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Machine Learning models are widely utilized in a variety of applications, including Intelligent Transportation Systems (ITS). As these
systems are operating in highly dynamic environments, they are exposed to numerous security threats that cause Data Quality (DQ)
variations. Among such threats are network attacks that may cause data losses. We evaluate the influence of these factors on the
image DQ and consequently on the image ML model performance. We propose and investigate Federated Learning (FL) as the
way to enhance the overall level of privacy and security in ITS, as well as to improve ML model robustness to possible DQ
variations in real-world applications. Our empirical study conducted with traffic sign images and YOLO, VGG16 and ResNet models
proved the greater robustness of FL-based architecture over a centralized one.

Index Terms—Federated Learning, Data Quality, Intelligent Transportation Systems, Data Privacy

1. INTRODUCTION

ACHINE Learning (ML) models, or Foundation Mod-
Mels (FM), are incorporated across a wide diversity of
domains, ranging from civil implementations for traffic and
transportation systems [15], medicine, social media, to military

applications [12]. While Zhou et al. [28] identified three
primary areas of FM application, namely Natural Language

Processing, Computer Vision, and Graph Learning, our study
focuses on FM applications within Intelligent Transportation
Systems (ITS). These systems typically integrate Computer

Vision FM such as YOLO [26] and R-CNN to facilitate tasks
of object detection in self-driving vehicles, traffic monitoring,
and emergency response.

The complexity of ITS, characterized by a wide variety
of data sources [4], [23], including different types of infras-
tructure objects, such as Road Side Units (RSU), vehicles,
and traffic cameras, coupled with the dynamic nature of
operational environments, poses challenges for ML models
embedded within these systems. Data Quality (DQ) variations
are common and may be caused by a plethora of reasons.
Malicious physical or cyberattacks, such as sabotaging ITS
components or orchestrating Denial of Service (DoS) attacks
on network infrastructure, can result in data loss. Diverse data
origins, such as on-board cameras and sensors of different
brands and characteristics found in vehicles and RSU, may
include distinct technological traits like resolution, accuracy,
and lens focal length. Furthermore, fluctuating operational
and environmental circumstances, such as varying weather
conditions like snow or rain, can lead to anomalies in image
capture [5].

Our assessment focuses on the robustness of the FM — the
staple component of ITS — against the input data of varying
quality, which may be caused either by adversarial network
attacks, or heterogeneous operating conditions. Specifically,
we investigate how FM perform when processing data af-
fected by distortions such as noise, grayscale images, contrast
alterations, and data loss. Our findings reveal that while

FM generally handle DQ variations like noisy and grayscale
images without a significant robustness decrease, they exhibit
performance degradation when processing images impacted
by data loss. This phenomenon is largely caused by the fact
that FM are commonly trained in a centralized manner on
high quality data, whereas real-world scenarios often entail
the utilization of corrupted data during execution.

To mitigate this challenge, numerous approaches have
been proposed to enhance FM effectiveness on relevant data.
Among these, Transfer Learning (TL) [15] and Federated
Learning (FL) [14] emerge as prominent solutions. TL is the
process of adapting a previously trained model on a new target
domain [17]. In the context of ITS, this new domain comprises
real-world data of varying quality obtained from ITS sources.
Employing of TL in ITS involves the FM training on this data
with various corruptions [7]. However, this approach raises
security concerns when the data from multiple local devices
is collected centrally. To train FM effectively with the real
data containing inherent DQ variations, samples of such data
must be gathered. Consequently, images would need to be
transmitted over a network from the node to the aggregation
server. Transmission of a confidential data over a network
gives rise to multiple privacy concerns, including the risk
of third-party data breaches. Additionally, the data may be
corrupted during the transmission process in case of DoS
attack.

FL embodies an architecture wherein each node trains its
own model using locally gathered data [17]. In this paper,
we follow the use case developed by Manias and Shami [14],
where RSU are considered as FL units for local training. In this
setup, the collected data is not transmitted across the network,
as each data source maintains its own FM. Consequently,
since data is collected independently by each local unit, it
retains its unique characteristics on each processing node,
thereby rendering every FM more relevant to the specific
data it processes, increasing the overall resilience of ITS.
Following the FM training phase, the model from each node is
supplied to the aggregation agent [14], where the global model

19th Annual Symposium on Information Assurance (ASIA '24)

30


mailto:dk9148@rit.edu
mailto:sc1723@rit.edu
mailto:rz4983@rit.edu
mailto:leon.reznik@rit.edu

Federated Learning Robustness on Real World Data in Intelligent Transportation Systems

FEDERATED LEARNING

=

Initial Domain

Database
Input Data l DQ variations
@ % &=

Initial FM Data

Pre—t_raining on loss Real idi
ngh DQ eal-world Images

e Other
o distortions

Target Domain
Database

o

Processing Node\a

Foundation
Model

@.%
/’ & o
Aggregation

round 1

[ T
Network

—7, M
./ ‘Aggregation Re-trained for
/ Target Domain
Local FM
e00
training

Aggregation
round m

Fig. 1. Representation of the Federated Learning training process. Initially pre-trained FM is then aggregated with local FM that are trained on the real-world
data of various quality. Each client pre-trains FM on the real-world data samples that are acquired into its own target dataset from a corresponding data source

is produced. Additionally, FL offers better privacy protection
[14]. Rather than transmitting actual confidential images over
the network, only the model updates are typically shared,
allowing significant privacy enhancement [14].

In this paper, we propose FL as the way to improve ITS
security and robustness against DQ variations in input images.
Not only does the FL approach enhance the overall privacy
protection of ITS, but our experiments also demonstrate that
FL significantly improves FM’s object detection performance
when processing the images affected by data losses. Our
study reveals that centralized FM experience decrease in their
accuracy when processing images affected by data losses.
Results of our experiments show that employing of FL-based
setup coupled with the mixed data FM training allows to
mitigate performance issues associated with the processing of
corrupted images. Figure 1 illustrates our FL setup, where
the Processing Node represents the image source at which
the local model is trained. The images may contain various
corruptions, such as noise, contrast increase and data losses.
These images then participate in the local FM training since
they are integrated in the training dataset. Local model updates
are then transmitted over a network.

II. RELATED SECURITY AND ROBUSTNESS IMPROVEMENT
TECHNIQUES IN MACHINE LEARNING APPLICATIONS

Systems that incorporate ML models can be very complex,
comprising multiple data sources and computation nodes that
are often widely spread among networks of various topologies.
These systems can also be implemented using various ML
architecture approaches. The abundance of components of
highly different nature make these systems vulnerable to
threats of discrete origins.

One direction of research endeavors focus on improvement
of system aspects not directly related to refining ML archi-
tecture or FM themselves. In such works, authors investigate
possibilities for upgrades in technologies that accompany

integration of ML in a particular case. Such measures often
aim at mitigating threats that stem from the possibility of
reverse engineering attacks on ML.

Lu et al [13] in their study aimed at improving the
robustness of ML models in Industrial Internet of Things
(IoT) applications by utilizing FL along with the blockchain
technology. In this setup, the blockchain module serve as the
component for establishing secure connections among partici-
pating [oT devices. Employing of FL architecture allows better
data privacy because the data itself remains decentralized,
while blockchain ensures the secure ML model transmission
to aggregation server. While introduction of an additional
security driven by blockchain to an IoT application may
increase the overall system resilience to possible attacks, it also
introduces additional concerns typical of blockchain systems.
Among them is the increased complexity of the deployment
and maintenance of systems with such architecture.

In [25], authors approached the challenge of data man-
agement in varying network conditions from a network ex-
change perspective, introducing a new broadcast protocol for
the purpose of adapting ML models to constantly changing
environments. Authors focus their investigation on Vehicular
Ad-Hoc Networks (VANET) which are commonly utilized in
ITS domain. They as well underscore that in such systems
the network environment is constantly changing over time.
The proposed protocol design leverages a fuzzy logic-based
approach to determine suitable network nodes for data trans-
mission and reception, enhancing adaptability and efficiency
in VANET networks.

Another group of security concerns in ML systems is data
poisoning. This process takes place when the data used in an
ML system gets corrupted, which leads to DQ variation. This
can happen either due to adversarial attacks, such as DoS, or
because of the unintentional harmful conditions, e. g. a poor
connection due to limited network bandwidth, or a storage
damage. In the case of DQ variation, problems related to the
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ML model performance and robustness arise.

Another direction of research studies the possibilities for
improving the security and robustness of ML systems by
exploring and evaluating various approaches to ML itself.
Otoum et al. [17] conducted the overview and comparison
of three approaches to ML, namely FL, Transfer Learning
(TL) and Split Learning (SL). Authors employed a dataset
provided by Canadian Institute of Cybersecurity Intrusion
Detection System (CICIDS2017) in order to assess accuracy
and detection rates, power consumption, packet loss ratio and
quality of experience.

In this work, we assess the robustness of the FL-based
architecture against DQ variations and compare it with the
centralized ML method. We propose FL as the solution for,
on the one hand, enhancing the security of the ML system
by eliminating the need for extensive data transfer over a
network. On the other hand, we show that employment of FL
can mitigate the robustness issues caused by DQ variations.

III. EMPIRICAL STUDY BACKGROUND
A. Factors Resulting in Data Quality Degradation

ITS is the example of a real-time service that incorpo-
rates basic Internet of Things (IoT) elements [3]. However,
transportation systems are often operating in highly unstable
environments, which cause variations in DQ [16]. Maintaining
data coherence during transmission is crucial for the seamless
functioning of such services [27], as reduced network Quality
of Service (QoS) can lead to integrity breaches or corruptions
in transmitted data segments [24], which ultimately may result
in incorrect decisions critical in ITS. Wireless networks may
be subject to data loss due to a number of reasons, such as
radio frequency interference [20], extensive distances between
nodes, and network congestion. In addition, unstable network
characteristics, node dynamics, and high bit error rates can
affect data delivery rates in cellular networks [22].

Although ITS are built using their own type of networks,
such as VANET, these networks still incorporate the trans-
port layer of TCP/IP, deriving all the limitations typical to
it. The transport layer of the TCP/IP stack provides three
widely utilized protocols that are commonly used in applica-
tions nowadays: Transmission Control Protocol (TCP), User
Datagram Protocol (UDP) and Stream Control Transmission
Protocol (SCTP). TCP and SCTP guarantee reliable data
delivery, wherein lost data is re-transmitted. However, reliable
data transmission requires a store and forward network infras-
tructure, where each transition node is able to accumulate a
significant number of dropped packets awaiting for the proper
delivery to the recipient [1]. In ITS, the accumulation of data is
often infeasible due to limitations in persistent storage capac-
ity, power consumption constraints, and computing overhead.
If the command and control protocol is applied in the network,
it is able to redistribute traffic flows by reducing the particular
application’s bandwidth to mitigate data loss, albeit negatively
affecting network QoS and latency, potentially rendering it
unsuitable for real-time services. Therefore, ITS often opts in
UDP for data streaming.

Nevertheless, data loss stemming from UDP usage can
significantly influence the FM performance [8]. In ML-driven

applications like self-driving vehicles, instantaneous and accu-
rate object detection is paramount for the safety of its users and
other traffic participants. In addition to unstable network and
environmental conditions, another group of factors contribut-
ing to DQ variations originates directly from input devices
and is related to image processing. Transportation data may
be affected by malfunctioning sensors or other interference
[16]. For instance, a dirty camera lens in the detection unit,
common in RSU operating in open environments, may result
in increased noise level of a resulting image. Malfunction-
ing sensors within camera units may lead to production of
grayscale images, while exposure to extreme weather condi-
tions can provoke automatic contrast adjustments during image
processing, such as when recording against the sun’s direction.
In the section below we describe the process of establishing
datasets affected by these factors.

B. Image Datasets

1) Non-Distorted Image Datasets

To study image FM performance, we employed the “Traffic
Sign” (TS) and “Stop Sign” (SS) image subsets from the Open
Images V6 dataset [2], which incorporates images labeled for
classification, object detection and semantic segmentation. In
order to train the centralized FM, we utilized the original
images from the employed subset.

2) Distorted Image Datasets

We utilized a set of images with various DQ to train and
evaluate the performance of FM. In order to simulate the
distortions that may occur in case of the network data losses,
we used network utility tools such as iptables and nftables
for Linux operating system [9]. These utilities allow to set
network parameters for data losses based on rules defined by
statistical or probability measures. Below is the code snippet
with the definition of rules for the network node:

iptables —A INPUT —-m statistic
—mode random
—probability 0.05 —p udp
—destination —port 2020 —i
—j DROP

ethO

These rules allowed us to establish datasets with images
affected by the varying percentages of data losses.

In order to comprehensively assess the impact of other
factors, we created a separate set of images introducing the
following DQ variations: heightened noise levels, amplified
contrast, and conversion to grayscale. Noise was introduced
by generating a random tensor with dimensions identical to
the input image, multiplying it by a scaling factor, adding
it to the input image, and then clipping the resulting values
to fall within the acceptable range for an RGB image (0 to
255). Contrast modification was achieved using the “Contrast
enhancer” from the Python’s Pillow library [10] with a coeffi-
cient of .01. Converting to grayscale involved computing the
average brightness of each pixel’s RGB components. Examples
of distorted images are depicted in Figure 2.
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Fig. 2. Examples of distorted images: (a) — original SS image; (b) — SS
image with increased contrast; (c) — SS image with 2% data loss; (d) — SS
image affected by noise (200) filter; (e) — original TS image; (f) — TS image
with increased contrast; (g) — TS image with 2% data loss; (h) — TS image
affected by noise (200) filter

C. Foundation Models Setup

In order to evaluate the effect of corrupted images on a
centralized FM, we conducted tests on two image detectors
widely employed in practice: YOLO [19] and VGG16 [21].
The YOLO object detection system is characterized by its one-
stage detection algorithm, employing a singular neural network
across the entire image. This network partitions the image
into regions, predicting bounding boxes and probabilities for
each region, with these bounding boxes weighted by the
predicted probabilities. The authors claim that YOLO has
several advantages over classifier-based systems, including its
holistic image analysis at test time, leveraging global contex-
tual information on the image. It also generates predictions
with a single network evaluation, unlike RCNN systems which
require thousands evaluations for a single image, making it
much faster than RCNN systems [19].

On the other hand, Very Deep Convolutional Networks
for Large-Scale Image Recognition (VGG16) stands out as
a dependable and robust FM for the image classification [21].
Unlike YOLO, VGG16 follows a sequential operational flow,
incorporating multiple layers consisting of 3%3 shaped filters,
aimed at reducing the input image feature dimensions. Each
activation layer utilizes ReLU as the activation function. The
network ultimately incorporates 138 million parameters.

Both centralized setups involved training the FM using the
original image files, enabling an assessment of the FM per-
formance degradation when processing data of varied quality.
The decision to train the centralized models solely on the non-
distorted data is driven by the urge to closely align with a real-
world setups, where such models are normally trained on data
without any corruptions. For the centralized FM, we assessed

TABLE I
YOLO OBJECT DETECTION PERFORMANCE [9]

YOLO

Distortion Type AP/mAP
No distortion 84.46
Noise (100) 99.32
Noise (200) 92.57
Grayscale 99.03
Contrast increase 99.26
2% data loss 41.38
5% data loss 30.77

their performance across two tasks: image classification and
object detection. The dataset employed contained images la-
beled as SS and TS, with the SS utilized for evaluating object
detection performance and the TS label for evaluating image
classification performance.

In order to assess FL-based setup, we built up the FL
framework in Python using PyTorch. For the ML image
classification model, we employed the ResNet50 architecture
[11]. The FL architecture allows various model aggregation
strategies [6], and we examined the performance of the FL-
based ITS utilizing the following: Geometric Median (GM)
and Federated Average (FedAvg). The first strategy, GM, is
referred to as more robust to outliers and deviations in the
parameters of models [18].

FL architecture introduces the possibility for the training on
the real-world data with various corruptions, since this data is
gathered on each processing node. This allowed us to studied
three training strategies for the FL setup. Initially, models
were trained on a mixed training dataset comprising uniformly
distributed non-distorted images and images featuring the
following data losses: 1, 2, 5, 10, and 20%. Additionally, two
other training datasets consisted of images affected solely by
2 and 5% data loss, respectively, establishing the basis for
the remaining two training strategies. This approach not only
enabled an evaluation of both model aggregation strategies, but
also facilitated the identification of the optimal combination
of DQ wvariations in the training dataset for enhanced FM
performance and robustness.

IV. RESULTS EVALUATION
A. Centralized Foundation Model Performance

Table T illustrates the impact of various image distortion
types on the performance of YOLO object detection on the
SS labeled data. The accuracy of the model is computed as
the ratio of average precision to the median average precision.
Surprisingly, the first four factors — namely, “Noise (100)”,
“Noise (200)”, “Grayscale”, and “Contrast increase” — resulted
in the increased YOLO performance. This improvement could
be attributed to the filtration of insignificant image features,
thereby preserving more significant ones and enhancing overall
performance.

Conversely, the remaining two factors — both “2% data loss”
and “5% data loss” — resulted in a drastic performance decline
for the YOLO object detector. Furthermore, the performance
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Fig. 3. Centralized FM performance decrease when processing images
affected by data losses. FM were trained on data with no distortions

TABLE II
IMAGE CLASSIFICATION PERFORMANCE (YOLO)

Distortion Type | AP/mAP
No distortion 70.69
Noise (100) 61.29
Noise (200) 43.55

Grayscale 63.25

Contrast increase 68.04
2% data loss 27.78
5% data loss 10.14

drop observed with 2% and 5% data loss equates to half and
nearly one-third of the performance achieved with original
images. However, such an effect on images affected by data
loss is not surprising. This decline occurs because the distorted
images become excessively corrupted and unrecognizable for
the detector, as can be seen on Figures 2(c) and 2(g).

Figure 3 displays the comparison of the performance de-
terioration between YOLO and VGG16 FM during object
detection on images affected solely by data loss. As one can
see from this figure, VGG16 suffers from a somewhat lesser
yet still notable performance reduction. It is clear that in
such scenarios both centralized FM experience a significant
decrease in object detection accuracy.

Additionally, we conducted a series of experiments to assess
the image classification performance of YOLO FM when
processing corrupted data, utilizing the TS labeled data for
this purpose.

The results are presented in Table II. As one can see from
this table, the decrease in image classification performance is
more pronounced compared to the decrease observed in the
previous series of experiments focusing on object detection.
Particularly, the deterioration in performance when processing
images affected by data loss factors prevails in the case of
image classification as well.

Given these findings, we choose to evaluate FL-based FM
robustness against images distorted by data loss. Our rationale
stemmed from the observation that this type of DQ degrada-
tion significantly affects FM performance in a negative way,
thereby heightening the risk of overall malfunctioning within
the ITS.

| | |
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Fig. 4. Image classification performance of ResNet50 FM in for various
training datasets and aggregation strategies [6]

B. FL Model Performance

Figure 4 showcases the image classification accuracy results
demonstrated by our FL model across the image testing
sets featuring data loss distortions. We present the outcomes
achieved through the employment of both FedAvg and GM
aggregation strategies. In each experiment, FM trained on
datasets with varying DQ were subsequently assessed.

It is noteworthy that models trained on the mixed DQ dataset
exhibit on average better performance on the non-distorted
images. Interestingly, despite being trained on corrupted data,
FM consistently demonstrates the highest performance on the
original images across all cases. Regardless of the dataset
on which the FM was trained, both aggregation strategies
showcase the highest classification accuracy on non-distorted
images.

It is also worth mentioning that, across all investigated
scenarios, the model trained on the mixed dataset and utilizing
the FedAvg aggregation strategy consistently shows the best
performance, except for the scenario of processing images
impacted by 2% data loss. In this particular case, the model
trained on the dataset containing 5% data loss images and
employing the GM aggregation strategy outperforms.

C. Comparison of Centralized and FL-based Models

As one can see in Figure 5, employment of the mixed
dataset in the process of FM trained in a FL manner al-
lows better system robustness against data losses leading to
DQ variation. Both FL aggregation strategies demonstrated
significantly lesser classification accuracy degradation when
handling corrupted real-world data compared to the centralized
FM.

Figure 6 illustrates the comparison of the FL-based FM
performance across various training datasets featuring different
corruptions. Specifically, we compare the model’s performance
when trained on images affected by 2% data loss, 5% data loss,
and a mixed dataset. These results are presented for the GM
aggregation strategy.

Remarkably, FM trained on images distorted by 5% data
loss outperforms when classifying both non-distorted images
and those affected by 2% data loss compared to FM trained
on mixed images.
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Fig. 6. Comparison of the performance demonstrated by FM trained in a FL
manner on various datasets

However, the FM trained on the “mixed” dataset demon-
strates the highest robustness among the three training strate-
gies, showcasing the least steep decline in classification ac-
curacy when processing corrupted data. This underscores the
efficiency of training on real-world data with DQ variations in
enhancing FM performance in ITS.

V. CONCLUSION

Among reasons that result in DQ variation in ITS are data
losses that may be caused by DoS attacks on the network
infrastructure. Others are increased noise and contrast levels,
grayscale images, that may be caused by environmental fac-
tors. We evaluated centralized FM robustness against images
affected by these factors and identified that they experience
a significant decrease in performance when classifying and
detecting objects on images with distortions caused by data
losses. We proved that the FL-based approach is an effective
solution to mitigate challenges related to data loss that may
happen in the real-world ITS. Not only the FL architecture
allows enhanced data privacy by preserving confidential client
information locally, but also our experiments demonstrated
that in all of the investigated cases FL-based ML models
that were trained on mixed data demonstrated higher image

classification and detection accuracy than ML models trained
in a centralized manner.
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