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Abstract. Considering a graph with unknown weights, can we find the
shortest path for a pair of nodes if we know the minimal Steiner trees
associated with some subset of nodes? That is, with respect to a fixed
latent decision-making system (e.g., a weighted graph), we seek to solve
one optimization problem (e.g., the shortest path problem) by leverag-
ing information associated with another optimization problem (e.g., the
minimal Steiner tree problem). In this paper, we study such a proto-
type problem called query-decision regression with task shifts, focusing
on the shortest path problem and the minimum Steiner tree problem. We
provide theoretical insights regarding the design of realizable hypothesis
spaces for building scoring models, and present two principled learning
frameworks. Our experimental studies show that such problems can be
solved to a decent extent with statistical significance.

Keywords: Statistical Learning - Data-driven Optimization -
Combinatorial Optimization

1 Introduction

In its most general sense, a decision-making problem seeks to find the best
decision for an input query in terms of an objective function that quantifies
the decision qualities [6]. Traditionally, the objective function is given a prior,
and we thus focus primarily on its optimization hardness. However, real-world
systems are often subject to uncertainties, making the latent objective function
not completely known to us [L1]; this creates room for data-driven approaches
to play a key role in building decision-making pipelines [17].

Query-decision Regression with Task Shifts (QRTS). When facing an
unknown objective function, one can adopt the learn-and-optimize framework
where we first learn the unknown objective function from data and then solve
the target optimization problem based on the learned function [3], which can
be dated back to Bengio’s work twenty years ago [2|. Nevertheless, the learn-
and-optimize framework suffers from the fact that the learning process is often
driven by the average accuracy while good optimization effects demand worst-
case guarantees [7]. Query-decision regression (QR), as an alternative decision-
making diagram, seeks to infer good decisions by learning directly from successful
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Fig. 1. Associated with a fixed weighted graph, (a)—(d) show the shortest paths of
four pairs of nodes, and (e)—(h) show the minimal Steiner trees for four node subsets.
Can we leverage the information in (a)—(d) to compute the solutions in (e)—(h), or vice
versa?

optimization results. The feasibility of such a diagram has been proved by a few
existing works [4]. Such a success points out an interesting way of generalizing
QR called query-decision regression with task shifts (QRTS): assuming that there
are two query-decision tasks associated with a latent system, can we solve one
task (i.e., the target task) by using optimization results associated with the other
task (i.e., the source task) — Fig. 1?7 Proving the feasibility of such problems is
theoretically appealing, as it suggests that one can translate the optimal solutions
between different optimization problems.

Contribution. This paper presents the first study on QRTS over stochastic
graphs for two specific problems, the shortest path problem and the minimum
Steiner tree problem. Taking QRTS as a statistical learning problem, we pro-
vide theoretical analysis regarding the creation of realizable hypothesis spaces
for designing score functions, seeking to integrate the latent decision objective
into the learning pipeline for better optimization effects. Based on the proposed
hypothesis space, we design two principled methods QRTS-P and QRTS-D,
where P stands for point estimation and D stands for distribution learning. In
particular, QRTS-P is designed based on the principle of point estimation that
implicitly searches for the best mean graph, while QRTS-D leverages distribution
learning to compute the pattern of the edge weights that can best fit the samples.
We present empirical studies using graphs of classic families. As one of the main
contributions of this paper, our results confirm that QRTS can be solved to a
satisfactory extent, which may be the first piece of evidence showing that one
can successfully translate knowledge between different optimization problems
sharing the same underlying system. The appendix and supplementary materi-
als! include technical proofs, more discussions on experiments, source code, and
data.

2 Preliminaries

We consider a countable family G of weighted directed graphs sharing the same
graph structure G = (V, E). For each weighted graph g € G, let g() : E — R™ be
its weight function. Without loss of generality, we assume that G has no multiple
edge when the edge directions are omitted; therefore, each graph g € G can also

! https://github.com/cdslabamotong/QRTS.
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be taken as an undirected graph, without causing confusion regarding the edge
weights. Associated with G, there is an unknown distribution Dg over G. We
consider optimization problems in the following form.

Definition 1. (Query-decision Optimization). Let X C 2" be a query space
and Y C 2F be a decision space. In addition, let f(x,y,g) € RT be the decision
value associated with a query x € X, a decisiony € Y, and a graph g € G (either
directed or undirected). For a given query x € X, we seek to find the decision
that can minimize the expected decision value:

argming ¢y, Fr pg (z,y) where Fypg(z, y) = Eyopg [f(x,y,9)]- (1)

Such a task is specified by a three-tuple (f,X,). It reduces to the deterministic
case with |G| =1 (e.g., Fig. 1).

When the distribution Dg is known to us, the above problems fall into stochas-
tic combinatorial optimization [18]. In addressing the case when Dg is unknown,
query-decision regression emphasizes the scenario when there is no proper data
to learn Dg, and it is motivated by the aspiration to learn directly from success-
ful optimization results. Since the optimization problem in question (i.e., Eq.
(1)) can be computationally hard under common complexity assumptions (e.g.,
NP+#P), we assume that an approximate solution is observed. Accordingly, we
will utilize samples in the form of

Dy = {(frwyj)\Ff,Dg (w5,y;) < - I;leigFf,Dg (‘rj,y)}, (2)

where the quality of the observed decision is controlled by a nominal ratio o > 1.
With such, we formulate query-decision regression with/without task shifts as
statistical learning problems.

Definition 2. (Query-decision Regression (QR)). Associated with a query-
decision optimization problem (f,X,Y) and a distribution Dy over X, given a
collection Dy o = {(z;,y;)} of query-decision pairs with x; being iid from Dy, we
aim to learn a decision-making model M : X — ) that can predict high-quality
decisions for future queries.

Definition 3. (Query-decision Regression with Task Shifts (QRTS)).
Consider a source task (fs,Xs,Vs) and a target task (fr,XT,Yr) sharing the
same G and Dg. Suppose that we are provided with query-decision samples Dy o
associated with the source task. We aim to learn a decision-making model M :
X1 — Y7 for the target task, with the goal of maximizing the optimization effect:

minyeyT FfoDg (wvy)] (3)

L(M7 DXT) ::]ExNDXT |: FfT,Dg (ijM(l’))

where Dy, is the query distribution of the target task.

Remark 1. ( Technical Challenge). In principle, QR falls into the setting
of supervised learning, in the sense that it attempts to learn a mapping using
labeled data. Therefore, standard supervised learning methods can solve such
problems with statistical significance more or less, although they may not be the
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optimal methods for specific tasks [21]. QRTS reduces to QR when the source
task is identical to the target one, but it is arguably more challenging: one can no
longer apply standard supervised learning methods because the query-decision
mapping we seek to infer is associated with the target task but the samples are
of the source task. To the best of our knowledge, no existing method can be
directly applied to solve problems like the one in Fig. 1.

3 A Warm-Up Method: QRTS-P

In this section, we present a simple and intuitive method called QRTS-P for
solving QRTS. To illustrate the idea, we notice that the latent objective function
Frp, can be expressed as a function of the mean weights of the edges, which is
due to the linearity of expectation.

Ezxample 1. Suppose that the considered query-decision optimization problem
is the stochastic shortest path problem. For each node pair z = (u,v), let Y,
be the set of all paths from u to v. The latent objective function can thus be
expressed as

+00 otherwise.

Fropg(z,y) = {Zeev Egvpglgle)] ify eV, @

Similarly, for the stochastic minimal Steiner tree problem [22], which finds the
min-weight subgraph that connects a given set of nodes, we may define ), as
the set of valid Steiner trees of a node set z, and with such, the latent objective
has the identical form as Eq. (4).

In abstract, let V¢, C V¢ be the set of the feasible solutions associated with a
query z, and 1g € {0,1} be the set indicator function, i.e., 1g(z) =1 < z €
S. The query-decision optimization now has the generic form of

agrgylilmz Eg~pglg(e)] =D Egnnglo(e)Ly(e) ()
Such an abstraction suggests that it would be sufficient for solving the target
task if one can find the mean graph induced by Dg, which essentially asks for
good estimations of {E4p,[g(e)]|e € E} — leading to a point estimation problem
[13]. In what follows, we will see how samples Dy, . associated with the source
task can be helpful for such a purpose.
For each e € F, let w. € Rt be the sought-after estimation of Egp, [g(€)].
Since each sample (z;,y;) in Dy, o is an a-approximation, in light of Eq. (5), a
desired set {w,} :={we|e € E} should satisfy the linear constraint

min Z U)e]l > Z wel Yjo (6)

ey
YSIYIs7 ccp ecE

which means that the sample decision y; is also an a-approximation in the mean
graph induced by {w.}. Applying the standard large-margin training to Eq.
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(6) [19], a robust estimation can be inferred by solving the following quadratic
program

min Z w2 4+ C - an s.t. - min Z wely(e) — Z wely, (€) > —n;,Vj. (7)
€E J

We,Mj ey z;
e . Yy fsrzj cCE cCE

source inference

where C' is a hyperparamter. Optimization problems in the above form have

been widely discussed for training structured prediction models, and they can
be solved efficiently as long as the source inference problem in Eq. (7) can be
effectively solved for a given {w.} [15]. We adopt the cutting plane algorithm in
our experiments and defer the details to the Appendix. With the learned weights
{we}, the inference for a query z* € X1 of the target problem can be computed
through

target inference: yelrflflTnl* ZeeEwelly(e) (8)
We denote such an approach as QRTS-P. The source and target inferences will
be discussed later in Remark 2, as they are special cases of later problems.

4 A Probabilistic Perspective: QRTS-D

In this section, we present a more involved method called QRTS-D for solving
QRTS. It turns out that QRTS-D subtly subsumes QRTS-P as a special case.

4.1 Overall Framework

QRTS-D follows the standard scoring model, where we assign each decision a
score and make a prediction by selecting the decision with the lowest score:

score function: h: X7 xYr — R 9)

inference:  argmin,,, h(z,y).

Such a framework is expected to solve QRTS well, provided that for each
pair (z,y) € X1 x Y, a low score h(x,y) can imply a small objective value
Fy. pg(z,y). Implementing such an idea hinges on three integral parts: a) a
hypothesis space H of h; b) training methods to search for the best score func-
tion within H based on the empirical evidence Dy, ; ¢) algorithms for solving
the inference problem. With such a framework, we will first discuss insights for
designing a desired hypothesis space and then present training methods.

4.2 Hypothesis Design

In designing a desired score function h, the key observation is that the true
objective function Fy,. p, of the target task is a perfect score function, in that
the inference over Fy, p,(x,y) recovers the exact optimal solution. While Dg is
unknown to us, the technique of importance sampling offers a means of deriving
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a parameterized approximation [20]. In particular, for any empirical distribution
¢ over G, we have

Finiog (@9) = [ . %Jf’g]] Jr(@,y,9)dDE", (10)

which immediately implies the function approximation guarantee between
Fy. p; and an affine combination of fr.

Theorem 1. Let ||-|| denote the function distance with respect to the Lebesgue
measure associated with any distribution D over X1 X Y. For each € > 0,

. . K
th—><>o PrgiN'ng [lnfwiER HFfT,Dg (CC, y) - Zi:l wifT('Tvyag’i) ‘ S €:| =1

Theorem 1 justifies the following hypothesis space for the score function of which
the complexity is controlled by its dimension K € Z.

K
Hy pgn = {hwy{gi}(l‘,y) =Y _wifr(x,y,9:)|9: ~ D", w = (wr, ..., wx) € RK}~

1=1

These score functions are very reminiscent of the principled kernel machines [§],
with the distinction that our kernel function, namely fr, is inherited from the
latent optimization problem rather than standard kernels [16]. For such a score
function hy, g4,1(7,y), the inference process is further specialized as

target inference: M, (4,3 () :=minycy.,. Z w; fr(x,y, gi)- (11)

With the construction of H KD, & realizable space can be achieved provided
that the dimension K is sufficiently large, which allows us to characterize the
generalization loss Eq. (3).

Theorem 2. Suppose that a B-approximation is adopted to solve the target
inference problem FEq. (11). Let Do, € R be the oo-order Rényi divergence
between Dg and DG". For each € >0 and § > 0, there exists

In|Xr|+In|Yr]|
C:O( €2 '

1
In 5 eXp(Doo))
such that when K > C, with probability at least 1 — & over the selection of {g;},

we have supy, cgx L(My (4,3, Dxr) >3- L‘_E

Theorem 2 suggests that a high dimension (i.e., K) may be needed when a) the
spaces are large and/or b) the deviation between Dg and Dg™ is high, which is
intuitive. The proof of Theorem 2 leverages point-wise concentration to acquire
the desired guarantees, while Theorem 1 is proved through concentrations in
function spaces.

4.3 QRTS-D

With the design of H K,Dgm; We oW present methods for computing a concrete
score function A, (4,3, which is to decide a collection {g;} of subgraphs as well
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as the associated weights w. In light of Eq. (10), w; can be viewed as the
importance of graph g;. We will not restrict ourselves to a specific choice of
g" and thus assume that a nominal parametric family Dg"; is adopted, with
an extra subscription 6 added to denote the parameter set. Assuming that the
hyperparameter K is given, the framework of QRTS-D loops over three phases:
a) graph sampling, to sample {gi,...,gx} iid from Dg’; b) importance
learning, to compute w for {g;}; c¢) distribution tuning, to update Dg"
The first phase is trivial, and we will therefore focus on the other two phases.
Importance Learning. In computing the weights w for a given {g;}, we
have reached a key point to attack the challenges mentioned in Remark 1: the
function approximation guarantee in Theorem 1 holds not only for the target
task but also for the source task. That is, Zfil w; fr(x,y,9;) is a desired score
function (for solving the target task) if and only if Efil w; fs(x,y,g;) can well
approximate the true objective function Fyg p,(z,y) of the source task. There-
fore, since the samples in Dy, o = {(z;,y;)} are a-approximations to the source
task, the ideal weights w should satisfy

ayng%}nS i=1 wlfs(xjvy gl > Z wlfS x]vyﬁgz)

In this way, we have been able to leverage the samples from the source task to
decide the best w associated with {g;}. This owes to the fact that our design
H K, Dgn allows us to separate Dg from the task-dependent kernels (i.e., fs and
fr), which is otherwise not possible if we parametrized the score function (i.e.,
Eq.9) using naive methods (e.g., neural networks). Following the same logic
behind the translation from Eq. (6) to Eq. (7), the above constraints lead to a
similar optimization program:

K K
minnlle2 +C- > s.t. min o wifs(xi,y,0) = Y wifs(x;,y5,9:) = 15, V5.
wom i 5=

i=1

source inference

(12)

The above program shares the same type with Eq. (7), and we again defer the
optimization details to the appendix.

Distribution Tuning. With the importance vector w learned based on the
subgraphs {g;} sampled from the current 0, we seek to fine-tune g s to make it
aligned more with the latent distribution Dg, which is desired as suggested by the
proof of Theorem 1. Inspired by Eq. (10), the true likelihood associated with g;
is approximated by w} :=w; DG’y [g:]. Consequently, one possible way to reshape
D¢’y is to find the 6 that can minimize the discrepancy between Dg’g. and Dy,
ie., 0 = argming D(DgG || Dw+)|{g,}> Where Dy« is the discrete distribution
over {g;} defined by normalizing (w7, ...,w} ), and the distance measure D(]])
can be selected at the convenience of the choice of the Dg’?}, — for example, cosine
similarity or cross-entropy. For such problems, standard methods can be directly
applied when Dg’ is parameterized by common distribution families; first- and
second-order methods can be readily used if Dem has a complex form such as
neural networks.
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Algorithm 1. QRTS-D
1: Input: Dsg o = {zy,%:},C, K, T, a, D&p;
2: Output: w = (w1, ...,wk) and {g1,...,9x }
3: Initialize 6, t = 0;
4: repeat
5: {91, ..., gr } iid from Dg;
6: Compute w via Eq. (12) based on Dy o and C;
7.
8
9
10

Update 0 via 6" = argming D(Dg" || Dw =) |{g;}3
: t=t+1
cuntilt =T
: Return {g1,...,gx} and w

The QRTS-D method is conceptually simple, as summarized in Alg. 1. Similar
to QRTS-P, using such a method requires algorithms for solving the source and
target inferences in Egs. (11) and (12). In what follows, we discuss such issues
as well as the possibility of enhancing QRTS-D using QRTS-P

Remark 2 (Source and Target Inferences). For QRTS-P, the source (resp.,
target) inference problem is nothing but to solve the source (resp., target) query-
decision optimization task in its deterministic case. For QRTS-D, the inference
problems are to solve the source and target tasks over a weighted combination
of deterministic graphs. For the shortest path problem, such inference problems
can be solved in polynomial time; for the minimum Steiner tree problem, such
inference problems admit 2-approximation [22].

Remark 3 (QRTS-P vs QRTS-D). As one may have noticed, QRTS-P is a
natural special case of the importance learning phase of QRTS-D, in the sense
that each w. in QRTS-P corresponds to the importance of the subgraph with
one edge (i.e., e). In other words, QRTS-P can be viewed as the QRTS-D where
the support of Dg’ is the span of single-edge subgraphs with unit weights.
Notably, the dimension of QRTS-P is fixed and thus limited by the number of
edges, while the dimension K of QRTS-D can be made arbitrarily large. For this
reason, QRTS-P may be preferred if the sample size is small, while QRTS-D can
better handle large sample sets, which is evidenced by our experimental studies.

Remark 4 (QRTS-PD). In QRTS-D, the initialization of Dg" is an open issue,
and this creates the possibility of integrating QRTS-P into QRTS-D by initial-
izing Dg") using the weights {w.} learned from QRTS-P. This leads to another
approach called QRTS-PD consisting of three steps: a) run QRTS-P to acquire
the estimations {w. }; b) stabilize 6 based on {w,} through maximum likelihood
estimation, i.e., ming —3°  plog > 5 DG[glg(e) = wel; ) run QRTS-D. From
such a perspective, QRTS-PD can be taken as a continuation of QRTS-P to fur-
ther improve the generalization performance by building models that are more
expressive.
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5 Empirical Studies

In this section, we present empirical studies demonstrating that QRTS can be
solved with statistical significance using the presented methods.

5.1 Experimental Settings

Source and Target Tasks. We specifically focus on two query-decision opti-
mization tasks: shortest path and minimum Steiner tree [9]. Depending on the
selection of the source and target tasks, we have two possible settings: Path-to-
Tree and Tree-to-Path. The source and target inferences can be approximated
effectively, as discussed in Remark 2. These algorithms are also used to generate
samples of query-decision pairs (i.e., Eq. (2)).

Table 1. Results for Path-to-Tree on Kro, Col and BA. Each cell shows the
mean ratio together with the standard deviation (std). The top three results in each
column are highlighted.

Train Size Kro Col BA

‘ ‘ 60 240 2400 60 240 2400 60 240 2400
QRTS-P 4.000.3) | 3.40.5) | 2.4(0.3) | 291(7s) | 150(29) | 128(7.4) | 181(28) | 144(a1) | 63(35)
QRTS 60 4.4(0.3) | 3.4(0.8) | 2.3(0.4) | 250¢(s2) | 367(56) | 123(2.3) | 209(22) | 195(22) | 40(13)
-PD™

240 4.6(0.7) | 3.7T0.1) | 2.70.2) | 330(65) | 227(14) | 117(6.1) | 12922) | 149(19) | 35(12)

2400 4.30.9) | 3.2(0.5) | 2.4(0.1) | 21468) | 183(69) | 88(12) 139@3s) | 131aa) | 27(7.2)
QRTS 60 3.90.7) | 3.4(0.8) | 2.3(0.4) | 361(s5) | 225011y | 115¢5.1) | 17731y | 130(34) | 43(14)
-PD-1

240 4.2(0.4) | 3.2(0.5) | 2.4(0.2) | 350(ss) | 245(31) | 12916) | 166(34) | 132(a9) | 34(13)

2400 4.3(0.5) | 3.1(0.3) | 2.3(0.4) | 261 (93) | 186(24) | 106(6.2) | 160(20) | 119(3) | 34(7.3)
QRTS 60 4.31.1) | 3.2(0.6) | 2.6(0.5) | 431(27) | 16T (09) | 110015y | 39146y | 14413) | 6013)
-PD-3

240 4.30.9) | 3.3(0.6) | 2.3(0.4) | 3177y | 183(35) | 126(11) | 202(38) | 13817y | 307)

2400 4.000.4) | 3.2(0.4) | 2.2(0.2) | 32438) | 107 (12) | 113(6.1) | 184(a9) | 120(2.4) | 23(2.7)
Unit & 5.2(0.2) & 10.4(0.3) 990(6s) & 2231 (as) 34947y & T49(13)
Rand

Graph, True Distribution, and Samples. We adopt a collection of graphs
of classic types: a Kronecker graph (Kro) [14], a road network of Colorado (Col)
[5], a Barabasi-Albert graph (BA) [1], and two Watts-Strogatz graphs with dif-
ferent densities (WS-dense and WS-sparse) [23]. The statistics of these graphs
can be found in the appendix. To have a diverse graph pattern, we generate the
ground truth distribution Dg by assigning each edge a Weibull distribution [12]
with parameters randomly selected from {1, ...,20}. For each graph and each
problem instance, we generate a pool of 10,000 query-decision pairs.

QRTS Methods. We use QRTS-PD-1 (resp., QRTS-PD-3) to denote the
QRTS-PD method when one (resp., three) iterations over the three phases are
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used. Based on QRTS-PD-1, we implement QRTS-PD™ that foregoes the distri-
bution tuning phase. For these methods, the model dimensions K are selected
from {60,240,2400}. We utilize the one-slack cutting plane algorithm [10] for
the large-margin training (i.e., Egs. (7) and (12)). The empirical distribution
Dg" is parameterized by assigning each edge an exponential distribution.

Baselines. We set up two baselines Unit and Rand. Unit computes the
predictions based on the graph with unit-weight edges. Rand computes the deci-
sion based on the graph with random weights. Unit essentially leverages only
the graph structure to compute predictions. We note that none of the methods
in existing papers can be directly applied to QRTS (Remark 1).

Training and Testing. In each run, the training size is selected from
{60, 240, 2400}, and the testing size is 1000, where samples are randomly selected
from the sample pool. Given a testing set {x;,y;} of the target task, the perfor-
mance is measured by the ratio ), Fy. p,(xi,y;)/ >, Frr pg (i, yi), where yi
is the predicted decision associated with x;; a lower ratio implies better perfor-
mance. We report the average ratios and the standard deviations over five runs
for each method.

Table 2. Results on Tree-to-Path. Each cell shows the mean ratio together with
the standard deviation (std). Small stds (< 0.1) are denoted as 0.0. The top three
results in each column are highlighted.

Train Size Kro Col BA
‘ 60 240 2400 60 240 2400 60 240 2400
QRTS-P 1.46 ©0.0)|1.37 0.0)| 1.60 (0.0) | 9.8 (0.2) | 6.6 (0.4) | 6.1 (0.1) | 1.6 0.1) | 1.4 (0.2) | 1.4 (0.1)
QRTS 60 1.44 ©0.1)| 1.41 0.1y | 1.39 0.0) |11 5.8) | 8.6 (1.5) | 7.1 0.6) | 1.9 0.9y | 1.4 (0.2) | 1.5 (0.1)
-PD~

240 [1.42 (0.1)|1.46 0.0) |1.39 0.0) 9.9 (a2) |6.8 3.6) | 6.5 (0.4) | 1.7 (03) | 1.5 (0.2) | 1.5 (0.1)
2400 | 1.48 (0.1) | 1.45 (0.0) | 1.38 (0.0) | 8.9 (3.1) | 6.0 (1.3) | 6.2 (0.9) | 1.5 (0.2) | 1.3 (0.1) | 1.3 (0.1)
QRTS 60 1.55 (0.0) | 1.42 (0.1) | 1.37 (0.0) | 6.6 (0.6) | 6.3 (2.4) | 6.8 (0.6) | 1.6 (0.3) | 1.5 (0.0) | 1.4 (0.1)
-PD-1

240 |1.56 (0.1) | 1.44 0.1y | 1.36 (0.0) |11 (3.2) | 7.6 (1.4) [6.6 (0.0) | 1.6 (0.3) | 1.5 (0.3) | 1.5 (0.1)
2400 | 1.52 0.1) | 1.39 0.1) | 1.37 0.0y | 14 2.9y | 7.7 3.9) | 7.2 (0.3) | 1.7 0.1) | 1.5 (0.3) | 1.7 (0.1)

QRTS 60 1.53 (01) | 1.41 (0.1) | 1.34 (01) | 13 a2y | 5.9 (1.5) | 5.5 0.9) | 1.7 02) | 1.5 (0.1) | 1.4 (0.1)
-PD-3

240 |1.50 (0.1) | 1.42 (0.0) | 1.36 (0.0) | 9.4 (1.4) | 6.6 (0.2) | 5.9 (0.1) | 1.6 (0.1) | 1.4 (0.2) | 1.2 (0.1)
2400 | 1.47 0.1) | 1.41 0.1) | 1.32 (0.0) | 7.8 (0.6) | 8.5 (1.4) | 7.7 (20) | 1.3 (0.1) | 1.3 (0.1) | 1.3 (0.2)
Unit & Rand 1.57 1) & 1.78 (0.1) 9.2 0.1y & 19 (0.1) 1.5700.0) & 2.2(0.3)

5.2 Analysis

The results on Kro, Col, and BA are given in Tables1 and 2. The results on
WS-sparse and WS-dense can be found in the Appendix. The main observations
are listed below, and the minor observations are given in the appendix.

O1: The Proposed Methods Behave Reasonably with Promising
Performance. First, we observe that the proposed methods perform signifi-
cantly better when more samples are given, which suggests that they are able to
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[30, 0] [30, 1] [30, 2] [30, 5] Target

[60, 0] [60,1] [60,2] [60, 5] Targét

\\ —

[240, 0] [240, 1] [240,2] [240,5] Target [480, 0]  [480, 1]  [480,2]  Target

Fig. 2. The left (resp., right) shows the visualizations of the solution to one testing
query for the Tree-to-Path (resp., Path-to-Tree) problem under QRTS-P on Kro. The
figure labeled by [a,b] shows the result with training size a after b iterations in the
cutting plane algorithm. Each row shows the results under one training size, where the
last figure shows the optimal solution.

infer meaningful information from the samples toward solving the target task. On
the other hand, all the proposed methods are clearly better than Rand, implying
that the model efficacy is non-trivial. In addition, they easily outperform Unit
by an evident margin in most cases. For example, for Path-to-Tree on BA in
Table 1, the best ratio achieved by QRTS-PD-3 is 23, while Unit and Random
cannot produce a ratio smaller than 300.

02: QRTS-P Offers an Effective Initialization for QRTS-D. With
very few exceptions, QRTS-PD performs much better than QRTS-P under the
same sample size, which confirms that QRTS-P can indeed be improved by
using importance learning through re-sampling, which echos Remark 4. This
is especially true when the sample size is large; for example, for Path-to-Tree
on BA with 2400 samples, methods based on QRTS-PD with a dimension of
2400 are at least twice better than QRTS-P in terms of the performance ratio,
demonstrating that QRTS-PD of a high dimension can better consume large
datasets.

03: Distribution Tuning is Helpful After Multiple Iterations. Since
QRTS-D can be used without the distribution tuning phase, we are wonder-
ing if the distribution turning phase is necessary. By comparing QRTS-PD-1
with QRTS-PD™, we see that the distribution tuning phase can be useful in
many cases, but its efficacy is not very significant. However, combined with the
results of QRTS-PD-3, we observe that the distribution turning phase can better
reinforce the optimization effect when multiple iterations are used. Finally, by
comparing QRTS-PD-1 and QRTS-PD-3, we find that training more iterations
is useful mostly when the model dimension is large, which is especially the case
for Tree-to-Path (Table 2).
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O4: The Learning Process is Smooth. Fig. 2 visualizes the learning pro-
cess of QRTS-P for two example testing queries. One can see that QRTS-P tends
to select solutions with fewer edges under the initial random weights w, and it
gradually finds better solutions (possibly with more edges) when better weights
are learned. We have such observations for most of the samples, which suggest
that the proposed method works the way it is supposed to. More visualizations
can be found in the appendix.

6 Future Directions

Although we observed that the approximation ratio becomes better with the
increase in training size and training iteration, it is not always the case that
the solution converges to the optimal one — for example, Fig. 2-Right and the
visualizations in the Appendix. This is reasonable because two solutions may
have similar costs but with very different edge sets. Depending on the needs of
the agents, other metrics can be adopted, which may require new designs of the
hypothesis space and training methods. Another important future direction is
to enhance the proposed method through (deep) representation learning.
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