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ABSTRACT

Traditional computing is based on an engineering approach that
imposes logical states and a computational model upon a physi-
cal substrate. Physical or material computing, on the other hand,
harnesses and exploits the inherent, naturally-occurring proper-
ties of a physical substrate to perform a computation. To do so,
reservoir computing is often used as a computing paradigm. In
this review and position paper, we take stock of where the field
currently stands, delineate opportunities and challenges for future
research, and outline steps on how to get material reservoir to the
next level. The findings are relevant for beyond CMOS and beyond
von Neumann architectures, ML, Al, neuromorphic systems, and
computing with novel devices and circuits.
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1 INTRODUCTION

“Information is inevitably tied to a physical representation and there-
fore to restrictions and possibilities related to the laws of physics
and the parts available in the universe” [23]. As a consequence,
every computation is physical because the information to be pro-
cessed needs a physical substrate. The traditional way of building
computers is “top-down” and tries to abstract from the physics as
much as possible by imposing logical states and a computational
model upon the physical substrate. This “designed” way of building
computers requires an the ability to control the physical substrate.
An alternative way of solving computational problems is to har-
nesses and exploit the inherent, naturally-occurring properties of
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a physical substrate to perform a desired computation [6]. This
“bottom-up” way of building computers is called material, physical,
in materia [41], or intrinsic computing.

Before the dawn of digital computers, the analog computers of
the early 20‘" century are perhaps the best example of early in
materia computing. Such computers would represent data in (quasi)
continuous form of physical quantities and perform calculations
with analog circuits, such as operational amplifiers. The lack of an
explicit memory and central processing unit avoids many of the
bottlenecks and inefficiencies of digital von-Neumann-type com-
puters. Because analog computers are highly application-specific,
they lack flexibility and are not generally universal. They are also
difficult to “program.”

A new variant of in materia computing emerged in the early
nineties in the form of evolvable hardware. “Evolution-in-materia
(EIM) is a term that refers to the manipulation of physical sys-
tems using computer controlled evolution (CCE)” [33]. “It is argued
that natural evolution is, par excellence, an algorithm that exploits
the physical properties of materials. Such an exploitation of the
physical characteristics has already been demonstrated in intrinsic
evolution of electronic circuits” [32]. Early pioneers of the field
were Yoshihito [52], Thompson [47], Layzell [24], and others. In
these early approaches, a desired function was generally attempted
to evolve in hardware (in an open-ended, unconstrained, and rather
brute-forced way), without employing a specific architecture.

The appearance of the Reservoir Computing (RC) paradigm in
the early 2000s (independently proposed by two groups) [21, 31]
suddenly provided an entirely new way to harness the inherent
physical properties of materials. RC has now become an umbrella
term for a variety of similar computational models in which a
fixed “reservoir,” a sub-component of an RC system that shows
complex, often non-linear dynamics, and a rich space of internal
states, projects the inputs into a high(er) dimensional space. A de-
sired computation is then obtained by a observing a (usually linear,
memory-less) projection of the reservoir state onto the low(er) di-
mensional output space, i.e., the desired output. The “output layer”
is the only sub-component of an RC system that is ‘trained,” the
reservoir itself is fixed and left to its own inherent dynamics.

RC has a number of advantages over related approaches: (1) it
excels particularly in the area of temporal signal processing and
learning dynamical systems; (2) it leads to a significantly lower
training complexity compared to traditional recurrent neural net-
works because only the (linear) output layer is trained; and (3)
almost any physical system with interesting-enough dynamics can
be used as a reservoir, as long as it has the fading memory and the
separation property: “Another advantage is that the reservoir with-
out adaptive updating is amenable to hardware implementation
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using a variety of physical systems, substrates, and devices. In fact,
such Physical Reservoir Computing (PRC) has attracted increasing
attention in diverse fields of research” [46].

In this review and position paper, we take stock of where the
field of physical and material RC currently stands, delineate oppor-
tunities and challenges for future research, and outline how we can
get there.

2 A MINI REVIEW OF MATERIAL RC SYSTEMS

The fact that reservoirs can be unstructured, imperfect, and un-
reliable, has drawn increasing attention from the hardware com-
munity because RC provides a promising framework to compute
with emerging devices and device networks one does not need
to have full control over [10, 46]. Defects, faults, variation, and
unstructuredness in hardware actually become desired properties
because they enhance the dynamic response of a reservoir to its
input perturbation [4]. RC has also attracted significant interest in
the neuromorphic computing community because of its potential
to implement neural networks by directly harnessing the materials,
as opposed to building traditional von Neumann architectures that
then are engineered to “simulate” neural networks [5, 26].

Perhaps the most exotic reservoir ever proposed is an actual
“reservoir:” a bucket of water [12]. Fernando and Sojakka showed in
2003 that such a system can solve both the XOR and the spoken digit
recognition task. Since then, many material RC implementations
were proposed in several topical areas, including physical reservoir
computing with plants [39].

Without claiming this to be a comprehensive review, we shall
mention some selected and recent work below in each of these
areas. For a comprehensive review of physical RC, see (7, 46].

Mem-element-based RC. Mem-based RC goes back to 2014 [22].
Du et al. [11] experimentally implemented a RC system using a
dynamic memristor array. They showed that a system with only 88
memristors is sufficient for solving a reduced 22 x 20 pixel MNIST
handwritten digit recognition task. Hochstetter et al. [20] used
nanowire networks (their junctions show memristive behavior) as
reservoirs and showed that information processing in such systems
is optimal when the dynamical states are a the edge of chaos. Lilak et
al. [26] used atomic switch networks (which also show memristive
behavior) built from silver iodide (AgI) junctions to implement
reservoirs. Early work with memcapacitive devices used for RC
was published by Tran et al. [48, 49]. Instead of a reservoir built
from a random assembly of memristors, they used memcapacitors.
Because of the lack of static power consumption, memcapacitive
reservoirs are significantly more power-efficient than memristive
reservoirs. Zhang et al. [53] used perovskite NdNiO3 devices that
can be reconfigured on demand to act as various neuromorphic
building blocks. They demonstrated the capabilities of their novel
devices by using a RC approach. More recently, Pei et al. [38] used
oxide-based memcapacitive synapse (OMC) based on Zr-doped
HfO2 (HZO) to demonstrate a power-efficient and multisensory
processing reservoir computing system. The power consumption
of their RC implementation outperforms most resistive reservoirs.

Biological RC. . The goal of using biological components for RC is
generally to provide a computational platform that is biocompatible,
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allows for learning and adaptation, is ultra-low power, and that can
be used on or inside a human body, and interact directly with bodily
fluids, cells, and tissues. In 2020, Nguyen et al. [36] proposed a RC
system that is based on random DNA strand displacement chem-
istry. Liu and Parhi [28] took a different approach: they used DNA
memristors build from five DNA strand displacement reactions
to implement a RC. More recently, Cucchi et al. [8] used organic
electrochemical transistors for biosignal RC processing and Sumi
et al. [44] employed culture, micropatterned biological neuronal
networks as a reservoir.

Quantum and superconducting RC. The first quantum RC system
was proposed by Obst et al. [37]. They used a system of Cadmium
Selenide (CdSe) quantum dots for their reservoir. Fujii and Naka-
jima [13] exploited the natural quantum dynamics of ensemble
systems for RC (in simulation). Gosh et al. [17] use numerical sim-
ulations to model a quantum reservoir with a set of fermions (e.g.,
quantum dots) that were arranged in a 2D lattice with random
nearest-neighbor hopping. Govia et al. [19] proposed a continuous
variable quantum RC based on a single nonlinear oscillator. Their
results demonstrate that a simple quantum RC could be physically
realized on future quantum hardware. In 2021, Rowlands et al. [42]
proposed a RC based on superconducting Josephson transmission
line formed by Josephson junctions. Using numerical simulations
only, they showed that such circuits can do signal processing at 100
Gb/s. Suzuki et al. [45] were the first to experimentally demonstrate
physical quantum RC by using IBM’s superconducting quantum
processors.

Photonic RC. In 2014, Vandoorne et al. [51] proposed the first
integrated passive silicon photonics reservoir. Nakajima et al. [35]
demonstrated a scalable on-chip photonic implementation of a
RC using an integrated coherent linear photonic processor. “Pho-
tonic neuromorphic computing is of particular interest due to its
significant potential for ultrahigh computing speed and energy
efficiency” More recently, Liu et al. [27] demonstrated an opto-
electronic synapse based on a-In2Se3 with controllable temporal
dynamics that they used for multimode and multiscale reservoir
computing. Their implementation is one of the few fully analog RC
realizations.

3 CHALLENGES, OPEN QUESTIONS, AND NEW
TRENDS

In a 2016 paper, Goudarzi and Teuscher [18] proposed a set of 11
open problems that they suggested the community should answer
in order to bring RC to solve more complex real-world problems,
such as real-time video processing, real-time control problems,
implementing cyber-physical and embedded systems, and designing
cognitive systems. Several of these questions now have answers,
some have become irrelevant, and some are still open. Here, we
will focus solely on (1) the hardware-related questions that are still
open, (2) on new questions, (3) on new challenges that the field
needs to address, and (4) on new trends.

Limited size and complexity of RC hardware. Perhaps one of the
biggest issues of current material RC is the lack of large(er) scale
physical implementations. To the best of our knowledge Du et al.
[11] implemented the largest memristor-based RC system so far,



Material and Physical Reservoir Computing for Beyond CMOS Electronics: Quo Vadis?

consisting of a 32 X 32 crossbar array. While they were able to solve
a reduced MNIST classification task, the size of the crossbar is still
far too small for solving interesting real-world problems.

Optimal reservoir size and topology. It remains more of an art
rather than a science to determine the necessary and sufficient size
of a reservoir for a given problem. To address this challenge, some
groups have proposed algorithms to incrementally grow the size
and the topology of reservoirs. Qiao et als [40] simulation results
showed that incrementally grown reservoirs (in simulation) lead
to better prediction performance and faster learning compared to
fixed-size and fixed-topology reservoirs. Li and Li [25] proposed a
novel approach to automatically determine the depth of a multilayer
reservoirs by using a growth algorithm.

Lifelong learning. Most machine learning approaches assume
a fixed, never-changing dataset that is use to train a neural net-
work that will also be fixed. However, that is often not appropriate
for real-world problems where new data is continuously added
to a dataset. Lifelong Learning (LL) aims to develop systems that
continuously learn from new data, without forgetting previously
acquired knowledge. Bereska and Gavves [1] recently proposed a
first method to continuously train a RC. Combined with (physically)
growing reservoirs, this could be turned into a powerful platform
for lifelong learning.

Alternative readout layers. The question whether more complex
readout layers could benefit RC has been considered for a while,
e.g., [2]. However, the approach recently emerged under a new
term: Next Generation RC (NGRC). The basic idea of NGRC is to
shift some of the non-linearity from the reservoir to the readout
layers so that less data is required and fewer hyperparameters need
to be optimized [16, 54]. This would make NGRC more suitable
for complex tasks. NCGC would relatively straightforward to im-
plement in hardware, however. It is an open question how much
of the non-linearity should be shifted and how that will affect the
learning complexity, the RC performance, and the overall hardware
complexity.

Minimal architectures. It has been shown recently that random-
ness is not essential in reservoirs. The linear and non-linear combi-
nations obtained from the input data can be constructed in various
ways, not just by a random reservoir. The limitation, however, is
that for high-dimensional and nonlinear data, the number of these
combinations explodes. Ma, Prosperino, and Rith [30] showed that
“[...] a few simple changes to the traditional reservoir computer
architecture further minimizing computational resources lead to
significant and robust improvements in short- and long-term pre-
dictive performances compared to similar models while requiring
minimal sizes of training data sets.” In their novel RC architecture,
they separately fed combinations of input data separately into the
reservoir, which is composed as a block-diagonal matrix of ones.
The reservoir then acts as an averaging operator for the reservoir
states during each update step.

While their approach simplifies the architecture and takes the
randomness away, one at the same time loses a key benefit of RC
for material computing: the fact that reservoirs don’t need to be
uniform, structured, perfect, and deterministic.
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Hierarchical and modular RC. Digital systems are modular and
hierarchical, forming various layers of abstraction: a set of tran-
sistors forms a logic gate, a set of logic gates forms a circuit, and
circuits form the basis of architectures. Most RC systems are mono-
lithic, which limits their computational capabilities because such
networks are not easily scalable by simply increasing the num-
ber of nodes within a given reservoir. The idea of hierarchical
reservoirs is not new. Triefenbach et al. [50], for example, used
hierarchical reservoirs for phoneme recognition. In 2015, Biirger
et al. [3] demonstrated that hierarchical reservoirs can outper-
form monolithic reservoir systems. More recent work also showed
that hierarchical/modular reservoirs perform significantly better
than monolithic reservoirs [9, 34]. As Moon et al. stated, “[w]hile
software-based RC systems have broad design options such as ag-
gressively expanding the reservoir size and inserting encoder layers
between sub-reservoirs, several constraints have to be considered
when designing hardware-based RC systems. For instance, phys-
ically connecting the nodes is not trivial because the complexity
of routing large number of devices grows exponentially when the
size of reservoir increases. Moreover, if the device is passive, active
components that control the signal flows from one device to others
should be also carefully designed. Due to these physical constraints,
hardware-based RC systems have not shown as fast improvement
in performance as software-based RC systems, even though several
studies have demonstrated promising features of hardware-based
RC systems such as power-efficiency and computing speed” [34].

Deep RC. The basic idea of deep RC is to use reservoirs as build-
ing blocks to create a deep, hierarchical pipeline for solving more
complex tasks [14, 15]. The dynamics and training of such systems
is not well understood. Actual hardware implementations remain
elusive.

Multitasking RC. RC is inherent capable to solve multiple tasks
concurrently. Recent work comes from Loeffler et al. [29]. They
evaluated the performance of a physical neuro-memristive RC for
two simultaneous tasks and showed that the structural reservoir
properties play an important role.

Adaptive reservoirs. In most RC setups, the reservoir is “fixed”
and left to its own, complex, nonlinear dynamics. However, it is
often very beneficial to adapt the reservoir for optimal information
processing. This is sometimes called “meta-learning” because the
reservoir learns to learn [43]. Tuning a hardware reservoir is often
rather easily possible as one has some control over the physical pro-
cesses, e.g. growth parameters for nanowire networks. One could,
however, also imagine that some tuning and adaption happens dy-
namically, as part of the training process, but perhaps on a different
timescale. To the best of our knowledge, dynamic reservoir tuning
has not been explored.

Materials for RC. A key question for PRC is what materials are
appropriate as a reservoir. This question goes back to the begin-
nings of evolvable hardware [32]. A timely 2022 article by Cucci et
al. [7] aims “[....] to give readers from fields such as material science,
chemistry, or electronics an overview of implementing a reservoir
computing (RC) experiment with her/his material system.” Their
article highlights “[...] the potential of RC for hardware-based neu-
ral networks, the advantages over more traditional approaches, and
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the obstacles to overcome for their implementation.” In separate
sections, and among many other relevant details, the authors pro-
vide (1) a recipe for PRC, (2) a list of properties that make up a good
reservoir, and (3) a condensed summary of how to implement and
train a PRC.

4 A PATHFORWARD AND A CALL FOR
ACTION

Revolutionary advances in PRC require the design, synthesis, un-
derstanding, processing, and integration of advanced materials. As
Cucchi et al. state: “Analog data processing using nonlinear mate-
rial systems is a rapidly-growing field that is envisioned to bring
about novel computational substrates and paradigms where latency
and power dissipation are minimized. However, there is a consider-
able mismatch between the algorithmic implementation of Al on
digital machines and the physical realization of physical/hardware
computing networks used in material science” [7].

In the following, we identify four specific areas in which we
believe progress needs to made.

Identify physical substrates. A better, more systematic approach
and engineering framework to identify and evaluate complex phys-
ical materials for computation is needed. Nanotechnology bears
unique opportunities to engineer, grow, and self-assemble novel
physical substrates with unique properties that can potentially be
harnessed for computation. We imagine creating a taxonomy of the
different materials and categories that have potential for PRC.

Scaling up hardware. Composability and hierarchy are key to
building large(er) PRC systems that scale up to tasks of significant
complexity. All current PRC hardware is of very limited in size
and complexity, which prevents solving relevant real-world tasks.
How can we engineer PRC with millions or billions of parameters,
perhaps of the scale of the current GPT-3 autoregressive language
model, which has 175 billion parameters.

Scaling up programmability. GPT-3 was trained on hundreds of
billions of words. How can PRC reach that scale (on large-scale
hardware) while also providing lifelong learning capabilities?

Co-design. Computationally- and energy-efficient PRC systems
are best designed by a co-design approach that involves devices,
materials, interconnects, physical phenomena, algorithms, and even
applications. We suggest that next generation PRC needs to rely on
an integrative co-design approach that considers all levels of the
computing stack.

5 CONCLUSION

For decades, the computing disciplines have relied on a a steady
annual performance increase of processors. That trend has come
to a rather screeching halt. Much of the focus of today’s computer
architecture research is geared to overcome the inefficiencies of
general-purpose processors that are based on CMOS technology
and the von Neumann architecture. However, the emergence of
new applications and application domains has altered the require-
ments on computers in various ways. Neuromorphic computing
and engineering is perhaps the best known example of a current
application domain where we have seen great efforts over the last
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decade to build highly specialized and highly efficient architectures
that helped to enable the recent success of artificial intelligence and
machine learning applications. Specialization—with the goal to op-
timize performance and power/energy consumption—can happen
at various levels of the entire compute stack. For the most part, such
specialization involves architectures and computing paradigms be-
yond CMOS, beyond von Neumann, and (more) often even beyond
Boolean representations. Specialization, as its name says, comes
obviously at the cost of losing the ability of general-purpose com-
putation. This is nicely illustrated in by Pieters’ et al. plant RC:
“[...] the results indicate that plants are not suitable for general-
purpose computation but are well-suited for eco-physiological tasks
such as photosynthetic rate and transpiration rate. [...] This first
demonstration of physical reservoir computing with plants is key
for transitioning towards a holistic view of phenotyping and early
stress detection in precision agriculture applications since physical
reservoir computing enables us to analyse plant responses in a
general way: environmental changes are processed by plants to
optimise their phenotype” [39].

Material computing has attracted increasing attention recently
precisely for that reason: it allows for solving computational prob-
lems for which traditional, general-purpose architectures are not ef-
ficient. By eliminating abstraction layers and by harnessing unique
physical properties of materials more directly, material computing
has the potential to lead to information processing fabrics that
are more computationally efficient, more power efficient, and sim-
pler/cheaper to fabricate. In addition, PRC has great potential for
physically “embedding” computing in a substrate by using the sub-
strate itself do perform the computation. E.g., a plant-based RC
could monitor an ecosystem, a DNA-based RC could monitor glu-
cose levels in a human body, a bacterial RC could detect pathogens.

A broad success of PRC will be contingent on finding solutions
to the open questions and challenges as outlined in this paper.
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