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Machine Learning models are widely utilized in a variety of applications, including Intelligent Transportation Systems (ITS). As these 
systems are operating in highly dynamic environments, they are exposed to numerous security threats that cause Data Quality (DQ) 
variations. Among such threats are network attacks that may cause data losses. We evaluate the influence of these factors on the 
image DQ and consequently on the image ML model performance. We propose and investigate Federated Learning (FL) as the 
way to enhance the overall level of privacy and security in ITS, as well as to improve ML model robustness to possible DQ 
variations in real-world applications. Our empirical study conducted with traffic sign images and YOLO, VGG16 and ResNet models 
proved the greater robustness of FL-based architecture over a centralized one. 
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I. INTRODUCTION 
 

ACHINE Learning (ML) models, or Foundation Mod- 
els (FM), are incorporated across a wide diversity of 

domains, ranging from civil implementations for traffic and 
transportation systems [15], medicine, social media, to military 

applications [12]. While Zhou et al. [28] identified three 
primary areas of FM application, namely Natural Language 
Processing, Computer Vision, and Graph Learning, our study 

focuses on FM applications within Intelligent Transportation 
Systems (ITS). These systems typically integrate Computer 
Vision FM such as YOLO [26] and R-CNN to facilitate tasks 

of object detection in self-driving vehicles, traffic monitoring, 
and emergency response. 

The complexity of ITS, characterized by a wide variety 
of data sources [4], [23], including different types of infras- 
tructure objects, such as Road Side Units (RSU), vehicles, 
and traffic cameras, coupled with the dynamic nature of 
operational environments, poses challenges for ML models 
embedded within these systems. Data Quality (DQ) variations 
are common and may be caused by a plethora of reasons. 
Malicious physical or cyberattacks, such as sabotaging ITS 
components or orchestrating Denial of Service (DoS) attacks 
on network infrastructure, can result in data loss. Diverse data 
origins, such as on-board cameras and sensors of different 
brands and characteristics found in vehicles and RSU, may 
include distinct technological traits like resolution, accuracy, 
and lens focal length. Furthermore, fluctuating operational 
and environmental circumstances, such as varying weather 
conditions like snow or rain, can lead to anomalies in image 
capture [5]. 

Our assessment focuses on the robustness of the FM – the 
staple component of ITS – against the input data of varying 
quality, which may be caused either by adversarial network 
attacks, or heterogeneous operating conditions. Specifically, 
we investigate how FM perform when processing data af- 
fected by distortions such as noise, grayscale images, contrast 
alterations, and data loss. Our findings reveal that while 

FM generally handle DQ variations like noisy and grayscale 
images without a significant robustness decrease, they exhibit 
performance degradation when processing images impacted 
by data loss. This phenomenon is largely caused by the fact 
that FM are commonly trained in a centralized manner on 
high quality data, whereas real-world scenarios often entail 
the utilization of corrupted data during execution. 

To mitigate this challenge, numerous approaches have 
been proposed to enhance FM effectiveness on relevant data. 
Among these, Transfer Learning (TL) [15] and Federated 
Learning (FL) [14] emerge as prominent solutions. TL is the 
process of adapting a previously trained model on a new target 
domain [17]. In the context of ITS, this new domain comprises 
real-world data of varying quality obtained from ITS sources. 
Employing of TL in ITS involves the FM training on this data 
with various corruptions [7]. However, this approach raises 
security concerns when the data from multiple local devices 
is collected centrally. To train FM effectively with the real 
data containing inherent DQ variations, samples of such data 
must be gathered. Consequently, images would need to be 
transmitted over a network from the node to the aggregation 
server. Transmission of a confidential data over a network 
gives rise to multiple privacy concerns, including the risk 
of third-party data breaches. Additionally, the data may be 
corrupted during the transmission process in case of DoS 
attack. 

FL embodies an architecture wherein each node trains its 
own model using locally gathered data [17]. In this paper, 
we follow the use case developed by Manias and Shami [14], 
where RSU are considered as FL units for local training. In this 
setup, the collected data is not transmitted across the network, 
as each data source maintains its own FM. Consequently, 
since data is collected independently by each local unit, it 
retains its unique characteristics on each processing node, 
thereby rendering every FM more relevant to the specific 
data it processes, increasing the overall resilience of ITS. 
Following the FM training phase, the model from each node is 
supplied to the aggregation agent [14], where the global model 
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Fig. 1. Representation of the Federated Learning training process. Initially pre-trained FM is then aggregated with local FM that are trained on the real-world 
data of various quality. Each client pre-trains FM on the real-world data samples that are acquired into its own target dataset from a corresponding data source 

 

is produced. Additionally, FL offers better privacy protection 
[14]. Rather than transmitting actual confidential images over 
the network, only the model updates are typically shared, 
allowing significant privacy enhancement [14]. 

In this paper, we propose FL as the way to improve ITS 
security and robustness against DQ variations in input images. 
Not only does the FL approach enhance the overall privacy 
protection of ITS, but our experiments also demonstrate that 
FL significantly improves FM’s object detection performance 
when processing the images affected by data losses. Our 
study reveals that centralized FM experience decrease in their 
accuracy when processing images affected by data losses. 
Results of our experiments show that employing of FL-based 
setup coupled with the mixed data FM training allows to 
mitigate performance issues associated with the processing of 
corrupted images. Figure 1 illustrates our FL setup, where 
the Processing Node represents the image source at which 
the local model is trained. The images may contain various 
corruptions, such as noise, contrast increase and data losses. 
These images then participate in the local FM training since 
they are integrated in the training dataset. Local model updates 
are then transmitted over a network. 

 
II. RELATED SECURITY AND ROBUSTNESS IMPROVEMENT 

TECHNIQUES IN MACHINE LEARNING APPLICATIONS 

Systems that incorporate ML models can be very complex, 
comprising multiple data sources and computation nodes that 
are often widely spread among networks of various topologies. 
These systems can also be implemented using various ML 
architecture approaches. The abundance of components of 
highly different nature make these systems vulnerable to 
threats of discrete origins. 

One direction of research endeavors focus on improvement 
of system aspects not directly related to refining ML archi- 
tecture or FM themselves. In such works, authors investigate 
possibilities for upgrades in technologies that accompany 

integration of ML in a particular case. Such measures often 
aim at mitigating threats that stem from the possibility of 
reverse engineering attacks on ML. 

Lu et al. [13] in their study aimed at improving the 
robustness of ML models in Industrial Internet of Things 
(IoT) applications by utilizing FL along with the blockchain 
technology. In this setup, the blockchain module serve as the 
component for establishing secure connections among partici- 
pating IoT devices. Employing of FL architecture allows better 
data privacy because the data itself remains decentralized, 
while blockchain ensures the secure ML model transmission 
to aggregation server. While introduction of an additional 
security driven by blockchain to an IoT application may 
increase the overall system resilience to possible attacks, it also 
introduces additional concerns typical of blockchain systems. 
Among them is the increased complexity of the deployment 
and maintenance of systems with such architecture. 

In [25], authors approached the challenge of data man- 
agement in varying network conditions from a network ex- 
change perspective, introducing a new broadcast protocol for 
the purpose of adapting ML models to constantly changing 
environments. Authors focus their investigation on Vehicular 
Ad-Hoc Networks (VANET) which are commonly utilized in 
ITS domain. They as well underscore that in such systems 
the network environment is constantly changing over time. 
The proposed protocol design leverages a fuzzy logic-based 
approach to determine suitable network nodes for data trans- 
mission and reception, enhancing adaptability and efficiency 
in VANET networks. 

Another group of security concerns in ML systems is data 
poisoning. This process takes place when the data used in an 
ML system gets corrupted, which leads to DQ variation. This 
can happen either due to adversarial attacks, such as DoS, or 
because of the unintentional harmful conditions, e. g. a poor 
connection due to limited network bandwidth, or a storage 
damage. In the case of DQ variation, problems related to the 
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ML model performance and robustness arise. 
Another direction of research studies the possibilities for 

improving the security and robustness of ML systems by 
exploring and evaluating various approaches to ML itself. 
Otoum et al. [17] conducted the overview and comparison 
of three approaches to ML, namely FL, Transfer Learning 
(TL) and Split Learning (SL). Authors employed a dataset 
provided by Canadian Institute of Cybersecurity Intrusion 
Detection System (CICIDS2017) in order to assess accuracy 
and detection rates, power consumption, packet loss ratio and 
quality of experience. 

In this work, we assess the robustness of the FL-based 
architecture against DQ variations and compare it with the 
centralized ML method. We propose FL as the solution for, 
on the one hand, enhancing the security of the ML system 
by eliminating the need for extensive data transfer over a 
network. On the other hand, we show that employment of FL 
can mitigate the robustness issues caused by DQ variations. 

III. EMPIRICAL STUDY BACKGROUND 
A. Factors Resulting in Data Quality Degradation 
ITS is the example of a real-time service that incorpo- 

rates basic Internet of Things (IoT) elements [3]. However, 
transportation systems are often operating in highly unstable 
environments, which cause variations in DQ [16]. Maintaining 
data coherence during transmission is crucial for the seamless 
functioning of such services [27], as reduced network Quality 
of Service (QoS) can lead to integrity breaches or corruptions 
in transmitted data segments [24], which ultimately may result 
in incorrect decisions critical in ITS. Wireless networks may 
be subject to data loss due to a number of reasons, such as 
radio frequency interference [20], extensive distances between 
nodes, and network congestion. In addition, unstable network 
characteristics, node dynamics, and high bit error rates can 
affect data delivery rates in cellular networks [22]. 

Although ITS are built using their own type of networks, 
such as VANET, these networks still incorporate the trans- 
port layer of TCP/IP, deriving all the limitations typical to 
it. The transport layer of the TCP/IP stack provides three 
widely utilized protocols that are commonly used in applica- 
tions nowadays: Transmission Control Protocol (TCP), User 
Datagram Protocol (UDP) and Stream Control Transmission 
Protocol (SCTP). TCP and SCTP guarantee reliable data 
delivery, wherein lost data is re-transmitted. However, reliable 
data transmission requires a store and forward network infras- 
tructure, where each transition node is able to accumulate a 
significant number of dropped packets awaiting for the proper 
delivery to the recipient [1]. In ITS, the accumulation of data is 
often infeasible due to limitations in persistent storage capac- 
ity, power consumption constraints, and computing overhead. 
If the command and control protocol is applied in the network, 
it is able to redistribute traffic flows by reducing the particular 
application’s bandwidth to mitigate data loss, albeit negatively 
affecting network QoS and latency, potentially rendering it 
unsuitable for real-time services. Therefore, ITS often opts in 
UDP for data streaming. 

Nevertheless, data loss stemming from UDP usage can 
significantly influence the FM performance [8]. In ML-driven 

applications like self-driving vehicles, instantaneous and accu- 
rate object detection is paramount for the safety of its users and 
other traffic participants. In addition to unstable network and 
environmental conditions, another group of factors contribut- 
ing to DQ variations originates directly from input devices 
and is related to image processing. Transportation data may 
be affected by malfunctioning sensors or other interference 
[16]. For instance, a dirty camera lens in the detection unit, 
common in RSU operating in open environments, may result 
in increased noise level of a resulting image. Malfunction- 
ing sensors within camera units may lead to production of 
grayscale images, while exposure to extreme weather condi- 
tions can provoke automatic contrast adjustments during image 
processing, such as when recording against the sun’s direction. 
In the section below we describe the process of establishing 
datasets affected by these factors. 

 
 

B. Image Datasets 

1) Non-Distorted Image Datasets 
To study image FM performance, we employed the “Traffic 

Sign” (TS) and “Stop Sign” (SS) image subsets from the Open 
Images V6 dataset [2], which incorporates images labeled for 
classification, object detection and semantic segmentation. In 
order to train the centralized FM, we utilized the original 
images from the employed subset. 

2) Distorted Image Datasets 
We utilized a set of images with various DQ to train and 

evaluate the performance of FM. In order to simulate the 
distortions that may occur in case of the network data losses, 
we used network utility tools such as iptables and nftables 
for Linux operating system [9]. These utilities allow to set 
network parameters for data losses based on rules defined by 
statistical or probability measures. Below is the code snippet 
with the definition of rules for the network node: 

i p t a b l e s −A INPUT −m s t a t i s t i c 
−−mode  random 
−− p r o b a b i l i t y  0 . 0 5 −p udp 
−− d e s t i n a t i o n − p o r t  2020 − i  e t h 0 
– j DROP 

These rules allowed us to establish datasets with images 
affected by the varying percentages of data losses. 

In order to comprehensively assess the impact of other 
factors, we created a separate set of images introducing the 
following DQ variations: heightened noise levels, amplified 
contrast, and conversion to grayscale. Noise was introduced 
by generating a random tensor with dimensions identical to 
the input image, multiplying it by a scaling factor, adding 
it to the input image, and then clipping the resulting values 
to fall within the acceptable range for an RGB image (0 to 
255). Contrast modification was achieved using the “Contrast 
enhancer” from the Python’s Pillow library [10] with a coeffi- 
cient of .01. Converting to grayscale involved computing the 
average brightness of each pixel’s RGB components. Examples 
of distorted images are depicted in Figure 2. 
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TABLE I 
YOLO OBJECT DETECTION PERFORMANCE [9] 

 
 
 

 
(a) (b) (c) 

 

   
(d) (e) (f) 

 

(g) (h) 

Fig. 2. Examples of distorted images: (a) – original SS image; (b) – SS 
image with increased contrast; (c) – SS image with 2% data loss; (d) – SS 
image affected by noise (200) filter; (e) – original TS image; (f) – TS image 
with increased contrast; (g) – TS image with 2% data loss; (h) – TS image 
affected by noise (200) filter 

 

 
C. Foundation Models Setup 

In order to evaluate the effect of corrupted images on a 
centralized FM, we conducted tests on two image detectors 
widely employed in practice: YOLO [19] and VGG16 [21]. 
The YOLO object detection system is characterized by its one- 
stage detection algorithm, employing a singular neural network 
across the entire image. This network partitions the image 
into regions, predicting bounding boxes and probabilities for 
each region, with these bounding boxes weighted by the 
predicted probabilities. The authors claim that YOLO has 
several advantages over classifier-based systems, including its 
holistic image analysis at test time, leveraging global contex- 
tual information on the image. It also generates predictions 
with a single network evaluation, unlike RCNN systems which 
require thousands evaluations for a single image, making it 
much faster than RCNN systems [19]. 

On the other hand, Very Deep Convolutional Networks 
for Large-Scale Image Recognition (VGG16) stands out as 
a dependable and robust FM for the image classification [21]. 
Unlike YOLO, VGG16 follows a sequential operational flow, 
incorporating multiple layers consisting of 3×3 shaped filters, 
aimed at reducing the input image feature dimensions. Each 
activation layer utilizes ReLU as the activation function. The 
network ultimately incorporates 138 million parameters. 

Both centralized setups involved training the FM using the 
original image files, enabling an assessment of the FM per- 
formance degradation when processing data of varied quality. 
The decision to train the centralized models solely on the non- 
distorted data is driven by the urge to closely align with a real- 
world setups, where such models are normally trained on data 
without any corruptions. For the centralized FM, we assessed 

 
their performance across two tasks: image classification and 
object detection. The dataset employed contained images la- 
beled as SS and TS, with the SS utilized for evaluating object 
detection performance and the TS label for evaluating image 
classification performance. 

In order to assess FL-based setup, we built up the FL 
framework in Python using PyTorch. For the ML image 
classification model, we employed the ResNet50 architecture 
[11]. The FL architecture allows various model aggregation 
strategies [6], and we examined the performance of the FL- 
based ITS utilizing the following: Geometric Median (GM) 
and Federated Average (FedAvg). The first strategy, GM, is 
referred to as more robust to outliers and deviations in the 
parameters of models [18]. 

FL architecture introduces the possibility for the training on 
the real-world data with various corruptions, since this data is 
gathered on each processing node. This allowed us to studied 
three training strategies for the FL setup. Initially, models 
were trained on a mixed training dataset comprising uniformly 
distributed non-distorted images and images featuring the 
following data losses: 1, 2, 5, 10, and 20%. Additionally, two 
other training datasets consisted of images affected solely by 
2 and 5% data loss, respectively, establishing the basis for 
the remaining two training strategies. This approach not only 
enabled an evaluation of both model aggregation strategies, but 
also facilitated the identification of the optimal combination 
of DQ variations in the training dataset for enhanced FM 
performance and robustness. 

 
IV. RESULTS EVALUATION 

A. Centralized Foundation Model Performance 
Table I illustrates the impact of various image distortion 

types on the performance of YOLO object detection on the 
SS labeled data. The accuracy of the model is computed as 
the ratio of average precision to the median average precision. 
Surprisingly, the first four factors – namely, “Noise (100)”, 
“Noise (200)”, “Grayscale”, and “Contrast increase” – resulted 
in the increased YOLO performance. This improvement could 
be attributed to the filtration of insignificant image features, 
thereby preserving more significant ones and enhancing overall 
performance. 

Conversely, the remaining two factors – both “2% data loss” 
and “5% data loss” – resulted in a drastic performance decline 
for the YOLO object detector. Furthermore, the performance 

 YOLO 
Distortion Type AP/mAP 

No distortion 84.46 

Noise (100) 99.32 
Noise (200) 92.57 
Grayscale 99.03 

Contrast increase 99.26 
2% data loss 41.38 
5% data loss 30.77 
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Fig. 3. Centralized FM performance decrease when processing images 
affected by data losses. FM were trained on data with no distortions 

 
TABLE II 

IMAGE  CLASSIFICATION  PERFORMANCE  (YOLO) 
 

Distortion Type AP/mAP 

No distortion 70.69 

Noise (100) 61.29 
Noise (200) 43.55 
Grayscale 63.25 

Contrast increase 68.04 
2% data loss 27.78 
5% data loss 10.14 

 
 
 

drop observed with 2% and 5% data loss equates to half and 
nearly one-third of the performance achieved with original 
images. However, such an effect on images affected by data 
loss is not surprising. This decline occurs because the distorted 
images become excessively corrupted and unrecognizable for 
the detector, as can be seen on Figures 2(c) and 2(g). 

Figure 3 displays the comparison of the performance de- 
terioration between YOLO and VGG16 FM during object 
detection on images affected solely by data loss. As one can 
see from this figure, VGG16 suffers from a somewhat lesser 
yet still notable performance reduction. It is clear that in 
such scenarios both centralized FM experience a significant 
decrease in object detection accuracy. 

Additionally, we conducted a series of experiments to assess 
the image classification performance of YOLO FM when 
processing corrupted data, utilizing the TS labeled data for 
this purpose. 

The results are presented in Table II. As one can see from 
this table, the decrease in image classification performance is 
more pronounced compared to the decrease observed in the 
previous series of experiments focusing on object detection. 
Particularly, the deterioration in performance when processing 
images affected by data loss factors prevails in the case of 
image classification as well. 

Given these findings, we choose to evaluate FL-based FM 
robustness against images distorted by data loss. Our rationale 
stemmed from the observation that this type of DQ degrada- 
tion significantly affects FM performance in a negative way, 
thereby heightening the risk of overall malfunctioning within 
the ITS. 

Fig. 4. Image classification performance of ResNet50 FM in for various 
training datasets and aggregation strategies [6] 

 
 

B. FL Model Performance 
Figure 4 showcases the image classification accuracy results 

demonstrated by our FL model across the image testing 
sets featuring data loss distortions. We present the outcomes 
achieved through the employment of both FedAvg and GM 
aggregation strategies. In each experiment, FM trained on 
datasets with varying DQ were subsequently assessed. 

It is noteworthy that models trained on the mixed DQ dataset 
exhibit on average better performance on the non-distorted 
images. Interestingly, despite being trained on corrupted data, 
FM consistently demonstrates the highest performance on the 
original images across all cases. Regardless of the dataset 
on which the FM was trained, both aggregation strategies 
showcase the highest classification accuracy on non-distorted 
images. 

It is also worth mentioning that, across all investigated 
scenarios, the model trained on the mixed dataset and utilizing 
the FedAvg aggregation strategy consistently shows the best 
performance, except for the scenario of processing images 
impacted by 2% data loss. In this particular case, the model 
trained on the dataset containing 5% data loss images and 
employing the GM aggregation strategy outperforms. 

 
C. Comparison of Centralized and FL-based Models 
As one can see in Figure 5, employment of the mixed 

dataset in the process of FM trained in a FL manner al- 
lows better system robustness against data losses leading to 
DQ variation. Both FL aggregation strategies demonstrated 
significantly lesser classification accuracy degradation when 
handling corrupted real-world data compared to the centralized 
FM. 

Figure 6 illustrates the comparison of the FL-based FM 
performance across various training datasets featuring different 
corruptions. Specifically, we compare the model’s performance 
when trained on images affected by 2% data loss, 5% data loss, 
and a mixed dataset. These results are presented for the GM 
aggregation strategy. 

Remarkably, FM trained on images distorted by 5% data 
loss outperforms when classifying both non-distorted images 
and those affected by 2% data loss compared to FM trained 
on mixed images. 
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classification and detection accuracy than ML models trained 
in a centralized manner. 
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