Application of Recurrent Neural Network to
Software Reliability and Defect Prediction

Shadow Pritchard!, Timothy Flavin?, Vidhyashree Nagaraju®, and Lance Fiondella*
1Department of Computer Science, Stonehill College, MA, USA
2Tandy School of Computer Science, University of Tulsa, OK, USA
3Bastion Technologies, TX, USA
“4Electrical and Computer Engineering, University of Massachusetts Dartmouth, MA, USA
Email: vidhyashreenagaraju@gmail.com, lfiondella@umassd.edu

Abstract—Non-homogeneous Poisson process software reliabil-
ity growth models assume the defect detection process can be
characterized by curves based on parametric forms. However,
such parametric forms may not capture all changes or details
present in the data, which could limit a model’s ability to predict
defects accurately beyond a certain level of precision. Therefore,
this paper assesses the application of simple neural network
methods including artificial and recurrent neural networks to
predict defects based on data collected during software testing.
Two variations of recurrent networks, long short-term memory
and gated recurrent unit, are considered and compared with
traditional growth models to assess the predictive capability. Re-
sults suggests that RNN and its variations achieve approximately
1.6—37 and 1.8—68 times better overall goodness-of-fit measures
compared to ANN and traditional NHPP models when 80% and
90% of the data is used for model fitting.

Index Terms—Software reliability, recurrent neural net-
work, software failure, software reliability growth models, non-
homogeneous Poisson process, machine learning

I. INTRODUCTION

Non-homogeneous Poisson process (NHPP) [1] software
reliability growth models (SRGM) [2] are a common method-
ology that enables quantitative assessment of software systems
by characterizing defect data collected during testing. Tradi-
tional NHPP models are developed based on the assumption
that the defect detection process can be accurately character-
ized by a continuous smooth curve. This assumption restricts
the model’s ability to characterize and predict changes in the
failure rate, thus reducing the accuracy of defect prediction.
Changepoint models [3] were developed to characterize the
changes in the data. However, such models are limited to
characterization of the number of changepoints incorporated
in the parametric form. Therefore, the mean value function
of traditional NHPP SRGM can only exhibit curves based
on parametric forms and therefore cannot predict defects
accurately beyond a certain level of precision.

Previous studies have proposed several models and methods
to improve the predictive accuracy of NHPP models. Dohi
et al. developed new models such as the mixed-type [4],
[5], Markov modulated process [6], Hyper-Erlang [7], logistic
regression [8], Poisson regression [9], Cumulative Binomial
Trial Process [10] as well as additive [11] and covariate [12]
models. Other studies focused on development of software
reliability models with changepoints to characterize changes

and stages in a software testing process. Single changepoint
models have been developed for hazard rate [3], [13] and
failure count data [14], [15]. The majority of studies present
changepoint models for various classes of parametric models
such as discrete [16], imperfect debugging [17], fault correc-
tion [18], environmental factors [19], [20], test effort [21], and
execution time [22] models.

Successive generations of software reliability models pos-
sess an increased number of parameters, which requires
stable and efficient algorithms for model fitting. Statistical
algorithms include the expectation-maximization (EM) [23],
expectation conditional maximization (ECM) [24], and hybrid
algorithms [25], which combine the EM and ECM algorithms
with the Newton-Raphson [26] method. Several studies have
also explored application of soft computing techniques [27],
including the genetic algorithm [28] and particle swarm opti-
mization (PSO) [29], [30]. More recent studies utilize machine
learning algorithms [31], [32], specifically variations of neural
networks. Promising results based on the artificial neural
network (ANN) led to further studies, including evolutionary
neural network [33] and ANN with changepoints [34]. Most
recently, focus has shifted towards recurrent neural networks
(RNN) [35], [36] for software failure prediction [37] along
with several variations, including the combined recurrent
ANN model [38] for fault detection and correction, dynamic
weighted model [39], and Bayesian regularization [40].

This paper presents an application of simple ANN and RNN
to characterize and predict software defects. Two variations of
the RNN model are explored, including long-short term mem-
ory (LSTM) [41] and gated recurrent unit (GRU) [42]. Tradi-
tional NHPP models, including the Goel-Okumoto (GO) [43]
and Weibull [44] models are considered in order to compare
the predictive accuracy of the neural network models. All
models considered are applied in the context of historical
software failure data [45]. Results suggests that RNN and
its variations exhibit approximately 1.6 — 37 and 1.8 — 68
times better overall goodness-of-fit measures than ANN and
traditional NHPP models when 80% and 90% of the CSR1
data is used for model fitting. Specifically, RNN exhibit
1.6—15 and 1.8—21 times better information theoretic measure
and 1.7—36 and 2.5 — 68 times better predictive measure with
80% and 90% of data used for model fitting.

The remainder of the paper is organized as follows: Sec-
tion II reviews models considered in this paper including
NHPP SRGM and neural networks. Section III lists several
measures to assess the goodness-of-fit of models. Section IV
presents numerical examples to compare existing and proposed
approaches. Section V offers conclusions and directions for
future research.

II. REVIEW OF MODELS

This section provides an overview of software reliability
growth models and presents the Goel-Okumoto (GO) [43] and
Weibull [44] model. A review of neural network methods,
including artificial neural networks (ANN) [46] and recurrent
neural networks (RNN) [35] is also provided.

A. Non-homogeneous Poisson Process Software Reliability
Growth Model

In the context of software reliability, the non-homogeneous
Poisson process is a stochastic process that counts the number
of defects discovered as a function of testing time ¢. The
expected value of a NHPP is characterized by a mean value
function, m(t), which can be written as

m(t) = a x F(t) (1)

where a denotes the number of defects that would be dis-
covered if software was tested indefinitely and F'(¢) is the
cumulative distribution function.

1) Goel-Okumoto (GO) SRGM: The MVF of the GO [43]
model is

m(t) =a(l—e"))

where parameter b is interpreted as the defect detection rate.
2) Weibull SRGM: The MVF of the Weibull [44] model is

m(t) =a (1 - e_btc> 3)

where b and c are the scale and shape parameters respectively.
Setting ¢ = 1.0 simplifies to the GO model of Equation (2).

Parameters of the GO and Weibull models are estimated
using maximum likelihood estimation (MLE) [47]. Specific
solution techniques include the expectation conditional max-
imization (ECM) [25] algorithm, which utilizes CM steps
to iteratively update the parameters until convergence such
that the numerical values of the parameters maximizes the
likelihood function.

B. Neural Networks

An artificial neural network (ANN) [46], [36] is a machine
learning approach composed of three components: (i) nodes,
(i) a learning algorithm, and (iii) size, shape, and network
connections. Nodes, also referred to as neurons, take input
values and process them using an activation function and
weights to output a new value. Two categories of neural
network are discussed, including the ANN and three variations
of the RNN.

1) Artificial Neural Network (ANN): An artificial neural
network consists of nodes and layers that process information
and pass it on to the next layer or set of nodes. Each neuron
in the network sums results from the previous layer and inputs
it into the activation function

filX)=a; (Wi;- X +b) 4)

where a;(-) is the activation function, W; ; is the weight for
input from the jth node in the ith layer, X is the vector of
inputs, and b; is the bias of the ith layer. Figure 1 illustrates
a single neuron with pre-activation and activation.

finput =b+ Z WiXj

X3
. 2

Pre-activation

a(finput)

Activation

Xn ‘Wn

Fig. 1: Example of a neuron in neural network

The result of the activation function is then passed to all the
nodes in the succeeding layer.

Figure 2 shows the network considered in this paper, which
is made up of an input layer with a single input, a hidden layer
with the n nodes, and an output layer with one output value.
This model serves as a baseline and facilitates comparison
with other models considered in this paper.

Hidden

Fig. 2: Example of a simple artificial neural network

The activation in the input and output layers are linear while
the hidden layer uses the ELU activation function

ELU@):{I ©>0 ®)
a (e"—1) <0
where a > 0 is a positive constant.

The weights of the network are updated iteratively by
training on data and using gradient descent like methods. In
this paper, Adam[48], a modification of gradient descent, is
used to update the weights of the network.

2) Recurrent Neural Network (RNN): The recurrent neural
network [35], [36] (RNN) model uses both the input value and
the prediction of the previous time step to make predictions.
In contrast to the ANN, which takes one input, processes it,
and produces an output, the RNN uses a weighted sum of the
input and the previous result of the hidden layer as the input
to the activation function.

Figure 5 shows an example of a simple recurrent neural
network.

X " a; " Vi

Fig. 3: An example of a simple recurrent neural network

where z; is the i*" input, a; is the network at the ' time

instance, and y; is the output of the network. The loop pointing
back to the network is the recurrent portion of the network.
In a single hidden layer recurrent network, the hidden layer
combines the input vector with the output of the hidden layer
from the previous time step as the weighted sum

he = ELU (Wy - Xy + Wi, - hu—1 + bp) (6)

where h; is the output of the hidden layer t, ELU is the
activation function, W, and W}, are the weights for the input
and the previous result, X; is the vector of inputs, h;_; is the
output from the previous layer, and by, is the bias.

The final output of the network at each time step is

where W, is the weight and b,, is the bias of the output layer.
The simple equation is the result of the output layer possessing
a linear activation function.

Long Short-Term Memory (LSTM): Long Short Term Mem-
ory (LSTM) networks [41] are a modification of RNN. While
RNN accept input and previous state values, the LSTM also
takes in a “cell” value, c. The previous cell value, c;—1,
previous network output, h;_;, and current input, X;, are
processed using three gates to decide what information is
remembered and what is forgotten.

Figure 4 shows an example of a LSTM cell.

Crs ® o) G
F_Gat% I_Ga/te(£ l
I ELU(x)
Sx) || &) | |z 0_Gate —
ht—]] I S(X) i_ bt
Xt

Fig. 4: Example LSTM cell

In Figure 4, X denotes vector multiplication and € denotes
element wise addition. Going from left to right the paths from
bottom to the top are the forget gate (F'_Gate), input gate
(I_Gate), which is made up of two activation functions, and
the path at the end going from top to the bottom is the output
gate (O_Gate). The forget gate is used to determine what
information from previous states should be remembered. The
input gate is used to update the cell state. The output gate
calculates the prediction of the network and the hidden state.

In addition to the ELU activation function in Equation (5),
the LSTM model uses a sigmoid activation function

1

Cl4e® ®

In Figure 4, the forget gate takes the weighted sum of the
input (W, - X;) and the previous network’s output (Wp, - hs_1)
and processes the result using a sigmoid activation function
(S). The output of the activation function is then multiplied
by the input cell value (c;—;). Thus the forget gate is

fi=cio1 x S(Wy - X +Wp - hy—1 +0) 9

S(x)

The input gate is made up of two activation functions
with the output of the two multiplied together. The first
activation function takes the weighted sum of the input and
the previous network’s output and processes the result using
sigmoid activation. The second activation is an ELU activation
that takes in the weighted sum of the input and the previous
network’s output. Thus, the result of the input gate is

it = S(Wx 'Xt +Wh . ht—l —|—b)><ELU (Wx 'Xt +Wh . ht—l —|—b)

(10
The result of the input gate is then summed with the results
of the forget gate to obtain the new cell value

= fr+i (11

The final gate in the LSTM is the output gate. This gate also
uses two activations. The first is a sigmoid activation that takes
in the weighted sum of the input and the previous network’s
output and the second is an ELU activation that takes in the
newly updated cell value c;. The results of each activation are
multiplied together to get the final output of the current state.

S(Wy Xy + Wi -hy1 +b) x ELU (W, x ¢, +b) (12)

c; and h; are the final outputs of the network with ¢; as the
cell state that is used in the next time step and h; is the hidden
state and the prediction of the network.

Gated Recurrent Unit (GRU): Gated recurrent unit (GRU)
[42] is a recurrent unit similar to the LSTM. The GRU is a
simpler architecture which operates using three components,
the ugdate gate, z, the reset gate, r, and a candidate hidden
state h. At a given time step, ¢, the inputs to the GRU are the
hidden layer activation’s from the previous time step, h;_1
and the input from this time step, X. The output is the hidden
layer activation at this time step, h;. Unlike the LSTM, the
GRU lacks the c¢; parameter.

-

— X

:

Fig. 5: An illustration taken from [42]

In the network flow illustration above, h represents both
the previous activation h;_; and the current activation being
calculated h;. Two loops can be seen, one on the left from h at
time t—1 through z and back to & at time ¢, and another from h
at time ¢ — 1 through r to contribute to & before returning back
to h at time ¢ through z. The update (z) and reset (r) gates
are both vectors with the same dimensions as h and h filled
with values between 0 and 1 due to the Sigmoid activation
function, S. They can be calculated using equations (14, 13).

ry = S (WTX + Urht—l) (13)

zp =S (WX +Uzhy—1) (14)

In the equations above, W denotes a learned weight matrix
being applied to the input, X, and U denotes another learned
matrix being applied to the previous hidden state.

The reset gate at time ¢, r, is used to determine how much
of the previous hidden layer’s information will be used in the
candidate hidden layer h;. The candidate hidden layer can be
calculated using equation (15).

hy = tanh (WX + U(ry © hy_1)) (15)

In the equation above, ® refers to the element-wise,
Hadamard, product between two vectors or matrices so that
r; will decide how much influence each activation in h;_1
has on calculating hy.

The update gate at time ¢, z;, will then be used to determine
how much the hidden state, h;, should be updated from h;_1

using the candidate state ﬂt. The calculation of h; can be seen
in equation (16).

hy :ZtGht—1+(1_Zt)®iLt (16)

In the above equation, it can be seen that gach activation in
h; will be some combination of h;_; and h; that is decided
on an element-wise basis by z;.

III. GOODNESS-OF-FIT MEASURES

This section summarizes goodness of fit measures [49]
for model comparison based on information theoretic and
predictive accuracy.

A. Mean Squared Error (MSE)

Mean squared error is defined as

n

MSE = %Z(f(l“i) —vi)®

i=1

a7

where n is the number of input values, f(x;) is the predicted
value and y; is the actual value.

B. Mean Absolute Percentage Error (MAPE)

Mean absolute percentage error calculates the error as a
percentage of how the predicted value deviates from the actual
value

Yi

1 n
MAPE = — X
- Z x 100
i=1
C. Predictive Mean Squared Error (PMSE)

Predictive mean squared error computes average error be-
tween prediction of the model with data not used to perform
model fitting.

(18)

1 5
PMSE:le (f(zi) —vi) (19)
i=k+1
where k is the subset of data used for model fitting.
D. Predictive Ratio Risk (PRR)
The predictive ratio risk of a model is
- f(@i) —yi > ?
rrr=3" (20)
Z f(zi)

i=k+1

where the term in the denominator penalizes underestimation
of the number of defects more heavily than an overestimate.

E. Predictive Power (PP)

The predictive power of a model is

pro 3 (f(u)i—yi)?

i=k+1 Yy

21

where the term in the denominator penalizes overestimation
of the number of defects.

MSE MAPE PMSE PRR PP
Model | 80:20 | 90:10 | 80:20 | 90:10 | 80:20 | 90:10 | 80:20 | 90:10 | 80:20 | 90: 10
ANN 5.40 4.19 5.71 6.11 4.29 3.88 0.60 0.77 0.96 1.70
RNN 2.41 1.95 3.71 3.53 2.54 2.06 0.40 0.32 0.34 0.46
LSTM 2.04 2.05 3.40 3.36 2.15 1.82 0.43 0.38 0.32 0.30
GRU 4.03 1.82 3.79 3.25 3.19 1.54 0.34 0.30 0.51 0.40
GO 30.71 38.60 14.11 17.07 28.01 41.16 12.55 20.55 3.66 5.50
Weibull 11.86 12.21 7.00 7.30 12.32 12.77 1.08 1.20 0.89 1.04

TABLE I: Goodness-of-fit comparison on CSR3 data

IV. ILLUSTRATIONS

This section presents examples to illustrate the application
of machine learning models specifically ANN and RNN with
LSTM and GRU as well as NHPP models, including the
GO and Weibull to characterize failure data taken from the
Handbook of Software Reliability Engineering [45]. The GO
and Weibull models were selected based on results from the
SFRAT [50] as the models that best characterized the CSR3
data set used here. These models are further assessed based
on several goodness-of-fit measures and runtime.

The ANN uses one hidden layer with ELU activation and 50
nodes. A learning rate of 0.001 was selected to fit the shape of
the curve well while avoiding overfitting. The RNN, LSTM,
and GRU use eight nodes and ELU and sigmoid activations
as defined in Section II. All the models were trained with an
upper limit of 2000 epochs with an early stopping condition
of a change in loss of less than 0.001 for 10 epochs.

A. Assessment of Model Fit

Figure 6 shows the fit of the NHPP and neural network

models presented in Section II when 80% of the CSR3 data
was used for training or model fitting and the remainder was
used for prediction. Other than the observed data, plots to the
right of the vertical line indicate predictions, which is zoomed
in the second part of Figure 6 for the sake of more detailed
comparison.
The GO and Weibull models shown in Figures 6 exhibit under
and over prediction in the training phase compared to both
ANN and RNN models. Specifically, the RNN and LSTM
characterize the data well and also predict future defects
most closely to observed value, as shown in the right part
of Figure 6.

Similarly, Figure 7 shows the fit of the NHPP and neural
network models as well as a close up view of the predictions
when 90% of the CSR3 data is used for training or model
fitting and the remainder is used for prediction. RNN in
Figure 7 appear to not only characterize the data well but
also predict the remaining 10% of the defects with low error
value.

B. Performance Assessment

This section compares different models based on the
goodness-of-fit measures given in Section III. The models
were also applied to the CSR3 data found in the Handbook
of Software Reliability Engineering [45]. Table I reports
goodness-of-fit measures for each of the six models discussed

in Section II, when applied to 80 and 90% percent of the
CSR3 data for model fitting and the remaining data used to test
predictive accuracy. Models achieving the best goodness-of-fit
values are shown in bold. Table I suggests that variations of the
RNN, including the LSTM and GRU, achieved significantly
lower error values compared to other models.

V. CONCLUSIONS AND FUTURE RESEARCH

This paper assessed the ability of neural network models,
including ANN and RNN along with two variations of RNN,
including the LSTM and GRU, to predict defects based on
data collected during software testing. Neural network models
and traditional NHPP models, including the GO and Weibull
models were applied to the CSR3 dataset with 80 and 90%
of the data for training and the remainder used for testing.
The results indicated that RNN and its variations exhibit
approximately 1.6 — 37 and 1.8 — 68 times better overall
goodness-of-fit measures than ANN and traditional NHPP
models when 80% and 90% of CSR1 data is used for model
fitting respectively. Specifically, RNN exhibit 1.6 — 15 and
1.8 — 21 times better information theoretic measures and
1.7 — 36 and 2.5 — 68 times better predictive measures when
80% and 90% of the data was used for model fitting.

Future research will explore speed and stability assessment
of RNN on more challenging data sets.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant Number 1749635. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Student work was supported by the University of Tulsa &
Team8 Cyber Fellows program.

REFERENCES

[1] S. Ross, Introduction to Probability Models, 8th ed.
Academic Press, 2003.

[2] W. Farr and O. Smith, “Statistical modeling and estimation of reliability
functions for software (SMERFS) users guide,” Naval Surface Warfare
Center, Dahlgren, VA, Tech. Rep. NAVSWC TR-84-373, Rev. 2, 1984.

[3] M. Zhao, “Change-point problems in software and hardware reliability,”
Communications in Statistics-Theory and Methods, vol. 22, no. 3, pp.
757-768, 1993.

[4] H. Okamura, Y. Watanabe, and T. Dohi, “Estimating mixed software
reliability models based on the em algorithm,” in IEEE Proceedings
International Symposium on Empirical Software Engineering, 2002, pp.
69-78.

New York, NY:

Failure Number

Failure Number

[5]

[6]

[7]

80% Training CSR3 RNN Prediction

1051 -

100 A

Failure Number

90 A

85 -

95 4

80% Training CSR3 RNN Prediction

ANN
GRU
LSTM
RNN
GO
Weibull
CSR3

T T T T T
0.80 0.85 0.90 0.95 1.00

Normalized Failure Time

T T
0.70 0.75

(b) Zoomed view of prediction

Fig. 6: Model fit with train/test split of 80:20

90% Training CSR3 RNN Prediction

104 41 —— ANN
GRU
— LST™
1021 o
— GO
100 { === Weibull
g — CSR3
€
2 98-
<
E]
L 96
94 -
92 1
0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

Normalized Failure Time

(b) Zoomed view of prediction

Fig. 7: Model fit with train/test split of 90:10

—— ANN
100 A GRU
—— LSTM
—— RNN
801 — GO
=== Weibull
—— CSR3
60 A
40
20 1
O -
0.0 0.2 0.4 0.6 0.8 1.0
Normalized Failure Time
(a) Model fit
90% Training CSR3 RNN Prediction
100 —— ANN
GRU
— LSTM
—— RNN
801 GO
=== Weibull
—— CSR3
60 -
40
20 1
0 -l
0.0 0.2 0.4 0.6 0.8 1.0
Normalized Failure Time
(a) Model fit
H. Okamura, K. Tateishi, and T. Dohi, “Statistical inference of computer

virus propagation using non-homogeneous Poisson processes,” in IEEE
International Symposium on Software Reliability, 2007, pp. 149-158.
T. Ando, H. Okamura, and T. Dohi, “Estimating markov modulated
software reliability models via em algorithm,” in IEEE International
Symposium on Dependable, Autonomic and Secure Computing, 2006,
pp. 111-118.

H. Okamura and T. Dohi, “Hyper-erlang software reliability model,” in
IEEE Pacific Rim International Symposium on Dependable Computing,
2008, pp. 232-239.

H. Okamura, Y. Etani, and T. Dohi, “A multi-factor software reliability
model based on logistic regression,” in IEEE International Symposium
on Software Reliability Engineering, 2010, pp. 31-40.

H. Okamura and T. Dohi, “A novel framework of software reliability
evaluation with software reliability growth models and software metrics,”
in IEEE International Symposium on High-Assurance Systems Engineer-

[10]

[11]

[12]

[13]

ing, 2014, pp. 97-104.

H. Okamura, A. Murayama, and T. Dohi, “EM algorithm for discrete
software reliability models: a unified parameter estimation method,” in
IEEE International Symposium on High Assurance Systems Engineering,
2004, pp. 219-228.

H. Okamura, Y. Watanabe, and T. Dohi, “An iterative scheme for
maximum likelihood estimation in software reliability modeling,” in
IEEE International Symposium on Software Reliability Engineering,
2003, pp. 246-256.

K. Shibata, K. Rinsaka, and T. Dohi, “Metrics-based software reliability
models using non-homogeneous poisson processes,” in 2006 17th In-
ternational Symposium on Software Reliability Engineering, 2006, pp.
52-61.

S. Inoue and S. Yamada, “Software hazard rate modeling with multiple
change-point occurrences,” in IEEE International Conference on Indus-
trial Engineering and Engineering Management, 2014, pp. 1151-1155.

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

Y.-P. Chang, “Estimation of parameters for nonhomogeneous poisson
process: Software reliability with change-point model,” Communications
in Statistics-Simulation and Computation, vol. 30, no. 3, pp. 623-635,
2001.

S. Inoue and S. Yamada, “Software reliability assessment with multiple
changes of testing-environment,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. 98, no. 10,
pp. 20312041, 2015.

C.-Y. Huang, C.-T. Lin, and C.-C. Sue, “Software reliability prediction
and analysis during operational use,” in IEEE International Conference
on Information Technology: Research and Education, 2005, pp. 317-
321.

F.-Z. Zou, “A change-point perspective on the software failure process,”
Software testing, verification and reliability, vol. 13, no. 2, pp. 85-93,
2003.

C.-Y. Huang and T.-Y. Hung, “Software reliability analysis and assess-
ment using queueing models with multiple change-points,” Computers
& Mathematics with Applications, vol. 60, no. 7, pp. 2015-2030, 2010.
J. Zhao, H.-W. Liu, G. Cui, and X.-Z. Yang, “Software reliability
growth model with change-point and environmental function,” Journal
of Systems and Software, vol. 79, no. 11, pp. 1578-1587, 2006.

S. Inoue and S. Yamada, “Software reliability growth modeling frame-
works with change of testing-environment,” International Journal of
Reliability, Quality and Safety Engineering, vol. 18, no. 04, pp. 365-376,
2011.

C.-T. Lin, C.-Y. Huang, and J.-R. Chang, “Integrating generalized
weibull-type testing-effort function and multiple change-points into
software reliability growth models,” in IEEE Asia-Pacific Software
Engineering Conference (APSEC’05), 2005, pp. 8-pp.

V. Singh, P. Kapur, and M. Basirzadeh, “Open source software reliability
growth model by considering change-point,” International Journal of
Information Technology, vol. 4, no. 1, p. 405, 2012.

V. Nagaraju, L. Fiondella, P. Zeephongsekul, and T. Wandji, “An
adaptive em algorithm for the maximum likelihood estimation of non-
homogeneous poisson process software reliability growth models,” Inter-
national Journal of Reliability, Quality and Safety Engineering, vol. 24,
no. 04, p. 1750020, 2017.

P. Zeephongsekul, C. Jayasinghe, L. Fiondella, and V. Nagaraju,
“Maximum-likelihood estimation of parameters of NHPP software reli-
ability models using expectation conditional maximization algorithm,”
IEEE Transactions on Reliability, vol. 65, no. 3, pp. 1571-1583, 2016.
V. Nagaraju, L. Fiondella, P. Zeephongsekul, C. Jayasinghe, and
T. Wandji, “Performance optimized expectation conditional maximiza-
tion algorithms for nonhomogeneous Poisson process software reliability
models,” IEEE Transactions on Reliability, vol. 66, no. 3, pp. 722-734,
2017.

R. Burden and J. Faires, Numerical Analysis, 8th ed.
Brooks/Cole, 2004.

J. Steakelum, J. Aubertine, K. Chen, V. Nagaraju, and L. Fiondella,
“Multi-phase algorithm design for accurate and efficient model fitting,”
Annals of Operations Research, pp. 1-23, 2021.

L. Tian and A. Noore, “Evolutionary neural network modeling for
software cumulative failure time prediction,” Reliability Engineering &
system safety, vol. 87, no. 1, pp. 45-51, 2005.

V. Nagaraju and L. Fiondella, “A hybrid model fitting approach incorpo-
rating particle swarm optimization and statistical algorithms,” Reliability
and Maintenance Engineering Summit, 2021.

A. Sheta, “Reliability growth modeling for software fault detection using
particle swarm optimization,” in Proc. IEEE Congress on Evolutionary
Computation, 2006, pp. 3071-3078.

N. Karunanithi, Y. K. Malaiya, and L. D. Whitley, “Prediction of
software reliability using neural networks,” in ISSRE, 1991, pp. 124—
130.

N. Karunanithi, D. Whitley, and Y. K. Malaiya, “Using neural networks
in reliability prediction,” IEEE Software, vol. 9, no. 4, pp. 53-59, 1992.
R. Hochman, T. M. Khoshgoftaar, E. B. Allen, and J. P. Hudepohl,
“Evolutionary neural networks: a robust approach to software reliability
problems,” in Proceedings The Eighth International Symposium on
Software Reliability Engineering. 1EEE, 1997, pp. 13-26.

N. Gupta and M. P. Singh, “Estimation of software reliability with
execution time model using the pattern mapping technique of artificial
neural network,” Computers & operations research, vol. 32, no. 1, pp.
187-199, 2005.

Belmont, CA:

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, vol. 79, no. 8, pp. 2554-2558, 1982.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985.

M. Bhuyan, D. Mohapatra, and S. Sethi, “Prediction strategy for soft-
ware reliability based on recurrent neural network,” in Computational
Intelligence in Data Mining—Volume 2. Springer, 2016, pp. 295-303.
Q. Hu, M. Xie, S. Ng, and G. Levitin, “Robust recurrent neural
network modeling for software fault detection and correction prediction,”
Reliability Engineering & System Safety, vol. 92, no. 3, pp. 332-340,
2007.

P. Roy, G. Mahapatra, P. Rani, S. Pandey, and K. Dey, “Robust
feedforward and recurrent neural network based dynamic weighted
combination models for software reliability prediction,” Applied Soft
Computing, vol. 22, pp. 629-637, 2014.

L. Tian and A. Noore, “Software reliability prediction using recurrent
neural network with bayesian regularization,” International Journal of
Neural Systems, vol. 14, no. 3, pp. 165-174, 2004.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

A. Goel and K. Okumoto, “Time-dependent error-detection rate model
for software reliability and other performance measures,” IEEE Trans-
actions on Reliability,, vol. 28, no. 3, pp. 206-211, 1979.

S. Yamada and S. Osaki, “Reliability growth models for hardware
and software systems based on nonhomogeneous poisson processes: a
survey,” Microelectronics Reliability, vol. 23, no. 1, pp. 91-112, 1983.
M. Lyu, Ed., Handbook of Software Reliability Engineering. New York,
NY: McGraw-Hill, 1996.

W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5,
no. 4, pp. 115-133, 1943.

S. Hossain and R. Dahiya, “Estimating the parameters of a non-
homogeneous poisson-process model for software reliability,” IEEE
Transactions on Reliability, vol. 42, no. 4, pp. 604-612, 1993.

Z. Zhang, “Improved adam optimizer for deep neural networks,” in
IEEE/ACM 26th International Symposium on Quality of Service, 2018,
pp- 1-2.

D. Kleinbaum, L. Kupper, A. Nizam, and K. Muller, Applied Regression
Analysis and Other Multivariable Methods, 4th ed., ser. Applied Series.
Belmont, CA: Duxbury Press, 2008.

V. Nagaraju, V. Shekar, J. Steakelum, M. Luperon, Y. Shi, and L. Fion-
della, “Practical software reliability engineering with the software failure
and reliability assessment tool (sfrat),” Elsevier SoftwareX, vol. 10, p.
100357, 2019.

	Introduction
	Review of Models
	Non-homogeneous Poisson Process Software Reliability Growth Model
	Goel-Okumoto (GO) SRGM
	Weibull SRGM

	Neural Networks
	Artificial Neural Network (ANN)
	Recurrent Neural Network (RNN)

	Goodness-of-fit measures
	Mean Squared Error (MSE)
	Mean Absolute Percentage Error (MAPE)
	Predictive Mean Squared Error (PMSE)
	Predictive Ratio Risk (PRR)
	Predictive Power (PP)

	Illustrations
	Assessment of Model Fit
	Performance Assessment

	Conclusions and Future Research
	References

