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Abstract—Traditional Non-homogeneous Poisson process
(NHPP) software reliability growth models (SRGM) enable
quantitative assessment of software systems based on failure
data collected during testing. However,traditional models assume
failure data is characterized by a single continuous curve without
considering several factors that could significantly impact the
fault detection rate. To address this, many studies have developed
models to incorporate changepoints or imperfect debugging
or both, yet existing studies develop models without careful
consideration of the relationships between models and their com-
plexity. Therefore, this paper presents a sequence of progressively
more complex software reliability growth models according to
their nesting relationships, including imperfect debugging and
error generation as well as changepoint models with imperfect
debugging and error generation. Model selection based on a novel
multi-criteria approach is demonstrated. Our results indicate
that the most complex models are not recommended and that
simpler models exhibit the desirable attributes of simplicity and
visual goodness of fit as well as information theoretic and other
measures of goodness of fit.

Index Terms—Software reliability, software reliability growth
model, non-homogeneous Poisson process, imperfect debugging,
changepoint, error generation

I. INTRODUCTION

Traditional non-homogeneous Poisson process (NHPP) soft-
ware reliability growth models (SRGM) [1] offer methods
to quantitatively assess software systems from failure data,
including inferences [2] such as the number of remaining
faults, failure intensity, mean time to failure, optimal release
time as well as reliability. Despite these practical applications,
traditional models assume failure data is best characterized by
a single continuous smooth curve, yet there are many factors
that affect the fault detection rate during testing, including
change in testing environment or testing strategy, resource
allocation, and integration testing. Traditional models also
assume that a fault is removed as soon as it is discovered
without introducing additional faults and without affecting
the fault detection rate. Changepoint models seek to address
these limitations, but also introduce additional parameters,
increasing model complexity. Straightforward model selection

techniques are needed to balance model goodness of fit with
complexity.

Page [3] introduced Changepoint (CP) models in 1954
and were first applied to software reliability by Zhao [4] in
1993. Various extensions of changepoint models have been
proposed since then by incorporating additional information
such as imperfect debugging (ID) [5], [6], probability of error
generation [7], and testing-effort functions [8], [9]. Subsequent
extensions considered ID and error generation [10], [11] along
with fault reduction factor [12], [13] and testing-coverage [14]
as well as the impact of rates of fault detection and correc-
tion [15]. Fewer studies address parameter estimation [16] and
changepoint identification [17] or perform modeling specific
to factors underlying changepoints such as an environment
function [18] and heterogeneous failure intensity [19].

The review of past studies described above suggests that the
software reliability research community has proliferated mod-
els without careful consideration of the relationship between
these models, their complexity, or verified claims regarding the
interpretation of parameters in terms of software engineering
activities an artifacts. This paper seeks to address the issue
of model relationship while balancing model complexity and
the pragmatic concerns of software reliability practitioners,
namely the tradeoff between model adequacy and complexity.
Toward this end, we consider a sequence of progressively
more complex software reliability growth models according to
their nesting relationships, including imperfect debugging and
error generation as well as changepoint models with imperfect
debugging and error generation. Specifically, six models are
presented, including the Goel-Okumoto (GO) model [20], GO
with imperfect debugging (GO-ID) [5], GO with changepoint
(GO-CP) [4], GO-ID with error generation (GO-ID-E) [11],
GO-CP with imperfect debugging (GO-CP-ID) [6], and GO-
CP-ID with error generation (GO-CP-ID-E) [21]. Numerical
values of model parameters are estimated through stable and
efficient expectation conditional maximization (ECM) [22]
algorithms. Model selection based on a novel multi-criteria
method [23] is used to assess the suitability of the alternative



models. The results indicate that the most complex models are
not recommended and that simpler models exhibit desirable
attributes of simplicity, visual goodness of fit as well as
information theoretic and other measures of goodness of fit.
These results align with the needs of practitioners, as simple
models that characterize the data well often predict future
failures better than excessively complex models that overfit
the available data at the expense of predictive accuracy.

The remainder of the paper is organized as follows: Sec-
tion II describes a sequence of NHPP SRGM and their nesting
relationships. Section III discusses model fitting algorithms,
including the ECM algorithm and initial estimation strategy
based on the EM algorithm. Section IV reviews measures to
assess model fit and a multi-criteria model selection approach.
Section V presents numerical examples, while Section VI pro-
vides a summary and identifies directions for future research.

II. MODEL DEVELOPMENT

This section provides a clear development of progressively
more complex models, including (i) NHPP software reliability
growth models, (ii) NHPP SRGM with Imperfect Debugging
(ID), and (iii) NHPP SRGM with Imperfect Debugging and
Error Generation (ID-E). Next, (i) NHPP SRGM with Change-
point, (ii) NHPP SRGM with Changepoint and Imperfect
Debugging (CP-ID), and (iii) NHPP SRGM with changepoint,
imperfect debugging, and error generation (CP-ID-E) are de-
scribed.

A. NHPP SRGM

The non-homogeneous Poisson process is a stochastic pro-
cess [24] that counts the number of events observed as a
function of time. In the context of software reliability, the
NHPP counts the number of unique faults detected by time
t. This counting process is characterized by a mean value
function (MVF) m(t), which characterizes the number of
faults detected by time ¢ and can assume a variety of forms.
A general form of m(t) can be obtained by solving [25],

dm(t
= 0 _ pr)(a(t) — m() m
for m(0) = 0, where b(t) is the time-dependent fault detection
rate function and a(t) is the time dependent fault introduction
function. Specific forms of b(¢) and a(t) produce different
mean value functions.

Setting b(t) = lf;fzt) and a(t) = a in Equation (1) and
solving produces the MVF

m(t) = a x F(t), (2)

At)

where a denotes the expected number of unique faults that
would be discovered with indefinite testing and F'(t) is the
cumulative distribution function (CDF) of a continuous prob-
ability distribution characterizing the software fault detection
process.
For example, the MVF of the Goel-Okumoto model
(GO) [20]
m(t) = a(l — e~ ), 3)

is obtained as the special case of Equation (1) where b(t) = b.

B. NHPP SRGM with Imperfect Debugging (GO-ID)

In general, a constant such as a(t) = a in the NHPP
model implies perfect debugging, which makes the unrealistic
assumption that faults are identified and removed without
introducing additional faults. To remove this assumption ref-
erences [10], [25] explicitly modeled imperfect debugging,
allowing for new faults to be introduced during the debugging
phase at a constant rate . If, a(t) is a linear function of the
expected number of faults detected by time ¢, then

a(t) = a+ B(t)m(t) @

Substituting Equation (4) into Equation (1) and solving under
initial conditions a(0) = a, 5(t) = 3, and m(0) = 0 produces
a
- 1—1—Ft<“m) 5
g (1= (1= F () )
For example, the GO model with imperfect debugging (GO-
ID) is

m(t)

m(t) = —— (1—e (=) (6)

1) NHPP SRGM with Imperfect Debugging and Error Gen-
eration (GO-ID-E) : To incorporate imperfect debugging [25]
and the possibility of error generation [11] during fault re-
moval, let ( )

f(t
b(t) =p—=-— 7
(t) TR @)
where p is the probability of perfect debugging. Substituting
Equation (7) and Equation (4) into Equation (1) and solving
under initial conditions m(0) = 0, the MVF is [10]

a
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For example, the GO model with imperfect debugging and

error generation (GO-ID-E) is

=7 il 3 (1 _ efbp(lfﬁ)t) 9)

C. NHPP SRGM with Changepoint

This section presents a single changepoint model [19],
where the fault detection process before and after the change
point can be different. Let b(t) = 7 S gzt) denote the hazard
function in Equation (1), where f(t) is the probability density
function and consider a vector of failure time data T with a
single changepoint denoted as 7. Let f1(¢), F1(t) and fo(¢),
F5(t) represent the PDF and CDF before and after the change-
point. These distributions can be the same (homogeneous) or
different (heterogeneous). Let

L0
b(t) =< (;gt)

17F2(t)7

m(t)

m(t)

(10)

Substituting this in Equation (1) and solving, the MVF is
{ml(t) =a x Fi(t),

ma(t = ) = (a—ma () (1= £24%), t> 1
(11)

m(t) =

0<t<t,



where mq (t,) and mo(t — t,) respectively denote the mean
value function before and after the changepoint and the term
(a — mq(t;)) denotes the number of faults remaining at the
changepoint.

For example, if both Fj(t) and F»(t) follow exponential
distributions [16], then

a(l — e~ but
m(t) = { (1 )

a (e_bltT(l _ e—bz(t—tf))) ,

where by and bs respectively represent a distinct fault detection
rate according to the Goel-Okumoto model before and after
the changepoint.

Hence, the mean value function of a homogeneous change-
point model (GO-CP) is

0<t<t,

12
t>1, (12)

m(t) = mi(t) +ma(t —t;)

= a(l— e tirmhalizt) (13)

for a > 0, b; > 0, and by > 0. Note that all faults detected in
Equation (13) as ¢ tends to infinity

tlgrolo m(t) =a (14)
indicating perfect debugging.

1) NHPP SRGM with Changepoint and Imperfect Debug-
ging (GO-CP-ID): To incorporate imperfect debugging into
the changepoint model, assume the following fault introduc-
tion rate

B(t) = {51,

0<t<t,

15
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where 1 and 2 are distinct fault detection rates before and
after the changepoint.

Following steps similar to Sections II-B and II-BI, the
MVF of the model incorporating changepoint and imperfect
debugging is

g % ((F1(t-) =), 0<t<t,

1-B2
a—m; (t) 1—F5(t)
-/, (1 - (1,F22(t7)>) , t>1

m(t) =

(16)
For example, if the Goel-Okumoto model characterizes the
data before and after the changepoint, then Goel-Okumoto
model with changepoint and imperfect debugging is

# X (1 — e*(lfﬂl)bﬂ)’ 0<t< ‘.
m(t) = § 145; (1- e(l—ﬁl)blh—(1—,62)b2(t—t7))
+%§;_ﬁ2)’ t>1t;
a7

2) NHPP SRGM with changepoint, imperfect debugging,
and error generation (GO-CP-ID-E): To incorporate imper-
fect debugging and error generation into the changepoint
model, let error generation be characterized as follows

{pl,
p =
b2,

where p; and p, are the probability of perfect debugging
before and after the changepoint.

0<t<t,

18
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Following steps similar to Sections II-B and II-B1, the MVF
of model incorporating changepoint, imperfect debugging, and
error generation is

T x (L= (1= Fi(t)dAm) | 0<t<t,

(s (1—B2)p2
2&%?(1—(i§%&) )v t>tr
19)
For example, if the Goel-Okumoto model to characterize the
data before and after the changepoint, then Goel-Okumoto
model with changepoint, imperfect debugging, and error gen-
eration (GO-CP-ID-E) is

m(t) =

o x (1 s,
m(t) — 1_aﬁ2 (1 _ e*;ﬂl(1*ﬁ1)b1t7*(1*52)17252(t*tq—))

+m1(t;)£g;—ﬂ2)’ t>t,

(20)

III. PARAMETER ESTIMATION

This section describes techniques to estimate the parameters
of a model, including maximum likelihood estimation and the
expectation conditional maximization algorithm as well as a
method to estimate initial parameter values.

A. Maximum likelihood estimation

Maximum likelihood estimation maximizes the likelihood
function, also known as the joint distribution of the failure
data.

Let T = (ty,t2,...,t,) denote a vector of individual failure
times possessing density function f(¢;; ©). The log-likelihood
function is

LL(t;;©) = —m(t,) + Y _log [A(t;)], @1)
=1

where O is the vector of model parameters and A(¢;) is
the instantaneous failure rate at time ¢;. The MLE is found
by numerically solving the following system of simultaneous
equations

OLL(©)

00

with an algorithm such as the Newton—Raphson method [26].
To identify the location of the changepoint, Equation (21)
must be solved to identify the failure 7 that maximizes the
likelihood. Since there is no closed form solution for ¢, the
changepoint is identified by maximizing the likelihood for
each value of 7 € (2,(n — 1)) [17].

The reduced log-likelihood expectation conditional max-
imization [27] algorithm is used to identify the maximum
likelihood estimates of the models proposed in this paper.
The ECM algorithm [22] simplifies computation by dividing
a single M-step of the EM algorithm [28] into v conditional-
maximization (CM) steps, where v is number of model pa-
rameters. Expectation-Maximization [29] method is utilized
to derive initial parameter estimates.

=0 22)

0<t<t,



IV. GOODNESS OF FIT MEASURES AND MODEL SELECTION

This section summarizes goodness of fit measures to assess
how well a model characterizes a failure data set as well as a
model selection method based on these multiple goodness-of-
fit measures.

A. Akaike Information Criterion

The Akaike information criterion [30] is a information theo-
retic measure of a model’s goodness of fit. The AIC quantifies
the tradeoff between model precision and complexity. The AIC
of model ¢ is a function of the maximized log-likelihood and
the number of model parameters (v).

AIC; = 2v — 2LL(t;; ©) (23)

The term 2v in Equation (23) is a penalty function, which
grows linearly with the number of parameters, while LL(¢;; @)
evaluates the log-likelihood function of failure data ¢; at the
maximum likelihood estimate. Model j is preferred over model
iif AIC; ; = AIC; — AIC; > 2.0 [31].

B. Bayesian Information Criterion

The Bayesian information criterion of model ¢ is a function
of the maximized log-likelihood, number of model parameters
v, and the sample size n.

BIC; = —2LL(t;; ©) 4 vlog(n) (24)

The penalty term of the BIC is proportional to the number of
parameters v multiplied by the logarithm of the sample size
n.

C. Sum of Squares Error (SSE)

The sum of squares error for failure times data is

n

SSE =Y (M(t;) —i)?

i=1

(25)

where m(t;) is estimated number of cumulative faults detected
by time t¢; according to the fitted model and ¢ is the actual
number of faults detected.

D. Root Mean Square Error (RMSE)

The root mean square error for failure times data is

RMSE = % Zn:(m(t,;) )2

i=1

(26)

E. Bias

The bias of model ¢ is the sum of the deviations of the
model estimates from the observed data. The bias for failure
times data is

Bias; = % > (fti) — i) Q27)

FE. Variance

The variance of model ¢ for failure times data is

n

1
Variance; = ,| — Z(T/ﬁ(tl) — i — Bias)?

n -
=1

G. Root Mean Square Prediction Error (RMSPE)

The root mean square prediction error of model ¢ for failure
times data is

(28)

RMSPE; = \/Variance + Bias? (29)

H. Model Selection with Multiple Goodness of fit Measures

This section presents a simple model selection method [32]
based on the critic method [33] to select a model given
multiple goodness of fit measures.

Given n models and m measures, Let f; ; be the jth mea-
sure for the ith model. Each measure is assigned a normalized
score according to

(30)

where fj+ and fj* respectively denote the best and worst values
of a measure j across all models. Thus, x; ; indicates how
close the jth measure of model 7 is to the ideal. One method
to select a model is to compute the median and mean of each
model’s normalized scores and recommend the model with the
highest value. Alternatively, model selection can be based on
the average of each model’s normalized scores.

V. ILLUSTRATIONS

This section applies the GO, GO-ID, GO-CP, GO-ID-E,
GO-CP-ID, and GO-CP-ID-E models to the SYS1 data set [2],
consisting of 136 failures over 88,682 units of testing. The
critic method is subsequently computed and the models rec-
ommended by the mean and median identified. The advantages
and disadvantages of the mean and median are also discussed.

A. Visual and trend test assessment of alternative model fits

Figure 1 shows the fault detection process of the SYSI
dataset as well as plots of the mean value functions for each
of the six models presented in Section II. The dashed vertical
line at times t14 = 1,056 corresponds to the best location of
the single changepoint in the GO-CP model, while the solid
vertical line at time t94 = 36,799 indicates the best location
of the single changepoint for the GO-CP-ID, and GO-CP-ID-E
models. Of the five models considered, Figure 1 indicates that
the GO-CP-ID model tracks the SYS1 data most closely. All
other models underestimate the data prior to around 30,000
units of testing and overestimate after that with the exception
of the GO-CP-ID-E model, which grossly underestimates the
number of faults beyond that point.

Figure 2 provides another view of the changepoints iden-
tified in Figure 1, showing the Laplace trend test [34] of the
SYS1 data. Like Figure 1, the dashed vertical line corresponds
to location of the changepoint in the GO-CP model, while the
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Fig. 1: Model fit

solid vertical line at time indicates the location of the change-
point for the GO-CP-ID, and GO-CP-ID-E models. Since a
decreasing trend indicates reliability growth, the location of
the changepoints occur at times when reliability growth occurs
and there is a decrease in the fault detection rate, which leads
to the visible change point in Figure 1. The key observation
from this example is that the most complex model may not
necessarily perform best, even if simpler nested model exists.
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Fig. 2: Laplace trend test of SYS1 data (vertical lines denote
best location of a single changepoint for alternative models)

B. Model comparison using multiple goodness-of-fit measures

This section compares models according to multiple
goodness-of-fit measures and then applies the critic method
to inform model selection.

Table I lists each model, number of unique parameters (1),
maximum log-likelihood (LLF), and corresponding goodness
of fit measures described in Section IV. The values of models
that achieve the best performance with respect to each measure
are indicated in bold for clarity. Table I indicates that no model
performs best with respect to all measures of goodness of fit.
Thus, model selection is not straight forward. For example,
both AIC and BIC recommend the simpler GO-CP model,
while the LLF suggests the most complex GO-CP-ID-E. The
remaining four of eight measures recommend the GO-CP-ID
model with a LLF value very close to the GO-CP-ID-E. Given
the disagreement between goodness of fit measures, no model
is the clear winner and a more detailed approach that does not
simply rank models according to the ranks of the measures is
needed in order to preserve objectivity.

Table II reports the normalized goodness-of-fit values for
each model presented according to Equation 30 with the values
reported in Table I as well as the resulting mean and median
for each model. The mean of the critic values recommends
the GO-CP and GO-CP-ID models as two best all around
fits, whereas the median of the critic values recommends the
GO-CP-ID and GO-CP models as the top two choices. The
median is robust to outliers, in which case the GO-CP-ID
model may be preferred. However, the mean incorporates all
of the goodness of fit measures into a single value, in which
case the simpler GO-CP model may be preferred. Ultimately,
the burden of model selection rests with the user. Tools that
allow a user to specify which measures to include in the critic
method as well as their weights [35] will simplify the model
selection process based on that user’s needs.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper presented a sequence of progressively more
complex software reliability growth models, including imper-
fect debugging and error generation as well as changepoint
models with imperfect debugging and error generation. Model
selection based on a multi-criteria approach was applied to
the SYS1 data set. The results indicated that the most complex
models were not recommended and that simpler models exhib-
ited desirable attributes of simplicity, visual goodness of fit as
well as information theoretic and other measures of goodness
of fit. These results align with the needs of practitioners, as
simple models that characterize the data well often predict
future failures better than complex models that overfit the
available data at the expense of predictive accuracy.

Possible directions for future research include: (i) incor-
porating additional measures into the critic method and (ii)
machine learning approaches to select models that predict well.
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