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Abstract—Many software reliability models exist, making it
especially difficult for individuals new to software reliability
to apply models effectively. Researchers have suggested a wide
variety of statistical model selection techniques as well as frame-
works that combine multiple selection techniques. However, these
techniques often require a level of expertise and subjectivity that
continue to make it difficult to apply software reliability models
in practice. To overcome these limitations of past research, this
paper presents a neural network approach to rank models based
on their ability to accurately predict future defect discovery.
Unbiased simulation techniques are used to generate training
data as well as additional test data not used for training. Our
results indicate that the model that predicts future defects most
accurately was recommended by the neural network over 60%
of the time and the first or second most accurate model was
recommended by the neural network over 95% of the time.
Moreover, in over 50% of cases where the second most accurate
model was recommended, the predictive sum of squares error
was no more than a factor of two times greater than the most
accurate model, suggesting that neural networks may be a viable
model selection approach for software reliability growth models.

Index Terms—Software reliability, model selection, neural
network, covariate model, predictive accuracy

I. INTRODUCTION

Traditional software reliability growth models (SRGM) [1]
model the defect discovery process and failure intensity as a
function of time on test, while covariate SRGM [2], [3] employ
time series of one or more test activities or metric. Despite
the widely accepted use of statistical models to predict future
events, countless publications have proposed progressively
more complex parametric forms focused on characterizing the
observed data well, but often fail to predict future failures
accurately. Standard practice compares a proposed model to
well known alternatives on one or more goodness of fit
measures [4], [5], while fewer studies propose model selection
frameworks [3], [6]. However, past studies stop short of assess-
ing these approaches in a systematic manner on many data sets
in order to unambiguously validate their suitability as a model
selection technique. Since users, such as software engineers,
often lack a background in statistics and therefore depend
heavily on automated selection techniques to identify models
capable of accurate predictions. Without robust automated
model selection tools that can be trusted to recommend models
on desired performance metrics, many decision makers will

forgo the opportunity to incorporate software reliability growth
models into the daily practices of their organizations.

Past papers applying goodness-of-fit measures to select soft-
ware reliability growth models include Goel and Okumoto [7]
who compared predicted values with the observed data and
later generalized [8] the approach by comparing different mod-
els on a single dataset. Khoshgoftaar [9] applied the Akaike
Information Criterion (AIC) [10] as a model assessment crite-
ria and subsequently [11] applied to multiple models and sim-
ulated data sets as an alternative method to the log-likelihood
function [12]. Knafl et al. [13] compared models based on
predictive performance measures in which failures predicted
in 100(1-s)% of the remaining time was compared to the
observed data. Lyu and Nikora [14] implemented prequential-
likelihood and AIC in the CASRE (Computer-Aided Software
Reliability Estimation) tool, while Gaudoin et al. [15] evalu-
ated several statistical measures, including the R-squared [16],
[17], Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-
Darling tests. Other commonly employed measures [6] include
bias [18], [19], mean square error (MSE) [20], mean absolute
error (MAE) [17], accuracy of estimation (AE) [17], predictive
ratio risk (PRR) [5], variance [18], [19], root mean square
prediction error (RMSPE) [18], [19], sum of squared error
(SSE) [21], the Theil statistic [22], Bayesian information crite-
rion (BIC) [4], and predictive sum of squared error (PSSE) [4],
[5].

Since different measures may recommend different model,
researchers have also proposed model selection frameworks
in which multiple goodness-of-fit measures are utilized. For
example, Asada et al. [23] presented an algorithm to select
a model based on weights assigned to each measure of the
model. Garg et al. [24] proposed a matrix method with
diagonal elements representing different ratings for models.
Sharma et al. [25] proposed a distance based approach [26]
that compares Euclidean Composite Distance between SRGM.
Wu et al. [27] proposed a weighted model selection approach
based on the prequential log-likelihood value. Similar stud-
ies [28], [29], [30] demonstrated the applicability of weighted
selection approaches. Rana et al. [31] presented a framework
to select a model with best observed and predicted MSE
and Balanced Predictive Relative Error. Ullah [32] compared
several measures to pick the best model among seven OSS
projects, while iteratively applying models. Saidi et al. [33]
presented a survey on model selection studies, considering



data trend, predictive bias, residual defects, and predictive
performance-based. Gupta et al. [34], [35] proposed a multi-
criteria decision making (MCDM) model based on a Weighted
Euclidean Distance Based Approximation. Kumar et al. [36]
developed a method to rank SRGM based on the fuzzy data
envelopment analysis approach. More recently, Yaghoobi et
al. [37] demonstrated two MCDM methods for model selec-
tion. Kumar et al. [38] proposed a hybrid entropy weight-
based MCDM method and Technique for Order Preference
by Similarity to an Ideal Solution approach, while Garg
et al. [39] proposed a hybrid entropy-combinative distance-
Based assessment. Despite these efforts, frameworks require
substantial user expertise, which is not suitable for tool users
who may prefer simpler techniques that recommend a model
for a specific measure with high accuracy. Moreover, past
studies have not considered model selection in the context of
covariate software reliability models.

To support automated model selection, this paper presents
a neural network-based approach to recommend one of mul-
tiple alternative hazard functions by optimizing a measure of
goodness of fit. The approach is demonstrated by minimizing
predictive sum of squares error, but the approach is general
and can be extended to other measures of goodness of fit or
frameworks. To train the neural network, unbiased simulation
techniques were used to generate data sets for three alternative
hazard functions. The network was then trained with a subset
of the full data, but the prediction targets were computed
with the full data, in order to enable model selection with
only a subset of the data. Additional data not used for
training, was generated to test the network. Our results indicate
that the network successfully recommended the best hazard
function over 60% of the time and one of the two best hazard
functions over 95% percent of the time. Since the second most
accurate hazard function may also predict well, we conducted
an analysis of the error experienced when the second most
accurate model is recommended by the network and found
that such misclassification lead to PSSE values of no more than
two times that of the best performing hazard function on 50%
of these occasions. Thus, neural networks are a potentially
viable model selection approach for individuals who lack
statistical knowledge but desire to apply software reliability
growth models in their work.

The remainder of the paper is organized as follows: Sec-
tion II provides an overview of covariate software reliability
models and goodness of fit measures employed, while Sec-
tion III explains how neural networks are applied to perform
model selection. Section IV illustrates the approach through a
series of examples. Section V offers conclusions and directions
for future research.

II. COVARIATE SOFTWARE DETECTION MODEL BASED ON
DISCRETE COX PROPORTIONAL HAZARD MODEL

The discrete Cox proportional hazard NHPP SRGM [3]
correlates m covariates to the number of events in each of
n intervals. In the context of software defect discovery, these

covariates can be (i) distinct activities to discover defects or (ii)
metrics associated with defect discovery such as the number
of test cases executed or code coverage attained. The matrix
xn×m quantifies the amount of effort dedicated to each activity
in each interval or value of associated metrics in each interval.
For example, xi = (xi1, xi2, . . . , xim) denotes the amount of
each activity 1 ≤ j ≤ m performed in interval i.

The mean value function predicts the number of defects
discovered through the nth interval given covariates x

m(x) = ω
n∑

i=1

pi,xi (1)

where ω > 0 represents the number of defects that would be
discovered with infinite testing and

pi,xi
=

(
1− (1− h(i))g(xi;β)

) i−1∏
k=1

(1− h(k))g(xk;β) (2)

is the probability that a defect is discovered in interval i, given
that it was not discovered in the first (i − 1) intervals under
the assumption of independent intervals, h(·) is the baseline
hazard function, and β is the vector of m parameters contained
within the Cox proportional hazards model

g(xi;β) = exp(β1xi1 + β2xi2 + · · ·+ βmxim) (3)

A. Hazard functions

This section presents three examples of discrete hazard
functions that can be incorporated in Equation (2) and were
originally employed in the covariate software reliability model
of Shibata et al. [2]. Five additional hazard functions have been
taken from the survey by Bracquemond and Gaudoin [40] and
implemented in the Covariate Software Failure and Reliability
Assessment Tool (C-SFRAT) [41].

1) Geometric (GM):

h(b) = b (4)

where b ∈ (0, 1) is the probability of detecting a defect.
2) Negative binomial of order two (NB2):

h(i; b) =
ib2

1 + b(i− 1)
(5)

where b ∈ (0, 1) and 2 indicates the order.
3) Discrete Weibull of order two (DW2):

h(i; b) = 1− bi
2−(i−1)2 (6)

where b ∈ (0, 1) and 2 indicates the order.

B. Goodness of Fit Measures

This section summarizes the goodness of fit measure [4],
[5] employed in this study to compare how well alternative
models characterize a data set.



1) Predictive Sum of Squares Error (PSSE): PSSE com-
pares the predictions of a model with data not used to perform
model fitting.

PSSE =
n∑

i=n−k+1

(m̂(i)−N(ti))
2 (7)

where the maximum likelihood estimates of the model param-
eters are determined from the first n−k intervals, m̂(i) is the
number of defects estimated by the fitted model, and N(ti) is
the number of defects discovered by the ith interval.

III. NEURAL NETWORKS

This section explains how unbiased simulated techniques are
used to generate training data and mapped to a neural network
to directly select a hazard function that will accurately predict
the number of future defects discovered.

There are very few covariate data sets [2], [42] in the pub-
lished literature. Therefore, we employ simulation techniques
to generate training and testing data. To ensure randomness,
a candidate hazard function is selected uniformly at random
from Equations (4)-(6). Next, model parameters for the num-
ber of defects to be discovered (ω), covariate defect detection
coefficients (β), and hazard function parameters such as b as
well as the test activity matrix xn×m are randomly generated
and the nonhomogeneous Poisson process for the number
of defects detected in each of n intervals (y) simulated.
Specifically, the random model parameters and test activity
data are substituted into Equations (2) and (3) respectively
and a Poisson random variable with mean ω× pi,xi simulated
for each interval i to obtain the number of defects detected in
each interval. Thus, unbiased statistical simulation techniques,
enable the generation of an arbitrary number of data sets
for covariate defect detection models possessing the hazard
functions described in Section II-A. For this approach to be
valid, it is necessary to assume that the variety of the covariate
models possessing these hazard functions characterize real-
world data sufficiently. Empirical analysis [43] suggests that
this is indeed the case, since the mean value function and
failure intensity function of covariate models tends to fit and
predict defect discovery data more accurately than traditional
NHPP models without covariates.

For each data set generated and each hazard function the
code underlying the C-SFRAT (Covariate Software Failure and
Reliability Assessment Tool) [43] was applied with 90% of
the test activity matrix xn×m and y to estimate the model
parameters. The remaining 10% of the data not used to fit
the model was then used to compute the PSSE defined in
Equation (7).

The neural network is composed of an input layer, a hidden
layer, and an output layer. In the training stage, the inputs
to the neural network are the test activity data x for each
interval i. Thus, the input layer is composed of (n×m+ 1)
neurons, one for each test activity data and number of defects
discovered per interval. This includes the 10% of test activity
data not used to fit the model but not the number of defects

detected, which implies that the test plan for the remainder of
the test process is known.

The output layer possesses one neuron for each hazard
function and the target values of the neurons in the output
layer are set to the PSSE values computed with the model fit to
90% of the data, as described above. In other words, the input
layer provides test activities allocated so far as well as those
planned, but the PSSE values to be predicted by the neural
network in the output layer lack information on the number
of defects discovered in the last 10% of the test intervals. By
minimizing the error between the PSSE and the predictions in
the output layer, the neural network can predict which hazard
function will exhibit the lowest PSSE. Thus, the output layer
directly predicts the PSSE of each hazard function, enabling
model selection without needing to directly rely on traditional
statistical measures of goodness of fit that do not necessary
recommend the model that predicts most accurately.

The activation of the jth neuron in the hidden layer ℓ is

a
(ℓ)
j =

|ℓ−1|∑
i=1

w
(ℓ)
ji ξ

(ℓ−1)
i + b

(ℓ)
j (8)

where |ℓ− 1| is the number of neurons in the previous layer,
w

(ℓ)
ji the weight connecting the ith neuron in layer ℓ−1 to the

jth neuron in layer |ℓ|, ξ(ℓ−1)
i is the input from the ith neuron

in layer ℓ − 1, and b
(ℓ)
j is of the bias of the jth neuron in

layer ℓ. The output the jth neuron is computed with a ReLU
(Rectified Linear Unit), possessing the form

zj := max(0, aj) (9)

In the testing stage, additional data sets are randomly
generated and the test activities (x) input to the neural network.
The ranking of the hazard functions produced by the neural
network are then compared to the traditional procedure of
fitting 90% of the data to the model with each hazard function,
computing PSSE. Under ideal circumstances, the model that
best minimizes PSSE will be ranked most highly.

IV. ILLUSTRATIONS

This section assesses the neural network approach to select
a hazard function that minimizes the predictive sum of squares
error. The examples construct a CDF of the probability that
the network selects the first, second, or third best hazard
function, interprets the corresponding confusion matrix, and
subsequently examines the consequences of using the second
best hazard function for making predictions.

To demonstrate the neural network approach to select a
hazard function for the covariate software defect detection
model that accurately predicts PSSE, ϕ = 1000 training
data sets were generated from one of three hazard functions,
including the GM, DW2, and NB2, thus requiring three output
layer neurons. To promote robustness, the hazard function
for each data set was selected uniformly at random. Prior to
simulation a unique value of the b parameter was selected



from the ranges b = (0.025, 0.25) for GM, b = (0.025, 0.2)
for NB, and b = (0.95, 0.99) for DW2. These ranges were
selected to avoid large deviations in the simulated data sets that
would have made all models a poor fit to the data. Similar the
range ω = (25, 125) was used for the number of defects and
β = (0.01, 0.05) for the covariate test effectiveness parameter.

Each simulation produced data for n = 25 intervals. There-
fore, the number of neurons in the input layer was 50 (25 for
the covariate (amount of test activity) and 25 for the number
of defects detected). Although holding the number of intervals
constant is necessary to ensure the data was compatible with
the neural network, it is possible to normalize data sets with
more or less intervals to preserve applicability. One hidden
layer was included, containing 100 neurons and the network
was fully connected, meaning that the output of each neuron
in the input layer served as an input to each neuron in the
hidden layer. The output of each neuron in the hidden layer
serves as input to the three neuron in the output layer.

Figure 1 shows a histogram of the rankings produced by
the neural network as well as the corresponding CDF.

Fig. 1: Histogram and CDF of hazard function lowest PSSE
rankings

Figure 1 indicates that the neural network successfully recom-
mended the hazard function with the lowest PSSE over 60%
of the time and that it recommended the first or second best
hazard function over 95% of the time.

To more closely examine the behavior of the network, Table
I shows the confusion matrix, where rows indicate the model
that achieved the best PSSE and columns correspond to the
hazard function that was recommended by the network.

TABLE I: Lowest PSSE confusion matrix

GM NB2 DW2
GM 329 95 142
NB2 23 18 15
DW2 116 0 262

Elements on the diagonal correspond to correct classifications,
whereas off-diagonal elements indicate instances where the
neural network did not successfully select the correct hazard

function to minimize PSSE. Even though a third of the
ϕ = 1000 data sets use to test the network were simulated from
each hazard function, DW2 rarely performed best, indicating
that it may be less flexible. There were also several instances
(11.6%) where the GM was recommended even though DW2
minimized PSSE and the DW2 selected even though GM
performed best (14.2%). In these cases, it is possible that the
variations in simulation made the simpler GM fit less well.
Hence, it is possible that the more flexible DW2 would predict
more accurately. Similarly, simulation of the DW may have
produced trends that were sufficiently well characterized by
simpler the GM hazard function.

To further elucidate the relatively large number of classifica-
tions on the off diagonal and assess if outputs recommending
a second best model produced substantially poorer predictive
performance, we computed the distribution of the ratio of
errors by dividing the PSSE of the second best model by
the PSSE of the preferred model for all instances when the
second best hazard function was recommended. This analysis
includes all instances in the middle column of Figure 1 and
may be anywhere on the off-diagonal of TableI. The results
of this analysis indicated that over half of the time the neural
network recommended the second best hazard function the
ration of the PSSE between the second and first best hazard
functions was less than 2.0. In cases where the PSSE of the
best hazard function is low, the PSSE of the second best
hazard function will also be low, indicating that use of the
second best hazard function may not significantly impact the
model’s predictive ability. Thus, use of a neural network to
automatically select a model may be a viable alternative to
other model selection techniques that do not guarantee the
chosen model will produce accurate predictions.

V. CONCLUSIONS AND FUTURE RESEARCH

This paper presented a neural network based approach to
select a hazard function for a covariate model. The approach
was demonstrated on the predictive sum of squares error
measure, but the approach is general and can be applied to
other measures as well as combinations of measures. Unbiased
simulation techniques were used to generate training data and
additional data sets simulated to test the network. Our results
indicated that the network recommended the best performing
hazard function over 60% of the time and the first or second
best hazard function over 95%. Moreover, in cases where the
second best model was recommended by the network, the
PSSE did not increase by more than a factor of 2.0 in 60%
of these cases.

Future research will consider other more advanced forms
of neural networks to improve the accuracy of the proposed
hazard function selection technique.
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