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Abstract

The aim of this article is to give a rather extensive, and yet nontechnical, account of the
birth of the regularity theory for generalized minimal surfaces, of its various ramifications
along the decades, of the most recent developments, and of some of the remaining chal-
lenges.
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1. Introduction

Let U be a bounded open subset of the Euclidean space R
mCn and let † � U be

an m-dimensional surface (e.g., a C 1 m-dimensional submanifold, but we will allow more
general concept of surfaces for most of this note). Then † is said to be a “critical point of
the area functional,” or more commonly a “minimal surface,” if

d

dt

ˇ

ˇ

ˇ

ˇ

tD0

Volm
�

ˆt .†/
�

D 0 (1.1)

for every smooth one-parameter family of diffeomorphisms Œ�ı; ı� 3 t 7!ˆt ofU such that:

(a) ˆt .x/ D x for every x 2 @U and every t ;

(b) ˆ0.x/ D x for every x 2 U .

Here Volm denotes a suitable concept of m-dimensional volume: in the case of classical
submanifolds, we can take the usual one from differential geometry.

Notable examples of minimal surfaces are those that minimize the volume in some
suitable class C . It suffices to assume that C is closed under deformations satisfying (a)
and (b) above to conclude that any minimizer in C is necessarily a critical point of the area
functional.

We call the attention of the reader to condition (a): the deformations fix the boundary
of the open set U . Thus an example of a class C is that formed by those surfaces†’s whose
boundary (in a suitable sense, for instance, we can take the usual one of differential topology,
if we are dealing with smooth surfaces) is a fixed � contained in @U . Such minimizer is then
a surface of “least area spanning the contour � .” However, we ultimately have to agree on
the very definition of an “admissible surface” (Must it be embedded or do we allow self-
intersections? Do we allow any topological type? In fact, must it be smooth or do we allow
singularities? If we allow singularities, which type should we allow?), on what it means to
span � , and how we define its volume.

Having assumed that we have answered all the above questions, i.e., that we have
selected a suitable class C and a related concept of m-dimensional volume, a minimizer in
C can be regarded as one possible solution to a celebrated problem in the calculus of varia-
tions, which goes under the name of Plateau problem. Indeed, the Belgian physicist Joseph
Plateau investigated it in the early 19th century with the intention of finding a good descrip-
tion of soap films. However, the problem had already appeared in the mathematical literature
decades before the investigations of Plateau, and can be found in the works of Lagrange,
Meusnier, Monge, and Légendre. In particular, Lagrange considered minimizers of the area
as early as the 1760s and he used his newly established method (which leads to what nowa-
days are called “Euler–Lagrange” conditions for minima of integral energies (cf. [79])) to
describe 2-dimensional minimal graphs in R

3 through a suitable partial differential equation.
As it is well known, if † is of class C 2, minimality in the sense of (1.1) is equiv-

alent to the vanishing of the mean curvature vector. The latter is a condition which can be
explained without any knowledge of differential geometry and it is, in fact, fairly easy to
describe to anybody with a basic knowledge of multivariate calculus. Having fixed a point
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p0 2 †, choose first an orthonormal system of coordinates so that † is the graph of a map
 W R

m � � ! R
n with the properties that

• p0 D .0;  .0// (i.e., p0 is the origin of the coordinate system);

• and r .0/ D 0 (i.e., the tangent to † at the origin is horizontal).

Then the mean curvature vector of † vanishes at p0 if and only if � .0/ D 0. One way
to think about minimal surfaces is thus to understand them as solutions to a (somewhat
complicated) nonlinear elliptic system of partial differential equations which linearize to the
Laplace equation, namely� D 0, when we rotate the coordinates so that the tangent to the
graph is horizontal.

The Laplace equation is universally considered as the prototypical elliptic partial
differential equation of second order, and its solutions, i.e., the harmonic functions, are the
prototype to understand the behavior of solutions to more general second order elliptic PDEs.
The Laplace equation as well has a variational flavor, since it characterizes critical points of
the Dirichlet energy

R

jr j2. But one could argue that minimal surfaces are even more
natural objects than harmonic functions: indeed, a surface is minimal independently of the
system of coordinates used to describe the ambient Euclidean space, while rigid motions of
graphs which “mix domain and target” do not preserve the harmonicity: the latter is a concept
which depends strongly on the selection of the dependent and independent variables used to
describe the surface as a graph.

Critical points of the area functional have fascinated (and have been the object
of study of) generations of mathematicians throughout at least two centuries and a half.
One very interesting aspect of minimal surface theory is that it is relatively easy to pro-
duce singular examples. A particularly simple instance is given by holomorphic subvarieties
in C

n: if we identify C
n with R

2n and we understand holomorphic subvarieties of dimen-
sion k as 2k-dimensional surfaces (with singularities), then the latter are always minimal.
In fact, they are much more than just minimal: they minimize the area among a vast class of
possible deformations. So an object as seemingly innocent as the complex algebraic curve
† D ¹.z; w/ 2 C

2 W z2 D w3º is a 2-dimensional minimal surface in R
4 and, in fact, it is

minimal according to one of the most restrictive meanings that we can give. However, the
origin is a point where† is not a regular submanifold: in particular, there is no neighborhood
of 0 in which it can be described as the graph of a function (at least if we understand our
functions “classically” and do not allow them to take more than one value at each fixed point
of their domain).

Another simple example is given by the connected set E of least length which con-
tains three noncolinear points p1; p2; p3 2 R

2. Such a set is the union of three distinct
segments �i ’s which:

• have pi as one endpoint,

• have all a common q as the other endpoint,

• meet at q forming angles of 120° degrees.
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Again q is a “singular point” in the sense of differential topology: E is not a submanifold of
R

2 in any neighborhood of q.
If we accept that a good theory of minimal surfaces must include singular objects,

we then open a Pandora box, in particular the following seemingly innocent questions imme-
diately come to mind:

• How do we define the admissible surfaces, or otherwise put, which kind of sin-
gularities do we allow?

• Which kind of deformations do we take into account?

• What is the m-dimensional volume of a singular surface?

All these questions can be studied from different points of view and can be given very dif-
ferent answers depending on which goals one has in mind. For instance, answers which deal
efficiently with the problem of minimizing the m-dimensional volume of surfaces in some
fixed homology class of a given Riemannian manifold do not seem to give a satisfactory
description of the complexity of soap films in real life. On the other hand, even though real
life soap films display singularities, it can be proved that any 2-dimensional integral homol-
ogy class in a closed smooth Riemannian 3-manifold has a smooth representative which
minimizes the area. At any rate, whichever the goal, a rather large number of answers to
these questions can be given in a subject of modern mathematics called geometric measure
theory.

Geometric measure theory provides powerful tools to study various variational
questions linked to the theory of minimal surfaces and has produced, in more than half
a century, several notions of “singular minimal surfaces.” In what follows, I will address
several of them and, for lack of a better term, I will call all of them “generalized minimal
surfaces.” A subtopic of geometric measure theory, which is commonly called “regularity
theory,” studies natural questions like:

• Under which conditions singularities can be ruled out, i.e., the generalized mini-
mal surfaces of a particular class end up being classical minimal submanifolds?

• How large can the set of singularities be when its existence cannot be completely
ruled out?

• Which structural properties can the singularities have?

The ambition of this article is to give a rather extensive, and yet nontechnical, account of the
birth of this topic, of its various ramifications along the decades, of the most recent develop-
ments, and of some of the remaining challenges. Since the topic is vast and complicated, I
will probably not do a good service to much of the existing literature and I emphasize from
the start that I consider my views quite biased.
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2. Plateau’s problem, criticality, and stability

Before coming to a description of the “regularity theory,” I will first introduce, in
this section, some of the most common notions of “generalized minimal surfaces” considered
in geometric measure theory.

2.1. Plateau’s problem: two general approaches
As already mentioned, the Plateau problem can be loosely described as “looking for

the surfaces † of least volume spanning a given contour � .” If the surfaces † in question
are C 1 submanifolds, it is commonly understood that them-dimensional volume is the usual
one from calculus books. If the given contour is as well a submanifold, a seemingly natural
possibility to give a rigorous definition of “† spans �” is to say that � is the boundary
of † in the usual sense of differential topology. From this point of view, it is also natural
to consider ambient spaces more general than the Euclidean one, and a common natural
choice is to have a general complete and smooth Riemannian ambient manifold. Practically
all the “positive results” which we will discuss in this note have a generalization to smooth
Riemannian ambient manifolds, but in order to be as nontechnical as possible, I will refrain
to state the general theorems and always assume that the ambient is Euclidean. There are,
however, some counterexamples which have been thus far found only in ambient Riemannian
manifolds, and given their relevance in some of the problems examined below, I felt that they
should be discussed.

If we want to enlarge the class of surfaces (and, in particular, allow minima with
singularities in our class C ), we then have to specify at the same time what we mean by
a surface, its volume, and the fact that it spans a given contour � . First of all, we will fix
the convention that the dimension of the surfaces in C is m, the dimension of � is m � 1,
and the ambient Euclidean space (or Riemannian manifold, when the general case will be
discussed) has dimensionmC n. Secondly, we will restrict our attention to regular contours
�: even though this can be relaxed considerably and one can fix certain type of nonsmooth
boundaries (depending on the framework), clearly, when dealing with “boundary regularity”
theorems, it is natural to assume that � itself has some regularity to start with. Once we have
defined our generalized class of surfaces, their generalized volume, and what it means for
them to span � , we will say that we have a “variational framework” for the Plateau problem.

It is possible to subdivide the various variational frameworks proposed in geomet-
ric measure theory in two large classes, which follow two rather different philosophical
approaches. I will loosely describe them as:

• Set-theoretic. We insist in this case that our generalized surfaces† are just merely
closed subsets of the ambient space which include � as a subset. The fact that
they “span” � will then be encoded in some topological condition which † must
satisfy, while them-dimensional volume is defined by a suitable “measure” which
satisfies the usual requirements of measure theory and coincides with the classical
m-dimensional volume when † is a subset of a C 1 surface (or a countable union
of subsets of C 1 surfaces).
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• Functional-analytic. In this case we focus first on some nice, sufficiently regular,
class of surfaces †, and we prescribe that their boundary is � in some suitable
convenient sense coming from algebraic topology: let us denote this privileged
class by R. On R the concept of volume will be also given in terms of classical
differential geometry and algebraic topology, and this will give us a functional A

(the area functional) on R. We then introduce some topology on R, for instance,
a distance, and the class C will be a suitable completion of this topological space,
while the functional A will be extended to C in some natural way (for instance,
we can take its lower semicontinuous envelope).

Observe that the “classical” parametric approach of Douglas and Rado does not fit in any of
these two broad descriptions. The fact that I am not including it in the scope of these notes
does not reflect any judgment on its mathematical interest: the “classical parametric theory”
is a beautiful piece of mathematics, but it has a rather different flavor compared to the results
and problems which will be discussed here.

In all the variational frameworks which we will examine, no matter whether they fall
in one class or the other, there is a common and recurrent use of two important objects from
geometric measure theory: the Hausdorff m-dimensional measure and rectifiable sets. The
Hausdorff m-dimensional measure, which we will denote by H

m, is a very natural way of
extending the classical notion ofm-dimensional volume to any subset of the Euclidean space
(or, more generally, of a metric space). In fact, it is just one possibility, while a general theory
of such extensions can be given in terms of the so-called “Caratheodory construction” and we
refer the reader to some of the several textbook in the literature which treats it (cf. [59,62,88]).
Rectifiablem-dimensional sets are a very natural class of sets which contain C 1 surfaces but
is closed under many more operations which are natural from the point of view of measure
theory: they consist of countable unions of closed subsets ofC 1 m-dimensional submanifold
plus a set of zero H

m measure (some people, for instance, Misha Gromov, consider the latter
a somewhat very unpleasant technical addition, and the author agrees that there might be an
efficient theory which works without the annoying technicality of adding null sets; however,
most people in analysis grew accustomed to it, as “completing” a � -algebra by adding sets
of measure zero is a fairly common operation).

It was a major discovery of Besicovitch in the first half of the 20th century that any
set of finite H

1 measure can be decomposed into the union of a “rectifiable portion” and
a “purely unrectifiable portion” (cf. [14–16]). The latter is somewhat “orthogonal” to any
C 1 submanifold, in the sense that it intersects any C 1 curve in a set of H

1 measure zero,
even though it might have positive H

1 measure. The more general theory ofm-dimensional
rectifiable sets was developed later Federer, cf. [61] (and see also [92]). While the rectifiable
part has much of the features of C 1 submanifolds, and can be considered as a weak version
of the latter, the purely unrectifiable part behaves in a rather counterintuitive way and in what
follows we will discount it: it is, however, one of the major early developments of geometric
measure theory that one can, without loss of generality, discard unrectifiable sets pretty much

877 The regularity theory for the area functional (in geometric measure theory)



in all variational theories for the area functional and I am hiding quite deep and beautiful
theorems here.

2.2. Examples of set-theoretic approaches
The first to pioneer what I dubbed “set-theoretic approach” was Reifenberg in [96].

In his variational framework, the definition of “E spans �” is that � is trivial in the rela-
tive Cech homology of E (cf. [96] for the precise definition). More recently Harrison (cf.
[71, 72]) suggested another, very elegant, possible definition of “E spans �” which for sim-
plicity we describe in the easiest case of (m� 1)-dimensional �’s in R

mC1: any closed curve

 � R

mC1 n � which is not contractible in R
mC1 n � must intersect E.

Another point of view is that taken by Almgren in his theory of .M; "; ı/-minimal
sets, cf. [9]: rather than giving a precise notion of “spanning,” we focus on which defor-
mations are allowed and assume that our class C is closed under the latter deformations.
In his work, Almgren gave a far-reaching existence and regularity theory, and the existence
part was recently revisited and extended in [60]. Concerning deformations, a very interesting
point raised only recently by David is that in practically all the works in the literature thus
far the authors used deformations which completely “fix” the boundary � , while it would
be much more natural to impose that they, in fact, map � onto itself in some controlled way
(for instance, they are isotopic to the identity within the class of diffeomorphisms of �): this
idea is at the base of his recent theory of “sliding minimizers”, cf. [25,27,28].

In all these variational frameworks, for any given sequenceEk of compact sets there
is a natural notion of convergence, that of Hausdorff, for which we can extract a converging
subsequence. However, the Hausdorff measure H

m does not behave well in terms of the
latter convergence, in the sense that it is not lower semicontinuous. On the other hand, one
can suitably adjust minimizing sequences so to achieve the lower semicontinuity of H

m:
it thus suffices to prove that the limit is in the considered class C to achieve a minimizer.
The author, in a joint work with F. Ghiraldin and F. Maggi in [37], pointed out that there
is, in fact, no need to adjust the minimizing sequence and that a suitable compactness and
lower-semicontinuity statement is valid for any minimizing sequence in a class C as soon
as it allows a rather limited number of basic competitors. In particular, this gives a unified
framework which treats all known examples of set-theoretic approaches put forward thus far,
cf. also [36,57,58].

From the point of view of differential and algebraic topology, all the set-theoretic
approaches have some very undesirable properties. Typical set-theoretic minimizers of the
Plateau problem will always have singularities: if the boundary � is complicated, it is ener-
getically convenient to form “triple junctions” along a singularity of codimension 1. On
the other hand, one of the biggest achievements of the functional-analytic approach is that
for every smooth closed embedded curve � in R

3 there is always a smooth oriented 2-
dimensional submanifold with boundary � which minimizes the 2-dimensional area among
all smooth oriented 2-dimensional submanifolds with boundary � . Likewise, it is possible to
show that every 2-dimensional integral homology class in a closed Riemannian 3-manifold
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has a smooth representative which minimizes the area. The set-theoretic approaches are not
able to detect these two beautiful phenomena.

On the other hand, actual soap films do form triple junction singularities (and even
more complicated ones) in real life, and these phenomena do not seem to be efficiently cap-
tured by functional-analytic frameworks (even though such singularities do occur in some
specific situations, see below). Much of the research in the set-theoretic frameworks is thus
motivated by the original intention of Plateau of finding a good variational description of
soap films. In that respect the recent paper [85] by Maggi, Scardicchio, and Stuvard pointed
out that much of the investigations in the mathematical literature have thus far ignored some
very relevant physical attributes of real-life soap films. Combining some of the aspects of
the set-theoretic approaches with other modern techniques, like �-convergence, and with
more accurate considerations from mathematical physics, the papers [76–78] propose a new
variational theory which promises to provide a much more accurate description of real-life
soap films.

2.3. Functional-analytic frameworks
The pioneer of functional-analytic frameworks seems to be Renato Caccioppoli. In

his works [18,19], Caccioppoli proposed the following definition of “perimeter” of a general
(Lebesgue measurable) set of R

mC1 (I will actually describe a slight variation of Cacciop-
poli’s approach, but the actual differences are just of technical nature and for the purposes
of this discussion I will ignore them). First of all, if the set has a C 1 boundary, its perime-
ter is defined to be the usual m-dimensional volume of the boundary. Next, given a general
Lebesgue measurable setE � R

mC1, we consider all possible sequencesEk of sets with C 1

boundaries with the property that the Lebesgue measure of the symmetric differenceEk�E

goes to 0. We then consider
lim inf
k!1

H
m.Ek/

and we further take the infimum of all such numbers among all approximating sequences
¹Ekº. The latter is defined to be the perimeter of E. If it is finite, E is commonly called a
set of finite perimeter or (especially if you are Italian!) Caccioppoli set.

Caccioppoli’s approach is very natural in the calculus of variations. We start from a
class of “good” objects, the open sets with smooth boundary, over which the energy we are
interested in, i.e., their perimeter, is classically defined. However, a sequence of smooth sets
with uniformly controlled perimeter might converge to nonsmooth sets (for instance, one can
easily form a corner, cusp, or other type of singularity) and we therefore would like to enlarge
this class. We then take a much larger class, that of all measurable sets, with a topology in
which the good objects are dense and we extend the energy to be the lower semicontinuous
envelope. Interestingly Caccioppoli’s approach was initially dismissed by his contemporaries
(cf. the reviews by L. C. Young of the aforementioned papers) because he was not able to
relate his abstract definition to any concrete notion of perimeter in a measure-theoretic sense.
In the early 1950s, De Giorgi took up Caccioppoli’s approach and proved, in his celebrated
works on the isoperimetric property of the sphere (cf. [29–31]), that:
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• the class of sets with finite perimeter in the sense of Caccioppoli is compact, under
a uniform bound on their perimeter;

• the perimeter has a precise measure-theoretic interpretation, i.e., if the set �
has a finite perimeter, one can introduce a suitable notion of (oriented) measure-
theoretic boundary which turns out to be rectifiable and whose Hausdorff measure
is indeed the perimeter of �.

De Giorgi also reformulated the theory of sets of finite perimeters through a useful duality: if
correctly interpreted, the usual divergence theorem holds for them, and the boundary integral
in the formulation is, in fact, a classical integral, in the sense of measure theory, over the
measure-theoretic boundary. For open sets with smooth boundaries, the “measure-theoretic”
one coincides with the topological one. An interesting byproduct (not at all obvious from the
definition) is that the perimeter as defined by Caccioppoli is, in fact, the classical surface area
of the topological boundary when the latter is smooth.

Thus, the oriented “generalized” boundaries of Caccioppoli and De Giorgi act as
linear functionals on vector fields. In the celebrated theory developed later by Federer and
Fleming (cf. [64]), these are particular instances of “integral currents,” which act on general
forms (and hence can have arbitrary codimension). Like De Giorgi’s theory of Caccioppoli
sets, the theory of integral currents of Federer and Fleming can also be seen as a suitable
variational completion: after introducing an appropriate class of good objects (in this case
integral smooth chains, which are formal linear combinations, with integer coefficients, of
smooth oriented submanifolds with smooth boundaries), the more general objects, namely
the integral currents, can be characterized as the limits, in an appropriate weak topology, of
sequences of those good objects, under uniform bound on their volume and on the volume
of their boundaries. Like in the case of De Giorgi’s theory of Caccioppoli sets, integral cur-
rents can be represented, in a suitable measure-theoretic sense, as integration over “oriented”
rectifiable sets.

While the duality with differential forms limits the choice of coefficient groups in
the formal linear combinations to integer and real coefficients (or anyway to subgroups of the
reals), the “completion point of view” allows choosing other “coefficient groups” (endowed
with an appropriate norm, so that we can make sense of the notion of “mass”), cf. the foun-
dational paper of [66] for the case of finite groups. Notable choices are the so-called “flat
chains mod p” (which, with a slight abuse of terminology, we will call currents mod p). In
the latter case, p is a positive integer larger than 1 and the coefficient group is Zp D Z=.pZ/

(for an element Œq� 2 Zp , endowed with the usual norm
ˇ

ˇŒq�
ˇ

ˇ min
®

jq � kpj W k 2 Z
¯

:

In this note the coefficient group will always be either Z, or Zp . Note in particular that in
both cases the norm will always take integer values, a fact which will play a fundamental
role in our discussions.

In all these instances, we have a framework where we can apply the direct methods
of the calculus of variations. In particular,
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• the concept of a boundary comes naturally either from the duality with differential
forms, or from the closure procedure;

• the underlying space of generalized objects is closed;

• the generalized area functional (often called the mass) is lower semicontinuous
and its sublevel sets are compact (if we assume that the boundary of our general-
ized surfaces is a fixed given one).

In particular, the Plateau problem in the above frameworks has a very elegant existence
theory.

2.4. Varifolds and the calculus variations “in the large”
One notable drawback of the functional-analytic frameworks outlined above is that

the mass is not continuous for the natural convergence in the underlying spaces. Continuity
along a sequence might be lost because of two mechanisms:

• High frequency oscillations: for instance, the graphs of the functions 1
k

sin kx in
the two-dimensional plane have locally bounded length and they converge, in the
sense of integral currents, to the straight line. It is, however, easy to see that the
total length of any segment in the limiting line is strictly less than the limit of the
corresponding approximations.

• Cancelation: a line in R
2 can be given two distinct orientations, thereby defining

two different integral currents. However, their sum is 0. If we approximate the
two different oriented lines with a sequence of two shifted oriented lines with dis-
joint supports, then we get a sequence of integral currents with masses uniformly
bounded from below which converges to the trivial current.

We are concerned mostly with the second, since the approximating sequence is a sequence
of minimal surfaces. Indeed, we can reasonably expect that a sequence of critical surfaces
will not exhibit the oscillatory behavior of the first example (this fact was, in fact, proved
by Allard as a byproduct his famous regularity theory, see below). On the other hand, the
criticality assumption does not rule out the second example, which is therefore “particularly
bad” because it shows that in the space of currents we cannot expect any reasonable type of
“Palais–Smale” property.

A way to remedy this loss of continuity is to introduce the notion of varifold, which
is just a positive measure on the Grassman space of m-dimensional unoriented m-planes in
the tangent bundle of the Euclidean space (or, more generally, of a Riemannian manifold).
For a smooth (not necessarily oriented) surface †, the corresponding varifold is given by

ıTx† ˝ d Vol† : (2.1)

General varifolds were introduced by L. C. Young (cf. [126]), while in the context of minimal
surfaces Almgren introduced them precisely in order to tackle general existence problems for
critical points of the area functional, cf. [7]. A particularly useful subclass of varifolds is that
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of integral varifolds, which satisfy a structure as in (2.1) where d Vol† is substituted by the
Hausdorff k-dimensional measure restricted on a general m-dimensional rectifiable set R
(with an integer-valued weight), and ıTx† is substituted by ıTxR, where TxR is a natural
measure-theoretic generalization, to rectifiable sets, of the tangent to a smooth surface.

In his notable monograph [95], based on some groundbreaking ideas of Almgren
[7], Pitts developed a quite powerful variational theory for finding generalized critical points
of the area functional. In codimension 1, i.e., in the case of hypersurfaces, the theory of
Almgren and Pitts has found striking geometric applications in the works of A. Neves and
F. Coda Marques, cf. [81, 86, 87]. These results have spurred a number of interesting works
in the area, and Pitts’ existence theory has been revisited in several different ways, see, for
instance, [21,22,56,75,127].

Varifolds can be naturally deformed using one-parameter family of diffeomor-
phisms, and this allows introducing a rather natural notion of the kth variation of the varifold
along smooth vector fields. Of particular relevance are then

• stationary varifolds, i.e., varifolds for which the first variation vanishes along any
vector field,

• and stable varifolds, i.e., stationary varifolds for which the second variation is
nonnegative along any vector field.

Since all the objects encountered above in the existence theories for the Plateau problem nat-
urally induce corresponding varifolds, all the minimizers in the various senses given above
are, in fact, stable varifolds.

3. Monotonicity formula and tangent cones

One simple and very powerful tool in the regularity theory for minimal submani-
folds is the monotonicity formula. In order to gain an intuition about it, consider a smooth
m-dimensional surface † � R

mCn which minimizes the volume in some suitable class of
comparison surfaces and fix an “interior” point p 2 †. Consider then a ball Br .p/ which
does not intersect @†. We wish to compare the volume of † \ Br .p/ to the volume of the
cone†c with vertex p and base†\ @Br .p/. By Sard’s lemma, we can assume that† inter-
sects @Br .p/ transversally. Note that our comparison surface is somewhat singular because
of the vertex singularity of the cone and the discontinuity in the tangents that might be intro-
duced by cutting†\ Br .p/ out and replacing it with � . On the other hand, it is also simple
to see that †c [ .† n Br .p// can be obtained as limit of deformations of † by smooth iso-
topies of the ambient space: in particular, it is a good comparison surface in pretty much all
the variational frameworks considered so far.

The minimizing property of † implies then that

Volm
�

† \ Br .p/
�

� Volm.†c/ D
r

m
Volm�1

�

† \ @Br .p/
�

;
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which in turn (considering that Volm�1.† \ @Br .p// � d
dr

Volm.† \ Br .p//) gives

d

dr

Volm.† \ Br .p//

rm
� 0: (3.1)

The latter is the classical monotonicity formula for minimal submanifolds. It is very robust,
in the sense that

(a) It can be derived for critical points by using stationarity with respect to some
specific radial deformations. In particular, it holds for stationary varifolds
(see [4]).

(b) Allowing for suitable multiplicating factors like eC r , the formula holds for much
more general objects, in particular for stationary varifolds in smooth Rieman-
nian manifolds (cf. again [4]).

(c) A suitable version of the formula can be derived at boundary points too, under
the assumption that the boundary @† is smooth enough (cf. [5]). An intuition
for this can be gained through the following observation: if the boundary
@† were an affine subspace passing through p, then the competitor surface
†c [ .† n Br .p// would have the same boundary, namely @†.

(d) Perhaps most importantly, a more refined version of the arguments leading
to (3.1) shows that the equality case in holds if and only if†c coincides with � ,
i.e., if † itself is a cone with vertex p.

For further reference, we will call density of † at p (denoted by ‚.†; p/ the limit of the
“mass ratio”

lim
r#0

Volm.† \ Br .p//

!mrm
;

where !m is the volume of them-dimensional disk. Obviously, the density is not particularly
interesting for smooth†’s as it will be 1 at every interior point and 1

2
at every boundary point

(or k at every interior point and k
2

at every boundary point, if we entertain the possibility
of allowing for multiplicities in the normed groups Z and Zp , or if we consider integral
varifolds). However, due to (a), the density exists for any “generalized minimal surface”
encountered in the previous section and this is a very nontrivial information, given that the
latter might be singular. Another interesting byproduct of the monotonicity formula is that
the density is nowhere smaller than 1 at interior points, which in turn implies that some
suitable definition of “support” of the generalized minimal surface is a closed rectifiable set
of locally finite Hausdorff measure.

3.1. Tangent cones
Fact (d) above is maybe the most relevant, as it is the starting point for a fruitful

fundamental concept in minimal surface theory. Let us fix a point p in (the support of) our
generalized minimal surface† (and, in light of (c) above, we might even fix it at the boundary
as long as the latter is sufficiently smooth). For every radius r , consider then the translated
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and rescaled surface
†p;r WD

† � p

r
D ¹y W p C ry 2 †º:

The volume of the surface in BR.0/ is then uniformly bounded for every fixed R, indepen-
dently of the parameter r . Again, while this is not particularly exciting for a smooth †, it is
a highly nontrivial fact for the generalized minimal surfaces, which are potentially singular
at p. Given the uniform bound and the compactness properties available for all the gener-
alized minimal surfaces introduced thus far, up to subsequences we can assume that †p;r

converges to a generalized minimal surface in the same class, which for convenience we will
denote by †c .

Assuming convergence of the volume (which is, in fact, correct for objects like vari-
folds because of their definition, while it is a property shared by minimizers out of variational
arguments, in any of the classes described thus far) the mass ratio R�m Volm.†c \ BR/ is
constant inR, and hence by point (d) it is a cone. In the literature,†c is called a tangent cone
to† at p. Note that we are speaking about a tangent cone: the uniqueness of this object, i.e.,
its independence of the subsequence rk # 0, is a widely open problem, even though several
fundamental result have been proved in the past (see Section 15 below).

At a regular pointp, i.e., a point in a neighborhood of which the generalized minimal
surface † is smooth, the tangent cone †c is, of course, unique and it is given by the tangent
space to † at p (counted with the appropriate multiplicity, depending upon the chosen vari-
ational framework), or half of the tangent space if p is a boundary point. A later section will
examine under which assumption the latter conclusion is correct.

At any rate, even in the possible presence of singularities, we have gained a great
deal of new information about †c compared to †: †c is a “global minimal surface” (it has
no boundary if p is in the interior, or its boundary is affine if p 2 @†) and, moreover, it is
conical. In particular, its spherical cross-section carries all the information about †c , even
when †c is singular: at all effects, †c must be less complex than †, i.e., †c has “lost one
dimension.”

4. Invariant spaces and strata

For simplicity, in what follows we will focus on tangent cones †c at interior points
p, even though a variant of the following discussion applies to boundary tangent cones as
well. Since p is not a boundary point,†c has no boundary. Moreover, two simple corollaries
of the monotonicity formula are that:

• ‚.†c ; 0/ � ‚.†c ; q/ for every q,

• and if the quality holds at some q¤ 0, then†c “splits off a line,” i.e., it is invariant
under translations in the direction q.

The latter property is the starting point of Federer in his celebrated “dimension reduction
argument” (cf. [62,63]), which we will illustrate below. Here we want to present Almgren’s
stratification theory, which is a far-reaching generalization of Federer’s original idea.
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First of all, it follows from the above consideration that the set

V D
®

q 2 †c W ‚.†c ; q/ D ‚.†c ; 0/
¯

is a linear subspace of R
mCn. If V has the same dimension as†c , then, in fact,†c coincides

with V (counted with the correct multiplicity and, in some cases, given the correct orienta-
tion). Otherwise, assuming that k D dim.V /,†c is the product of V and a minimal cone†0

in the orthogonal complement of V ?, which is not invariant by any translation. This is a great
deal of information, and in several cases implies severe restrictions upon k. For instance, for
area-minimizing integral currents, it can be easily checked that k � m� 2 in general, while
in the particular case of codimension 1 the celebrated paper of Simons on stable minimal
hypercones (cf. [62]) implies that k � m � 7 (again this will be discussed further below)!
In [11] Almgren coined the term building dimension of the cone †c to identify the nonneg-
ative integer k and introduced a stratification of the interior points p 2 † according to the
maximal building dimension of its tangent cones. In particular, the stratum Sk is the set of
(interior) points p 2 † such that the building dimension of any tangent cone to † at p is at
most k. Almgren’s fundamental discovery is the following

Theorem 4.1. For a stationary integral varifold †, the stratum Sk is a closed set of Haus-
dorff dimension at most k.

Almgren’s approach is very general and can be applied to a variety of different con-
text. For a framework which is very flexible and covers a wide range of applications, see
[123]. Almost four decades after the work of Almgren, groundbreaking ideas allowed Naber
and Valtorta to improve massively upon Almgren’s original theorem, showing (cf. [93,94])

Theorem 4.2. For a stationary integral varifold †, the stratum Sk is k-rectifiable, i.e., it
can be covered, up to a set of H

k-measure zero, with countably many C 1 submanifolds of
dimension k.

Theorem 4.2, which was predated by pioneering works of Simon (cf. [108,109]) cov-
ering some particular cases (most notably the stratum Sm�7 for area-minimizing integral
currents, see below for more details), builds upon a new sophisticated version of Reifenberg’s
topological disk theorem combined with a clever use of the remainder in the monotonicity
formula. The ideas are quite general and can be applied to other contexts.

5. Interior "-regularity at multiplicity 1 points

Following the above terminology, two things are obvious: the stratum Sm coincides
with the whole support of the m-dimensional generalized minimal surface and the stratum
Sm�1 consists necessarily of singular points. A point p 2 Sm n Sm�1 is clearly a good
candidate for being a regular point, since we know that at least one tangent cone to† at p is,
in fact, a plane (counted with its multiplicity). However, a famous theorem by Federer shows
that the existence of a “flat tangent” does not guarantee the regularity of the point. Indeed,
based on a classical theorem of Wirtinger in Kähler geometry, Federer proved (cf. [62])
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Theorem 5.1. Any holomoprhic subvariety † of complex dimension k in C
n induces an

area-minimizing integral current of dimension 2k in R
2n.

It can be readily checked that the holomorphic curve

† D
®

z2 D w3 W .z; w/ 2 C
2
¯

(5.1)

gives then an example of an area-minimizing integral current of dimension 2 in R
4 for which

0 2 S 2 n S 1 is a singular point. One crucial fact is, however, that the flat tangent at 0
is a 2-dimensional plane (i.e., the complex line ¹z D 0º) but counted with multiplicity 2.
A celebrated theorem of Allard (cf. [4]), extensively used in the literature, shows that the
naive expectation “flat tangent cone ” regular point” is indeed correct if the flat tangent
cone has multiplicity 1.

Theorem 5.2. If a stationary integral varifold † is sufficiently close in B2r .p/ to a plane
(counted with multiplicity 1) in the weak topology, then in Br .p/ it is a smooth graph over
that plane. Moreover, at any interior point p where the density of† is 1, such a plane always
exists for a sufficiently small r .

Among the various objects examined in this note, there are three situations where
it is relatively simple to see a priori that our generalized minimal surface † will not “pick
higher multiplicity” at flat points:

(a) † is a portion of the boundary of some Caccioppoli set;

(b) † is a solution of the Plateau problem in one of the set-theoretic senses desc-
ribed in Section 2.2;

(c) † is an area-minimizing current mod 2 or an area-minimizing current mod 3.

In fact, Theorem 5.2 was realized independently by De Giorgi and Reifenberg, in [32] and
[97,98], respectively in the particular cases of (a) and (b) (this is literally correct for De Giorgi,
while in reality Reifenberg in [97,98] dealt with the only set-theoretic solutions of the Plateau
problem known at his time, which were those he himself introduced in [96]; it must also be
noticed that De Giorgi’s monograph appeared three years before Reifenberg’s paper, but it
was probably not yet widely known when Reifenberg wrote his papers [97,98]). The two pio-
neering approaches are rather different, but they both rely on the fact that the “linearization”
of a minimal surface, understood as a graph over his tangent plane, is harmonic (in fact,
it would be more correct to say that the linearization of the minimal surface equation is the
Laplace equation, or that, at the level of the energies, the Dirichlet energy is the second order
Taylor expansion of the area functional).

Reifenberg used harmonic competitors to estimate how much an area-minimizing
surface deviates from being conical if it is close to a plane, and derived his famous “epiperi-
metric inequality,” which can be thought as a quantitative improvement of the cone-compa-
rison outlined above to prove the monotonicity formula. De Giorgi used a linearization
technique which has a more PDE flavor, and which was generalized afterwards by Almgren
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in any codimension and for much more general energy functionals, cf. [7]. Both approaches
exploit in a substantial way the minimizing property of the surfaces in question. Allard’s
proof of Theorem 5.2, while still based on the intuition that harmonic functions provide
a good approximation for minimal graphs, deviates drastically from both of them, having
to deal with stationary objects. But ultimately it is fair to say that Allard’s approach bor-
rows much more substantially from the works of De Giorgi and Almgren, than from that of
Reifenberg.

It is worth spending some words on why all the approaches mentioned above for the
"-regularity theory fail at the origin in the example (5.1): no matter how small is the scale
that we look at, it is not possible to approximate efficiently (5.1) around the origin with the
graph of a single-valued function. Of course, before knowing Theorem 5.2 we also do not
know that, under the corresponding assumptions, a generalized surface is graphical over the
approximating plane: however, a crucial point in Allard’s proof of Theorem 5.2 is that, before
proving any regularity, he was able to produce a graphical approximation which covers most
of the support of the generalized minimal surface. In contrast, no matter how small the r is,
a single-valued graph will cover no more than half of † \ Br .p/ when † is given by (5.1).

The assumption on the multiplicity of the varifold severely limits the effectiveness
of Theorem 5.2 in bounding the size of the singular set for stationary integral varifolds. In
fact, it would be natural to expect that singular points with a flat tangent cone form anyway a
set of relatively modest size: according to the known examples, its dimension is likelym� 2.
The latter is less than the dimension of Sm�1 and so one could reasonably conjecture that
the singular set of a stationary integral varifold has dimension at most m � 1. On the other
hand, so far the best that we can conclude is still a corollary of Theorem 5.2 noted by Allard
in [4] almost 50 years ago.

Corollary 5.3. Let † be a stationary m-dimensional varifold in U � R
mCn. Then the sin-

gular set of † is a closed subset which has empty (relative) interior.

6. Boundary "-regularity at multiplicity 1

2
points

In his second groundbreaking work [5], Allard proved a statement parallel to Theo-
rem 5.2 at boundary points. The following is an informal description of his main “boundary
regularity” theorem.

Theorem 6.1. Assume† is anm-dimensional integral varifold in some open setU � R
mCn,

which is stationary for variations which keep fixed a smooth .m � 1/-dimensional subman-
ifold � . Then the following conclusions hold:

(a) If p 2 � belongs to the support of the varifold, then ‚.p;†/ � 1
2
.

(b) If in B2r .p/ the varifold is sufficiently close, in the weak topology, to a single
copy of half of an m-dimensional plane � , then in Br .p/ it is a C 1 graph over
a suitable portion of � .
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(c) If ‚.p;†/ D 1
2
, then the assumption of (b) (and hence the corresponding con-

clusion) holds for a sufficiently small r .

For this boundary version as well, the overall intuition is that V is, in first approxi-
mation, very well approximated by the graph of a (single-valued) harmonic function.

While in the rest of this note I will touch upon interior regularity results for many
different notions of generalized minimal surfaces, concerning boundary regularity I will only
focus on the case of area-minimizing integral currents. This is also due to the fact that there
are not many other cases studied in the literature. Aside from Allard’s general theorem (i.e.,
Theorem 6.1 stated above), the author is only aware of:

• the work [80] (cf. also [91]), which contains a conjectural list of boundary tangent
cones for set-theoretic 2-dimensional solutions of the Plateau problem;

• the recent work of David [26], which, for 2-dimensional sliding minimizers, gener-
alizes the conclusion of Theorem 6.1 to the union of two half-planes, and possible
additional transverse cones as in the classical theorem of Taylor in the interior (cf.
Theorem 8.1);

• an argument by White which shows how to gain curvature estimates for stable
minimal hypercurrents at the boundary, under some convexity assumption (cf.
[45, Section 6.4]).

7. Interior regularity theory: minimizing integral

hypercurrents

Even though Allard’s Theorem 5.2 needs the multiplicity 1 assumption, the latter
might be dropped in the case of integral area-minimizing currents of codimension 1 (which
for simplicity we will call hypercurrents from now on). The key point is that area-minimizing
integral hypercurrents† can be locally decomposed into the sum of area-minimizing bound-
aries of Caccioppoli sets (this is a consequence of the Coarea formula, see, for instance,
[104]). If in B2r .p/ the original current † is close to a multiple Q of a hyperplane � , each
of these boundaries is then close to a multiplicity 1 copy of � . We can then apply Allard’s
theorem to prove that each of them is a C 1 graph in Br .p/, obtaining what can be called (cf.
for instance [102]) a “sheeting theorem” for † \ Br .p/. However, each of these sheets must
be ordered (for minimizing reasons they cannot cross) and they must touch at the point p:
the maximum principle (each of these graphs is a solution of the minimal surface equation)
then implies that they collapse all into a single smooth surface counted with the appropriate
multiplicity, which must be Q.

This argument rules out that an example like (5.1) could exist for integral area-
minimizing hypercurrents. We are therefore in the luckiest of situations where we can infer
that a single flat tangent cone at p is indeed a necessary and sufficient condition for regularity
at p. If we introduce the notation Singi .†/ for the interior singularities of †, when † is an
m-dimensional area-minimizing integral current in R

mC1 (or, more generally, in a complete
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smooth Riemannian manifold of dimension mC 1), we infer Singi .†/ � Sm�1. Consider,
however, that the existence of a point p 2 Sm�1 n Sm�2 implies the existence of a singular
1-dimensional area-minimizing cone in R

2, and it is rather elementary to see that the latter
cones do not exist, namely that Singi .†/ � S m�2. Of course, we can now wonder whether
for some† the set Sm�2 n Sm�3 is nonempty, which is equivalent to the existence of an area-
minimizing 2-dimensional cone in R

3 which is not a plane (i.e., it is singular at the origin).
In [63] Federer introduced his well-known reduction argument, which could be formalized
as follows.

Theorem 7.1. Letm be the smallest integer with the property that there is anm-dimensional
area-minimizing integral current †0 in R

mC1 which is a nonplanar cone with vertex at the
origin. Then †0 is everywhere regular except at the origin.

It was also realized by De Giorgi in [33] that the well-known Bernstein problem, i.e.,
whether a complete minimal graph over R

mC1 must be affine, would also be implied by the
nonexistence of nonplanar area-minimizing oriented hypercones in R

mC1. After progress by
Fleming, De Giorgi, and Almgren (cf. [8, 33, 65]), Simons in [112] proved his famous result
about stable minimal hypercones, namely

Theorem 7.2. Ifm� 6 and�0 � @B1 � R
mC1 is a smooth connected submanifold of dimen-

sion m � 1, such that the cone †0 with base �0 and vertex 0 is a stable varifold, then �0 is
a great sphere (i.e., †0 is planar). On the other hand,

†s WD
®

x2
1 C x2

2 C x2
3 C x2

4 D x2
5 C x2

6 C x2
7 C x2

8

¯

� R
8 (7.1)

is a nonplanar, oriented, stable singular cone of dimension 7.

Since area-minimizing currents are automatically stable varifolds, in combination
with Federer’s reduction argument, the first part of Theorem 7.2 implies that
Singi .†/ � Sm�7 for any m-dimensional area-minimizing integral hypercurrents. In par-
ticular, for m � 6, † is a regular hypersurface (in the interior), while, for m � 7, Singi .†/

has dimension at most m � 7. In fact, by Theorem 4.2 we can conclude that Singi .†/ is
.m� 7)-rectifiable. The latter conclusion was first reached by Simon in his pioneering work
[108]. However, compared to Simon’s techniques, the approach by Naber and Valtorta (cf.
[94]) allows proving the stronger conclusion, namely

Theorem 7.3. Let† be anm-dimensional area-minimizing integral current in R
mC1. Then

Singi .†/ has locally finite Hausdorff .m � 7)-dimensional measure, and it is .m � 7)-
rectifiable.

In their famous work [17], Bombieri, De Giorgi, and Giusti completed the solution
of the Bernstein problem showing that indeed the Simons cone (7.1) is an area-minimizing
integral current of dimension 7, and that in addition there is a nonaffine global solution
u W R

8 ! R of the minimal surface equation.
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8. Interior regularity theory: minimal sets

As already mentioned, the phenomenon of “picking higher multiplicity at flat
points” is absent in the solutions of the Plateau problem that fall in the “set-theoretic”
approach. This was pioneered by Reifenberg in [97,98], who proved that his m-dimensional
solutions of the Plateau problem are always real analytic except for a closed H

m-null set.
A much more general statement, valid in a variety of contexts and also for a vast class of
elliptic energies was proved by Almgren in [9].

Following the Remarks of Section 4, we conclude that the singular set of an m-
dimensional set-theoretic solution of the Plateau’s problem is necessarily contained in
S m�1. While Theorem 4.2 implies that S m�1 is rectifiable, much more can actually be
said in the codimension 1 case. First of all, for 2-dimensional minimizing sets in R

3 Taylor
in [117] proved the following complete structure theorem.

Theorem 8.1. Let † be a 2-dimensional set which minimizes the area in the sense of Alm-
gren. Then:

(a) S1.†/ n S2.†/ is the (locally finite) union of C 1;˛ arcs and for each
p 2 S1.†/ there is a neighborhood U of p in which † is the union of three
classical minimal surfaces meeting in S1.†/ \ U at 120 degrees;

(b) S0.†/ consists of isolated points and for each p 2 S0.†/ there is a neighbor-
hood U in which † is diffeomorphic to the cone over a regular tetrahedron.

The same conclusion as in part (a) of the above remarkable theorem is, in fact, valid
for the stratum Sm�1 n Sm�2 of m-dimensional area-minimizing sets in R

mC1 and can be
inferred from Simon’s theory on the uniqueness of multiplicity 1 cylindrical cones, cf. [106].
Part (b) can also be generalized to a similar statement for m-dimensional area-minimizing
sets of R

mC1, implying in particular that S2 n Sm�3 is an .m � 2/-dimensional subman-
ifold. This generalization was announced by White in [120] and a proof has been recently
published by Colombo, Edelen, and Spolaor in [23], as a corollary of a more general result.
The main Theorem in [23] also implies that the stratum Sm�3 has finite H

m�3 measure.

9. Interior regularity theory: stable hypersurfaces and

stable hypervarifolds

In [103] Schoen, Simon, and Yau realized that Simons’ theorem on stable minimal
hypercones could be recast in a suitable a priori estimate for the curvature of stable minimal
surfaces. More precisely, combining Simons’ inequality with techniques from elliptic PDEs
they were able to prove the following groundbreaking theorem.

Theorem 9.1. Let † be a smooth minimal hypersurface in U � R
mC1 with m � 5. Then

for every V �� U there is a constant C which depends on U;V , and H
m.†/ such that the

Hilbert–Schmidt norm of the second fundamental form A of † is bounded by C at every
point of † \ V .
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In their subsequent work [102], Schoen and Simon were able to cover the casemD 6

of the above statement and also to give a “GMT regularity theory” counterpart of the Schoen–
Simon–Yau estimates. More precisely, they were able to prove

Theorem 9.2. Assume† is a stablem-dimensional varifold inU � R
mC1 with the property

that1 H
m�2.Singi .†// < 1. Then Singi .†/ � Sm�7.

It has been recently shown by Simon, see [110, 111], that the subsequent conclu-
sion that Singi .†/ is .m � 7/-rectifiable is optimal, in the sense that there are stable m-
dimensional varifolds in m C 1 smooth Riemannian manifolds whose singular sets are
closed sets of arbitrary Hausdorff dimension ˛ � m � 7. On the other hand, the assump-
tion H

m�2.Singi .†// D 0 is not at all optimal. Based on the examples known thus far, one
could expect that for a general stable hypervarifold the top stratum Sm�1 n Sm�2 is a C 1;˛

.m� 1)-dimensional submanifold and that if the latter is empty, then Singi .†/ is contained
in Sm�7. A notable theorem in this direction, in particular covering the second conclusion,
has been achieved by Wickramasekera in his deep regularity theory of stable hypervarifolds.
The main conclusion of his paper [124] is the following

Theorem 9.3. Assume† is a stablem-dimensional varifold in a connected set U � R
mC1.

Then:

• either Singi .†/ contains a point p in a neighborhood of which † consists
of a finite number of smooth minimal hypersurfaces meeting at a common
C 1;˛ .m � 1/-dimensional boundary (which in particular is a nonempty subset
of Sm�1 n Sm�2),

• or otherwise Singi .†/ � Sm�7.

While the latter is a remarkable achievement, for general stable hypervarifolds the
best unconditional regularity result is still that which can be concluded from the sole condi-
tion of stationarity through Allard’s work, namely Corollary 5.3.

10. Interior regularity theory: minimizing integral

currents in higher codimension

As already witnessed in Example (5.1), the regularity theory for area-minimizing
integral currents in codimension larger than 1 differs dramatically from the regularity theory
for hypercurrents, since there are singular points which belong to Sm n Sm�1, and which
from now on we will call “flat singular points.” The major problem of how to give a suitable
dimension bound for “flat singular points” was finally conquered by Almgren in a titanic
effort, which resulted in a famous 1728 page preprint in the early 1980s (cf. [10]), published

1 In their paper, Schoen and Simon assume the stronger property that Hm�2.Singi .†// D 0,
but it is well known by the experts that their arguments apply if the Hausdorff measure is, in
fact, finite.
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pusthumously thanks to the editorial work of Scheffer and Taylor in [11]. Almgren’s mono-
graph achieves the optimal dimension bound for area-minimizing integral currents in any
dimension and codimension.

Theorem 10.1. Let † be an area-minimizing integral current of dimension m in R
mCn.

Then the Hausdorff dimension of the set of interior flat singular points is at most m � 2,
while the stratum Sm�2 n Sm�1 is empty. In particular, dimH .Singi .†// � m � 2.

Almgren invented several tools to prove Theorem 10.1. In particular,

(i) he introduced an entire new concept of “multivalued functions minimizing
the Dirichlet energy” in order to find the “appropriate linearization” of area-
minimizing integral currents at flat singular points, and he developed a subse-
quent existence and regularity theory for these new objects;

(ii) he introduced several flexible techniques to approximate currents with Lipschitz
multivalued graphs;

(iii) he developed a very intricate regularization technique to find a sufficiently
smooth “central sheet” at possible branching singularities (the so-called “center
manifold”);

(iv) he discovered a new monotonicity formula for a harmonic function (the mono-
tonicity of the “frequency”) which has meanwhile been used in a variety of
different contexts in elliptic and parabolic partial differential equations (see,
e.g., [67,70,84]).

Almgren’s theory has been revisited by the author and Emanuele Spadaro in the series of
works [47–51]. Besides making the proof of Theorem 10.1 shorter, these works improve upon
Almgren’s monograph in several aspects, and, moreover, they have been the starting point
of several further developments, which will be detailed in the next sections

Shortly after Almgren completed his 3-volume preprint, White proved that in the
case of 2-dimensional area-minimizing currents the stratum S0 consists, in fact, of isolated
points, cf. [119] (this is indeed a corollary of a more precise theorem which shows the unique-
ness of tangent cones in that particular case and which will be discussed further in Section 15.
The program of understanding the singularities of 2-dimensional area-minimizing currents
was then completed by Chang in [20].

Theorem 10.2. Let† be a 2-dimensional area-minimizing current in R
2Cm. Then Singi .†/

consists of isolated points. Moreover, for each p 2 Singi .†/ there is a neighborhood U in
which† can be decomposed as the union of a finite numberN of branched minimal immersed
disks Di with the following properties:

• each Di is an embedding, except for the point p;

• Di \Dj is either the empty set or consists only of the point p.
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However, the proof given in [20] is, strictly speaking, incomplete, as Chang needs
the existence of a suitable generalization of Almgren’s center manifold to a “branched ver-
sion.” For the latter, he just gives a 4-page sketch (cf. the appendix of [20]), invoking suitable
modifications of Almgren’s statements (it must be noted that the construction of the center
manifold occupies more than half of Almgren’s monograph [11]). Based on the works [47–51],
the author, Spadaro, and Luca Spolaor gave a complete independent proof of the existence
of a branched center manifold in [52]. We also developed a suitable more general counter-
part of Chang’s theory in the papers [53–55], proving in particular the same regularity result
for spherical cross-sections of area-minimizing 3-dimensional cones and for semicalibrated
2-dimensional currents (previous theorems in [12,13] proved some cases of particular inter-
est, based on the works of Rivière and Tian, see [99–101]). Almgren’s dimension bound in
Theorem 10.1 has also been extended to semicalibrated currents by Spolaor in [113].

11. Interior regularity theory: minimizing currents mod p

The regularity theory for area-minimizing currents mod p started around the same
time as the regularity theory for integral currents. As a consequence of Almgren’s gener-
alization of De Giorgi’s " regularity theorem, the cases p D 2; 3 were already rather well
understood in the 1960s. In particular, the absence of flat singular points allowed inferring
the following theorem (the case p D 2 is due to Federer, cf. his pioneering work on the
reduction argument [63]).

Theorem 11.1. If † is an m-dimensional area-minimizing current mod 2 in R
mCn, then

Singi .†/ � Sm�2. If † is an m-dimensional area-minimizing current mod 3, then
Singi .†/ � Sm�1.

The casepD 2 in codimension 1 allows even more restrictive results (the same regu-
larity as for integral area-minimizing currents holds and, in fact, locally any area-minimizing
integral hypercurrent mod 2 is the boundary of a Caccioppoli set), while in higher codimen-
sion there are indeed area-minimizing 2-dimensional currents mod 2with point singularities.

For p D 3, the union of three half-planes in R
3 meeting at a common line at 120

degrees gives an obvious example for which Sm�1 ¤ ;. The beautiful result of Taylor [116]

gave a complete description of the interior singular set for area-minimizing 2-dimensional
currents mod 3 in R

3: locally the singular set is always diffeomorphic to the above example.
The subsequent work of Simon [106] on the uniqueness of cylindrical tangent cones allowed
giving a suitable generalization of Taylor’s result in any dimension and codimension. The
final outcome is the following

Theorem 11.2. If † is an m-dimensional area-minimizing current mod 3 in R
mCn, then

Sm�1 n Sm�2 is an .m� 1/-dimensional submanifold and at everyp 2 Sm�1 n Sm�2 there
is a neighborhoodU in which† consists of 3 smooth minimal surfaces meeting at Sm�1 \U

at 120 degrees. If † is in addition an hypercurrent (i.e., n D 1), then Sm�2 n Sm�3 is an
empty set. In particular, if m D 2 and n D 1, then Singi .†/ consists of pairwise disjoint
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closed simple curves and pairwise disjoint simple arcs with endpoints lying in the support
of the boundary of †.

In order to progress beyond Corollary 5.3 for higher moduli, it is necessary to either
rule out flat singular points or bound their dimension. In the special case of mod 4 hypercur-
rents, White in [118] discovered a beautiful fact which allowed him to derive the following
structural result

Theorem 11.3. If † is an m-dimensional area-minimizing current mod 4 in R
mC1, then it

can be locally decomposed, away from its boundary, into the union of two m-dimensional
area-minimizing currents mod 2.

He also showed a converse to Theorem 11.3. In particular, his results imply the
existence of flat singular points even for hypercurrents mod 2k. More precisely, consider a
function u W R

2 � B1 ! R which solves the minimal surface equation and, after applying a
suitable translation and rotation, assume that u.0/ D 0, ru.0/ D 0, andD2u.0/ ¤ 0. Since
�u.0/D 0, it follows that the zero set of u in a neighborhood of 0 consists of 2 arcs crossing
orthogonally in 0. We can thus assume that the disk Br .0/ � R

2 is subdivided by ¹u D 0º

into 4 sectorsS1;S2;S3;S4. We then consider in Cr WDBr .0/� R � R
3 the union of the four

sectors Si � ¹0º and of the four portionsGi of the graph of u lying over the respective sector
Si . We give to Si opposite alternating orientations and sum them to construct an integral
current S in Cr .0/. Clearly, @S is formed by the four arcs which describe ¹u D 0º � ¹0º,
suitably oriented and counted with multiplicity 2. In particular, S is a cycle mod 2. We then
perform an analogous operation with the 4 portions Gi of the graph of u and construct a
corresponding integral current T . By choosing the orientations correctly, we can achieve
that @T D @S . Therefore the current † D T C S is a cycle mod 4 and, according to the
results in [118], it is area-minimizing (as a cycle mod 4). In particular, 0 is a flat singular
point for †.

This phenomenon is typical of even moduli, and indeed in his subsequent work
[121] White proved that area-minimizing hypercurrents mod 2kC 1 cannot have singular flat
points.

Theorem 11.4. If † is an m-dimensional area-minimizing current mod p in R
mC1 and p

is odd, then Singi .†/ � Sm�1.

In the papers [41, 42], the author, Jonas Hirsch, Andrea Marchese, and Salvatore
Stuvard developed a theory to bound the dimension of flat singular points of a general area-
minimizing current † mod p (i.e., in any dimension and codimension), which implies that
the Hausdorff dimension of the set of flat singular points of † is at most m � 1.

Theorem 11.5. If † is an m-dimensional area-minimizing current mod p in R
mCn, then

dimH .Singi .†// � m � 1.

While the latter theorem is a considerable improvement compared to what was
known before (aside from the cases covered by Theorems 11.1, 11.3, and 11.4, in all others
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the best known result was that the singular set is meager, thanks to Corollary 5.3). Indeed,
the known examples would suggest that the set of flat singular points of any area-minimizing
current mod p is at most m � 2. The work [40] and the forthcoming one [38], by the author,
Hirsch, Marchese, Spolaor, and Stuvard, give a first step towards the latter picture in codi-
mension 1.

Theorem 11.6. Let† be anm-dimensional area-minimizing current mod p in R
mC1. Then:

(a) Sm�1 n Sm�2 is a C 1;˛ submanifold and for every q 2 Sm�1 n Sm�2 there is
a neighborhood U in which † consists of p minimal hypersurface meeting at
Sm�1 \ U ;

(b) At every flat singular point there is a unique tangent cone, which is a flat plane
with multiplicity p

2
(in particular, p must be even).

In fact, after the appearance of [40] Minder and Wickramasekera (cf. [90]) pointed
out to the authors that it is possible to derive Theorem 11.6 directly from the theory developed
in [124], starting from one observation in [40] concerning tangent cones in the top stratum
Sm�1 n Sm�2 and the verification of Simon’s no hole condition. In [39], Theorem 11.6 will
be further used to confirm the conjectural picture in codimension 1, namely to prove

Theorem 11.7. Let† be anm-dimensional area-minimizing current mod p in R
mC1. Then

Singi .†/\ Sm is empty for p odd (as implied by Theorem 11.4), while Singi .†/\ Sm has
dimension at most m � 2 for even p.

12. Boundary regularity theory: minimizing integral

hypercurrents

The first boundary regularity theorem for area-minimizing integral currents † was
proved by Allard in his PhD thesis [3] in codimension 1. More precisely, we have

Theorem 12.1. Assume † is an area-minimizing integral current of dimension m in R
mC1

and assume that

(a) @† is a smooth (more precisely C 2) .m � 1/-dimensional surface � with mul-
tiplicity 1;

(b) there is a uniformly convex smooth (more precisely C 2) bounded open set U
such that � � @U .

Then † is smooth in a neighborhood of �; more precisely, there is an open set V � � such
that V \ † is a smooth minimal hypersurface (with boundary) and its boundary (in V ) is
precisely � (in the classical sense of differential topology).

In fact, the proof in [3] contains an "-regularity result which is the precursor of
Theorem 6.1, while assumption (a) is combined with a suitable classification of boundary
tangent cones to prove that any point p 2 � has density 1

2
. In order to remove the “convex
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barrier” of assumption (a), one needs to handle situations in which p might be a “2-sided”
boundary point.

To illustrate the latter point, consider a 2-dimensional plane V in R
3 and the two

circles 
1 D @B1.0/\ V and 
2 D @B2.0/\ V . Give to 
1 and 
2 the “same orientation,” so
that they bound the disksD1 D B1.0/\ V andD2 D B2.0/\ V , taken with the same orien-
tation where they overlap. It can be easily shown that, if � D 
1 C 
2, then†DD1 CD2 is
the unique area-minimizing integral current bounded by � . Moreover,† can be described as
the sum of the corona D2 nD1, counted with multiplicity 1, and the disk D1, counted with
multiplicity 2. A point p 2 
1 is what can be naturally called a “2-sided” boundary point,
and note that its density is 3

2
(for a more rigorous definition, cf. [35]). The regularity theory

at such points is rather subtle, and (in codimension 1) it was handled in the famous work [69]

by Hardt and Simon.

Theorem 12.2. Let � be a smooth oriented closed .m � 1/-dimensional submanifold of
R

mC1 and let † be an area-minimizing integral current whose boundary (in the sense of
currents) is given by� counted with multiplicity 1. Then every pointp 2† is regular, namely
one of the following two mutually exclusive possibilities holds:

(i) either the density of† atp is 1
2

and hence the conclusion of Theorem 6.1 applies
in a neighborhood U of p;

(ii) or the density of† at p is kC 1
2

for some positive integer k; in this case there is
a neighborhood U of p and a minimal hypersurface ƒ of U without boundary
such that:

• ƒ contains �;

• � subdivides ƒ in two regions ƒC and ƒ�;

• † in U is given by ƒC counted with multiplicity k C 1 and ƒ�

counted with multiplicity k.

Among the many ideas introduced in [69], one has been highly influential in several
other problems in minimal surface theory, and it is the so-called Hardt–Simon inequality. In
a nutshell, the Hardt–Simon inequality makes clever use of the remainder in the monotonic-
ity formula (namely the precise expression for the quantity d

dr
Volm.†\Br /

rm ) in order to infer
nontrivial information on the graphical approximation of † at small scales.

While we have stated Theorems 12.1 and 12.2 as “global theorems,” suitable local
versions of them are also valid, and, in fact, the very nature of the main arguments is com-
pletely local.

896 C. De Lellis



13. Boundary regularity theory: minimizing integral

currents with smooth boundaries of multiplicity 1

In his fundamental boundary regularity paper [5], Allard noticed that Theorem 6.1
can be used to generalize the conclusion of Theorem 12.1 to all codimensions.

Theorem 13.1. Let � be a smooth .m � 1/-dimensional closed oriented submanifold of
R

mCn and letU be a bounded smooth uniformly convex set such that� � @U . Then any area-
minimizing integral current † whose boundary is given by � (counted with multiplicity 1)
is smooth in a neighborhood of � , in the sense of the conclusion of Theorem 12.1.

Again, a local version of the above theorem holds as well; in fact, in order to con-
clude that a boundary point p is regular and one-sided in the sense of Theorem 12.2(i),
it suffices to find a uniformly convex “barrier” which touches � at p and so that † lies
(locally) on one side of it, cf. [68]. A simple argument furnishes such a barrier for any smooth
� � R

mCn: for instance, one could consider the smallest closed ball containing � . It then
follows that under the mere assumption that � is sufficiently smooth, an area-minimizing
current bounding � (taken with multiplicity 1) has always at least one boundary regular
point.

Up until recently nothing more was known, except that in codimension higher than 1
singular boundary points are certainly possible. A simple example is given by the union
of a smooth simple curve 
1 � ¹x1 D x2 D 0º � R

4 containing the origin and a smooth
simple curve 
2 � ¹x3 D x4 D 0º � R

4 which does not contain the origin. This union
bounds an area-minimizing 2-dimensional integral current for which 0 is a boundary singular
point. Moreover, since in a general Riemannian manifold the barrier argument outlined in the
previous paragraph is not available, even in the simplest case of a smooth simple closed curve
in a closed smooth Riemannian 4-manifold M , the results outlined so far could not exclude
the possibility that all boundary points of an area-minimizing current † � M bounding �
are singular.

As in the case of Theorem 12.2, the main difficulty in removing the convex barrier
assumption is the possibility that boundary points have density larger than 1

2
. And as in

the case of Theorem 10.1, the most problematic issue is that, unfortunately, the existence
of a flat tangent cone at the boundary does not guarantee regularity: flat boundary singular
points exist as soon as the codimension is larger than 1, cf. [35]. In [35], the author, Guido De
Philippis, Hirsch, and Annalisa Massaccesi were able to develop a suitable “Almgren-type”
regularity theory for boundary points, building on a previous important step of Hirsch [73].
In particular, we proved the following

Theorem 13.2. Let � be a smooth closed oriented .m � 1/-dimensional submanifold of
R

mCn and let† be an area-minimizing integral current whose boundary is given by � taken
with multiplicity 1. Then the set of boundary regular points, understood as points where one
of the two alternatives (i) and (ii) of Theorem 12.2 hold, is a dense relatively open subset
of � .
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While Theorem 13.2 might look very far from optimal, it turns out that a naive
counterpart of the bound of the dimension of the interior singular set is, in fact, false. In [35]

we prove also the following

Theorem 13.3. There is a smooth 1-dimensional embedded submanifold of R
4 which

bounds an area-minimizing current † of R
4 whose boundary singular set has Hausdorff

dimension 1.

Theorem 13.3 leaves open the possibility that at least the set of boundary singular
points has zero .m � 1/-dimensional Hausdorff measure and that it has dimension m � 2 if
the boundary is real analytic. We also caution the reader that a less restrictive definition of
a boundary regular point might restrict the size of boundary singularities even in the C1

case. For a more detailed discussion of all these possibilities we refer the reader to Section 16.
However, that boundary regularity is subtle is also witnessed by the following example of
the author, De Philippis, and Hirsch (cf. [34]).

Theorem 13.4. There is a smooth closed 4-dimensional Riemannian manifold M and a
smooth simple closed curve � � M which bounds a unique area-minimizing 2-dimensional
current† which is smooth inM n � and whose first homology group is infinite-dimensional.
In fact, † is smooth except at a single point p 2 � .

14. Boundary regularity theory: minimizing integral

currents with smooth boundaries of higher multiplicity

In the previous sections we examined the boundary regularity of area-minimizing
integral currents under the assumption that the multiplicity of the boundary is 1. A rather
intriguing and widely open question, already raised by Allard in his PhD thesis [3], is what
happens when the multiplicity is an integer larger than 1 (the fact that it must be an integer
is, of course, a consequence of the integrality assumption, but we also remind the reader that
when T is integer rectifiable and @T has finite mass, @T is necessarily integer rectifiable, cf.
[62]).

The problem raised by Allard in [3] is highlighted again by White in [1]. In the
same reference, White observes also that, thanks to the decomposition theorem for area-
minimizing hypercurrents, if † is an m-dimensional area-minimizing integral current in
R

mC1 whose boundary is a smooth submanifold � counted with multiplicity Q > 1, then
† can be decomposed into the sum of Q area-minimizing integral currents whose bound-
ary is � counted with multiplicity 1 also. In particular, we are in the position of applying
the Hardt–Simon Theorem 12.2 to each element of the decomposition. While this is the
same “codimension 1 phenomenon” that rules out flat singular points in the interior for area-
minimizing integral hypercurrents, we pause a moment to make one important remark. It
is well known that there are smooth .m � 1/-dimensional oriented closed submanifolds of
R

mC1 that bound more than one area-minimizing integral current. This is already the case
for smooth simple closed curves� in @B1 � R

3. Consider in particular one such� and let†1
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and†2 be two area-minimizing integral 2-dimensional currents which bound � (with multi-
plicity 1). Thanks to the above decomposition theorem,†D†1 C†2 is an area-minimizing
current which bounds a double copy of �2. By the interior regularity theory,†1 and†2 have
no interior point in common. Therefore, by the Hopf boundary lemma, there is no boundary
point at � in which †1 and †2 have the same tangent: †1 and †2 meet at every point of �
transversally.

In light of the above example, it seems sensible to give the following definition of a
boundary regular point.

Definition 14.1. Assume that � � R
mCn is a smooth oriented .m � 1/-dimensional sub-

manifold and that Q is a positive integer. Let † be an area-minimizing integral current in
R

mCn whose boundary is given by Q copies of � . Then p 2 � is a regular boundary point
if one of the following two alternatives occur in some neighborhood U of p:

(i) There are N positive integers ki with
P

i ki D Q and N smooth minimal sur-
facesƒi in U with boundary � such that†\ U D

P

i kiƒi , and each distinct
pair ƒi and ƒj meet transversally at p;

(ii) There is a minimal surface ƒ in U without boundary, which contains �: the
latter subdivides ƒ in two regions ƒC and ƒ� and

† \ U D .QC k/ƒC CQƒ�

for some positive integer k.

In particular, the discussion above reduces the following statement to a mere corol-
lary of Theorem 12.2:

Corollary 14.2. Let � be a smooth oriented closed .m � 1/-dimensional submanifold of
R

mC1, Q be a positive integer, and † an area-minimizing integral current with @† D Q� .
Then every boundary point p 2 � is regular in the sense of Definition 14.1.

The boundary regularity theory for Q > 1 and in codimension larger than 1 is
widely open. A very first preliminary result, which is a counterpart of Theorem 12.1 for
2-dimensional area-minimizing currents, has been proved very recently by the author, Ste-
fano Nardulli, and Simone Steinbrüchel in [43,44], building in part upon the theory developed
in [35] and the paper [74].

Theorem 14.3. Consider a smooth 1-dimensional closed submanifold � of R
2Cn and

assume that there is a bounded smooth uniformly convex open set U such that � � @U .

2 It is one of the most beautiful discoveries of geometric measure theory that this conclu-
sion is in general false in higher codimension. In particular, following the pioneering
work of L. C. Young [125], there are several constructions of smooth simple curves �
in R4 with the following remarkable property. If we let m.�/ be the mass of an area-
minimizing 2-dimensional current which bounds one copy of � and m.2�/ the mass of
an area-minimizing integral current which bounds two copies of � , then m.2�/ < 2m.�/.
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Let † be an area-minimizing 2-dimensional integral current such that @† D Q� for some
integerQ. Then every point p 2 � is a boundary regular point and moreover alternative (i)
in Definition 14.1 holds at every such point.

15. Uniqueness of tangent cones

One major open question in the regularity theory of minimal submanifolds, which
has attracted the attention of a large number of researchers since the dawn of geometric
measure theory, is the uniqueness of tangent cones. This amounts to the question of whether
there is at every point p a unique limit for the rescalings †�p

r
of the minimal submanifold†.

In some situations the question is intimately connected to the understanding of the regularity
properties of the various strata Sk n Sk�1. For instance, the pioneering works of Taylor [116,
117] leading to the Theorems 8.1 and 11.2 can be reduced to suitable uniqueness statements
for the relevant tangent cones.

The most striking result in the area is the celebrated theorem of Simon in [105].

Theorem 15.1. Let† be a stationary integral varifold and assume that the spherical cross-
section of one tangent cone †0 at an interior point p of † is a regular submanifold of @B1

with multiplicity 1. Then †0 is the unique tangent cone to † at p.

Once again a similar uniqueness theorem is widely open when the multiplicity of the
cross-section is allowed to take multiplicity higher than 1, except for some lucky situations
in which the case of higher multiplicity can be reduced to that of multiplicity 1. Two notable
examples are that of area-minimizing hypercurrents and that of area-minimizing currents
mod 2.

Corollary 15.2. Let † be an area-minimizing m-dimensional integral current in R
mC1 or

an area-minimizingm-dimensional current mod 2 in R
mCn and assume that p is an interior

point at which one tangent cone †0 has smooth spherical cross-section. Then †0 is the
unique tangent cone at p.

Even in the case of multiplicity 1, the uniqueness of tangent cones whose spherical
cross-section is not smooth is a much more subtle issue. Before discussing it, we wish to
introduce a suitable concept which has played a pivotal role in many contexts. Let †0 be a
stationary varifold which is a cone with smooth cross-section �0, taken with multiplicity 1.
It is then well known that �0 is a minimal submanifold of the sphere @B1. If†k is a sequence
of cones converging to †0, with cross-section �k , up to extraction of a subsequence �k is
the graph of a solution of a suitable linear elliptic PDE over �0 plus higher order terms.
Such solutions are called Jacobi fields in the literature, and they are the higher-dimensional
counterpart of the classical Jacobi fields on geodesics. A Jacobi field u is called “integrable”
if there is a sequence �k of minimal submanifolds of @B1 converging to �0 which generates
u as outlined above. Prior to Theorem 15.1, Allard and Almgren in [6] proved the following
important result:
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Theorem 15.3. Let† be a stationary integral varifold, let p be an interior point and assume
that a tangent cone †0 to † at p satisfies the following two properties:

(i) The spherical cross-section �0 of†0 is smooth and is taken with multiplicity 1;

(ii) Every Jacobi field of �0 is integrable.

Then †0 is the unique tangent cone to † at p and, moreover, the rescalings †�p
r

converge
to †0 with a polynomial rate.

The integrability condition (ii) of Theorem 15.3 has several drawbacks. In order to
verify it, one must know rather explicitly the cross-section �0. But even in the cases in which
�0 is known and has a rather simple formula, verifying the condition is in general quite hard
(in particular, it requires a classification result for all the solutions of some particular elliptic
PDE). Last but not least, there are examples in which it does not hold, see [2], and in which
the convergence rate of †�p

r
to †0 is just logarithmic. The powerful approach of Simon to

Theorem 15.1 avoids any discussion of the integrability of the Jacobi vector fields thanks to
his realization that the convergence of †�p

r
to †0 can be reduced to an infinite-dimensional

version of a classical result of Lojasiewicz for finite-dimensional gradient flows. The corre-
sponding “Lojasiewicz–Simon inequality” has been widely used to study the convergence of
parabolic PDEs to a unique steady state and the uniqueness of model singularities in other
geometric variational problems.

Coming back to cones whose spherical cross-sections are not smooth, a particu-
larly simple subclass are called “cylindrical tangent cones.” In his notable investigation [106],
Simon has been able to prove a useful generalization of the Allard–Almgren Theorem 15.3.

Theorem 15.4. Let† be a stationary integral varifold, letp be an interior point, and assume
that a tangent cone †0 to † at p satisfies the following structural properties:

(i) †0 D V �ƒ0 for some minimal cone ƒ0 and some linear subspace V ;

(ii) The spherical cross-section �0 ofƒ0 is smooth and is taken with multiplicity 1;

(iii) Every Jacobi field of �0 is integrable;

(iv) The following “no hole condition” holds for a sufficiently small ı.�0/: pro-
vided †�p

r
is sufficiently close to †0, every Bı.q/ with q 2 B1 \ V contains a

point x of density ‚.†; x/ larger than ‚.†;p/ � ı.

Then †0 is the unique tangent cone to † at p and, moreover, the rescalings †�p
r

converge
to †0 with a polynomial rate.

Quite a few of the structural results for singular strata mentioned in the previous
sections depend heavily on the above result (or can be deduced from it). A notable exception
is the uniqueness theorem of Taylor which underlines the second conclusion of Theorem 8.1
(and the higher-dimensional counterpart in [23]). The latter is, in fact, derived through a direct
epiperimetric inequality à la Reifenberg.
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One major drawback of the approaches to Theorems 15.1, 15.3, and 15.4 is that the
underlying PDE arguments rely heavily on the "-regularity result of Allard, namely Theo-
rem 5.2 (or on some other analogous results). For instance, in Theorem 15.1 the multiplicity 1
assumption and the regularity of �0 allow us to conclude that @B1 \ †�p

r
is a smooth graph

over �0. On the contrary, the epiperimetric inequality, which is based on exhibiting a suit-
able competitor, can be applied in situations where the cross-section is irregular or taken
with higher multiplicity. On the other hand, its applicability is limited to minimizers. Up
until recently, another obvious objection to a wider plausibility of an epiperimetric inequal-
ity à la Reifenberg was that it immediately implies a polynomial decay rate, which is known
to be false in general cf. [2]. However, the recent paper of Colombo, Spolaor, and Velichkov
[24] shows that Theorem 15.1 can be recovered (and, in fact, generalized to suitable “quasi-
minima”) through a suitable generalization of Reifenberg’s epiperimetric (it must be noted
that the proof of the latter is nonetheless achieved using the Lojasiewicz–Simon inequality).

An important case in which an epiperimetric inequality can be proved and used
effectively to prove uniqueness of tangent cones (while a “PDE-approach” has not been given
yet) is that of 2-dimensional area-minimizing currents at interior points. In particular, White
in [119] proved

Theorem 15.5. Let † be a 2-dimensional area-minimizing integral current in R
2Cn. Then

the tangent cone to † is unique at every interior point p.

A counterpart to Theorem 15.5 has been shown by Hirsch and Marini in [74] at
smooth boundaries taken with multiplicity 1. However, as noticed in [44], the proof of Hirsch
and Marini can easily be adapated to the case of smooth boundaries with arbitrary multiplic-
ities, thus giving a complete result for 2-dimensional area-minimizing integral currents in
any dimension and codimension.

16. Open problems

In this section we will collect some open questions. I wish to emphasize that the
selection given here by no means exhausts the interesting open problems in the area, it rather
reflects a personal choice of the author.

16.1. Stationary and stable varifolds
Perhaps the most intriguing question is whether it is possible to improve Corol-

lary 5.3 in any situation which is not the trivial one of 1-dimensional stationary varifolds.
The most modest goal would be to show that the singular set of stationary 2-dimensional
integral varifolds in R

3 has zero 2-dimensional Hausdorff measure. In general, there is no
example of singular stationary m-dimensional varifolds (in any codimension) for which the
singular set has dimension larger than m � 1.

In the case of stable varifolds of codimension 1, the deep theory of Wickramasekera
developed in [124] (see also [89] for some further progress) gives one hope that in the future
some final unconditional structural result might be at hand. A coronation of the efforts in the
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area would be a theorem which proves that Sm�1 n Sm�2 is a C 1;˛ .m � 1/-dimensional
submanifold, while the set of flat singularities is .m � 2)-rectifiable. The latter statement
seems to be reachable in the very particular case of area-minimizing hypercurrents mod p.

A widely open problem is whether stability allows going beyond Allard’s conclusion
in codimension higher than 1. It is quite baffling that no further regularity information has
been concluded thus far for stable varifolds as soon as the codimension is larger than 1. A par-
ticularly intriguing case would be that of 2-dimensional stable varifolds, already in R

4. A first
question in that direction is whether some counterpart of the Schoen–Simon–Yau estimates
and hence a corresponding compactness theorem hold for classical (possibly branched) min-
imal 2-dimensional surfaces in, say, R

4. In other words, assume that†k is such a sequence in
some bounded open set U � R

4, that the area of†k is uniformly bounded, and that each†k

is stable. Is it possible to extract a subsequence which is converging (in the varifold sense) to
a classical stable (possibly branched) immersed minimal surface? What if we restrict further
†k and ask that they are embedded except for a finite number of branching singularities?
Note that Theorem 10.2 does imply the desired conclusion if each †k can be oriented so to
give an area-minimizing integral 2-dimensional current.

16.2. Singularities of area-minimizing integral hypercurrents
Area-minimizing integral currents of dimension m in R

mC1 are the objects for
which we have the strongest regularity theory. Is it possible to prove more facts about the
structure of the singular set? In particular, is it true that Sm�7 n Sm�8 is aC 1;˛ submanifold,
or rather are there examples (as the recent stable minimal hypersurfaces in some Rieman-
nian manifolds given by Simon in [110]) for which Sm�7 has a fractal Hausdorff dimension
m � 8 < ˛ < m � 7? Does it make a difference if the ambient is a smooth Riemannian
manifold rather than Euclidean space?

A closely related question is whether the no-hole condition of (iv) in Theorem 15.4
can be violated at some point p of an area-minimizing hypercurrent (in the Euclidean space
or in a general smooth Riemannian ambient). This is indeed the case for some points in the
examples of stable minimal hypersurfaces constructed in [110], while in the Euclidean space
a completely different example has been given by Gabor Székelyhidi in [115].

16.3. Singularities of area-minimizing integral currents in codimension
higher than 1

It is very tempting to conjecture that for m � 3 Almgren’s partial regularity theo-
rem can improved to say that the singular set of any area-minimizing integralm-dimensional
current in R

mCn is .m � 2/-rectifiable. This problem seems intimately linked to the “sim-
plest” open case of uniqueness of tangent cones for area-minimizing currents in codimension
n � 2:

• Consider an area-minimizing integral current† of dimensionm in R
mCn and let

p 2 Singi .†/ be a point where one tangent cone is flat. Is the latter the unique
tangent cone to † at p?
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The forthcoming work [46] seems to suggest that a positive answer to the latter question,
together with the additional information that the convergence rate is polynomial, would imply
.m � 2/-rectifiability of Singi .†/.

On the other hand, the works [82, 83] suggest that further structural results cannot
be expected, at least not in general smooth ambient manifolds, and instead there are 3-
dimensional area-minimizing integral currents in closed smooth Riemannian manifolds
whose singular sets have any preassigned Hausdorff dimension ˛ 2 .0; 1/.

16.4. Singularities of area-minimizing currents mod p

As already mentioned, in the works [38–40] (see also [90,124]) we plan to show that,
for anm-dimensional area-minimizing current mod p in R

mC1, the stratum S m�1 n S m�2

is a C 1;˛ .m � 1/-dimensional submanifold, while the set of flat singular points has dimen-
sion at most m � 2. In fact, it is expected that the latter is .m � 2/-rectifiable. The same
properties could be expected in higher codimension, but the problem poses considerable dif-
ficulties. Moreover, the author does not know examples in which the stratum S m�2 n S m�3

is nonempty. To that respect, the most basic question is whether there is any counterpart of
Taylor’s theorem for the case pD 3: is there any 2-dimensional area-minimizing cone mod p
in R

3 which is not invariant under some translation? The works [116] and [118] imply that the
answer is no for p D 3 and 4 (while it is a simple exercise to see that it is no for p D 2 as
well, since it reduces to the case of integral currents).

16.5. Boundary regularity of area-minimizing integral currents at
multiplicity 1 boundaries
Is it possible to improve Theorem 13.2 and show that for general smooth � the set

of boundary singular points has zero Hausdorff .m � 1/-dimensional measure? It must also
be noted that, in the examples of Theorem 13.3 given by the argument of [35], most of the
boundary singular pointsp’s are of “crossing type,” i.e., in some neighborhoodU of suchp’s
the area-minimizing current can be decomposed in one area-minimizing current which takes
the boundary � smoothly and a second one which is area-minimizing and has no boundary
(but includes p in its support). In particular, the following two conjectures seem likely:

• Boundary singularities of noncrossing type have a much lower dimension (accord-
ing to the examples, the best we can hope is m � 2).

• Since crossing-type singularities have necessarily dimensionm� 2 when � (and
the ambient Riemannian manifold) is real analytic, the whole boundary singular
set has dimension at most m � 2 under the latter assumption.

In fact, the following elegant conjecture is due to White in [122].

Conjecture 16.1. Let � � R
2Cn be a simple closed real-analytic curve and † an area-

minimizing integral current such that @† D � . Then the union of the boundary and interior
singular points of † is discrete. In particular,
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• the “overall singular set” is finite,

• † has finite genus g,

• and it is a classical Douglas–Rado solution of the Plateau problem among sur-
faces of genus g.

16.6. Boundary regularity of area-minimizing integral currents at boundaries
with higher multiplicity
It is tempting to conjecture that Theorem 14.3 holds form-dimensional integral cur-

rents for m � 2, but in reality the situation might be more complicated. Otherwise, a more
modest expectation is that for generalm, under the assumptions of Theorem 14.3, the bound-
ary singular set has dimension at most m � 3. Nothing is known in the case of a general
integral multiplicityQ and a general boundary � , i.e., without the assumption that there is a
“convex barrier” at (a portion of) � . One might expect that the counterpart of Theorem 13.2
holds for general multiplicities Q � 1.

16.7. Uniqueness of tangent cones
The uniqueness of interior tangent cones when the multiplicity of the cross-section

is larger than 1 is widely open. As already mentioned, the most striking case is that of flat
singular points, i.e., points at which at least one tangent cone is a plane with higher multi-
plicity, but the generalized minimal surface is not regular. This problem is open for integral
area-minimizing currents of dimension m � 3 in codimension larger than n � 2, but it is
also open for stationary and stable varifolds in dimension m � 2 and codimension 1.

It is also widely open whether Simon’s Theorem 15.4 can be improved. In particular,
can one drop the “no-hole condition” (iv) or the integrability condition (iii), at least for some
suitable subclass of stationary varifolds? Some situations in which the “no-hole condition”
can be dropped are given in [107], while the recent work [114] is the first, to the best of author’s
knowledge, in which the uniqueness of the cylindrical cone is proved for one example in
which both conditions (iii) and (iv) in Theorem 15.4 can be dropped.

We finish this survey by mentioning that the following very innocent question is still
open (even in the case m D 3 and nC 2 D 5):

• Consider an m-dimensional area-minimizing integral current † in R
mCn with

m � 3 and n � 2. Assume that one tangent cone †0 at some point p 2 Singi .†/

is the union of two distinct linear planes counted both with multiplicity 1. Is †0

the unique tangent cone to † at p?
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