
 
 
 
 
 

 
 

 
 
 
 

 

 

INTRODUCTION 
Cardiovascular disease (CVD) remains the global leading cause 

of death. Recent developments in image-based modeling and patient-
specific hemodynamic simulation have proven effective in enabling 
virtual personalized diagnosis, preventive care, and treatment planning 
without the risks of invasive measures. Despite the growth of such 
technologies, creating an image-based simulation from medical image 
(CT or MRI) scans is labor-intensive [1], and performing accurate 
computational fluid dynamics (CFD) simulations generally requires 
extensive technical knowledge of numerical methods and 
supercomputing resources [2].  

Developing automated and efficient capabilities to go directly 
from medical images to simulation results, even if those results are 
approximate, can be highly informative in several scenarios including 
timely decision support, screening, boundary condition tuning, 
uncertainty quantification, treatment design, etc. With this in mind, we 
have been developing a streamlined process to produce reduced-order 
model (ROM) simulations of patient-specific hemodynamics from 
volumetric angiography. This framework leverages lumped-parameter 
and 1D Navier-Stokes solvers built into our SimVascular software [3, 
4] coupled with recent machine learning (ML) model construction we 
have developed to automate the segmentation of vascular models from 
medical images. Work towards a medical-image-to-reduced-order-
simulation (MIROS) framework we are developing is presented here 
and used to conduct a comparative study that examines the impact of 
machine learning models versus traditionally constructed models on 
ROM simulation results.  
 
METHODS 

The MIROS framework relies on automation of the vascular 
model construction and setting up and running a ROM flow solver to 
compute flow rate and pressure through each vessel. To verify our 
implementation, we compared the output of MIROS (i.e. flow and 
pressure calculations) to ROM flow and pressure calculations using 
traditional model construction for a series of cases in the Vascular 
Model Repository (VMR) (http://vascularmodel.org) – herein referred 
to as the VMR model/results. The main difference between MIROS 
and VMR is that we employ ML automated vascular segmentation, 
whereas the VMR models were manually constructed. We also 
automate the simulation process, but the flow solvers are the same. 
Also, to ensure consistent comparison of flow and pressure results, we 
use the same boundary conditions and solver parameters in MIROS as 
was used to generate the VMR results.   

 

Segmentation. MIROS relies on a novel method called 
Sequential Segmentation (SegSeg) for automated segmentation of the 

vasculature. SeqSeg requires a seed point for initialization (chosen at 
the inlet) and automatically traces the vasculature based on local 
vessel segments. The method captures bifurcations automatically and 
traces down branches as long as image resolution and segmentation 
quality allow. The local vessel segments are averaged together into a 
global segmentation that is returned as a binary segmentation map, 
where pixels labeled 1 represent blood vessel and 0 represent 
background. These segmentation maps are converted to surface 
meshes using marching cubes and smoothed using Laplacian 
smoothing to remove pixel artifacts. 

 

Outlet Definition. SeqSeg can capture more vasculature than 
contained in the manually segmented VMR models. To apply 
boundary conditions consistently, we generally needed to truncate the 
MIROS models to terminate at the same approximate location as in the 
VMR models. We automatically compute the coordinates, radius, and 
unit tangent vector of each endpoint in each VMR model and then 
orient and scale clipping boxes to trim the corresponding MIROS 
model. We also keep the largest contiguous volume, which is then 
remeshed to produce our desired surface. This workflow is shown in 
Figure 1 for two representative models (an aortic arch model and an 
abdominal aorta model).  

 

 
Figure 1: Creating consistent boundaries. (a) ML generated 

discrete surface (b) clipping boxes on ML surface (c) trimmed and 
filtered surface 

 

Branch-matching.  Because the ML method might capture a 
different number of branches than existing manually segmented 
surfaces in the VMR, we must match the branches and apply 
consistent boundary conditions to only outlets that are in common. 
Thus, the number of matching branches was determined, and any 
additional branches were merged into the vessel wall, which then 
become ignored during centerline extraction.   

 

Centerline extraction. The MIROS and VMR 3D image-based 
models were used to generate a discrete centerline representation. The 
centerline extraction was performed using Vascular Modelling Toolkit 
(VMTK) functions that generated centerlines paths as well as vessel 
radius information along each vessel path. Both the discrete 
centerlines paths and associated areas along the paths were required 
for the ROM flow solver.  
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Boundary condition file preparation. We applied RCR 
boundary conditions at all outlets with RCR values tuned to clinical 
measurements and provided in the VMR [4]. In cases where the VMR 
contained a branch not included in the MIROS model, we ignore that 
boundary.  Although this does not preserve the global consistency of 
the boundary conditions, we do this to keep the simulation consistent 
between MIROS and VMR models.  

 

Solver. ROM simulation of flow and pressure was performed by 
solving the 1D Navier-Stokes equations using the SimVascular’s 1D 
solver. Blood flow is assumed to be a Newtonian, incompressible fluid 
in a deforming and elastic domain. The governing equations consist of 
the continuity equation, a single axial momentum balance equation, a 
constitutive equation, and suitable initial and boundary conditions [5]. 
The overall workflow that MIROS models undergo is shown in Figure 
2 for a representative model.  

 

 
Figure 2: Pipeline workflow. (a) ML based surface (b) trimmed surface (c) 

centerline extraction (d) 1D model generation with boundary conditions 
(e)&(f) simulated flow and pressure mapped to centerline 

 
RESULTS  

Averaged relative error over time. Each simulation was run for 
more than 7 cardiac cycles to reach a periodic solution. We compared 
relative error in mean flow and pressure of the last simulated cardiac 
cycle. We took the average of relative errors of each branch to get the 
relative error of the entire model. The results are shown in Table 1.  

 

Table 1: Relative error averaged over the last cardiac cycle. 
 

Surface 
Name 

Relative Error:  
mean flow 

Relative Error:  
mean pressure 

0063_1001 3.575% 7.658% 
0090_0001 0.6245% 0.2769% 
0131_0000 0.2834% 0.2820% 
0146_1001 1.002% 0.7106% 
0174_0000 0.3172% 0.1566% 
0176_0000 0.3306% 0.1925% 

Average 1.022% 1.850% 
 

 Qualitative plots of flow and pressure over time. For 
qualitative comparison, we plotted the average flow and pressure of 
the same branches between the MIROS and VMR simulations over 
time to visualize the differences in simulation outcomes between the 
two modeling methods. As an example, Figure 3 below shows the 
plots of 0176_0000, whose overall mean relative error in flow was 
0.3306% and overall mean relative error in pressure was 0.1925%. 
 

 

Figure 3. Qualitative comparison of flow and pressure result for 
each branch. (a) VMR model and its centerline (b) MIROS model 
and its centerline (c) flow comparison of each branch (d) pressure 
comparison of each branch.  
 
DISCUSSION 
 

 We developed and automated a process for generating patient-
specific, reduced-order model simulations of hemodynamics from 
volumetric angiography, culminating in a Medical-Image-to-Reduced-
Order-Simulation (MIROS) framework. This framework significantly 
accelerates the traditionally hours-long tasks of vascular segmentation 
and the subsequent setup and execution of flow solvers, reducing 
overall time to a matter of minutes. Utilizing MIROS, we conducted a 
comparative analysis to evaluate the impact of different modeling 
approaches—manual segmentation versus machine learning 
segmentation—on simulation outcomes. Results indicate relatively 
modest errors of 1.022% for mean flow and 1.850% for mean pressure 
when averaged across all models and vessels. Given that consistent 
boundary conditions were used, these differences reflect errors in 
geometric reconstruction and are expected to be far less than errors 
typically associated with uncertainty of boundary conditions. This 
study demonstrates the efficiency and advantages of employing ML 
for automated vascular segmentation and highlights MIROS's 
capability to facilitate rapid hemodynamic simulations.  
 Limitations and Future Work. There are two noteworthy 
limitations that arise largely based on the nature of performing a 
comparative study. First, for some images, there were vessels captured 
by MIROS not captured by the VMR and vice-a-versa. Our analysis 
here focused only on models that contained vessels both methods 
captured. We plan to study this trade-off in future studies. Second, the 
boundary conditions for the MIROS model were the same as used for 
the VMR model. While this was necessary for consistent comparison, 
typical applications of modeling would require generation of de novo 
boundary conditions. We plan to study the application of MIROS to de 
novo analysis requiring generation of boundary conditions. Lastly, 
SimVascular has the ability to perform so-called 0D (also known as 
lumped-parameter) simulation based on a 3D model.  We plan to 
connect such 0D ROM with MIROS, and to potentially consider more 
complex boundary conditions, such as used for coronary flow. 
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