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Abstract—Traditional software reliability growth models
(SRGM) assess defect discovery as a function of testing time or ef-
fort to quantify failure intensity based on the Non-Homogeneous
Poisson Process (NHPP). More recently, covariate NHPP models
have substantially improved defect prediction by characterizing
software defect discovery in terms of underlying testing activities.
Traditional NHPP models are based on parametric forms with
specific distributional assumptions, which often fail to capture
all details present on defect data. Therefore, this paper assesses
the effectiveness of neural networks to predict software defects
including covariates to encode factors driving defect discovery
explicitly. Two neural networks are considered, including re-
current neural networks (RNNs) and long short-term memory
(LSTM), which are then compared with the traditional covariate
models to validate predictive capability. Our results suggest that
LSTM achieves better overall goodness-of-fit measures, such
as approximately 6 and 9 times smaller mean square errors
and mean absolute percentage error, respectively, compared to
traditional models when 75% of the data is used for training.
These results suggest that neural networks are able to track and
predict defect trends more accurately than traditional methods.

Index Terms—Software reliability, non-homogeneous Poisson
process, covariate models, defect discovery, neural networks

I. INTRODUCTION

Non-homogeneous Poisson Process (NHPP) [1] software
reliability growth models (SRGM)[2] are the most common
class of models applied to track and predict software defect
trends as a function of testing time or effort to quantify
reliability. Covariate models [3] have been proposed in order to
enhance software defect prediction by considering the relation-
ship between defects and various testing activities. Machine
learning algorithms have also been successfully applied to
predict software defect discovery [4]. Given the effectiveness
of machine learning on a wide array of prediction problem:s, it
is therefore worthwhile to study the performance of machine
learning in the context of covariate software reliability growth
models.

For decades, researchers have applied the NHPP to model
defect discovery during software testing [5], [6]. Covariate
models were implemented to improve defect detection by
explicitly considering software testing activities that lead to
defect discovery. In this regard, Shibata et al. [7] presented
NHPP metrics-based software reliability models to capture the
effects of various metrics on software reliability and predict
reliability growth. Okamura et al. [8] proposed a software

reliability model based on Logistic regression, where the
model captures the effects of multiple factors such as testing
effort, system complexity, and personnel experience on the
software reliability growth process. More recently, Nagaraju et
al. [9] presented an optimal test activity allocation approach to
maximize software defect discovery. Besides traditional NHPP
models, machine learning [10] methods have also been ex-
plored for software discovery due to their ability to memorize
trends. For example, Khoshgoftaar and Szabo [4] investigated
the function of principal-components analysis to reduce the
dimensional of multivariate data applied to neural networks to
predict the number of faults of software products. Hochman
et al. [11] applied Evolutionary Neural Networks (ENNs) to
improve software reliability. Guo et al. [12] considered a
random forest algorithm to predict software faults. Gupta et
al. [13] introduced back-propagation for estimating software
reliability. Li et al. [14] presented a Convolutional Neural
Network approach to predict software defects. Rathore et
al. [15] evaluated different techniques for predicting the num-
ber of failures including Artificial Neural Networks, Decision
Trees, Naive Bayes, and Support Vector Machines. However,
machine learning methods considering covariates have never
been explored for software defect detection.

To encourage the widespread adoption of covariates to
software defect detection, this paper assesses the applicability
of two neural network methods to predict software defects,
including recurrent neural networks (RNNs) and long-short
term memory (LSTM). Illustrations are performed to validate
these model predictions in comparison with traditional NHPP
SRGM, based on goodness-of-fit measures such as mean
squared error, and mean absolute percentage error. Our results
suggest that LSTMs are capable of predicting software defects
with high precision, achieving at least 6 times lower mean
square error when compared with NHPP SRGM.

The remainder of the paper is organized as follows: Sec-
tion II reviews models considered in this paper, including
NHPP SRGM and neural networks. Section III highlights
several measures to assess the goodness-of-fit of models.
Section IV indicates numerical examples to compare existing
and proposed methods. Section V offers conclusions and
directions for future research.



II. REVIEW OF MODELS

This section reviews the traditional covariate NHPP SRGM
based on the discrete Cox proportional hazard model, and
the two neural network approaches considered in this paper,
including RNN and LSTM.

A. Covariate Software Reliability Growth Model

The discrete Cox proportional hazards NHPP SRGM [9]
correlates m covariates to the number of defects discovered in
each of n intervals. The matrix X,, ., quantifies the amount
of effort dedicated to each of the m activities in n intervals.
For example, X; = (21, %2, -, %im) denotes the amount
of each testing activity (1 < j < m) performed in the i"
interval.

The mean value function (MVF) predicts the number of
defects discovered up to and including the n*” interval given
covariates X according to

m(X) = wZPi,Xi (1)
i=1

where w > 0 denotes the number of defects that would be
discovered with infinite testing and
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is the probability that a defect is discovered in the i*" interval,
given that it was not discovered in the first (¢ — 1) intervals,
(3 is the vector of m parameters contained within the Cox
proportional hazards model

9(X;; B) = exp(B1xi1 + Pozio + -+ - + BmTim)  (3)

and h(-) is the baseline hazard function that can characterize
a variety of real phenomena possessing different shapes.
Providing a wider variety of hazard functions increases
model functionality, since some hazard functions can char-
acterize certain defect detection processes better than others.
Therefore, the Covariate Software Failure and Reliability
Assessment Tool (C-SFRAT) [16] implements the covariate
models and eight alternative hazard functions. Model results
and predictions obtained from the tool suggest that three
hazard functions performed well for the data set considered
in this paper, including:
o Geometric (GM)
h(b) =0 G))
where b € (0,1) is the probability of detecting a defect.
o Negative binomial of order two (NB2)
) ib?
hi;b) = 1+0(—1) ®)
where b € (0, 1) and 2 indicates the order.
e S distribution (S)

h(isr,p) =r(1—p') (6)

where 7 € (0, 1) is the probability of defect removal and
p € (0,1) is the probability of a defect eluding detection
in the first interval.

To estimate the parameters of the Covariate Software Defect
Detection model, the log-likelihood function [9] is
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where X represents a vector of covariates, k is the number of
defects discovered in each interval, ~ is the vector of model
parameters contained in the hazard function, and y; is the
number of defects discovered in the i*" interval. Substituting
one of the hazard functions specified in Equations (4), (5),
and (6), into Equation (2) produces unique log-likelihood
functions. Thus, given covariate data X and the vector of
defects discovered in each of the n intervals (y,), the model
fitting step identifies the numerical values of the total number
of defects to be discovered (w), vector of m covariate coeffi-
cients (3), and hazard function parameters (). The maximum
likelihood estimates of the model parameters can be obtained

by solving 2EL = 0, %L—ﬂL =0, % =0.

LL(X,k;v,B,w) =

B. Neural Network

A neural network [17] is a type of machine learning model
composed of interconnected artificial neurons that process
and transmit information through weighted connections. A
neural network consists of three primary elements: (i) the
input layer, which embeds input variables; (ii) the hidden layer,
which transforms the input features into processed features by
applying non-linear functions, allowing the network to make
more informed decisions about the data it is processing; and
(iii) the output layer, which summarizes the processed data
to produce the network’s prediction. Neural network models
can be considered for a range of tasks such as predicting the
number of software defects.

Neural networks consist of three phases: training, validation,
and testing. Training refers to the process of adjusting the
network’s weights and biases based on a portion of the data.
Validation evaluates the performance of a neural network
on another unseen portion of the data to refine the model
parameters. Testing is the last stage, where the trained and
validated neural network model is evaluated on the last portion
of data not used in the previous steps.

1) Recurrent neural network (RNN) [18]: a type of artificial
neural network that allows information from prior inputs,
known as lookback period, to influence the subsequent input
of the same node, and consequently the output of the neural
network. An example of a simple recurrent neural network is
shown in Fig. 1.

In a single hidden layer of the recurrent neural network, the
hidden layer incorporates X; with h;_; as the input vector
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Fig. 1: A simple recurrent neural network

and the output of the hidden layer from the last time step as
the weighted sum:

he =o(Wh - X¢ + Wh - hy—1 + bp) @®)

in which o is the activation function, h; the output of the
hidden layer ¢, W}, the weights matrix, and b, the bias. The
terminal output of the network at each time step ¢ is calculated
as:

ye =Wy - he +0, ©)

whereas W, indicates the weight and b, the bias of the output
layer. This equation contains the result of the output layer
assuming a linear activation function.

2) Long-short Term Memory (LSTM) [19]: is a more ad-
vanced type of recurrent neural network architecture, which
possesses both short and long term memories. While the RNN
has difficulty to deal with long-term dependencies, the LSTM
framework is able to store data in memory for extended periods
of time and coordinate better the flow of information through
the network. Three gated units in LSTM are used in the
repeating modules to remember information for long periods
of time, including an input gate, output gate, and forget gate.

Fig. 2 illustrates an LSTM framework, including the three
gates present in the LSTM architecture.
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Fig. 2: Repeating modules of LSTM

The weight and bias gradients can be subsequently com-
puted based on the LSTM structure.
o Input Gate: decides what new information to add to the
memory cell by

it = O'(Wz . [ht—lazt] + bz) (10)

where 4, is the input gate, o the activation function, W;
the weight matrix, [h:—1, ] is the concatenation of the
previous hidden state and the current input, and b; the
bias term.

o Forget Gate: decides what information from the previous
memory cell state will be discarded as

fe=0Wy - [hi—1,2¢] + by)

where f; is the forget gate.
o Output Gate: decides what information from the memory
cell to output as the hidden state by

or = o(Wo - [he—1, 2] + bo)

(1)

(12)

where oy is the output.

The memory cell state ¢; also shown in Fig 2 is updated
according to

Cy = ft s Ct—1 + it . tanh(Wc . [ht,l,xt] + bc) (13)

where ¢; is the memory cell state and tanh is the hyperbolic
tangent activation function. The hidden state h; is then com-
puted as

ht = oy - tanh(cy) (14)

where h; indicates the hidden state and corresponds to the
number of failures in that specific interval. In each step of the
LSTM network, the gates determine what information to store
or discard in the memory cell and the hidden state, and the
memory cell state is updated based on this information.

III. GOODNESS-OF-FIT MEASURES

This section summarizes goodness-of fit-measures [20] to
assess how well the models described in this paper fit a set of
data. In practice, there is no single model that performs best
with respect to all measures. Hence, goodness-of-fit measures
provide quantitative analysis to compare different models,
where models with lower error are preferred.

Mean Squared Error (MSE) measures the average squared
difference between predicted and actual values computed as

MSE =1 Y 2
- n Z(f (xl) yz)

i=1

5)

where n indicates the number of intervals, f(x;) and y; are the
predicted and actual number of the failures in the i** interval
respectively.

Predictive Mean Squared Error (PMSE) computes the sum
of squares of the prediction residuals for the remaining n — &
observations not used for model fitting as

! Z (f(@i) — yi)2

PMSE = ——
n—k
i=k+1

(16)



where k indicates the number of intervals used during training.

Mean Absolute Percentage Error (MAPE) calculates the

error as a percentage of how the predicted value deviates from
the actual value as

1 n

MAPE = — ;

Yi

x 100 a7

Predictive Ratio Risk (PRR) penalizes the difference be-
tween the predicted and actual number of defects as

PRR = Z (W>2

i=k+1

(18)

where underestimation is penalized more than overestimation.
Predictive Power (PP) measures the distance between the
estimated and actual number of defects as

$ (5

i=k+1

PP = 19)

where the term in the denominator penalizes overestimation.

IV. ILLUSTRATIONS

To illustrate the applicability of neural networks to covari-
ate software defect discovery, a new data set was generated
based on the DS1 data from Shibata et al. [21], with the goal of
increasing the number of observations. The steps to generate
data for training are:

e (S.1) Step 1 applied the covariate NHPP model described
in Section II-A to fit the DS1 data, which contains 17
intervals and 3 covariates. By using the C-SFRAT tool
to test eight different hazard functions, results suggested
that this data set was best characterized by the model with
geometric hazard function. The parameters estimated by
maximum likelihood estimation for the geometric data
LEq. (7)) were 31 = 0.038, 82 = 0.174, B3 = 0.203, and
b= 0.018.

e (S.2) Step 2 generated 249 intervals of three hypotheti-
cal covariates as random variables following a uniform
distribution with the same range of each actual covariate
present in the DS1 data.

o (S.3) Step 3 generated 249 intervals of a Poisson distri-
bution random variable using a mean described by the
mean value function (Eq. (1)), where w = 5000 was
chosen, assuming that a higher number of failures should
be found in a long period of time, 3 vector assumes the
estimators found in (S.1), and x; the covariates generated
in (S.2). These Poisson distributed random variable values
are treated as the number of defects discovered in each
interval.

The proposed models are illustrated using the data set gener-
ated with the steps above. For each neural network model, the
number of hidden layers considered varied from 1 to 3, and the
number of neurons in each hidden layer varied between 30 and
60. The models were trained with the ReLU activation function
and a maximum of 200 epochs, where a dropout condition of

0.2 was assumed to avoid the overfitting problem. Different
values of the learning rate were also considered, including
0.05, 0.01, and 0.001. The data set was split into three parts,
Train-Validation-Test. A 75 — 5 — 20% split was considered,
since 75% is typically assumed for training in the machine
learning community, and 5% was used for validation due to
the need to have a small validation set to tune the model’s
hyperparameters and prevent overfitting during training. The
hyper-parameters that achieved a good model fit are shown in
Table L.

TABLE I: Models hyperparameters

Hidden Layer Neurons Learning rate
RNN 2 55 — 35 0.001
LSTM 3 55 — 45 — 30 0.001

To assess how well neural network models predict software
defects, these models are compared to the traditional NHPP
models. Since the validation step is used to refine the training
of neural networks, 80% of the data was considered training
covariate models. Hence, to conduct an objective comparison,
the remaining 20% of the data set was used to compare
models based on machine learning and maximum likelihood
estimation.

As noted in Section II-A, the C-SFRAT suggested that the
geometric (GM), second order negative binomial (NB2), and
S distribution (S) hazard functions performed best in the data
generated. Table II compares the goodness of fit achieved by
these model variants and the proposed neural network models.

TABLE II: Goodness of fit measures for model comparison

MSE | PMSE | MAPE PRR PP
GM 10411.0 904.7 5.6 | 0.00193 | 0.00178
S 10921.8 678.0 6.9 | 0.00142 | 0.00141
NB2 19617.0 | 1420.2 5.6 | 0.00291 | 0.00294
RNN 4081.4 | 3066.4 1.2 | 0.00601 | 0.00612
LSTM | 1621.2 | 367.5 0.7 | 0.0007 | 0.0007

Table II indicates that the S model performed best among
all three hazard functions considered. However, the LSTM
model achieved a better fit, decreasing MSE by a factor of
(L92L8) = 6.73, as well as achieving similar improvements
in PMSE (3.86), MAPE (9.85), PRR (2.02), and PP (2.02).

For a graphical illustration, the model fits achieved by the
S model and LSTM are compared in Fig. 3, and Fig. 4 is a
close up view of last 20% of the data used for predictions.
In Figure 3, it is important to notice that the first 10 intervals
are not shown for the LSTM model fit since a 10—lookback
period is needed for the model predictions. In general, these
models demonstrate the superior forecasting capabilities of
neural networks compared to traditional models. Fig. 4 suggest
the potential for the LSTM to capture small details in the
defect discovery trend.

V. CONCLUSION

This study explored the applicability of neural network
models, including recurrent neural network and long-short
term memory, to covariate software defect prediction. Both
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neural network models considered were compared with the
traditional covariate NHPP models possessing different hazard
functions. Our results show that LSTM outperformed the
traditional models in all goodness of fit measures considered,
especially the mean square error and the mean absolute
percentage error, where the measures achieved 6.73 and 9.85
times smaller values than the traditional models. This fact can
be explained due to the LSTM’s ability to store information
in memory for extended periods, making them suitable for
forecasting sequential software defect data.

Future studies will examine the effectiveness of feature
selection methods to evaluate the stability of RNN and its
variations on more complex data sets including more covari-
ates.
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