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Abstract

Understanding when neural networks can be learned efficiently is a fundamental
question in learning theory. Existing hardness results suggest that assumptions on
both the input distribution and the network’s weights are necessary for obtaining
efficient algorithms. Moreover, it was previously shown that depth-2 networks
can be efficiently learned under the assumptions that the input distribution is
Gaussian, and the weight matrix is non-degenerate. In this work, we study whether
such assumptions may suffice for learning deeper networks and prove negative
results. We show that learning depth-3 ReLU networks under the Gaussian input
distribution is hard even in the smoothed-analysis framework, where a random
noise is added to the network’s parameters. It implies that learning depth-3 ReLU
networks under the Gaussian distribution is hard even if the weight matrices are
non-degenerate. Moreover, we consider depth-2 networks, and show hardness of
learning in the smoothed-analysis framework, where both the network parameters
and the input distribution are smoothed. Our hardness results are under a well-
studied assumption on the existence of local pseudorandom generators.

1 Introduction

The computational complexity of learning neural networks has been extensively studied in recent
years, and there has been much effort in obtaining both upper bounds and hardness results. Neverthe-
less, it is still unclear when neural networks can be learned in polynomial time, namely, under what
assumptions provably efficient algorithms exist.

Existing results imply hardness already for learning depth-2 ReLU networks in the standard PAC
learning framework (e.g., [31, 14]). Thus, without any assumptions on the input distribution or the
network’s weights, efficient learning algorithms might not be achievable. Even when assuming that
the input distribution is Gaussian, strong hardness results were obtained for depth-3 ReLU networks
[16, 11], suggesting that assumptions merely on the input distribution might not suffice. Also, a
hardness result by Daniely and Vardi [15] shows that strong assumptions merely on the network’s
weights (without restricting the input distribution) might not suffice even for efficiently learning
depth-2 networks. The aforementioned hardness results hold already for improper learning, namely,
where the learning algorithm is allowed to return a hypothesis that does not belong to the considered
hypothesis class. Thus, a combination of assumptions on the input distribution and the network’s
weights seems to be necessary for obtaining efficient algorithms.
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Several polynomial-time algorithms for learning depth-2 neural networks have been obtained, under
assumptions on the input distribution and the network’s weights [6, 28, 43, 20, 7, 21]. In these
works, it is assumed that the weight matrices are non-degenerate. That is, they either assume that
the condition number of the weight matrix is bounded, or some similar non-degeneracy assumption.
Specifically, Awasthi et al. [6] gave an efficient algorithm for learning depth-2 (one-hidden-layer)
ReLU networks, that may include bias terms in the hidden neurons, under the assumption that
the input distribution is Gaussian, and the weight matrix is non-degenerate. The non-degeneracy
assumption holds w.h.p. if we add a small random noise to any weight matrix, and hence their
result implies efficient learning of depth-2 ReLU networks under the Gaussian distribution in the
smoothed-analysis framework.

The positive results on depth-2 networks suggest the following question:

Is there an efficient algorithm for learning ReLU networks of depth larger than 2
under the Gaussian distribution, where the weight matrices are non-degenerate, or
in the smoothed-analysis framework where the network’s parameters are smoothed?

In this work, we give a negative answer to this question, already for depth-3 networks1. We show
that learning depth-3 ReLU networks under the Gaussian distribution is hard even in the smoothed-
analysis framework, where a random noise is added to the network’s parameters. As a corollary, we
show that learning depth-3 ReLU networks under the Gaussian distribution is hard even if the weight
matrices are non-degenerate. Our hardness results are under a well-studied cryptographic assumption
on the existence of local pseudorandom generators (PRG) with polynomial stretch.

Motivated by the existing positive results on smoothed-analysis in depth-2 networks, we also study
whether learning depth-2 networks with smoothed parameters can be done under weak assumptions
on the input distribution. Specifically, we consider the following question:

Is there an efficient algorithm for learning depth-2 ReLU networks in the smoothed-
analysis framework, where both the network’s parameters and the input distribution
are smoothed?

We give a negative answer to this question, by showing hardness of learning depth-2 ReLU networks
where a random noise is added to the network’s parameters, and the input distribution on Rd is
obtained by smoothing an i.i.d. Bernoulli distribution on {0, 1}d. This hardness result is also under
the assumption on the existence of local PRGs.

Related work

Hardness of learning neural networks. Hardness of improperly learning depth-2 neural networks
follows from hardness of improperly learning DNFs or intersections of halfspaces, since these classes
can be expressed by depth-2 networks. Klivans and Sherstov [31] showed, assuming the hardness of
the shortest vector problem, that learning intersections of halfspaces is hard. Hardness of learning
DNF formulas is implied by Applebaum et al. [4] under a combination of two assumptions: the first is
related to the planted dense subgraph problem in hypergraphs, and the second is related to local PRGs.
Daniely and Shalev-Shwartz [14] showed hardness of learning DNFs under a common assumption,
namely, that refuting a random K-SAT formula is hard. All of the above results are distribution-free,
namely, they do not imply hardness of learning neural networks under some specific distribution.

Applebaum and Raykov [3] showed, under an assumption on a specific candidate for Goldreich’s
PRG (i.e., based on a predicate called XOR-MAJ), that learning depth-3 Boolean circuits under the
uniform distribution on the hypercube is hard. Daniely and Vardi [16] proved distribution-specific
hardness of learning Boolean circuits of depth-2 (namely, DNFs) and depth-3, under the assumpion
on the existence of local PRGs that we also use in this work. For DNF formulas, they showed
hardness of learning under a distribution where each component is drawn i.i.d. from a Bernoulli
distribution (which is non-uniform). For depth-3 Boolean circuits, they showed hardness of learning
under the uniform distribution on the hypercube. Since the Boolean circuits can be expressed by
ReLU networks of the same depth, these results readily translate to distribution-specific hardness
of learning neural networks. Chen et al. [11] showed hardness of learning depth-2 neural networks
under the uniform distribution on the hypercube, based on an assumption on the hardness of the

1We note that in our results the neural networks have the ReLU activation also in the output neuron.
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Learning with Rounding (LWR) problem. Note that the input distributions in the above results are
supported on the hypercube, and they do not immediately imply hardness of learning neural networks
under continuous distributions.

When considering the computational complexity of learning neural networks, perhaps the most
natural choice of an input distribution is the standard Gaussian distribution. Daniely and Vardi [16]
established hardness of learning depth-3 networks under this distribution, based on the assumpion on
the existence of local PRGs. Chen et al. [11] also showed hardness of learning depth-3 networks under
the Gaussian distribution, but their result holds already for networks that do not have an activation
function in the output neuron, and it is based on the LWR assumption. They also showed hardness of
learning constant depth ReLU networks from label queries (i.e., where the learner has the ability to
query the value of the target network at any desired input) under the Gaussian distribution, based
either on the decisional Diffie-Hellman or the Learning with Errors assumptions.

The above results suggest that assumptions on the input distribution might not suffice for achieving an
efficient algorithm for learning depth-3 neural networks. A natural question is whether assumptions
on the network weights may suffice. Daniely and Vardi [15] showed (under the assumption that
refuting a random K-SAT formula is hard) that distribution-free learning of depth-2 neural networks
is hard already if the weights are drawn from some “natural” distribution or satisfy some “natural”
properties. Thus, if we do not impose any assumptions on the input distribution, then even very strong
assumptions on the network’s weights do not suffice for efficient learning.

Several works in recent years have shown hardness of distribution-specific learning shallow neural
networks using gradient-methods or statistical query (SQ) algorithms [38, 39, 41, 24, 18, 11]. It is
worth noting that while the SQ framework captures some variants of the gradient-descent algorithm,
it does not capture, for example, stochastic gradient-descent (SGD), which examines training points
individually (see a discussion in [24]).

We emphasize that none of the above distribution-specific hardness results for neural networks (either
for improper learning or SQ learning) holds in the smoothed analysis framework or for non-degenerate
weights.

Learning neural networks in polynomial time. Awasthi et al. [6] gave a polynomial-time al-
gorithm for learning depth-2 (one-hidden-layer) ReLU networks, under the assumption that the
input distribution is Gaussian, and the weight matrix of the target network is non-degenerate. Their
algorithm is based on tensor decomposition, and it can handle bias terms in the hidden layer. Their
result also implies that depth-2 ReLU networks with Gaussian inputs can be learned efficiently under
the smoothed-analysis framework. Our work implies that such a result might not be possible in
depth-3 networks (with activation in the output neuron). Prior to [6], several works gave polynomial
time algorithms for learning depth-2 neural networks where the input distribution is Gaussian and the
weight matrix is non-degenerate [28, 43, 20, 21, 7], but these works either do not handle the presence
of bias terms or do not handle the ReLU activation. Some of the aforementioned works consider net-
works with multiple outputs, and allow certain non-Gaussian input distributions. Provable guarantees
for learning neural networks in super-polynomial time were given in [18, 12, 17, 22, 41, 42, 23].

2 Preliminaries

Notations. We use bold-face letters to denote vectors, e.g., x = (x1, . . . , xd). For a vector x and a
sequence S = (i1, . . . , ik) of k indices, we let xS = (xi1 , . . . , xik), i.e., the restriction of x to the
indices S. We denote by 1[·] the indicator function, for example 1[t ≥ 5] equals 1 if t ≥ 5 and 0
otherwise. For an integer d ≥ 1 we denote [d] = {1, . . . , d}. We denote by N (0, σ2) the normal
distribution with mean 0 and variance σ2, and by N (0,Σ) the multivariate normal distribution with
mean 0 and covariance matrix Σ. The identity matrix of size d is denoted by Id. For x ∈ Rd we
denote by ∥x∥ the Euclidean norm. We use poly(a1, . . . , an) to denote a polynomial in a1, . . . , an.

Local pseudorandom generators. An (n,m, k)-hypergraph is a hypergraph over n vertices [n]
with m hyperedges S1, . . . , Sm, each of cardinality k. Each hyperedge S = (i1, . . . , ik) is ordered,
and all the k members of a hyperedge are distinct. We let Gn,m,k be the distribution over such
hypergraphs in which a hypergraph is chosen by picking each hyperedge uniformly and independently
at random among all the possible n · (n−1) · . . . · (n−k+1) ordered hyperedges. Let P : {0, 1}k →
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{0, 1} be a predicate, and let G be a (n,m, k)-hypergraph. We call Goldreich’s pseudorandom
generator (PRG) [25] the function fP,G : {0, 1}n → {0, 1}m such that for x ∈ {0, 1}n, we have
fP,G(x) = (P (xS1), . . . , P (xSm)). The integer k is called the locality of the PRG. If k is a constant
then the PRG and the predicate P are called local. We say that the PRG has polynomial stretch if
m = ns for some constant s > 1. We let FP,n,m denote the collection of functions fP,G where G is
an (n,m, k)-hypergraph. We sample a function from FP,n,m by choosing a random hypergraph G
from Gn,m,k.

We denote by G R←− Gn,m,k the operation of sampling a hypergraph G from Gn,m,k, and by x
R←−

{0, 1}n the operation of sampling x from the uniform distribution on {0, 1}n. We say that FP,n,m

is ε-pseudorandom generator (ε-PRG) if for every polynomial-time probabilistic algorithm A the
distinguishing advantage∣∣∣∣∣∣ Pr

G
R←−Gn,m,k,x

R←−{0,1}n

[A(G, fP,G(x)) = 1]− Pr
G

R←−Gn,m,k,y
R←−{0,1}m

[A(G,y) = 1]

∣∣∣∣∣∣
is at most ε. Thus, the distinguisher A is given a random hypergraph G and a string y ∈ {0, 1}m,
and its goal is to distinguish between the case where y is chosen at random, and the case where y is a
random image of fP,G.

Our assumption is that local PRGs with polynomial stretch and constant distinguishing advantage
exist:
Assumption 2.1. For every constant s > 1, there exists a constant k and a predicate P : {0, 1}k →
{0, 1}, such that FP,n,ns is 1

3 -PRG.

We remark that the same assumption was used by Daniely and Vardi [16] to show hardness-of-learning
results. Local PRGs have been extensively studied in the last two decades. In particular, local PRGs
with polynomial stretch have shown to have remarkable applications, such as secure-computation with
constant computational overhead [27, 5], and general-purpose obfuscation based on constant degree
multilinear maps (cf. [33, 34]). Significant evidence for Assumption 2.1 was shown in Applebaum
[1]. Moreover, a concrete candidate for a local PRG, based on the XOR-MAJ predicate, was shown to
be secure against all known attacks [2, 13, 35, 3]. See [16] for further discussion on the assumption,
and on prior work regarding the relation between Goldreich’s PRG and hardness of learning.

Neural networks. We consider feedforward ReLU networks. Starting from an input x ∈ Rd, each
layer in the network is of the form z 7→ σ(Wiz+bi), where σ(a) = [a]+ = max{0, a} is the ReLU
activation which applies to vectors entry-wise, Wi is the weight matrix, and bi are the bias terms.
The weights vector of the j-th neuron in the i-th layer is the j-th row of Wi, and its outgoing-weights
vector is the j-th column of Wi+1. We define the depth of the network as the number of layers.
Unless stated otherwise, the output neuron also has a ReLU activation function. Note that a depth-k
network with activation in the output neuron has k non-linear layers. A neuron which is not an input
or output neuron is called a hidden neuron. We sometimes consider neural networks with multiple
outputs. The parameters of the neural network is the set of its weight matrices and bias vectors. We
often view the parameters as a vector θ ∈ Rp obtained by concatenating these matrices and vectors.
For B ≥ 0, we say that the parameters are B-bounded if the absolute values of all weights and biases
are at most B.

Learning neural networks and the smoothed-analysis framework. We first define neural net-
works learning under the standard PAC framework:
Definition 2.1 (Distribution-specific PAC learning). Learning depth-k neural networks under an
input distribution D on Rd is defined by the following framework:

1. An adversary chooses a set of B-bounded parameters θ ∈ Rp for a depth-k neural network
Nθ : Rd → R, as well as some ϵ > 0.

2. Consider an examples oracle, such that each example (x, y) ∈ Rd × R is drawn i.i.d. with
x ∼ D and y = Nθ(x). Then, given access to the examples oracle, the goal of the learn-
ing algorithm L is to return with probability at least 3

4 a hypothesis h : Rd → R such that

Ex∼D

[
(h(x)−Nθ(x))

2
]
≤ ϵ. We say that L is efficient if it runs in time poly(d, p,B, 1/ϵ).
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We consider learning in the smoothed-analysis framework [40], which is a popular paradigm for
analyzing non-worst-case computational complexity [36]. The smoothed-analysis framework has
been successfully applied to many learning problems (e.g., [6, 21, 30, 8, 9, 26, 19, 29, 10]). In the
smoothed-analysis setting, the target network is not purely controlled by an adversary. Instead, the
adversary can first generate an arbitrary network, and the parameters for this network (i.e., the weight
matrices and bias terms) will be randomly perturbed to yield a perturbed network. The algorithm
only needs to work with high probability on the perturbed network. This limits the power of the
adversary and prevents it from creating highly degenerate cases. Formally, we consider the following
framework (we note that a similar model was considered in [6, 21]):

Definition 2.2 (Learning with smoothed parameters). Learning depth-k neural networks with
smoothed parameters under an input distribution D is defined as follows:

1. An adversary chooses a set of B-bounded parameters θ ∈ Rp for a depth-k neural network
Nθ : Rd → R, as well as some τ, ϵ > 0.

2. A perturbed set of parameters θ̂ is obtained by a random perturbation to θ, namely, θ̂ = θ + ξ
for ξ ∼ N (0, τ2Ip).

3. Consider an examples oracle, such that each example (x, y) ∈ Rd × R is drawn i.i.d. with
x ∼ D and y = Nθ̂(x). Then, given access to the examples oracle, the goal of the learning
algorithm L is to return with probability at least 3

4 (over the random perturbation ξ and the

internal randomness of L) a hypothesis h : Rd → R such that Ex∼D

[(
h(x)−Nθ̂(x)

)2] ≤ ϵ.

We say that L is efficient if it runs in time poly(d, p,B, 1/ϵ, 1/τ).

Finally, we also consider a setting where both the parameters and the input distribution are smoothed:

Definition 2.3 (Learning with smoothed parameters and inputs). Learning depth-k neural networks
with smoothed parameters and inputs under an input distribution D is defined as follows:

1. An adversary chooses a set of B-bounded parameters θ ∈ Rp for a depth-k neural network
Nθ : Rd → R, as well as some τ, ω, ϵ > 0.

2. A perturbed set of parameters θ̂ is obtained by a random perturbation to θ, namely, θ̂ = θ + ξ

for ξ ∼ N (0, τ2Ip). Moreover, a smoothed input distribution D̂ is obtained from D, such that
x̂ ∼ D̂ is chosen by drawing x ∼ D and adding a random perturbation from N (0, ω2Id).

3. Consider an examples oracle, such that each example (x, y) ∈ Rd × R is drawn i.i.d. with
x ∼ D̂ and y = Nθ̂(x). Then, given access to the examples oracle, the goal of the learning
algorithm L is to return with probability at least 3

4 (over the random perturbation ξ and the

internal randomness of L) a hypothesis h : Rd → R such that Ex∼D̂

[(
h(x)−Nθ̂(x)

)2] ≤ ϵ.

We say that L is efficient if it runs in time poly(d, p,B, 1/ϵ, 1/τ, 1/ω).

We emphasize that all of the above definitions consider learning in the distribution-specific setting.
Thus, the learning algorithm may depend on the specific input distribution D.

3 Results

As we discussed in the introduction, there exist efficient algorithms for learning depth-2 (one-hidden-
layer) ReLU networks with smoothed parameters under the Gaussian distribution. We now show that
such a result may not be achieved for depth-3 networks:

Theorem 3.1. Under Assumption 2.1, there is no efficient algorithm that learns depth-3 networks
with smoothed parameters (in the sense of Definition 2.2) under the standard Gaussian distribution.

We prove the theorem in Section 4. Next, we conclude that learning depth-3 neural networks under
the Gaussian distribution on Rd is hard in the standard PAC framework even if all weight matrices
are non-degenerate, namely, when the minimal singular values of the weight matrices are lower
bounded by 1/ poly(d). As we discussed in the introduction, in one-hidden-layer networks with
similar assumptions there exist efficient learning algorithms.
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Corollary 3.1. Under Assumption 2.1, there is no efficient algorithm that learns depth-3 networks
(in the sense of Definition 2.1) under the standard Gaussian distribution on Rd, even if the smallest
singular value of each weight matrix is at least 1/ poly(d).

The proof of the above corollary follows from Theorem 3.1, using the fact that by adding a small
random perturbation to the weight matrices, we get w.h.p. non-degenerate matrices. Hence, an
efficient algorithm that learns non-degenerate networks suffices for obtaining an efficient algorithm
that learns under the smoothed analysis framework. See Appendix B for the formal proof.

The above hardness results consider depth-3 networks that include activation in the output neuron.
Thus, the networks have three non-linear layers. We remark that these results readily imply hardness
also for depth-4 networks without activation in the output, and hardness for depth-k networks for any
k > 3. We also note that the hardness results hold already for networks where all hidden layers are of
the same width, e.g., where all layers are of width d.

Theorem 3.1 gives a strong limitation on learning depth-3 networks in the smoothed-analysis frame-
work. Motivated by existing positive results on smoothed-analysis in depth-2 networks, we now study
whether learning depth-2 networks with smoothed parameters can be done under weak assumptions
on the input distribution. Specifically, we consider the case where both the parameters and the input
distribution are smoothed. We show that efficiently learning depth-2 networks may not be possible
with smoothed parameters where the input distribution on Rd is obtained by smoothing an i.i.d.
Bernoulli distribution on {0, 1}d.
Theorem 3.2. Under Assumption 2.1, there is no efficient algorithm that learns depth-2 networks
with smoothed parameters and inputs (in the sense of Definition 2.3), under the distribution D on
{0, 1}d where each coordinate is drawn i.i.d. from a Bernoulli distribution which takes the value 0
with probability 1√

d
.

We prove the theorem in Appendix C. The proof follows from similar ideas to the proof of Theo-
rem 3.1, which we discuss in the next section.

4 Proof of Theorem 3.1

The proof builds on a technique from Daniely and Vardi [16]. It follows by showing that an efficient
algorithm for learning depth-3 neural networks with smoothed parameters under the Gaussian
distribution can be used for breaking a local PRG. Intuitively, the main challenge in our proof
in comparison to [16] is that our reduction must handle the random noise which is added to the
parameters. Specifically, [16] define a certain examples oracle, and show that the examples returned
by the oracle are realizable by some neural network which depends on the unknown x ∈ {0, 1}n used
by the PRG. Since the network depends on this unknown x, some of the parameters of the network
are unknown, and hence it is non-trivial how to define an examples oracle which is realizable by a
perturbed network. Moreover, we need to handle this random perturbation without increasing the
network’s depth. For these reasons, our reduction is significantly different from [16].

We now provide the formal proof. The proof relies on several lemmas which we prove in Appendix A.
For a sufficiently large n, let D be the standard Gaussian distribution on Rn2

. Assume that there is a
poly(n)-time algorithm L that learns depth-3 neural networks with at most n2 hidden neurons and
parameter magnitudes bounded by n3, with smoothed parameters, under the distribution D, with
ϵ = 1

n , and τ = 1/ poly(n) that we will specify later. Letm(n) ≤ poly(n) be the sample complexity
of L, namely, L uses a sample of size at most m(n) and returns w.p. at least 3

4 a hypothesis h with

Ez∼D

[(
h(z)−Nθ̂(z)

)2] ≤ ϵ = 1
n , where Nθ̂ is the perturbed network. Let s > 1 be a constant

such that ns ≥ m(n) + n3 for every sufficiently large n. By Assumption 2.1, there exists a constant
k and a predicate P : {0, 1}k → {0, 1}, such that FP,n,ns is 1

3 -PRG. We will show an efficient
algorithm A with distinguishing advantage greater than 1

3 and thus reach a contradiction.

Throughout this proof, we will use the following notations. For a hyperedge S = (i1, . . . , ik) we
denote by zS ∈ {0, 1}kn the following encoding of S: the vector zS is a concatenation of k vectors
in {0, 1}n, such that the j-th vector has 0 in the ij-th coordinate and 1 elsewhere. Thus, zS consists
of k size-n slices, each encoding a member of S. For z ∈ {0, 1}kn, i ∈ [k] and j ∈ [n], we denote
zi,j = z(i−1)n+j . That is, zi,j is the j-th component in the i-th slice in z. For x ∈ {0, 1}n, let
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Px : {0, 1}kn → {0, 1} be such that for every hyperedge S we have Px(z
S) = P (xS). Let c be

such that Prt∼N (0,1)[t ≤ c] = 1
n . Let µ be the density of N (0, 1), let µ−(t) = n · 1[t ≤ c] · µ(t),

and let µ+ = n
n−1 · 1[t ≥ c] · µ(t). Note that µ−, µ+ are the densities of the restriction of µ to the

intervals t ≤ c and t ≥ c respectively. Let Ψ : Rkn → {0, 1}kn be a mapping such that for every
z′ ∈ Rkn and i ∈ [kn] we have Ψ(z′)i = 1[z′i ≥ c]. For z̃ ∈ Rn2

we denote z̃[kn] = (z̃1, . . . , z̃kn),
namely, the first kn components of z̃ (assuming n2 ≥ kn).

4.1 Defining the target network for L

Since our goal is to use the algorithm L for breaking PRGs, in this subsection we define a neural
network Ñ : Rn2 → R that we will later use as a target network for L. The network Ñ contains the
subnetworks N1, N2, N3 which we define below.

Let N1 be a depth-2 neural network with input dimension kn, at most n log(n) hidden neurons,
at most log(n) output neurons (with activations in the output neurons), and parameter magnitudes
bounded by n3 (all bounds are for a sufficiently large n), which satisfies the following. We denote
the set of output neurons of N1 by E1. Let z′ ∈ Rkn be an input to N1 such that Ψ(z′) = zS

for some hyperedge S, and assume that for every i ∈ [kn] we have z′i ̸∈
(
c, c+ 1

n2

)
. Fix some

x ∈ {0, 1}n. Then, for S with Px(z
S) = 0 the inputs to all output neurons E1 are at most −1, and

for S with Px(z
S) = 1 there exists a neuron in E1 with input at least 2. Recall that our definition of a

neuron’s input includes the addition of the bias term. The construction of the network N1 is given
in Lemma A.3. Intuitively, the network N1 consists of a layer that transforms w.h.p. the input z′ to
Ψ(z′) = zS , followed by a layer that satisfies the following: Building on a lemma from [16] which
shows that Px(z

S) can be computed by a DNF formula, we define a layer where each output neuron
corresponds to a term in the DNF formula, such that if the term evaluates to 0 then the input to the
neuron is at most −1, and otherwise it is at least 2. Note that the network N1 depends on x. However,
only the second layer depends on x, and thus given an input we may compute the first layer even
without knowing x. Let N ′

1 : Rkn → R be a depth-3 network with no activation in the output neuron,
obtained from N1 by summing the outputs from all neurons E1.

Let N2 be a depth-2 neural network with input dimension kn, at most n log(n) hidden neurons, at
most 2n output neurons, and parameter magnitudes bounded by n3 (for a sufficiently large n), which
satisfies the following. We denote the set of output neurons of N2 by E2. Let z′ ∈ Rkn be an input to
N2 such that for every i ∈ [kn] we have z′i ̸∈

(
c, c+ 1

n2

)
. If Ψ(z′) is an encoding of a hyperedge

then the inputs to all output neurons E2 are at most −1, and otherwise there exists a neuron in E2
with input at least 2. The construction of the network N2 is given in Lemma A.5. Intuitively, each
neuron in E2 is responsible for checking whether Ψ(z′) violates some requirement that must hold
in an encoding of a hyperedge. Let N ′

2 : Rkn → R be a depth-3 network with no activation in the
output neuron, obtained from N2 by summing the outputs from all neurons E2.

Let N3 be a depth-2 neural network with input dimension kn, at most n log(n) hidden neurons,
kn ≤ n log(n) output neurons, and parameter magnitudes bounded by n3 (for a sufficiently large
n), which satisfies the following. We denote the set of output neurons of N3 by E3. Let z′ ∈ Rkn be
an input to N3. If there exists i ∈ [kn] such that z′i ∈

(
c, c+ 1

n2

)
then there exists a neuron in E3

with input at least 2. Moreover, if for all i ∈ [kn] we have z′i ̸∈
(
c− 1

n2 , c+
2
n2

)
then the inputs to

all neurons in E3 are at most −1. The construction of the network N3 is straightforward and given
in Lemma A.6. Let N ′

3 : Rkn → R be a depth-3 neural network with no activation function in the
output neuron, obtained from N3 by summing the outputs from all neurons E3.

Let N ′ : Rkn → R be a depth-3 network obtained from N ′
1, N

′
2, N

′
3 as follows. For z′ ∈ Rkn

we have N ′(z′) = [1−N ′
1(z

′)−N ′
2(z

′)−N ′
3(z

′)]+. The network N ′ has at most n2 neurons,
and parameter magnitudes bounded by n3 (all bounds are for a sufficiently large n). Finally, let
Ñ : Rn2 → R be a depth-3 neural network such that Ñ(z̃) = N ′ (z̃[kn]).
4.2 Defining the noise magnitude τ and analyzing the perturbed network

In order to use the algorithm L w.r.t. some neural network with parameters θ, we need to implement
an examples oracle, such that the examples are labeled according to a neural network with parameters
θ + ξ, where ξ is a random perturbation. Specifically, we use L with an examples oracle where the
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labels correspond to a network N̂ : Rn2 → R, obtained from Ñ (w.r.t. an appropriate x ∈ {0, 1}n
in the construction of N1) by adding a small perturbation to the parameters. The perturbation is
such that we add i.i.d. noise to each parameter in Ñ , where the noise is distributed according to
N (0, τ2), and τ = 1/ poly(n) is small enough such that the following holds. Let fθ : Rn2 → R
be any depth-3 neural network parameterized by θ ∈ Rr for some r > 0 with at most n2 neurons,
and parameter magnitudes bounded by n3 (note that r is polynomial in n). Then w.p. at least 1− 1

n

over ξ ∼ N (0, τ2Ir), we have |ξi| ≤ 1
10 for all i ∈ [r], and the network fθ+ξ is such that for every

input z̃ ∈ Rn2

with ∥z̃∥ ≤ 2n and every neuron we have: Let a, b be the inputs to the neuron in
the computations fθ(z̃) and fθ+ξ(z̃) (respectively), then |a− b| ≤ 1

2 . Thus, τ is sufficiently small,
such that w.h.p. adding i.i.d. noise N (0, τ2) to each parameter does not change the inputs to the
neurons by more than 1

2 . Note that such an inverse-polynomial τ exists, since when the network size,
parameter magnitudes, and input size are bounded by some poly(n), then the input to each neuron in
fθ(z̃) is poly(n)-Lipschitz as a function of θ, and thus it suffices to choose τ that implies w.p. at
least 1− 1

n that ∥ξ∥ ≤ 1
q(n) for a sufficiently large polynomial q(n) (see Lemma A.7 for details).

Let θ̃ ∈ Rp be the parameters of the network Ñ . Recall that the parameters vector θ̃ is the
concatenation of all weight matrices and bias terms. Let θ̂ ∈ Rp be the parameters of N̂ , namely,
θ̂ = θ̃ + ξ where ξ ∼ N (0, τ2Ip). By our choice of τ and the construction of the networks
N1, N2, N3, w.p. at least 1 − 1

n over ξ, for every z̃ with ∥z̃∥ ≤ 2n, the inputs to the neurons
E1, E2, E3 in the computation N̂(z̃) satisfy the following properties, where we denote z′ = z̃[kn]:

(P1) If Ψ(z′) = zS for some hyperedge S, and for every i ∈ [kn] we have z′i ̸∈
(
c, c+ 1

n2

)
, then

the inputs to E1 satisfy: If Px(z
S) = 0 then the inputs to all neurons in E1 are at most − 1

2 , and
if Px(z

S) = 1 then there exists a neuron in E1 with input at least 3
2 .

(P2) If for every i ∈ [kn] we have z′i ̸∈
(
c, c+ 1

n2

)
, then the inputs to E2 satisfy: If Ψ(z′) is an

encoding of a hyperedge then the inputs to all neurons E2 are at most − 1
2 , and otherwise there

exists a neuron in E2 with input at least 3
2 .

(P3) The inputs to E3 satisfy: If there exists i ∈ [kn] such that z′i ∈
(
c, c+ 1

n2

)
then there exists a

neuron in E3 with input at least 3
2 , and if for all i ∈ [kn] we have z′i ̸∈

(
c− 1

n2 , c+
2
n2

)
then

the inputs to all neurons in E3 are at most − 1
2 .

4.3 Stating the algorithm A

Given a sequence (S1, y1), . . . , (Sns , yns), where S1, . . . , Sns are i.i.d. random hyperedges,
the algorithm A needs to distinguish whether y = (y1, . . . , yns) is random or that we have
y = (P (xS1

), . . . , P (xSns )) = (Px(z
S1), . . . , Px(z

Sns )) for a random x ∈ {0, 1}n. We let
S = ((zS1 , y1), . . . , (z

Sns , yns)).

We use the efficient algorithm L in order to obtain distinguishing advantage greater than 1
3 as follows.

Let ξ be a random perturbation, and let N̂ be the perturbed network as defined above, w.r.t. the
unknown x ∈ {0, 1}n. Note that given a perturbation ξ, only the weights in the second layer of the
subnetwork N1 in N̂ are unknown, since all other parameters do not depend on x. The algorithm A
runs L with the following examples oracle. In the i-th call, the oracle first draws z ∈ {0, 1}kn such
that each component is drawn i.i.d. from a Bernoulli distribution which takes the value 0 w.p. 1

n . If z
is an encoding of a hyperedge then the oracle replaces z with zSi . Then, the oracle chooses z′ ∈ Rkn

such that for each component j, if zj = 1 then z′j is drawn from µ+, and otherwise z′j is drawn from
µ−. Let z̃ ∈ Rn2

be such that z̃[kn] = z′, and the other n2 − kn components of z̃ are drawn i.i.d.
from N (0, 1). Note that the vector z̃ has the distribution D, due to the definitions of the densities µ+

and µ−, and since replacing an encoding of a random hyperedge by an encoding of another random
hyperedge does not change the distribution of z. Let b̂ ∈ R be the bias term of the output neuron of
N̂ . The oracle returns (z̃, ỹ), where the labels ỹ are chosen as follows:

• If Ψ(z′) is not an encoding of a hyperedge, then ỹ = 0.

• If Ψ(z′) is an encoding of a hyperedge:

8



– If z′ does not have components in the interval (c− 1
n2 , c+

2
n2 ), then if yi = 0 we set ỹ = b̂,

and if yi = 1 we set ỹ = 0.

– If z′ has a component in the interval (c, c+ 1
n2 ), then ỹ = 0.

– If z′ does not have components in the interval (c, c+ 1
n2 ), but has a component in the interval

(c− 1
n2 , c+

2
n2 ), then the label ỹ is determined as follows: If yi = 1 then ỹ = 0. If yi = 0,

we have: Let N̂3 be the network N̂ after omitting the neurons E1, E2 and their incoming and
outgoing weights. Then, we set ỹ = [b̂− N̂3(z̃)]+. Note that since only the second layer of
N1 depends on x, then we can compute N̂3(z̃) without knowing x.

Let h be the hypothesis returned by L. Recall that L uses at most m(n) examples, and hence S
contains at least n3 examples that L cannot view. We denote the indices of these examples by
I = {m(n) + 1, . . . ,m(n) + n3}, and the examples by SI = {(zSi , yi)}i∈I . By n3 additional
calls to the oracle, the algorithm A obtains the examples S̃I = {(z̃i, ỹi)}i∈I that correspond to SI .
Let h′ be a hypothesis such that for all z̃ ∈ Rn2

we have h′(z̃) = max{0,min{b̂, h(z̃)}}, thus,
for b̂ ≥ 0 the hypothesis h′ is obtained from h by clipping the output to the interval [0, b̂]. Let
ℓI(h

′) = 1
|I|
∑

i∈I(h
′(z̃i)− ỹi)2. Now, if ℓI(h′) ≤ 2

n , then A returns 1, and otherwise it returns 0.
We remark that the decision of our algorithm is based on h′ (rather than h) since we need the outputs
to be bounded, in order to allow using Hoeffding’s inequality in our analysis, which we discuss in the
next subsection.

4.4 Analyzing the algorithm A

Note that the algorithm A runs in poly(n) time. We now show that if S is pseudorandom then A
returns 1 w.p. greater than 2

3 , and if S is random then A returns 1 w.p. less than 1
3 .

We start with the case where S is pseudorandom. In Lemma A.8, we prove that if S is pseudoran-
dom then w.h.p. (over ξ ∼ N (0, τ2Ip) and the i.i.d. inputs z̃i ∼ D) the examples (z̃1, ỹ1), . . . ,

(z̃m(n)+n3 , ỹm(n)+n3) returned by the oracle are realized by N̂ . Thus, ỹi = N̂(z̃i) for all i. As we
show in the lemma, this claim follows by considering the definition of the oracle for the different
cases of (z̃i)[kn], and using Properties (P1)–(P3) to show that N̂ behaves similarly.

Recall that the algorithm L is such that w.p. at least 3
4 (over ξ ∼ N (0, τ2Ip), the i.i.d. inputs z̃i ∼ D,

and its internal randomness), given a size-m(n) dataset labeled by N̂ , it returns a hypothesis h such
that Ez̃∼D

[
(h(z̃)− N̂(z̃))2

]
≤ 1

n . By the definition of h′ and the construction of N̂ , if h has small

error then h′ also has small error, namely, we have Ez̃∼D

[
(h′(z̃)− N̂(z̃))2

]
≤ 1

n . In Lemma A.9

we use the above arguments and Hoeffding’s inequality over S̃I , and prove that w.p. greater than 2
3

we have ℓI(h′) ≤ 2
n .

Next, we consider the case where S is random. Let Z̃ ⊆ Rn2

be such that z̃ ∈ Z̃ iff z̃[kn] does not
have components in the interval (c − 1

n2 , c +
2
n2 ), and Ψ(z̃[kn]) = zS for a hyperedge S. If S is

random, then by the definition of our examples oracle, for every i ∈ [m(n) + n3] such that z̃i ∈ Z̃ ,
we have ỹi = b̂ w.p. 1

2 and ỹi = 0 otherwise. Also, by the definition of the oracle, ỹi is independent
of Si and independent of the choice of the vector z̃i that corresponds to zSi . Hence, for such z̃i ∈ Z̃
with i ∈ I , any hypothesis cannot predict the label ỹi, and the expected loss for the example is at least(

b̂
2

)2
. Moreover, in Lemma A.11 we show that Pr

[
z̃i ∈ Z̃

]
≥ 1

2 log(n) for a sufficiently large n. In
Lemma A.12 we use these arguments to prove a lower bound on ES̃I

[ℓI(h
′)], and by Hoeffding’s

inequality over S̃I we conclude that w.p. greater than 2
3 we have ℓI(h′) > 2

n .

Overall, if S is pseudorandom then w.p. greater than 2
3 the algorithm A returns 1, and if S is random

then w.p. greater than 2
3 it returns 0. Thus, the distinguishing advantage is greater than 1

3 .
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5 Discussion

Understanding the computational complexity of learning neural networks is a central question in
learning theory. Our results imply that the assumptions which allow for efficient learning in one-
hidden-layer networks might not suffice in deeper networks. Also, in depth-2 networks we show that
it is not sufficient to assume that both the parameters and the inputs are smoothed. We hope that our
hardness results will help focus on assumptions that may allow for efficient learning.

We emphasize that our hardness results are for neural networks that include the ReLU activation also
in the output neuron. In contrast, the positive results on learning depth-2 networks that we discussed
in the introduction do not include activation in the output neuron. Therefore, as far as we are aware,
there is still a small gap between the upper bounds and our hardness results: (1) Under the assumption
that the input is Gaussian and the weights are non-degenerate, the cases of depth-2 networks with
activation in the output neuron and of depth-3 networks without activation in the output are not
settled; (2) In the setting where both the parameters and the input distribution are smoothed, the
case of depth-2 networks without activation in the output is not settled. These gaps are an intriguing
subject for further research.
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A Missing lemmas for the proof of Theorem 3.1

Lemma A.1 (Daniely and Vardi [16]). For every predicate P : {0, 1}k → {0, 1} and x ∈ {0, 1}n,
there is a DNF formula ψ over {0, 1}kn with at most 2k terms, such that for every hyperedge S we
have Px(z

S) = ψ(zS). Moreover, each term in ψ is a conjunction of positive literals.

Proof. The following proof is from Daniely and Vardi [16], and we give it here for completeness.

We denote by B ⊆ {0, 1}k the set of satisfying assignments of P . Note that the size of B is at most
2k. Consider the following DNF formula over {0, 1}kn:

ψ(z) =
∨
b∈B

∧
j∈[k]

∧
{l:xl ̸=bj}

zj,l .

For a hyperedge S = (i1, . . . , ik), we have

ψ(zS) = 1 ⇐⇒ ∃b ∈ B ∀j ∈ [k] ∀xl ̸= bj , z
S
j,l = 1

⇐⇒ ∃b ∈ B ∀j ∈ [k] ∀xl ̸= bj , ij ̸= l

⇐⇒ ∃b ∈ B ∀j ∈ [k], xij = bj

⇐⇒ ∃b ∈ B, xS = b

⇐⇒ P (xS) = 1

⇐⇒ Px(z
S) = 1 .

Lemma A.2. Let x ∈ {0, 1}n. There exists an affine layer with at most 2k outputs, weights bounded
by a constant and bias terms bounded by n log(n) (for a sufficiently large n), such that given an input
zS ∈ {0, 1}kn for some hyperedge S, it satisfies the following: For S with Px(z

S) = 0 all outputs
are at most −1, and for S with Px(z

S) = 1 there exists an output greater or equal to 2.

Proof. By Lemma A.1, there exists a DNF formula φx over {0, 1}kn with at most 2k terms, such
that φx(z

S) = Px(z
S). Thus, if Px(z

S) = 0 then all terms in φx are not satisfied for the input zS ,
and if Px(z

S) = 1 then there is at least one term in φx which is satisfied for the input zS . Therefore,
it suffices to construct an affine layer such that for an input zS , the j-th output will be at most −1 if
the j-th term of φx is not satisfied, and at least 2 otherwise. Each term Cj in φx is a conjunction of
positive literals. Let Ij ⊆ [kn] be the indices of these literals. The j-th output of the affine layer will
be ∑

l∈Ij

3zSl

− 3|Ij |+ 2 .

Note that if the conjunction Cj holds, then this expression is exactly 3|Ij | − 3|Ij | + 2 = 2, and
otherwise it is at most 3(|Ij | − 1)− 3|Ij |+ 2 = −1. Finally, note that all weights are bounded by 3
and all bias terms are bounded by n log(n) (for large enough n).

Lemma A.3. Let x ∈ {0, 1}n. There exists a depth-2 neural network N1 with input dimension kn,
2kn hidden neurons, at most 2k output neurons, and parameter magnitudes bounded by n3 (for a
sufficiently large n), which satisfies the following. We denote the set of output neurons of N1 by E1.
Let z′ ∈ Rkn be such that Ψ(z′) = zS for some hyperedge S, and assume that for every i ∈ [kn] we
have z′i ̸∈

(
c, c+ 1

n2

)
. Then, for S with Px(z

S) = 0 the inputs to all neurons E1 are at most −1, and
for S with Px(z

S) = 1 there exists a neuron in E1 with input at least 2. Moreover, only the second
layer of N1 depends on x.

Proof. First, we construct a depth-2 neural network NΨ : Rkn → [0, 1]kn with a single layer of non-
linearity, such that for every z′ ∈ Rkn with z′i ̸∈ (c, c+ 1

n2 ) for every i ∈ [kn], we have NΨ(z
′) =

Ψ(z′). The network NΨ has 2kn hidden neurons, and computes NΨ(z
′) = (f(z′1), . . . , f(z

′
kn)),

where f : R→ [0, 1] is such that

f(t) = n2 ·

(
[t− c]+ −

[
t−

(
c+

1

n2

)]
+

)
.
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Note that if t ≤ c then f(t) = 0, if t ≥ c+ 1
n2 then f(t) = 1, and if c < t < c+ 1

n2 then f(t) ∈ (0, 1).
Also, note that all weights and bias terms can be bounded by n2 (for large enough n). Moreover, the
network NΨ does not depend on x.

Let z′ ∈ Rkn such that Ψ(z′) = zS for some hyperedge S, and assume that for every i ∈ [kn] we
have z′i ̸∈

(
c, c+ 1

n2

)
. For such z′, we have NΨ(z

′) = Ψ(z′) = zS . Hence, it suffices to show that
we can construct an affine layer with at most 2k outputs, weights bounded by a constant and bias
terms bounded by n3, such that given an input zS it satisfies the following: For S with Px(z

S) = 0
all outputs are at most −1, and for S with Px(z

S) = 1 there exists an output greater or equal to 2.
We construct such an affine layer in Lemma A.2.

Lemma A.4. There exists an affine layer with 2k + n outputs, weights bounded by a constant and
bias terms bounded by n log(n) (for a sufficiently large n), such that given an input z ∈ {0, 1}kn, if
it is an encoding of a hyperedge then all outputs are at most −1, and otherwise there exists an output
greater or equal to 2.

Proof. Note that z ∈ {0, 1}kn is not an encoding of a hyperedge iff at least one of the following
holds:

1. At least one of the k size-n slices in z contains 0 more than once.

2. At least one of the k size-n slices in z does not contain 0.

3. There are two size-n slices in z that encode the same index.

We define the outputs of our affine layer as follows. First, we have k outputs that correspond
to (1). In order to check whether slice i ∈ [k] contains 0 more than once, the output will be
3n− 4− (

∑
j∈[n] 3zi,j). Second, we have k outputs that correspond to (2): in order to check whether

slice i ∈ [k] does not contain 0, the output will be (
∑

j∈[n] 3zi,j) − 3n + 2. Finally, we have n
outputs that correspond to (3): in order to check whether there are two slices that encode the same
index j ∈ [n], the output will be 3k− 4− (

∑
i∈[k] 3zi,j). Note that all weights are bounded by 3 and

all bias terms are bounded by n log(n) for large enought n.

Lemma A.5. There exists a depth-2 neural network N2 with input dimension kn, at most 2kn hidden
neurons, 2k + n output neurons, and parameter magnitudes bounded by n3 (for a sufficiently large
n), which satisfies the following. We denote the set of output neurons of N2 by E2. Let z′ ∈ Rkn be
such that for every i ∈ [kn] we have z′i ̸∈

(
c, c+ 1

n2

)
. If Ψ(z′) is an encoding of a hyperedge then

the inputs to all neurons E2 are at most −1, and otherwise there exists a neuron in E2 with input at
least 2.

Proof. Let NΨ : Rkn → [0, 1]kn be the depth-2 neural network from the proof of Lemma A.3, with
a single layer of non-linearity with 2kn hidden neurons, and parameter magnitudes bounded by n2,
such that for every z′ ∈ Rkn with z′i ̸∈ (c, c+ 1

n2 ) for every i ∈ [kn], we have NΨ(z
′) = Ψ(z′).

Let z′ ∈ Rkn be such that for every i ∈ [kn] we have z′i ̸∈
(
c, c+ 1

n2

)
. For such z′ we have

NΨ(z
′) = Ψ(z′). Hence, it suffices to show that we can construct an affine layer with 2k+n outputs,

weights bounded by a constant and bias terms bounded by n3, such that given an input z ∈ {0, 1}kn,
if it is an encoding of a hyperedge then all outputs are at most −1, and otherwise there exists an
output greater or equal to 2. We construct such an affine layer in Lemma A.4.

Lemma A.6. There exists a depth-2 neural network N3 with input dimension kn, at most n log(n)
hidden neurons, kn ≤ n log(n) output neurons, and parameter magnitudes bounded by n3 (for a
sufficiently large n), which satisfies the following. We denote the set of output neurons of N3 by E3.
Let z′ ∈ Rkn. If there exists i ∈ [kn] such that z′i ∈

(
c, c+ 1

n2

)
then there exists a neuron in E3 with

input at least 2. If for all i ∈ [kn] we have z′i ̸∈
(
c− 1

n2 , c+
2
n2

)
then the inputs to all neurons in E3

are at most −1.

Proof. It suffices to construct a univariate depth-2 network f : R→ R with one non-linear layer and
a constant number of hidden neurons, such that for every input z′i ∈ (c, c+ 1

n2 ) we have f(z′i) = 2,
and for every z′i ̸∈ (c− 1

n2 , c+
2
n2 ) we have f(z′i) = −1.
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We construct f as follows:

f(z′i) =(3n2)

([
z′i −

(
c− 1

n2

)]
+

− [z′i − c]+

)
−

(3n2)

([
z′i −

(
c+

1

n2

)]
+

−
[
z′i −

(
c+

2

n2

)]
+

)
− 1 .

Note that all weights and bias terms are bounded by n3 (for large enough n).

Lemma A.7. Let q = poly(n) and r = poly(n). Then, there exists τ = 1
poly(n) such that for

a sufficiently large n, with probability at least 1 − exp(−n/2) a vector ξ ∼ N (0, τ2Ir) satisfies
∥ξ∥ ≤ 1

q .

Proof. Let τ = 1
q
√
2rn

. Every component ξi in ξ has the distribution N (0, τ2). By a standard
tail bound of the Gaussian distribution, we have for every i ∈ [r] and t ≥ 0 that Pr[ξi ≥ t] ≤
2 exp

(
− t2

2τ2

)
. Hence, for t = 1

q
√
r

, we get

Pr

[
ξi ≥

1

q
√
r

]
≤ 2 exp

(
− 1

2τ2q2r

)
= 2 exp

(
−2rnq2

2q2r

)
= 2 exp (−n) .

By the union bound, with probability at least 1− r · 2e−n, we have

∥ξ∥2 ≤ r · 1

rq2
=

1

q2
.

Thus, for a sufficiently large n, with probability at least 1− exp(−n/2) we have ∥ξ∥ ≤ 1
q .

Lemma A.8. If S is pseudorandom then with probability at least 39
40 (over ξ ∼ N (0, τ2Ip) and the

i.i.d. inputs z̃i ∼ D) the examples (z̃1, ỹ1), . . . , (z̃m(n)+n3 , ỹm(n)+n3) returned by the oracle are
realized by N̂ .

Proof. By our choice of τ , with probability at least 1− 1
n over ξ ∼ N (0, τ2Ip), we have |ξj | ≤ 1

10
for all j ∈ [p], and for every z̃ with ∥z̃∥ ≤ 2n the inputs to the neurons E1, E2, E3 in the computation
N̂(z̃) satisfy Properties (P1) through (P3). We first show that with probability at least 1 − 1

n all
examples z̃1, . . . , z̃m(n)+n3 satisfy ∥z̃i∥ ≤ 2n. Hence, with probability at least 1− 2

n , Properties (P1)
through (P3) hold for the computations N̂(z̃i) for all i ∈ [m(n) + n3].

Note that ∥z̃i∥2 has the Chi-squared distribution. Since z̃i is of dimension n2, a concentration bound
by Laurent and Massart [32, Lemma 1] implies that for all t > 0 we have

Pr
[
∥z̃i∥2 − n2 ≥ 2n

√
t+ 2t

]
≤ e−t .

Plugging-in t = n2

4 , we get

Pr
[
∥z̃i∥2 ≥ 4n2

]
= Pr

[
∥z̃i∥2 − n2 ≥ 3n2

]
≤ Pr

[
∥z̃i∥2 − n2 ≥

3n2

2

]
= Pr

[
∥z̃i∥2 − n2 ≥ 2n

√
n2

4
+ 2 · n

2

4

]

≤ exp

(
−n

2

4

)
.

Thus, we have Pr [∥z̃i∥ ≥ 2n] ≤ exp
(
−n2

4

)
. By the union bound, with probability at least

1−
(
m(n) + n3

)
exp

(
−n

2

4

)
≥ 1− 1

n
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(for a sufficiently large n), all examples (z̃i, ỹi) satisfy ∥z̃i∥ ≤ 2n.

Thus, we showed that with probability at least 1 − 2
n ≥

39
40 (for a sufficiently large n), we have

|ξj | ≤ 1
10 for all j ∈ [p], and Properties (P1) through (P3) hold for the computations N̂(z̃i)

for all i ∈ [m(n) + n3]. It remains to show that if these properties hold, then the examples
(z̃1, ỹ1), . . . , (z̃m(n)+n3 , ỹm(n)+n3) are realized by N̂ .

Let i ∈ [m(n) + n3]. For brevity, we denote z̃ = z̃i, ỹ = ỹi, and z′ = z̃[kn]. Since |ξj | ≤ 1
10 for all

j ∈ [p], and all incoming weights to the output neuron in Ñ are −1, then in N̂ all incoming weights
to the output neuron are in

[
− 11

10 ,−
9
10

]
, and the bias term in the output neuron, denoted by b̂, is in[

9
10 ,

11
10

]
. Consider the following cases:

• If Ψ(z′) is not an encoding of a hyperedge then ỹ = 0, and N̂(z̃) satisfies:

1. If z′ does not have components in
(
c, c+ 1

n

)
, then there exists a neuron in E2 with

output at least 3
2 (by Property (P2)).

2. If z′ has a component in
(
c, c+ 1

n

)
, then there exists a neuron in E3 with output at least

3
2 (by Property (P3)).

In both cases, since all incoming weights to the output neuron in N̂ are in
[
− 11

10 ,−
9
10

]
,

and b̂ ∈
[

9
10 ,

11
10

]
, then the input to the output neuron (including the bias term) is at most

11
10 −

3
2 ·

9
10 < 0, and thus its output is 0.

• If Ψ(z′) is an encoding of a hyperedge S, then by the definition of the examples oracle we
have S = Si. Hence:

– If z′ does not have components in
(
c− 1

n2 , c+
2
n2

)
, then:

* If yi = 0 then the oracle sets ỹ = b̂. Since S is pseudorandom, we have Px(z
S) =

Px(z
Si) = yi = 0. Hence, in the computation N̂(z̃) the inputs to all neurons in

E1, E2, E3 are at most − 1
2 (by Properties (P1), (P2) and (P3)), and thus their outputs

are 0. Therefore, N̂(z̃) = b̂.
* If yi = 1 then the oracle sets ỹ = 0. Since S is pseudorandom, we have Px(z

S) =

Px(z
Si) = yi = 1. Hence, in the computation N̂(z̃) there exists a neuron in E1

with output at least 3
2 (by Property (P1)). Since all incoming weights to the output

neuron in N̂ are in
[
− 11

10 ,−
9
10

]
, and b̂ ∈

[
9
10 ,

11
10

]
, then the input to output neuron

(including the bias term) is at most 11
10 −

3
2 ·

9
10 < 0, and thus its output is 0.

– If z′ has a component in
(
c, c+ 1

n2

)
, then ỹ = 0. Also, in the computation N̂(z̃) there

exists a neuron in E3 with output at least 3
2 (by Property (P3)). Since all incoming

weights to the output neuron in N̂ are in
[
− 11

10 ,−
9
10

]
, and b̂ ∈

[
9
10 ,

11
10

]
, then the input

to output neuron (including the bias term) is at most 11
10 −

3
2 ·

9
10 < 0, and thus its

output is 0.
– If z′ does not have components in the interval (c, c+ 1

n2 ), but has a component in the
interval (c− 1

n2 , c+
2
n2 ), then:

* If yi = 1 the oracle sets ỹ = 0. Since S is pseudorandom, we have Px(z
S) =

Px(z
Si) = yi = 1. Hence, in the computation N̂(z̃) there exists a neuron in E1

with output at least 3
2 (by Property (P1)). Since all incoming weights to the output

neuron in N̂ are in
[
− 11

10 ,−
9
10

]
, and b̂ ∈

[
9
10 ,

11
10

]
, then the input to output neuron

(including the bias term) is at most 11
10 −

3
2 ·

9
10 < 0, and thus its output is 0.

* If yi = 0 the oracle sets ỹ = [b̂ − N̂3(z̃)]+. Since S is pseudorandom, we have
Px(z

S) = Px(z
Si) = yi = 0. Therefore, in the computation N̂(z̃) all neurons in

E1, E2 have output 0 (by Properties (P1) and (P2)), and hence their contribution to
the output of N̂ is 0. Thus, by the definition of N̂3, we have N̂(z̃) = [b̂− N̂3(z̃)]+.
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Lemma A.9. If S is pseudorandom, then for a sufficiently large n, with probability greater than 2
3

we have
ℓI(h

′) ≤ 2

n
.

Proof. By Lemma A.8, if S is pseudorandom then with probability at least 39
40 (over ξ ∼ N (0, τ2Ip)

and the i.i.d. inputs z̃i ∼ D) the examples (z̃1, ỹ1), . . . , (z̃m(n), ỹm(n)) returned by the oracle
are realized by N̂ . Recall that the algorithm L is such that with probability at least 3

4 (over ξ ∼
N (0, τ2Ip), the i.i.d. inputs z̃i ∼ D, and possibly its internal randomness), given a size-m(n)

dataset labeled by N̂ , it returns a hypothesis h such that Ez̃∼D

[
(h(z̃)− N̂(z̃))2

]
≤ 1

n . Hence, with

probability at least 3
4 −

1
40 the algorithm L returns such a good hypothesis h, given m(n) examples

labeled by our examples oracle. Indeed, note that L can return a bad hypothesis only if the random
choices are either bad for L (when used with realizable examples) or bad for the realizability of the
examples returned by our oracle. By the definition of h′ and the construction of N̂ , if h has small
error then h′ also has small error, namely,

E
z̃∼D

[
(h′(z̃)− N̂(z̃))2

]
≤ E

z̃∼D

[
(h(z̃)− N̂(z̃))2

]
≤ 1

n
.

Let ℓ̂I(h′) = 1
|I|
∑

i∈I(h
′(z̃i)− N̂(z̃i))

2. Recall that by our choice of τ we have Pr[b̂ > 11
10 ] ≤

1
n .

Since, (h′(z̃)− N̂(z̃))2 ∈ [0, b̂2] for all z̃ ∈ Rn2

, by Hoeffding’s inequality, we have for a sufficiently
large n that

Pr

[∣∣∣∣ℓ̂I(h′)− Ẽ
SI

ℓ̂I(h
′)

∣∣∣∣ ≥ 1

n

]
= Pr

[∣∣∣∣ℓ̂I(h′)− Ẽ
SI

ℓ̂I(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ ≤ 11

10

]
· Pr

[
b̂ ≤ 11

10

]
+ Pr

[∣∣∣∣ℓ̂I(h′)− Ẽ
SI

ℓ̂I(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ > 11

10

]
· Pr

[
b̂ >

11

10

]
≤ 2 exp

(
− 2n3

n2(11/10)4

)
· 1 + 1 · 1

n

≤ 1

40
.

Moreover, by Lemma A.8,

Pr
[
ℓI(h

′) ̸= ℓ̂I(h
′)
]
≤ Pr

[
∃i ∈ I s.t. ỹi ̸= N̂(z̃i)

]
≤ 1

40
.

Overall, by the union bound we have with probability at least 1 −
(
1
4 + 1

40 + 1
40 + 1

40

)
> 2

3 for
sufficiently large n that:

• ES̃I
ℓ̂I(h

′) = Ez̃∼D

[
(h′(z̃)− N̂(z̃))2

]
≤ 1

n .

•
∣∣∣ℓ̂I(h′)− ES̃I

ℓ̂I(h
′)
∣∣∣ ≤ 1

n .

• ℓI(h′)− ℓ̂I(h′) = 0.

Combining the above, we get that if S is pseudorandom, then with probability greater than 2
3 we have

ℓI(h
′) =

(
ℓI(h

′)− ℓ̂I(h′)
)
+

(
ℓ̂I(h

′)− Ẽ
SI

ℓ̂I(h
′)

)
+ Ẽ

SI

ℓ̂I(h
′) ≤ 0 +

1

n
+

1

n
=

2

n
.

Lemma A.10. Let z ∈ {0, 1}kn be a random vector whose components are drawn i.i.d. from a
Bernoulli distribution, which takes the value 0 with probability 1

n . Then, for a sufficiently large n, the
vector z is an encoding of a hyperedge with probability at least 1

log(n) .
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Proof. The vector z represents a hyperedge iff in each of the k size-n slices in z there is exactly one
0-bit and each two of the k slices in z encode different indices. Hence,

Pr [z represents a hyperedge] = n · (n− 1) · . . . · (n− k + 1) ·
(
1

n

)k (
n− 1

n

)nk−k

≥
(
n− k
n

)k (
n− 1

n

)k(n−1)

=

(
1− k

n

)k (
1− 1

n

)k(n−1)

.

Since for every x ∈ (0, 1) we have e−x < 1− x
2 , then for a sufficiently large n the above is at least

exp

(
−2k2

n

)
· exp

(
−2k(n− 1)

n

)
≥ exp (−1) · exp (−2k) ≥ 1

log(n)
.

Lemma A.11. Let z̃ ∈ Rn2

be the vector returned by the oracle. We have

Pr
[
z̃ ∈ Z̃

]
≥ 1

2 log(n)
.

Proof. Let z′ = z̃[kn]. We have

Pr
[
z̃ ̸∈ Z̃

]
≤ Pr

[
∃j ∈ [kn] s.t. z′j ∈

(
c− 1

n2
, c+

2

n2

)]
+ Pr [Ψ(z′) does not represent a hyperedge] . (1)

We now bound the terms in the above RHS. First, since z′ has the Gaussian distribution, then its
components are drawn i.i.d. from a density function bounded by 1

2π . Hence, for a sufficiently large n
we have

Pr

[
∃j ∈ [kn] s.t. z′j ∈

(
c− 1

n2
, c+

2

n2

)]
≤ kn · 1

2π
· 3

n2
=

3k

2πn
≤ log(n)

n
. (2)

Let z = Ψ(z′). Note that z is a random vector whose components are drawn i.i.d. from a Bernoulli
distribution, where the probability to get 0 is 1

n . By Lemma A.10, z is an encoding of a hyperedge
with probability at least 1

log(n) . Combining it with Eq. (1) and (2), , we get for a sufficiently large n
that

Pr
[
z̃ ̸∈ Z̃

]
≤ log(n)

n
+

(
1− 1

log(n)

)
≤ 1− 1

2 log(n)
,

as required.

Lemma A.12. If S is random, then for a sufficiently large n with probability larger than 2
3 we have

ℓI(h
′) >

2

n
.

Proof. Let Z̃ ⊆ Rn2

be such that z̃ ∈ Z̃ iff z̃[kn] does not have components in the interval
(c − 1

n2 , c +
2
n2 ), and Ψ(z̃[kn]) = zS for a hyperedge S. If S is random, then by the definition of

our examples oracle, for every i ∈ [m(n) + n3] such that z̃i ∈ Z̃ , we have ỹi = b̂ with probability 1
2

and ỹi = 0 otherwise. Also, by the definition of the oracle, ỹi is independent of Si and independent
of the choice of the vector z̃i that corresponds to zSi . If b̂ ≥ 9

10 then for a sufficiently large n the
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hypothesis h′ satisfies for each random example (z̃i, ỹi) ∈ S̃I the following

Pr
(z̃i,ỹi)

[
(h′(z̃i)− ỹi)2 ≥

1

5

]
≥ Pr

(z̃i,ỹi)

[
(h′(z̃i)− ỹi)2 ≥

1

5

∣∣∣∣ z̃i ∈ Z̃] · Prz̃i

[
z̃i ∈ Z̃

]
≥ Pr

(z̃i,ỹi)

 (h′(z̃i)− ỹi)2 ≥ ( b̂
2

)2
∣∣∣∣∣∣ z̃i ∈ Z̃

 · Pr
z̃i

[
z̃i ∈ Z̃

]
≥ 1

2
· Pr
z̃i

[
z̃i ∈ Z̃

]
.

In Lemma A.11, we show that Prz̃i

[
z̃i ∈ Z̃

]
≥ 1

2 log(n) . Hence,

Pr
(z̃i,ỹi)

[
(h′(z̃i)− ỹi)2 ≥

1

5

]
≥ 1

2
· 1

2 log(n)
≥ 1

4 log(n)
.

Thus, if b̂ ≥ 9
10 then we have

Ẽ
SI

[ℓI(h
′)] ≥ 1

5
· 1

4 log(n)
=

1

20 log(n)
.

Therefore, for large n we have

Pr

[
Ẽ
SI

[ℓI(h
′)] ≥ 1

20 log(n)

]
≥ 1− 1

n
≥ 7

8
.

Since, (h′(z̃) − ỹ)2 ∈ [0, b̂2] for all z̃, ỹ returned by the examples oracle, and the examples z̃i for
i ∈ I are i.i.d., then by Hoeffding’s inequality, we have for a sufficiently large n that

Pr

[∣∣∣∣ℓI(h′)− Ẽ
SI

ℓI(h
′)

∣∣∣∣ ≥ 1

n

]
= Pr

[∣∣∣∣ℓI(h′)− Ẽ
SI

ℓI(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ ≤ 11

10

]
· Pr

[
b̂ ≤ 11

10

]
+ Pr

[∣∣∣∣ℓI(h′)− Ẽ
SI

ℓI(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ > 11

10

]
· Pr

[
b̂ >

11

10

]
≤ 2 exp

(
− 2n3

n2(11/10)4

)
· 1 + 1 · 1

n

≤ 1

8
.

Hence, for large enough n, with probability at least 1− 1
8 −

1
8 = 3

4 >
2
3 we have both ES̃I

[ℓI(h
′)] ≥

1
20 log(n) and

∣∣ℓI(h′)− ES̃I
ℓI(h

′)
∣∣ ≤ 1

n , and thus

ℓI(h
′) ≥ 1

20 log(n)
− 1

n
>

2

n
.

B Proof of Corollary 3.1

By the proof of Theorem 3.1, under Assumption 2.1, there is no poly(d)-time algorithm Ls that
satisfies the following: Let θ ∈ Rp be B-bounded parameters of a depth-3 network Nθ : Rd → R,
and let τ, ϵ > 0. Assume that p,B, 1/ϵ, 1/τ ≤ poly(d), and that the widths of the hidden layers in
Nθ are d (i.e., the weight matrices are square). Let ξ ∈ N (0, τ2Ip) and let θ̂ = θ + ξ. Then, with
probability at least 3

4 −
1

1000 , given access to an examples oracle for Nθ̂ , the algorithm Ls returns a
hypothesis h with Ex

[
(h(x)−Nθ̂)

2
]
≤ ϵ.

Note that in the above, the requirements from Ls are somewhat weaker than in our original definition
of learning with smoothed parameters. Indeed, we assume that the widths of the hidden layers are
d and the required success probability is only 3

4 −
1

1000 (rather than 3
4 ). We now explain why the

hardness result holds already under these conditions:
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• Note that if we change the assumption on the learning algorithm in proof of Theorem 3.1
such that it succeeds with probability at least 3

4 −
1

1000 (rather than 3
4 ), then in the case

where S is pseudorandom we get that the algorithm A returns 1 with probability at least
1−

(
1
4 + 1

1000 + 1
40 + 1

40 + 1
40

)
(see the proof of Lemma A.9), which is still greater than 2

3 .
Also, the analysis of the case where S is random does not change, and thus in this case A
returns 0 with probability greater than 2

3 . Consequently, we still get distinguishing advantage
greater than 1

3 .

• Regarding the requirement on the widths, we note that in the proof of Theorem 3.1 the
layers satisfy the following. The input dimension is d = n2, the width of the first hidden
layer is at most 3n log(n) ≤ d, and the width of the second hidden layer is at most
log(n) + 2n + n log(n) ≤ d (all bounds are for a sufficiently large d). In order to get a
network where all layers are of width d, we add new neurons to the hidden layers, with
incoming weights 0, outgoing weights 0, and bias terms−1. Then, for an appropriate choice
of τ = 1/ poly(n), even in the perturbed network the outputs of these new neurons will
be 0 w.h.p. for every input z̃1, . . . , z̃m(n)+n3 , and thus they will not affect the network’s
output. Thus, using the same argument as in the proof of Theorem 3.1, we conclude that the
hardness results holds already for network with square weight matrices.

Suppose that there exists an efficient algorithm Lp that learns in the standard PAC framework depth-3
neural networks where the minimal singular value of each weight matrix is lower bounded by 1/q(d)
for any polynomial q(d). We will use Lp to obtain an efficient algorithm Ls that learns depth-3
networks with smoothed parameters as described above, and thus reach a contradiction.

Let θ ∈ Rp be B-bounded parameters of a depth-3 network Nθ : Rd → R, and let τ, ϵ > 0. Assume
that p,B, 1/ϵ, 1/τ ≤ poly(d), and that the widths of the hidden layers in Nθ are d. For random
ξ ∼ N (0, τ2Ip) and θ̂ = θ + ξ, the algorithm Ls has access to examples labeled by Nθ̂. Using
Lemma B.1 below with t = τ

d and the union bound over the two weight matrices in Nθ , we get that
with probability at least 1− 2·2.35√

d
≥ 1− 1

1000 (for large enough d), the minimal singular values of all

weight matrices in θ̂ are at least τ
d ≥

1
q(d) for some sufficiently large polynomial q(d). Our algorithm

Ls will simply run Lp. Given that the minimal singular values of the weight matrices are at least 1
q(d) ,

the algorithm Lp runs in time poly(d) and returns with probability at least 3
4 a hypothesis h with

Ex

[
(h(x)−Nθ̂(x))

2
]
≤ ϵ. Overall, the algorithm Ls runs in poly(d) time, and with probability at

least 3
4 −

1
1000 (over both ξ and the internal randomness) returns a hypothesis h with loss at most ϵ.

Lemma B.1 (Sankar et al. [37], Theorem 3.3). Let W be an arbitrary square matrix in Rd×d, and
let P ∈ Rd×d be a random matrix, where each entry is drawn i.i.d. from N (0, τ2) for some τ > 0.
Let σd be the minimal singular value of the matrix W + P . Then, for every t > 0 we have

Pr
P

[σd ≤ t] ≤ 2.35 · t
√
d

τ
.

C Proof of Theorem 3.2

The proof follows similar ideas to the proof of Theorem 3.1. The main difference is that we need to
handle here a smoothed discrete input distribution rather than the standard Gaussian distribution.

For a sufficiently large n, let D be a distribution on {0, 1}n2

, where each component is drawn i.i.d.
from a Bernoulli distribution which takes the value 0 with probability 1

n . Assume that there is a
poly(n)-time algorithm L that learns depth-3 neural networks with at most n2 hidden neurons and
parameter magnitudes bounded by n3, with smoothed parameters and inputs, under the distribution
D, with ϵ = 1

n and τ, ω = 1/ poly(n) that we will specify later. Let m(n) ≤ poly(n) be the sample
complexity of L, namely, L uses a sample of size at most m(n) and returns with probability at least
3
4 a hypothesis h with Ez∼D̂

[(
h(z)−Nθ̂(z)

)2] ≤ ϵ = 1
n . Note that D̂ is the distribution D after

smoothing with parameter ω, and the vector θ̂ is the parameters of the target network after smoothing
with parameter τ . Let s > 1 be a constant such that ns ≥ m(n) + n3 for every sufficiently large n.
By Assumption 2.1, there exists a constant k and a predicate P : {0, 1}k → {0, 1}, such that FP,n,ns
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is 1
3 -PRG. We will show an efficient algorithm A with distinguishing advantage greater than 1

3 and
thus reach a contradiction.

Throughout this proof, we will use some notations from the proof of Theorem 3.1. We repeat it
here for convenience. For a hyperedge S = (i1, . . . , ik) we denote by zS ∈ {0, 1}kn the following
encoding of S: the vector zS is a concatenation of k vectors in {0, 1}n, such that the j-th vector
has 0 in the ij-th coordinate and 1 elsewhere. Thus, zS consists of k size-n slices, each encoding
a member of S. For z ∈ {0, 1}kn, i ∈ [k] and j ∈ [n], we denote zi,j = z(i−1)n+j . That is, zi,j is
the j-th component in the i-th slice in z. For x ∈ {0, 1}n, let Px : {0, 1}kn → {0, 1} be such that
for every hyperedge S we have Px(z

S) = P (xS). For z̃ ∈ Rn2

we denote z̃[kn] = (z̃1, . . . , z̃kn),
namely, the first kn components of z̃ (assuming n2 ≥ kn).

C.1 Defining the target network for L

Since our goal is to use the algorithm L for breaking PRGs, in this subsection we define a neural
network Ñ : Rn2 → R that we will later use as a target network for L. The network Ñ contains the
subnetworks N1, N2 that we define below.

Let N1 be a depth-1 neural network (i.e., one layer, with activations in the output neurons) with input
dimension kn, at most log(n) output neurons, and parameter magnitudes bounded by n3 (all bounds
are for a sufficiently large n), which satisfies the following. We denote the set of output neurons of
N1 by E1. Let z′ ∈ {0, 1}kn be an input to N1 such that z′ = zS for some hyperedge S. Thus, even
thoughN1 takes inputs in Rkn, we consider now its behavior for an input z′ with discrete components
in {0, 1}. Fix some x ∈ {0, 1}n. Then, for S with Px(z

S) = 0 the inputs to all output neurons E1
are at most −1, and for S with Px(z

S) = 1 there exists a neuron in E1 with input at least 2. Recall
that our definition of a neuron’s input includes the addition of the bias term. The construction of the
network N1 is given in Lemma A.2. Note that the network N1 depends on x. Let N ′

1 : Rkn → R
be a depth-2 neural network with no activation function in the output neuron, obtained from N1 by
summing the outputs from all neurons E1.

Let N2 be a depth-1 neural network (i.e., one layer, with activations in the output neurons) with
input dimension kn, at most 2n output neurons, and parameter magnitudes bounded by n3 (for a
sufficiently large n), which satisfies the following. We denote the set of output neurons of N2 by E2.
Let z′ ∈ {0, 1}kn be an input to N2 (note that it has components only in {0, 1}) . If z′ is an encoding
of a hyperedge then the inputs to all output neurons E2 are at most −1, and otherwise there exists
a neuron in E2 with input at least 2. The construction of the network N2 is given in Lemma A.4.
Let N ′

2 : Rkn → R be a depth-2 neural network with no activation function in the output neuron,
obtained from N2 by summing the outputs from all neurons E2.

Let N ′ : Rkn → R be a depth-2 network obtained from N ′
1, N

′
2 as follows. For z′ ∈ Rkn we

have N ′(z′) = [1−N ′
1(z

′)−N ′
2(z

′)]+. The network N ′ has at most n2 neurons, and parameter
magnitudes bounded by n3 (all bounds are for a sufficiently large n). Finally, let Ñ : Rn2 → R be a
depth-2 neural network such that Ñ(z̃) = N ′ (z̃[kn]).
C.2 Defining the noise magnitudes τ, ω and analyzing the perturbed network under

perturbed inputs

In order to use the algorithm L w.r.t. some neural network with parameters θ and a certain input
distribution, we need to implement an examples oracle, such that the examples are drawn from a
smoothed input distribution, and labeled according to a neural network with parameters θ+ξ, where ξ
is a random perturbation. Specifically, we use L with an examples oracle where the input distribution
D̂ is obtained from D by smoothing, and the labels correspond to a network N̂ : Rn2 → R obtained
from Ñ (w.r.t. an appropriate x ∈ {0, 1}n in the construction of N1) by adding a small perturbation
to the parameters. The smoothing magnitudes ω, τ of the inputs and the network’s parameters
(respectively) are such that the following hold.

We first choose the parameter τ = 1/ poly(n) as follows. Let fθ : Rn2 → R be any depth-2
neural network parameterized by θ ∈ Rr for some r > 0 with at most n2 neurons, and parameter
magnitudes bounded by n3 (note that r is polynomial in n). Then, τ is such that with probability at
least 1− 1

n over ξ ∼ N (0, τ2Ir), we have |ξi| ≤ 1
10 for all i ∈ [r], and the network fθ+ξ is such that
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for every input z̃ ∈ Rn2

with ∥z̃∥ ≤ n and every neuron we have: Let a, b be the inputs to the neuron
in the computations fθ(z̃) and fθ+ξ(z̃) (respectively), then |a− b| ≤ 1

4 . Thus, τ is sufficiently small,
such that w.h.p. adding i.i.d. noise N (0, τ2) to each parameter does not change the inputs to the
neurons by more than 1

4 . Note that such an inverse-polynomial τ exists, since when the network size,
parameter magnitudes, and input size are bounded by some poly(n), then the input to each neuron
in fθ(z̃) is poly(n)-Lipschitz as a function of θ, and thus it suffices to choose τ that implies with
probability at least 1− 1

n that ∥ξ∥ ≤ 1
q(n) for a sufficiently large polynomial q(n) (see Lemma A.7

for details).

Next, we choose the parameter ω = 1/ poly(n) as follows. Let fθ : Rn2 → R be any depth-2
neural network parameterized by θ with at most n2 neurons, and parameter magnitudes bounded by
n3 + 1

10 . Then, ω is such that for every z ∈ {0, 1}n2

, with probability at least 1− exp(−n/2) over
ζ ∼ N (0, ω2In2) the following holds for every neuron in the fθ: Let a, b be the inputs to the neuron
in the computations fθ(z) and fθ(z + ζ) (respectively), then |a − b| ≤ 1

4 . Thus, ω is sufficiently
small, such that w.h.p. adding noise N (0, ω2In2) to the input z does not change the inputs to the
neurons by more than 1

4 . Note that such an inverse-polynomial ω exists, since when the network size
and parameter magnitudes are bounded by some poly(n), then the input to each neuron in fθ(z) is
poly(n)-Lipschitz as a function of z, and thus it suffices to choose ω that implies with probability at
least 1− exp(−n/2) that ∥ζ∥ ≤ 1

q(n) for a sufficiently large polynomial q(n) (see Lemma A.7 for
details).

Let θ̃ ∈ Rp be the parameters of the network Ñ . Recall that the parameters vector θ̃ is the
concatenation of all weight matrices and bias terms. Let θ̂ ∈ Rp be the parameters of N̂ , namely,
θ̂ = θ̃ + ξ where ξ ∼ N (0, τ2Ip). By our choice of τ and the construction of the networks
N1, N2, with probability at least 1 − 1

n over ξ, for every z ∈ {0, 1}n2

the following holds: Let
ζ ∼ N (0, ω2In2) and let ẑ = z + ζ. Then with probability at least 1 − exp(−n/2) over ζ the
differences between inputs to all neurons in the computations N̂(ẑ) and Ñ(z) are at most 1

2 . Indeed,
w.h.p. for all z ∈ {0, 1}n2

the computations Ñ(z) and N̂(z) are roughly similar (up to change of
1/4 in the input to each neuron), and w.h.p. the computations N̂(z) and N̂(ẑ) are roughly similar
(up to change of 1/4 in the input to each neuron). Thus, with probability at least 1− 1

n over ξ, the
network N̂ is such that for every z ∈ {0, 1}n2

, we have with probability at least 1− exp(−n/2) over
ζ that the computation N̂(ẑ) satisfies the following properties, where z′ := z[kn]:

(Q1) If z′ = zS for some hyperedge S, then the inputs to E1 satisfy:
• If Px(z

S) = 0 the inputs to all neurons in E1 are at most − 1
2 .

• If Px(z
S) = 1 there exists a neuron in E1 with input at least 3

2 .
(Q2) The inputs to E2 satisfy:

• If z′ is an encoding of a hyperedge then the inputs to all neurons E2 are at most − 1
2 .

• Otherwise, there exists a neuron in E2 with input at least 3
2 .

C.3 Stating the algorithm A

Given a sequence (S1, y1), . . . , (Sns , yns), where S1, . . . , Sns are i.i.d. random hyperedges,
the algorithm A needs to distinguish whether y = (y1, . . . , yns) is random or that y =
(P (xS1

), . . . , P (xSns )) = (Px(z
S1), . . . , Px(z

Sns )) for a random x ∈ {0, 1}n. Let S =
((zS1 , y1), . . . , (z

Sns , yns)).

We use the efficient algorithm L in order to obtain distinguishing advantage greater than 1
3 as follows.

Let ξ be a random perturbation, and let N̂ be the perturbed network as defined above, w.r.t. the
unknown x ∈ {0, 1}n. Note that given a perturbation ξ, only the weights in the second layer of the
subnetwork N1 in N̂ are unknown, since all other parameters do not depend on x. The algorithm
A runs L with the following examples oracle. In the i-th call, the oracle first draws z′ ∈ {0, 1}kn
such that each component is drawn i.i.d. from a Bernoulli distribution which takes the value 0
with probability 1

n . If z′ is an encoding of a hyperedge then the oracle replaces z′ with zSi . Let
z ∈ {0, 1}n2

be such that z[kn] = z′, and the other n2 − kn components of z are drawn i.i.d. from
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a Bernoulli distribution which takes the value 0 with probability 1
n . Note that the vector z has the

distributionD, since replacing an encoding of a random hyperedge by an encoding of another random
hyperedge does not change the distribution of z′. Let ẑ = z+ ζ, where ζ ∼ N (0, ω2In2). Note that
ẑ has the distribution D̂. Let b̂ ∈ R be the bias term of the output neuron of N̂ . The oracle returns
(ẑ, ŷ), where the labels ŷ are chosen as follows:

• If z′ is not an encoding of a hyperedge, then ŷ = 0.
• If z′ is an encoding of a hyperedge:

– If yi = 0 we set ŷ = b̂.
– If yi = 1 we set ŷ = 0.

Let h be the hypothesis returned by L. Recall that L uses at most m(n) examples, and hence S
contains at least n3 examples that L cannot view. We denote the indices of these examples by
I = {m(n) + 1, . . . ,m(n) + n3}, and the examples by SI = {(zSi , yi)}i∈I . By n3 additional
calls to the oracle, the algorithm A obtains the examples ŜI = {(ẑi, ŷi)}i∈I that correspond to SI .
Let h′ be a hypothesis such that for all z̃ ∈ Rn2

we have h′(z̃) = max{0,min{b̂, h(z̃)}}, thus,
for b̂ ≥ 0 the hypothesis h′ is obtained from h by clipping the output to the interval [0, b̂]. Let
ℓI(h

′) = 1
|I|
∑

i∈I(h
′(ẑi)− ŷi)2. Now, if ℓI(h′) ≤ 2

n , then A returns 1, and otherwise it returns 0.
We remark that the decision of our algorithm is based on h′ (rather than h) since we need the outputs
to be bounded, in order to allow using Hoeffding’s inequality in our analysis, which we discuss in the
next subsection.

C.4 Analyzing the algorithm A

Note that the algorithm A runs in poly(n) time. We now show that if S is pseudorandom then A
returns 1 with probability greater than 2

3 , and if S is random then A returns 1 with probability less
than 1

3 . To that end, we use similar arguments to the proof of Theorem 3.1.

In Lemma C.1, we show that if S is pseudorandom then with probability at least 39
40 (over ξ ∼

N (0, τ2Ip) and ζi ∼ N (0, ω2In2) for all i ∈ [m(n)]) the examples (ẑ1, ŷ1), . . . , (ẑm(n), ŷm(n))

returned by the oracle are realized by N̂ . Recall that the algorithm L is such that with probability at
least 3

4 (over ξ ∼ N (0, τ2Ip), the i.i.d. inputs ẑi ∼ D̂, and possibly its internal randomness), given a

size-m(n) dataset labeled by N̂ , it returns a hypothesis h such that Eẑ∼D̂

[
(h(ẑ)− N̂(ẑ))2

]
≤ 1

n .

Hence, with probability at least 3
4 −

1
40 the algorithm L returns such a good hypothesis h, given m(n)

examples labeled by our examples oracle. Indeed, note that L can return a bad hypothesis only if the
random choices are either bad for L (when used with realizable examples) or bad for the realizability
of the examples returned by our oracle. By the definition of h′ and the construction of N̂ , if h has
small error then h′ also has small error, namely,

E
ẑ∼D̂

[
(h′(ẑ)− N̂(ẑ))2

]
≤ E

z̃∼D̂

[
(h(ẑ)− N̂(ẑ))2

]
≤ 1

n
.

Let ℓ̂I(h′) = 1
|I|
∑

i∈I(h
′(ẑi)− N̂(ẑi))

2. Recall that by our choice of τ we have Pr[b̂ > 11
10 ] ≤

1
n .

Since, (h′(ẑ)− N̂(ẑ))2 ∈ [0, b̂2] for all ẑ ∈ Rn2

, by Hoeffding’s inequality, we have for a sufficiently
large n that

Pr

[∣∣∣∣ℓ̂I(h′)− Ê
SI

ℓ̂I(h
′)

∣∣∣∣ ≥ 1

n

]
= Pr

[∣∣∣∣ℓ̂I(h′)− Ê
SI

ℓ̂I(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ ≤ 11

10

]
· Pr

[
b̂ ≤ 11

10

]
+ Pr

[∣∣∣∣ℓ̂I(h′)− Ê
SI

ℓ̂I(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ > 11

10

]
· Pr

[
b̂ >

11

10

]
≤ 2 exp

(
− 2n3

n2(11/10)4

)
· 1 + 1 · 1

n

≤ 1

40
.
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Moreover, by Lemma C.1,

Pr
[
ℓI(h

′) ̸= ℓ̂I(h
′)
]
≤ Pr

[
∃i ∈ I s.t. ŷi ̸= N̂(ẑi)

]
≤ 1

40
.

Overall, by the union bound we have with probability at least 1 −
(
1
4 + 1

40 + 1
40 + 1

40

)
> 2

3 for
sufficiently large n that:

• EŜI
ℓ̂I(h

′) = Eẑ∼D̂

[
(h′(ẑ)− N̂(ẑ))2

]
≤ 1

n .

•
∣∣∣ℓ̂I(h′)− EŜI

ℓ̂I(h
′)
∣∣∣ ≤ 1

n .

• ℓI(h′)− ℓ̂I(h′) = 0.

Combining the above, we get that if S is pseudorandom, then with probability greater than 2
3 we have

ℓI(h
′) =

(
ℓI(h

′)− ℓ̂I(h′)
)
+

(
ℓ̂I(h

′)− Ê
SI

ℓ̂I(h
′)

)
+ Ê

SI

ℓ̂I(h
′) ≤ 0 +

1

n
+

1

n
=

2

n
.

We now consider the case where S is random. For an example ẑi = zi + ζi returned by the oracle,
we denote z′i = (zi)[kn] ∈ {0, 1}kn. Thus, z′i is the input that the oracle used before adding the
n2 − kn additional components and adding noise ζi. Let Z ′ ⊆ {0, 1}kn be such that z′ ∈ Z ′ iff
z′ = zS for some hyperedge S. If S is random, then by the definition of our examples oracle, for
every i ∈ [m(n) + n3] such that z′i ∈ Z ′, we have ŷi = b̂ with probability 1

2 and ŷi = 0 otherwise.
Also, by the definition of the oracle, ŷi is independent of Si, independent of the n2 − kn additional
components that where added, and independent of the noise ζi ∼ N (0, ω2In2) that corresponds to
ẑi.

If b̂ ≥ 9
10 then for a sufficiently large n the hypothesis h′ satisfies for each random example

(ẑi, ŷi) ∈ ŜI the following:

Pr
(ẑi,ŷi)

[
(h′(ẑi)− ŷi)2 ≥

1

5

]
≥ Pr

(ẑi,ŷi)

[
(h′(ẑi)− ŷi)2 ≥

1

5

∣∣∣∣ z′i ∈ Z ′
]
· Pr [z′i ∈ Z ′]

≥ Pr
(ẑi,ŷi)

 (h′(ẑi)− ŷi)2 ≥ ( b̂
2

)2
∣∣∣∣∣∣ z′i ∈ Z ′

 · Pr [z′i ∈ Z ′]

≥ 1

2
· Pr [z′i ∈ Z ′] .

In Lemma A.10, we show that for a sufficiently large n we have Pr [z′i ∈ Z ′] ≥ 1
log(n) . Hence,

Pr
(ẑi,ŷi)

[
(h′(ẑi)− ŷi)2 ≥

1

5

]
≥ 1

2
· 1

log(n)
≥ 1

2 log(n)
.

Thus, if b̂ ≥ 9
10 then we have

Ê
SI

[ℓI(h
′)] ≥ 1

5
· 1

2 log(n)
=

1

10 log(n)
.

Therefore, for large n we have

Pr

[
Ê
SI

[ℓI(h
′)] ≥ 1

10 log(n)

]
≥ 1− 1

n
≥ 7

8
.
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Since, (h′(ẑ) − ŷ)2 ∈ [0, b̂2] for all ẑ, ŷ returned by the examples oracle, and the examples ẑi for
i ∈ I are i.i.d., then by Hoeffding’s inequality, we have for a sufficiently large n that

Pr

[∣∣∣∣ℓI(h′)− Ê
SI

ℓI(h
′)

∣∣∣∣ ≥ 1

n

]
= Pr

[∣∣∣∣ℓI(h′)− Ê
SI

ℓI(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ ≤ 11

10

]
· Pr

[
b̂ ≤ 11

10

]
+ Pr

[∣∣∣∣ℓI(h′)− Ê
SI

ℓI(h
′)

∣∣∣∣≥ 1

n

∣∣∣∣ b̂ > 11

10

]
· Pr

[
b̂ >

11

10

]
≤ 2 exp

(
− 2n3

n2(11/10)4

)
· 1 + 1 · 1

n

≤ 1

8
.

Hence, for large enough n, with probability at least 1− 1
8 −

1
8 = 3

4 >
2
3 we have both EŜI

[ℓI(h
′)] ≥

1
10 log(n) and

∣∣∣ℓI(h′)− EŜI
ℓI(h

′)
∣∣∣ ≤ 1

n , and thus

ℓI(h
′) ≥ 1

10 log(n)
− 1

n
>

2

n
.

Overall, if S is pseudorandom then with probability greater than 2
3 the algorithm A returns 1, and if

S is random then with probability greater than 2
3 the algorithm A returns 0. Thus, the distinguishing

advantage is greater than 1
3 . This concludes the proof of the theorem. It remains to prove the deffered

lemma on the realizability of the examples returned by the examples oracle:
Lemma C.1. If S is pseudorandom then with probability at least 39

40 over ξ ∼ N (0, τ2Ip) and
ζi ∼ N (0, ω2In2) for i ∈ [m(n) + n3], the examples (ẑ1, ŷ1), . . . , (ẑm(n)+n3 , ŷm(n)+n3) returned
by the oracle are realized by N̂ .

Proof. By our choice of τ and ω and the construction of N1, N2, with probability at least 1 − 1
n

over ξ ∼ N (0, τ2Ip), we have |ξj | ≤ 1
10 for all j ∈ [p], and for every z ∈ {0, 1}n2

the following
holds: Let ζ ∼ N (0, ω2In2) and let ẑ = z + ζ. Then with probability at least 1 − exp(−n/2)
over ζ the inputs to the neurons E1, E2 in the computation N̂(ẑ) satisfy Properties (Q1) and (Q2).
Hence, with probability at least 1− 1

n − (m(n) + n3) exp(−n/2) ≥ 1− 2
n (for a sufficiently large

n), |ξj | ≤ 1
10 for all j ∈ [p], and Properties (Q1) and (Q2) hold for the computations N̂(ẑi) for all

i ∈ [m(n) + n3]. It remains to show that if |ξj | ≤ 1
10 for all j ∈ [p] and Properties (Q1) and (Q2)

hold, then the examples (ẑ1, ŷ1), . . . , (ẑm(n)+n3 , ŷm(n)+n3) are realized by N̂ .

Let i ∈ [m(n) + n3]. We denote ẑi = zi + ζi, namely, the i-th example returned by the oracle
was obtained by adding noise ζi to zi ∈ {0, 1}n

2

. We also denote z′i = (zi)[kn] ∈ {0, 1}kn. Since
|ξj | ≤ 1

10 for all j ∈ [p], and all incoming weights to the output neuron in Ñ are −1, then in N̂ all
incoming weights to the output neuron are in

[
− 11

10 ,−
9
10

]
, and the bias term in the output neuron,

denoted by b̂, is in
[

9
10 ,

11
10

]
. Consider the following cases:

• If z′i is not an encoding of a hyperedge then ŷi = 0. Moreover, in the computation N̂(ẑi),
there exists a neuron in E2 with output at least 3

2 (by Property (Q2)) . Since all incoming
weights to the output neuron in N̂ are in

[
− 11

10 ,−
9
10

]
, and b̂ ∈

[
9
10 ,

11
10

]
, then the input to

the output neuron (including the bias term) is at most 11
10 −

3
2 ·

9
10 < 0, and thus its output is

0.

• If z′ is an encoding of a hyperedge S, then by the definition of the examples oracle we have
S = Si. Hence:

– If yi = 0 then the oracle sets ŷi = b̂. Since S is pseudorandom, we have Px(z
S) =

Px(z
Si) = yi = 0. Hence, in the computation N̂(ẑi) the inputs to all neurons in E1, E2

are at most − 1
2 (by Properties (Q1) and (Q2)), and thus their outputs are 0. Therefore,

N̂(ẑi) = b̂.
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– If yi = 1 then the oracle sets ŷi = 0. Since S is pseudorandom, we have Px(z
S) =

Px(z
Si) = yi = 1. Hence, in the computation N̂(ẑi) there exists a neuron in E1 with

output at least 3
2 (by Property (Q1)). Since all incoming weights to the output neuron

in N̂ are in
[
− 11

10 ,−
9
10

]
, and b̂ ∈

[
9
10 ,

11
10

]
, then the input to output neuron (including

the bias term) is at most 11
10 −

3
2 ·

9
10 < 0, and thus its output is 0.
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