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Realistic model representation of ocean phytoplankton is important for simulating 

nutrient cycles and the biological carbon pump, which affects atmospheric carbon dioxide 

(pCO2) concentrations and, thus, climate. Until recently, most models assumed constant ratios 

(or stoichiometry) of phosphorous (P), nitrogen (N), silicon (Si), and carbon (C) in 

phytoplankton, despite observations indicating systematic variations. Here, we investigate the 

effects of variable stoichiometry on simulated nutrient distributions, plankton community 

compositions, and the C cycle in the preindustrial (PI) and glacial oceans. Using a 

biogeochemical model, a linearly increasing P:N relation to increasing PO4 is implemented for 

ordinary phytoplankton (PO), and a nonlinearly decreasing Si:N relation to increasing Fe is 

applied to diatoms (PDiat). C:N remains fixed. Variable P:N affects modeled community 

composition through enhanced PO4 availability, which increases N-fixers in the oligotrophic 

ocean, consistent with previous research. This increases the NO3 fertilization of PO, the NO3 

inventory, and the total plankton biomass. The accuracy of modeled surface nutrients is 

relatively unchanged. Conversely, variable Si:N shifts south the Southern Ocean’s meridional 

surface silicate gradient, which aligns better with observations, but depresses PDiat growth 

globally. In Last Glacial Maximum simulations, PO respond to more oligotrophic conditions by 



 

increasing their C:P. This strengthens the biologically mediated C storage such that dissolved 

organic (inorganic) C inventories increase by 34-40 (38-50) Pg C and 0.7-1.2 Pg yr-1 more 

particulate C is exported into the interior ocean. Thus, an additional 13-14 ppm of pCO2 

difference from PI levels results, improving model agreement with glacial observations. 
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Variable Stoichiometry Effects on Glacial/Interglacial Ocean Model 
Biogeochemical Cycles and Carbon Storage 

 
Chapter 1: Introduction 

 Surface ocean plankton redistribute nitrogen (N), phosphorus (P), and carbon (C) to the 

deep ocean through the incomplete respiration of sinking organic matter. Thereafter, respiration 

continues but remineralized nutrients assume the long residence times of deep ocean water 

masses, effectively sequestering them from the climate system (Holzer et al., 2019a). This 

process, known as the biological pump, alters the atmospheric CO2 (pCO2) exchange with the 

ocean, thereby influencing the global climate (McKinley et al., 2017; Sarmiento & Gruber, 2006; 

Sigman et al., 2010; Volk & Hoffert, 1985). Some C remains bound in the structures of dissolved 

organic molecules, termed dissolved organic carbon (DOC), but is not comparatively significant 

in the air-sea exchange (Lønborg et al., 2020; Wagner et al., 2020). DOC is then an additional 

long-lasting, depth-independent sink in the inorganic ocean C cycle that allows further ocean C 

uptake (Jiao et al., 2010; Lønborg et al., 2020). For simplicity, we include the DOC cycle in the 

definition of “biological C pump.” The oceanic biological carbon pump’s influence on the global 

climate has long been documented (Bisson et al., 2020; Falkowski, 2012; Field et al., 1998; 

Houghton, 2007; Nowicki et al., 2022). Briefly, oceanic primary producers are estimated to 

export ~5–12 Pg C yr-1 and account for ~50% of the global annual net primary production (NPP), 

in carbon, matching the terrestrial C-fixation rates (Field et al., 1998; Nowicki et al., 2022). 

Thus, the biological carbon pump can notably influence climate and must be simulated properly 

in global climate models.  

 In 1934, a close correlation between inorganic nutrient and carbon concentrations in the 

ocean was observed by A. Redfield, leading him to suggest that, on average, plankton have 
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approximately constant C:N:P (Redfield, 1934) and that this ratio controls the relative quantities 

of biogeochemical elements in ambient seawater (Redfield, 1958). This work has since strongly 

influenced oceanography including the construction of global models with constant elemental 

compositions (stoichiometry), which have been the norm until relatively recently (Martiny et al., 

2013). Overturning this paradigm is the well-documented adaptability of phytoplankton to 

nutrient availability variations and recently discovered systematic variations from Redfield’s 

stoichiometry (C. Garcia et al., 2018; N. Garcia et al., 2018; Geider & LaRoche, 2002; 

Klausmeier et al., 2004; Martiny et al., 2013; Weber & Deutsch, 2010). Phytoplankton, thus, can 

lower their cellular quota for scarce nutrients while continuing to fix carbon, which is typically 

more abundant (Galbraith & Martiny, 2015; Klausmeier et al., 2004; Martiny et al., 2013; 

Moreno & Martiny, 2018). 

While computationally inexpensive, the fixed stoichiometry simplification limits realism 

(Flynn, 2010). The canonical fixed C:N:P of phytoplankton, in addition to fixed Si:N, may be 

representative of the whole ocean average but its usage in global climate models smooths the 

spatial variability of the carbon pump. As shown in this study and others, fixed ratios can impede 

accurate simulations of primary producers, their population dynamics, ocean nutrient 

distributions, and the biological pump (Galbraith & Skinner, 2020; Matsumoto et al., 2020; 

Ödalen et al., 2020; Tanioka & Matsumoto, 2017). Model performance is thereby limited in 

simulating realistic ocean carbon cycling under various climate states. The ocean modeling 

community has started to include variable stoichiometric ratios in their simulations, but few 

capture any variability between the three primary macronutrients (C, N, and P) (Séférian et al., 

2020). Most of the CMIP 5 and 6 models have fixed ratios or only carry some form of 
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micronutrient to macronutrient variability, e.g., Fe:P (Pahlow et al., 2020; Séférian et al., 2020). 

Otherwise, only a handful of fully coupled earth systems models use variable macronutrient 

ratios, of which, three have studied the glacial C cycle implications: MESMO2 (Matsumoto et 

al., 2020), cGENIE (Ödalen et al., 2020), and CSIRO Mk3L-COAL (Buchanan et al., 2019b). 

Although, several simple box models have demonstrated the implications of variable 

stoichiometry (Galbraith & Martiny, 2015; Moreno et al., 2018; Weber & Deutsch, 2010). 

Here, we implement variable stoichiometry schemes in an intermediate complexity 

climate/ocean model to allow a more interactive and responsive ocean carbon cycle. The C:P and 

Si:N schemes are incrementally applied to individual plankton functional types (PFT) to 

precisely highlight the full implications of capturing realistic biogeochemical interactions. We 

also tune the new model slightly in a third experiment. These three configurations will be 

collectively referred to as the variable stoichiometry models (VSMs). 

The ordinary phytoplankton (PO) C:P increases as ambient PO4 concentrations decrease, 

as observed in collected particulate organic matter (POM) (Galbraith & Martiny, 2015; Martiny 

et al., 2013). The C:P variability can be induced by changes in the relative amounts of organic 

molecules, e.g., proteins versus RNA, changes in nutrient resource storage, or taxonomic shifts 

within a community (Geider & La Roche, 2002; Inomura et al., 2022; Liefer et al., 2019). C:N 

was observed as mostly constant with planktonic heterotrophs exhibiting stable C:N:P (Ho et al., 

2020). 

Diatoms (PDiat) are phytoplankton that construct siliceous cell walls (or frustules) and 

contribute to biological C storage not only through comprising a substantial portion (~1/5) of 

global primary production but also through their frustules-enabled efficient sinking of organic C 
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to the deep ocean (Hildebrand & Lerch, 2015; Lafond et al., 2020; Zúñiga et al., 2021). PDiat 

continue to consume silicic acid, referred to simply as Si hereafter, from ambient seawater even 

as other nutrients become scarce. Both in situ observations and culture experiments have shown 

that the Si:N of PDiat increases as Fe concentration decreases (Franck et al., 2000; Hutchins & 

Bruland, 1998; Takeda, 1998). It is hypothesized that the formation rate of soft organic PDiat 

tissue slows faster with Fe limitations than the formation of hard siliceous tissue (Franck et al., 

2000; Meyerink et al., 2017).  

The biological carbon pump may thus respond to different environmental and climatic 

settings through changes in the stoichiometry of phytoplankton (Moreno et al., 2018). The 

implications of these C:P and Si:N observations on our mechanistic understanding of biosphere-

climate interactions are not well understood (Galbraith & Martiny, 2015; Lafond et al., 2020; 

Moreno et al., 2018; Moreno & Martiny, 2018; Séférian et al., 2020). We attempt, here, to 

illuminate some of those mechanisms and better understand the Last Glacial Maximum (LGM) 

to Preindustrial (PI) climate shift which promotes understanding of future climate evolution 

(Tierney et al., 2020). 

Variable stoichiometry may have played a significant role in carbon cycling during past 

climate states such as the LGM when pCO2 was 90-100 ppm lower than PI levels (Barnola et al., 

1987; Bouttes et al., 2011; Du et al., 2020; Galbraith & Martiny, 2015; Lüthi et al., 2008; 

Marcott et al., 2014; Petit et al., 1999). The biological carbon pump has been suggested to be 

partially responsible for this pCO2 drawdown, but most previous modeling studies used fixed 

stoichiometric ratios and can only explain a portion of this reduction (Brovkin et al., 2007; 

Buchanan et al., 2019b; Khatiwala et al., 2019; Kohfeld et al., 2005). Two prior studies that have 
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used flexible stoichiometry (C:P and C:N) noted an additional 11-20 ppm reduction driven by an 

enhanced ocean biological C storage (Matsumoto et al., 2020; Ödalen et al., 2020).  

Here we confirm those results, but we identify additional mechanisms that increase C 

storage. Larger primary producer biomasses are supported through improved cohabitation 

between PFTs. We also identify and quantify the DOC component of biological C storage, which 

responds similarly to variable stoichiometry as the dissolved inorganic C (DIC) inventory. The 

resulting LGM climate simulations are closer to reconstruction estimates from observed pCO2 

data than simulations without flexible stoichiometry (Bereiter et al., 2015; Ivanovic et al., 2016; 

Kageyama et al., 2017). Our results suggest that the LGM biological carbon storage was stronger 

than previous fixed-stoichiometry simulations suggested and likely contributed to the ocean’s 

LGM pCO2 sequestration (Galbraith & Martiny, 2015; Galbraith & Skinner, 2020; Sigman & 

Boyle, 2000). 

Chapter 2: Methods 

2.1 Model description 

This study uses the University of Victoria Earth System Climate Model (UVic-ESCM) 

version 2.9, a three-dimensional ocean general circulation model (GCM) coupled to a single-

layer atmospheric energy-moisture balance, land surface with dynamic vegetation, and dynamic-

thermodynamic sea ice modules (Meissner et al., 2003; Mengis et al., 2020; Weaver et al., 2001). 

The ocean has a coarse resolution of 3.6° ⨯ 1.8° horizontally with 19 vertical levels. Coupled to 

UVic-ESCM is the Model of Ocean Biogeochemistry and Isotopes (MOBI) version 2.1_08 

which simulates interactive nutrient cycles (phosphate (PO4), nitrate (NO3), iron (Fe), and silicon 

(Si)), their associated particulate and dissolved organic phases, oxygen, carbon, detritus, and four 
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PFTs: PO, diazotrophs (PDiaz) as our N-fixers, PDiat, and zooplankton (PZ) (Figure 1) (Muglia et 

al., 2017; Somes et al., 2010; Somes & Oschlies, 2015). Plankton growth rates are Monod 

functions of nutrients, temperature, and light (Sarmiento & Gruber, 2006). They are structured to 

consume dissolved organic P (DOP) when it is more plentiful than PO4; this is not so for DON 

and NO3 (Somes & Oschlies, 2015). C:N is 7:1 for all biological variables. In the fixed 

stoichiometry (Control) model, N:P is 16:1 for all plankton except for PDiaz for which it is 40:1. 

For PDiat, a C:Si of 7.7:1 is used.  

While whole ocean P and Si are conserved, the N inventory responds interactively to 

imbalances between N fixation and denitrification (Kvale et al., 2021). Water column and 

benthic denitrification schemes, which respire organic matter in suboxic environments (O2 < 5 

μM), are described by Somes & Oschlies (2015). N isotopes are traced through the model and 

are sensitive to biological processes (Schmittner et al., 2013; Somes et al., 2010). Because 

portions of the ocean C cycling depend on the N cycling, C and Alkalinity are not strictly 

conserved. Calcium carbonate (CaCO3) and silicon cycling are based on modified models of 

(Kvale et al., 2015) and (Kvale et al., 2021), respectively. Where applicable, modeled nutrient 

fields were initialized from World Ocean Atlas, 2013 datasets (H. Garcia et al., 2013; Letscher et 

al., 2013; Mather et al., 2008).  

 Upon mortality, plankton’s particulate organic matter (POM) is divided into labile, semi-

labile, and semi-recalcitrant categories for the mass exchange between various inventories. The 

labile POM fraction quickly recycles into inorganic nutrients, the semi-labile into dissolved 

organic matter (DOM), and the semi-recalcitrant fraction is retained as detrital POM. Particulate 

organic C (POC) and DOC are implicitly calculated and traced, using C:N, from PON and DON 
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which can remineralize into the explicitly traced DIC. Thus, POC is a source to DOC and DIC, 

and DOC is a source to DIC. Surface ocean DIC is also regulated by the air-sea gas exchange 

and is reduced during autotrophy and calcite production. The simulated DOC represents the 

semi-labile fraction of the observed DOC inventory. We do not simulate the fully recalcitrant 

DOC fraction described in Lønborg et al. (2020; Somes & Oschlies, 2015). 

 

 
Figure 1 – Schematic of MOBI's PFTs and biogeochemical cycles relevant to this study. The red 
stars indicate where variable stoichiometric schemes were applied. VarP:N is applied at nutrient 
uptake, while VarSi:N is applied during the implicit computation of biogenic silica. The star on 
the pathway to the detritus (D) indicates that the VarP:N scheme is communicated to this 
inventory.  The red circled “P” indicates the new prognostic tracers added to MOBI to enable 
computation of phosphorus content. Solid black lines indicate the flow of nutrients to each 
plankton group, while the dashed lines show the flow back into the organic and inorganic 
inventories. 
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2.2 Variable P:N 

Because N is the basic currency for the biological variables in this model, we converted 

the variable P:C model of Galbraith and Martiny (2015) (hereafter GM15) to a variable P:N 

model using the constant C:N (Figure 2, S1, and Equation 1). For analysis purposes, we use the 

more intuitive reciprocal (N:P) and the C:P multiple. Tanioka and Matsumoto’s (2017) C:P 

model is neglected here due to its bias toward observed high C:P values at low PO4. Our PO, to 

which variable N:P is applied, inhabit and are the predominant PFT in the low PO4 domain. 

𝑃: 𝑁 (‰)  = 42‰ + 48.3‰ 𝑚ଷ𝑚𝑚𝑜𝑙ିଵ × [𝑃𝑂ସ(𝑚𝑚𝑜𝑙 𝑚ିଷ)]          (1) 

The observations analyzed by GM15 indicate stable C:N ratios over a broad range of 

surface nutrient concentrations, except for the most oligotrophic waters where little primary 

production occurs. A variable C:N scheme would thus have little effect on our simulations. 

Intracellular resource allocation models coupled to GCMs show conflicting results on the 

stability of C:N, however, their C:P still varies substantially (Inomura et al., 2022; Pahlow et al., 

2020). For this reason, and to keep the model computationally efficient, we assume constant C:N 

throughout every simulation. 

Our variable N:P model is only applied to MOBI’s PO. While we recognize the diversity 

in particle types (e.g., living and nonliving) in the data collected by Martiny et al. (2013) and 

used to develop the GM15 P:C equation, we also recognize it as a broad, first-order estimation. 

We then apply it only to the PO, which is intended to be a representation of unspecialized surface 

autotrophic plankton, for the following reasons. The P:C observations are biased towards 

oligotrophic (low PO4) waters except for the Bering Sea (Martiny et al., 2013). Consequently, the 

observations preferentially occurred in low silicate environments, implying that siliceous 
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phytoplankton may not be a significant constituent in the collected material (Gregg & Casey, 

2007). Thus, the variable N:P model is not extended to our PDiat. Eutrophic (high PO4) P:C 

observations are generally at higher latitudes and may then carry a seasonal bias. MOBI also uses 

the N:P of the well-studied Trichodesmium for the simulated PDiaz N:P (P:C of 3.57‰) (Sañudo-

Wilhelmy et al., 2004; White et al., 2006). This species inhabits oligotrophic waters and thus 

could constitute some of GM15’s P:C data. However, there is substantial variability in the 

observed P:C values at low PO4 concentrations, and only a minority of these data points are 

similar to the PDiaz 3.57‰ value. Further, the binned log-transformed means of the data are also 

substantially higher than this value. Thus, it is unlikely that PDiaz make up any significant portion 

of the data analyzed by Martiny et al. (2013).  

Oceanic heterotroph stoichiometry has been found to be generally more constant and so 

we do not apply any variability to our PZ simulations (Galbraith & Martiny, 2015; Ho et al., 

2020). Because the PZ N:P remains fixed, grazing on PO or detritus is turned off when they have 

a higher N:P (i.e., a low P content) at low PO4 concentrations (Equation S14). Conversely, in 

eutrophic waters when PO or detritus N:P is lower, PZ only uptake enough P biomass to remain at 

the constant ratio (N:P = 16:1) with the uptake of the N biomass. The excess P biomass, from 

this process, is directly routed to the detritus P inventory through “sloppy feeding”, a similar 

convention as used for PDiaz (Somes & Oschlies, 2015). 

Two new prognostic equations were implemented in MOBI to explicitly calculate the 

phosphorus content of both the PO and the resulting detritus (Figure 1, Equations S10 and S12). 

The latter allows the scheme to affect the biological carbon pump. The variable N:P alters 

nutrient uptake ratios by proportionally utilizing PO4 or DOP with respect to the NO3 according 
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to Equation 1 (Equations S7 and S8). Two new diagnostic equations were then added to calculate 

the N:P of PO (N:PPO) and detritus (N:PDetr) at every timestep (Equation S13), which are 

subsequently used to calculate the P loss from them (e.g., predation, mortality, remineralization, 

etc.) (J. Moore et al., 2004).  

2.3 Variable Si:N 

 
 
Figure 2 – The variable Si:N and P:N models. Left, the variable Si:N was developed from the 
overlaid data points collected from Franck et al., (2000); Hutchins & Bruland,(1998); and 
Takeda, (1998). The dashed line is the fixed Si:N from Aumont et al. (2003). The rejected pink 
outliers were removed as they would increase the maximum Si:N asymptote at low Fe above the 
majority of the other data points, leading to increased Si consumption and further reducing the 
accuracy of simulated Si concentrations. The blue outliers were discarded because they do not 
significantly impact the minimum Si:N asymptote and were only achieved with artificial Fe 
additions during PDiat culture experiments. Further, Fe at these concentrations is rare in our 
simulations and is not present in the observed data used to initialize and validate the model. 
Right, the variable P:N model adapted from GM15 in red, overlaid with the fixed ratio in the 
Control simulation. See Figure S1 and GM15 for supporting data. 
 

PDiat Si:N data, in relation to Fe availability, was compiled from three studies to develop a 

predictive variable Si:N model (Franck et al., 2000; Hutchins & Bruland, 1998; Takeda, 1998). 



11 
 

A hyperbolic tangent was fit to the data where the mean Si:N was determined at low Fe 

concentrations ( <0.5 nM) and at high Fe concentrations ( ≥ 0.5 nM) to define the upper and 

lower asymptotes, respectively. Other parameters were determined to achieve the most 

statistically accurate model possible. The resulting variable Si:N model (Figure 2) is: 

𝑆𝑖: 𝑁 ቀ௠௢௟
௠௢௟

ቁ =  −0.46 ×  𝑡𝑎𝑛ℎ (6.9 𝑛𝑀ିଵ  ×  [𝐹𝑒 (𝑛𝑀)] −  3.7)  + 1.6         (2) 

Equation 2 exhibits similar Si:N values at high Fe as other variable models, except for 

Holzer et al.’s HYPR experiment (2019b; Matsumoto et al., 2013; Matsumoto et al., 2020). 

While we did not test these existing models, our Si:N model does allow silica leakage, 

complimenting their EXP1 and EXP2 findings. Conversely, because we address the large data 

scatter at low Fe through averaging and outlier rejection, our Si:N model predicts a significantly 

lower maximum Si:N value than those studies. The variable Si:N scheme serves to regulate the 

PDiat consumption of Si in addition to the model’s preexisting nutrient limitation framework. 

Biogenic Si is implicitly calculated from the N biomass of PDiat and is only used subsequently in 

the calculations of opal production and dissolution.  

2.4 General Experiment Design 

The effects of the VSMs on ocean biogeochemistry were isolated through four different 

model versions. In Control, all stoichiometric ratios are held constant for all PFTs. Note, the N:P 

of PDiaz differs from that of other plankton but remains constant. Model VarP:N applies Equation 

1 to the PO and allows this variability to affect the N:P of detritus. The detritus N:P is different 

from that of the PO because detritus receives input from all PFTs. Model VarSi:N retains VarP:N 

and applies Equation 2 to the PDiat. The fourth model, Tuned, is identical to VarSi:N, except that 

DOP and DON, referred to collectively as DOM, remineralization rates were accelerated five-
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fold. This model is an initial attempt at tuning and results in more realistic DOM distributions. 

Extensive model tuning has not been attempted here and is beyond the scope of this study.  

PI and LGM simulations are performed with each model version. The PI simulations 

were ran for 4,000 model years to reach climatic and biogeochemical steady state solutions. 

Throughout this spin-up, pCO2 was fixed at a preindustrial value of 277 ppm (Bauska et al., 

2015). Subsequently, each simulation was ran for an additional 1,000 years with prognostic 

variable pCO2 enabled, though these remained close to PI values. LGM boundary conditions 

were then identically applied and each model ran for an additional 5,000 years with prognostic 

pCO2, thus allowing the quantification of variable stoichiometry effects on pCO2 and climate 

(Matsumoto et al., 2020). Analyses were performed on the PI and LGM variable pCO2 

simulations.     

2.5 Last Glacial Maximum Simulation 

 LGM boundary conditions are the same as those set forth, and described in detail, by 

Muglia et al. (2018) except for enabling prognostic pCO2, which can moderate the simulated 

climate, and neglecting the reduced sedimentary Fe flux along continental boundaries that was 

driven by the lower LGM sea levels (Muglia et al., 2017). Tangential simulations exploring the 

effect of these reduced sedimentary Fe fluxes, in relation to variable stoichiometry, are discussed 

in Appendix S4. Briefly, the LGM boundary conditions applied identically to all model 

configurations are: elevated Fe fertilization from increased dust fluxes (south of 35°S these are 

increased ten-fold), one salinity unit is added to every ocean grid box to account for lower LGM 

sea levels but the ocean volume remains unchanged, wind stress fields from the PMIP multi-

model mean anomaly, decreased southern hemisphere moisture diffusion to increase Antarctic 
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Bottom Water production and meridional extent (Muglia et al., 2018; Muglia & Schmittner, 

2015), orbital parameters for 21kya (Kageyama et al., 2017), prescribed ICE-6G ice sheets 

(Peltier et al., 2015), and reduced radiative forcing at the top-of-atmosphere energy budget due to 

lower atmospheric methane concentrations (Ramaswamy et al., 2001). 

2.6 Caveats 

There are several important caveats with the model results and the subsequent 

experiments presented here. Firstly, the terrestrial carbon cycle does not include interactive 

permafrost, peat, and lithologic weathering. Additionally, a portion (402 Pg) of the land C 

inventory is instantaneously removed from the earth system with the implementation of the LGM 

ice sheet mask (Cox, 2001; Meissner et al., 2003). This C is assumed to be buried under the ice 

and the magnitude is consistent with prior research (Jeltsch-Thommes et al., 2019; Zeng, 2003). 

The Atlantic Meridional Overturning Circulation (AMOC) strength in the LGM remains 

uncertain (Muglia et al., 2018). While model results closely match some proxy reconstructions, 

we cannot assume that the AMOC configuration is correct. We also note that the variable 

stoichiometry effects on accurately simulating different climate states does depend, sometimes 

strongly, on how other biologically relevant processes are simulated (Appendix S4). 

Several additional simplifications exist in MOBI that may affect our results. PDiaz do not 

contribute their higher C:N:P to the exported POM and are instead remineralized (J. Moore et al., 

2004; Somes & Oschlies, 2015). While our PDiaz have a significantly different C:N:P of 

280:40:1, their biomass, relative to other PFTs, is not large. Allowing the excess PDiaz N (and 

thereby C) to be captured in the detritus inventory increased the global weighted average N:P by 

1.2:1 and the export ~ 0.5 Pg C year-1 more. The rerouting of this N to the detritus degraded the 
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accuracy of simulated surface PO4 and NO3 when compared to observations and so was 

neglected. Additionally, the ocean model lacks interactive ocean sediments; organic matter is 

instantly remineralized at the benthic interface and returned to the water column.  

There is a significant amount of uncertainty in our DOC quantifications due to the 

extreme complexity and variability that exists in its sources and heterotrophic processing 

(Lønborg et al., 2020; Wagner et al., 2020). In MOBI, DOM is simply a parameterized fraction 

of POM and its recycling varies by temperature. This may explain why the PI DOC is too low 

compared to prior estimates in Control, VarP:N, and VarSi:N (Williams & Druffel, 1987). 

Alternatively, Somes and Oschlies (2015) suggest the underestimation may be driven by DOM 

stoichiometry variations. Thus, to achieve the observed quantities, a C:N of 11 is needed to 

accurately convert DON to DOC. While Tuned better matches DON and DOP observations, its 

DOC is significantly lower than the other simulations and would then require a C:N of 74. 

Revising the model’s DOM cycling is beyond this study’s scope; we continue to use a C:N of 7 

for DOC computations.   

Chapter 3: Model Validation 

3.1 Surface Nutrients 

On a global average, VarP:N leads to a deterioration of simulated PO4 and NO3 

distributions, however, most of the error is confined to the Arctic and Southern Oceans (SO). 

Tuning reverts most of those changes and demonstrates that a model with variable stoichiometry 

can perform as well as a model with fixed stoichiometry. Introducing VarSi:N, conversely, 

improves simulated Si distributions substantially. Thus, the Tuned simulation performs the best, 

comprehensively. The Taylor diagram (Figure 3) provides a statistical synopsis by plotting the 
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normalized standard deviation (σ) (normalized by the σ of the observations) of a given nutrient 

on the radial axis against a simulation’s correlation (R) and the uncertainty-corrected root mean 

square error (RMSE) on the azimuthal axis (Muglia et al., 2018; Taylor, 2001). A perfect 

simulation would then have a σ and R equal to one, a RMSE of zero, and be collocated with the 

black dots on the plot. Table S1 details the statistical metrics of the simulated nutrient 

distributions relative to observed data from the World Ocean Atlas, 2013 (H. Garcia et al., 2013). 
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Figure 3 – Taylor plot of surface simulated nutrient statistical performance. Perfect performance 
is indicated by both black circles, thus the proximity to the respective circle can be used to assess 
a model data point’s performance. The dashed red arc indicates a model’s nutrient standard 
deviation matching that of the observed. Symbols with a black outline are plotted against the 
correlation azimuthal axis, while those without outlines are plotted against the RMSE axis. The 
statistical performance of surface Si simulations in VarSi:N and the Tuned models are extremely 
similar and visual distinction here is difficult. 
 

Contrary to the global perspective, the VSMs had both improving and degrading effects 

on simulating nutrient spatial distributions, Figure 4 (H. Garcia et al., 2013; Letscher et al., 2013; 

Mather et al., 2008). Surface NO3 concentrations improved from the Control simulation due to 

VarP:N almost everywhere except at high latitudes. Primary production increases cause more 
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particulate organic N (PON) export to the deep ocean, resulting in waters upwelling with higher 

NO3 (Figure S7). Thus, Southern Ocean NO3, between 30°S and 60°S, now better matches the 

observations but is still too high closer to the Antarctic margin. Increased simulated NO3 in the 

Pacific equatorial and Benguela upwelling currents also improve representations (Figure S1). 

However, these areas, in addition to the Northwest Pacific, Bering Sea, and the northern Indian 

Ocean, are still underestimated by VarP:N as compared to observations. In the Northeast 

Atlantic and the Arctic, NO3 is overestimated by the model. Model resolution and isolation of the 

Arctic Ocean from the Pacific leads to unrealistically high nutrient concentrations there. 

However, model-observation differences in ice-covered polar oceans may also be due to seasonal 

biases in the observations, which lack winter data. The North Atlantic NO3 overestimation, an 

increase from the Control experiment, is caused by VarP:N reducing the PO4 limitation there and 

allowing more N-fixation, discussed later. 
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Figure 4 – Zonally averaged surface nutrient concentration comparison. Observation are from 
the World Ocean Atlas, 2013 (H. Garcia et al., 2013). N* expresses the deviation of the ambient 
NO3:PO4 from the fixed plankton N:P based on the assumption that these ratios are coupled 
(Redfield, 1934, 1958). 
  

The Tuned model increased the extent of the elevated NO3 concentrations, compared to 

the Control, in the tropical Pacific equatorial upwelling region. However, NO3 is still 

underestimated in the East Pacific. The tuning decreased NO3 in the Southern and Arctic Oceans, 

which improves the agreement with observations there, but had little effect on the NO3 

concentrations in the Bering Sea. Briefly, VarP:N degraded δ15N simulations in the PI and LGM 

due to the increased export of organic matter, which upon microbial respiration depleted O2 

concentrations, thus increasing denitrification in the interior ocean and inciting more N isotope 

fractionation (Appendix S5 and Figure S7). The Tuned model reduced the δ15N inaccuracies, 
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compared to the Control, in the surface ocean and only slightly degraded representations in the 

interior.  

 In contrast to NO3, PO4 concentrations were slightly reduced across all latitudes (Figure 

4B) in response to VarP:N, amplifying the biases from the Control (Figure S2). Although PO are 

now more P frugal in oligotrophic environments, their increased P use in eutrophic regions and 

the improved cohabitation with PDiaz overcame this effect, leading to reduced ambient 

concentrations. Model tuning returns simulation accuracy to approximately that of the Control. 

Regardless, when considering the global C-fixation perspective, the simulated PO4 

underestimation is a lesser concern since PO4 is only a limiting nutrient after Fe and NO3 

(discussed later), indicating that our primary producers and associated carbon pump are 

predominantly controlled by other nutrient availabilities. 

3.2 Deviations from Fixed Stoichiometry (N*) 

 Deviations from constant stoichiometry may be captured through N* = NO3 – 16 × PO4 + 

2.9 (mmol m-3), but N* is controlled by many processes in addition to plankton stoichiometry 

(Gruber & Sarmiento, 1997; Monteiro & Follows, 2012; Sarmiento & Gruber, 2006; Weber & 

Deutsch, 2010). Figure 4C shows N* only in the surface ocean to avoid denitrification influences 

but upwelling sites may still imprint interior denitrification errors on N*. Surface N* is 

susceptible to N-fixation which is confined between 40°S and 40°N. All model versions have 

preferential DOP remineralization, but it lacks the spatial variability seen in  observations (Clark 

et al., 1998; Monteiro & Follows, 2012). The cause, whether it be PO4 or NO3 inaccuracies 

(Appendix S1.3), of model departures from observed N* alternate by latitude and regionally. In 

all model versions, there is a relative excess of NO3 at the high latitudes (>60°), in the northwest 
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North Pacific and the North Atlantic, along with relatively too little PO4 in the midlatitudes and 

tropics (Figures S5 – S6). 

 The Control simulation reproduces the meridional distribution of N* most accurately 

overall. N* errors in the VSMs mostly stem from inaccuracies in N cycling outside of the 

euphotic zone, as indicated by relatively high NO3 at upwelling sites (Figure S5). The excess N 

stimulates PDiat growth, increasing the P consumption across the SO nutrient gradient (~ 65 – 

35°S), and yields excess N* there (Figure 4C and S11). Under VarP:N, PO are only a majority of 

the population at PO4 concentrations lower than ~0.1 mmol m-3 and are less than 20% of the 

population at concentrations greater than ~0.55 mmol m-3 (Figure 5). Thus, the areas where PO 

are most prevalent, generally between 10 and 40°N and °S (Figure 4C and Figure S13), 

correspond to the most accurate PO4 and N* simulations while under VarP:N and are not likely 

the direct cause of the high-latitude N* errors. The other experiments show similar patterns. 

Alternatively, deep ocean circulations may be inaccurate and cause too much nutrient storage at 

depth. As suggested by Weber and Deutsch (2010), flexible PDiat N:P may alleviate the SO 

nutrient gradient error by increasing P consumption at high PO4 and decreasing it at low PO4. 

This, along with further tuning of the N cycle, is likely needed to reduce VSM N* biases. 

Briefly, the North Atlantic (>40°N) is another notable area of elevated N* values that are driven 

by higher mid-latitude N-fixation in VarP:N which, subsequently, causes more NO3 to be 

advected northward.  
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Figure 5 – The fractional relative abundance of each PFT against PO4 concentrations. Note that 
the PO are dominant only at the lowest PO4 concentrations. Thus, the effects of VarP:N on 
biological C export is through two factors. It allows PO to adjust to their nutrient environment 
but also that it is implemented on a PFT that generally occupies oligotrophic waters causing the 
variable N:P scheme to increase global C export. The vertical thickness of each color indicates 
the relative abundance of the PFT and they are overlaid to sum to one. See Figure S12 for the 
Control. 
 

VarSi:N improved the simulated surface Si distributions by moving the Si gradient in the 

SO further south. However, north of 40°S, surface Si concentrations were slightly decreased 

compared to the Control, enhancing the model’s widespread underestimation. The largely Fe-

limited PI ocean drives higher Si uptake in VarSi:N. Notably, areas of VarSi:N’s Si 

underestimation are generally not inhabited with PDiat, and no other simulated PFTs use Si 

(Gregg & Casey, 2007). The areas of important underestimation are the northwest North Pacific 

and the Bering Sea, in which PDiat do reside (Figure S3). The persistent nutrient error in this 
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region is attributed to a well-known modeled circulation discrepancy (Kvale et al., 2021; Somes 

et al., 2017; Weaver et al., 2001). 

3.3 Implications of Model Tuning 

 Preliminary model tuning was performed after VarP:N and VarSi:N with the intent of 

improving the accuracy of PI nutrient distributions. Since DOM was overestimated in all 

experiments, remineralization rates were increased 5-fold (Figure S4). While we note that 

observations of DOM are spatially limited and carry uncertainty, the increased remineralization 

rates did reduce the overestimation of the Control run to more reasonable values (Figure S4) 

(Letscher et al., 2013; Mather et al., 2008). After tuning, simulated DOP is slightly 

underestimated (~0.1 mmol m-3) in the mid-latitude North and South Atlantic, to which the 

available observations are restricted. DON observations include more data transects in the Indian 

and Pacific Oceans. DON generally overestimates (~5 mmol m-3) observations slightly in all 

three ocean basins, except for the SO, where observations are slightly underestimated (~1 mmol 

m-3). These DON errors should then be considered in our DOC quantifications. These are 

improvements, nonetheless, to the overestimated DOM values of the Control.  

Additionally, the preliminary tuning drove slight improvements in inorganic nutrient 

simulations, making the Tuned simulation the most accurate comprehensively (Figures S1 – S3). 

While tuning does cause a remarkable improvement in simulated O2 concentrations due to less 

interior microbial respiration (Figure S7), the simulated interior ocean NO3 is still too high, 

although it is reduced relative to VarP:N and VarSi:N. The upwelling of NO3 in the SO then 

remains elevated above observations (Figure 4B). Tuning restored the PO4 simulation accuracy 

to approximately that of the Control while retaining the VarP:N and VarSi:N schemes. There are 
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a few areas of slight PO4 improvement over the Control in the mid-latitudes and the tropics 

(Figure S2). However, the Tuned model did not improve the strength or location of the SO PO4 

gradient. It underestimates the concentrations and places the gradient too far south. The Control 

simulation remains the most accurate in this area.  

Chapter 4: Results 

4.1 Changes in Ocean C Storage 

Because of more C-laden organic matter and larger total primary producer biomass, the C 

export out of the euphotic zone into the deep ocean is increased by the VSMs (Table 1, S2, and 

S3). While each experiment has a slightly different global C inventory, a symptom of the PI 

model spin-up, C budget differences between the experiments are almost entirely realized within 

the ocean (Table 2). Thus, our simulated oceans have larger C inventories in PI VarP:N and 

VarSi:N, than the Control. The Tuned model has a slightly smaller inventory caused by the rapid 

processing of DOC into DIC which then limits ocean C uptake from the PI atmosphere during 

the spin-up (Figure 6). 

Table 1 – Global quantifications. PO and EP C:N:P is the globally weighted average. EP C:N:P, 
C, and P export are calculated from detritus at the base of the euphotic zone (120 m). 
  

PI PO 
C:N:P 

Export Production 
C:N:P 

Carbon Export 
(Pg/yr) 

PO4 Export 
(Pg/yr) 

Control 112 : 16 : 1 112 : 16 : 1 8.8 0.62 
VarP:N 141 : 20 : 1 130 : 19 : 1 9.4 0.60 
VarSi:N 138 : 19 : 1 133 : 19 : 1 9.4 0.60 
Tuned 134 : 19 : 1 128 : 18 : 1 9.6 0.64 
LGM     
Control 112 : 16 : 1 112 : 16 : 1 7.1 0.50 
VarP:N 155 : 22 : 1 141 : 21 : 1 7.7 0.45 
VarSi:N 151 : 22 : 1 148 : 21 : 1 8.0 0.44 
Tuned 149 : 21 : 1 146 : 21 : 1 8.3 0.46 
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Figure 6 – Comparison of pCO2, DIC, and Total Ocean Carbon inventories in the PI and LGM. 
The two pCO2 variables use the left vertical axis, while all others use the right axis. TOC is the 
sum of DIC, DOC, and POC. 
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Table 2 – Differences in C inventories between model versions in the PI (top section) and LGM 
(middle section). The top of the bottom segment shows how a variable changes between climate 
states, while below that shows the relative difference of those changes. E.g., VarP:N – Control = 
(VarP:N, LGM – PI) – (Control, LGM – PI). Notable here is that the VSMs manifested their 
increased LGM C storage through relatively larger increases in their DIC and DOC inventories. 
See Table S3. 
 

 pCO2 
(ppm) 

Ocean Total 
Carbon  

(Pg) 

Ocean 
DIC 
(Pg) 

Ocean 
DOC 
(Pg) 

DOC:DIC 
(‰) 

Land 
Carbon  

(Pg) 
PI:       
VarP:N – Control 2 410 304 106 2.72 4 
VarSi:N – Control 1 299 203 96 2.50 3 
Tuned – Control 0 -451 -227 -223 -5.91 0 
LGM:       
VarP:N – Control -11 488 342 146 3.75 -47 
VarSi:N – Control -13 384 253 130 3.37 -52 
Tuned – Control -14 -361 -177 -185 -4.86 -58 
LMG-PI:       
Control -69 218 257 -38 -1.05 -73 
VarP:N -82 296 295 2 -0.02 -122 
VarSi:N -83 303 307 -4 -0.18 -127 
Tuned -83 308 307 1 0.00 -130 
VarP:N – Control -13 78 38 40 1.03 -49 
VarSi:N – Control -14 85 50 34 0.88 -54 
Tuned – Control -14 90 50 39 1.06 -57 

 
The LGM ocean is more oligotrophic than the PI. This is largely due to slower 

respiration, driven by cooler temperatures, and a weaker thermohaline circulation, which reduces 

the nutrient replenishment from upwelling waters (Buchanan et al., 2016; Galbraith & Skinner, 

2020; Matsumoto, 2007; Toggweiler, 1999; Yvon-Durocher et al., 2010). Conversely, higher 

LGM atmospheric dust fluxes yielded more Fe fertilization to primary producers and furthered 

nutrient consumption (Muglia et al., 2018). Our LGM configuration captures these 

characteristics which affect stoichiometry, net primary production (NPP), and carbon cycling 

(Muglia et al., 2018; Somes & Oschlies, 2015). Thus, our VSMs respond interactively to the 

LGM conditions, producing substantial differences in the C inventories, compared to Control, 
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between the LGM and PI (Table 2). The global C budget for each experiment is approximately 

conserved between the PI and LGM climate states. 

The modeled total ocean carbon (TOC) inventory is the summation of DIC, POC, and 

DOC. Carbon storage increases in the LGM ocean, relative to the PI, are largely realized in the 

DIC inventories. In the Control, the global ocean DIC inventory increases by 257 Pg C (Figure 

6, Table 2, and S3), with all other experiments seeing larger (307-295 Pg C) increases. POC 

decreased in the LGM ocean by 13% in the Control and 7% in the VSMs. The smaller POC 

reductions in the VSMs lead to LGM VarP:N boasting 26% more POC over the Control. The 

depression of PDiat in VarSi:N weakens this difference to 24% with similar values for the Tuned 

model. Finally, DOC reduced by 13% in the Control, but the VSMs are approximately 

unchanged. The LGM DOC is larger in VarP:N (and VarSi:N) by 60% (54%) than the Control. 

The Tuned model DOC inventory is much smaller than the other models due to the accelerated 

DOM remineralization, but this is compensated for by having the largest DIC increase from the 

PI of any experiment. 

The DOC invariance in the VSMs is driven by their larger LGM biomasses which 

increase DOC sourcing via mortality (Table S2). By linearizing the DOC source and sink terms, 

it is shown that the LGM-PI mortality changes (in particular, the PO mortalities) are positive in 

these experiments, whereas they are negative in the Control (Table S4). This contradicts the 

temperature influence, wherein, the VSMs have greater LGM-PI temperature reductions and are 

colder than the Control which slows plankton mortality and DOC recycling (sink term) rates. 

However, the difference in VSM biomass-induced mortality changes compared to the Control’s 

changes is larger than the comparative difference in the temperature influences on mortality 
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(Table S4). Further, while the VSMs’ recycling rates do decrease and decrease more than the 

Control, their larger DOC inventories, driven by larger biomasses, overwhelm the temperature-

reducing effect. Lastly, the VSMs’ DOC:DIC show that DOC increases relatively more than 

DIC, wherein the Control DOC:DIC is 7.4‰ (Table 2). While the ratio decreases for all models 

in the LGM, from the PI, the VSMs reduce much less than the Control, denoting the remarkable 

importance of DOC change between climate states.   

Ultimately, the VSMs increase the ocean C storage from the LGM – PI Control model 

with 38 - 50 Pg more DIC and 34 - 40 Pg more DOC (Table 2). Thus, we identify the DOC 

response as an important, but thus far overlooked in variable stoichiometry modeling studies, 

biological C storage mechanism. Figure S17 exemplifies these C changes with zonal averaged 

cross-sections, wherein VarP:N DOC increases from the Control in the surface layers. Surplus 

DOC is subsequently transported into the interior at downwelling sites but remains in the upper 

cell of the overturning circulation while eventually degrading into DIC. Conversely, DIC is 

relatively increased by VarP:N in the deep layers due to increased POC export. SO upwelling 

draws the increased DIC to the surface where enhanced outgassing can occur, but this is 

outweighed by the DIC reduction across all other latitudes leading to a net pCO2 intake. Some 

relatively reduced DIC is physically transported into the interior with deep water formation, but 

additions from POC remineralization throughout the water column soon reverse the deficit into a 

surplus of DIC. 

     The additional surface ocean C fixation and subsequent sequestration aided in further 

ocean C uptake from the atmospheric and land inventories. VarP:N reduced the LGM pCO2 from 

204.7 ppm in the Control to 193.3 ppm. The reduction was continued by VarSi:N and Tuned to 
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192.1 and 190.5 ppm, respectively. From this and the discussed C inventory changes, the 

variable Si:N scheme and model tuning have notably smaller C cycle impacts than VarP:N.  

Each simulation did not have the same pCO2 at the end of the respective PI simulation, but the 

Tuned model has the largest pCO2 decrease of 82.8 ppm (see Figure 6 and Table 2). VarP:N and 

VarSi:N have 81.6 and 82.6 respectively, while the Control has only a 69-ppm reduction. The 

LGM pCO2 in the VSMs are notably more consistent with ice core data than in the Control 

(Bereiter et al., 2015; Ivanovic et al., 2016).  

Beyond surface C sequestration, the VSMs reduce surface alkalinity slightly through 

increases in CaCO3 production, via PO, and N-fixation. Changes in the ocean’s pH buffer 

capacity, as indicated by DIC:alkalinity, may then be partially responsible for the increased 

drawdown (Egleston et al., 2010). The ratio changes little in the PI between each experiment, but 

does more so, albeit still meagerly, in the LGM experiments (Table S3). While DIC and 

alkalinity both slightly reduce in the surface ocean (not shown), surface DIC change is the 

dominant effect and increases ocean CO2 ingassing. We do not focus our analysis on this small 

effect any further. 

The VSMs also restrict the land carbon inventories further than the Control. The lower 

pCO2 increased the C limitation for terrestrial primary producers and lowered global 

temperatures (Ciais et al., 2012; Gerhart & Ward, 2010; Harrison & Prentice, 2003; Ödalen et 

al., 2020; Prentice et al., 2011). The LGM Control sees a 73 Pg reduction in the terrestrial carbon 

inventory, ignoring the ice sheet burial (Table 2 and S3). The VSMs substantially restrict it by a 

further 67% (i.e., 49 Pg) for the VarP:N, 74% for VarSi:N, and 78% for the Tuned model. These 

reductions are still smaller than prior estimates and could be caused by UVic’s incomplete 
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terrestrial C cycle (Ciais et al., 2012). The TOC inventory increases are then summations of 

carbon losses in the atmospheric and terrestrial inventories (Figure 6 and Table S3). Although 

the model’s global carbon inventory is not strictly conserved, there is only 1 - 4 Pg of 

unaccounted for C gain during the LGM simulations, which is four orders of magnitude smaller 

than the global C inventory. 

4.2 Export Production 

The variable N:P scheme creates regions of relatively enhanced or degraded carbon 

fixation by primary producers, which then redefines the spatial distribution of carbon export to 

the deep ocean. The obvious caveat to this is that the largest primary producer biomasses are 

generally in the eutrophic regions where the C and N content of PO is not as large relative to P. In 

oligotrophic areas, which cover a larger ocean fraction, biomasses are low, although PO carry 

more C and N relative to P (Figures S1 and S2). The total effect on global export production 

(EP) is then determined by the competing effects of these regions (Figure S14). Note that the PO 

ratio is different from the C:N:P of EP, which also depends on the stoichiometry of other PFTs 

(Figures 7 and 8). The efficiency of the global biological C pump, represented by the weighted 

C:P of EP (Equation 3), increases due to PI VarP:N by ~18 C units, with small additions from 

VarSi:N, and slight weakening from the Tuned model due to the eutrophication caused by 

increased DOM remineralization (Figure 7).  

𝐶: 𝑃|௚௟௢௕௔௟ ா௉|షభమబ೘ =  ቂ ଵ
∫(ா௉|షభమబ೘) ௗ஺

× ∫൫𝑁: 𝑃ா௉|షభమబ೘  × 𝐸𝑃|ିଵଶ଴௠൯ 𝑑𝐴 ቃ × 𝐶: 𝑁       (3) 

The increase in the C pump’s efficiency drives more net C export in the VSMs than in the fixed 

model (Table 1). Even though the Tuned C:P indicates a lower efficiency compared to VarP:N 
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and VarSi:N, the higher nutrient availability supports a larger primary producer biomass (Table 

S2) and thus a larger C export. 

 
 
Figure 7 – Global weighted average C:P of PO in the surface ocean (0 – 120 m), left, and EP (at 
120 m) which is the weighted C:P contribution of each PFT via the detritus, right. These follow 
Equation 3 methods. The horizontal axis is the unweighted surface average PO4 that varies 
slightly between each model due to the perturbations each scheme has on the simulated nutrient 
cycles. 
   

The VSMs export downward more C per unit P (higher C:N:P) in the relatively 

oligotrophic LGM ocean than in the PI (Figure 7). Thus, the ocean C inventory increases relative 

to the LGM Control, through larger C EP (Tables 1 and 2). Notably, the P EP is slightly lower in 

VarP:N, in contrast to the C EP, but this does not indicate reduced biology as the P NPP and 

total biomass increase (Table 3 and S2). VarP:N caused a 26% increase in the LGM export C:P 

relative to the Control; VarSi:N an additional 5%, with the Tuned simulation decreasing it 

slightly by 1%. While the amount of C exported (Pg year-1) to the deep ocean decreases in all 

LGM experiments, relative to their PI states, the VSMs show a smaller C export reduction than 
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the LGM-PI Control because of the higher C:P’s (Table 1). The sluggish ocean overturning 

counteracts the effects of reduced LGM C exports and increases deep ocean carbon storage 

(Galbraith & Skinner, 2020; Khatiwala et al., 2019; Muglia et al., 2018; Toggweiler, 1999). 

 
 
Figure 8 – C:P of each PFT across simulated PO4 concentrations. The detritus relationship is 
the weighted contribution of each PFT to it. The detritus C:P returns to nearly the Control ratio 
at high LGM PO4 due to the significantly lower PO and PDiaz relative abundance there, Figure 5. 

 
In PI VarP:N, zonal weighted average EP C:P, following Equation 3, distributions match 

the configuration of the north and south oligotrophic subtropical gyres with the highest C:N:P 

between 177–168 : 25–24 : 1 (Figure 9). These ratios are not directly comparable to the weighted 

PO C:N:P which is computed over different depths. In the tropics, EP C:N:P in VarP:N is 

depressed to about 124:18:1 by the eutrophic eastern Pacific equatorial upwelling waters. As 

expected, in the nutrient replete SO, the C:N:P ratios of EP fall below the Control value to 

~98:14:1 mol/mol (Figure 9). Here, our results are consistent with those of Weber and Deutsch 
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(2010) showing very similar values but VarP:N’s latitudinal gradients are slightly sharper 

(Figure 9). VarSi:N and Tuned closely match VarP:N except for the tropics where the Tuned 

model’s greater eutrophy reduces PO C:N:P as indicated by increases in PO NPP (Figures 7, 9, 

and S9). In the LGM ocean, these patterns generally continue, but ratios tend to be higher due to 

enhanced oligotrophy. Additionally, with the LGM weaker upwelling in the eastern tropical 

Pacific and the Southern Ocean, the southern subtropical gyre broadens with peak EP C:P values 

shifting north. Thus, a spatial expansion of efficient C export occurs there while the northern 

gyre largely remains unchanged. 

 
 
Figure 9 – Zonal average PO N:P weighted by biomass in the surface ocean (0 - 120 m), top left. 
The bottom left is the same but for EP C:P computed at 120 m. Average C EP is on the right 
computed at the same level. 
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Table 3 – Globally integrated annual NPP for PI and LGM oceans. Note that the NPP, with 
respect to PO4, for PDiat and PDiaz are the same as the provided values multiplied by their 
corresponding fixed P:N (1/16 and 1/40, respectively). 
 

PI NO3 NPP 
(Tmol yr-1) 

PO4 NPP 
(Tmol yr-1)  

PO N NPP 
(Tmol yr-1) 

PO P NPP 
(Tmol yr-1) 

PDiat N NPP 
(Tmol yr-1) 

PDiaz N NPP 
(Tmol yr-1) 

Control 754.3 46.5 433.3 27.1 302.5 18.4 
VarP:N 853.1 47.3 521.6 27.7 301.6 29.7 
VarSi:N 854.9 47.1 642.4 34.9 183.0 29.6 
Tuned 873.6 49.8 664.8 37.6 185.5 23.0 
LGM       
Control 471.2 29.1 261.7 16.4 199.1 10.4 
VarP:N 575.2 29.5 361.1 17.0 191.9 22.4 
VarSi:N 583.7 29.5 438.4 21.3 122.8 22.7 
Tuned 594.8 30.7 455.4 22.5 123.5 16.0 

 
4.3 Primary Producers 

Two effects of the VSMs on phytoplankton communities can be distinguished as 

physiological and taxonomical changes (Matsumoto et al., 2020). Physiological effects arise 

directly from alterations in the elemental composition of the phytoplankton. However, this also 

changes the nutrient consumption ratios, which, in the presence of particular nutrient limitations, 

can alter the competition between the different PFTs. This leads to two PFT, here Po and PDiaz, 

cohabitating more harmoniously. Such shifts in the phytoplankton communities are referred to as 

taxonomic effects. Each of these effects tends to increase the biological C storage. Below, the 

VSMs’ effects are compared to the Control, whether PI or LGM, unless explicitly stated 

otherwise. 

4.3.1 Variable P:N 

4.3.1.1 Physiological Changes 

Due to the plasticity of the P cellular quota in VarP:N, PO inhabiting PO4 depleted 

regions are more enriched with N, and thus C, compared to P (Figure 2). Conversely, in PO4 

replete regions, they are less enriched. The global weighted average C:P of PO, following 
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Equation 3, in PI VarP:N increased to 141:1 from the Control’s 112:1 (Table 1, Figures 7 - 8). 

This slightly underestimates the global observed mean of 146:1, but it may be due to the model 

capturing high-latitude eutrophic regions where observations are absent (Martiny et al., 2013). 

The new C:Ps indicate the larger influence of oligotrophic regions in the global average, which 

supports a net 7% C export increase. P export, conversely, decreases slightly by 3%. The more 

oligotrophic LGM exacerbates the N enrichment increasing PO ratios to 155:1. The depression of 

PDiat prevalence caused by VarSi:N makes more P available and reduces the ratios by 8 and 4 

units in the PI and LGM, respectively, but the net C export remained unchanged as PO grew in 

their place. Model tuning had a similar effect in the PI and LGM climates where increased 

retention of N and P in the surface ocean drove slightly reduced C:Ps of 134:1 and 149:1, 

respectively (Table 1). However, the tuning also supported more total NPP and so the PI and 

LGM C export increased by an additional 2% and 9 %, respectively, from VarP:N (Table 3). 
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Figure 10 – Stoichiometric ratio comparison. Top panels: Difference of PO N:P under VarP:N 
as compared to the fixed (Control) ratio (16:1) for the PI (left) and LGM (right) simulations. The 
light grey colors are erroneous values caused by near-zero Po concentrations. Bottom panels: 
Variable PDiat Si:N in the surface ocean (0-120 m) differenced by the fixed Si:N. Light colors 
also indicate Fe replete waters nearby the Fe source regions. The dustier LGM climate state is 
also reflected, bottom right, with more Fe intrusion into the interior basins and the enhanced Fe 
fertilization occurring in the SO south of 35°S. 
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PO N:P in VarP:N displays more positive values in the oligotrophic regions and more 

negative values in eutrophic regions (Figure 10). Via the fixed C:N = 7 relation, the higher N:P 

regions indicate areas of more efficient carbon fixation, which is communicated to the deep 

ocean through EP. Zonally averaging these ratios provides a simpler comparison of each 

experiment. The weighted average N:P of PO, following Equation 3, in the PI surface 

oligotrophic subtropical gyres display a value of ~ 23-21:1 (C:P = ~ 161-147:1 ). In the SO 

eutrophic waters, N:P values fall far below the fixed N:P, as low as 7:1 adjacent to Antarctica 

(Figure 9). 

Most of the PI zonal pattern is carried into the LGM, although south of 20°N the 

magnitudes increase by 1-6 units in the LGM. The bimodal-like shape is also depressed in LGM 

VarP:N as compared to the PI (Figure 9). The eutrophic upwelling region in the Eastern tropical 

Pacific is the main cause of the bimodal feature in the PI, driving N:P ratios down. With weaker 

ocean overturning in the LGM, less PO4 is upwelled in the eastern tropical Pacific resulting in 

higher N:P than the PI. In a small region near the most intense LGM upwelling, VarP:N ratios 

still fall below the fixed N:P (Figure 10) but this feature is counterbalanced by higher N:P in the 

western Pacific and the eastern Atlantic boundary at approximately the same latitudes. The 

weaker upwelling has the effect of expanding the oligotrophy in the LGM Pacific, thereby 

expanding the efficiency of the C pump there (i.e. higher C:P), particularly with the subtropical 

gyres (Figures 9, S15, and S16). The bimodal-like N:P pattern is slightly returned in the VarSi:N 

and Tuned experiments. In these runs, slightly more nutritious waters are upwelled in the eastern 

Pacific driving lower N:P in this latitudinal band (Figure 9). 

4.3.1.2 Taxonomic Changes 
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Because Po are almost never P limited, their new P frugality does little to increase their 

NPP. Their growth is predominantly limited by NO3 and Fe (Figure 11). PDiaz, however, are 

generally P limited after Fe and never NO3 limited. In VarP:N, the excess P left behind by PO 

fertilizes PDiaz, whose NPP increases by 61% in the PI and 115% in the LGM, consistent with 

prior research (Table 3) (C. Moore et al., 2013). Notably, the models overestimates prior global 

C NPP estimations by ~24 - 14 Pg year-1 (Field et al., 1998). The Po abundance is much larger 

than PDiaz, which also has a low P requirement (N:P = 40:1) (Figure 5 and S13). Thus, the P 

transfer to PDiaz is relatively substantial. In turn, PDiaz fix more N2, if not Fe limited, and over the 

timescales of biological cycling fertilize the N-limited PO (Figure 11) (Buchanan et al., 2019a; 

Capone et al., 2005; Mills & Arrigo, 2010; Wu et al., 2000). P competition between the two still 

exists, it is simply reduced here, and they still compete for Fe (Somes et al., 2010). The improved 

PO-PDiaz cohabitation then supports a larger biomass and biological C pump (Table 1 and S2). 
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Figure 11 – Primary limiting nutrients for each PFT in the surface ocean (0 – 120m). The PDiaz 
P limitation decreases due to VarP:N while the N limitation decreases for Po and PDiat. The 
dustier LGM decreases the Fe limitation for all between the PI and LGM simulations. 
 

Spatially PDiaz NPP/biomass increases correlate well with PO N NPP/biomass increases 

which are in the Indonesian archipelago and the tropical/midlatitude western Atlantic (Figure 

12). The cohabitation is also visualized with collocated increases in NO3 and DON (Figures S1 

and S4). Finally, the increases in PDiaz NPP, in VarP:N, correlate very well with their P limitation 

from the Control (Figure 12) indicating that their P limitation is relieved with VarP:N. The 

exception to this is in the North Atlantic at ~20°N (J. Moore et al., 2004). Here, the PDiaz are still 

strongly limited by P even after VarP:N, consistent with observations (Figure 11) (Wu et al., 
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2000). In the increased PO-PDiaz cohabitation regions, there is a mixture of PDiat NPP changes, but 

these are exceedingly smaller than the increases seen in PO and PDiaz (Figure 12, S9, and S11). 

PDiat population size is similar to PO so the increases in PO and PDiaz productivity are not likely 

driven by PDiat population decreases. The reduced P competition between the two PFT is then the 

most likely driver of the simultaneous growth increases. Additionally, the PDiat N limitation is 

slightly reduced in Po-PDiaz improved cohabitation areas (Figure 11). While the N limitation is 

replaced with a Si limitation, mitigating PDiat growth, the relief still evidences increased PDiaz N-

fixation induced by more P availability. 
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Figure 12 – Biomass and growth changes in the surface ocean (0 – 120 m). The left column is PI 
simulations, and the right is LGM. Top row: The change in PO biomass between VarP:N and the 
Control in the surface ocean. Contours of PDiaz biomass changes are overlaid on the same scale, 
where solid lines indicate positive values. Bottom row: Change in PDiaz NPP between VarP:N 
and the Control. Contoured lines are PDiaz PO4 limitation (from 0, meaning complete nutrient 
limitation, to 1, meaning no nutrient limitation) from the Control. Thus, increases in PDiaz NPP 
occurring in areas that were previously PO4 limited indicate where the VarP:N model relieved 
the PO4 limitation. 
 

Of course, PO and PDiaz cohabitate in other regions but the nutrient collaboration may not 

occur because either the PDiaz are not sufficiently P limited or there is too strong of a Fe 

limitation for either PFT. E.g., several areas of changing PO P NPP do not coincide with changes 

in N NPP, namely the tropical eastern Pacific cold tongue and the Indian Ocean, (Figure S9). In 

these areas, the P NPP changes in response to Equation 1, however, the N NPP remains nearly 

unchanged because PO and PDiaz are predominantly limited by Fe (Figures 10 and 11) (Wu et al., 
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2000). PO consume Fe faster than the PDiaz, which grow slower, leaving them Fe limited and 

suppressing the usual cohabitation (Großkopf and LaRoche, 2012; Meyer et al., 2016; Tyrrell, 

1999; Ward et al., 2013). Similar behavior continues in the VarSi:N and Tuned experiments. 

The LGM VarP:N also incited regions of improved cohabitation, increasing NPP totals 

(Table 3). In the more oligotrophic LGM ocean, lower PO4 concentrations initially made PDiaz 

more P limited than in the PI Control but the frugal PO P consumption in VarP:N still 

substantially relieved the limitation (Figure 11). The response is also aided by the increased 

LGM Fe fertilization (Buchanan et al., 2019a). The spatial extent of the LGM cohabitation 

exceeds that seen in the PI ocean but is generally bound to regions where PDiaz are not Fe limited 

(Figures 11 and 12). Compared to the PI, LGM PO and PDiaz NPP increases extend far into the 

Pacific subtropical gyres and dominate most of the Atlantic (Figure 12). 

The VarP:N model, then, prevents the N NPP reductions seen in the Control simulation 

between the LGM and PI climate states. The higher LGM Fe dust fluxes relieve PDiaz Fe 

limitation (Figure 11), increasing N-fixation to nearly PI values (Table 4) (Buchanan et al., 

2019a). N NPP is then reduced (LGM to PI) by only 32-33% for the VSMs, compared to the 

Control’s 38% reduction. The LGM-PI P NPP reduction was approximately equal across all 

experiments, indicating more C-laden organic material. 
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 Table 4 – Global N and P inventories and fluxes. 

PI: Surface NO3 
(×104 Tg) 

Total NO3 
(×106 Tg) 

Surface PO4 
(×104 Tg) 

N-Fixation 
(Tg yr-1) 

Water Column 
Denitrification 

(Tg yr-1) 

Benthic 
Denitrification 

(Tg yr-1) 
Control 1.6 2.7 0.2 256.6 149.9 102.8 
VarP:N 2.0 3.1 0.2 414.7 279.3 129.4 
VarSi:N 2.2 3.2 0.2 412.7 275.2 130.7 
Tuned 2.1 2.8 0.2 320.7 195.9 121.5 
LGM:       
Control 0.9 2.6 0.1 145.9 92.6 66.5 
VarP:N 1.1 2.6 0.1 313.6 267.6 86.8 
VarSi:N 1.2 2.7 0.1 318.2 271.9 89.6 
Tuned 1.3 2.9 0.1 224.3 155.4 86.3 

 
The accelerated DON remineralization in the Tuned model, which causes higher net PO P 

consumption, tempers the improved PO-PDiaz cohabitation but it is mainly at the expense of PDiaz 

whose original growth is reduced by ~36 and 61% in the PI and LGM, respectively (Table 3). 

The surface Tuned DOP inventory is smaller with little change to the PO4 inventory, leading to a 

PDiaz NPP reduction from an increased P limitation and returning it to near Control values (Table 

4 and Figure S8). Conversely, PO N and P NPP increases between 33 and 36% in both Tuned 

climate states. 

4.3.1.3 Changes to the N cycle 

The improved PO-PDiaz cohabitation strongly impacted the global N cycle. Increased PDiaz 

in VarP:N accelerates PI N-fixation by 62% which increased total N NPP and primary producer 

biomass by 13% and 16%, respectively (Table 4, S2, and S3). The resulting increase in export 

and remineralization of organic matter causes more deoxygenation and increased water column 

denitrification by 86%, mainly in the Pacific and Indian Oceans (Table 4 and Figure S22). 

Smaller increases (26%) occurred in benthic denitrification. While these lead to only a 15% 

increase in the global NO3 inventory, the NO3 of the euphotic zone increased by 25%, thus 

providing N limitation relief. PDiat’s Si limitation largely limits their response to the excess N and 
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so mainly PO N NPP increases by 20% globally, with little change in their P NPP (Table 3). This 

cohabitation-induced N-fixation thus supports more PO with flexible stoichiometry and enhances 

C EP. 

The increased PDiaz activity induced by VarP:N altered the LGM NO3 budget even more 

than the PI. Globally, N-fixation increased by ~115% compared to the Control (Table 4). The 

resulting NPP and EP increase caused further depletion of oxygen at depth where organic 

material is respired (Figure S7). The lower O2 levels are particularly important in the North 

Pacific, where they crossed the denitrification threshold. VarP:N, consequently, causes an 

increase in denitrification in the LGM (Figure S25) which counteracts the N-fixation increase 

(Somes et al., 2010). Water column denitrification increased by 189% from the LGM Control, 

much more than in the PI (Table 4 and Figure S22). Benthic denitrification showed a similar 

increase as the PI of 30%. Even with the widespread expansion of PDiaz and their N-fixation, the 

global LGM VarP:N N inventory slightly decreased by ~ 0.7% from the LGM Control. In the 

euphotic zone, however, the NO3 inventory increased by 27%, slightly higher than the PI 

changes. 

  The Tuned model reduced N-fixation and denitrification from the VarP:N by the 

accelerated remineralization of DON, which fertilizes the PO further than PDiaz-sourced N alone. 

The increased PO growth in Tuned reduces PO4 availability for PDiaz, whose NPP and N-fixation 

drop by 22% in the PI. However, the Tuned simulation still has 25, 31, and 18% larger N 

fixation, water column, and benthic denitrification, respectively, compared to the Control 

simulation (Table 4). Thus, the global and surface ocean NO3 inventories are larger than the 

Control and similar to VarP:N. This pattern continues into the LGM, but the above numbers are 
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roughly doubled. The Tuned LGM NO3 budget is then slightly larger (12%) than in LGM 

VarP:N, while in the PI it was slightly smaller. The Tuned model slightly reduces the total 

primary producer biomass, but it increases the prevalence of flexible stoichiometry PO, which 

ultimately yields more C EP. While NPP generally decreased during the LGM relative to the PI 

(Table 3), variable N:P allows phytoplankton communities to better adapt to the oligotrophic 

LGM conditions. 

4.3.2 VarSi:N 

In VarSi:N, PDiat are enriched in Si relative to N in Fe-limited areas and depleted in Si in 

high-Fe areas, per Equation 2. This relation is especially important in the largely Fe-limited PI 

ocean, Figure 10. VarSi:N increases PDiat Si limitation and decreases their global NPP and 

biomass by about 39% (Table 3, S2, and Figure 11 versus S8). In the LGM, VarSi:N causes a 

36% reduction despite the increased LGM dust fertilization supplying additional Fe to the 

surface ocean and lessening the PDiat Si requirement (Conway et al., 2015; Lambert et al., 2015; 

Muglia et al., 2017, 2018). Note, even at the highest Fe concentrations, VarSi:N dictates a higher 

Si:N than the fixed Si:N scheme (Figures 2 and 12). 

With PDiat as a smaller component of the global plankton community, PO grow in their 

place. The PO thus see an increase of ~12% in relative abundance, and a 23% (26%) increase in 

N (P) NPP, whereas PDiaz changes are small (Table 3 and  Table S2). LGM VarSi:N leads to a 

similar 21% (25%) increase in PO N (P) NPP. The increased PO4 availability from the reduced 

PDiat presence decreases the PO C:P by 8 in the PI and 4 in the LGM, but this has a small effect 

on the C EP in either climate state (Table 1 and S2). The C:P of EP changes little in the PI, but in 

the LGM it increases by 7 due to VarSi:N. This occurs, counter to the C:P of PO, because less 
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PDiat, which have C:P of 112:1, exist to be exported. Instead, more PO with flexible C:P are 

exported and their ratios are generally higher than 112:1. The primary advantage of the variable 

Si:N scheme is in constraining the Si and PDiat simulations, but does not have as large of a C 

cycle influence as VarP:N.  

Fe-replete waters are generally along the continental margins and PDiat Si:N values are 

low and approach the fixed Si:N prescribed in the Control and VarP:N simulations (Figure 10). 

However, most of the PI ocean is Fe limited, driving high Si:N values and causing enhanced Si 

consumption of the already limited Si (Figures 11 and S8). Thus, PDiat growth is inhibited, and 

only PO grow in their place since PDiaz is slower growing than PO (Table S2, Figures S11 and 

S13). The trade-off between PDiat and PO is clearly seen in zonal plots of each PFTs relative 

abundance in the plankton community. I.e., where PDiat prevalence decreases, Po increase. These 

are also areas of PO4 concentrations below 1 mmol m-3, indicating that VarSi:N has a larger 

influence on communities in oligotrophic regions (Figures 4 and 5). The more available nutrients 

induced by VarSi:N are not reflected in the nutrient plots due to immediate PO consumption, but 

they cause a decrease in the PO C:N:P ratios between 20° and 40°S in the PI and LGM oceans. 

This is the northernmost extent of the surface Si gradient in the Control, which, after VarSi:N, is 

moved south.   

With the exception of the higher southern latitudes, PDiat Si:N values are mostly 

unchanged between the PI and LGM. South of 35°S, enhanced dust Fe fluxes decrease Si:N 

values to a minimum, which should allow more PDiat NPP than is seen in the PI (Figure S11) 

(Conway et al., 2015; Muglia et al., 2018). However, the reduced surface Si in the LGM (Table 

S5), paired with more extensive sea ice, which encroaches into the primary PDiat habitat (Figure 
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S13, PI versus LGM for the green PDiat curve), reduces SO PDiat and negates the effects of a 

reduced LGM Si requirement caused by higher Fe fluxes. Thus, in the PI PDiat NPP remains 

largely unaffected by VarSi:N in the SO but in the LGM it decreases. 

VarSi:N and Tuned support the Silicic Acid Leakage Hypothesis (SALH) where during 

the LGM excess Si escapes the SO via surface waters, subducts into mode waters, and resurfaces 

in the equatorial East Pacific (Brzezinski et al., 2002; Holzer et al., 2019b; Matsumoto et al., 

2002, 2014). Figure S18 (A and B) accordingly, show VarSi:N's transport of this relatively 

increased Si, compared to VarP:N. The SALH postulates that, in response, more siliceous 

phytoplankton grow in the Pacific, displacing other PFT (Figure S18, D). Decreases in the 

CaCO3:POC export denote the taxonomic shift there from calcifiers (included in Po) to PDiat 

(Figure S18, C) (Holzer et al., 2019b; Matsumoto et al., 2014). Globally, VarSi:N shows 

relatively lower PO biomass in the LGM and relatively more PDiat biomass. Thus, the leakage 

presumably enhances ocean C uptake and storage by limiting CaCO3 production which increases 

alkalinity. Our results support this but find that the SALH has a smaller global effect on the 

LGM ocean C storage than our variable N:P model. pCO2 further reduces by only 1 ppm relative 

to VarP:N's 13 ppm reduction and TOC increases by 7 Pg compared to VarP:N's 78 Pg relative 

increase (Table 2). VarSi:N's global C export change, 0.3 Pg year-1, is larger though compared to 

VarP:N's zero change (Table 1). 

Matsumoto et al. (2014) presented three possible mechanisms to induce the Si leak. They 

are enhanced SO Fe fertilization decreasing Si:N, more expansive sea ice that limits PDiat growth, 

and weaker SO overturning that removes SO trapping. Our model includes the enhanced Fe flux 

and the increased sea ice in the LGM. The SO westerly wind stress is effectively unchanged 
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from the PI, however, confirming their conclusion that it may not be a required trigger 

(Matsumoto et al., 2014). A detailed investigation of the SALH is beyond this research and we 

do not investigate the sensitivities or causes therein.       

Chapter 5: Discussion 

The ubiquitous fixed phytoplankton stoichiometry assumption has been shown to limit 

model performance, predominantly through the spatial smoothing of the biological C pump 

(Matsumoto et al., 2020; Ödalen et al., 2020). The results presented here, among other studies, 

suggest that the implementation of variable stoichiometry can not only affect the simulations of 

the biological pump but also the structure of phytoplankton communities through taxonomic 

shifts and changes in nutrient limitations. Thus, the inclusion of variable stoichiometry in global 

climate models can enhance ocean C storage through larger DIC and DOC inventories causing a 

further 13 – 14 ppm drawdown of pCO2 between the LGM and PI climate states. Per our results, 

we stress the importance of the DOC inventory response to variable stoichiometry, which has 

been overlooked previously. While the DOC inventory is much smaller than the DIC, it responds 

by a similar magnitude as DIC to the GM15 model. In the following section, we compare our 

results to prior research and find that they are consistent, suggesting that our quantifications of C 

inventories, fluxes, and changes are reasonable. 

From the PI climate state to the LGM, Matsumoto et al.’s (2020) pCO2 reduced by 34 

ppm under fixed C:N:P whereas our results show a 69-ppm reduction that is closely matched by 

Ödalen et al.’s (2020) 64 ppm reduction (Khatiwala et al., 2019). These pCO2 reductions 

strongly depend on the configuration of forcing conditions implemented in a given model for 

LGM simulations (as suggested in Appendix S4). However, the effects of variable stoichiometry 
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on pCO2 are similar across these studies. Matsumoto et al.’s (2020) GM15 framework was 

responsible for an additional 11 ppm drawdown and their power law model a 20 ppm drawdown. 

Ödalen et al.’s GM15 scheme was responsible for a slightly higher reduction of 16 ppm while 

our schemes vary between 13 and 14 ppm.  

The differences in pCO2 response may partly stem from different biogeochemical 

simulation methods. For example, MOBI normally, though unrealistically, instantaneously 

disassociates the PDiat’s soft tissue from their silica frustules and routes it to the detritus 

inventory, which has a slower sinking velocity (~3 times) than the simulated biogenic silica 

(Zúñiga et al., 2021). The accelerated sinking of PDiat POM, via silica ballasting, could add ~3.7 

to 1.3 Pg C year-1 to the deep ocean inventory (Appendix S3.1 and Table S5), and presumably 

cause a further 3-6 ppm pCO2 reduction, putting our model roughly between the power law and 

GM15 quantifications (Matsumoto et al., 2020; Ödalen et al., 2020, respectively). 

5.1 Carbon Export and Ocean Storage 

At the PI steady state, the VSMs have higher export C:N:P (Figure 7 and Table 1) than 

Ödalen et al.’s (2020) C:P of 121:1, who uses GM15 in the model cGENIE. Tanioka & 

Matsumoto (2017), using a stoichiometric power law for C:P in the MESMO2 model, found a 

notably lower PI ratio of 103:15:1. In subsequent studies, these authors substantially revised the 

power law scheme and also tested the GM15 relation in MESMO2 (Matsumoto et al., 2020; 

Tanioka & Matsumoto, 2020). The new power law produced 113:16:1 and the GM15 scheme 

107:16:1.  

While Matsumoto et al. (2020) suggest that low export C:N:P in their findings, is driven 

by the lack of preferential nutrient remineralization, the cGENIE model also carries this 
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simplification but better matches our model, which does include it. Although, the cGENIE and 

MOBI similarity could be induced by cGENIE only having one PFT, and thus a more expansive 

application of GM15’s variable C:P, which may overcome the lack of preferential nutrient 

remineralization. Another possibility for the C:P difference between these studies is likely a 

symptom of GM15 implementation methods, in which Matsumoto et al. (2020) applied it to all 

PFTs, thus inciting nutrient frugality everywhere, creating an excess of PO4, and lowering ratios. 

Finally, the performance of stoichiometric schemes could be sensitive to the differences in 

simulated biogeochemical processes and inventories between the models. For example, we have 

shown that the increased PO-PDiaz cohabitation partly explains the increases in ocean C 

sequestration in VarP:N. However, this process is partly controlled by Fe availability. Thus, 

when a different LGM sub-grid bathymetry mask adjusts sedimentary Fe fluxes and reduces both 

the global and euphotic zone Fe inventories, the implications of our VSMs are not as profound 

(Appendix S4 and Table S6). The biogeochemistry in MESMO2 and cGENIE could be different 

from MOBI’s and so cause the differences in the variable stoichiometry effects. Further testing is 

needed to discover the sensitivities of any given stoichiometry model to variations in simulated 

biogeochemical processes and inventories.  

The LGM climate state, with oligotrophic surface waters, increases the stoichiometric 

ratios across these studies. VarP:N EP C:P increases by 11 C units in the LGM, which is smaller 

than expected, per Equation 1, based on the PO4 change but is caused by the increased 

prevalence of fixed stoichiometry PFTs (Figures 5, 7 and Table 1). Matsumoto et al.’s (2020) 

LGM GM15 C:P is substantially lower than ours at 120:1 but their C:P ratios increase by 

approximately the same magnitude between the PI and LGM as our simulations. Conversely, 
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their power law model induces a 27-unit C:P increase, bringing it to about the same ratio as 

VarP:N. Ödalen et al.’s (2020) LGM GM15 experiment sees a similar increase to VarP:N at 13 

units. The VarSi:N and Tuned experiments show increases of 15 and 18 C units, respectively.  

The EP C:P change consequently alters the POC and POP export. The power law model 

causes a smaller impact on C export (Matsumoto et al., 2020; Tanioka & Matsumoto, 2017, 

2020). They found a 0.04 Pg C year-1 increase in the PI while our VarP:N shows a 0.59 Pg C 

year-1 increase (Table 1) (Tanioka & Matsumoto, 2017). Subsequently, Matsumoto et al.'s (2020) 

PI C export shows a 0.4 Pg C year-1 power law increase and 0.1 Pg C year-1 decrease under 

GM15. The 2020 power law revision brings the two models into much better agreement with 

respect to absolute numbers, but their usage of GM15 produces a carbon export change, relative 

to the fixed-ratio simulations, that is of opposite sign to our results. All our simulations are 

consistent with observation-derived estimations though the range is broad (Boyd & Trull, 2007). 

Buchanan et al., (2019b) briefly report an increase of 0.4 Pg yr-1 in PI C EP due to GM15 in the 

CSIRO model.  

From the PI to LGM, the Control POC and POP reduce by the same 19% (Table 1). 

However, in VarP:N, the POP export reduced by 26% while the POC export only reduced by 

17.6%. Thus, sinking organic particles are more carbon-laden and the biological C pump is more 

efficient under VarP:N than the Control. Our remaining experiments, VarSi:N and Tuned, do not 

substantially alter these results. Ödalen et al.’s (2020) GM15 scheme reports a similar LGM POC 

export decrease, relative to the PI, of 5% less than their fixed stoichiometry simulation and 2% 

larger of a POP decrease. Matsumoto et al.’s (2020) GM15 showed the same POC export 

reduction but with a 5% larger POP reduction. Alternatively, under the power law, the POP 
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reduced by a further 6%, compared to a fixed ratio simulation, and the POC export reduction was 

12% less. Thus, the biological pump responds similarly across three different climate models if 

the GM15 scheme is implemented contrary to the notably different C:Ps. Matsumoto et al.’s 

(2020) annual C export decreases (LGM - PI) between 0.5 (power law), 1.1 (GM15), and 1.6 Pg 

C yr-1 (fixed), compared to 1.4 Pg C yr-1 in our Tuned model and 1.7 Pg C yr-1 in our Control 

experiment. Their GM15 LGM C EP quantification is very similar to our results, yet their power 

law model changes little and is closer to our PI C EP (Table 1). Ödalen et al. (2020) did not 

report any C export quantifications. 

With the similarities of our findings to other studies which use unique ocean 

biogeochemical and climate models, the quantifications of the biological carbon pump and the 

effects of including realistic variable stoichiometry presented here are reasonable and likely good 

approximations in the LGM climate. While our model carries some limitations and 

approximations, we have exemplified how the configuration of a model’s biogeochemistry may 

influence these quantifications of the biological C pump and the effects variable stoichiometric 

schemes may have on it. Further research on the sensitivities of variable stoichiometry schemes 

to various biogeochemical processes is needed.  

Chapter 6: Conclusion 

 Variable stoichiometry schemes allow simulated primary producers to adapt to a variety 

of nutrient environments consistent with observations. The variable N:P scheme implemented in 

our ocean biogeochemistry model allowed PO to exhibit P flexibility as the ambient PO4 

concentration varies. The P flexibility has two important consequences. First, the PO P limitation 

is reduced, allowing them to grow more in low-PO4 environments, fix more C there, and become 
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relatively more C-laden. Second, the PO PO4 frugalness stokes an ecological response via 

increased PO4 availability for PDiaz, leading to an improved cohabitation between PO and PDiaz, 

more net N and C fixation, and higher net C EP. The first consequence describes how N:P 

flexibility enhances the biological C pump’s efficiency (i.e., more C export per P), and the 

second, how it can strengthen of the biological C pump by supporting a larger primary producer 

biomass. While the variable Si:N scheme did not show the same strong influence over the C 

pump, it does showcase how realistic modeling of nutrient quota ratios may improve 

representations of biogeochemical cycles. 

 The LGM experiments suggest that the new nutrient flexibility allows the formation of 

diverse phytoplankton communities, more responsive and interactive ocean biogeochemical 

cycles, and increased ocean carbon storage with lower pCO2. Our results, in addition to other 

studies, then suggest that the robustness of model performance in various climate states may 

depend, at least in part, on capturing the variability of ocean primary producers and their 

community structures. We find that capturing these attributes leads to 78 – 90 Pg more ocean 

carbon storage, realized through both the DIC and DOC inventories, in the LGM ocean as 

compared to fixed stoichiometry. We identify the DOC response as a significant but previously 

overlooked C storage mechanism in this context. Increased ocean C storage, thus, causes pCO2 

to be 13 – 14 ppm lower in the VSMs. Variable stoichiometry may then explain a notable portion 

of the pCO2 difference between the PI and LGM climates while unveiling important mechanisms 

within primary producer communities and biogeochemical cycles that partly define the ocean 

carbon cycle. 
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S1. Variable Stoichiometry and Nutrient Simulations 

 
Figure S1 – With permission, a reproduction and consolidation of the bottom panels of Figure 1 
and S2 from Galbraith and Martiny (2015). Processed and vetted observed data appear as the 
blue dots and were used to develop the variable P:C equations. The thick orange line is the 
variable P:C scheme that was converted to P:N and used in the VarP:N simulation in the main 
manuscript. The thin orange lines are the 95% confidence interval. The blue lines are the same 
but for the binned, log-transformed data. The blue boxes are the bin means with associated error 
bars. 
 
S1.1 Statistical Performance of Simulated Surface Nutrients 

Table S1 summarizes statistical metrics of the simulated nutrient distributions relative to 

observed data from the World Ocean Atlas, 2013 (Garcia et al., 2013; Letscher et al., 2013; 

Mather et al., 2008). R is the correlation coefficient; the Tuned experiment, here, generally 

outperforms all other simulations except for NO3 where it is slightly less accurate than the 

Control. STDR expresses the ratio of standard deviations of the model data to observations 

measuring how well the model captures the natural variability. The Tuned model again performs 

the best comprehensively, except with the PO4 simulations. Here, all model configurations 
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struggle with the Control simulation capturing the variance best. However, out of the three 

variable stoichiometry model (VSM) configurations, the Tuned model is the most accurate. 

RMSE is the uncertainty-corrected root mean square error where the Tuned model configuration 

has the smallest error, but it is approximately matched by the Control experiment in the NO3 

simulations. Lastly, the RMS Prime is essentially the same as the RMSE but the bias of the 

global means of the observations and the models have been removed. The RMS Prime values are 

all exceedingly similar to the RMSE indicating the model global averages are all similar to the 

observed global mean. These statistical calculation methods were developed and described in 

Muglia et al. (2018). 

Table S1 – PI Surface (0-120 m) Nutrient Statistical Assessment. 
 

NO3 R STDR RMS Prime RMSE 
Control 0.89 0.96 0.46 0.49 
VarP:N 0.86 1.12 0.58 0.58 
VarSi:N 0.86 1.17 0.60 0.60 
Tuned 0.89 1.02 0.48 0.49 
PO4 R STDR RMS Prime RMSE 
Control 0.89 0.92 0.45 0.48 
VarP:N 0.89 0.86 0.46 0.55 
VarSi:N 0.89 0.85 0.46 0.54 
Tuned 0.90 0.89 0.44 0.48 
Si R STDR RMS Prime RMSE 
Control 0.86 1.27 0.64 0.66 
VarP:N 0.87 1.25 0.63 0.64 
VarSi:N 0.90 1.00 0.44 0.47 
Tuned 0.91 0.99 0.43 0.47 

 
S1.2 Global Maps of Surface Nutrients  
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Figure S2 – Surface Nitrate comparison.  
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Figure S3 – Surface Phosphate comparison. 
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Figure S4 – Surface Silicate comparison. 
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Figure S5 – Dissolved organic nutrients, zonally averaged, with nitrogen (left) and phosphorus 
(right) in the surface ocean (0 – 120 m). Remineralization rates were increased 5-fold, resulting 
in the Tuned simulation better approximating the observations.
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S1.3 N* Comparison and Analysis 

N* is defined as (Gruber & Sarmiento, 1997; Sarmiento & Gruber, 2006):  

𝑁∗ = 𝑁𝑂ଷ − 16 × 𝑃𝑂ସ + 2.9 (𝑚𝑚𝑜𝑙 𝑚ିଷ)     (S1) 

Calculating the absolute value of differences for N* comparisons: 

|𝛥𝑁∗| = |𝑁௠௢ௗ௘௟
∗ − 𝑁௢௕௦

∗ | = |൫𝑁𝑂ଷ
௠௢ௗ௘௟ − 16 × 𝑃𝑂ସ

௠௢ௗ௘௟൯ − ൫𝑁𝑂ଷ
௢௕௦ − 16 × 𝑃𝑂ସ

௢௕௦൯| (S2) 

= |𝑁𝑂ଷ
௠௢ௗ௘௟ − 𝑁𝑂ଷ

௢௕௦ − 16 × 𝑃𝑂ସ
௠௢ௗ௘௟ + 16 × 𝑃𝑂ସ

௢௕௦|    

            = |(𝑁𝑂ଷ
௠௢ௗ௘௟ −  𝑁𝑂ଷ

௢௕௦) − (16 × 𝑃𝑂ସ
௠௢ௗ௘௟ − 16 × 𝑃𝑂ସ

௢௕௦)|   

= |𝛥𝑁𝑂ଷ − 16 × 𝛥𝑃𝑂ସ|        

 Therefore, in the case that 𝛥𝑁𝑂ଷ = 0, 𝛥𝑃𝑂ସ exclusively causes 𝛥𝑁∗: 

|𝛥𝑁∗| − |16 × 𝛥𝑃𝑂ସ| = 0 

 Conversely, if 𝛥𝑃𝑂ସ = 0, 𝛥𝑁𝑂ଷ exclusively causes 𝛥𝑁∗: 

|𝛥𝑁𝑂ଷ| − |𝛥𝑁∗| = 0
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Figure S6 – Deviations from observed zonally averaged N* values in each experiment caused by 
NO3 (top) or PO4 (bottom) simulation inaccuracies. The dashed lines show the absolute 
magnitude of the difference in N* between the observations and a given experiment, whereas the 
solid lines show the NO3 or PO4 contribution to that difference. Thus, when two lines of a given 
color overlap, the corresponding nutrient is fully responsible for the N* deviation. See Equation 
S1 and S2, for calculation of N* differences.
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Figure S7 – N* calculated from observation and simulations in the surface ocean (0 – 120 m). 
See Equation S1. 
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S1.4 Vertical Profiles of O2 and  NO3 

      
 
Figure S8 – Vertical profiles of horizontally averaged O2 and NO3 in each ocean basin.
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S2. Primary Producer Responses 

S2.1 Global Limiting Nutrient Maps 

 
 
Figure S9 – Primary limiting nutrients for each PFT in the surface ocean (0 – 120m). The 
accelerated DOM remineralization in Tuned decreases the PO and PDiat N limitation. Comparing 
VarSi:N to VarP:N (Figure 11), the PDiat Si limitation is increased. The dustier LGM tends to 
decrease the Fe limitation for all between the PI and LGM simulations.
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S2.2 NPP 

PI and LGM PO NPP changes. 

 
 
Figure S10 – Changes in PI PO NPP between a given experiment and the Control. The left 
column of plots are the changes of NPP in N units, while the right are plots for P units recast (by 
a factor of 16) into pseudo-N units for easier comparison. 
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Figure S11 – Changes in LGM PO NPP between a given experiment and the Control. The left 
column of plots are the changes of NPP in N units, while the right are plots for P units recast (by 
a factor of 16) into pseudo-N units for easier comparison. 
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Figure S12 – Changes in Diatom NPP in response to VarP:N (top row), VarSi:N (middle Row), 
and Tuned (bottom row) in the surface ocean (0-120 m) during the PI (left column) and LGM 
(right column). Note the logarithmic color scale.
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S2.3 Relative Abundances 

Table S2 – Globally integrated plankton biomasses and relative abundances. Relative 
abundances were calculated as the ratio of one PFT’s biomass to the total biomass of all 
primary producers, excluding all zooplankton and detritus. 
 

 Relative Abundance (%) Biomass (N Tmol) 
PI PO  PDiaz PDiat PO  PDiaz PDiat PZ 
Control 44.1 1.9 54.0 4.0 0.2 4.9 5.7 
VarP:N 54.8 3.7 41.5 6.4 0.4 4.9 5.5 
VarSi:N 66.4 3.8 29.7 7.6 0.4 3.4 5.5 
Tuned 66.9 2.9 30.2 7.6 0.3 3.4 5.7 
LGM        
Control 41.5 2.0 56.6 3.1 0.2 4.2 4.7 
VarP:N 58.6 4.5 36.9 6.7 0.5 4.2 4.4 
VarSi:N 68.7 4.7 26.7 7.6 0.5 2.9 4.5 
Tuned 69.5 3.3 27.2 7.5 0.4 2.9 4.6 
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Figure S13 – The relative abundance of each PFT against surface ocean (0-120 m) PO4 
concentrations in the Control. 
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Figure S14 – Zonally averaged relative abundance of each PFT in the surface ocean (0-120 m) 
in the PI (left column) and LGM (right column) oceans. 
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S3. Carbon Export Production and Associated Variables 
 
Table S3 – Global Carbon quantifications. Land C does not include the 402 Pg of C buried 
under the ice in the LGM. 
 

PI pCO2 
(ppm) 

pCO2 
(Pg) 

Ocean Total 
Carbon 

(Pg) 

Ocean 
DIC 
(Pg) 

Ocean 
DOC 
(Pg) 

Ocean 
POC 
(Pg) 

DIC:Alkalinity 
(surface 
average) 

Land 
Carbon  

(Pg) 
Control 273.3 573.9 37956 37674 280.1 1.5 0.8623 1808 
VarP:N 274.9 577.3 38366 37978 385.6 1.7 0.8621 1812 
VarSi:N 274.7 576.9 38255 37877 376.1 1.7 0.8623 1811 
Tuned 273.3 573.9 37505 37447 56.9 1.7 0.8623 1808 
LGM         

Control 204.7 429.9 38174 37931 242.0 1.3 0.8464 1334 
VarP:N 193.3 405.9 38662 38273 387.5 1.6 0.8427 1287 
VarSi:N 192.1 403.4 38558 38184 372.4 1.6 0.8426 1282 
Tuned 190.5 400.1 37813 37754 57.4 1.6 0.8418 1276 

 

 
 
Figure S15 – The relationship between C export and PO4, which is used as a metric for 
oligotrophy. The PI is on the left with the Control in red and VarP:N in blue. The right is the 
same for the LGM. Based on the trendlines, VarP:N exports more C than the Control at low PO4. 
This holds for most of the PI ocean but is only valid up to 1.0 g PO4 m-3 in the LGM. However, 
more LGM grid points have low PO4 than high. Thus, VarP:N exports more C than the Control. 
Many other nutrient (NO3, Fe, etc.) and environmental (light, temperature, etc.) variables 
regulate C export, hence the low r2 values.  
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Figure S16 – Carbon Export Production in the PI Control simulation with changes induced by 
the VSMs. 
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Figure S17 – Carbon Export Production in the LGM Control simulation with changes induced 
by the VSMs. 
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Table S4 – Linearized approximations of changes in DOC fluxes. Selected variables are the PO 
specific (𝜇∗) and quadratic (𝜐) mortalities (Table S8), the temperature scaling function 
TS=1.066T, DOC remineralization (𝜆DOC), and the average temperature changes. The three right-
most columns are the LGM to PI difference of a VSM compared to the same difference in the 
Control. Both decomposed terms that isolate changes in PO can be summed for the total PO effect 
on DOC and be compared to the corresponding temperature effect. 
 

 LGM – PI  
(Pg C year-1) 

Control VarP:N VarSi:N Tuned VarP:N - 
Control 

VarSi:N - 
Control 

Tuned - 
Control 

μ୔ో
∗ (ΔP୓) -0.07 0.04 0.01 0.01 0.11 0.08 0.08 

Δ(υ୔ోP୓Tୗ) -0.18 -0.09 -0.18 -0.19 0.08 0.00 -0.02 

υ୔ో(ΔP୓)Tୗ -0.11 0.08 0.01 -0.01 0.19 0.12 0.10 

υ୔ోP୓(ΔTୗ) -0.08 -0.15 -0.18 -0.18 -0.08 -0.10 -0.10 

Δ(𝜆DOC[DOC]Tୗ) -0.46 -0.27 -0.31 -0.33 0.19 0.15 0.13 

𝜆DOC[DOC](ΔTୗ) -0.26 -0.39 -0.38 -0.38 -0.13 -0.13 -0.13 

𝜆DOC(Δ[DOC])Tୗ -0.25 0.11 0.06 0.04 0.37 0.32 0.29 

Average 
Temperature (°C) 

-2.16 -2.27 -2.28 -2.28 -0.12 -0.13 -0.12 
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Figure S18 – Cross-sections of changes in DIC and DOC. Panels A and B show the VarP:N 
change in DOC in the PI and LGM Atlantic. The North Atlantic Deep Water (NADW) is visible 
in DOC’s trajectories. Notably, the shoaling of the NADW between the PI and LGM, moves 
upward the midlatitude deep Atlantic DOC maxima, inducing a negative signature there when 
comparing the relative LGM-PI DOC changes between VarP:N and Control in Panel C. Panel D 
the same relative changes but for DIC. 
  
S3.1 Diatom Carbon Export Production. 

The amount of PDiat-sourced C that is exported while adhered to the siliceous frustules 

can be approximated in the following manner. The surface ocean average Fe is weighted by the 

PDiat biomass and submitted as an argument to the VarSi:N model (Equation S4) to calculate the 
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Si:N of PDiat. Once this ratio is divided into the Si export (𝑆𝑖ா௉), the result describes the ballasted 

N EP of PDiat as if there were no degradation of soft tissue. Therefore, we subtract off the 

remineralization and grazing terms from this value (Table S8). It can then be easily converted to 

C EP using the fixed C:N (Equation S5). The biogenic Si sinking velocity is captured in the 𝑆𝑖ா௉ 

variable. 

[𝐹𝑒]തതതതതത =  ଵ

∫ ௉ವ೅ ௗ௭బ
షభమబ೘

× ∫ 𝐹𝑒 × 𝑃஽் 𝑑𝑧଴
ିଵଶ଴௠                                  (S3) 

𝑆𝑖: 𝑁 ቀ௠௢௟
௠௢௟

ቁ =  −𝛼 ∗ tanh൫𝛽 ∗ [𝐹𝑒]തതതതതത −  𝛾൯ + 𝜀                   (S4) 

𝑃஽்ா௉ = ቂ ௌ௜ಶು
ௌ௜:ே

− (1 − 𝛾)𝑃௭𝐺௉ವ೅
∗ −  (1 − 𝜎1஽ைெ)𝜐௉ವ೅𝑃஽்ቃ × 𝐶: 𝑁        (S5) 

 Otherwise, if all the PDiat soft tissue is disassociated from the faster sinking biomineral, 

then the PDiat-only portion of the simulated detritus is given as 

𝑃஽்ா௉_௦௢௙௧ = 𝑤஽άൣ (1 − 𝛾)𝑃௭𝐺௉ವ೅
∗ −  (1 − 𝜎1஽ைெ)𝜐௉ವ೅𝑃஽்൧ × 𝐶: 𝑁             (S6) 

Where ά is the timestep of biology used in the model and 𝑤஽ is the sinking velocity of the 

detritus. The remaining variables are described in Table S8.  

Table S5 – Quantifications of the global Si inventory in the surface ocean (left column) and the C 
export from the surface ocean. Total ocean Si inventories are ~9039 Pg but vary little between 
experiments. The middle column assumes organic matter adheres to the diatom siliceous 
frustules, while the right column assumes all soft organic matter sinks independently. 
 

PI Surface Si 
(Pg) 

C EP via biogenic 
Si (Pg year-1) 

C EP via detritus 
(Pg year-1) 

Control 37.1 3.2 0.3 
VarP:N 36.1 3.9 0.2 
VarSi:N 22.6 1.5 0.2 
Tuned 22.4 1.6 0.2 
LGM    
Control 24.0 2.4 0.2 
VarP:N 23.5 3.0 0.2 
VarSi:N 16.4 1.6 0.1 
Tuned 16.4 1.7 0.1 
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 The EP of exclusively soft PDiat POM, exported through the detritus inventory, at the 

bottom of the euphotic zone (120 m) and is ~5 - 10% of the PDiat C export when assuming 

adhesion to fast-sinking frustules (Table S5). Without the frustules, PDiat EP reduced by ~0.08 Pg 

C year-1 (~35%) from PI VarSi:N, instead of the ~2.4 Pg C year-1 reduction (~62%) with the 

accelerated sinking. The model may also be notably underestimating the PDiat C EP in all 

simulations and may have notable implications for the C export quantifications and atmospheric 

CO2 changes between climate states. 
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Figure S19 – Silica leakage from the Southern Ocean in the LGM. The Pacific sector cross-
section (a) and surface map (b) are in units of grams of Si m-3and show the transport of Si from 
the SO to the equatorial East Pacific. The CaCO3:POC export ratio (c) and contoured sea ice 
fraction are unitless. Changes in PDiat are in grams of C m-3. All panels show the difference 
between VarSi:N’s and VarP:N’s LGM to PI change, thus removing the climate shift’s effect on 
the selected variables and allowing exclusive visualization of the VarSi:N’s influence on the Si 
cycle. 
 
S4. Effects of Reduced Sedimentary Fe Fluxes in the LGM 

With the formation of massive ice sheets in the LGM came lower sea levels (~ 125 m) 

(Lambeck et al., 2014; Muglia et al., 2018). The exposed continental shelves caused a reduction 

of the sedimentary Fe fluxes into the ocean (Muglia et al., 2017). The model configurations used 

in this study neglect an interactive ocean sediment module. Particulate organic matter (POM) is 
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then instantaneously remineralized into the adjacent grid cell when it intersects the seafloor. We 

explored the effects of the altered ocean basin geometry in the LGM by including a recalculated 

sub-grid bathymetry (SGB) map for the LGM, but we emphasize there are large uncertainties in 

the model’s Fe cycle, as well as the parameterization of the sedimentary Fe flux rates, which rely 

on constant stoichiometric ratios (Galbraith et al., 2010; Muglia et al., 2017, 2018; Tagliabue et 

al., 2009). Muglia et al. (2017) discuss in detail the potential limitations of the model’s LGM Fe 

cycling.  

The effects of the recalculated Fe sedimentary fluxes (Table S6) here are broadly 

consistent with those found by Muglia et al. (2017). The recalculated bathymetry map reduced 

the global ocean and euphotic zone Fe inventory but has notable implications when considering 

variable stoichiometry and the population dynamics of ocean primary producers. Of course, a 

reduction in euphotic zone Fe leads to reduced primary production, but when combined with 

VarP:N it also reduced the PO-PDiaz cohabitation (discussed in the main manuscript) thus 

reducing total NPP further. The revised sedimentary Fe fluxes expand the Fe limitation for all 

primary producers (see Figure S19). Ultimately, this leads to a reduction in C EP and reduced 

efficiency of the biological carbon pump which yields a smaller PI-to-LGM CO2 drawdown and 

higher simulated LGM atmospheric CO2 concentrations.  

Of the selected variables in Table S6, most change similarly in the Control and Tuned 

models in response to the new SGB. However, the N-fixations, denitrification, and 

phytoplankton variables change substantially, highlighting the Fe-sensitivity of the PO-PDiaz 

cohabitation. These variables, as shown in the main text, are important for C export and ocean 

inventory quantifications. There are, however, some improvements to the simulated δ15N and 

δ13C as compared to observations, Table S7. The notable changes to N-fixation and 
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denitrification, as opposed to the comparatively small changes in biological C export, explain the 

more profound impact that the new SGB has on δ15N representations as compared to the δ13C 

representations.  

Table S6 – Comparison of selected parameters in response to adjusted LGM sedimentary Fe 
fluxes caused by lower sea levels. PI SGB indicates that the ocean geometry remained that of the 
PI ocean during the LGM simulation, while the other column refers to the recalculated LGM 
bathymetry due to lower sea levels. 
 

 Control Tuned ΔControl ΔTuned 

 Parameter PI 
SGB 

LGM 
SGB 

PI SGB LGM 
SGB 

Atmospheric CO2 
(ppm) 

204.7 205.9 190.5 197.2 1.2 6.7 

EP (Pg C year-1) 7.1 6.9 8.3 7.9 -0.2 -0.4 

Total Fe inventory 
(Tg) 

61.3 59.5 61.8 58.8 -1.8 -3.0 

Surface (0-120 m) 
Total Fe inventory 
(Tg) 

1.3 1.1 1.1 0.9 -0.2 -0.2 

N-Fixation (Tg 
year-1) 

145.9 100.8 224.3 108.3 -45.1 -116.0 

Water Column 
Denitrification (Tg 
year-1) 

92.6 53.1 155.4 40.7 -39.5 -114.7 

Benthic 
Denitrification (Tg 
year-1) 

66.5 58.7 86.3 69.1 -7.8 -17.1 

Total NO3 
Inventory (Pg) 

2615.4 2723.9 2848.5 2926 108.5 77.5 

Surface (0-120 m) 
NO3 (Pg) 

8.8 9.7 12.6 13.5 0.9 0.9 

PO biomass (N 
Tmol) 

3.0 2.9 7.5 5.6 -0.1 -1.9 

Diazotroph 
Biomass (N Tmol) 

0.2 0.1 0.4 0.2 0.0 -0.2 

Thus, the influence of variable stoichiometry in ocean biogeochemical models can 

strongly depend on the configuration and accuracy of tertiary, biologically-relevant model 
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components. Using a different Fe flux scheme substantially altered the modeled climate impacts 

our variable stoichiometry schemes had. It is alternatively possible that the inclusion of other 

earth system components in the model would diminish the importance of the SGB 

remineralization schemes. The variable stoichiometry influences will likely vary considerably in 

other global climate and/or ocean biogeochemical models. Further research and testing are 

needed to determine the sensitivity of these stoichiometry schemes to various biogeochemical 

processes.
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Figure S20 – Comparison of each PFT limiting nutrients in response to changes in sedimentary 
Fe flux from lowered LGM sea levels and recalculated SGB. PI SGB configuration is on the left 
column and the LGM configuration is on the right. Both simulations are performed under 
identical LGM boundary conditions. 

S5. Variable Stoichiometry Effects on δ15N 

S5.1 Preindustrial 
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VarP:N caused a larger N NPP increase than P NPP. From the Control, VarP:N global N 

NPP increased by ~13% while P NPP increased by only 2%. VarSi:N did not change either NPP 

considerably, while the Tuned model added another 3 and 5% increase, respectively (See Table 3 

in main text). An increase in primary production consequently causes increased respiration, 

altering the O2 concentrations at depth, thereby changing denitrification rates (Figure S7, S22, 

and S24) (Somes et al., 2010). Each of these processes uniquely fractionate N isotopes, thus, 

δ15N values, which are used to constrain the model, are heavily influenced by variable 

stoichiometry (Schmittner & Somes, 2016; Somes et al., 2010). The VSMs did not substantially 

improve simulations of N isotopic ratios. In low oxygen areas, the increased export drives 

notable inaccuracies in simulated δ15N values. Many of these are corrected in the Tuned 

simulation. 
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Figure S21 – Vertical profiles of horizontally averaged δ15N in the preindustrial ocean. 
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Figure S22 – Changes in the δ15N of NO3 in response to VarP:N in the preindustrial ocean 
basins. 
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Figure S23 – Changes in the water column denitrification in response to VarP:N in the PI ocean 
basins. 

Against observed values, VarP:N and VarSi:N improve δ15N simulations in the upper 

Atlantic and Southern Oceans, above ~500 m, however, both overestimate values in the upper 

Indian and Pacific (Figure S20) (Somes et al., 2010). These overestimations correlate with 

regions of low oxygen, suggesting that the increased export of organic matter in VarP:N and 
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VarSi:N is too high in these areas which subsequently yields too much denitrification that 

strongly increases δ15N values (Figures S21 and S22). Similar effects on δ15N was observed in 

the CSIRO model (Buchanan et al., 2019). The accelerated remineralization of the Tuned 

experiment corrects these overestimations in the upper Indian and Pacific Ocean basins, 

generally outperforming the Control simulation. All experiments underestimate δ15N at depth; 

the deep ocean values are similar across each basin but remain sensitive to the soft tissue pump 

as the enhancement of the EP from the VSMs causes preferential export of 14N. Here, the Tuned 

simulation does not best the Control but is only slightly less accurate (Table S7). δ15N data for 

the PI and LGM were compiled and compared against the Control model performance in 

previous works (Muglia et al., 2018; Schmittner & Somes, 2016; Somes et al., 2010). 

Table S7 – Statistical performance of simulated δ15N and δ13C. Note the PI comparison is 
representative of the whole ocean volume. Conversely, the LGM comparison is only 
representative of the surface ocean from where the bulk organic matter measured in the sediment 
cores originates. Values for each parameter are calculated as described in Muglia et al. (2018). 
  

PI δ15N: R STDR RMS Prime RMSE 
Control 0.75 1.26 0.84 0.84 
VarP:N 0.77 2.16 1.53 1.53 
VarSi:N 0.77 2.09 1.46 1.47 
Tuned 0.75 1.30 0.86 0.88 
LGM δ15N:     
Control 0.09 1.24 1.53 1.68 
Control + SGB 0.15 1.02 1.31 1.61 
VarP:N 0.05 1.94 2.14 2.26 
VarSi:N 0.06 2.02 2.20 2.28 
Tuned 0.06 1.67 1.90 1.98 
Tuned + SGB 0.23 1.08 1.29 1.66 
LGM δ13C:     
Control 0.79 0.97 0.64 0.65 
Control + SGB 0.79 0.96 0.63 0.64 
Tuned 0.79 0.97 0.64 0.74 
Tuned + SGB 0.79 0.92 0.62 0.63 

 

S5.2 LGM 
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LGM δ15N data, while spatially limited, represents the cumulative interplay between 

surface ocean δ15N values and subsequent fractionation by biological processes (Galbraith et al., 

2013; Tesdal et al., 2013). Sedimented organic matter isotopic signatures are exemplary of 

surface signatures and so the δ15N of simulated detritus is compared to LGM data (Tesdal et al., 

2013). The Control experiment mainly errs with overestimations of δ15N values in the surface 

North Pacific and Bering Sea by ~2-4‰ compared to the 5‰ of observations (Figure S23). 

VarP:N increases δ15N by an additional 2‰, causing a significant overestimation for most of the 

North Pacific. VarP:N also causes strong δ15N increases, ~9‰, off southern Central America and 

the Arabian Sea from the observed 9‰ and 5‰ values, respectively (Figure S23). Similar to the 

PI simulations, VarSi:N shows little effect on the δ15N values, whereas the Tuned simulation 

corrects the large overestimation caused by VarP:N in the North Pacific and Bering Sea. The 

δ15N values are reduced below those of the LGM Control and are in better agreement with the 

observed data, differing by ~1‰. δ15N off southern Central America and the Arabian Sea values 

remain elevated.  
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Figure S24 – δ15N of organic matter in the LGM averaged over the uppermost 120 m of the 
water column. Overlaid are observed values (Tesdal et al., 2013). 

In the LGM North Pacific, the effects of VarP:N are exacerbated; water column 

denitrification nearly triples from the Control between the levels of 1250 – 4000m (Figure S25). 

δ15N values here increased from 18 to ~42‰ (Figure S24). The Tuned model mitigates this 

strong δ15N increase and is similar to the Control experiment’s δ15N in this region. A similar 

increase in denitrification is seen at this location in the PI but is notably weaker and less spatially 

extensive (Figures S21 and S24). The differences in δ15N response to VarP:N between the PI and 
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LGM oceans derive from the differences in NPP increases. In the PI ocean, VarP:N drove a 13% 

increase in N NPP compared to the Control run, while in the LGM, a 22% increase (Table 3 in 

the main text). Thus, the biological fractionation and denitrification influences on δ15N vary. 
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Figure S25 – Changes in the δ15N of NO3 in response to VarP:N in the LGM ocean basins. 
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Figure S26 – Changes in the water column denitrification in response to VarP:N in the LGM 
ocean basins. 
 
S6. Biogeochemical Equations and Description 

This section provides an explicit description of the new and revised prognostic equations 

for the implementation of the variable N:P scheme adapted from Galbraith and Martiny (2015). 

These are alterations of the MOBI equations in Somes and Oschlies (2015) with some portions 
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described by external sources as referenced therein. The inclusion of the variable N:P model 

necessitated two new prognostic equations to explicitly calculate the P content (indicated by the 

subscript “〈𝑃〉“ of PO and detritus (D) and a reconfiguration of the predictive PO4 and DOP 

equations. The original N currency equation are noted with “〈𝑁〉“. See Table S8 for variable and 

symbol descriptions. 

 S7. 

𝜕𝑃𝑂ସ
ଷି

𝜕𝑡
= 𝜆஽ை௉𝐷𝑂𝑃 + 𝜇஽

∗ 𝐷𝑅௉:ேವ

+ 𝑅௉:ே ቈ𝛾𝑃௭(1 − 𝜔) ቆ
𝑅ே:௉

𝑅௉:ேವೋ

𝐺௉ವೋ
∗ + 𝜁௉ೀ𝐺௉ೀ

∗ +  𝐺௉ವ೅
∗ + 𝐺௉ೋ

∗ + 𝜁஽𝐺஽
∗ ቇ

+ (1 − 𝜎2஽ைெ)𝜇௉ವ೅
∗ 𝑃஽் − ቀ1 − 𝑢஽ை௉ುವ೅

ቁ 𝐽஽்
∗ 𝑃஽்቉

+ 𝑅௉:ேುೀ
ቂ(1 − 𝜎2஽ைெ)𝜇௉ೀ

∗ 𝑃ை + 𝑢஽ை௉ುೀ
𝐽௉೚

∗ 𝑃ைቃ − 𝑅ீெଵହ𝐽௉೚
∗ 𝑃ை

− 𝑅௉:ேವೋ ቀ1 − 𝑢஽ை௉ುವೋ
ቁ 𝐽஽௓

∗ 𝑃஽௓ 

S8. Similar to Equation S7, nutrients are added to the DOP inventory at a ratio equal to the 

calculated N:P of PO and detritus (S13). However, the uptake of DOP and DON is consumed at 

this same ratio, not by the GM15 N:P. 

𝜕𝐷𝑂𝑃
𝜕𝑡

=   𝑅௉:ே ቂ𝜎1஽ைெ𝜐௉ವ೅𝑃஽் + 𝜎2஽ைெ𝜇௉ವ೅
∗ 𝑃஽் − 𝑢஽ை௉ುವ೅

𝐽஽்
∗ 𝑃஽்ቃ

+ 𝑅௉:ேುೀ
ቀ𝜎1஽ைெ𝜐௉ೀ𝑃ை + 𝜎2஽ைெ𝜇௉ೀ

∗ 𝑃ை − 𝑢஽ை௉ುೀ
𝐽௉೚

∗ 𝑃ைቁ
− 𝑅௉:ேವೋ𝑢஽ை௉ುವೋ

𝐽஽௓
∗ 𝑃஽௓ − 𝜆஽ை௉𝐷𝑂𝑃 

S9. 

𝜕𝑃ை〈ಿ〉

𝜕𝑡
= 𝐽௉೚

∗ 𝑃ை − 𝜇௉ೀ
∗ 𝑃ை − 𝜐௉ೀ𝑃ை − 𝜁௉ೀ𝐺௉ೀ

∗ 𝑃௭ 

S10. The PO equation in the P currency is, again, sourced at a ratio to the N currency version that 

is determined by the GM15 N:P equation. Reductions to this inventory are at the N:P of the PO. 



106 

𝜕𝑃ை〈ು〉

𝜕𝑡
= 𝑅ீெଵହ𝐽௉೚

∗ 𝑃ை − 𝑅௉:ேುೀ
൫𝜇௉ೀ

∗ 𝑃ை + 𝜐௉ೀ𝑃ை + 𝜁௉ೀ𝐺௉ೀ
∗ 𝑃௭൯

S11. 

𝜕𝐷〈ே〉

𝜕𝑡
= (1 − 𝛾)𝑃௭൫𝐺௉ವೋ

∗ + 𝜁𝐺௉ೀ
∗ +  𝐺௉ವ೅

∗ + 𝐺௉ೋ
∗ + 𝜁𝐺஽

∗ ൯ + (1 − 𝜎1஽ைெ)𝜐௉ೀ𝑃ை − 𝜇஽
∗ 𝐷

− 𝜁஽𝐺஽
∗ 𝑃௭ + (1 − 𝜎1஽ைெ)𝜐௉ವ೅𝑃஽் +  

𝑅ே:௉

𝑅ே:௉ವೋ

𝜐௉ವೋ𝑃஽௓ + 𝜐௉ೋ𝑃௓
ଶ + 𝑤஽

𝜕𝐷
𝜕𝑧

S12. The N:P of the prognostic detritus is determined by the weighted combination of the 

different plankton groups and post-grazing detrital matter. 

𝜕𝐷〈௉〉

𝜕𝑡
=  (1 − 𝛾)𝑃௭ ቂ𝑅௉:ே൫ 𝐺௉ವ೅

∗ + 𝐺௉ೋ
∗ ൯ + 𝑅௉:ேವೋ𝐺௉ವೋ

∗ + 𝜁௉ை𝐺௉ೀ
∗ (𝑅௉:ேುೀ

− 𝛾𝑅௉:ே)

+ 𝜁஽𝐺஽
∗ (𝑅௉:ேವ − 𝛾𝑅௉:ே)ቃ

+ 𝑅௉:ே  ቈ𝜐௉ೋ𝑃௓
ଶ +  

𝑅ே:௉

𝑅ே:௉ವೋ

𝜐௉ವೋ𝑃஽௓ + (1 − 𝜎1஽ைெ)𝜐௉ವ೅𝑃஽்቉

+ 𝑅௉:ேವ ൬𝑤஽
𝜕𝐷
𝜕𝑧

− 𝜁஽𝐺஽
∗ 𝑃௭ − 𝜇஽

∗ 𝐷൰ + 𝑅௉:ேುೀ
(1 − 𝜎1஽ைெ)𝜐௉ೀ𝑃ை

S13. Expression of the PO and detritus P:N for each timestep and grid box. 

𝑅௉:ே೉ =
𝑋〈௉〉

𝑋〈ே〉
, 

where X = [PO, D]. 

S14.  𝜁 acts to regulate the zooplankton grazing on PO and detritus that are now under variable 

stoichiometry schemes. If a grazed particle is lacking in P, it is viewed as not nutritious, and the 

grazing is turned off. This was done to preserve the computational efficiency and realism of 

having fixed zooplankton stoichiometry without having unrealistic instantaneous 

remineralization of organic matter into inorganic nutrient constituents.  

𝜁௑ = ൜
𝑅௉:ே೉ ≥ 𝛾𝑅௉:ே ;   𝜁௑ = 1
𝑅௉:ே೉ < 𝛾𝑅௉:ே ;   𝜁௑ = 0 . 
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Table S8 – List of biogeochemical variables, their symbols, values, and units. A “-“ in the value 
column indicates that the item is variable as a function of nutrient availability, temperature, etc. 
(Somes & Oschlies, 2015). 

Variable/Description Symbol Value Units 
Ordinary Phytoplankton 𝑃ை - mol m-3

Diazotrophs 𝑃஽௜௔௭ - mol m-3

Diatoms 𝑃஽௜௔௧ - mol m-3

Zooplankton 𝑃௓ - mol m-3

Detritus 𝐷 - mol m-3

DOP remineralization rate 𝜆஽ை௉ - day-1 

DON remineralization rate 𝜆஽ைே - day-1

Detritus remineralization rate 𝜇஽
∗ - day-1

Zooplankton assimilation efficiency 𝛾 0.7 day-1 
Zooplankton growth efficiency 𝜔 0.54 - 
Grazing rate 𝐺∗ - - 
Selective grazing regulator 𝜁 0, 1 - 
Fraction of phytoplankton mortality routed to DOM 𝜎1 0.1 - 
Fraction of microbial fast-recycling routed to DOM 𝜎2 0.08 - 
Quadratic mortality rate  𝜐 - day-1

Specific mortality rate  𝜇∗ day-1

Phosphorus uptake source regulator 𝑢஽ை௉ 0, 𝐽∗ - 
Growth rate 𝐽∗ - - 
Variable P:N uptake as defined by GM15 𝑅ீெଵହ - mol mol-1

Redfield P:N 𝑅௉:ே 1/16 mol mol-1

Diazotroph P:N 𝑅௉:ேವೋ 1/40 mol mol-1

Variable traced in N units <N> - - 
Variable traced in P units <P> - - 
Sinking Velocity of POM 𝑤஽ - s-1

S7. Figure S1 Reproduction and Alteration Approval 



108



10� 



110



11�



11� 



11� 



11� 



11�



116 

Bibliography 

Buchanan, P. J., Matear, R. J., Chase, Z., Phipps, S. J., & Bindoff, N. L. (2019). Ocean carbon 
and nitrogen isotopes in CSIRO Mk3L-COAL version 1.0: A tool for palaeoceanographic 
research. Geoscientific Model Development, 12(4), 1491–1523. 
https://doi.org/10.5194/gmd-12-1491-2019 

Galbraith, E. D., Gnanadesikan, A., Dunne, J. P., & Hiscock, M. R. (2010). Regional impacts of 
iron-light colimitation in a global biogeochemical model. Biogeosciences, 7(3), 1043-
1064. https://doi.org/10.5194/bg-7-1043-2010 

Galbraith, E. D., Kienast, M., & The NICOPP working group members. (2013). The acceleration 
of oceanic denitrification during deglacial warming. Nature Geoscience, 6(7), 579–584. 
https://doi.org/10.1038/ngeo1832 

Galbraith, E. D., & Martiny, A. C. (2015). A simple nutrient-dependence mechanism for 
predicting the stoichiometry of marine ecosystems. Proceedings of the National Academy 
of Sciences, 112(27), 8199–8204. https://doi.org/10.1073/pnas.1423917112 

Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., 
Reagan, J. R., & Johnson, D. R. (2013). World ocean atlas 2013. Volume 4, Dissolved 
inorganic nutrients (phosphate, nitrate, silicate). NOAA Atlas NESDIS 76 
https://doi.org/10.7289/V5J67DWD 

Gruber, N., & Sarmiento, J. L. (1997). Global patterns of marine nitrogen fixation and 
denitrification. Global Biogeochemical Cycles, 11(2), 235–266. 
https://doi.org/10.1029/97GB00077 

Lambeck, K., Rouby, H., Purcell, A., Sun, Y., & Sambridge, M. (2014). Sea level and global ice 
volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National 
Academy of Sciences, 111(43), 15296–15303. https://doi.org/10.1073/pnas.1411762111 

Letscher, R. T., Hansell, D. A., Carlson, C. A., Lumpkin, R., & Knapp, A. N. (2013). Dissolved 
organic nitrogen in the global surface ocean: Distribution and fate. Global 
Biogeochemical Cycles, 27(1), 141–153. https://doi.org/10.1029/2012GB004449 

Mather, R. L., Reynolds, S. E., Wolff, G. A., Williams, R. G., Torres-Valdes, S., Woodward, E. 
M. S., Landolfi, A., Pan, X., Sanders, R., & Achterberg, E. P. (2008). Phosphorus cycling
in the North and South Atlantic Ocean subtropical gyres. Nature Geoscience, 1(7), 439–
443. https://doi.org/10.1038/ngeo232

Muglia, J., Skinner, L. C., & Schmittner, A. (2018). Weak overturning circulation and high 
Southern Ocean nutrient utilization maximized glacial ocean carbon. Earth and Planetary 
Science Letters, 496, 47–56. https://doi.org/10.1016/j.epsl.2018.05.038 

Muglia, J., Somes, C. J., Nickelsen, L., & Schmittner, A. (2017). Combined Effects of 
Atmospheric and Seafloor Iron Fluxes to the Glacial Ocean. Paleoceanography, 32(11), 
1204–1218. https://doi.org/10.1002/2016PA003077 

Sarmiento, J. L., & Gruber, N. (2006). Ocean biogeochemical dynamics. Princeton University 
Press. 



117 

Schmittner, A., & Somes, C. J. (2016). Complementary constraints from carbon (13C) and 
nitrogen (15N) isotopes on the glacial ocean’s soft‐tissue biological pump. 
Paleoceanography, 31(6), 669–693. https://doi.org/10.1002/2015PA002905 

Somes, C. J., & Oschlies, A. (2015). On the influence of “non-Redfield” dissolved organic 
nutrient dynamics on the spatial distribution of N2 fixation and the size of the marine 
fixed nitrogen inventory. Global Biogeochemical Cycles, 29(7), 973–993. 
https://doi.org/10.1002/2014GB005050 

Somes, C. J., Schmittner, A., Galbraith, E. D., Lehmann, M. F., Altabet, M. A., Montoya, J. P., 
Letelier, R. M., Mix, A. C., Bourbonnais, A., & Eby, M. (2010). Simulating the global 
distribution of nitrogen isotopes in the ocean. Global Biogeochemical Cycles, 24(4). 
https://doi.org/10.1029/2009GB003767 

Tagliabue, A., Bopp, L., Roche, D. M., Bouttes, N., & Paillard, D. (2009). Quantifying the roles 
of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric 
carbon dioxide at the last glacial maximum. Clim. Past, 5, 695 - 706, 
https://doi.org/10.5194/cp-5-695-2009 

Tesdal, Galbraith, E. D., & Kienast, M. (2013). Nitrogen isotopes in bulk marine sediment: 
linking seafloor observations with subseafloor records. Biogeosciences, 10(1), 101–118. 
https://doi.org/10.5194/bg-10-101-2013 


	Fillman.N_THESIS_Defendable2
	FillmanNathanielJ2023-Figure S1-Approval-Galbraith.E.2
	FillmanNathanielJ2023-Figure S1-Approval-PNAS2

