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Abstract 

Traditional software reliability growth models only consider defect discovery data, yet the primary concern of software engineers is 
defect removal. Past attempts to model defect resolution emphasize approaches based on differential equations and queueing theory. 
However, these models do not explicitly identify the activities performed to remove defects and resources allocated to these activities 
according to their severity. Models should consider these practical factors to enable more detailed resource allocation and planning. 

This paper presents a model to predict the number of defects resolved according to the discrete Cox proportional hazard model with 
covariates, demonstrating the approach with covariates on the number of low, medium, and high severity defects that were discovered 
but not resolved in successive intervals. A comparison with differential equation-based and distributional approaches reveals that the 
covariate model performs better on each goodness of fit measure considered and requires less time to apply. The covariate model also 
better tracks unresolved defects and exhibits low predictive error, even when as little as 10-20% of testing has been completed. These 
results suggest that collecting information on defect resolution activities and the corresponding effort dedicated could substantially 
improve defect resolution modeling to guide process improvement. 

Keywords: Software defect resolution; Software defect severity; Software defect tracking; Software reliability; Software reliability modeling.

Nomenclature 

 Acronyms 

AIC Akaike information criterion 
BIC Bayesian information criterion 
GEV Generalized extreme value 
LL Log-likelihood function 
MLE Maximum-likelihood estimation 
MTTR Mean time to resolution 
MVF Mean value function 

NASA 
National Aeronautics and Space 
Administration 

NHPP Non-homogeneous Poisson process 
PSSE Predictive sum of squares error 
SRGM Software reliability growth model 

SSE Sum of squares error 
 Notation 𝑁(𝑡) Number of defects detected by time 𝑡 𝑁𝑟(𝑡) Number of defects resolved by time 𝑡 𝑚(𝑡) Mean number of defects detected by time 𝑡 𝑚𝑟(𝑡) Mean number of defects resolved by time 𝑡 𝑚𝑟𝑏(𝑡) 

Mean number of defects resolved by time 𝑡 assuming common discovery and 
resolution rate 𝑏 𝜆(𝑡) Defect discovery rate at time 𝑡 𝜆𝑟(𝑡)  Defect resolution rate at time 𝑡 𝜆𝑟𝑏(𝑡) 
Defect resolution rate at time 𝑡 
assuming common discovery and 
resolution rate 𝑏 
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𝒟 Set of defects discovered ℛ Set of defects resolved 𝑡𝑖 Time at which ith defect was discovered 𝑡𝑖𝑟 Time at which ith defect was resolved 𝑡(𝑖) Time between discovery and resolution of 
ith defect 𝐸[𝑇̂𝑟]   Mean time to defect resolution 𝑛 Total number of defects or intervals 𝑤 Interval width 𝑚 Number of covariates 𝐱𝑛×𝑚 Matrix of observed covariates 𝐱𝑖×𝑗  Effort dedicated to activity 𝑗 in interval 𝑖 𝑦𝑖  Number of defects resolved in interval 𝑖 𝑦𝑖𝑠 
Number of severity 𝑠 defects resolved in 
interval 𝑖 𝑝𝑖,𝑥𝑖  Probability defect is resolved in interval 𝑖 ℎ(⋅) Baseline hazard function 𝛽𝑚 Vector of covariate coefficients 

1. Introduction  

Software reliability growth models (SRGM) to 
characterize the defect discovery process during testing 
have been the subject of study since the early 1970s [1]. 
While models to describe defect resolution were proposed 
as early as 1975 [2], defect resolution models [3] only 
began to receive consistent attention after 2000. Metrics-
based models to characterize the number of defects 
detected in successive intervals [4] as a function of test 
activities is another topic that has recently enjoyed more 
thorough study. Since defect resolution, not discovery, is 
the true source of increased software reliability, defect 
resolution models to explicitly consider the activities 
performed to resolve defects of different severities are 
needed to allocate effort during software defect tracking. 

Most past papers are based on NHPP SRGM, which 
we call defect discovery models. In contrast, the most 
common class of defect resolution models is based on the 
integrated defect discovery and resolution process 
modeling framework [3]. Queueing theoretic models of 
discovery and resolution [5,6] have also been proposed, 
including multi-priority queuing models [7] for the mean 
time to resolution according to defect severity, but were 
limited to homogeneous rates for fielded software and did 
not consider time-varying rates characteristic of a 
software testing process over a defined test schedule. 
Before this, most defect severity models were limited to 
NHPP SRGM for defect discovery composed of separate 
mean value functions [8] as well as homogeneous [9] and 
heterogeneous [10] mixtures of mean value functions. 
Recent research has demonstrated that metrics-based 
models [4], [11], also known as covariate models, 
characterize the defect discovery process in terms of the 
underlying test activities very well, suggesting covariate 

models may also effectively characterize the defect 
resolution process. 

This paper presents a software defect resolution 
model based on the discrete Cox proportional hazard 
model with covariates and compares it with the software 
defect resolution models that performed best in a recent 
study connecting SRGM to defect tracking databases 
[12], including (i) an integrated defect discovery and 
resolution process model and (ii) a distributional 
approach that shifts the defect discovery model by the 
mean time to defect resolution. Novel models were 
enabled by a NASA software defect tracking data set [13], 
including the times when defects were discovered and 
resolved. This previous study concluded that more 
complex integrated defect discovery and resolution 
process models did not characterize the defect resolution 
process better. It was also observed that a semi-Markov 
process model of the defect tracking lifecycle did not 
significantly improve estimates of the mean time to defect 
resolution. Therefore, while the semi-Markov process 
model more closely represented the defect tracking 
process, it only attained marginal improvements in 
prediction because of sample size and data quality issues. 
Hence, it was concluded that better data collection 
practices could improve the utility of the semi-Markov 
process model. Despite the lack of disciplined data 
collection practices by software practitioners, it is 
necessary to create models that predict robustly and are 
not computationally intensive. Toward this end, the 
software defect resolution model based on the discrete 
Cox proportional hazard model with covariates can rely 
solely on information on open defects (discovered but not 
yet resolved) of different severity to predict the total 
number of defects resolved as well as more fine-grained 
predictions of the number of defects of a specific severity 
resolved. 

Based on the observations above, this paper seeks to 
enhance the utility of covariate models and encourage 
their adoption, making the following primary 
contributions: 

• A software defect resolution model incorporating 
covariates based on a discrete Cox proportional 
hazard rate to predict the removal of defects by 
severity in terms of activities or metrics 
associated with defect removal 

• A method to assess the predictive ability of 
alternative models in terms of the number of 
open defects by severity 

Our results indicate that the defect resolution model 
incorporating covariates outperformed differential 
equation-based and distributional approaches by order of 
magnitude on all measures of goodness of fit and required 
less runtime to apply. The covariate defect resolution 
model also achieved compelling visual fits to the number 
of open defects and achieved greater predictive accuracy 
earlier in the testing schedule. Thus, while covariates for 
the activities performed to resolve defects and the effort 
dedicated to these activities are not needed, they could 
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certainly improve the accuracy of models and promote 
process assessment and improvement. 

The remainder of the paper is organized as follows: 
Section 2 summarizes related research. Section 3 
describes defect discovery and resolution models. Section 
4 describes model assessment techniques. Section 5 
provides illustrations comparing the predictive accuracy 
and performance of alternative models. Section 6 offers 
conclusions and identifies future research. 

2. Related Research  

This section summarizes past research on defect 
discovery and resolution models for software. A 
chronology of contributions spanning the past 45 years is 
provided. Related developments are grouped logically, 
wherever possible. Models explicitly drawing upon 
queueing theory are also discussed. Since covariate 
SRGM are employed to characterize defect resolution for 
the first time in this paper, we also review key 
developments related to this class of models. The section 
concludes with a statement of the paper’s novel 
contributions. 

Early studies that sought to characterize software 
defect discovery and resolution include Schneidewind’s 
[2] defect discovery model based on a discrete 
exponential mean value function and time lag resolution. 
Xie and Zhao [14] extended this model by assuming the 
defect resolution rate is proportional to the number of 
unresolved defects, demonstrating the Poisson thinning 
process could model the difference between unresolved 
defects. The inflection S-shaped model was proposed by 
Ohba [15] to describe scenarios where some defects 
needed to be resolved before others could be reached. In 
contrast, the delayed S-shaped model was developed by 
Yamada et al. [16] by incorporating a time delay to model 
this dependence. Kapur and Younes [17] modeled leading 
and dependent defects. Two SRGM with imperfect 
debugging were proposed by Yamada et al. [18], where 
new defects could be introduced when other defects were 
resolved. A non-homogeneous continuous-time Markov 
chain was employed by Gokhale et al. [19] to model 
defect repair and analyze the impact of fault removal 
policies on the number of defects remaining when testing 
was completed. More recent studies include Huang et al. 
[20], who showed that applying a time-dependent delay 
function can derive several existing SRGM. An 
integrated defect discovery and resolution process 
modeling framework was proposed by Lo and Huang [3], 
where the defect resolution process was expressed in 
terms of a time-varying resolution intensity as well as the 
difference between the number of defects discovered and 
resolved. Ullah et al. [21] conducted a comparative 
analysis of SRGM on discovery and resolution data sets 
from several dozen open-source software projects. Liu et 
al. [22] proposed an approach to estimate the parameters 
of a defect removal model for semi-grouped data 
consisting of the approximate times at which defects were 

discovered and resolved, while Yang et al. [23] modeled 
defect detection and correction of a multi-release open-
source software and related optimal release problems. 
Cinque et al. [24] proposed an NHPP SRGM for 
debugging data documented in a bug-tracking system 
with defects of varying severity, improving the accuracy 
of predictions when debugging activities did not follow 
the modeling assumptions closely. Vizarreta et al. [25] 
found the inflection S-shaped model characterized the 
defect resolution of four successive releases of an open-
source software-defined network controller well and 
subsequently [26] fit cumulative distribution functions 
for the time to resolution by the severity of defects. Xie et 
al. [27] proposed a defect resolution model in which 
defect resolution times are allowed to follow a variety of 
common distributions. 

Applications of queueing theory to software defect 
discovery and resolution include the work of Dohi et al. 
[5], who proposed a model of software failure 
occurrences as an M/G/8 infinite server queue, unifying 
previously proposed software reliability growth models, 
including general order statistics models [28]. Dohi et al. 
[6] subsequently presented Bayesian estimation 
techniques for their infinite server queueing model and 
demonstrated improved goodness of fit over general order 
statistics models. Gokhale and Mullen [7] developed 
multi-priority queuing models for the software defect 
resolution process, considering the effect of queuing 
system structures, priority levels, and priority disciplines 
on the time to resolve defects of different severities. Lin 
et al. [29] implemented simulation procedures for G/G/8 
and G/G/m infinite server queues for software defect 
detection and removal. Huang and Huang [30] showed 
how to incorporate finite and infinite server queueing 
models into software reliability modeling for defect 
detection and removal, assuming perfect and imperfect 
debugging. Zhang et al. [31] incorporated testing effort 
functions into finite server queueing defect detection and 
removal models. Kapur et al. [32] developed an M*/G/8 
infinite server queue, where the mean time between 
defect discovery and removal varies according to defect 
severity. Later, Huang and Kuo [33] proposed an 
extended finite server M/M/c queueing model to address 
limited testing resources. Tokuno et al. [34] developed 
performability measures for models based on infinite 
server queuing to quantify the capacity of a software 
process to complete tasks within a time limit. Okamura 
and Dohi [35] proposed a generalized bivariate fault 
detection and correction process, a model with hyper-
Erlang distributions, and expectation maximization 
algorithms to estimate model parameters. 

Early covariate models for software reliability 
include the work of Khoshgoftaar et al. [36-38], who 
applied alternative estimation techniques for applied 
nonlinear regression with software metrics [39] as 
explanatory variables to predict the number of faults in a 
program module. Evanco and Lacovara [40] presented 
multiple regression models based on ordinary least 
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squares regression, Poisson, binomial, ordered response, 
and proportional hazards models for software reliability 
and subsequently [41] integrated the Poisson regression 
into a modified form of the Goel- Okumoto model [42]. 
Cid and Achcar [43] presented a Bayesian approach to the 
superposition of several independent NHPP in the 
presence of covariates. Ray et al. [44] developed a 
software reliability model for covariates based on 
hierarchical Bayesian methods. Gandy and Jensen [45] 
proposed a non-parametric software reliability model 
based on a multivariate counting process with additive 
intensity, incorporating covariates for open-source 
software composed of multiple sub-projects. Ishii et al. 
[46] used a bivariate NHPP SRGM to characterize defect 
discovery as a function of software testing activities such 
as calendar time, the number of test cases executed, and 
test execution time, while Kapur et al. [47] developed a 
bivariate NHPP SRGM including testing time and 
coverage metrics according to the Cobb-Douglas 
production function. Rinsaka et al. [11] combined the 
proportional hazards model and NHPP to produce a 
generalized defect detection process enabling a time-
dependent covariate structure. Shibata et al. [4] extended 
this model to a cumulative Bernoulli trial process. 
Okamura et al. [48,49] proposed an SRGM for multiple 
test metrics based on logistic regression and a parameter 
estimation method based on logistic regression and the 
expectation-maximization algorithm. The logit and Cox 
proportional hazards [51] covariate models were 
generalized by Kuwa and Dohi [50]. Okamura and Dohi 
[52] extended a covariate model integrating Poisson 
regression and the non-homogeneous Poisson process to 
accommodate time series data on defect detection and 
software metrics of multiple modules. A unified model 
combining NHPP SRGM and generalized linear models 
was proposed by Okamura and Dohi [53] to encompass 
several common SRGM and the logistic and Poisson 
regression covariate SRGM. Wiper et al. [54] presented a 
neural network regression method incorporating 
covariates composed of software metrics to estimate 
inter-failure times or the number of failures with a 
Bayesian approach. Torrado et al. [55] developed a semi-
parametric Bayesian model incorporating Gaussian 
processes to estimate software failures in successive time 
intervals, assuming that the software updates are 
performed after each interval and that information on 
software metrics is available. Nagaraju et al. [56] 
presented NHPP SRGM incorporating covariates based 
on the discrete Cox proportional hazards model and 
formulated the optimal test activity allocation problem to 
maximize defect discovery. 

In contrast to past studies, this paper is the first to 
apply a covariate model to software defect resolution. The 
predictive and computational performance is compared 
with (i) the most common alternative, namely an 
integrated defect discovery and resolution process model 
[3], and (ii) a distributional approach [12], which 
demonstrated better predictive and computational 

performance than the integrated defect discovery and 
resolution process modeling approach. While queuing 
models offer additional rigor and possess intuitive appeal, 
this class of models was not considered because the data 
did not exhibit statistical evidence that either a priority or 
mixed queueing discipline was employed by the project 
to handle defects of low, medium, and high severity. 
Moreover, it was not possible to speak with members of 
the original project team to understand the queuing 
discipline employed during project execution or other 
relevant factors to construct a satisfactory model. 
Nevertheless, this paper is one of the few considering 
defect resolution by severity. It is also the first to apply 
covariate models to the resolution of defects of each 
severity level. 

3. Software Defect Discovery and 

Resolution: Models Incorporating 

Severity 

This section describes three methods to model the 
software defect resolution process, including (i) the 
integrated defect discovery and resolution process 
modeling framework of Lo and Huang [3], (ii) the 
distributional approach developed by Nafreen et al. [12], 
and (iii) the NHPP SRGM incorporating covariates based 
on the discrete Cox proportional hazards model of 
Nagaraju et al. [56], which is adapted to characterize 
defect resolution. Each model requires a pair of time 
series indicating the time defects were discovered and 
resolved, which can be unambiguously determined from 
a defect tracking database. Defect resolution models 
enable insights for software practitioners that can be 
made during the software testing process, including the 
average amount of time required to remove all defects of 
a specified severity discovered up to (i) the present time 𝑡 and (ii) present time 𝑡 as well as all additional defects 
anticipated to be discovered. 

3.1 Integrated defect discovery and 

resolution processes 

The integrated defect discovery and resolution processes 
modeling framework [3] expresses the defect discovery 
and resolution rates as a system of differential equations 
possessing the below form 𝑑𝑚(𝑡)𝑑𝑡 = 𝜆(𝑡)(𝜔 − 𝑚(𝑡))  (1) 

𝑑𝑚𝑟(𝑡)𝑑𝑡 = 𝜆𝑟(𝑡)(𝑚(𝑡) − 𝑚𝑟(𝑡))  (2) 

where 𝑚(𝑡) (𝑚𝑟(𝑡)) denotes the mean value function of 
the number of defects discovered (resolved) by time 𝑡, 𝜆(𝑡) (𝜆𝑟(𝑡)) the defect discovery (resolution) rate, and 𝜔 > 0 is the number of defects that would be discovered 
and resolved with indefinite testing. Therefore, Equation 
(2) expresses the instantaneous rate of change in defect 
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resolution as the product of the defect resolution intensity 
multiplied by the number of defects discovered but 
unresolved at time 𝑡. 

Non-homogeneous Poisson process models were 
applied to the defect discovery data because failure times 
were the only information recorded in the defect tracking 
database, not the testing effort or underlying activities. 
Analysis of the NASA data set [13] employed in this 
study found that among the Jelinski-Moranda [1], 
inflection S-shaped [15], Yamada Delayed S-shaped [16], 
Goel-Okumoto [42], Weibull [57], and Geometric model 
[58], the inflection S-shaped model characterized the 
overall defect discovery process and the discovery 
process of high, medium, and low severity defects best. 

Thus, the mean value function for defect discovery is 𝑚(𝑡) = 𝜔 1−𝑒−𝑏𝑡1+𝑐𝑒−𝑏𝑡  (3) 

where 𝑏 is a constant defect discovery rate, 𝑐 the 
inflection 𝑐 = 1−𝑟𝑟 ,    𝑟 ∈ (0,1]  (4) 

and 𝑟 is the inflection rate. 
Assuming defect resolution intensity 𝜆𝑟(𝑡) = 𝑏, 

identical to parameter 𝑏 of Equation (3), solution of 
Equation (2) produces the MVF of the defect resolution 
process 𝑚𝑟𝑏(𝑡) = 𝜔 (1−𝑒−𝑏𝑡 + (1 + 𝑐) log ( 1+𝑐𝑐+𝑒𝑏𝑡) 𝑒−𝑏𝑡)  

 
(5) 

The  log-likelihood function of defect resolution 
times data is 𝐿𝐿(𝜃, 𝜔) = −𝑚𝑟𝑏(𝑡𝑛𝑟 + 𝑥) + ∑ log (𝜆𝑟𝑏(𝑡𝑖𝑟))𝑛𝑖=1    (6) 

where 𝑚𝑟𝑏(𝑡𝑛𝑟 + 𝑥) is the MVF of the defect resolution 
process evaluated at the time at which the last defect was 
resolved (𝑡𝑛𝑟) plus any additional time (𝑥) [59] since this 
most recent defect was resolved, and 𝜆𝑟𝑏(𝑡) = 𝑑𝑚𝑟𝑏(𝑡)𝑑𝑡    (7) 

The defect resolution process is fit by substituting 
Equations (5) and (7) as well as the resolution data 
directly into Equation (6) and maximizing. 

3.2 Distributional approach 

The distributional approach [12] fits the time distribution 
between discovery and resolution of each defect. Online 
application of the distributional approach uses defect 
discovery and resolution data available up to time 𝑡. Since 
defect resolution is not immediate, the number of defects 
discovered may be strictly greater than the number of 
defects resolved. Maximum likelihood estimation 
techniques for censored data are employed with the 
following likelihood function to enable an unbiased 
estimate of the time to resolve defects. 

𝐿𝑖𝑘( Θ ∣ 𝑇 ) = ∏ 𝑓(𝑡(𝑖); 𝜃)𝑘𝑖∈ℛ × ∏ 1 −𝑛−𝑘𝑖∈𝒟𝐹(𝑇 − 𝑡𝑖; 𝜃)  
(8) 

where 𝑘 is the number of defects in the set ℛ that were 
discovered and resolved before time 𝑇, (𝑛 − 𝑘) the 
number of defects in set 𝒟 discovered by time 𝑇 but 
unresolved, and 𝜃 the parameters of the distribution being 
fit to the data. Moreover, 𝑡(𝑖) denotes the time between 
discovery 𝑡𝑖 and resolution 𝑡𝑖𝑟 of the ith defect so that 𝑡(𝑖) = 𝑡𝑖𝑟 − 𝑡𝑖, whereas 1 − 𝐹(𝑇 − 𝑡𝑖) is the probability 
that a defect discovered at time 𝑡𝑖 is still unresolved at 
time 𝑇. 

Given defect discovery and resolution data up until 
time 𝑡, Equation (8) is maximized with multiple 
alternative distributions and the one exhibiting the best fit 
is used to make predictions. The mean of this distribution 
is interpreted as the mean time to resolution (MTTR). 
Therefore, the MVF of the number of defects resolved by 
time 𝑡 may be expressed as 𝑚𝑟(𝑡) = 𝑚(𝑡 − 𝐸[𝑇̂𝑟])  

 

(9) 

which shifts the mean value function of the defect 
discovery process to the right by the mean time to resolve 
defects (𝐸[𝑇̂𝑟]). 
3.3 Covariate approach 

The discrete Cox proportional hazard NHPP SRGM [56] 
links 𝑚 covariates to the number of events in each of 𝑛 
successive intervals. In modeling defect resolution, these 
covariates can be (i) defect resolution activities or (ii) 
metrics related to defect resolution, such as the number of 
defects of each severity unresolved by the end of interval 𝑖. The covariates are denoted 𝐱𝑛×𝑚, where 𝑥𝑖 =(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚) corresponds to the duration each 
activity was performed or the value of the metrics in 
interval 𝑖. 

The MVF of defects resolved through interval 𝑛 is 𝑚𝑟(𝐱) = 𝜔 ∑ 𝑝𝑖,𝐱𝑖𝑛𝑖=1   (10) 

where the probability a defect is resolved in interval 𝑖, after 
going unresolved in the first (𝑖 − 1) intervals is as: 𝑝𝑖,𝐱𝑖 = ( 1 − (1 − ℎ(𝑖))𝑔(𝐱𝑖) × ∏ (1 −𝑖−1𝑘=1ℎ(𝑘))𝑔(𝐱𝑘)

  
(11) 

ℎ(⋅) is baseline hazard function, and 𝑔(𝐱𝑖; 𝛽) = exp(𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑚𝑥𝑖𝑚)  
 

(12) 

Three examples of hazard functions are the Geometric: 𝜆(𝑘) = 𝑏, Negative binomial of order two: 𝜆(𝑘) =𝑘𝑏21+𝑏(𝑘−1), and Discrete Weibull of order two: 𝜆(𝑘) = 1 −𝑏𝑘2−(𝑘−1)2
, where 𝑏 ∈ (0,1) in all three cases. 

The discrete Cox proportional hazard NHPP SRGM 
possesses the following log-likelihood function: 



64/ IJRRS / Vol. 7/ Issue 1/ 2024 

 

M. Nafreen, Y. Shi and L. Fiondella 

𝐿𝐿(𝜃, 𝛽, 𝜔) = −𝜔 ∑ 𝑝𝑖,𝐱𝑖𝑛𝑖=1 + ∑ 𝑦𝑖 ln(𝜔)𝑛𝑖=1 +∑ 𝑦𝑖 ln(𝑝𝑖,𝐱𝑖)𝑛𝑖=1 − ∑ ln(𝑦𝑖!)𝑛𝑖=1   
(13) 

where 𝐲𝑛 is the number of defects resolved in each of the 𝑛 intervals and 𝑦𝑖  is the number of defects resolved in 
interval 𝑖. Given covariates x and defect resolution vector 𝐲, model fitting identifies the numerical estimates 𝜔̂ (the 
total number of defects to be resolved),  𝛽 ̂ (vector of 
covariate coefficients), and  𝑏̂ (hazard function 
parameter). 

4. Model Assessment 

Model assessment quantifies how well a model performs 
on a data set. This section provides a self-contained 
summary of complementary measures, including the sum 
of squares error [60] and the predictive sum of squares 
error [61], as well as the Akaike information criterion [62] 
and Bayesian information criterion [63]. Lower values of 
these measures are preferred. Ideally, a single model 
performs best on all measures. However, this rarely 
occurs in practice. If no single model outperforms all of 
its competitors on all measures model selection becomes 
subjective based on expert experience and factors such as 
the amount of data available, testing stage, and predictive 
horizon. 

4.1 Sum of squares error (SSE) 

SSE measures the disagreement between the empirical 
defect resolution time data and estimates of a defect 
resolution model. 𝑆𝑆𝐸 = ∑ (𝑁𝑟(𝑖) − 𝑚̂(𝑖))2𝑛𝑖=1    (14) 

where 𝑁𝑟(𝑖) is the number of defects resolved by time 𝑡𝑖 
or the end of interval 𝑖 and  𝑚̂𝑟(𝑖) is the model estimate 
of the number of defects resolved. 

4.2 Predictive sum of squares error (PSSE) 

PSSE fits a model to the first 𝑘 < 𝑛 failure times or 
intervals and computes the disagreement between 
empirical data and model estimates on the remaining 𝑛 −𝑘 times or intervals not used to perform model fitting. 𝑃𝑆𝑆𝐸 = ∑ (𝑁𝑟(𝑖) − 𝑚̂(𝑖))2𝑛𝑖=𝑘+1   

 

(15) 

SSE is the special case where 𝑘 = 0. 

4.3 Akaike Information Criterion (AIC) 

The Akaike Information Criterion is an information-
theoretic measure of goodness of- fit, which is based on 
the concept of entropy, measuring the information lost 
when a model is applied. The AIC quantifies the tradeoff 
between a model’s complexity and characterization of the 
observed data. The AIC of model 𝑖 is a function of the 
number of model parameters (𝑝) and maximized log-
likelihood. 

𝐴𝐼𝐶𝑖 = 2𝑝 − 2𝐿𝐿(Θ̂ ∣ 𝑇)  
 

(16) 

4.4 Bayesian information criterion (BIC) 

BIC is similar to AIC, but the penalty term also includes 
the sample size (𝑛). The BIC of model 𝑖 is 𝐵𝐼𝐶𝑖 = 𝑝 log(𝑛) −  2𝐿𝐿(Θ̂ ∣ 𝑇)  

 

(17) 

5. Illustrations 

This section compares the alternative defect discovery 
and resolution models described in Section 3 according to 
the model assessment techniques given in Section 4 and 
their computational performance. Section 5.1 describes 
the data extracted from a NASA defect tracking database 
to which the models were applied. Section 5.2 conducts a 
retrospective analysis common in historical defect 
discovery modeling papers using all available data. Next, 
we describe the steps of the distributional approach to 
determine the mean time to resolution, and the covariates 
and interval width were selected for the covariate 
approach. Tradeoffs between the goodness of fit and 
runtime posed by the interval width of the covariate 
approach are also examined. Section 5.3 performs a novel 
analysis based on the defect and resolution discovery 
processes, namely an analysis of the open defects for 
progress tracking throughout the testing process. Section 
5.4 assesses predictive accuracy. Each analysis is 
performed on the entire dataset consisting of defects of all 
three severities and analyses broken down by low, 
medium, and high severity. 

5.1 Data Description 

The dataset [13] considered was extracted from a defect-
tracking database employed by NASA on a major project 
spanning multiple years. After cleaning, the database 
consisted of 𝑛 = 455 rows, each of which corresponded 
to a defect, including low (𝑛3 = 61), medium (𝑛2 =381), and high severity (𝑛1 = 13) defects. The database 
also documented when the defect entered any of the 13 
possible states from discovery to resolution. However, a 
recent study [12] demonstrated that the sample size was 
too small to apply a semi-Markov process model of the 
defect tracking process. Therefore, for this study, we 
created two-time series, one composed of the time each 
defect was discovered and a second for the time each 
defect was resolved. Unlike past defect discovery and 
resolution modeling efforts, the information contained in 
rows of the database also allowed us to compute the 
individual times between resolution and discovery, 
enabling the application of the distributional and 
covariate approaches. 

5.2 Retrospective Analysis 

Figure 1 shows 𝑁(𝑡) and 𝑁𝑟(𝑡) (the discovery and 
resolution counting processes) and the corresponding 
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discovery and resolution model fit the three approaches 
described in Section 3.  
 

 
Figure 1. Defect discovery and resolution processes with models 

fitted to all data 

The first counting process (left step function) 
indicates when the defects were discovered. The fit of the 
inflection S-shaped model (Equation (3)) is also shown. 
The second counting process (right step function) 
indicates when defects were resolved. The fits of the 
differential equation-based (Equation (5)), distributional 
(Equation (9)), and covariate model (Equation (10)) are 
also shown. 

Intuition suggests that information on unresolved 
defects of all severities would be needed to accurately 
characterize the overall defect resolution process 
consisting of low, medium, and high-severity defects. 
Therefore, the defect resolution data was discretized into 
intervals of 20-time units for the covariate model. The 
covariates of the ith interval  𝐱𝑖 =< 𝐱𝑖,𝑙𝑜𝑤 , 𝐱𝑖,𝑚𝑒𝑑𝑖𝑢𝑚 , 𝐱𝑖,ℎ𝑖𝑔ℎ > 

were determined as the number of defects of a given 
severity discovered by the beginning of interval 𝑖 but not 
yet resolved and 𝑦𝑖  was the number of defects of any 
severity resolved in that interval. Based on this division of 
resolution time data into intervals of 20-time units, the 
covariate model with Discrete Weibull hazard rate and 
parameters 𝛽̂𝐿𝑜𝑤 = 0.0202, 𝛽̂𝑀𝑒𝑑𝑖𝑢𝑚 = 0.0519, 𝛽̂𝐻𝑖𝑔ℎ = 0.1003 

achieved the best fit, suggesting that high-severity defects 
contributed most to defect resolution, followed by 
medium and low-severity defects. Thus, while medium 
severity defects were the most common, followed by low 
and high severity, respectively, high severity defects most 
significantly influenced the defect resolution process as 
characterized by the covariate model parameters. Careful 
examination of the data indicated that defects were often 
resolved in batches. Therefore, one plausible explanation 
for the numerical parameters is that low and medium-
severity defects were often resolved when high-severity 
defects were resolved. Still, high-severity defects drove 
the defect resolution planning process. 

Table 1 summarizes the performance of each model 
concerning the goodness of fit measures described in Section 
4. 

Table 1. Comparison of defect resolution models  

Approach SSE PSSE 

(90%) 
AIC BIC 

Runtime 

(s) 

D-E 
3.77× 104  2.99× 103 

3.54× 104 
3.83× 104 

175.2 

Distributional 
3.43× 104 

1.68× 103 
3.32× 104 

3.64× 104 
150.1 

Covariate 
𝟏. 𝟕𝟐× 𝟏𝟎𝟑 

𝟕. 𝟗𝟒× 𝟏𝟎𝟐 

𝟏. 𝟐𝟗× 𝟏𝟎𝟑 

𝟏. 𝟒𝟓× 𝟏𝟎𝟑 

110.2 

 

Values in bold indicate the best model concerning 
each measure. Specifically, the discrete Cox proportional 
hazard model with covariates denoting the number of 
defects of high, medium, and low severity discovered but 
unresolved achieved an order of magnitude lower sum of 
squares error, PSSE, AIC, and BIC and required less time 
to apply. 

5.2.1 Distributional Approach: 

The mean time to resolution used to plot the mean value 
function of the defect resolution curve for the distributional 
approach in Figure 1 (𝐸[𝑇̂𝑟] = 59.74) was determined with 
the special case of Equation (8), composed of all discovery 
and resolution times for high, medium, and low severity 
defects through the time at which the nth defect was resolved. 
Seventeen possible distributions were considered, including 
the Beta, Birnbaum- Saunders, Exponential, Extreme value, 
Gamma, Generalized extreme value, Generalized Pareto, 
Inverse Gaussian, Logistic, Log-logistic, Lognormal, 
Nakagami, Normal, Rayleigh, Rician, t location-scale, and 
Weibull distributions. The generalized extreme value (GEV) 
distribution possessing the following maximum likelihood 
estimates 𝑇̂𝑟 ∼ 𝐺𝐸𝑉(𝜇 = 57.4437, 𝜎 = 22.6722, 𝜉 = −0.0959) 
exhibited the best fit for the times between defect 
discovery and resolution for the Akaike and Bayesian 
Information Criterion. 

Figure 2 shows the fitted Generalized extreme value 
distribution and histogram of times between defect 
discovery and resolution. Thus, the plot of the 
distributional approach is simply the inflexion S-shaped 
model that was fit to the defect discovery data given by 
equation (3) shifted to the right by the mean time to 
resolution (𝐸[𝑇̂𝑟]), as defined in Equation (9). 

Figure 2. Empirical distribution of time between defect discovery and 
resolution of all defects 
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5.2.2 Covariate data analysis methodology: 

Dividing resolution time data into 20-unit intervals for the 
covariate model considered in Figure 1 and Table 1 is 
arbitrary. Thus, to assess interval width on the accuracy 
of the covariate model, Figure 3a shows the SSE of 
predictions made with widths 𝑤 ∈ {5,10, … ,100} as well 
as intervals of width one. Figure 3a indicates that a width 
25 or less performed best and that decreasing w from five 
to one did not significantly decrease the SSE. Moreover, 
since the time of the last resolution was 𝑡𝑛𝑟 ≈ 2096, there 
were 21 intervals for 𝑤 = 100, and 2096 intervals for 𝑤 = 1. In cases where 𝑡𝑛𝑟/𝑤 was not an integer; the width 
of the final interval was reduced. For example, the width 
of the final interval was 96 when 𝑤 = 100. Since this was 
the final interval and most defects had been discovered 
and resolved, this modest amount of non-uniformity in 
the width of the intervals did not impact the model fit 
substantially. 

Figure 3a also shows that intervals of width 15 ≤𝑤 ≤ 25 did not substantially increase the time required to 
fit the model to achieve an order of magnitude 
improvement in model fit over the alternative approaches, 
whereas the differential equation-based and distributional 
approaches required 886.2 and 749.5 seconds to apply 
respectively and the SSE was an order of magnitude 
worse as noted in Table 1. To demonstrate that smaller 
intervals are also justified from an information theoretical 
standpoint, Figure 3b shows the impact of interval width 
on BIC and AIC.  

Since smaller values are preferred, intervals of unit 
width achieved the best fit. Nevertheless, intervals of 
width 20 may be adequate since the relative error between 
the BIC of models with widths 20 and 1 was just 0.0251 
((1450.1-1414.6)/1414.6) and the relative error in the 
AIC of models with widths twenty and one was 0.2169 
((1290.1- 1060.1)/1060.1). While the relative error of the 
AIC is not as small as the BIC's, it should be noted that 
AIC does not penalize the sample size. Thus, BIC may be 
a better measure of goodness of fit because decreasing w 
from twenty to one increases the sample size by a factor 
of twenty. The slight decrease in BIC from twenty to one 
suggests that the penalty associated with this increase in 
sample nullifies most gains in maximum likelihood 
attained. 

 
(a) 

 
(b) 

Figure 3. (a) Impact of interval width on SSE and time required to fit 
Covariate models (b) Impact of interval width on BIC and AIC of 

Covariate models 

5.2.3 Retrospective analysis by severity: 

Since the response variable of the covariate model is the 
vector of defects 𝐲𝑛 resolved in each of the 𝑛 intervals, 
the model is not capable of simultaneously predicting the 
number of defects of low, medium, and high severity 
defects resolved in each interval with Equation (13). 
However, it is straightforward to apply Equation (13) 
with the three covariates 𝐱𝑖 as inputs and 𝐲𝑛𝑠 , the vector 
of defects resolved in each of the 𝑛 intervals, where 𝐲𝑖𝑠 is 
the number of defects of severity 𝑠 ∈ {1,2,3} resolved in 
interval 𝑖 as the response. 

Table 2 summarizes the performance of each 
resolution model for low, medium, and high-severity 
defects, respectively.  

Table 2. Comparison of defect resolution models by severity  

Approach S SSE 
PSSE 

(90%) 
AIC BIC 

Runtime 

(s) 

D-E Based 
Distributional 

Covariate 
3 

5.12× 103 4.67× 103 𝟗. 𝟏𝟔× 𝟏𝟎𝟐 

6.02× 102 4.23× 102 𝟏. 𝟔𝟐× 𝟏𝟎𝟏 

4.82× 103 4.52× 103 𝟏. 𝟕𝟔× 𝟏𝟎𝟐 

5.22× 103 4.96× 103 𝟏. 𝟗𝟕× 𝟏𝟎𝟐 

24.8 
20.5 
14.1 

D-E Based 
Distributional 

Covariate 
2 

3.10× 104 2.47× 104 𝟓. 𝟕𝟑× 𝟏𝟎𝟑 

6.29× 103 5.26× 103 𝟓. 𝟓𝟒× 𝟏𝟎𝟐 

2.94× 104 2.78× 104 𝟏. 𝟎𝟗× 𝟏𝟎𝟑 

3.23× 104 3.04× 104 𝟏. 𝟐𝟓× 𝟏𝟎𝟑 

145.6 
124.7 
91.3 

D-E Based 
Distributional 

Covariate 
1 

1.07× 103 9.21× 102 𝟏. 𝟕𝟐× 𝟏𝟎𝟐 

3.86× 102 5.12× 102 𝟗. 𝟎𝟖× 𝟏𝟎𝟏 

1.04× 103 9.32× 102 𝟑. 𝟓𝟗× 𝟏𝟎𝟏 

1.09× 103 1.04× 103 𝟒. 𝟒𝟓× 𝟏𝟎𝟏 

5.2 
4.1 
3.3 

 
Values in bold indicate the model that performed best 
concerning each measure. Table 2 indicates that the 
discrete Cox proportional hazard model with covariates 
and second-order Discrete Weibull hazard function 
outperformed the alternatives by an order of magnitude 
for each of the three severities and exhibited better 
runtime performance. 

Figure 4 shows the generalized Pareto, generalized 
extreme value, and exponential distributions that best fit 
the times between discovery and resolution of low, 
medium, and high severity defects according to the BIC 
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and AIC and the corresponding histogram of times 
between defect discovery and resolution. The primary 
observation derived from these fitted distributions was 
that the mean time to resolution of low, medium, and high 
severity defects were 70.27, 66.19, and 54.76 days, 
indicating that higher severity defects were resolved more 
quickly. This suggests that, on average, higher-severity 
defects received more attention. Efforts to document the 
effort dedicated to resolving these defects will further 
enhance the applicability of the covariate approach. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. (a) Empirical distribution of time between discovery and 
resolution of low severity defects (b) Empirical distribution of time 

between discovery and resolution of medium severity defects (c) 
Empirical distribution of time between discovery and resolution of 

high-severity defects 

5.3 Analysis of unresolved defects 

To provide an alternative perspective, Figure 5 shows the 
number of unresolved defects at the end of each interval 
and the predictions of the fitted models. Increases 
(decreases) in the step function indicate times at which 
defects were discovered (resolved) more quickly than 

they were resolved (discovered). Thus, the value on the 
y-axis represents the difference between the number of 
defects discovered by time 𝑡 (𝑁(𝑡)) and the number of 
defects resolved by time 𝑡 (𝑁𝑟(𝑡)). At the peak (𝑡 =1200), nearly 50 defects were unresolved.  

 

 
Figure 5. Open defects (discovered but not yet resolved) and fitted models 

Figure 5 indicates that the differential equation-
based and distributional approaches only capture primary 
trends according to their parametric form, whereas the 
covariate approach tracks the unresolved defects 
remarkably well. The number of defects discovered but 
not resolved at time 𝑡 or interval 𝑖 was computed by 
subtracting the MVF of the defect discovery process 
( 𝑚̂(𝑡)) of Equation (3) from the fitted MVF of the defect 
resolution process ( 𝑚̂𝑟𝑏(𝑡) or 𝑚𝑟(𝑥)) from Equation (5), 
(9) or Equation (3) for the differential equation-based, 
distributional, and covariate approach, respectively. 

Table 3 summarizes the model assessments for 
unresolved defects of any severity, indicating the 
covariate approach outperforms the differential equation-
based and distributional approaches by an order of 
magnitude, reflecting the superior fit of the covariate 
model fit to the number of unresolved defects in each 
interval observed in Figure 5. To fairly compare 
continuous and discrete models, SSE and PSSE were 
computed at the end of each discrete interval to avoid 
favoring the discrete model when the number of intervals 
was smaller than the number of defects resolved. 

Table 3. Comparison of models on unresolved defects  

Approach SSE 
PSSE 

(90%) 
AIC BIC 

Runtime 

(s) 

D-E 
5.28× 104 

2.10× 102 
7.10× 104 

7.23× 104 
330.2 

Distributional 
3.03× 104 

2.10× 102 
7.05× 104 

7.06× 104 
312.1 

Covariate 
𝟏. 𝟗𝟐× 𝟏𝟎𝟑 

𝟒. 𝟓𝟗× 𝟏𝟎𝟏 

𝟑. 𝟓𝟗× 𝟏𝟎𝟑 

𝟑. 𝟕𝟏× 𝟏𝟎𝟑 
186.1 

5.3.1 Analysis of unresolved defects by severity: 

Figure 6 shows the number of unresolved defects of low, 
medium, and high severity defects and corresponding 
model fits. In each case, differential equation-based and 
distributional approaches only capture a single peak in the 
trend. Still, the covariate approach tracks the number of 
open defects extremely well, even the less frequent low 
and high-severity defects. 
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(a) 

 
(b) 

 
(c) 

Figure 6. (a) Open defects of low severity (𝑠 = 3) and fitted models, 
(b) Open defects of medium severity (𝑠 = 2) and fitted models, (c) 

Open defects of high severity (𝑠 = 1) and fitted models 

Table 4 summarizes the model assessments for low, 
medium, and high-severity unresolved defects.  

Table 4. Comparison of models on unresolved defects by severity  

Approach S SSE 
PSSE 

(90%) 
AIC BIC 

Runtime 

(s) 

D-E Based 
Distributional 

Covariate 
3 

3.10× 103 2.62× 103 𝟏. 𝟕𝟏× 𝟏𝟎𝟐 

3.43× 102 1.58× 102 𝟏. 𝟎𝟏× 𝟏𝟎𝟏 

3.87× 103 3.31× 103 𝟒. 𝟔𝟏× 𝟏𝟎𝟐 

4.12× 103 3.67× 103 𝟒. 𝟖𝟓× 𝟏𝟎𝟐 

45.2 
42.8 
24.8 

D-E Based 
Distributional 

Covariate 
2 

3.82× 104 2.11× 104 𝟐. 𝟔𝟔× 𝟏𝟎𝟑 

2.66× 103 1.09× 103 𝟏. 𝟏𝟏× 𝟏𝟎𝟐 

2.81× 104 2.74× 104 𝟐. 𝟖𝟓× 𝟏𝟎𝟑 

2.99× 104 2.91× 104 𝟐. 𝟗𝟑× 𝟏𝟎𝟑 

277.3 
262.1 
156.7 

D-E Based 
Distributional 

Covariate 
1 

1.79× 102 1.49× 102 𝟐. 𝟐𝟕× 𝟏𝟎𝟏 

1.85× 101 5.84× 101 𝟏. 𝟒𝟑× 𝟏𝟎𝟏 

1.86× 103 𝟏. 𝟏𝟓× 𝟏𝟎𝟐 5.71× 102 

2.01× 102 𝟏. 𝟓𝟒× 𝟏𝟎𝟐 5.98× 102 

9.6 
10.9 
5.3 

Once again, the covariate approach performed best 
on virtually all measures of goodness of fit and required 
less time to apply. However, the distributional approach 
performed best on high severity (𝑠 = 1) possibly because 
of the low sample size. 

5.4 Assessment of Predictive Accuracy 

Ideally, a model should be simple and accurately predict 
the distant future with little data. To compare the 
predictive accuracy of the defect resolution models, this 
section performs an online assessment of the models with 
the predictive SSE measure. The defect resolution 
processes of the differential equation-based and covariate 
approaches (Equations (5) and (10) respectively) were fit 
to the resolution time data extracted from the defect 
tracking database, whereas the distributional approach 
identified an SRGM that fit the available defect discovery 
data best, estimated the MTTR with Equation (8), and 
then substituted the MTTR into Equation (9). The PSSE 
was subsequently computed according to Equation (15) 
as the sum of squares difference between the actual 
number of defects observed and model predictions at each 
resolution time 𝑡𝑖𝑟 or each interval 𝑖. For the sake of 
comparison, the amount of data provided for defect 
discovery and resolution model fitting was performed in 
increments of 20, the width of the intervals in the 
covariate approach. 

Figure 7 shows the online assessment of the defect 
resolution models with PSSE for defects of all three 
severities combined. Times before 𝑡 = 200 are excluded, 
so primary trends are distinguishable since PSSE was 
initially very large and would skew the remainder of the 
graph.  

 
Figure 7. PSSE of models on defects of three severities combined 

Figure 7 indicates that the covariate approach 
exhibited substantially lower error than the alternatives 
and sustained the highest accuracy throughout the 
remainder of the defect discovery and resolution process. 
The covariate approach is accurate because of the 
availability of information on the number of open defects 
by severity. In contrast, the distributional approach 
exhibits error since few of the times between defect 
discovery and resolution shown in Figure 2 were 
observed before 𝑡 = 600. Predictions of the differential 
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equation-based approach were the worst because 
parametric models implicitly make rigid assumptions 
about the shape of the defect resolution curve. 

Figure 8 shows the online assessment results of the 
defect resolution models with PSSE by severity. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 8. (a) PSSE of models on low-severity defects, (b) 

 PSSE of models on medium-severity defects, (c) PSSE of 
models on high-severity defects 

Figure 8a indicates that the distributional and 
covariate approaches predicted approximately the same 
prior to 𝑡 = 800 for low-severity defects. In contrast, 
Figures 8b and 8c, respectively, show that the predictions 
of the covariate approach were best for medium severity 
defects at times 𝑡 > 400 and at all times for high severity 
defects. The prediction errors may be partly explained by 

the sample size of low and high-severity defects, the 
parametric forms for the differential equation-based and 
distributional models, and undocumented factors within 
the software test process. The excellent predictive 
accuracy of the covariate approach on high-severity 
defects is promising. However, disciplined collection of 
covariates related to defect resolution efforts could 
substantially reduce prediction errors, supporting risk 
mitigation efforts to ensure high-severity defects are 
removed prior to fielding. 

6. Conclusion and Future Research 

This paper presented a model for the number of defects 
detected and resolved according to the discrete Cox 
proportional hazard model incorporating covariates 
describing metrics or activities that could serve as 
predictors. Defect resolution activities and the amount of 
effort dedicated to each were not explicitly documented 
in the NASA defect tracking database. So, the number of 
low, medium, and high-severity unresolved defects were 
used as covariates. The illustrations showed that the 
covariate approach outperformed other models by an 
order of magnitude on all goodness of fit measures 
considered and required less time to apply, exhibiting 
similar performance when applied to subsets of data for 
low, medium, and high severity defects. A similar 
analysis of the number of unresolved defects 
demonstrated compelling evidence that the covariate 
approach tracked the data much better than the alternative 
approaches. Finally, the covariate approach exhibited low 
predictive error, even when only 10- 20% of testing had 
elapsed. 

Future research will seek to improve the efficiency 
of the model fitting procedure for the covariate approach 
when (i) the data consists of a large number of intervals 
and (ii) the number of covariates describing the effort 
allocated to distinct defect resolution activities in each 
interval is large. 
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