SB3C2024
Summer Biomechanics, Bioengineering and Biotransport Conference
June 11-14, Lake Geneva, WI, USA

SEQSEG: AUTOMATIC IMAGE-BASED VASCULAR MODEL CONSTRUCTION USING
SEQUENTIAL SEGMENTATIONS

Numi Sveinsson Cepero (1), Shawn C. Shadden (1)

(1) Department of Mechanical Engineering, University of California Berkeley, Berkeley, California, USA.

INTRODUCTION

Image-based computer modeling of vasculature has become an impor-
tant aspect of patient care and cardiovascular research [1]. These modeling
approaches use medical images to construct an anatomically accurate ge-
ometry of patient’s blood vessels to be used for simulation-based modeling.
Despite its wide range of applications, constructing anatomically correct
geometries of blood vessels from medical images remains challenging and
involves multiple steps and a combination of approaches, including ones
reliant on labour intensive manual inputs.

Segmenting blood vessels from other nearby tissue is challenging be-
cause of limited resolution, unclear boundaries and image artifacts. To
simplify the task, a “centerline” path is often constructed along vessels of
interest, which is then traversed to perform 2D segmentations of the vessel
lumen at discrete steps along the path. These 2D segmentations can then be
lofted using spline interpolations to form a unified 3D surface representing
the blood vessel domain[2]. Until now, these two steps (centerline gener-
ation and lumen segmentations) have been viewed as separate, resulting in
methods to either accurately construct centerlines [3] or accurately deter-
mine lumen boundaries around centerlines [4]. We present a novel method
to do both at once automatically, utilizing local deep-learning based seg-
mentation with a tracing algorithm to construct a global vascular segmen-
tation piece-wise while taking steps.

METHODS

Our approach tackles blood vessel segmentation by operating locally
around a particular blood vessel segment. Local 3D segmentations are pro-
cessed to determine vessel direction and size in order to take steps.

Algorithm. Figure 1 shows an overview of the algorithm steps. The
algorithm is initialized using a given seed point and radius estimate, which
is used to extract the first subvolume. The subvolume is segmented using
a 3D U-Net neural network, where pixels are classified in a binary man-
ner; either belonging to blood vessel or not. The segmentation is converted
into surface mesh representation using the marching cubes algorithm, and
a centerline is extracted using the open-source Vascular Modeling Tool Kit
library. The resulting centerline is then post processed to estimate the size

of the vessel and choose the next point to move to. If the centerline in-
cludes two or more branches, the largest branch is chosen for immediate
stepping and the others are stored in a bifurcation queue for subsequent
tracing. During step-taking, we save the local segmentations and assemble
them in a single global model as the final output.
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Figure 1: The different steps in the SeqSeg algorithm from initializa-
tion with inputs of seed point, radius estimate and global raw image,
to subvolume extraction, 3D U-Net segmentation, surface and center-
line calculation and stepping. Bifurcation points are saved in queue
for subsequent tracing.

Datasets and Sampling. The datasets used are aortic and aortofemoral
models from CT, and MR image data, see Table 1, acquired from the open
and free Vascular Model Repository, accessible at vascularmodel.com(5].



Each case in a dataset has a medical image scan (CT/MR) with correspond-
ing segmentation and centerline, see inputs in Figure 2. For neural network
training, the global 3D medical image volume is sampled along the center-
line of its corresponding vasculature model, see Fig. 2 for reference. Two
subvolumes are extracted at each instance: 1) raw medical image data, and
2) binary segmentation of blood vessel. The samples vary in centering and
size; some centered along the centerline while others shifted perpendicular
to its tangent, and sizes vary from barely capturing the vessel lumen, to
others including more nearby tissue. This variance is purposefully added
to represent the variance that the tracing algorithm encounters in practice
and is intended to increase the neural network’s robustness. Approximately
15% of subvolumes are used for validation and 20% of cases are kept aside
for testing, see further details in Table 1.

3D
Medical
Image i
Volume

3D
Global Sub-Volume

Seg. Extraction | > Augment

! 3D
+ Vascular
| Centerline

Pre Processing | !

Figure 2: The pre processing of data for neural network training.
Samples are extracted along vasculature centerline and augmented,
and ground truth segmentations are used for loss calculation.

Table 1: The number of cases used for training and testing.

Dataset Modality  Train/Val = Test
VMR Aortic / Aortofemoral[5] CT 33 8
VMR Aortic / Aortofemoral[5] MR 37 7

Neural Network Architecture and Training. The U-Net architecture
is used for the segmentation task, and a 3D-version is chosen. The nnU-
Net framework is used for hyperparameter choice and training[6]. The loss
function used is a combination of Dice loss and binary cross entropy:

l=1-D-CE& )]
where D, CE are Dice score and binary cross entropy, respectively. Train-
ing took place using two GPUs, an NVIDIA k80 dual-GPU, on the Savio
High Performance Computing cluster at UC, Berkeley.

Global Assembly. The local segmentations are gathered globally by
calculating the mean prediction for each voxel. The final segmentation is
then converted to a surface mesh using marching cubes and smoothed to
remove voxel artifacts.

RESULTS

We tested our method (SeqSeg) on two different datasets as shown in
Table 1, and compare to results from a benchmark model. A global nnU-
Net model is chosen as benchmark because of its state-of-the-art perfor-
mance on medical image segmentation tasks[6]. We compare using Dice
score and avg. Hausdorff distance, see Table 2 for the avg. scores across
both test datasets. As the results show, SeqSeg, on average, outperforms
the benchmark using both metrics. Figure 3 shows a qualitative compari-
son between the ground truth and predictions from SeqSeg and the bench-
mark model on six aortic/aortofemoral models, three CT, and three MR.
The method, SeqSeg, manages to capture all the branches present in the
ground truth model. It also manages to extend the branches further than
that was segmented in the ground truth.
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Figure 3: Comparison between ground truth model (left), prediction
results from SeqSeg (middle) and nnU-Net benchmark model (right),
for CT, and MR data. The cases shown are the best, median, and worst
ranking Dice score results for the nnU-Net benchmark model.

Table 2: Avg. Dice score (D) and Avg. Hausdorff distance (#) score
results on testing data, comparing SeqSeg (our) and nnU-Net bench-
mark model.

D1 H
Dataset SeqSeg  nnU-Net ‘ SeqSeg nnU-Net
CT Aorta VMR 0.927 0.901 0.023 0.071
MR Aorta VMR | 0.877 0.844 0.0335 0.114
DISCUSSION

We present a novel model construction method, SeqSeg, based on local
step taking, which uses deep learning to predict vascular segments instead
of the whole vasculature at once. With only a single seed point, SeqSeg is
capable of automatically constructing expansive vasculature. As a result of
the neural network training strategy, the machine learning model manages
to adequately capture bifurcations and generalize to new vessel branches
not present in the training data. The results show the method works both
for CT, and MR, image data. Additionally, by assembling vascular models
piece-wise, the method ensures connectivity of the final segmentation, a
necessity if the final purpose is simulation.
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