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Abstract

We study the implicit bias of gradient flow on linear equivariant steerable networks
in group-invariant binary classification. Our findings reveal that the parameterized
predictor converges in direction to the unique group-invariant classifier with a
maximum margin defined by the input group action. Under a unitary assumption on
the input representation, we establish the equivalence between steerable networks
and data augmentation. Furthermore, we demonstrate the improved margin and
generalization bound of steerable networks over their non-invariant counterparts.

1 Introduction

Despite recent theoretical breakthroughs in deep learning, it is still largely unknown why overparam-
eterized deep neural networks (DNNs) with infinitely many solutions achieving near-zero training
error can effectively generalize on new data. However, the consistently impressive results of DNNs
trained with first-order optimization methods, e.g., gradient descent (GD), suggest that the training
algorithm is implicitly guiding the model towards a solution with strong generalization performance.

Indeed, recent studies have shown that gradient-based training methods effectively regularize the
solution by implicitly minimizing a certain complexity measure of the model [Vardi, 2022]. For
example, Gunasekar et al. [2018b] showed that in separable binary classification, the linear predictor
parameterized by a linear fully-connected network trained under GD converges in the direction of
a max-margin support vector machine (SVM), while linear convolutional networks are implicitly
regularized by a depth-related bridge penalty in the Fourier domain. Yun et al. [2021] extended this
finding to linear tensor networks. Lyu and Li [2020] and Ji and Telgarsky [2020] established the
implicit max-margin regularization for (nonlinear) homogeneous DNNs in the parameter space.

On the other hand, another line of research aims to explicitly regularize DNNs through architectural
design to exploit the inherent structure of the learning problem. In recent years, there has been
a growing interest in leveraging group symmetry for this purpose, given its prevalence in both
scientific and engineering domains. A significant body of literature has been devoted to designing
group-equivariant DNNs that ensure outputs transform covariantly to input symmetry transformations.
Group-equivariant steerable networks represent a general class of symmetry-preserving models that
achieve equivariance with respect to any pair of input-output group actions [Cohen et al., 2019, Weiler
and Cesa, 2019, Cohen and Welling, 2017]. Empirical evidence suggests that equivariant steerable
networks yield substantial improvements in generalization performance for learning tasks with group
symmetry, especially when working with limited amounts of data.

There have been several recent attempts to account for the empirical success of equivariant steerable
networks through establishing a tighter upper bound on the test risk for these models. This is
typically accomplished by evaluating the complexity measures of equivariant and non-equivariant
models under the same norm constraint on the network parameters [Sokolic et al., 2017, Sannai
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et al., 2021, Elesedy, 2022]. Nevertheless, it remains unclear whether or why a GD-trained steerable
network can achieve a minimizer with a parameter norm comparable to that of its non-equivariant
counterpart. Consequently, the effectiveness of such complexity-measure-based arguments to explain
the generalization enhancement of steerable networks in group symmetric learning tasks may not be
directly applicable.

In light of the above issues, in this work, we aim to fully characterize the implicit bias of the
training algorithm on linear equivariant steerable networks in group-invariant binary classification.
Our result shows that when trained under gradient flow (GF), i.e., GD with an infinitesimal step
size, the steerable-network-parameterized predictor converges in direction to the unique group-
invariant classifier attaining a maximum margin with respect to a norm defined by the input group
representation. This result has three important implications: under a unitary input group action,

• a linear steerable network trained on the original data set converge in the same direction as
a linear fully-connected network trained on the group-augmented data set. This suggests the
equivalence between training with linear steerable networks and data augmentation;

• when trained on the same original data set, a linear steerable network always attains a wider
margin on the group-augmented data set compared to a fully-connected network;

• when the underlying distribution is group-invariant, a GF-trained linear steerable network
achieves a tighter generalization bound compared to its non-equivariant counterpart. This
improvement in generalization is not necessarily dependent on the group size, but rather it
depends on the support of the invariant distribution.

Before we end this section, we note that a similar topic has recently been explored by Lawrence et al.
[2021] in the context of linear Group Convolutional Neural Networks (G-CNNs), a special case of
the equivariant steerable networks considered in this work. However, we point out that the models
they studied were not truly group-invariant, and thus their implicit bias result does not explain the
improved generalization of G-CNNs. We will further elaborate on the comparison between our work
and [Lawrence et al., 2021] in Section 2.

2 Related work

Implicit biases: Recent studies have shown that for linear regression with the logistic or exponential
loss on linearly separable data, the linear predictor under GD/SGD converges in direction to the
max-L2-margin SVM [Soudry et al., 2018, Nacson et al., 2019, Gunasekar et al., 2018a]. These
results are extended to linear fully-connected networks and linear Convolutional Neural Networks
(CNNs) by Gunasekar et al. [2018b] under the assumption of directional convergence and alignment
of the network parameters, which are later proved by Ji and Telgarsky [2019a,b], Lyu and Li [2020],
Ji and Telgarsky [2020]. The implicit regularization of gradient flow (GF) is further generalized
to linear tensor networks by Yun et al. [2021]. For overparameterized nonlinear networks in the
infinite-width regime, rigorous analysis on the optimization of DNNs has also been studied from the
neural tangent kernel [Jacot et al., 2018, Du et al., 2019, Allen-Zhu et al., 2019] and the mean-field
perspectives [Mei et al., 2019, Chizat and Bach, 2018]. However, these models are not explicitly
designed to be group-invariant/equivariant, and the implicit bias of gradient-based methods might
guide them to converge to sub-optimal solutions in learning tasks with intrinsic group symmetry.

Equivariant neural networks. Since their introduction by Cohen and Welling [2016], group
equivariant network design has become a burgeoning field with numerous applications from computer
vision to scientific computing. Unlike the implicit bias induced by training algorithms, equivariant
networks explicitly incorporate symmetry priors into model design through either group convolutions
[Cheng et al., 2019, Weiler et al., 2018, Sosnovik et al., 2020, Zhu et al., 2022] or, more generally,
steerable convolutions [Weiler and Cesa, 2019, Cohen et al., 2019, Worrall et al., 2017]. Despite their
empirical success, it remains largely unknown why and whether equivariant networks trained under
gradient-based methods actually converge to solutions with smaller test risk in group-symmetric
learning tasks [Sokolic et al., 2017, Sannai et al., 2021]. In a recent study, Elesedy and Zaidi [2021]
demonstrated a provably strict generalisation benefit for equivariant networks in linear regression.
However, the network studied therein is non-equivariant and only symmetrized after training; such
test-time data augmentation is different from practical usage of equivariant networks.
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Comparison to Lawrence et al. [2021]. A recent study by Lawrence et al. [2021] also analyzes
the implicit bias of linear equivariant G-CNNs, which are a special case of the steerable networks
considered in this work. However, the networks studied therein are not truly equivariant/invariant.
More specifically, the input space X0 they considered is the set of functions on the group G, i.e.,
X0 = {f : G→ R}, and the input G-action is given by the regular representation

[ρ0(g)f ](g
′) = f(g−1g′), ∀g ∈ G, ∀f ∈ X0. (1)

In their case, due to the transitivity of the regular representation (1), G-invariant linear functions
Φ : X0 → R are constrained to the (trivial) form:

Φ(f) = C
∑

g∈G

f(g),

where C is a multiplicative constant. To avoid learning this trivial function, Lawrence et al. [2021]
chose to parameterize Φ using a linear G-CNN, in which the final layer is replaced by a fully-
connected layer. While this fully-connected layer provides the capability to learn more complex
and nontrivial functions, it simultaneously undermines the property of group invariance. Therefore,
their implicit bias result does not explain the improved generalization of G-CNNs. In contrast, we
assume Euclidean inputs with non-transitive group actions, allowing linear steerable networks to
learn non-trivial group-invariant models.

3 Background and problem setup

We provide a brief background in group theory and group-equivariant steerable networks. We also
explain the setup of our learning problem for group-invariant binary classification.

3.1 Group and group equivariance

A group is a set G equipped with a binary operator, the group product, satisfying the axioms of
associativity, identity, and invertibility. We always assume in this work that G is finite, i.e., |G| <∞,
where |G| denotes its cardinality.

Given a vector space X , let GL(X ) be the general linear group of X consisting of all invertible linear
transformations on X . A map ρ : G → GL(X ) is called a group representation (or linear group
action) of G on X if ρ is a group homomorphism from G to GL(X ), namely

ρ(gh) = ρ(g)ρ(h) ∈ GL(X ), ∀g, h ∈ G. (2)

When the representation ρ is clear from the context, we also abbreviate the group action ρ(g)x as gx.

Given a pair of vector spaces X ,Y and their respective G-representations ρX and ρY , a linear map
Ψ : X → Y is said to be G-equivariant if it commutes with the G-representations ρX and ρY , i.e.,

Ψ ◦ ρX (g) = ρY(g) ◦Ψ, ∀g ∈ G. (3)

Linear equivariant maps are also called intertwiners, and we denote by HomG(ρX , ρY) the space of
all intertwiners satisfying (3). When ρY ≡ Id is the trivial representation, then Ψ[ρX (g)(x)] = Ψ[x]
for all x ∈ X ; namely, Ψ becomes a G-invariant linear map.

3.2 Equivariant steerable networks and G-CNNs

Let X0 = R
d0 be a d0-dimensional input Euclidean space, equipped with the usual inner product.

Let ρ0 : G→ GL(X0) be a G-representation on X0. Suppose we have an unknown target function

f∗ : X0 = R
d0 → R that is G-invariant under ρ0, i.e., f∗(gx) := f∗(ρ0(g)x) = f∗(x) for all g ∈ G

and x ∈ X0. The goal of equivariant steerable networks is to approximate f∗ using an L-layer neural
network f = ΨL ◦ΨL−1 ◦ · · · ◦Ψ1 that is guaranteed to be also G-invariant.

Since the composition of equivariant maps is also equivariant, it suffices to specify a collection of
G-representation spaces {(Xl, ρl)}Ll=1, with (XL, ρL) = (R, Id) being the trivial representation, such
that each layer Ψl ∈ HomG(ρl−1, ρL) : Xl−1 → Xl is G-equivariant. Equivalently, we want the
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following diagram to be commutative,

X0 X1 X2 · · · XL−1 XL

X0 X1 X2 · · · XL−1 XL

ρ0(g)

Ψ1

ρ1(g)

Ψ2

ρ2(g)

Ψ3
ΨL−1

ρL−1(g)

ΨL

ρL(g)

Ψ1 Ψ2 Ψ3
ΨL−1 ΨL

, ∀g ∈ G. (4)

Equivariant steerable networks. Given the representations {(Xl, ρl)}Ll=0, a (linear) steerable
network is constructed as follows. For each l ∈ [L] := {1, · · · , L}, we choose a finite collection

of Nl (pre-computed) intertwiners {ψj
l }

Nl

j=1 ⊂ HomG(ρl−1, ρl). Typically, {ψj
l }

Nl

j=1 is a basis of

HomG(ρl−1, ρl), but it is not necessary in our setting. The l-th layer equivariant map Ψsteer
l : Xl−1 →

Xl of a steerable network is then parameterized by

Ψsteer
l (x;wl) =

∑

j∈[Nl]

wj
l ψ

j
l (x), ∀x ∈ Xl−1, (5)

where the coefficients wl = [wj
l ]

>
j∈[Nl]

∈ R
Nl are the trainable parameters of the l-th layer. An

L-layer linear steerable network fsteer(x;W) is then defined as the composition

fsteer(x;W) = Ψsteer
L (· · ·Ψsteer

2 (Ψsteer
1 (x;w1);w2) · · · ;wL), (6)

where W = [wl]
L
l=1 ∈∏L

l=1 R
Nl =: Wsteer is the collection of all trainable parameters. The network

fsteer(x;W) defined in (6) is referred to as a steerable network because it steers the layer-wise output
to transform according to any specified representation.

G-CNNs. A special case of the steerable networks is the group convolutional neural network
(G-CNN), wherein the hidden representation space (Xl, ρl) for each l ∈ [L− 1] is set to

Xl = (Rdl)G = {xl : G→ R
dl}, ρl(g)xl(h) := xl(g

−1h) ∈ R
d1 , ∀g, h ∈ G. (7)

The representation ρl ∈ GL(Xl) in (7) is known as the regular representation of G. Intuitively,
xl ∈ Xl can be viewed as a matrix of size dl × |G|, and ρl(g) is a permutation of the columns of xl.

With this choice of {(Xl, ρl)}Ll=0, the first-layer equivariant map of a G-CNN is defined as

ΨG-CNN
1 (x;w1)(g) = w>

1 g
−1x ∈ R

d1 , ∀x ∈ R
d0 , (8)

where w1 = (wj,k
1 )j,k ∈ R

d0×d1 are the trainable parameters of the first layer. Eq. (8) is called

a G-lifting map as it lifts a Euclidean signal x ∈ R
d0 to a function ΨG-CNN

1 (x;w1) on G. For the
subsequent layers, equivariance is achieved through group convolutions, and the readers are referred
to the appendix for a detailed explanation.

Assumptions on the representations. The input representation ρ0 ∈ GL(X0 = R
d0) is assumed to

be given, and ρL ≡ 1 ∈ GL(XL = R) is set to the trivial representation for group-invariant outputs.
In this work, we make the following special choices for the first-layer representation (ρ1,X1) as well
as the equivariant map Ψsteer

1 (x,w1) in a general steerable network.

Assumption 3.1. We adopt the regular representation (7) for the first layer, and set the first-layer
equivariant map Ψsteer

1 (x;w1) to the G-lifting map (8).

Remark 3.2. The rationale of Assumption 3.1 is for the network to have enough capacity to
parameterize any G-invariant linear classifier; this will be further explained in Proposition 3.6.
We note that the representations (ρl,Xl) and steerable maps Ψsteer

l (x,wl) for all subsequent layers,
l ∈ {2, · · · , L− 1}, can be arbitrary.

Under Assumption 3.1, we can characterize the linear steerable networks fsteer(·;W) in the following
proposition.

Proposition 3.3. Let fsteer(x;W) be the linear steerable network satisfying Assumption 3.1, where
W = [wl]

L
l=1 ∈ Wsteer is the collection of all model parameters. There exists a multi-linear map

M : (w2, · · · ,wL) 7→M(w2, · · · ,wL) ∈ R
d1 such that for all x ∈ R

d0 and W ∈ Wsteer,

fsteer(x;W) = fsteer(x;W) = 〈x,w1M(w2, · · · ,wL)〉 , (9)

where x := 1
|G|
∑

g∈G gx is the average of all elements on the group orbit of x ∈ R
d0 .
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Although a straightforward proof of Proposition 3.3 can be readily derived using Schur’s Lemma,
we have opted to include an elementary proof of Proposition 3.3 in the appendix for the sake of
completeness. If we define

P steer(W) := w1M(w2, · · · ,wL), Psteer(W) :=


 1

|G|
∑

g∈G

g>


P steer(W), (10)

where g> := ρ0(g)
>, then

fsteer(x;W) = 〈x,Psteer(W)〉 =
〈
x,P steer(W)

〉
. (11)

By the multi-linearity of M(w2, · · · ,wL), one can verify that fsteer(x;W), Psteer(W), and

P steer(W) are all L-homogeneous in W; that is, for all ν > 0 and W ∈ Wsteer,

fsteer(x; νW) = νLfsteer(x;W), Psteer(νW) = νLPsteer(W), P steer(νW) = νLP steer(W). (12)

Remark 3.4. In comparison, an L-layer linear fully-connected network ffc(x;W) is given by

ffc(x;W) = w>
Lw

>
L−1 · · ·w>

1 x = 〈x,Pfc(W)〉 , Pfc(W) := w1 · · ·wL. (13)

where W = [wl]
L
l=1 ∈ Wfc :=

(∏L−1
l=1 R

dl−1×dl

)
× R

dL−1 . It is worth noting that when G = {e}
is the trivial group, a linear fully-connected network ffc(x;W) is identical with a linear G-CNN,
which is a special case of linear steerable networks. See Remark A.1 for details.

3.3 Group-invariant binary classification

Consider a binary classification data set S = {(xi, yi) : i ∈ [n]}, where xi ∈ R
d0 and yi ∈

{±1}, ∀i ∈ [n]. We assume that S are i.i.d. samples from a G-invariant distribution D defined below.

Definition 3.5. A distribution D over R
d0 × {±1} is said to be G-invariant with respect to a

representation ρ0 ∈ GL(Rd0) if

(ρ0(g)⊗ Id)∗ D = D, ∀g ∈ G, (14)

where (ρ0(g) ⊗ Id)(x, y) := (ρ0(g)x, y), and (ρ0(g)⊗ Id)∗ D := D ◦ (ρ0(g)⊗ Id)
−1

is the push-
forward measure of D under ρ0(g)⊗ Id.

It is easy to verify that the Bayes optimal classifier f∗ : R
d0 → {±1} (the one achieving the

smallest population risk) for a G-invariant distribution D is necessarily a G-invariant function, i.e.,
f∗(gx) = f∗(x), ∀g ∈ G. Therefore, to learn f∗ using (linear) neural networks, it is natural to
approximate f∗ using an equivariant steerable network

f∗(x) ≈ sign (fsteer(x;W)) = sign (〈x,Psteer(W)〉) . (15)

After choosing the exponential loss `exp : R×{±1} → R+, `exp(ŷ, y) := exp(−ŷy), as a surrogate
loss function, the empirical risk minimization over S for the steerable network fsteer(x;W) becomes

min
W∈Wsteer

LPsteer
(W;S) :=

n∑

i=1

`exp(〈xi,Psteer(W)〉 , yi) =
n∑

i=1

`exp(
〈
xi,P steer(W)

〉
, yi). (16)

On the other hand, since Psteer(W) = β ∈ R
d0 always corresponds to aG-invariant linear predictor—

we have slightly abused the notation by identifying β ∈ R
d0 with the map x 7→ 〈x,β〉—one can

alternatively consider the empirical risk minimization directly over the invariant linear predictors β:

min
β∈R

d0
G

L(β;S) :=
n∑

i=1

`exp(〈xi,β〉 , yi), (17)

where R
d0

G ⊂ R
d0 is the subspace of all G-invariant linear predictors, which is characterized by the

following proposition.

Proposition 3.6. Let Rd0

G ⊂ R
d0 be the subspace of G-invariant linear predictors, i.e., Rd0

G ={
β ∈ R

d0 : β>x = β>gx, ∀x ∈ R
d0 , ∀g ∈ G

}
. Then
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(a) R
d0

G is characterized by

R
d0

G =
⋂

g∈G

ker(I − g>) = Range


 1

|G|
∑

g∈G

g>


 . (18)

(b) Let A : Rd0 → R
d0 be the group-averaging map,

A(β) := β =
1

|G|
∑

g∈G

gβ. (19)

Then its adjoint A> : β 7→ 1
|G|
∑

g∈G g
>β is a projection operator from R

d0 to R
d0

G . In

other words, Range(A>) = R
d0

G and A> ◦ A> = A>.

(c) IfG acts unitarily on X0, i.e., ρ0(g
−1) = ρ0(g)

>, then A = A> is self-adjoint. This implies

that A : β 7→ β is an orthogonal projection from R
d0 onto R

d0

G . In particular, we have

β = β ⇐⇒ β ∈ R
d0

G , and ‖β‖ ≤ ‖β‖, ∀β ∈ R
d0 . (20)

Proposition 3.6 combined with (10) demonstrates that a linear steerable network fsteer(·;W) =

〈·,Psteer(W)〉 can realize any G-invariant linear predictor β ∈ R
d0

G ; that is, {Psteer(W) : W ∈
Wsteer} = R

d0

G . Therefore (16) and (17) are equivalent optimization problems parameterized in
different ways. However, minimizing (16) using gradient-based methods may potentially lead to
different classifiers compared to those obtained from optimizing (17) directly.

Gradient flow. Given an initialization W(0) ∈ Wsteer, the gradient flow {W(t)}t≥0 for (16) is the
solution of the following ordinary differential equation (ODE),

dW

dt
= −∇WLPsteer

(W;S) = −∇W

[
n∑

i=1

`exp(〈xi,Psteer(W)〉 , yi)
]
. (21)

The purpose of this work is to inspect the asymptotic behavior of the G-invariant linear predictors
βsteer(t) = Psteer(W(t)) parameterized by the linear steerable network trained under gradient flow

(21). In particular, we aim to analyze the directional limit of βsteer(t) as t→ ∞, i.e., limt→∞
βsteer(t)

‖βsteer(t)‖ .

Before ending this section, we make the following assumption on the gradient flow W(t) that also
appears in the prior works Ji and Telgarsky [2020], Lyu and Li [2020], Yun et al. [2021].

Assumption 3.7. The gradient flow W(t) satisfies LPsteer
(W(t0);S) < 1 for some t0 > 0.

This assumption implies that the data set S = {(xi, yi) : i ∈ [n]} can be separated by a G-invariant
linear predictor Psteer(W(t0)), and our analysis is focused on the “late phase" of the gradient flow
training as t→ ∞.

4 Implicit bias of linear steerable networks

Our main result on the implicit bias of gradient flow on linear steerable networks in binary classifica-
tion is summarized in the following theorem.

Theorem 4.1. Under Assumption 3.1 and Assumption 3.7, let βsteer(t) = Psteer(W(t)) be the time-
evolution of the G-invariant linear predictors parameterized by a linear steerable network trained
with gradient flow on the data set S = {(xi, yi) : i ∈ [n]}; cf. Eq. (21). Then

(a) The directional limit β∞
steer = limt→∞

βsteer(t)
‖βsteer(t)‖ exists and β∞

steer ∝ 1
|G|
∑

g∈G g
>γ∗, where

γ∗ is the max-L2-margin SVM solution for the transformed data S = {(xi, yi) : i ∈ [n]}:

γ∗ = arg min
γ∈Rd0

‖γ‖2, s.t. yi 〈xi,γ〉 ≥ 1, ∀i ∈ [n]. (22)

Furthermore, if G acts unitarily on the input space X0, i.e., g−1 = g>, then β∞
steer ∝ γ∗.
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(b) Equivalently, β∞
steer is proportional to the unique minimizer β∗ of the problem

β∗ = arg min
β∈Rd0

‖ProjRange(A)β‖2, s.t. β ∈ R
d0

G , and yi 〈xi,β〉 ≥ 1, ∀i ∈ [n], (23)

where ProjRange(A) is the projection from R
d0 to Range(A) = Range

(
1
|G|
∑

g∈G g
)

. More-

over, if G acts unitarily on X0, then

β∞
steer ∝ β∗ = arg min

β∈Rd0

‖β‖2, s.t. β ∈ R
d0

G , and yi 〈xi,β〉 ≥ 1, ∀i ∈ [n]. (24)

Namely, β∞
steer achieves the maximum L2-margin among all G-invariant linear predictors.

Theorem 4.1 suggests that gradient flow implicitly guides a linear steerable network toward the
unique G-invariant classifier with a maximum margin defined by the input representation ρ0.

Remark 4.2. According to Remark 3.4, when G = {e} is a trivial group, then a linear G-CNN
(which is a special case of linear steerable networks) reduces to a fully-connected network ffc(x;W).
Since the representation of a trivial group is always unitary, we have the following corollary which
also appeared in Ji and Telgarsky [2020] and Yun et al. [2021].

Corollary 4.3. Let {W(t)}t≥0 ⊂ Wfc be the gradient flow of the parameters when training a linear
fully-connected network on the data set S = {(xi, yi), i ∈ [n]}, i.e.,

dW

dt
= −∇WLPfc

(W;S) := −∇W

[
n∑

i=1

`exp(〈xi,Pfc(W)〉 , yi)
]
. (25)

Then the classifier βfc(t) = Pfc(W(t)) converges in a direction that aligns with the max-L2-margin
SVM solution γ∗ for the original data set S = {(xi, yi) : i ∈ [n]},

γ∗ = arg min
γ∈Rd0

‖γ‖2, s.t. yi 〈xi,γ〉 ≥ 1, ∀i ∈ [n]. (26)

Remark 4.4. While Theorem 4.1 provides a complete characterization of the implicit bias exhibited
by gradient flow in linear steerable networks, it is imperative to note that the convergence rate
to the directional limit is, in fact, exponentially slow. This is consistent with the findings in, e.g.,
[Soudry et al., 2018, Yun et al., 2021]. A comprehensive analysis of gradient flow behavior in a
non-asymptotic regime falls outside the scope of this current study.

5 The equivalence between steerable networks and data augmentation

Compared to hard-wiring symmetry priors into model architectures through equivariant steerable
networks, an alternative approach to incorporate symmetry into the learning process is by training a
non-equivariant model with the aid of data augmentation. In this section, we demonstrate that these
two approaches are equivalent for binary classification under a unitary assumption for ρ0.

Corollary 5.1. Let β∞
steer = limt→∞

βsteer(t)
‖βsteer(t)‖ be the directional limit of the linear predictor

βsteer(t) = Psteer(W(t)) parameterized by a linear steerable network trained using gradient flow

on the original data set S = {(xi, yi), i ∈ [n]}. Correspondingly, let β∞
fc = limt→∞

βfc(t)
‖βfc(t)‖ ,

βfc(t) = Pfc(W(t)) (13), be that of a linear fully-connected network trained on the augmented data
set Saug = {(gxi, yi), i ∈ [n], g ∈ G}. If G acts unitarily on X0, then

β∞
steer = β∞

fc . (27)

In other words, the effect of using a linear steerable network for group-invariant binary classification
is exactly the same as conducting data-augmentation for non-invariant models.

Remark 5.2. The equivalence between data augmentation and training with a linear steerable
network is valid only in an asymptotic sense, yet the underlying training dynamics differ substantially.
Specifically, βsteer(t) is assured to maintain G-invariance throughout the training process, whereas
βfc(t) achieves G-invariance solely in the limiting case as t→ ∞. Moreover, the equivalence only
holds for “full-batch" data-augmentation over the entire group orbits.
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Remark 5.3. For Corollary 5.1 to hold, it is crucial that ρ0 ∈ GL(X0) is unitary, as otherwise the
limit direction β∞

fc of a linear fully-connected network trained on the augmented data set is generally

not G-invariant (and hence cannot be equal to β∞
steer ∈ R

d0

G ); see Example 5.4.

Example 5.4. Let G = Z2 = {0, 1}. Consider a (non-unitary) G-representation ρ0 on X0 = R
2,

ρ0
(
0
)
=

[
1 0
0 1

]
, ρ0

(
1
)
=

[
1 0
−1 1

] [
−1 0
0 1

] [
1 0
1 1

]
=

[
−1 0
2 1

]
. (28)

Let S = {(x, y)} = {((1, 2)>,+1)} be a training set with only one point. By Theorem 4.1, the limit
direction β∞

steer of a linear-steerable-network-parameterized linear predictor satisfies

β∞
steer ∝

1

2

∑

g∈G

g>γ∗ =

[
0 1
0 1

]
γ∗ =

[
0 1
0 1

] [
0
1
3

]
=

[
1
3
1
3

]
, (29)

where γ∗ = (0, 13 )
> is the max-margin SVM solution for the transformed data set S = {(x, y)} =

{((0, 3)>,+1)}. On the contrary, by Corollary 4.3, the limit direction β∞
fc of a linear fully-connected

network trained on the augmented data set Saug = {((1, 2)>,+1), ((−1, 4)>,+1)} aligns with the
max-margin SVM solution γ∗

aug for Saug,

β∞
fc ∝ γ∗

aug = arg min
γ∈R2

‖γ‖2, s.t. y 〈x,γ〉 ≥ 1, ∀(x, y) ∈ Saug (30)

= (0.2, 0.4)> 6∝ β∞
steer. (31)

However, we demonstrate below that the equivalence between linear steerable networks and data
augmentation can be re-established for non-unitary ρ0 by defining a new inner product on R

d0 ,

〈v,w〉ρ0

:= v>


 1

|G|
∑

g∈G

ρ0(g)
>ρ0(g)




1/2

w, ∀v,w ∈ X0 = R
d0 . (32)

When ρ0 is unitary, 〈v,w〉ρ0
= 〈v,w〉 is the normal Euclidean inner product. With this new inner

product, we modify the linear fully-connected network and its empirical loss on the augmented data
set Saug = {(gxi, yi) : g ∈ G, i ∈ [n]} as

fρ0

fc (x;W) := 〈x,Pfc(W)〉ρ0
, (33)

Lρ0

Pfc
(W;Saug) :=

∑

g∈G

n∑

i=1

`exp (f
ρ0

fc (gxi;W), yi) =
∑

g∈G

n∑

i=1

`exp

(
〈gxi,Pfc(W)〉ρ0

, yi

)
. (34)

The following corollary shows that, for non-unitary ρ0 on X0, the implicit bias of a linear steerable
network is again the same as that of a modified linear fully-connected network fρ0

fc (x;W) trained
under data augmentation.

Corollary 5.5. Let β∞
steer be the same as that in Corollary 5.1. Let β

ρ0,∞
fc = limt→∞

β
ρ0
fc

(t)

‖βρ0
fc

(t)‖ be

the limit direction of β
ρ0

fc (t) = Pfc(W(t)) under the gradient flow of the modified empirical loss
Lρ0

Pfc
(W;Saug) (34) for a linear fully-connected network on the augmented data set Saug. Then

β∞
steer ∝


 1

|G|
∑

g∈G

ρ0(g)
>ρ0(g)




1/2

β
ρ0,∞
fc . (35)

Consequently, we have 〈x,β∞
steer〉 ∝ 〈x,βρ0,∞

fc 〉ρ0

for all x ∈ R
d0 .

6 Improved margin and generalization

We demonstrate in this section the improved margin and generalization of linear steerable networks
over their non-invariant counterparts. In what follows, we assume ρ0 to be unitary.

The following theorem shows that the margin of a linear-steerable-network-parameterized predictor
β∞

steer on the augmented data set Saug is always larger than that of a linear fully-connected network

β∞
fc , suggesting improved L2-robustness of the steerable-network-parameterized classifier.
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Theorem 6.1. Let β∞
steer be the directional limit of a linear-steerable-network-parameterized predictor

trained on the original data set S = {(xi, yi), i ∈ [n]}; let β∞
fc be that of a linear fully-connected

network also trained on the same data set S. Let Msteer and Mfc, respectively, be the (signed) margin
of β∞

steer and β∞
fc on the augmented data set Saug = {(gxi, yi) : i ∈ [n], g ∈ G}, i.e.,

Msteer := min
i∈[n],g∈G

yi 〈β∞
steer, gxi〉 , Mfc := min

i∈[n],g∈G
yi 〈β∞

fc , gxi〉 . (36)

Then we always have Msteer ≥Mfc.

Finally, we aim to quantify the improved generalization of linear steerable networks compared to
fully-connected networks in binary classification of linearly separable group-invariant distributions
defined below.

Definition 6.2. A distribution D on R
d0 × {±1} is called linearly separable if there exists β ∈ R

d0

such that

P(x,y)∼D [y 〈x,β〉 ≥ 1] = 1. (37)

It is easy to verify (by Lemma F.1) that if D is G-invariant and linearly separable, then D can be
separated by a G-invariant linear classifier. The following theorem establishes the generalization
bound of linear steerable networks in separable group-invariant binary classification.

Theorem 6.3. Let D be a G-invariant distribution over Rd0 × {±1} that is linearly separable by an

invariant classifier β0 ∈ R
d0

G . Define

R = inf {r > 0 : ‖x‖ ≤ r with probability 1} . (38)

Let S = {(xi, yi)}ni=1 be i.i.d. samples from D, and let β∞
steer be the limit direction of a steerable-

network-parameterized linear predictor trained using gradient flow on S. Then, for any δ > 0, we
have with probability at least 1− δ (over random samples S ∼ Dn) that

P(x,y)∼D [y 6= sign (〈x,β∞
steer〉)] ≤

2R‖β0‖√
n

+

√
log(1/δ)

2n
. (39)

Remark 6.4. In comparison, let β∞
fc be the limit direction of a fully-connected-network-

parameterized linear predictor trained on S. Then with probability at least 1− δ, we have

P(x,y)∼D [y 6= sign (〈x,β∞
fc 〉)] ≤

2R‖β0‖√
n

+

√
log(1/δ)

2n
, (40)

where R = inf {r > 0 : ‖x‖ ≤ r with probability 1}. This is the classical generalization result for
max-margin SVM (see, e.g., Shalev-Shwartz and Ben-David [2014].) Eq. (40) can also be viewed as
a special case of Eq. (39), as a fully-connected network is a G-CNN with G = {e} (cf. Remark 4.2),

and therefore x = x and R = R.

By Proposition 3.6, the map x → x is an orthogonal projection, and thus we always have R ≤ R.
Therefore the generalization bound for steerable networks in (39) is always smaller than that of the
fully-connected network in (40).

Remark 6.5. A comparison between Eq. (39) and Eq. (40) reveals that the improved generalization
of linear steerable network does not necessarily depend on the group size |G|. Instead, it depends on

how far the distribution D’s support is from the subspace R
d0

G , such that R could be much smaller

than R. In fact, if the support of D is contained in Rd0

G , then R = R, and the steerable network
does not achieve any generalization gain. This is consistent with Theorem 4.1, as in this case, the
transformed data set S = {(xi, yi) : i ∈ [n]} is the same as the original data set S.

7 Conclusion and future work

In this work, we analyzed the implicit bias of gradient flow on general linear group-equivariant
steerable networks in group-invariant binary classification. Our findings indicate that the parameter-
ized predictor converges in a direction that aligns with the unique group-invariant classifier with a
maximum margin that is dependent on the input representation. As a corollary of our main result,
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we established the equivalence between data augmentation and learning with steerable networks in
our setting. Finally, we demonstrated that linear steerable networks outperform their non-invariant
counterparts in terms of improved margin and generalization bound.

A limitation of our result is that the implicit bias of gradient flow studied herein holds in an asymptotic
sense, and the convergence rate to the directional limit might be extremely slow. This is consistent
with the findings in, e.g., [Soudry et al., 2018, Yun et al., 2021]. Understanding the behavior of
gradient flow in a non-asymptotic regime is an important direction for future work. Furthermore, in
our current framework, we assume that the first-layer equivariant map is represented by the G-lifting
map. This assumption ensures that the linear steerable network possesses sufficient capacity to
parameterize all G-invariant linear classifiers. Exploring the implicit bias of steerable networks
without this assumption would be a compelling next step. The removal of this constraint could
facilitate the generalization of our findings from finite groups to compact groups.
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A G-CNNs

A special case of the steerable networks is the group convolutional neural network (G-CNN), wherein
equivariance is achieved through group convolutions. More specifically, for each l ∈ [L − 1], the
hidden representation space (Xl, ρl) is set to

Xl = (Rdl)G = {xl : G→ R
dl}, ρl(g)xl(h) := xl(g

−1h) ∈ R
d1 , ∀g, h ∈ G. (41)

The representation ρl ∈ GL(Xl) in (41) is known as the regular representation of G. Intuitively,
xl ∈ Xl can be viewed as a matrix of size dl × |G|, and ρl(g) is a permutation of the columns of xl.
With this choice of {(Xl, ρl)}Ll=0, a (linear) G-CNN is built as follows.

First layer: the first-layer equivariant map ΨG-CNN
1 : X0 → X1 of a G-CNN is defined as

ΨG-CNN
1 (x;w1)(g) = w>

1 g
−1x ∈ R

d1 , ∀x ∈ R
d0 , (42)

where w1 = (wj,k
1 )j,k ∈ R

d0×d1 are the trainable parameters of the first layer. Eq. (42) is called a

G-lifting map as it lifts a Euclidean signal x ∈ R
d0 to a function ΨG-CNN

1 (x;w1) on G.

Hidden layers: For l ∈ {2, · · · , L− 1}, define ΨG-CNN
l : Xl−1 → Xl as the group convolutions,

ΨG-CNN
l (x;wl)(g) =

∑

h∈G

w>
l (h

−1g)x(h) ∈ R
dl , ∀x ∈ Xl−1, (43)

where wl(g) ∈ R
dl−1×dl , ∀g ∈ G. Equivalently, wl ∈ R

dl−1×dl×|G| can be viewed as a 3D tensor.

Last layer: Define ΨG-CNN
L : XL−1 → XL as the group-pooling followed by a fully-connected layer,

ΨG-CNN
L (x;wL) = w>

L

1

|G|
∑

g∈G

x(g), ∀x ∈ XL−1, (44)

where wL ∈ R
dL−1 is the weight of the last layer. An L-layer linear G-CNN is then the composition

fG-CNN(x;W) = ΨG-CNN
L (· · ·ΨG-CNN

2 (ΨG-CNN
1 (x;w1);w2) · · · ;wL), W = [wl]

L
l=1, (45)

where W ∈ R
d0×d1 ×

[∏L−1
l=2 R

dl−1×dl×|G|
]
× R

dL−1 =: WG-CNN are the trainable weights.

Remark A.1. As a special case of linear steerable networks, a linear G-CNN fG-CNN(x;W) (45)
can be written as

fG-CNN(x;W) = 〈x,PG-CNN(W)〉 =
〈
x,PG-CNN(W)

〉
, (46)

where

PG-CNN(W) := w1



L−1∏

l=2


∑

g∈G

wl(g)




wL, PG-CNN(W) :=


 1

|G|
∑

g∈G

g>


PG-CNN(W) (47)

B Proofs in Section 3

Proposition 3.3. Let fsteer(x;W) be the linear steerable network satisfying Assumption 3.1, where
W = [wl]

L
l=1 ∈ Wsteer is the collection of all model parameters. There exists a multi-linear map

M : (w2, · · · ,wL) 7→M(w2, · · · ,wL) ∈ R
d1 such that for all x ∈ R

d0 and W ∈ Wsteer,

fsteer(x;W) = fsteer(x;W) = 〈x,w1M(w2, · · · ,wL)〉 , (48)

where x := 1
|G|
∑

g∈G gx is the average of all elements on the group orbit of x ∈ R
d0 .

Proof. Since the linear steerable network fsteer(x;W) is G-invariant, we have fsteer(x;w) =
fsteer(gx;w) for all g ∈ G. Therefore,

fsteer(x;W) =
1

|G|
∑

g∈G

fsteer(gx;W) = fsteer


 1

|G|
∑

g∈G

gx;w


 = fsteer(x;W), (49)
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where the second equality is due to the linearity of fsteer(x;w) in x. We thus have

fsteer(x;W) = fsteer(x;W) = Ψsteer
L (· · ·Ψsteer

2 (Ψsteer
1 (x;w1);w2) · · · ;wL) (50)

=
〈
Ψsteer

1 (x;w),Φ(w2, · · · ,wL)
〉
, (51)

where Φ(w2, · · · ,wL) ∈ X1 =
(
R

d1

)G
is multi-linear with respect to (w1, · · · ,wL). Under

Assumption 3.1, we have

fsteer(x;W) =
∑

g∈G

〈
Ψsteer

1 (x;w)(g),Φ(w2, · · · ,wL)(g)
〉

(52)

=
∑

g∈G

〈
w>

1 g
−1x,Φ(w2, · · · ,wL)(g)

〉
(53)

=
∑

g∈G

〈
w>

1 x,Φ(w2, · · · ,wL)(g)
〉

(54)

=

〈
x,w1


∑

g∈G

Φ(w2, · · · ,wL)(g)



〉

(55)

= 〈x,w1M(w2, · · · ,wL)〉 , (56)

where M(w2, · · · ,wL) :=
∑

g∈G Φ(w2, · · · ,wL)(g) is also multi-linear in (w2, · · · ,wL).

Proposition 3.6. Let Rd0

G ⊂ R
d0 be the subspace of G-invariant linear predictors, i.e., Rd0

G ={
β ∈ R

d0 : β>x = β>gx, ∀x ∈ R
d0 , ∀g ∈ G

}
. Then

(a) R
d0

G is characterized by

R
d0

G =
⋂

g∈G

ker(I − g>) = Range


 1

|G|
∑

g∈G

g>


 . (57)

(b) Let A : Rd0 → R
d0 be the group-averaging map,

A(β) := β =
1

|G|
∑

g∈G

gβ. (58)

Then its adjoint A> : β 7→ 1
|G|
∑

g∈G g
>β is a projection operator from R

d0 to R
d0

G . In

other words, Range(A>) = R
d0

G and A> ◦ A> = A>.

(c) IfG acts unitarily on X0, i.e., ρ0(g
−1) = ρ0(g)

>, then A = A> is self-adjoint. This implies

that A : β 7→ β is an orthogonal projection from R
d0 onto R

d0

G . In particular, we have

β = β ⇐⇒ β ∈ R
d0

G , and ‖β‖ ≤ ‖β‖, ∀β ∈ R
d0 . (59)

Proof. To prove (a), for the first equality, a vector β ∈ R
d0

G if and only if 0 = β>(I − g)x =〈
(I − g)>β,x

〉
, ∀x ∈ R

d0 , ∀g ∈ G. This is equivalent to β ∈ ⋂g∈G ker(I − g>), and therefore

R
d0

G =
⋂

g∈G ker(I − g>).

For the second equality, if β ∈ ⋂g∈G ker(I − g>), then (I − g>)β = 0, ∀g ∈ G. Hence

0 =
1

|G|
∑

g∈G

(I − g>)β = β − 1

|G|
∑

g∈G

g>β (60)

=⇒ β =
1

|G|
∑

g∈G

g>β ∈ Range


 1

|G|
∑

g∈G

g>


 (61)
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On the other hand, if β = 1
|G|
∑

h∈G h
>y for some y ∈ R

d0 , then for all g ∈ G,

(
I − g>

)
β =

(
I − g>

) 1

|G|
∑

h∈G

h>y =
1

|G|
∑

h∈G

h>y − 1

|G|
∑

h∈G

(hg)>y = 0. (62)

Thus β ∈
⋂

g∈G ker(I − g>).

Point (b) can be easily derived from (57) and (60).

To prove (c), notice that

A> =
1

|G|
∑

g∈G

g> =
1

|G|
∑

g∈G

g−1 =
1

|G|
∑

g∈G

g = A. (63)

Hence A = A> is self-adjoint. This combined with point (b) implies that A = A> : β 7→ β is an

orthogonal projection from R
d0 onto R

d0

G .

C Proof of Theorem 4.1

Theorem 4.1. Under Assumption 3.1 and Assumption 3.7, let βsteer(t) = Psteer(W(t)) be the time-
evolution of the G-invariant linear predictors parameterized by a linear steerable network trained
with gradient flow on the data set S = {(xi, yi) : i ∈ [n]}; cf. Eq. (21). Then

(a) The directional limit β∞
steer = limt→∞

βsteer(t)
‖βsteer(t)‖ exists and β∞

steer ∝ 1
|G|
∑

g∈G g
>γ∗, where

γ∗ is the max-L2-margin SVM solution for the transformed data S = {(xi, yi) : i ∈ [n]}:

γ∗ = arg min
γ∈Rd0

‖γ‖2, s.t. yi 〈xi,γ〉 ≥ 1, ∀i ∈ [n]. (64)

Furthermore, if G acts unitarily on the input space X0, i.e., g−1 = g>, then β∞
steer ∝ γ∗.

(b) Equivalently, β∞
steer is proportional to the unique minimizer β∗ of the problem

β∗ = arg min
β∈Rd0

‖ProjRange(A)β‖2, s.t. β ∈ R
d0

G , and yi 〈xi,β〉 ≥ 1, ∀i ∈ [n], (65)

where ProjRange(A) is the projection from R
d0 to Range(A) = Range

(
1
|G|
∑

g∈G g
)

. More-

over, if G acts unitarily on X0, then

β∞
steer ∝ β∗ = arg min

β∈Rd0

‖β‖2, s.t. β ∈ R
d0

G , and yi 〈xi,β〉 ≥ 1, ∀i ∈ [n]. (66)

Namely, β∞
steer achieves the maximum L2-margin among all G-invariant linear predictors.

Before proving Theorem 4.1, we need the following lemma which holds for general L-homogeneous
networks, of which linear steerable networks are a special case. Note that in what follows, ‖ · ‖
always denotes the Euclidean norm of a tensor viewed as a one-dimensional vector.

Lemma C.1 (paraphrased from Lyu and Li [2020] and Ji and Telgarsky [2020]). Under Assump-
tion 3.7, we have the following results of directional convergence and alignment.

(a) LPsteer
(W(t);S) → 0, as t→ ∞. Consequently, ‖W(t)‖ → ∞ and ‖Psteer(W(t))‖ → ∞.

(b) The directional convergence and alignment of the parameters W(t) and the gradients
∇WLPsteer

(W(t)),

lim
t→∞

W(t)

‖W(t)‖ = W∞ = − lim
t→∞

∇WLPsteer
(W(t);S)

‖∇WLPsteer
(W(t);S)‖ , (67)

for some W∞ ∈ Wsteer with ‖W∞‖ = 1.

(c) The limit W∞ is along the direction of a first-order stationary point of the constrained
optimization problem

min
W

‖W‖2, s.t. yi 〈xi,Psteer(W)〉 ≥ 1, ∀i ∈ [n]. (68)

In other words, there exists a scaling factor τ > 0 such that τW∞ satisfies the Karush-Kuhn-
Tucker (KKT) conditions of (68).
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Proof of Theorem 4.1. The first part of the proof is inspired by Gunasekar et al. [2018b]. To prove (a),

let W∞ = [w∞
l ]Ll=1 = limt→∞

W(t)
‖W(t)‖ be the limit direction of W(t), and let W̃∞ = [w̃∞

l ]Ll=1 =

τW∞, τ > 0, be the stationary point of problem (68) by Lemma C.1. The KKT condition for W̃∞

implies the existence of dual variables αi ≥ 0, i ∈ [n], such that

• Primal feasibility:

yi

〈
Psteer(W̃

∞),xi

〉
≥ 1, ∀i ∈ [n]. (69)

• Stationarity:

W̃∞ = ∇WPsteer(W̃
∞) ·

(
n∑

i=1

αiyixi

)
(70)

• Complementary slackness:

yi

〈
Psteer(W̃

∞),xi

〉
> 1 =⇒ αi = 0. (71)

We claim that γ∗ = P steer(W̃
∞) is a stationary point of the following problem

min
γ∈Rd0

‖γ‖2, s.t. yi 〈xi,γ〉 ≥ 1, ∀i ∈ [n]. (72)

That is, there exists α̃i ≥ 0, i ∈ [n], such that the following conditions are satisfied.

• Primal feasibility:

yi

〈
P steer(W̃

∞),xi

〉
≥ 1, ∀i ∈ [n]. (73)

• Stationarity:

P steer(W̃
∞) =

n∑

i=1

α̃iyixi (74)

• Complementary slackness:

yi

〈
P steer(W̃

∞),xi

〉
> 1 =⇒ α̃i = 0. (75)

Indeed, Eq. (73) holds due to Eq. (69) and
〈
Psteer(W̃

∞),xi

〉
=
〈
P steer(W̃

∞),xi

〉
. Moreover, by

the definition of Psteer(W) and P steer(W) in (10), we have for any z ∈ R
d0 ,

∇w1
P steer(W) · z = z[M(w2, · · · ,wL)]

> (76)

∇w1
Psteer(W) · z =


 1

|G|
∑

g∈G

g


 z[M(w2, · · · ,wL)]

> = z[M(w2, · · · ,wL)]
>. (77)

Therefore Eq. (70) implies

w̃∞
1 = ∇w1

Psteer(W̃
∞) ·

(
n∑

i=1

αiyixi

)
=

(
n∑

i=1

αiyixi

)
· [M(w̃∞

2 , · · · , w̃∞
L )]> (78)

Hence

P steer(W̃
∞) = w̃∞

1 M(w̃∞
2 , · · · , w̃∞

L ) =

(
n∑

i=1

αiyixi

)
‖M(w̃∞

2 , · · · , w̃∞
L )‖2

= c
n∑

i=1

αiyixi, (79)
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where c = ‖M(w̃∞
2 , · · · , w̃∞

L )‖2 ≥ 0. From (73) we know that P steer(W̃
∞) 6= 0 and hence c > 0.

Let α̃i = cαi, ∀i ∈ [n]. Then α̃i ≥ 0, and the stationarity (74) is satisfied due to Eq. (79), and
the complementary slackness also holds due to α̃i being a positive scaling of αi for all i ∈ [n].

Therefore γ∗ = P steer(W̃
∞) is a stationary point of (72). Since problem (72) is strongly convex,

γ∗ = P steer(W̃
∞) is in fact the unique minimizer of (72). Hence the limit direction of the predictor

Psteer(W(t)) is

β∞
steer = lim

t→∞
Psteer(W(t))

‖Psteer(W(t))‖ = lim
t→∞

(
1
|G|
∑

g∈G g
>
)
P steer(W(t))

∥∥∥
(

1
|G|
∑

g∈G g
>
)
P steer(W(t))

∥∥∥
(80)

= lim
t→∞

(
1
|G|
∑

g∈G g
>
)
P steer

(
τW(t)
‖W(t)‖

)

∥∥∥
(

1
|G|
∑

g∈G g
>
)
P steer

(
τW(t)
‖W(t)‖

)∥∥∥
=

(
1
|G|
∑

g∈G g
>
)
P steer

(
W̃∞

)

∥∥∥
(

1
|G|
∑

g∈G g
>
)
P steer

(
W̃∞

)∥∥∥
(81)

∝ 1

|G|
∑

g∈G

g>γ∗, (82)

where the third equality is due to P steer being L-homogeneous (12), and the fourth equality comes

from the continuity of P steer and that Psteer(W̃
∞) =

(
1
|G|
∑

g∈G g
>
)
P steer

(
W̃∞

)
6= 0 (because

otherwise (69) can not hold.)

Finally, if G acts unitarily on X0, then Eq. (74) combined with Proposition 3.6 implies that γ∗ =

P steer(W̃
∞) ∈ R

d0

G . Hence

β∞
steer ∝

1

|G|
∑

g∈G

g>γ∗ =
1

|G|
∑

g∈G

gγ∗ = γ∗ = γ∗, (83)

where the last equality is again due to Proposition 3.6. This concludes the proof of (a).

To prove (b), we first show that problem (65) has a unique minimizer. To prove this, notice that

ProjRange(A) : R
d0

G → Range(A) is injective; indeed, for any β ∈ R
d0

G ,

ProjRange(A)β = 0 =⇒ β ∈ Range(A)⊥ = ker(A>). (84)

Thus 0 = A>β = β, where the second equality is due to A> being a projection onto Range(A>) =
R

d0

G (Proposition 3.6) and β ∈ R
d0

G . Therefore the objective function in (65) is strongly convex on

R
d0

G and there exists a unique minimizer.

To show β∞
steer ∝ β∗, it suffices to verify that 1

|G|
∑

g∈G g
>γ∗ = β∗ is the minimizer of (65). To this

end, we notice that

• 1
|G|
∑

g∈G g
>γ∗ = A>γ∗ ∈ R

d0

G by Proposition 3.6;

• for all i ∈ [n]

yi

〈
xi,

1

|G|
∑

g∈G

g>γ∗
〉

= yi 〈xi,γ
∗〉 ≥ 1. (85)

Thus 1
|G|
∑

g∈G g
>γ∗ satisfies the constraints in (65). Assume for the sake of contradiction that

1
|G|
∑

g∈G g
>γ∗ 6= β∗, then by the uniqueness of the minimizer of (65) we have

‖γ̃‖ := ‖ProjRange(A)β
∗‖ <

∥∥∥∥∥∥
ProjRange(A)

1

|G|
∑

g∈G

g>γ∗

∥∥∥∥∥∥
, (86)

where γ̃ := ProjRange(A)β
∗. We make the following two claims to be proved shortly:

• Claim 1: yi 〈γ̃,xi〉 = yi 〈β∗,xi〉 ≥ 1, ∀i ∈ [n].
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• Claim 2: ProjRange(A)
1
|G|
∑

g∈G g
>γ∗ = γ∗.

These two claims combined with (86) imply that γ̃ satisfies the constraint in (64) and has a smaller
norm compared to γ∗, ‖γ̃‖ < ‖γ∗‖. This contradicts the fact that γ∗ is the minimizer of problem

(64). Therefore we have 1
|G|
∑

g∈G g
>γ∗ = β∗.

If we assume in addition that ρ0 is unitary on X0, then A = A> : β 7→ β is an orthogonal projection

from R
d0 onto R

d0

G = Range(A). Therefore ProjRange(A)β = β for β ∈ R
d0

G , and hence problems

(65) and (66) are equivalent.

Finally, we prove the above two claims.

Proof of Claim 1: yi 〈γ̃,xi〉 = yi 〈β∗,xi〉 ≥ 1, ∀i ∈ [n].

Since γ̃ = ProjRange(A)β
∗, we have

γ̃ − β∗ ∈ Range(A)⊥ = ker(A>). (87)

Hence

A>γ̃ = A>β∗ = β∗, (88)

where the second equality is due to β∗ ∈ R
d0

G = Range(A>) and A> = A> ◦ A> is a projection;
cf. Proposition 3.6. Therefore, for all i ∈ [n],

yi 〈γ̃,xi〉 = yi
〈
A>γ̃,xi

〉
= yi 〈β∗,xi〉 ≥ 1. (89)

Proof of Claim 2: ProjRange(A)A>γ∗ = γ∗.

We first note that both ProjRange(A)A>γ∗ and γ∗ are in the affine space A>γ∗ + ker(A>). Indeed,
(
A>γ∗ − ProjRange(A)A>γ∗

)
∈ Range(A)⊥ = ker(A>), (90)

A>(γ∗ −A>γ∗) = A>γ∗ −A>A>γ∗ = 0. (91)

This also implies

A>
(

ProjRange(A)A>γ∗
)
= A>γ∗. (92)

Moreover, for any i ∈ [n],

yi

〈
ProjRange(A)A>γ∗,xi

〉
= yi

〈
A>

(
ProjRange(A)A>γ∗

)
,xi

〉
(93)

= yi
〈
A>γ∗,xi

〉
= yi 〈γ∗,xi〉 ≥ 1. (94)

Hence ProjRange(A)A>γ∗ also satisfies the constraint in (64). Since the orthogonal projection

ProjRange(A)A>γ∗ achieves the minimal norm among all vectors in the affine space A>γ∗+ker(A>)

which includes γ∗, this can only happen when ProjRange(A)A>γ∗ = γ∗ is the unique minimizer of

(64).

This concludes the proof of Theorem 4.1.

D Proofs in Section 5

Corollary 5.1. Let β∞
steer = limt→∞

βsteer(t)
‖βsteer(t)‖ be the directional limit of the linear predictor

βsteer(t) = Psteer(W(t)) parameterized by a linear steerable network trained using gradient flow

on the original data set S = {(xi, yi), i ∈ [n]}. Correspondingly, let β∞
fc = limt→∞

βfc(t)
‖βfc(t)‖ ,

βfc(t) = Pfc(W(t)) (13), be that of a linear fully-connected network trained on the augmented data
set Saug = {(gxi, yi), i ∈ [n], g ∈ G}. If G acts unitarily on X0, then

β∞
steer = β∞

fc . (95)

In other words, the effect of using a linear steerable network for group-invariant binary classification
is exactly the same as conducting data-augmentation for non-invariant models.
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Proof. By Theorem 4.1, a positive scaling γ∗ = τβ∞
steer of β∞

steer satisfies the KKT condition of (22).
That is, there exists αi ≥ 0, i ∈ [n], such that

• Primal feasibility:

yi 〈γ∗,xi〉 ≥ 1, ∀i ∈ [n]. (96)

• Stationarity:

γ∗ =

n∑

i=1

αiyixi (97)

• Complementary slackness:

yi 〈γ∗,xi〉 > 1 =⇒ αi = 0. (98)

Using Corollary 4.3, we only need to show that γ∗ is also the solution of

arg min
γ∈Rd0

‖γ‖2, s.t. yi 〈gxi,γ〉 ≥ 1, ∀i ∈ [n], ∀g ∈ G. (99)

That is, there exists α̃i,g ≥ 0, ∀i ∈ [n], ∀g ∈ G, such that

• Primal feasibility:

yi 〈γ∗, gxi〉 ≥ 1, ∀i ∈ [n], ∀g ∈ G. (100)

• Stationarity:

γ∗ =

n∑

i=1

∑

g∈G

α̃i,gyigxi (101)

• Complementary slackness:

yi 〈γ∗, gxi〉 > 1 =⇒ α̃i,g = 0. (102)

Indeed, we set α̃i,g = 1
|G|αi ≥ 0. Since γ∗ ∈ R

d0

G if ρ0 is unitary (this can also be observed from

Eq. (97)), we have yi 〈γ∗, gxi〉 = yi 〈γ∗,xi〉 , ∀g ∈ G, ∀i ∈ [n]. Hence we have primal feasibility
(100) from (96),

yi 〈γ∗, gxi〉 = yi

〈
γ∗,

1

|G|
∑

h∈G

hgxi

〉
= yi 〈γ∗,xi〉 ≥ 1, ∀i ∈ [n], ∀g ∈ G. (103)

Stationarity (101) holds since

n∑

i=1

∑

g∈G

α̃i,gyigxi =
n∑

i=1

∑

g∈G

1

|G|αiyigxi =
n∑

i=1

αiyixi = γ∗, (104)

where the last equality comes from (97). Finally, if yi 〈γ∗, gxi〉 > 1, then (103) and (98) imply that

α̃i,g =
1

|G|αi = 0. (105)

This proves the condition for complementary slackness (102).

Corollary 5.5. Let β∞
steer be the same as that in Corollary 5.1. Let β

ρ0,∞
fc = limt→∞

β
ρ0
fc

(t)

‖βρ0
fc

(t)‖ be

the limit direction of β
ρ0

fc (t) = Pfc(W(t)) under the gradient flow of the modified empirical loss
Lρ0

Pfc
(W;Saug) (34) for a linear fully-connected network on the augmented data set Saug. Then

β∞
steer ∝


 1

|G|
∑

g∈G

ρ0(g)
>ρ0(g)




1/2

β
ρ0,∞
fc . (106)

Consequently, we have 〈x,β∞
steer〉 ∝ 〈x,βρ0,∞

fc 〉ρ0

for all x ∈ R
d0 .
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Proof. The proof is similar to that of Corollary 5.1. By Theorem 4.1, the limit direction β∞
steer is

proportional to 1
|G|
∑

g∈G g
>γ∗, where γ∗ satisfies the same KKT condition ((96), (97) and (98))

of problem (22) as in the proof of Corollary 5.1. On the other hand, note that the loss function
Lρ0

Pfc
(W;Saug) (34) for the modified fully-connected network on the augmented data set Saug is

equivalent to

Lρ0

Pfc
(W;Saug) =

∑

g∈G

n∑

i=1

`exp

(
〈gxi,Pfc(W)〉ρ0

, yi

)
(107)

=
∑

g∈G

n∑

i=1

`exp (〈Agxi,Pfc(W)〉 , yi) (108)

= LPfc
(W; S̃aug), (109)

where

A =


 1

|G|
∑

g∈G

ρ0(g)
>ρ0(g)




1/2

, S̃aug = {(Agxi, yi) : i ∈ [n], g ∈ G} . (110)

Therefore, by Corollary 4.3, β
ρ0,∞
fc is proportional to the solution γ̃∗

aug of

γ̃∗
aug = arg min

γ∈Rd0

‖γ‖2, s.t. yi 〈Agxi,γ〉 ≥ 1, ∀i ∈ [n], ∀g ∈ G. (111)

We claim that γ̃∗
aug = A−1

(
1
|G|
∑

g∈G g
>γ∗

)
. To see this, let α̃i,g = αi, ∀i ∈ [n], where αi ≥ 0 is

the dual variable for γ∗ of problem (22). We verify below that the KKT conditions for problem (111)

are satisfied for the primal-dual pair A−1
(

1
|G|
∑

g∈G g
>γ∗

)
and (α̃i,g)i∈[n],g∈G.

• Primal feasibility: for any i ∈ [n] and h ∈ G,

yi

〈
A−1


 1

|G|
∑

g∈G

g>γ∗


 , Ahxi

〉
= yi

〈
1

|G|
∑

g∈G

g>γ∗, hxi

〉
(112)

= yi

〈
γ∗,


 1

|G|
∑

g∈G

g


hxi

〉
(113)

= yi 〈γ∗,xi〉 ≥ 1, (114)

where the first equality is due to A> = A being symmetric, and the last inequality is due to
(96).
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• Stationarity:

A−1


 1

|G|
∑

g∈G

g>γ∗


 = A−1


 1

|G|
∑

g∈G

g>




n∑

i=1

αiyixi (115)

= A−1 1

|G|2


∑

g∈G

g>




n∑

i=1

αiyi
∑

h∈G

hxi (116)

= A ·A−2 1

|G|2
n∑

i=1

αiyi
∑

g∈G

∑

h∈G

g>hxi (117)

= A ·A−2 1

|G|

n∑

i=1

αiyi


 1

|G|
∑

g∈G

g>g


∑

h∈G

hxi (118)

=
n∑

i=1

αi

|G|yi
∑

h∈G

Ahxi (119)

=

n∑

i=1

∑

g∈G

α̃i,gyiAgxi, (120)

where the first equality is due to (97), and the last equality comes from the definition of the
dual variable α̃i,g = 1

|G|αi, ∀i ∈ [n], ∀g ∈ G.

• Complementary slackness: if yi

〈
A−1

(
1
|G|
∑

g∈G g
>γ∗

)
, Agxi

〉
> 1 for some i ∈ [n]

and g ∈ G, then (114) and (98) imply that α̃i,g = 1
|G|αi = 0.

Hence γ̃∗
aug = A−1

(
1
|G|
∑

g∈G g
>γ∗

)
is indeed the solution of (111). Therefore,

β∞
steer ∝

1

|G|
∑

g∈G

g>γ∗ = Aγ∗
aug ∝ Aβρ0,∞

fc . (121)

This completes the proof.

E Proofs of Theorem 6.1

Theorem 6.1. Let β∞
steer be the directional limit of a linear-steerable-network-parameterized predictor

trained on the original data set S = {(xi, yi), i ∈ [n]}; let β∞
fc be that of a linear fully-connected

network also trained on the same data set S. Let Msteer and Mfc, respectively, be the (signed) margin
of β∞

steer and β∞
fc on the augmented data set Saug = {(gxi, yi) : i ∈ [n], g ∈ G}, i.e.,

Msteer := min
i∈[n],g∈G

yi 〈β∞
steer, gxi〉 , Mfc := min

i∈[n],g∈G
yi 〈β∞

fc , gxi〉 . (122)

Then we always have Msteer ≥Mfc.

Proof. By Corollary 4.3 and Corollary 5.1, we have

β∞
steer ∝ γ∗

steer = arg min
γ∈Rd0

‖γ‖2, s.t. yi 〈γ, gxi〉 ≥ 1, ∀g ∈ G, ∀i ∈ [n], (123)

β∞
fc ∝ γ∗

fc = arg min
γ∈Rd0

‖γ‖2, s.t. yi 〈γ,xi〉 ≥ 1, ∀i ∈ [n]. (124)

Moreover, the margin Msteer of the steerable network β∞
steer on the augmented data set Saug is Msteer =

1
‖γ∗

steer‖ . Consider the following three cases.

• Case 1: mini∈[n],g∈G yi 〈γ∗
fc, gxi〉 ≥ 1. In this case, γ∗

fc also satisfies the more restrictive
constraint in (123). Therefore γ∗

fc = γ∗
steer, which implies

β∞
steer = β∞

fc , and Msteer =Mfc. (125)
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• Case 2: mini∈[n],g∈G yi 〈γ∗
fc, gxi〉 ≤ 0. This implies that γ∗

fc, and hence β∞
fc has a non-

positive margin on Daug. Thus

Mfc ≤ 0 < Msteer. (126)

• Case 3: 0 < mini∈[n],g∈G yi 〈γ∗
fc, gxi〉 < 1. In this case, define

γ̃∗
fc :=

γ∗
fc

mini∈[n],g∈G yi 〈γ∗
fc, gxi〉

. (127)

Then γ̃∗
fc satisfies the constraint in (123), and hence

‖γ̃∗
fc‖ ≥ ‖γ∗

steer‖. (128)

Therefore

Mfc = min
i∈[n],g∈G

yi 〈β∞
fc , gxi〉 =

mini∈[n],g∈G yi 〈γ∗
fc, gxi〉

‖γ∗
fc‖

=
1

‖γ̃∗
fc‖

(129)

≤ 1

‖γ∗
steer‖

=Msteer. (130)

This completes the proof.

F Proof of Theorem 6.3

To prove Theorem 6.3, we need first the following preliminaries.

Lemma F.1. If D is G-invariant and linearly separable, then D can be linearly separated by a

G-invariant classifier. That is, there exists β ∈ R
d0

G such that

P(x,y)∼D [y 〈x,β〉 ≥ 1] = 1. (131)

Proof. Since D is linearly separable, there exists β0 ∈ R
d0 such that P(x,y)∼D [y 〈x,β0〉 ≥ 1] = 1.

Let β = 1
|G|
∑

g∈G g
>β0 ∈ R

d0

G , and we aim to show that D can also be linearly separated by β.

Indeed, for all (x, y) ∈ R
d0 × {±1},

y 〈x,β〉 < 1 =⇒ y

〈
x,

1

|G|
∑

g∈G

g>β0

〉
< 1 =⇒ y

〈
1

|G|
∑

g∈G

gx,β0

〉
< 1 (132)

=⇒ ∃g ∈ G, s.t. y 〈gx,β0〉 < 1. (133)

Let E = {(x, y) : y 〈x,β0〉 < 1} ⊂ R
d0 × {±1}, then

P(x,y)∼D [y 〈x,β〉 < 1] ≤
∑

g∈G

P(x,y)∼D [y 〈gx,β0〉 < 1] (134)

=
∑

g∈G

D {(x, y) : (ρ0(g)⊗ Id)(x, y) ∈ E} (135)

=
∑

g∈G

(ρ0(g)⊗ Id)∗D (E) =
∑

g∈G

D (E) (136)

=
∑

g∈G

P(x,y)∼D [y 〈x,β0〉 < 1] = 0, (137)

where the second equality in (136) is due to D being G-invariant. Therefore D can be separated by

β ∈ R
d0

G .

Definition F.2 (Empirical Rademacher complexity). Let F ⊂ R
Z be a class of real-valued functions

on Z , and let S = (z1, · · · , zn) be a set of n samples from Z . The (empirical) Rademacher

complexity R̂n(F , S) of F over S is defined as

R̂n(F , S) :=
1

n
Eσ∼{±1}n

[
sup
f∈F

n∑

i=1

σif(zi)

]
, (138)

where σ = (σ1, · · · , σn) are the i.i.d. Rademacher variables satisfying P[σi = 1] = P[σi = −1] =
1/2.
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Lemma F.3 (Talagrand’s Contraction Lemma, Lemma 8 in Mohri and Medina [2014]). Let Φi :
R → R, i ∈ [n], be 1-Lipschitz functions, F ⊂ R

Z be a function class, and S = (z1, . . . , zn) ∈ Zn

be a set of n samples from Z . Then

R̂n(F , S) ≥
1

n
Eσ∼{±1}n

[
sup
f∈F

n∑

i=1

σiΦi ◦ f(zi)
]
. (139)

Lemma F.4. Let H =
{
x 7→ 〈β,x〉 : β ∈ R

d0

G , ‖β‖ ≤ B
}

be the function space of G-invariant

linear functions of bounded norm, and let Sx = {x1, · · · ,xn} ⊂ R
d0 be a set of n samples from

R
d0 . Then

R̂n(H, Sx) ≤
Bmaxi∈[n] ‖xi‖√

n
(140)

Proof. By the definition of empirical Rademacher complexity (138), we have

nR̂n(H, Sx) = Eσ


 sup
β∈R

d0
G

,‖β‖≤B

n∑

i=1

σi 〈β,xi〉


 (141)

= Eσ


 sup
β∈R

d0
G

,‖β‖≤B

n∑

i=1

σi 〈β,xi〉


 (142)

= Eσ sup
β∈R

d0
G

,‖β‖≤B

〈
β,

n∑

i=1

σixi

〉
(143)

= BEσ

∥∥∥∥∥

n∑

i=1

σixi

∥∥∥∥∥ (144)

≤ B


Eσ

∥∥∥∥∥

n∑

i=1

σixi

∥∥∥∥∥

2



1/2

, (145)

where (142) is due to β ∈ R
d0

G . Since σ1, · · · , σn are i.i.d., we have

Eσ

∥∥∥∥∥

n∑

i=1

σixi

∥∥∥∥∥

2

= Eσ


∑

i,j

σiσj 〈xi,xj〉


 (146)

=
∑

i 6=j

〈xi,xj〉Eσσiσj +

n∑

i=1

‖xi‖2Eσσ
2
i (147)

=

n∑

i=1

‖xi‖2 ≤ nmax
i∈[n]

‖xi‖2. (148)

Eq. (145) combined with (148) completes the proof.

We also need the following standard result on the generalization bound based on the Rademacher
complexity [Shalev-Shwartz and Ben-David, 2014].

Lemma F.5. Let H be a set of hypotheses, Z = R
d0 × {±1} be the set of labeled samples, and

` : H×Z → [0,∞), (h, z) 7→ `(h, z), (149)

be a loss function satisfying 0 ≤ `(h, z) ≤ c for all z ∈ Z and h ∈ H. Define the function class
F = `(H, ·) := {z 7→ ` (h, z) : h ∈ H}. Then, for any δ > 0 and any distribution D on Z , we have
with probability at least 1− δ over i.i.d. samples S = (z1, · · · , zn) ∼ Dn that

sup
h∈H

LD(h)− LS(h) ≤ 2Rn(F) + c

√
log(1/δ)

2n
, (150)
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where LD(h) := Ez∼D`(h, z) and LS(h) := 1
n

∑n
i=1 `(h, zi) are, respectively, the population

and empirical loss of a hypothesis h ∈ H, and Rn(F) := ES∼DnR̂n(F , S) is the Rademacher
complexity of F .

Finally, we can prove Theorem 6.3 restated below

Theorem 6.3. Let D be a G-invariant distribution over Rd0 × {±1} that is linearly separable by an

invariant classifier β0 ∈ R
d0

G . Define

R = inf {r > 0 : ‖x‖ ≤ r with probability 1} . (151)

Let S = {(xi, yi)}ni=1 be i.i.d. samples from D, and let β∞
steer be the limit direction of a steerable-

network-parameterized linear predictor trained using gradient flow on S. Then, for any δ > 0, we
have with probability at least 1− δ (over random samples S ∼ Dn) that

P(x,y)∼D [y 6= sign (〈x,β∞
steer〉)] ≤

2R‖β0‖√
n

+

√
log(1/δ)

2n
. (152)

Proof of Theorem 6.3. Let H = {β ∈ R
d0

G : ‖β‖ ≤ ‖β0‖} and with slight abuse of notation
we identify β ∈ H with the invariant linear map x 7→ 〈x,β〉. According to Theorem 4.1, let
β∗ = τβ∞

steer, τ > 0, be the minimizer of (24). Since by assumption β0 also satisfies the constraint in
(24), we have ‖β∗‖ ≤ ‖β0‖, and hence β∗ ∈ H.

Consider the ramp loss ` defined as

` : H× (Rd0 × {±1}) → [0, 1], (β, (x, y)) 7→ min{1,max{0, 1− y 〈x,β〉}}. (153)

It is easy to verify that ` upper bounds the 0-1 loss: for all β ∈ H and (x, y) ∈ R
d0 × {±1},

`(β, (x, y)) ≥ 1{y 6=sign(〈x,β〉)}. (154)

This implies that

P(x,y)∼D [y 6= sign (〈x,β∞
steer〉)] = P(x,y)∼D [y 6= sign (〈x,β∗〉)] (155)

= E(x,y)∼D1{y 6=sign(〈x,β∗〉)} (156)

≤ E(x,y)∼D`(β
∗, (x, y)) = LD(β

∗). (157)

Since LS(β
∗) is always 0 by definition (24) and β∗ ∈ H, we have by Lemma F.5 that

P(x,y)∼D [y 6= sign (〈x,β∞
steer〉)] ≤ LD(β

∗) = LD(β
∗)− LS(β

∗) ≤ sup
β∈H

LD(β)− LS(β) (158)

≤ 2Rn(F) +

√
log(1/δ)

2n
, (159)

where F = `(H, ·) = {(x, y) 7→ ` (β, (x, y)) : β ∈ H}. Therefore, to prove Theorem 6.3 it suffices

to show that Rn(F) ≤ R‖β0‖√
n

. To this end, let S = {(xi, yi) : i ∈ [n]} be a set of n labeled samples,

and let Sx = {xi : i ∈ [n]} be the corresponding set of unlabeled inputs, then

R̂n(F , S) =
1

n
Eσ sup

f∈F

n∑

i=1

σif(xi, yi) (160)

=
1

n
Eσ sup

β∈H

n∑

i=1

σi` (β, (xi, yi)) (161)

=
1

n
Eσ sup

β∈H

n∑

i=1

σi min {1,max{0, 1− yi 〈xi,β〉}} (162)

=
1

n
Eσ sup

β∈H

n∑

i=1

σiΦi(〈xi,β〉), (163)

where Φi : R → R, a 7→ min {1,max{0, 1− yia}}, is 1-Lipschitz. Lemma F.3 thus implies that

R̂n(F , S) ≤ R̂n(H, Sx). (164)
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Using Lemma F.4 and the fact that x ≤ R with probability 1 over (x, y) ∼ D, we arrive at

Rn(F) = ES∼DnR̂n(F , S) ≤ ES∼DnR̂n(H, Sx) ≤
R‖β0‖√

n
. (165)

This completes the proof of Theorem 6.3.
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