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Abstract

We study depth separation in infinite-width neural networks, where complexity is controlled by the overall squared
£2-norm of the weights (sum of squares of all weights in the network). Whereas previous depth separation results
focused on separation in terms of width, such results do not give insight into whether depth determines if it is possible
to learn a network that generalizes well even when the network width is unbounded. Here, we study separation in terms
of the sample complexity required for learnability. Specifically, we show that there are functions that are learnable
with sample complexity polynomial in the input dimension by norm-controlled depth-3 ReLU networks, yet are not
learnable with sub-exponential sample complexity by norm-controlled depth-2 ReLU networks (with any value for
the norm). We also show that a similar statement in the reverse direction is not possible: any function learnable with
polynomial sample complexity by a norm-controlled depth-2 ReLU network with infinite width is also learnable with
polynomial sample complexity by a norm-controlled depth-3 ReLU network.

1 Introduction

It has long been postulated that in training neural networks, “the size of the weights is more important than the size of
the network” (Bartlett, 1996). That is, the inductive bias and generalization properties of learning neural networks come
from seeking networks with small weights (in terms of magnitude or some norm of the weights), rather than constraining
the number of weights. Small weight norm is sufficient to ensure generalization (e.g. Bartlett and Mendelson, 2002;
Neyshabur et al., 2015; Golowich et al., 2018; Du and Lee, 2018; Daniely and Granot, 2019), and may be induced either
through explicit regularization (e.g., via weight decay Hanson and Pratt, 1988) or implicitly through the optimization
algorithm (e.g. Neyshabur et al., 2014, 2017; Chizat and Bach, 2020; Vardi, 2023). The reliance on weight-norm-based
complexity control is particularly relevant with modern, heavily overparameterized networks, which have more weights
than training examples. These networks can shatter the training set, and hence the size of the network alone does not
lead to meaningful generalization guarantees (Zhang et al., 2017; Neyshabur et al., 2014). Indeed, over the years there
has been increasing interest in the theoretical study of learning with infinite width networks, where the number of units
per layer is unbounded or even infinite, while controlling the norm of the weights (Cho and Saul, 2009; Neyshabur
et al., 2015; Bach, 2017; Bengio et al., 2005; Mei et al., 2019; Chizat and Bach, 2018; Jacot et al., 2018; Savarese et al.,
2019; Ongie et al., 2019; Chizat and Bach, 2020; Pilanci and Ergen, 2020; Parhi and Nowak, 2021; Unser, 2023).
Considering infinite-width neural networks, and relying only on the norm of the weights for inductive bias and
generalization, also requires a fresh look at the role of depth. The traditional study of the role of depth focused on how
deeper networks can represent functions using fewer units. (e.g. Pinkus, 1999; Telgarsky, 2016; Eldan and Shamir,
2016; Liang and Srikant, 2016; Lu et al., 2017; Daniely, 2017; Safran and Shamir, 2017; Yarotsky, 2017, 2018; Rolnick
and Tegmark, 2018; Arora et al., 2018; Safran et al., 2019; Vardi and Shamir, 2020; Chatziafratis et al., 2020; Venturi
et al., 2022). Focusing on depth-2 (one hidden layer) versus depth-3 (two hidden layers) feedforward neural networks
with ReLU activations (see Section 2 for precise details), traditional depth separation results tell us that there are
functions that can be well-approximated using depth-3, low-width networks (number of neurons polynomial in the input
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dimension), but cannot be approximated using depth-2 networks unless the width/number of neurons is exponentially
high in the input dimension. However, this separation is not relevant when studying infinite-width networks.

Instead of studying depth separation in terms of the number of weights (i.e., width), one can study depth separation
in terms of the size of the weights, i.e., the norm required to approximate the target function with a specific depth.
This is captured by the representation cost Ry, (f), which is the minimal weight norm (sum of squares of all weights
in the network) required to represent f using an unbounded-width depth-L network. One can ask whether there are
functions that can be well approximated with a low R3 representation cost, but which require a high R» representation
cost to approximate, even if we allow unbounded or infinite width. One contribution of our paper is to show that the
answer is “yes”: the same function families that show depth separations in terms of width also demonstrate depth
separations in terms of norm or representation cost. Specifically, with depth-3 networks, one can approximate functions
in these families with norm polynomial in the input dimension, but with depth-2 networks, even with infinite width, an
exponential norm is required to approximate functions in these families even within constant approximation error. At a
technical level, this argument follows from explicitly accounting for the norm in the depth-3 representation, and by
showing through a Barron-like unit-sampling argument that if such “hard” functions were approximable with a low
norm in depth 2, they would also be approximable with a small width in depth 2, which we know from the width-based
depth separation results is not true.

What does such separation between R3 and R, representation cost tell us? Without further analysis of the effect
of this separation on learning capabilities, it is unclear. One cannot directly compare the values of Ry and R3 since
their comparison depends on the precise way we aggregate the norms across layers; see, e.g., Neyshabur et al. (2015)
for a careful discussion. While width-separation results can be thought of as a separation in terms of the required
memory costs, when discussing infinite networks we are already abstracting away the computational implementation,
and working with exponentially large weights is not an inherent computational barrier as the number of bits is still
polynomial.

Thus, instead of studying depth separation in terms of approximation, we directly study the separation in terms
of learning, as captured by its effect on sample complexity. We ask the following question: If Alice is learning using
norm-based inductive bias (i.e., regularization) with unbounded-width depth-2 networks, and Bob is learning using
norm-based inductive bias with unbounded-width depth-3 networks, are there functions Bob can learn with a small
number of samples, but which Alice would require a huge number of samples to learn? On the other hand, are there
perhaps functions for which depth-2 would be better, i.e., which Alice can learn with a small number of samples with
depth-2, but for which Bob would require a huge number of samples to learn by seeking a low-norm depth-3 network?
As formalized in Section 4, we think of Alice and Bob as using a standard Regularized Empirical Risk Minimization or
Structural Risk Minimizing (SRM) approach, where they learn by minimizing some combination of the empirical loss
Zs (f) and weight norm, or equivalently representation cost Ry (f), for depth L = 2 or depth L = 3.

Our main results are as follows (where we focus on learning functions with samples from a particular distribution
chosen for technical convenience):

Theorem 1.1. (Depth Separation, Informal) There is a family of functions fq : R?** — R that requires exponential
(in d) sample complexity to learn to within constant error by regularizing the norm in an unbounded width depth-2
ReLU network, but which can be learned with poly(d, 1/¢) samples to within any error € by regularizing the norm in a
depth-3 ReLU network.

The next result ensures that the reverse of Theorem 1.1 does not occur.

Theorem 1.2. (No Reverse Depth Separation, Informal) Any function learnable with poly(d,1/c) samples by
regularizing the norm in an unbounded width depth-2 ReLU network, can also be learned with poly(d, 1/¢) samples by
regularizing the norm in a depth-3 ReLU network.

From these results, we conclude that functions that are “easy" to learn with depth-2 ReLLU networks form a strict
subset of the functions that are “easy" to learn with depth-3 ReLU networks.

At a high level, the proof of Theorem 1.1 relies on choosing a target function that is not approximable by a small
norm depth-2 network. We then construct a depth-2 interpolant whose representation cost depends only mildly on the
number of samples. Using the Alice-and-Bob terminology from earlier, since Alice (who utilizes depth-2 networks)
tries to find a function that fits the data well and has a small representation cost, the representation cost of her function



will be at least as small as that of the interpolant. Hence, unless she has access to an enormous number of samples, her
function will not be able to approximate the target and will not generalize. However, the target function is approximable
by a depth-3 network with a small representation cost, so the Rademacher complexity results of Neyshabur et al. (2015)
lead to sample complexity bounds that allow us to bound Bob’s generalization error with many fewer samples. To prove
Theorem 1.2, we show using a similar argument that Alice can only learn if the Ry cost of approximating the target is
small. We show that functions with small 5 cost also have small R3 cost, and so Bob must also be able to learn these
target functions.
We see our contributions here on two levels:

1. Providing a detailed study of depth separation in neural networks in terms of the size of the weights rather than
the number of the weights.

2. Establishing a framework and template for studying depth separation, or model separation more broadly, directly
in terms of learning, with the separation being between low and high sample complexity. This is in contrast to a
study solely in terms of the “complexity” needed to approximate target functions, which does not directly provide
insights into sample complexities.

1.1 Outline

We define the representation cost and describe its connection to weight decay regularization in Section 2. In Section 3
we consider depth separation in the norm to approximate certain families. We more carefully describe what we mean by
learning rules using a norm-based inductive bias in Section 4. The formal statements of Theorems 1.1 and 1.2 are in
Section 5, and their proof sketches are in Sections 6 and 7, respectively. We conclude in Section 8 with a discussion of
the implications and limitations of these results. All technical lemmas and their proofs are reserved for Appendix A.

1.2 Notation

The set of depth-L width-w ReLU neural networks is denoted as Nz ,,, and the set of depth-L unbounded-width
networks is denoted as N7, := J,,cyy VL. We use S~ for the hypersphere in R?, and X, := S9! x 471 C R*
to denote the Cartesian product of two hyperspheres. Given & € X, we write (1) and =(? for the first and last d
entries in , respectively. Throughout the remainder of the paper, we assume that the dimension parameter d is at least
two. We use || - || 2 for the L? norm over Xy; that is, || f[|32 = ExpoUniform(ay)[f (®)?]. Similarly, we use || - ||
for the L°° norm over X,;. We write 2, for a distribution on X x [—1,1]. We use the squared error loss and write
Z9,(f) = E(a,y)~a,|(f(x) — y)?] for the generalization error of a model f. Given a sample S = {(x;,y;)}/, of
size m drawn i.i.d. from 24, we denote the sample loss as L (f) :== = S (f(@;) — yi)*.

2 Norm-Based Control in Infinite-Width Networks

In this work, we focus on the class of fully connected depth- L neural networks with ReLLU activations, 2d-dimensional
inputs, and scalar output (or a depth-L network, for short). A depth-L network realizes a function fg : R2? — R of the
form:

fo(@) = w [Wr [+ [Wo[Wiz + b1y + o]y -] + bl +br

where ¢ := (Wq,b1,...,Wr_1,br,_1,wy, by) denotes the collection of all weight matrices W, € R¥¢*¥¢-1 bias
vectors by € R*%, plus outer layer weights wy, € R¥~-1 and bias by, € R, and [-]+ denotes the ReLU activation applied
entrywise. Here, we allow the hidden-layer widths wy for ¢ = 1, ..., L — 1 to be arbitrarily large.

Let @, denote the collection of all parameter vectors ¢ associated with a depth-L network, and define N7, = {f :
¢ € 1} to be the space of all functions realized by a depth-L network of unbounded width. Given a function f € N7,
we define its depth-L representation cost Ry, (f) by

Ru(f) - i

= 1
¢e<1>1ﬁf:f¢ L )

where ||¢||? denotes the sum of squares of all weights/biases in the network fg, and f = f indicates equality over the
domain X;. More generally, following Savarese et al. (2019); Ongie et al. (2019), one can extend the definition of R,



to a broader class of functions f € C(X;) by

[l
L

o () =ty int {12517 = follm < o€ 2} @
where Ry (f) = +oo if the limit above does not exist. Any function with Ry, (f) < +oo and f ¢ N7, can be considered
an “infinite-width” neural network, i.e., the uniform limit of a sequence depth L networks with unbounded width whose
representation cost remains bounded. Since we focus on the representation cost needed to approximate functions, it
suffices to consider networks whose width is unbounded but finite. In this case, the definition in (1) suffices.

The representation cost arises naturally when considering empirical risk minimization (ERM) with weight decay
regularization:

. A
Jnin Zs (fo) + E||¢||2, 3)

where A > 0 is a tunable regularization parameter. By fixing a function f € N, and optimizing over its parametrizations
f = fe as an L-layer network, we see that the above parameter space minimization problem is equivalent to the
function space minimization problem

min Zs () + ARL()). €5

In other words, the representation cost is the function space regularization penalty induced by imposing weight decay
regularization in parameter space.

Remark 2.1. In Remark 5.4, we consider generalizations of our results to bounded-width networks. In that case, it is
useful to consider the bounded-width version of the representation cost, which is the natural analog of the weight decay
penalty in the function space Ny, of functions realized by an L-layer network with the hidden-layer widths bounded
by w. In this case we write the representation cost as Ry, (f;w), and we formally define

O e : ol?
Rr(f;w) = ¢@1LI}§:J‘,¢ T (%)

w1,y.e,wr—1<wW

To better understand the inductive bias of learning with weight decay regularization, several recent works have
sought to give explicit function space characterizations of the representation cost Ry, (f). First, Savarese et al. (2019)
showed that, for univariate functions, and assuming unregularized bias terms, Rs(f) coincides with the L'-norm
of the second derivative of the function. This was generalized to multidimensional inputs (d > 1) by Ongie et al.
(2019), where it is shown that R (f) is equal to the L!-norm of the Radon transform of a (d + 1)-order derivative
operator applied f. Related works have studied the impact of other activation functions (Parhi and Nowak, 2020),
multi-dimensional outputs (Shenouda et al., 2023) and regularizing bias terms (Boursier and Flammarion, 2023). An
ongoing effort is to characterize Ry, (f) with depth L > 2. For networks with multi-dimensional outputs, the limit as
depth L — oo is studied in (Jacot, 2022), where it is conjectured that the limiting representation cost coincides with
the so-called “bottleneck rank” of a function, defined as the minimum r such that f = g o h with h : R%* — R" and
g : R — R%u_ Finite depth modifications to this characterization are also studied by Jacot (2023).

3 Norm-Based Depth Separation in Approximation

Most previous depth separation results focus on separation in terms of the size of the network (i.e., the number of
neurons) needed to represent or well-approximate a given target function. Specifically, Eldan and Shamir (2016);
Daniely (2017); Safran and Shamir (2017) showed there are families of target functions parameterized by input
dimension d that are well-approximated by a depth-3 network whose number of neurons is polynomial in d, but require
width exponential in d to approximate within constant accuracy using a depth-2 network. For concreteness, we highlight
the result from Daniely (2017):

Lemma 3.1 (Daniely (2017)). There exists a family of functions { f4}5., C L*(X4) such that any depth-two ReLU
network fg € No with ||¢||s < 2% satisfying || fa — follz2 < 10™* must have width w = 2441084 Conversely, for
any € > 0, there exist a depth-three ReLU network fy € N3 with O(poly(d)/e) neurons and |||l = O(poly(d)),
such that || fa — fell= < e




However, a width-based depth separation like the one above is not meaningful in the infinite-width setting. Instead,
we consider whether a similar depth separation occurs in terms of the norm of the network (i.e., its representation cost).
As a first result in this direction, Ongie et al. (2019) showed that there are functions in any input dimension d with
finite 73 representation cost but infinite [?5 representation cost, in the sense that any sequence of depth-2 networks
converging pointwise to the target function on all of R? must have unbounded representation cost. Yet, this left open
whether there is still a depth separation in the representation costs required to approximate the target to a given accuracy
on a bounded domain, and if so, its dependence on input dimension d. Here, we settle the question. In particular, we
show the same function families that show depth separations in terms of width to approximate also demonstrate depth
separations in terms of representation cost to approximate.

A key tool in moving from separation in terms of width to separation in terms of representation cost is the following
lemma, which says that depth-2 neural networks of any width can be well approximated by narrow networks having
essentially the same representation cost (i.e., up to a small constant factor). The proof follows essentially the same
sampling argument as in Barron’s universal approximation theorem for depth-2 networks (Barron, 1993); the details are
given in Appendix A.2.

Lemma 3.2. Forany f € N>, € > 0, and width w > ?’Rﬁ#, there exists fgo € N2 having width w and Hg{)”iO <
13 < 4Rs(f) such that || f — fo| 1> < e.

Consider function families that we know require large widths to approximate with depth-2 networks, but can be well
approximated with small width depth-3 networks with bounded weights. Functions in this family must have large R»
cost; otherwise, Lemma 3.2 would imply they can be approximated with a small width. On the other hand, small width
depth-3 networks with bounded weights must have low R3 cost. In particular, a family of depth-3 networks whose
width is poly(d) and weight magnitudes are poly(d) must have R3 cost at most poly(d). Therefore, a depth separation
in width to approximate should also imply a depth separation in representation cost to approximate.

Applying the above argument to the family of functions identified Lemma 3.1, we arrive at the following result,
which is proved in Appendix A.2:

Corollary 3.3. There exists a family of functions {f4}52, C L*(X4) such that each fq can be e-approximated in
L*°-norm by a depth-three network f4 € N3 with R3(fq) = O(poly(d)/e), yet to approximate f; by a depth-two

network fd € N> to constant accuracy in L*-norm requires Ro(fy) = 2f2(dlog(d))

While mathematically interesting, this type of norm-based depth separation in approximation does not immediately
imply anything about learning with norm-controlled networks, e.g., whether there is also a depth separation in the
sample complexity needed for good generalization. In the remainder of this paper, we close this gap and show that a
norm-based depth separation in approximation also implies a depth separation in sample complexity for norm-based
learning rules.

4 Infinite-Width Norm-Based Learning Rules

We consider learning using the representational cost Ry, (f) as an inductive bias (i.e., complexity measure). Following
the Structural Risk Minimization principle, we consider learning rules minimizing some combination of the empirical
risk Zs (f) and the representational cost Ry, (f):

in (.Z R . 6
pin (Ls (1), B (f)) (©)
More specifically, we consider any learning rule returning a Pareto optimal point for the bi-criteria problem (6). This
includes any minimizer of the regularized risk

min Zs (f) + ARL(f) )

FENL

for any A > 0, where recall that (7) is equivalent to seeking an unbounded width network and regularizing the norm of
the weights, as in (3). We denote the set of all Pareto optimal points of (6) (i.e. the “Pareto frontier” or “regularization
path”, and including all minimizers of (7)—see Figure 1 for a visualization of the Pareto frontier and the learning rules



considered) by P (S). Similarly, we use Py, ,,(S) to denote the Pareto frontier of the bounded-width version of this
problem:

min (L5 () i (fiw). ®)
Our goal is to separate between learning rules returning depth-2 Pareto optimal points in P5(.S) and those returning
depth-3 Pareto optional points in P5(.S). To make such a rule concrete, one still needs to choose which Pareto optimal
point to return, e.g. choosing a value of X in (7). In order to show separation, we compare the best possible depth-2 rule
with a concrete depth-3 rule, showing that a concrete depth-3 rule “succeeds”, but even the best possible depth-2 rule,
and hence any rule returning a depth-2 Pareto optimal point, will “fail”.
To obtain upper bounds (i.e., show learning is easy) we consider the following concrete rule, where the point on the
frontier is specified by a threshold 6, as well as its finite-precision relaxations:

Definition 4.1. Given 6 > 0, define A9 to be a learning rule which, given training samples S, selects an L-layer
network such that Zs (A9 (5)) < 6 and

Rp(AL(S)) = inf  Ru(f). ©
Z5(N<o

Given o > 1, define A%o‘ to be a learning rule which selects an L-layer network such that Zs (A(Z’“(S )) < af and

RL(A}*(S) <o inf  Ri(f). (10)

Similarly, define a bounded width version AGL’fL, to be a learning rule that selects an L-layer network of hidden width at
most w such that Zs (A%ffd(S )) < af) and

RL(A72(S);w) < Jnf Ri(f;w). (11)

Zs(£)<0

The output of A%“ is a-close to A%, which lies on the Pareto frontier. However, we do not require exact Pareto
optimality for .AHL’&. See Figure 1 for a visualization of possible outputs of A9 and AQL’O‘ in relation to the Pareto
frontier.

On the other hand, to prove lower bounds (i.e., argue learning is hard) we consider the following “ideal” rule, which
“cheats” and chooses the Pareto optimal point minimizing the population error, and is thus better than any other rule
returning Pareto optimal points:

Definition 4.2. We define Aj to be the learning rule which, given training samples .S, selects the L-layer network that
minimizes the population loss .2, over the set Pr,(.S) of all Pareto optimal functions for the bicriterion minimization
problem in Equation (6). That is, given training samples S,

A7 (S) € argmin %Ly, (f). (12)
fEPL(S)

Similarly, we define Az’w to be the bounded-width version of this idealized rule;

1.(9) € argmin Zg, (f). (13)
fePL,w(S)

Strictly speaking, A} is not a learning rule because it depends on knowledge of the true target distribution instead
of just samples from that distribution. It instead can be thought of as an oracle learning rule, based on side knowledge,
and thus a lower bound on any learning rule returning Pareto optimal points in Py, (.5).



Remark 4.3. For L = 2, Parhi and Nowak (2021); Unser (2023) show the infimum in Equation (9) is attained. For
L > 2,itis an open %uestion whether this infimum is attained. If it is not, one can choose a value of « arbitrarily close
to 1 and consider A7 instead of A9, for which our results still hold. For A%Z (S) to exist, we also need w to be
sufficiently large. For example, it suffices that w is large enough for interpolation of the samples to be possible (see, e.g.,
Yun et al. (2019)). It is also possible that the argmins in Definition 4.2 are not attained. While we state the definition in
terms of minimizing the population loss, our results hold even if A} is replaced by any rule that outputs a function on
the Pareto frontier.

In our main results, we equip Alice with A% to give her the best possible choice of learning with a depth-2 network.
However, we allow Bob to use the weaker learning rule A4 or even A?;“.

Ri(f)
N
@it Fulf) \Q '
inf R *
PRESRE I O .
> Zs (f)
0 b

Figure 1: Visualization of A (S), AeL’O‘ (S), and A% (S). The red shaded area represents the set of possible values
of (ZLs (f),Rr(f)) where f is represented by an L-layer network. The red curves form the Pareto frontier P (.5).
Minimizing the population loss .Zg, over the Pareto frontier yields A} (5), represented by the star. In green is the
vector [1, \] T and lines normal to it. These normal lines form level sets of Zs (f) + ARL(f). Notice the black dot on
the Pareto frontier, which represents A% (.S). The output of A% (S) corresponds to min sepr, Ls (f) + ARL(f). The
purple shaded region shows the possible outputs of AaL’a (S), which are all a-close to AY (9).

5 Main Results: Norm-Based Depth Separation in Learning

We now state our two main theorems. Theorem 5.1 says that there is a family of functions that Ag (i.e., Bob) can learn
with sample complexity that is polynomial in d but .43 (i.e., Alice) needs the number of samples to grow exponentially
with d in order to learn. Theorem 5.2 ensures that the reverse does not occur; families of distributions that .43 can learn
with polynomial sample complexity can also be learned with polynomial sample complexity using .49. Both results still
hold even when we relax Bob’s depth-3 learning rule from Ag to Ag’a. For ease of presentation, we consider « to be a
small constant, e.g., a = 2.

Theorem 5.1 (Depth Separation in Learning). There is a family of distributions (24)52 o on Xy x [—1,1] defined as
x ~ Uniform(Xy) and y|x = fq(x) for some function fq : X4 — [—1, 1] such that the following holds.

1. There are real numbers dy > 0 and Cy > 0, such that if d > do and |S| < 219, then Eg[ Ly, (A3(5))] >
0.0001.

2. Foralle,6 >0, if0 = 5 and |S| > O (%) , then %4,(A4(S)) < & with probability at least 1 — 6.

Furthermore, with a fixed constant o« > 1, £, (,Ag’a(S)) < & with probability at least 1 — § where now the
big-O suppresses a constant that depends on a.



Theorem 5.2 (No Reverse Depth Separation in Learning). Consider a distribution 94 on Xg x [—1,1] defined as
x ~ Uniform(X,) and y|lx = f4(x) for some function f; : Xy — [—1,1]. Assume that there is some sample
complexity function mo(g) such that BEg[Lg,(A5(S))] < € whenever |S| > ma(e).

Foralle,§ > 0,if0 = £ and |S| > ms(e,d), then Lo, (A3(S)) < e with probability at least 1 — &, where the

sample complexity mg is
d+3

6
ms(e,6) =0 (5_2 (d +ma (&) ) log 1/5) . (14)

Furthermore, with a fixed constant o > 1, Ly, (Ag’a(S)) < & with probability at least 1 — § where now the big-O
suppresses a constant that depends on o.

In particular, if we have a family of such distributions (2q)32 , and mqy grows polynomially with d, then mg also
grows polynomially with d.

Remark 5.3. Theorems 5.1 and 5.2 are based on loose bounds. We conjecture that smaller sample complexities for
depth-3 learning are possible in both results. Additionally, larger lower bounds on generalization for depth-2 learning
are possible in Theorem 5.1.

Remark 5.4. We can generalize these results to networks of bounded widths. In Theorem 5.1, Part 1 holds for A3
as long as the width is at least three times the sample size, i.e., w > 3|S|. Thus, if the sample size is polynomial in d,
then in sufficiently high dimensions, A3 , cannot generalize without width that is super-polynomial in d. Part 2 holds
for Ag:g aslongasw > O (5*1/ 247/ 2). That is, for depth-3 learning, we only require a width that is polynomial in
dimension. To generalize Theorem 5.2 to bounded-width networks, we can modify the premise to the assumption that

there is some minimal width function wy () such that Eg[.%5, (A5 ,(S))] < & whenever | S| > ma(e) and w > wo(e).

2(d+3)
d—1

tm2 (57)

then the width required for depth-3 learning is only polynomial in d.

The width w required for Ag:g to learn is then w > O (5 + d) . If mo grows polynomially with d,

Remark 5.5. The relatively restrictive assumptions on the distribution of @ in Theorem 5.2 can be relaxed. We use
these assumptions to bound the R5 cost of interpolating samples. Our particular construction would be straightforward
to generalize to other smooth distributions on X; or S*~!. Other constructions could yield bounds on the R cost of
interpolating samples from other smooth distributions, which would allow for generalizations of this result.

6 Proof of Depth Separation in Learning

For the proof of Theorem 5.1, we use a slight modification of the construction from Daniely (2017). We choose
fa(x) = 1b3q (\/E(:B(l), m(2)>> where v, : R — [—1, 1] denotes the sawtooth function that has n cycles in [—1, 1]

and is equal to zero outside [—1, 1]. See Figure 2 for a depiction of v,,. This target function is convenient for studying
depth separation in norm because the sawtooth function can be represented exactly with one hidden ReLU layer,
while the inner product can be approximated with another hidden ReLU layer. Thus, f; lends itself well to explicit
bounds on the R3 representation cost needed to approximate it. Since f, is a composition with an inner product, the
framework in Daniely (2017) allows us to get a bound on the Rs representation cost needed to approximate it as well.
See Lemmas A.4 and A.11.

As with other depth-separation constructions, the Lipschitz constant of f; is unbounded as d goes to infinity.
Obtaining depth separation as d goes to infinity but with a bounded Lipschitz constant is a yet unsolved challenge; see
Safran et al. (2019) for a discussion and evidence that current techniques cannot be used to show depth separation with
a bounded Lipschitz constant.

In the following two subsections, we sketch the proofs of Parts 1 and 2 of Theorem 5.1.

6.1 Proof of Theorem 5.1, Part 1

Proof. Using Corollary 3.3, the construction of Daniely (2017) requires the Ry cost to grow exponentially in d to
approximate the target in the L, norm. We adapt this construction to f; in Lemma A.4 to get more explicit bounds,
from which we conclude that there exist real numbers do, C' > 0 such that d > dy and Ro(f) < 2¢ implies that

g@d(f) > 50%7@



If d > 3 then by Lemma A.15, with probability at least % there exists an interpolant f € N, of the samples

S with representation cost bounded as Ry(f) < 32v/2|S |% The proof of Lemma A.15 relies on the fact that
with high probability the samples are sufficiently separated, and separated samples on X can be interpolated by a
depth-2 neural network with small norm parameters. Similar ways to construct interpolants exist in other settings;
see for example Section 5.2 in Ongie et al. (2019). Since A3(S) € P2(S) is Pareto optimal, we must have that
Ry(A3(S)) < Ry(f). Otherwise, A3(.S) would fail to be Pareto optimal because f would have a smaller sample loss

and a smaller representation cost. It follows that RQ(AQ( )) < 32V2|8 |% with probability at least 1.
Choose Cy = C'/4. Assume d > max(dy, 3, 5¢-) and | S| < 294, With probability at least §, we must have

Cyd(d+3)
YT < 904,

Ro(A3(9)) < 32v/2|8| 71 < 26142 (15)

Thus, Lo, (A5(S)) > s3> with probability at least 3. Therefore, by Markov’s inequality, Es[.%, (A5(S))] >
1 . 1s5qp4 O
50e27w2 2 =

6.2 Proof of Theorem 5.1, Part 2

We prove a slightly more general version of Part 2 in Theorem 5.1. Instead of just proving the result for A§ or Ag*“, we

prove the result for the relaxed, bounded width learning rule Aﬁ;g for any o > 1. This illuminates how the sample
complexity and width we require to guarantee learning depends on o and w.

Proof. Fixe,§ > 0and a > 1, and let ¢ = 5. In Lemma A.11 we show that for all K" € N there is a depth-3 neural

network fy  of width wg x := max(6d + 2,2Kd) such that || fg — fa x|lp~ = O (d?) and Rs(fa x;wa, k) =

O(d®/?). Hence Ls (far) = O( ) We choose K > O ( ) so that Zs (fa,x) < 6. Now suppose that
w > wq, k- Then

Ry(AG5(9)) < By(AG5(S)w) <o inf - Ry(giw) (16)
3,w
Zs(9)<0

< aRs(fax;w) = O(ad®?). (17

In Lemma A.19 we use the Rademacher complexity bounds from Neyshabur et al. (2015) to get the following
estimation error bound on f € N3 with respect to the target distribution Z; if R3(f) < M, then | L, (f)—ZLs (f)| <

O <M 34/ 10‘%31‘/ 5) with probability at least 1 — §. Applying this, we get

L (A53(9)) £ Zs (AG2(9)) + 1 Lo, (AT2(S)) — Zs (AL5(9))) | (18)
615
<afrof, [0 logl/o (19)
5]
with probability at least 1 — §. Therefore, with
6d15 loo 1 a7

|S] >O<a;g/5> andwzwd,K:O< O;) ; (20
we get Ly, (Agg(S)) < af + § = ¢ with probability at least 1 — 0. O

7 Proof of No Reverse Depth Separation in Learning

To prove Theorem 5.2, we need the following lemma. Roughly speaking, this lemma says that if .43(.S) can learn with
mo samples, then there is a good approximation of the target distribution that can be expressed as a depth-2 network
with parameters whose norm is at most polynomial in ms. The proof is a straightforward probabilistic argument, shown
in Appendix A.7.1.



Lemma 7.1. Consider a distribution 94 on X; x [—1,1] defined as « ~ Uniform(X,) and y|x = f4(x) for some
function fq : Xq — [—1, 1]. Assume that there is some sample complexity function ms(g) such that Eg| Lo, (A5(S))] <
d+3

(
d+3
£ whenever |S| > ma(e). Then for any € > 0, there is a function f- € N such that Ry (f-) < 100v/2my (§) ™" and
"?@(i(‘f&) <e

Using the previous lemma and Lemma 3.2, the rest of the proof of Theorem 5.2 follows from the estimation error
bound in Lemma A.19 derived from Rademacher complexity bounds and the fact that any function with small Ry-cost
also has small R3-cost. This fact is shown in Lemma A.2 by adding an identity layer. As in Section 6.2, we prove
Theorem 5.2 for the relaxed, bounded width learning rule Agfj for any @ > 1 to showcase the role of o and w, but this

proof also applies to .Ag’a and A§. Full details are in Appendix A.7.2.
8 Conclusion

This paper demonstrates that there are functions that can be learned with depth-3 networks when the number of samples
is polynomial in the input dimension d, but which cannot be learned with depth-2 networks unless the number of
samples is exponential in d. Furthermore, we establish that in our setting, there are no functions that can easily be
learned with depth-2 networks but which are difficult to learn with depth-3 networks. These results constitute the first
depth separation result in terms of learnability, as opposed to network width.

In addition, the analysis framework we develop in this paper establishes a connection between width-based depth
separation and learnability-based depth separation. As a result, our approach may be applied to other works on
width-based depth separation to establish new learnability-based depth separation results.

We note that while the bounds developed in this paper are sufficient to establish our main results on depth separation,
they may not be tight. For instance, the sample complexity bounds for depth-3 networks grow polynomially in d, but
the polynomial order is quite large. Alternative constructions might lead to tighter bounds. Furthermore, the family of
functions we use to establish our depth separation results does not have bounded Lipschitz constants; as d grows, our
functions become highly oscillatory. Since highly oscillatory functions may not be representative of many practical
predictors, it would be interesting to see whether there are families of functions with bounded Lipschitz constants
leading to depth separation in terms of sample complexity (we note that (Safran and Shamir, 2017) studied this question
but in the different context of width). A final potential limitation of our work is that it focuses on the output of learning
rules seeking (approximately) Pareto optimal solutions, but neglects optimization dynamics. A major open question is
how optimization dynamics affect depth separation.
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A Technical Lemmas & Proofs

Here, we present the technical details of the results in the main text.

A.1 Characterizing and bounding the representation cost

In this section, characterizations of and bounds on the representation cost that we use elsewhere in the appendix.
To ease notation in this section, we re-label parameters defining a depth-2 network fg as ¢ = (W, b, a, c) so that
fo(x) = Y7L, ar[w] T + bi]+ + ¢, where w) is the kth row of W and w; is the width of the hidden layer in the
parameterization.

The first result shows that the depth-2 representation cost reduces to the ¢!-norm of the outer-layer weights (plus
half the squared outer-layer bias) assuming the first-layer weights/biases are normalized:

Lemma A.1. Ler f € N3. Then

w1 2
c
R = inf ag| + = st JJwi|]* + > =1Vk € [w 21
2(f) ¢e%:f:f¢k§::1| K+ 5 lw||” + [bk| [wn] 1)
w1 (32
= inf a w2 + k]2 + —. 22
el 2o oIV I P T + @)
Similarly, given f € N, we have a bounded width version of this:
- c? 2 2
; — s.t. bp|*=1Vk e 23
Ba(fie) = ot S ol + 5 st ol + ] @3)
w1<w
a w2+ |b 2+— 24
M”ZMI i[> + [bx (24)
wl w

We omit a full proof for brevity, but the result is a trivial modification of Lemma 1 in Appendix A of Savarese
et al. (2019), extended to the case of regularized bias terms considered in this work. See also Boursier and Flammarion
(2023).

The next result says that functions that have small representation costs with depth-2 networks also have small
representation costs with depth-3 networks. The proof adds an identity layer to a depth-2 network to turn it into a
depth-3 network.

Lemma A.2. Given f € N3, we have f € N3 mmax(w,4q) and

Ry(fs max(e, Ad)) < 5 + S Ro(f30). es)

Proof. Assume that f € N5 ,. Fix a particular parameterization ¢ = (W, b, a,c) of f of width w. Since [x]; —
[—x]+ = @, we can rewrite f as a depth-3 neural network with an identity layer:

f(@) = fo(x) =a’ Wa+b], +c (26)
I

[[W -W] H ;ZJ w]++b ++c (27)

= fo: (), (28)

where ¢’ is this new parameterization:

) I
¢ = ({;:J 0, (W —-W] ,b,a7c) . (29)
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Notice that ¢’ has one hidden layer of width 4d and one hidden layer of width w, so f € Ngﬁmax(wAd). Further,

2

I 2
@12 = | 30 +[[[Ww =W, +lIbll5 + llal + |c? 0
Loal|| -
— dd+ 2| W% + |1b]2 + [lalf? + | o
< 4d + 2||¢|>. .
Therefore,
Ry(fimax(w, 4d)) = int 1217 -
Peds:f=Ffp 3
2
< o da+2el” "
¢E¢’2:f:f¢ 3
4d 4
BEETME 35
3 +3R2(f,LU) ( )
O

A.2 Approximating wide depth-2 networks by narrow networks with the same representation
cost

A.2.1 Proof of Lemma 3.2

Before proving Lemma 3.2 we give an auxiliary result needed for the proof. The following is a simplified version of
Lemma 1 from Barron (1993), originally credited to Maurey:

Lemma A.3 (Maurey’s Lemma). Let H be a Hilbert space with norm || - || g. Assume G C H is such that ||g|g < B
forall g € G. Suppose f is a non-zero function belonging to the closed convex hull of G. Then for any m € N and there
exists elements g1, ..., gm € G such that

We specialize this result to the Hilbert space H = L?(X,), and the subset G C L?(X};) of all functions consisting
of a single normalized ReLU unit. In particular, for any w € R?? and b € R, define uy, ,(z) = [w 'z + b]; and let
G C L?(X,) be the set of functions

G = {Ftwp: w e R* bR, [lw|* + [b|* = 1}.

Let y14 denote the uniform probability measure on Xy = S~1 x S, Note that for any g = Fuqw,p € G we have

|mﬁ2=[;mﬁw+mamam (36)
g/ |w "z + b|?dpg(x) (37)

Xa

T 2

- ] i e o
< /X (w2 + [B12)(1 + ]2 dpa() (39)
:3/‘Wu@):& (40)

Xa

where we used the fact that || z||? = 2 for all x € X,;. Therefore, for B = /3 we have ||g||z: < B forallg € G.
Now we give the proof of Lemma 3.2:
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Proof. Let f € N5 and € > 0 be given, and suppose w € N is such that w > 3Rz (f)?/e2. Choose § with 0 < § < 1 to
be any constant satisfying w > (1+6)23Ra(f)? /€, and let f(z) = Z,If:l ar[w] T +bg] 1 +c with [|wy|?+|bx]? = 1
for all k& € [K] be any realization of f whose parameter cost is within a factor of (1 + §) of the infimum in Lemma A.1,
ie, (1 +0)Ra(f) > Zszl lax| + % Let A = 2521 |ak|, and define fo = (f — ¢)/A. Then we can write
fo(x)=>", Yisk[w] @ + by] where sj, = sign(a) and 4y, = |ay|/A for all k. This shows fj is in the convex hull
of G, since fo = >, Y9k With g, = Sg U, b, € Gand v, >0, ", 7 = 1.

Therefore, by Lemma A.3, there exists a function fy of the form fo(z) = 1377 5[w/ @ + bi]s where
[|[w||? 4 |br|? = 1 and 5;, € {—1,1}, such that

V3 €

I1fo=holle> < 7= < G mmTT

Multiplying both sides above by A gives

- Ae Ae
I(f —¢) = Afollz> < ED0) < = <e

Defining f = Afy + ¢, we have ~
||f - f”L2 < €,
where f(xz) = S skAlw x + br]+ + c is realizable as a depth-two ReLU network with width at most w. In
particular, with the choice of weights ¢p = (W, b, a, ¢) with wy, := /A/w Wy, by, := b/ Ajw, ag = sk \/AJw, for
~ 2
all k € [w], we have f = fg with 1212 — A 4 £ < (14 §)Ry(f) < 2Ry (f), and s0 ||¢||2 < 4R, (f). Finally, the

inequality ||¢||%, < ||#||% holds for any vector ¢, which proves the claim. O

A.2.2 Proof of Corollary 3.3

Proof. Let fq be the family of functions described in Lemma 3.1. First, to prove the depth-three result, set fa to be
equal to the approximating function fg € N5 described in Lemma 3.1. By a simple parameter count and the bounds on

the magnitudes of weights, we are guaranteed that R3(fg) < “¢“2 O(poly(d)/e).

Now, we prove the depth-two result. Set e = 10~%. By way of contrad1ct10n assume f,4 can be £/2- appr0x1mated
in L2-norm by a depth-two network fd such that R ( fd) is subexponential in d. Then Lemma 3.2 implies fd can be
€ /2-approximated by a depth-two network fd € N with Ry fd) subexponential in d, width w subexponential in d, and
weights uniformly bounded by 2¢ for sufficiently large d. Hence, by the triangle inequality, f; can be e-approximated
in L2-norm by the depth-two network fa for all d. But by the width-based depth separation result Lemma 3.1, we know
this is impossible since fa has width subexponential in d. Therefore, contrary to our assumption, it must be the case
that Ry (f4) is exponential in d. O

A.3 Approximating f, in the L?-norm requires exponential 2, cost

In this section we adapt the construction of Daniely (2017) to the target function

fal@) = voa (V@ 2®)) o
to prove that approximating f; in the L?-norm to even constant error requires Ry cost that is exponential in dimension:
Lemma A.4. There exist real numbers do, C' > 0 such that d > do and Ra(f) < 2¢% implies that || f — fa||3 > > 5052

After outlining the proof of this result, the remainder of this section establishes several auxiliary lemmas used in the
proof.

16



Proof. Similar to Daniely (2017), we let 14 denote the probability distribution obtained by pushing forward the uniform
measure on S?! via the mapping « — x;, and we use Ng.p, for the dimension of the set of spherical harmonics of
order n in d dimensions. Lemma A.5 adapts Theorem 4 in Daniely (2017) to show that for any n € N and any f € N3,

WARY(F) + 2l flle > /Nam <Ad,n<w3dw&->> - A'ﬂ;%) @)

where A, (34(V/d-)) is the distance in the L?(414)-norm of the function ¢ s /34(V/dt) to the closest polynomial of
degree less than n.

We choose n = 2d. In Lemma A.6, we show that if d is sufficiently large, then Ad’gd(lpgd(f ) >
sawtooth function is bounded away from being a polynomial of degree 2d — 1. If || f — fal|5. <
reverse triangle inequality

then by the

506271'2 ’

[fllee <l fallze + If = fallpe <1+ —— 5\@ - (43)
Plugging this all into Equation (42), we get
2 N,
AVBRy(f) +2+ > V-4 (44)

5\/§e7r — 10er

whenever || f — f4||22 < z5==. As shown in Lemma A.7, Ny 24 > 2¢ for sufficiently large d. We conclude that there
exist real numbers do, C' > 0 such that d > d and Ry (f) < 29? implies that || f — f4[|22 > s55=. O

Lemma A.5. Consider a distribution P on Xyg x [—1,1] defined as

@ ~ Uniform(Xy) (45)
ylz = fa(z) (46)

for some function inner-product fq : Xy — [—1,1] defined as fq(x) = gq ((sr:(l), x?)). Then for all f € N> and
n €N,

(47)

I = Jall2 > Aan(oa) (Ad,n@d) _AVBRy() + 2f||m>

Ndn

)

where Ay, (ga) is the distance in the L*(p4)-norm of the function t — g4(t) to the closest polynomial of degree less
than n.

Proof. Let ¢ = (W, b, a,c) be an arbitrary parameterization of f with ||wg||3 + |bx|? = 1 for each unit k. That is,
flx) =3, ax [w,ja: + bk} L Te We now upper bound the L?-norm of each ReLU unit in ¢. By Cauchy-Schwarz,
for all x € X; we have

wl @+ bel < /lwil3 + b2/l ll3 +1 = V5. (48)
Thus
2

Hak [wl;r : +bk:|+HL2 = \/Emeniform(Xd) [ai [w];rw + bk] +:| < \/§|ak| (49)

Additionally,
lellzz = Hf Zak by, (50)

L2
< Il +Z Hak wi b, || 51)
k
< fllgz + V3 laxl- (52)
k
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By Theorem 4 in Daniely (2017),

25 || [w] - 0] ||, + 2lelleo

If = fall72 = Adn(ga) | Adnlga) — N (53)
2 2 +4v3 .
2 Ad,n(gd) (Adm,(gd) o HfHL _\F/%Zk |a/k|> (54)

We now take the supremum of the right-hand side of (54) over all such parameterizations ¢. By Lemma A.1, this gives
the desired result. O

The next lemma is analogous to (Daniely, 2017, Lemma 5) but for the sawtooth function instead of a sinusoid.

Lemma A.6. If d is sufficiently large, then Ag24(Y3a(Vd-) > ==

Sem

Proof. By definition,

Adpa(hza(Vd) = pe]RI[B;i?I(li—l] [¥3a(Vd ) = pll L2 () (55)
where R[z; 2d — 1] denotes the set of polynomials of degree less than 2d and dp4(t) := %(1 - tg)dz;s. As
AT

shown in the proof of (Daniely, 2017, Lemma 5), for |¢| < % and d sufficiently large, we have dj,(t) > d “and for

2em’
all p € R[z;2d — 1] andn > 2d — 1,

1
ln (V) — pl2,) = / (@ (VD) = p(0) a0 (56)
q-1/2
> YT (i) - ple) 57)
en J_gqg-1/2
1
= 5o |l = ple/ V) 58)

Consider the intervals J; = (—1+ 22, —1 4 21) j = 1,...n, of width 2/n. Each interval contains a full cycle of the
sawtooth function. Observe that p(t/+/d) is a polynomial of degree at most 2d — 1, and so it has at most 2d — 1 roots
in [—1,1]. On at least n — 2d + 1 of the intervals I;, the polynomial p(t/+/d) does not change signs. On each interval
I; where p(t/ \/d) does not change signs, 1), is positive on half of I; and negative on the other half of I;. Thus, on at
least one subinterval of I; of width 1/n, 1,,(t) has the same sign as p(t/+/d). It follows that

1 1/n
[ )= sV = 204 1) [ v 59)
—1 0
1/2n
=2(n—2d+ 1)/ (—2nt)2dt (60)
0

=2(n—2d+1)(2n)? 1
(0= 20+ (20 g 61
_n- 2d+1 62)

3n

where the first equality comes from the symmetry in t,. Thus ||, (Vd -) — p|2. (i) = n=2dtl n particular,

choosing n = 3d gives

d+1 1 1
Agoa(Pa(Vd)? >

> > . 63
~ 18dem — 18em T 25e272 63)

O
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Lemma A.7. Ngoq > 24 for sufficiently large d.
Proof. The quantity Ng ,, is defined to be the dimension of the set of spherical harmonics of order 7 in d dimensions:

@n+d—2)(n+d—3)!

Nan = 64
d’ l(d—2)! ©4)
Using Stirling’s approximation,
lim logy(Na2d) lim log,(4d + d — 2) + logy(2d 4+ d — 3)! — log,(2d)! — log, (d — 2)!
d— o0 d o d—o0 d
~ lim (3d — 3)log,(3d — 3) — (2d) logy(2d) — (d — 2) logy(d — 2)
o d—o0 d
< lim (3d — 3) logy(2d) — (2d) log,(2d) — (d — 2) log,(d)
d—o0 d
~ lim dlog,(2d) — dlogy(d) _ 1L
d—o0 d
Therefore there exists a dy such that d > d implies W > 1. O

A.4 Approximating f; in the L°°-norm with polynomial R3; Cost

In this section, we show that there is a depth-3 network f x that well approximates fg(x) = 134 (ﬁ(w(l), x(?)
and bound its R3 cost. The sawtooth function 1), can be expressed as a depth-2 network of width 2n + 2 as follows:
2 — 2j —1 o 2j —1
Yn(t) = —2n[t + 1)1 + 2nft — 1] +4n >y (-1) t— 22— (=1t = . (65)
+ +

4 2n 2n
j=1

Sawtooth Function ¢, (t), n =4

1.0

0.5 1

0.0 1

Un(t)

—0.5

—1.0 A

—-1.0 —0.5 0.0 0.5 1.0

Figure 2: The sawtooth function ¢, : R — [—1, 1] with n = 4. The function 1),, has n cycles in [—1, 1] and is equal to
zero outside [—1, 1].

Lemma A.8. For all scalars 3 > 0 and n € N, there are vectors a,u,q € R*"*2 such that 1,,(ft) = a ' [ut + q],
u'q=0, |lul| =1, and |a|® + ||q|* = O(n*p* + 872).
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Proof. Denote the vector of all ones by 1. Using Equation (65), define vectors ag, ug, qo € R?"*2 so that 1, (5t) =
ag [uot + o]+ where uy = 31,

E E n— n— T

qo = [17 _17 _%7 %7 _Qib7 Qin? R _22n1’ 22711] ; (66)

and T
ag = [7271, 2n, +4dn, x4dn, .., =£dn, :|:4n] . 67)

Observe that

luol|* = (2n + 2)5* (68)
lgoll* < (2. +2) (69)
llaoll® < (2n + 2)16n2. (70)
Letu = o, g = HUOH’ and a = ||ug||ag. Then v, (3t) = a'[ut + q], by the homogeneity of ReLU. We also

observe that ||u|| = 1 and u" g = 0. Finally,

lall® + llql* < (2n+2)16n°5% + 872 = O(n" B> + 572). (71)

O

The next two lemmas allow us to get an approximation of the inner product by approximating the square function.
Lemma A.9. Forall s > 0and K € N, the function f5;X, . (t) == 22 - B+ [—t — E]4 with 2K ReLU

units satisfies

1 1
. s, K 2 2
bup]‘fsquare()_t |<s (K+K2>

te€[—s,s
Proof. Observe that f5;5,  (—t) = f&E (1), so it suffices to consider ¢ € [0, s]. Givent € [0, s], all of the [—¢— 2E],
terms in Ssqffare are equal to zero, and the [t — %]Jr terms are nonzero if and only if & < % That is,
LE)
25 sk
;éiu(are(t) = ? ; (t - K) :

”(";1) and the notation {z} := z — |z] € [0,1) to show that this quantity

is approximately t2; it is straightforward to verify that

s K _ o st s [Kt Kt _
square(t) t K KQ{ s s 1.

We use the summation formula " j=1J =

Thus,
st s (Kt Kt s?2 82
—t? = S — — 1) <=+ = 72
LR S o {(E A B S5 I
O
Lemma A.10. The function
-
€;
znner Z square (\[ |:61:| Jﬁ) -1 (73)
satisfies
1
K W 22 < 2d< ) (74)
su mner s 14 ‘
S [ £ () — <24 ( 5+
Further, for any scalar 3 > 0, the function B~ fK () is in No2rcq and
Ro (57" finer(%); 2Kd) = O(dB~" + 57%). (75)
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Proof. Fix x € X. Similarly to Corollary 7 in Daniely (2017), observe that

Additionally,

Then

d 1 Je T 1 |e T ?
K 1) .2 L oe; e
sup finner T T < sup fs uare |: :| L |: :| T
xEXy | ( ) < >| mEXdzz; a <\/§ €; \/E €;
<d sup

f@quare( ) - t2’
[t|<v2

1 1
<
(5 + 32 )-

Now fix 8 > 0. Since
1 d €; T 1
ﬁ mvner Z square ( |:ei:| .’13) - B
d K T T
; Y2k 1 [e; V2k 1
Zkz[ o] - K++[ﬂ{ei] mK] 3

we see that 371 fX  (x) € N .2kq. Finally, we apply Lemma A.1 to get

mner

w\% :

d K
442 2k2 1
-1 K . < E E - _
R2(B znner(w)72Kd) = Pt BK 1+ K2 + 2ﬂ2

Finally, we use to construct fy x and bound its R3 cost.

znner

(76)

(77)

(78)

(79)

Lemma A.11. Ler fy(x) = 134 (\/E(ﬂS(l), x(2)>). For all K € N, there is a depth-3 neural network fq i of width

Wd, K = maX(Gd + 2, 2Kd) such that ||fd - fd,KHLOO =0 (@?) and Rg(fd,K;wd7K) = O(ds/Q).

Proof. Choose fy ic(x) := 34(Vdf[, .. (x)), which can be expressed as a depth-3 network with hidden widths 2K d

and 6d + 2. For all ® € X;, we use the fact that 1),, is 2n-Lipschitz to see that
Hfd - fd7K||L°° = SU.p |w3d(\/gfi{§ner($)) - w3d(\/g<w(1)7 113(2)>>|
TEX,

reXy

1
< 12d°/° —
<124 (K+K2)
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We now bound R3(fq i;wq ). Notice that fy x can be expressed as fy x = h o g where we set h : R — R to
be h(t) = th3q4(v/dBt) and g : Xy — Rtobe g(x) = B~ fE _ (x) where 8 > 0 is a value we will optimize over

nner

later. By Lemma A.8 there are vectors a,u,q € R?"*+2 such that h(t) = a'[ut + q]4,u'q = 0, |[ulj2 = 1, and
lal3 +llqll3 = O(d®B% + p2d ).

Let ¢, = (W, b, v, c) be an arbitrary parameterization of g of width 2Kd, so that g(xz) = v [Wx + b]; + c.
This gives a parameterization ¢ of f4 k as

fax (@) =a'[uv" Wz + bl + (cu+ q);.
Using the properties of a, u and g, we see that
o417 = llall3 + lul3 03 + W IE + 1Bl + c*|l]3 + llqll3 (80)
= O(d 3 +572d71) + |1y (81)

Minimizing over parameterizations and using Lemma A.10, we get

=4 _ _ 2
Ry(fariwar) <O B +B72d7 ") + 3 Fa(9: 2Kd) (82)
=0(d°B +p72d " +dB 7 +872) (83)
Choosing 3 = d=°/* gives R3(fa1c;wa.rx) = O(d®/?). None of the constants hidden in the big-O depend on K. [

A.5 Existence of interpolants with mild 7, cost

In this section, we will prove that with high probability over the samples, an interpolant exists with Ry cost that depends
only mildly on the number of samples (Lemma A.15). To do this, we show that with high probability the samples are
sufficiently separated (Lemma A.13), and then show that separated samples on Xz can each be assigned a hyperplane
that is sufficiently far away from any other sample (Lemma A.14). We start with the following simple bound on the
Beta function.

Lemma A.12. Foralld > 3,

d—1 1\ _ 27
B{——,=-] > . 84
( 2 ’2) ~d-1 %)
Proof. Using the identity 2I'(z) = I'(z + 1) and the fact that I'(z) is an increasing function on the domain z > 2, we
see that s e 1 .
d-1 1\ SEhrd) I r
(d—l)B(,):Z 2 2 2 -9~ 2 > 2/7. (85)
2 2 r'(4) r'(4)
O
Lemma A.13. Let x4, ..., &, be i.i.d. samples from Uniform(Xy). Then forn < 1,
Plmin fl; — ;]2 < n) < m2n?t
i#]
Proof. We first consider the distance between 21 and xo. Since Hazgl) - wgl) l2 < |l&1 — @2||2 it follows that
P(||z; — <n) <Pzt — 2P|, < 86
(lzr —@alla < n) <Pz — 2572 < 7). (86)
As shown in Sidiropoulos (2014)), the probability density function of ||ac§1) — mél) |2 is
N
2 _ 7 2
n <77 - T)
P(laf” — a5 lo = n) = — iy (87)
B(%3)
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Integrating and using the bound on the Beta function from Lemma A.12, we get

d—3
1 K N\ T
P(|lzV — 2V, < :7/15 - dt 88
(Hml Ty ||2 = 77) B(%l,%) o 4 ( )
d—1 [" ds
SN t(t?) ® at (89)
0
d—1 ["
=57 424t (90)
0
< it 91)

Finally, there are (7;) pairwise distances between the samples, so we can use the union bound to get

. m _
Pl s~ @yl < ) < ('3 )Pl = ol < ) < . )

O

Lemma A.14. For any finite set of points {x; };”:1 C X, that are n-separated, there exists a unit vector v; € R2¢ for

all j € [m)] such that ; is contained in the hyperplane {x € R* 'vam =2} and x; is the only point contained in
2
the set T := {x € R24 . |va;c - \/§| < 27\7—5}

Proof. Assume {z;}*; C Xy and min;; ||@; — ;|2 > n. Choose v; = %:cj. Clearly ||v;]|2 = 1, and

1
vf@; = el = V2 93)
If ¢ # j, then observe that
0 < e — a3 = lail® + ) - 22 25 = 4 - 22 a;. (94)
Hence,
o]z, — V2| = ‘1:(:va\/§‘ > ’7—2. (95)
J NoaEA = 2/2
O
We now have the pieces we need for the proof of Lemma A.15.
Lemma A.15. Consider a distribution Dy on Xy x [—1,1] defined as
x ~ Uniform(Xy) (96)
yle = fa(x) 97)

for some function fq : X — [—1,1]. Given a sample S = {(x;,y;)}*, of size m drawn i.i.d. from D, with

probability at least 1 — § there exists an interpolant f of S such that Ry (f) < 16v2|S]| =P

Proof. By Lemma A.13, the data is § T |S \d;fl separated with probability at least 1 — 0. For convenience, let

n= 5ﬁ|5|d_f21 and g = % Note that 1,79 € (0,1).
Consider the function z,, : R — R defined by z,, (t) = 1y ' ([t — 10]+ — 2[t]+ + [t + 10]+ ), which vanishes for
|t| > 7o, and is such that z,,(0) = 1. By Lemma A.14, for all j € [n] there exists a unit vector v; € R?? for all j € [n]

such that z; is contained in the hyperplane {z € R?? : vaa: =+2}and 5 1s the only training point contained in the
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set T := {z € R : [v] & — v/2| < no}. Define the ridge function r; : R** — R by the depth-2 network of width 3
as follows:

ri(®) = 290 (v @ — V2) =15 ([v] T — V2 — o4 — 2[0;33 — V2] + [’UjTl' — V2 +10]4). (98)

J J

Since the support of 7; coincides with T}, and v x; — v/2 = 0, we see that r(x;) = d;;. Therefore, the width 3|S5,

depth-2 network f(x) = Z‘jsz‘l y;7; () interpolates the samples.
Using Lemma A.1,

IS|

Ry (f:318]) < ; Jwslng ! ( L+ (V240 +2VB 41+ (V2 + W) 99)
< 8|S|ny " (100)
= 16V/2|S|T 57T, (101)

A.6 Estimation error bound for depth-3 networks

In this section, we present an estimation error bound (Lemma A.19) derived from the Rademacher complexity bounds
in Neyshabur et al. (2015). We begin with several auxiliary lemmas. Given a depth-3 network fg € N3, this first lemma
rewrites fg so that it will be compatible with the framework in Neyshabur et al. (2015).

Lemma A.16. If¢ = (Wl,bh Wg,bg,wg,bg) and %H(ﬁ”Q < M, then

fol@) = [w] bg]HW@T Sl mLL 102
with
L L (e

Proof. 1t is straightforward to verify Equation (102). Observe that

1,5 1 - > Wy b w b
Y (S [ S YN
2 Wy b w bl
SR I N R
3 H ||2 0 1|, 0 gl
where the second inequality comes from the AM-GM inequality. O

We now apply Theorem 1 in Neyshabur et al. (2015) to get a bound on the Rademacher complexity of the set of
depth-3 networks with representation cost bounded by M with respect to Uniform(X;). We use V27 to denote this set:

N = {f € N3: Rs(f) < M}. (103)

Given a function class H, we write %, (H; (x;)!",) for the empirical Rademacher complexity with respect to samples

(z;)7,. Thatis,
> &ih(w)
i=1

where § ~ {£1}" denotes that each entry in { is an iid draw from Uniform{+1}. We write Zx (H) for the
Rademacher complexity of H with respect to m i.i.d. samples from Uniform(Xy):

Rxyp(H) =E

<%m(,}-{; (ml)yil) = E&"‘{il}m [

] (104)

sup —
heH M

[P (M ()21 (105)

()™, iLdUniform(Xd)
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Lemma A.17 (Rademacher Complexity Bound). Zxm(N3') = O (Mg/z )

mi/2

Proof. Theorem 1 in Neyshabur et al. (2015) bounds the empirical Rademacher complexity of

NZSETP = {f 1 RP S R|f(2) = wg [Wa Wizl ], [ws[lz|Wal[p[Wil|r < 7} (106)

Y22 <y

as
< 4v2y max; ||zl 2

ST m

By Lemma A.16, NM C ./\f,i’;gi;:D with D =2d +1and v = (M + %)3/2. Therefore,

4\/5 (M =+ %)3/2 max; v/ 1 + ||.’131||§
vm '

where we have replaced ||z;||2 with \/1 + ||z;||3 because N is embedded in

TN (i)i)

Y22<7

(107)

R (N33 (i)i2y) <

/Bdim=D
Y22 <y

zcR¥ w0 [x" 1] T € R24+1 | Since all samples x; ~ Uniform(X,) have norm v/2, we get

by extending in the input

42 (M +2)** /3 MBI
%X;L(Ngfw)ﬁ \/775’ :O(m1/2>.

The other piece we need for an estimation error bound is to uniformly bound || f4 — h||z over NM.
Lemma A.18. If fq : Xq — [=1,1], then supyepm || fa — hl|pe = O(M?3/?).

Proof. It h € N, then by Lemma A.16,

o=t o [[% 4] 4] ]

for some parameterization ¢ = (W1, by, Wa, by, w3, bs) with

oL

+

2\ 3/2
S(M+> .
P 3

Because | AB||r < ||A||r||B||r and ||[A]+||7 < || Al r, we see that for € Xy,

5 IR =

0 1 3
2\ %2 ,
sup o = Hlu= < s+ sup Thll= <145 (04 3) " =0,
eNM heNM

[[wg bs], 0o 1 0o 1

F

h(@)] < ||[w]  bs]]], 1

W, by
0

F F 2

This shows that

h
O

Using Lemmas A.17 and A.18, standard Rademacher complexity arguments yield an estimation error bound over
NM  as shown in the following lemma.
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Lemma A.19. Consider a distribution Dy on Xy x [—1,1] defined as

x ~ Uniform(X}) (108)
ylz = fa(x) (109)
for some function fq: Xy — [—1,1]. If f € N3 with R3(f) < M, then

|- Lo, (f) — ZLs (f)] <O <M3,/10|g51|/5) (110)

with probability at least 1 — § over samples S drawn i.i.d. from 9.

Proof. We apply the properties of Rademacher complexity (see for example Theorem 12 in Bartlett and Mendelson
(2001) and Theorem 4.10 in Wainwright (2019)) to give an estimation error bound over N- 3M as follows. Define the loss
class Ly g, = {(h — f4)? + h € N}, With probability at least 1 — 6,

suppenm|ZL2,(h) — ZLs (h) | (111)
log(1/6
§0<%>X¢(£N;f,fd)+ loell/d) ||fdh||%oo> (112)
m heNM
log(1/6
so<sup (1 = hlaoe) (g (A + 1/m) 4+ LD |fd—h%m). (113)
heNM m. penM

Plugging in the bounds from Lemmas A.17 and A.18, this becomes

sup | Lo, (h) —ZLs(h)| =0 (M%/logl/é) : (114)
heNM m

A.7 Full Proof of No Reverse Depth Separation
A.7.1 Proof of Lemma 7.1

Proof. Fix € > 0. Let S be a sample from %, of size mo (%) As in the proof of Theorem 5.1 Part 1, we rely
on the existence of an interpolant. By Lemma A.15, with probability at least 0.6 there is an interpolant fs € Ns

. a+3
of the samples S with Ry (fs) < 100v2my (5) " . Because A5(S) € P3(S) is Pareto optimal, it follows that
Ro(A3(S)) < Ry(fs). We conclude that

P (32(,4;(5)) > 100v/2ms (g) ‘(ﬁ) <0.4.

On the other hand, since Eg[.Z5, (A5(S5))] < £ whenever S| > ms (§), it follows from Markov’s inequality that

P (L, (A3(S)) > €) < 0.5. (115)
Therefore, ,
p (zgd(A;(S)) > £ or Ro(A3(S)) > 100v/2ms (g) t) <09<1. (116)
We conclude that there is some sample S, from Z; of size mo (%) such that
Lo (A5(S.)) < € and Ro(A3(S.)) < 100v/2ms (g) =3 (117)
We choose f. = A3(S:). O
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A.7.2 Proof of Theorem 5.2 (No Reverse Depth Separation)

Proof. Fix €,6 > 0 and @ > 1. Let § = 5. Under the assumptions of the theorem, Lemma 7.1 tells us there is a

d+3
function fy € N3 such that £y, (fo) < 0/8 and Ra(fs) < O (m2 (32%) dl) . Let
2(d+3)

d—1 o

_UR(f)? _ mz(mg | (118)

Wo = 9

Lemma 3.2 allows us to approximate fy — and thus Z; — with width ws; there is some fg € N27w2 such that

Ro(fo;wa) < Ro(fe) and || fo — follz> < \/0/8. Thus,
Loy (fo) <2 (-i”@d,(fe) +|.fo — fe”%z) <0/2. (119)

If w > max(ws, 4d), then Lemma A.2 tells us that fg S Ng,w and

~ 4d 4
Ry(fo;w) < 5 + 3R2(fe,wz) (120)
4d
< §+32(f9) (121)
e\
:O<d+m2(32 ) ) (122)
By the estimation error bound in Lemma A.19 and the union bound, with probability at least 1 — § we have that
o Ry(A35(S); w)0 log(1/5)
|25 (A52(5)) = Lo (AG2(8)| = (\/ ol 5 (123)
and
5 5 Rs(fo;w)0log(1/6
’Zs (fe) — f@d(fe)’ =0 \/ 3(foiw)log(1/9) | (124)
S|
If |S| > mg(e, d, ), where
AN
(d—i—mg (&) dl) log1/6
ms3 (57 57 Ot) =0 52 ) (125)
then Equations (122) and (124) imply that ‘fs (fg) — Zg, (fg)‘ < 0/2, and so Zs (fg) < 6. Hence
Ry(ATL(S)w) Sa inf  Ra(fiw) (126)
ZLs(f)<0
< aRs(fo;w) (127)

:O(a (d+m2(3; )??)). (128)

By Equations (123) and (128), if |:S| > ms/(e, d, «) then ‘.Zs (Agg(S)) — f@d(Agﬁ(S))‘ < §. Therefore .Z, (Agg(S)) <
afl + 5§ =e¢. O
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