
An Empirical Study on AI-Powered Edge
Computing Architectures for Real-Time IoT

Applications
Awatif Yasmin

Texas State University
San Marcos, Texas, USA

nuc4@txstate.edu

Tarek Mahmud
Texas State University

San Marcos, Texas, USA
tarek mahmud@txstate.edu

Minakshi Debnath
Texas State University

San Marcos, Texas, USA
stg60@txstate.edu

Anne H. H. Ngu
Texas State University

San Marcos, Texas, USA
angu@txstate.edu

Abstract—AI-Powered Edge Computing is accelerating the
integration of the cyber world with the ever-growing list of
new physical IoT devices and will fundamentally change and
empower the way humans interact with the world. In this paper,
we prototyped and analyzed three edge computing architectures
for running SmartFall, a real-time fall detection application
that uses accelerometer data from the watch, to compare the
trade-off in relationship to battery consumption, potential data
loss, machine learning model’s prediction accuracy, and latency
in model inferencing. Our experiments show that running the
machine learning prediction on the server using the TensorFlow
native model format has achieved the best model accuracy with-
out draining the battery power of the smartwatches. However,
the optimal selection of the software architecture depends on
the intended deployment environment, projected user numbers,
users’ privacy concerns, and network stability.

Keywords-Edge service framework, Edge Computing, IoT Ap-
plications, Software Architectures, Fall Detection.

I. INTRODUCTION

Edge computing is becoming increasingly critical in the
practical deployment of IoT applications, harnessing data from
billions of connected IoT devices [1]. Given the widespread
use of IoT applications, the total number of installed IoT
devices is expected to reach approximately 41.6 billion in
2023 [2]. Edge computing enables swift decision-making at the
device level, boosting efficiency in manufacturing, effective
health monitoring, and safe driving of autonomous vehicles.
Edge computing conserves network bandwidth by processing
data locally, ideal for resource-limited or costly networks.
Edge computing bolsters privacy and security by keeping
data on local devices, crucial in surveillance, healthcare, and
finance industries. Its adaptability extends to a non-exhaustive
list of smart everything which includes smart agriculture,
smart transportation, smart home, smart power grid, and smart
environments to name a few. Edge computing is critical in
turning billions of physical IoT devices connected to the
internet into awareness and understanding that will enable
seamless integration of the physical and cyber world which
will fundamentally change and empower human interaction
with the world.

AI-Powered edge computing is increasingly playing a vital
role in the revolution of the capabilities of IoT devices,

particularly in making machine learning models run efficiently,
securely, and effectively on them. One noteworthy trend is
its support for various learning methods, including ONNX
(Open Neural Network Exchange), Edge AI Accelerators,
Deep Learning, and Federated Learning. Recently, there has
been a big increase in the use of the Deep Learning model
on edge devices compared to traditional statistical learning
methods. This is because Deep Learning-based models, once
trained offline, require fewer computational resources during
real-time classification tasks compared to traditional statis-
tical learning methods that rely on feature extraction and
processing. However, it is known that popular deep learning
frameworks such as TensorFlowLite [3] which is optimized
for resource-constrained edge devices have reduced accuracy
performance when deployed on edge devices. It is important
to quantify the impact of the TensorflowLite model when
choosing the software architecture for IoT applications.

This paper aims to compare different software architectures
for AI-powered edge computing applications, with a particular
focus on fall detection using a smartwatch as the sensing
device. The current generation of smartwatches are equipped
with a variety of sensors such as an accelerometer, gyroscope,
barometric pressure, skin temperature, ambient light, sound,
heart rate, blood oxygen, galvanic skin response, location etc,
but for this study, we solely concentrate on the application that
make use of accelerometer data. We prototyped and analyzed
three edge computing architectures for running SmartFall, an
AI-powered fall detection IoT application [4], [5] to compare
the trade-off in relationship on battery consumption, data loss,
machine learning model’s accuracy, and latency in model
inferencing.

The first architecture comprises the most common three-
layer structure: a smartwatch at the edge, a smartphone in the
middle, and a cloud server. The smartwatch captures sensor
data and transmits it to the smartphone, where a machine-
learning model resides. Predictions are generated on the smart-
phone and relayed back to the watch for user feedback or
additional human input for personalization. Subsequently, the
sensed data and user feedback are archived in the cloud server
for further analysis to continuously fine-tune the machine
learning model. Since prediction happens on the edge device,



i.e. the phone, the TensorflowLite model is used.
The second architecture is watch-based, with the smartwatch

responsible for data sensing and local machine-learning model
predictions. The sensed data, along with user feedback, is then
transmitted to a cloud server for storage and further analysis
periodically. In this configuration, the smartphone is primarily
used for the one-time user profile setup. Prediction happens on
the watch which is a very computational resource-constrained
edge device and only the TensdorflowLite model can be used.

The final architecture is server-based, where the smartwatch
(an edge device) senses the data and sends it directly to
the cloud server. The machine learning model resides in the
cloud server and produces predictions on the server. The
server subsequently sends the prediction result to the watch
for user notification or interaction. The smartphone is again
used mainly for the one-time setup of the user profile. The
prediction happens in the server and the native TensorFlow
model is used.

In general, developing an AI-powered edge computing
application involves the following key challenges which we
observed from implementing our Fall Detection IoT applica-
tion: 1) The smartwatch (IoT device) must first be virtualized
as a software component and able to obtain data from all
available sensors at a specified sampling rate on the device
reliability (i.e. with no data loss). 2) The real-time interaction
between the application and the physical device must be
supported. Data is usually delivered as infinite streams in
time-stamped order from the devices. Deep learning inference
over a stream is an important component. Stream processing
provides complex event detection that turns the collected data
(usually in large quantity) into useful actionable information.
For example, in the case of sensing accelerometer data for
fall detection, the data is processed in an overlapping sliding
windows (streams) manner, and the prediction is aggregated
over multiple windows for accurate prediction (ie. model
accuracy) 3) A monitoring or visualization service (an UI)
is needed to allow users to monitor/control the state of the
physical devices in a user-friendly manner. This component
should provide a notification for the timely delivery of status
to users (low latency), in our case an alert when a fall occurs.
The UI should also be able to enable users to give feedback for
the fine-tuning of the learning algorithm with minimal input.
4) An IoT application can generate a large amount of data that
needs to be further processed for continuous improvement of
the application or archival. The ubiquitous connection to a
cloud infrastructure is needed for further data analytics and
archiving. 5) The security and privacy component is needed
to provide the integrity of the collected data (stream) and to
ensure that the user’s privacy is not violated. Users should have
the option to archive the collected data in a storage medium of
choice or not at all. Users who choose not to send their data
to the cloud won’t receive the continuous personalized version
of the application. 6) The IoT application should be designed
to run continuously without draining the battery power of the
device to be accepted by any user.

The primary objective of this paper is to conduct a compar-

ative analysis of three software architectures for IoT applica-
tions to provide those key features stated above while focusing
on analyzing key challenges such as data latency, IoT device
battery life, potential data loss, and model accuracy. Currently,
there is no standard framework for the development or de-
ployment of IoT applications that allows us to study specific
qualities such as latency, model accuracy, privacy, and data
transmission. We developed an IoT application (SmartFall)
using the native Android framework to enable us the flexibility
to benchmark the three different software architectures for
making an informed choice in deploying IoT applications with
the desired trade-off between model accuracy, battery power,
and data loss. We are the first to perform benchmarking of the
various software architectures for IoT applications. The main
contributions of this paper are:

• We designed and implemented three distinct architec-
tures, each with its unique approach to running fall
detection application: Watch-and-Phone-based Architec-
ture (WPA), Watch-based Architecture (WA), and Server-
based Architecture (SA).

• We systematically compare these architectures against
pivotal edge-computing challenges such as IoT device
battery life, data latency, potential data loss, and model
accuracy.

• We discuss the inherent trade-offs involved in edge com-
puting. For example, while edge devices provide benefits
like reduced latency, they might sacrifice model accuracy.

The remainder of this paper is organized as follows. The
closely related works are detailed in Section II. Section III
presents the SmartFall system and the implementation details
of three different architectures. Section IV presents the exper-
imental setup used to compare these architectures followed by
the results and analysis in Section V. Section VI discusses
the pros and cons of each architecture and a future direction.
Finally, we concluded our work in Section VII.

II. RELATED WORK

The AI-powered edge computing which we defined as
synonymous with the Internet of Things (IoT) is a domain
that represents the next most exciting technological revolution
since the Internet [2], [6]–[8]. IoT will bring endless opportu-
nities and impact in every corner of our planet. IoT can trans-
form manufacturing, making it leaner and smarter. Real-time
IoT applications are going to create massive disruption and
innovation in just about every industry segment imaginable.

While there is an explosive number of potential IoT appli-
cations that can be built and deployed, currently there are no
standard development and deployment strategies for real-time
IoT applications.

Ngu et al. [9] studied IoT middleware, the vital link between
IoT devices and applications. They highlighted its importance
through a real-time blood alcohol content prediction app
utilizing smartwatch sensor data [10]. An ideal IoT middle-
ware must support heterogeneous IoT devices from multiple
vendors to build real-time IoT applications with on the edge
analysis and data storage yet without dictating a particular



communication protocol or be dependent on specific cloud
vendor. The availability of edge/local storage is important to
avoid the unpredictable latency from wireless transmission of
data to the cloud or server for real-time analytics. In addition,
to ensure that users’ privacy is not violated, users should have
the option to archive data generated from their personal IoT
devices in a secure local storage of their own choice.

Ngu et al. [11] proposed and implemented an open-source,
edge IoT service framework known as Cordova Accessor Host.
This framework enables IoT app development with accessors
as fundamental elements, showcasing flexibility by gathering
sensor data from various devices like smartwatches and Ar-
duino microcontrollers using a unified accessor. Additionally,
it demonstrates reduced battery consumption compared to na-
tive Android frameworks. While promising, Cordova Accessor
Host is still in its research prototype phase, solely tested
on Android devices, and not yet suitable for real-time IoT
applications in the real world.

In recent years, a common software development frame-
work for IoT application development used in the industry is
the various cloud-based frameworks such as AWS IoT from
Amazon [12], Watson IoT from IBM [13], ThingSpeak
IoT [14] and Google IoT Cloud [15]. These cloud-based
frameworks usually provide the following four fundamental
services: 1) Web-based administrative console for managing
device connection; 2) cloud-based data storage; 3) cloud-
based analytic services, and 4) advanced reporting or visu-
alization. We examined GoogleFit cloud service in detail for
IoT application development. GoogleFit provides a set of APIs
for connecting third-party IoT devices to its cloud storage.
For example, it provides APIs for subscribing to a particular
fitness data type or a particular fitness source (e.g., Fitbit or
Samsung Smartwatch) and APIs for querying of historical data
or persistent recording of the sensor data from a particular
source (e.g., a smartwatch). With GoogleFit, the user is tied
to storing his/her sensor data in GoogleFit’s cloud storage, in
the format dictated by GoogleFit and in the size limit enforced
by GoogleFit. It is not possible to get access to the collected
raw data and pre-process them for analysis and visualization
using your own custom-designed analytics which is a critical
component for many IoT applications. Moreover, GoogleFit
requires all collected data to be stored remotely in the Google
Cloud which might not be suitable for real-time fall detection
that must be performed quickly in real-time on board the edge
device.

Another emerging trend in IoT application development
is commercial edge-based computing frameworks that lever-
age container technology. For instance, Microsoft Azure IoT
Edge [16] consists of three components: IoT Edge modules,
IoT Edge runtime, and a cloud-based interface. The first two
components run on edge devices and the cloud-based interface
allows remote monitoring of edge devices. The Azure IoT
Edge runtime leverages Docker to run IoT Edge modules on
the device with the embedded instructions on what modules
to download and run via a connection to Microsoft Azure
IoT Hub. The current Azure IoT Edge runtime engine only

supports Windows and Linux systems, which means an IoT ap-
plication developed using Azure’s cloud cannot be deployed on
popular edge devices that run Android, iOS, or WearOS. Azure
IoT Edge is thus a cloud-based IoT computing framework like
GoodgleFit. The developer is further constrained by the cost
of subscribing to the cloud and the type of APIs provided
by the cloud’s vendor. If an IoT device is not supported by
Azure IoT Edge runtime, then it is not possible to use that as
a sensing device in this framework.

KubeEdge is the most well-known open-source container-
based edge computing framework [17]. It is part of the recent
new generation of Cloud-to-Edge infrastructure that is known
for its ability to scale out to a large number of devices and the
support for security and fault tolerance. KubEdge leverages
container technology to bring native cloud capability to the
edge. It consists of a cloud part and an edge part. While
the cloud part interfaces with Kubernetes’ APIs and take care
of node management, the edge part has control of container
deployment on the edge and provides an infrastructure for
storage as well as event-based communication based on MQTT
[18]. However, it has been reported in [17] that Kubernetes de-
ployment leads to several performance and stability problems
on some low memory edge devices (e.g., Raspberry Pi 3).
Moreover, Kubernetes frameworks are not currently available
on Android, iOS, or WearOS.

A deep learning model is critical for many practical IoT
applications. Despite deep learning models being large and
resource-intensive, they need to be run on an edge device to be
effective. Google has expanded data processing and machine
learning capabilities to edge devices, harnessing TensorFlow
Lite and Edge Tensor Processing Unit (TPU) [19]. However,
no systematic study has been performed on the impact of edge-
based learning model prediction accuracy on a practical IoT
application.

Despite the myriad of edge and cloud computing technolo-
gies and software architectures, there is currently no study
performed on different AI-powered edge computing software
architectures that discuss the user’s need for a practical IoT
application in terms of model accuracy, low data latency, user
privacy, and low battery power consumption. We develop and
deploy our SmartFall App using the native Android framework
that offers the flexibility to benchmark different software ar-
chitectures to be able to make an informed decision regarding
deploying a robust practical real-time IoT application.

III. SMARTFALL SYSTEM ARCHITECTURE

We implemented three variants of the generic three-layered
edge-cloud collaborative IoT architecture. For this study, we
used the SmartFall system [20], [21] that collects accelerome-
ter data from wearables for real-time fall detection. The Watch-
and-Phone-based Architecture is adopted from Ngu et al. [21].
We explored the capabilities of the new smartwatches in the
Watch-based Architecture and the Server-based Architecture
is used in many popular AI-powered edge computing studies,
e.g. Google’s fall detection in mobile devices [22].



Fig. 1. SmartFall system with Watch-Phone-based Architecture.

A. Overview of the SmartFall System

The SmartFall system is an AI-powered edge computing
system designed to address the crucial need for efficient fall
detection among older adults using a commodity-based IoT
wearable device. Central to its design is the user-centric ap-
proach that primarily interacts through a smartwatch interface,
taking into account the challenges older adults face in handling
multiple devices and technologies. Moreover, when an older
adult falls, in a moment of panic, it might be difficult to locate
the phone in order to interact with the App for the purpose
of indicating whether they are fine or need help if the App
is running on the phone. A watch’s UI, on the other hand,
would allow interaction with the SmartFall App at any time
and anywhere. The system has been structured to incorporate
several vital software components, including:

• Config Module: This module manages the version of
the deep learning model, personalization training strategy,
and the selection of the cloud server, tailoring the system
to individual user needs.

• Database Module: This module handles the collection,
storage, and cloud interactions of sensed data. It also
fetches the most optimized personalized models, ensuring
users benefit from the best predictive tools available.

• Data Collector Module: This module collects ac-
celerometer data (sensed data) from the smartwatch for
other components. It can be configured to handle various
communication protocols, ensuring robust data transfer.

• Prediction Module: This module can be configured
to use different machine learning models (such as en-
semble recurrent neural networks (RNN/LSTM), single
RNN/LSTM, the transformer model, or the multi-modal
transformer model) to detect potential falls, aiming for
timely and precise alerts to users.

User interactions mainly occur via the smartwatch in all
implementations, adhering to the best design practices like a
strict color scheme, legible fonts, and simplicity, tailored for
the older adult population. The primary aim of the SmartFall
system is to detect falls accurately, minimizing false positives
while ensuring no fall goes undetected. This three-layer ar-

Fig. 2. SmartFall system with Watch-based Architecture.

Fig. 3. SmartFall system with Server-based Architecture.

chitecture is one of the most flexible architectures for IoT
applications as discussed in [9].

B. Description of Three Different Implementations

1) Watch-and-Phone-based Architecture (WPA): In the
Watch-and-Phone-based (WPA) architecture, represented in
Figure 1, the smartwatch is placed at the forefront, functioning
primarily as the sensing device that collects the accelerometer
data. This data is then transmitted to the smartphone. Once
received, the smartphone processes the accelerometer data,
runs the necessary predictions, and subsequently sends the
results back to the smartwatch for user interaction. The cloud
server in this architecture acts as a tertiary layer, primarily
for storing processed data and potentially other advanced
analytics. No user-identifiable information is sent to the cloud.

2) Watch-based Architecture (WA): As depicted in Figure 2,
the Watch-based Architecture (WA) is characterized by its
standalone operation on the smartwatch. Here, the smartwatch
not only collects the accelerometer data but also processes it
and makes predictions locally without relying on any external
devices (such as the phone). The smartphone’s role is strictly
limited to the initialization phase, mainly for user profile setup.
Post-processing, if there’s any need for archiving or further
analysis, the data is directed to the cloud server.



Fig. 4. Phone and Watch’s user interface.

3) Server-based Architecture (SA): The Server-based Ar-
chitecture (SA), illustrated in Figure 3, designates the smart-
watch as the data collector, gathering the accelerometer data.
However, rather than processing and predicting locally as
in watch-based architecture, the server-based architecture of-
floads the data to the cloud server. The server, equipped with
more computational power, processes and runs predictions on
the data. Once a prediction is made, the result is dispatched
back to the smartwatch for the user’s attention. In this setup,
the smartphone’s role remains confined to initial user profile
creation. No user-identifiable information is sent to the server.

All user interaction takes place on the smartwatch in all
three architectures. The system begins when the user presses
the ”ACTIVATE” button on the phone UI to set up the profile.
After that, all interactions will happen via the smartwatch
which displays ”Fell” screen on startup. Whenever a fall is
detected by the system. The system displays with ”Did you
Fall?” screen with just the “YES” and “NO” buttons so as to
overcome the constraint of small screen space (see Figure 4).
If the user answers ”NO” to the question ”DID YOU FALL?”,
the data is labeled as a false positive and stored as ”FP” in the
Couchbase database in the cloud. If the user answers “YES”,
to this question, the subsequent screen will prompt ”NEED
HELP?”. If the user presses ”YES” again, it implies that a true
fall is detected and that the user needs help. The collected data
will be labeled and stored as “TP” and ”HELP IS ON THE
WAY” screen will be displayed. If the user presses “NO” on
this screen, it suggests that no help is needed and the collected
data is still labeled as “TP”. The ability to collect and label
true positive data (fall events) is very significant. This enables
the system to collect real-world fall data just by wearing the
watches. If the user does not press either “YES” or “NO” after
a specified period of time following the question ”DID YOU
FALL?”, an alert message will be sent out automatically to
the designated caregiver.

Our system is structured such that all user-identifying data
is only stored locally on the phone to preserve privacy. This
information is obtained by prompting the user to set up a
profile. Real-time fall prediction can be performed on the
phone, on the watch, or on the cloud server depending on the
type of chosen IoT software architecture. The main goal of this
paper is to evaluate what is the best software architecture to use

for deploying such kind of real-world continuous sensing IoT
applications in order to minimize battery usage on the devices,
prediction accuracy, and latency of prediction. The training/re-
training of the prediction model is always performed offline
in the cloud server. The UI interface is designed such that
there is no need to interact with the App unless the system
detects that a fall has occurred, in that case, the watch will
vibrate to alert the user that a prediction has occurred and the
UI in Figure 4 will appear. The ability to interact with the
system when a false or a true prediction is generated allows
the system to collect real-world ADL or fall data and fine-tune
the fall detection model via personalization.

The ultimate goal is for the Smartfall system to detect falls
accurately, i.e. not missing any falls and not generating too
many false positive prompts.

IV. EXPERIMENTAL SETUP

In this section, we explain how we run the SmartFall system
focusing on edge-computing specific issues. Here we focused
on evaluating the performance of three distinct implementa-
tions that are based on the software architecture described in
Section III.

A. Key factors for comparison

Our primary goal is to compare their performance with
respect to four pivotal issues that are typically encountered
in edge-computing systems. These issues are:

• IoT Device Battery Life: Since many edge-computing
applications involve the use of IoT (Internet of Things)
devices that are powered by internal batteries, the battery
life of these devices becomes a significant concern. The
efficiency and longevity of the battery can determine
the device’s overall utility and reliability in real-world
scenarios. If a device runs out of battery, it cannot monitor
the user, creating a period of vulnerability.

• Data Latency: This refers to the delay between the
generation or sensing of a data point and the prediction
generated for that data point by the machine learning
model. For a fall detection system, rapid detection and re-
sponse are essential. If there’s a significant delay between
the occurrence of a fall and its detection, it could delay
the necessary intervention in critical conditions. Real-
time processing ensures that assistance can be promptly
dispatched or alerted in case of a detected fall.

• Potential Data Loss: This refers to the loss of data
points or sensor readings during the transmission to the
AI model that processes the data for decision-making.
In fall detection, feeding the machine learning with the
full spectrum of data leading up to an impending fall
is crucial for determining if a fall has occurred. For
this fall detection architecture, consistent and continuous
data capture is paramount. If sensor data gets lost on
transmission, the system will fail to detect an actual fall,
compromising the safety of the user. Given the potentially
life-saving nature of fall detection, ensuring data integrity
is non-negotiable.



Input
(3x128)

LSTM
Layer
(128)

Dense
Layer
(128)

Batch
Norm

Output
(n=2)

Fig. 5. LSTM Architecture

• Model Accuracy: The model accuracy measures the pre-
cision of machine learning models in detecting genuine
fall events. Given varied computational capacities among
watches, phones, and servers, accuracy discrepancies may
arise. Machine learning models, when deployed on edge
devices like watches or phones, undergo compression
for efficiency, often using TensorFlowLite (TFLite) when
deployed on devices running WearOS. This compression
can result in a slight accuracy reduction compared to the
native TensorFlow models available on servers. Also, the
computational prowess and memory allocation on an IoT
device can influence model processing and, consequently,
its accuracy. Servers, with their superior resources (mem-
ory, GPU, multiple cores), can potentially harness the
full capability of TensorFlow models, unlike watches
and phones which operate under constraints. While edge
devices benefit from the speed and efficiency of TFLite
models, maintaining a high standard of accuracy is also
important. If significant accuracy trade-offs are observed,
a computational offload to more resourceful devices, such
as servers, should be considered.

B. Machine learning model

We utilized a basic two-layer LSTM deep learning model
for the training and creation of the fall detection model. This
model is lightweight and can be deployed on computation-
constrained edge devices easily. Our main motivation is not
about enhancing the accuracy of the fall detection model but
comparing the architectures.

The input layer in our LSTM has 3 nodes for accelerometer
x, y, and z vectors, with a variable input shape of (W , 3,
64), where W is the window size which is set to 128 and
represents around four seconds of data. The 64 is the batch
size. The training involves Binary Cross Entropy (BCE) loss
function with the ADAM optimizer. The functions utilized
by the two dense layers are Relu and Sigmoid. For each

prediction, the model provides a probability of a fall between
0 and 1. We used the threshold 0.5. Fig. 5 shows the details
of its architecture.

The trained model has an F1 Score of 0.7873 using falls
(300 samples) and ADL data (435 samples) of 12 participants
(7 males and 5 females) for training. We trained the model on
the server and generated the TensorFlowLite version for the
phone and watch.

C. Experiments

We recruited six participants (all students aged between 27
and 33 years) to use the three different architected SmartFall
App for a specified amount of time and performed a prescribed
list of falls and ADL activities. In particular, the participants
would wear the watch on their left wrist and carry the phone
on the right waist or have it nearby with the SmartFall
App running for at least an hour for each experiment. Each
participant will perform 5 different types of falls (i.e. back fall,
front fall, left fall, right fall, rotate fall) and 8 different types
of ADL tasks (i.e. walking, waving, washing hands, putting
on/taking off a jacket, drinking water, picking up an object
from the floor, sweeping the floor, sitting and standing up from
a chair).

In the Battery Life experiment, participants were instructed
to wear the watch for an hour, beginning with a fully charged
device. After the hour, we noted the remaining battery per-
centage. From this, we determined the battery consumption.
During this hour, participants weren’t required to engage in
specific activities; they went about their daily routines.

In the Data Latency experiment, the transmission time
represents the duration between the data sensed and the
completion of the prediction. We instrumented all three dif-
ferent architected SmartFall App to collect the time between
each generated accelerometer data and the prediction. The
participants were instructed to wear the watch for an hour
for each architecture of the SmartFall system. Finally, we
calculated the average time of these collected data transmission
times to report the data latency. In this experiment, we did not
record the transmission time for the first 127 data points as
the system has to accumulate the required amount of historical
data before it can make the first prediction.

For the Data Loss experiment, we asked the participant
again to wear the watch for an hour for each architecture type
and perform regular household chores at home. After an hour,
we downloaded the saved data collected from the participant
while wearing the watch from the Couchbase server where we
archived the data after each prediction. Data is sensed once
every 32 ms. We should have 112500 data points for an hour.
Usually, if a prediction triggers an alert, all three apps stop
data collection until the user responds to the UI. This could
be a challenge and might affect the amount of data archived
in three different apps. Even setting some specific activities to
address this issue can be a problem as our model can trigger
false positives. To overcome this problem, we instrumented all
three apps not to stop data collection at the time of gathering
user feedback. After downloading the data, we check the data



Fig. 6. Battery life consumption in phone and watch for each architecture.

point count in all three architectures to determine potential
data loss.

Lastly for the Model Accuracy, we asked the users to wear
the watch and perform 5 different types of falls (i.e. back fall,
front fall, left fall, right fall, rotate fall) and 8 different types
of ADL tasks (i.e. walking, waving, washing hands, wearing
a jacket, drinking water, picking up an object from the floor,
sweeping the floor, sitting and standing). All the activities were
performed in our lab and the fall activities were performed on
a queen-sized air mattress. This testing activity with subjects
is approved by Texas State IRB number 7846.

The goal is to check whether the type of software architec-
ture has an influence on the accuracy of fall detection. This
means that the ADL activities should not trigger a fall and
most falls should not be missed. We calculated the precision,
recall, and accuracy of the model from these sessions.

To ensure consistency in our experiment, we used the
same kind of devices for all the participants. For the watch
application, we selected the TicWatch Pro 3. This watch is
renowned for its performance and reliability, making it a
suitable candidate for our tests. On the other hand, for the
phone application, we chose the Google Pixel 6, which comes
with 8GB of RAM and 128GB of internal storage. As for
the server-side architecture, the implementation ran on a Dell
Precision 7820 server with 128 GB of memory and one Nvidia
GeForceGTX 1080 GPU.

To maintain a uniform data management platform across all
devices - the watch, phone, and server - we utilized Couchbase
as the storage medium for the collected data. Couchbase is
known for its scalability and performance, making it a good
fit for our experiment.

V. RESULTS AND ANALYSIS

A. IOT Device Battery Life

For this study, we had 6 participants wearing the watch
for an hour per architecture type and monitored the battery
consumption on both the watch and phone.

Figure 6 shows the reduced battery percentage for watches
and phones across three distinct architectures. In the Watch-
and-Phone-based Architecture (WPA), the phone’s battery

Fig. 7. Data latency for each architecture.

drains more than in other systems because it is responsible
for data processing and model prediction. Additionally, with
the watch transmitting data to the phone through the energy-
efficient Bluetooth, there is only 12% battery consumption in
the watch. On the other hand, the Watch-based Architecture
(WA) sees minimal phone battery consumption, as the phone’s
main role is to transfer the profile to the app on the watch; all
other activities, including data processing, model prediction,
and feedback, are managed in the watch. Consequently, the
watch in the WA consumes a more substantial portion of the
battery, specifically 17% in an hour. In the Server-based Ar-
chitecture (SA), the watch buffers the sensed data at every 32
ms and interacts with the server to send 128 consecutive data
points for the prediction, retrieve predictions, and subsequently
ask for user feedback. This results in a 14% battery use on
the watch and less than 1% on the phone, which, similar to
the Watch-based Architecture (WA), is primarily employed to
collect user’s profile data from the user and initiate the watch
application.

B. Data Latency

In this experiment, we measured the duration starting from
when a data point is collected for analysis until the prediction
for this data point is received. This timing encompasses
the overall collection, processing, and the model’s inference
duration.

Figure 7 shows the data latency in three different archi-
tectures. Here we can see the server-based architecture has
the most data latency and the watch-based has the least data
latency. For the phone-based application, the watch sends the
data to the phone for the model to predict via Bluetooth Low
Energy(BLE). The inference happens on the phone and the
phone finally sends the prediction result to the watch using
BLE again. In this case, it is 73 ms. But the phone is multi-
threaded. So it is running a few threads at a time. When the
inference for one window is happening the watch is continuing
to collect the data for the next window and sending it to
the phone. In the watch-based application, the latency time
is less than WPA. Here the timer starts when the window is
ready for prediction and in this case, the inference happens



D
at

a 
po

in
ts

0

25000

50000

75000

100000

125000

WPA WA SA

Data loss Generated data points

Fig. 8. Potential data latency for each architecture.

in the watch itself so there is no delay for Bluetooth data
transmission twice. After the inference, the watch displays the
prediction result for user’s feedback.

Compared to WPA and WA, the server-based application
has the largest data latency time. Transmitting data from the
watch and receiving the prediction takes about 101 ms on
average. The increased latency is attributed to the data being
sent from the watch to the server, making it more reliant
on network (Wifi) communication speeds. With the model’s
analysis occurring on the server, there’s an additional delay
when relaying the prediction result back to the watch. This
return transmission faces similar latency challenges.

C. Potential Data Loss

For this study, we asked our participants to wear the watch
running the application on three different architecture types
for an hour and do some ADL activities such as everyday
chores. Since these Apps stop recording data when there is a
fall predicted to wait for the user input, we instrumented the
Apps to continuously record data without stopping for user
feedback. After an hour we stopped the data collection and
fetched the data from our Couchbase server.

The generated data points and potential data loss in each
architecture are shown in Figure 8. According to the figure,
we can say that the Server-based Architecture (SA) records
108,057 data points, which generated more data in an hour
than the other two approaches. The Watch-based Architecture
(WA) closely trails with 107,386 data points, while the WPA
lags a bit behind, recording 103,662 data points.

However, when it comes to data loss, which is a critical
metric for the integrity of these systems, the WPA registers
the highest loss with 8,838 points. This considerable data loss
can be influenced by its dual-device setup. Despite Bluetooth
Low Energy’s (BLE) rapid transmission capabilities, its vul-
nerability during data transfer, especially when the phone’s
processing capacity is overwhelmed, loses some data points
received via BLE.

In contrast, the WA, which centralizes both processing and
prediction tasks on the watch, experiences a reduced data loss
of 5,114 points. The limited computational capacity of the

TABLE I
REAL TIME MODEL EVALUATION RESULTS FOR EACH ARCHITECTURE

WPA WA SA

Participant 1

Accuracy 0.78 0.82 0.83
Precision 0.84 0.84 0.88
Recall 0.68 0.72 0.73
F1 Score 0.75 0.78 0.79

Participant 2

Accuracy 0.75 0.77 0.80
Precision 0.84 0.84 0.84
Recall 0.64 0.66 0.70
F1 Score 0.73 0.74 0.76

Participant 3

Accuracy 0.71 0.74 0.80
Precision 0.80 0.84 0.88
Recall 0.59 0.62 0.69
F1 Score 0.68 0.71 0.77

Participant 4

Accuracy 0.75 0.78 0.80
Precision 0.84 0.88 0.88
Recall 0.63 0.66 0.69
F1 Score 0.72 0.75 0.77

Participant 5

Accuracy 0.77 0.78 0.81
Precision 0.84 0.84 0.84
Recall 0.65 0.67 0.72
F1 Score 0.73 0.74 0.77

Participant 6

Accuracy 0.80 0.82 0.85
Precision 0.84 0.84 0.88
Recall 0.70 0.78 0.75
F1 Score 0.76 0.78 0.80

Average

Accuracy 0.76 0.79 0.82
Precision 0.83 0.83 0.87
Recall 0.65 0.69 0.71
F1 Score 0.73 0.75 0.78

watch does occasionally obstruct continuous data collection,
manifesting in these losses. when the watch reaches the
maximum number of processes, it stops collecting data from
the sensor until a process is released. The SA reported the
least data loss at 4,443 data points. While the WA and SA
should theoretically generate similar data points as in both
architectures data is collected and processed in the watch.
The success of SA can be credited to its design that offloads
prediction tasks to an external server. Offloading predictive
functions to a server evidently minimizes instances where the
watch hits its processing peak, reducing the amount of data
loss.

D. Model Accuracy

For this experiment, we asked the participants to wear the
watch running the application on different architectures and
asked them to do a prescribed set of activities. We asked them
to do 5 different falls on an air mattress and 8 different ADL
activities to test the model accuracy. Each activity is repeated
five times. Table I shows the results of evaluating the real-
time model in each architecture. We employed the main model
(native TensorFlow PB version) in Server-based Architecture
(SA) and TFLite version in the Watch and Phone-based
Architecture (WPA) and Watch-based Architecture (WA).

According to the results on the model’s performance across
various architectures, we can see that only the server-based
application’s average F1 Score of 0.78 closely mirrored the
results obtained during training, which is 0.79. However, a
noticeable drop in F1 score was recorded for the phone-
based and watch-based applications. This discrepancy could



Fig. 9. Accelerometer data of Left Fall

Fig. 10. Accelerometer data of an ADL activity(waving)

potentially be attributed to the transformation of the trained
model into a lighter TFlite model. The TFLite is a pruned
version of the main model optimized for running on the edge
device, which is expected to drop some accuracy. Another
reason could be due to the capacity or computation power of
the hardware. The watch and phone we are using have limited
memory which could result in data loss which impacts the
model accuracy.

In our experiments, most of the fall and ADLs were
correctly detected by the server-based architecture, we have
not found any false positives or false negatives in server-based,
but there were false positives or true negatives in the other two
architectures. Figure 9 shows a visualization of a left fall. This
fall was correctly detected by the server-based architecture but
the other two architectures missed it. Figure 10 shows another
visualization of an ADL task, waving hand. Here user waved
both hands 7 times. The watch and phone-based (WPA) and
watch-based (WA) architectures detected it as a fall but the
server-based architecture correctly detected it as an ADL.

On the other hand, precision value remained almost consis-
tent across all architectures, indicating the model’s ability to
correctly identify falls (True Positives), though challenges lie
in terms of distinguishing ADL activities (resulting in False
Positives).

VI. DISCUSSION

Our experimental evaluation across the Watch-and-Phone-
based (WPA), Watch-based (WA), and Server-based (SA)
architectures revealed distinct advantages and constraints for
each. WPA displayed considerable battery drain due to dual-
device interaction, while WA’s localized processing led to high
watch battery consumption. However, SA displayed optimal
model accuracy, closely mirroring training results. In contrast,
the edge-based WPA and WA witnessed reduced F1 scores,
potentially due to their transition to TensorFlow Lite and inher-
ent hardware limitations. Data latency was most pronounced
in SA, attributable to its reliance on wifi communication with
the server.

Moreover, data loss was notably higher in WPA. Conclu-
sively, while WPA and WA provide proximity and privacy
benefits, they compromise on model accuracy. SA, despite its
superior performance on accuracy, faces challenges with la-
tency, underscoring the need for careful architectural selection
in real-world implementations.

A. Messaging Server

According to the results and their analysis, the Server-based
Architecture (SA) offers several merits, particularly in the
realms of IOT-device battery conservation, data integrity, and
prediction accuracy of the model. By offloading the prediction
task to the server, there is a notable conservation of the smart-
watch’s battery life. Further, the robust processing capabilities
of the server ensure that model accuracy is optimized, thereby
enhancing the reliability of predictions. However, a tangible
challenge presented by the SA approach is data latency. Each
data transmission to the server necessitates a handshaking
process. This repetitive procedure, while ensuring secure com-
munication, introduces a latency that can be consequential,
especially in applications where real-time predictions are vital.

To address this limitation, an evolution of the architecture
can be envisioned. Transitioning to a messaging server in-
frastructure such as NATS.IO [23], which is a lightweight
messaging system designed for modern distributed systems.
Messaging servers, inherently designed for rapid, continuous
asynchronous data exchanges, can significantly trim the data
transmission times. By bypassing the traditional handshaking
procedure in every communication cycle, data latency can be
substantially reduced. Furthermore, by processing raw data di-
rectly on the server-side, instead of the watch, there is potential
for a dual benefit: achieving improved battery longevity for the
edge device and leveraging the server’s computational prowess
for more intricate data processing.

B. Scalability, Deployment, Maintenance, and Network Fluc-
tuations

We designed all three architectures to be easily deployed
and maintained. Also, all three architectures are scalable.
The Watch-and-Phone-based Architecture (WPA) integrates
functionalities between the smartwatch and the smartphone. In
scalability terms, WPA offers a middle ground. As the number
of users increases, smartphones, responsible for significant



computations, might face resource challenges. Deployment
for WPA is generally seamless, taking advantage of typical
smartwatch-phone pairing procedures. Yet, synchronizing both
devices effectively is crucial. Maintenance in WPA requires
consistent monitoring since both devices play integral roles.
Given the reliance on real-time communication between the
watch and phone, network inconsistencies can introduce op-
erational challenges.

In contrast, the Watch-based Architecture (WA) operates
with considerable autonomy. This independent nature pro-
vides WA with an edge in scalability. Each smartwatch self-
sufficiently processes its data, negating centralized processing
issues. Deployment for WA is user-friendly, with users needing
only an initial setup on the smartwatch. WA will be easy
for older adults to use because they only need to manage a
single device. Meanwhile, maintenance is primarily affected
by smartwatch software updates. The architecture’s inherent
design makes it less vulnerable to network issues, though data
transfers to the cloud for archival for continuous model refine-
ment and personalization might face occasional interruptions.

The Server-based Architecture (SA) emphasizes the capabil-
ities of cloud servers. Regarding scalability, SA offers potent
data processing advantages due to server capacities. How-
ever, as more users join, the server might require additional
resources. Deployment in SA presents initial complexities,
especially in setting up a robust server, but onboarding users
subsequently is straightforward. Maintenance for SA is mainly
server-centric. While the smartwatch demands minimal atten-
tion, the server’s periodic updates, security, and scalability
become pivotal. Of the three, SA has the most pronounced
network reliance. The continuous data transmission from the
watch to the server can be impacted if in unstable internet
network environments.

In summary, each architecture presents distinct advantages
and limitations. The optimal selection depends on the intended
deployment environment, projected user numbers, users’ pri-
vacy concerns, and network stability.

VII. CONCLUSIONS

We implemented the SmartFall system, a real-time IoT
application using three different software architectures. We
compared and analyzed the trade-off in battery consumption,
model accuracy, potential data loss, and prediction latency
of these three architectures. Server-based architecture demon-
strated the best model prediction accuracy, but the worst in
terms of data privacy and data transmission time. This suggests
that deploying a robust real-time IoT application on the edge
requires the support of a native cloud on the edge rather than a
general cloud/server provided by vendors. The native cloud on
the edge will bring all the computing power of the cloud while
maintaining data privacy and maintain the quality of services.
A native cloud on the edge will localize all processing of data
on the edge and leverage native cloud services like automatic
scaling of resources and resiliency. The open source projects
such as KubeEdge [24], TinyEdge [25], and EdgeX [26] are
all promising platforms to explore in the future if they can be

made available on the smartwatch, smartphone, or on a set-top
box that consumers can use in their home.

ACKNOWLEDGEMENT

We thank the National Science Foundation for funding the
research under the NSF-SCH grant (2123749).

REFERENCES

[1] “The growth in connected iot devices is expected to gener-
ate 79.4 zb of data in 2025, according to a new idc fore-
cast.” https://www.iotcentral.io/blog/iot-is-not-a-buzzword-but-necessity,
2023.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[3] (2019) Introduction to tensorflow lite. [Online]. Available: https:
//www.tensorflow.org/mobile/tflite/

[4] T. R. Mauldin, M. E. Canby, V. Metsis, A. H. Ngu, and C. C.
Rivera, “Smartfall: A smartwatch-based fall detection system using deep
learning,” Sensors, vol. 18, no. 10, 2018.

[5] T. Mauldin, A. H. Ngu, V. Metsis, and M. E. Canby, “Ensemble deep
learning on wearables using small datasets,” ACM Transactions on
Computing for Healthcare, vol. 2, no. 1, pp. 1–31, December 2020.

[6] D. Raggett, “The Web of Things: Challenges and Opportunities,” IEEE
Computer, vol. 48, no. 5, pp. 26–32, May 2015.

[7] R. Want, B. N. Schilit, and S. Jenson, “Enabling the Internet of Things,”
IEEE Computer, vol. 48, no. 1, pp. 28–35, 2015.

[8] L. Baresi, L. Mottola, and S. Dustdar, “Building Software for the Internet
of Things,” IEEE Internet Computing, vol. 19, no. 2, pp. 6–8, 2015.

[9] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, “IoT
Middleware: A Survey on Issues and Enabling Technologies,” IEEE
Internet of Things Journal, vol. 4, no. 1, pp. 1–20, Feb 2017.

[10] M. Gutierrez, M. Fast, A. H. Ngu, and B. Gao, “Real-time prediction
of blood alcohol content using smartwatch sensor data,” in IEEE
International Conference on Smart Health. Phoneix, Arizona: Springer,
November 2015.

[11] A. H. H. Ngu, J. S. Eyitayo, G. Yang, C. Campbell, Q. Z. Sheng, and
J. Ni, “An iot edge computing framework using cordova accessor host,”
IEEE Internet of Things Journal, vol. 9, no. 1, pp. 671–683, 2022.

[12] AWS IoT, 2020, https://aws.amazon.com/iot.
[13] IBM Watson IoT, 2020, https://www.ibm.com/internet-of-things.
[14] ThingSpeak for IoT, 2020, https://thingspeak.com/.
[15] Google cloud: Connected device solutions. https://cloud.google.com/

iot-core.
[16] A. Das, S. Patterson, and M. Wittie, “Edgebench: Benchmarking edge

computing platforms,” in 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC Companion), 2018, pp.
175–180.

[17] T. Goethals, F. DeTurck, and B. Volckaert, “Extending kubernetes
clusters to low-resource edge devices using virtual kubelets,” IEEE
Transactions on Cloud Computing, pp. 1–1, 2020.

[18] R. A. Light, “Mosquitto: server and client implementation of the mqtt
protocol,” Journal of Open Source Software, vol. 2, no. 13, p. 265, 2017.

[19] Google cloud: Edge tpu. https://cloud.google.com/edge-tpu.
[20] A. H. Ngu, V. Metsis, S. Coyne, P. Srinivas, T. Salad, U. Mahmud,

and K. H. Chee, “Personalized watch-based fall detection using a
collaborative edge-cloud framework,” International journal of neural
systems, vol. 32, no. 12, p. 2250048, 2022.

[21] A. H. Ngu, A. Yasmin, T. Mahmud, A. Mahmood, and Q. Z. Sheng,
“P-fall: Personalization pipeline for fall detection,” in Proceedings of
the 8th ACM/IEEE International Conference on Connected Health:
Applications, Systems and Engineering Technologies, 2023, pp. 173–
174.

[22] Detecting falls using a mobile device. https://patents.google.com/patent/
US20190103007A1.

[23] (2024) Nats.io. https://nats.io. [Online]. Available: https://nats.io
[24] A kubenertes native edge computing framework. https://kubeedge.io/.

Accessed: 2023-10-25.
[25] W. Zhang, Y. Zhang, H. Fan, Y. Gao, and W. Dong, “A low-code

development framework for cloud-native edge systems,” ACM Trans.
Internet Technol., vol. 23, no. 1, feb 2023. [Online]. Available:
https://doi.org/10.1145/3563215

[26] Edgex foundry. https://www.edgexfoundry.org/. Accessed: 2023-10-25.


