of defects discovered but
not resolved at time t or interval i was computed by
subtracting the MVF of the defect discovery process
( Mm(t)) of Equation (3) from the fitted MVF of the defect
resolution process ( M2(t) or m,.(x)) from Equation (5),
(9) or Equation (3) for the differential equation-based,
distributional, and covariate approach, respectively.
Table 3 summarizes the model assessments for
unresolved defects of any severity, indicating the
covariate approach outperforms the differential equation-
based and distributional approaches by an order of
magnitude, reflecting the superior fit of the covariate
model fit to the number of unresolved defects in each
interval observed in Figure 5. To fairly compare
continuous and discrete models, SSE and PSSE were
computed at the end of each discrete interval to avoid
favoring the discrete model when the number of intervals
was smaller than the number of defects resolved.

Table 3. Comparison of models on unresolved defects

PSSE Runtime

Approach SSE (90%) AIC BIC ©)
5.28 2.10 7.10 7.23

D-E x10* | x10* | x10* | x10* 3302
C e 3.03 2.10 7.05 7.06

Distributional % 10* % 102 %< 10* | %10t 312.1
. 1.92 4. . .71

Covariate 9 59 3.59 3.7 186.1

x10% | x10' | x103 | x10°

5.3.1 Analysis of unresolved defects by severity:

Figure 6 shows the number of unresolved defects of low,
medium, and high severity defects and corresponding
model fits. In each case, differential equation-based and
distributional approaches only capture a single peak in the
trend. Still, the covariate approach tracks the number of
open defects extremely well, even the less frequent low
and high-severity defects.
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Dol ppproacn Once again, the covariate approach performed best
| [~ Difcental Eqiaion B Appro : )
o on virtually all measures of goodness of fit and required

less time to apply. However, the distributional approach
performed best on high severity (s = 1) possibly because
of the low sample size.

~

Y

IS

Unresolved Defects (N (-N_(t))
-

5.4 Assessment of Predictive Accuracy

Ideally, a model should be simple and accurately predict
0 ! ) Iy | | . the distant future with little data. To compare the
o 200 400 800 800 1000 1200 1400 1600 1800 2000 . . . .
Time (1) predictive accuracy of the defect resolution models, this
, @ _ _ ‘ section performs an online assessment of the models with
i oy fé[%ﬁ}ﬁ:fl‘i,f‘,izf;;ﬁ’m the predictive SSE measure. The defect resolution
; e b processes of the differential equation-based and covariate
approaches (Equations (5) and (10) respectively) were fit
to the resolution time data extracted from the defect
tracking database, whereas the distributional approach
identified an SRGM that fit the available defect discovery
data best, estimated the MTTR with Equation (8), and
then substituted the MTTR into Equation (9). The PSSE
was subsequently computed according to Equation (15)
R e e . A as the sum of squares difference between the actual
(E)me e number of defects observed and model predictions at each
N . . resolution time t/ or each interval i. For the sake of
T e comparison, the amount of data provided for defect
[ e o Cob pogloay discovery and resolution model fitting was performed in
1 increments of 20, the width of the intervals in the
covariate approach.

Figure 7 shows the online assessment of the defect

, resolution models with PSSE for defects of all three
1 severities combined. Times before t = 200 are excluded,
i so primary trends are distinguishable since PSSE was
initially very large and would skew the remainder of the
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Figure 6. (a) Open defects of low severity (s = 3) and fitted models, i ) ol e
(b) Open defects of medium severity (s = 2) and fitted models, (c) 2
Open defects of high severity (s = 1) and fitted models -
Table 4 summarizes the model assessments for low,
medium, and high-severity unresolved defects.
Table 4. Comparison of models on unresolved defects by severity
PSSE Runtime
A h E Al BI
pproac S | SS 90%) C (8 ) ‘
3.10 3.43 387 212 200 400 600 800 1000 TIm;Z(tUJO 1400 1600 1800 2000
10% | x10% | x10%| x10%
D-E Based X 452 .. .
o 2.62 1.58 331 | 3.67 Figure 7. PSSE of models on defects of three severities combined
Distributional | 3 %10% | %102 | 10| x 103 42.8
i 24.8 . . .
Covariate 171 | 1.01 | 4.61 | 4.85 Figure 7 indicates that the covariate approach
; 8120 ;6160 ; 3110 ;(9190 exhibited substantially lower error than the alternatives
D-E Based x10% | X100 | x10*| x10%| and sustained the highest accuracy throughout the
istributional | 2 | 21t | 109 1274 1291 100 remainder of the defect discovery and resolution process.
Distributiona %« 10* | x 103 x10*| x 10% . X R
Covariate 266 | 111 | 285 | 293 | 1567 The. covariate approaf:h is accurate because of the
x103| x10? | x10%| x 103 availability of information on the number of open defects
179 | 18 ) 186 1 201, by severity. In contrast, the distributional approach
D-E Based x10% | x10' | x10%| x 10 o . .
Dicribaies | | 149 | 584 | 115 | 1.54 190-69 exhibits error since few of the times between defect
1Stributional . . . . .
. X107 | x 101 | x10%| x10%| 5 discovery and resolution shown in Figure 2 were
Covariate 2.27 | 1.43 | 571 | 598 - - . .
%101 | x10' | x10%| x 10 observed before t = 600. Predictions of the differential
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equation-based approach were the worst because
parametric models implicitly make rigid assumptions
about the shape of the defect resolution curve.

Figure 8 shows the online assessment results of the
defect resolution models with PSSE by severity.
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Figure 8. (a) PSSE of models on low-severity defects, (b)
PSSE of models on medium-severity defects, (¢) PSSE of
models on high-severity defects

Figure 8a indicates that the distributional and
covariate approaches predicted approximately the same
prior to t = 800 for low-severity defects. In contrast,
Figures 8b and 8c, respectively, show that the predictions
of the covariate approach were best for medium severity
defects at times t > 400 and at all times for high severity
defects. The prediction errors may be partly explained by
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the sample size of low and high-severity defects, the
parametric forms for the differential equation-based and
distributional models, and undocumented factors within
the software test process. The excellent predictive
accuracy of the covariate approach on high-severity
defects is promising. However, disciplined collection of
covariates related to defect resolution efforts could
substantially reduce prediction errors, supporting risk
mitigation efforts to ensure high-severity defects are
removed prior to fielding.

6. Conclusion and Future Research

This paper presented a model for the number of defects
detected and resolved according to the discrete Cox
proportional hazard model incorporating covariates
describing metrics or activities that could serve as
predictors. Defect resolution activities and the amount of
effort dedicated to each were not explicitly documented
in the NASA defect tracking database. So, the number of
low, medium, and high-severity unresolved defects were
used as covariates. The illustrations showed that the
covariate approach outperformed other models by an
order of magnitude on all goodness of fit measures
considered and required less time to apply, exhibiting
similar performance when applied to subsets of data for
low, medium, and high severity defects. A similar
analysis of the number of unresolved defects
demonstrated compelling evidence that the covariate
approach tracked the data much better than the alternative
approaches. Finally, the covariate approach exhibited low
predictive error, even when only 10- 20% of testing had
elapsed.

Future research will seek to improve the efficiency
of the model fitting procedure for the covariate approach
when (i) the data consists of a large number of intervals
and (ii) the number of covariates describing the effort
allocated to distinct defect resolution activities in each
interval is large.
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