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Abstract

We study the implicit bias of gradient flow on linear equivariant steerable networks
in group-invariant binary classification. Our findings reveal that the parameterized
predictor converges in direction to the unique group-invariant classifier with a
maximum margin defined by the input group action. Under a unitary assumption on
the input representation, we establish the equivalence between steerable networks
and data augmentation. Furthermore, we demonstrate the improved margin and
generalization bound of steerable networks over their non-invariant counterparts.

1 Introduction

Despite recent theoretical breakthroughs in deep learning, it is still largely unknown why overparam-
eterized deep neural networks (DNNs) with infinitely many solutions achieving near-zero training
error can effectively generalize on new data. However, the consistently impressive results of DNNs
trained with first-order optimization methods, e.g., gradient descent (GD), suggest that the training
algorithm is implicitly guiding the model towards a solution with strong generalization performance.

Indeed, recent studies have shown that gradient-based training methods effectively regularize the
solution by implicitly minimizing a certain complexity measure of the model [Vardi, 2022]. For
example, Gunasekar et al. [2018b] showed that in separable binary classification, the linear predictor
parameterized by a linear fully-connected network trained under GD converges in the direction of
a max-margin support vector machine (SVM), while linear convolutional networks are implicitly
regularized by a depth-related bridge penalty in the Fourier domain. Yun et al. [2021] extended this
finding to linear tensor networks. Lyu and Li [2020] and Ji and Telgarsky [2020] established the
implicit max-margin regularization for (nonlinear) homogeneous DNNs in the parameter space.

On the other hand, another line of research aims to explicitly regularize DNNs through architectural
design to exploit the inherent structure of the learning problem. In recent years, there has been
a growing interest in leveraging group symmetry for this purpose, given its prevalence in both
scientific and engineering domains. A significant body of literature has been devoted to designing
group-equivariant DNNs that ensure outputs transform covariantly to input symmetry transformations.
Group-equivariant steerable networks represent a general class of symmetry-preserving models that
achieve equivariance with respect to any pair of input-output group actions [Cohen et al., 2019, Weiler
and Cesa, 2019, Cohen and Welling, 2017]. Empirical evidence suggests that equivariant steerable
networks yield substantial improvements in generalization performance for learning tasks with group
symmetry, especially when working with limited amounts of data.

There have been several recent attempts to account for the empirical success of equivariant steerable
networks through establishing a tighter upper bound on the test risk for these models. This is
typically accomplished by evaluating the complexity measures of equivariant and non-equivariant
models under the same norm constraint on the network parameters [Sokolic et al., 2017, Sannai
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et al., 2021, Elesedy, 2022]. Nevertheless, it remains unclear whether or why a GD-trained steerable
network can achieve a minimizer with a parameter norm comparable to that of its non-equivariant
counterpart. Consequently, the effectiveness of such complexity-measure-based arguments to explain
the generalization enhancement of steerable networks in group symmetric learning tasks may not be
directly applicable.

In light of the above issues, in this work, we aim to fully characterize the implicit bias of the
training algorithm on linear equivariant steerable networks in group-invariant binary classification.
Our result shows that when trained under gradient flow (GF), i.e., GD with an infinitesimal step
size, the steerable-network-parameterized predictor converges in direction to the unique group-
invariant classifier attaining a maximum margin with respect to a norm defined by the input group
representation. This result has three important implications: under a unitary input group action,

* alinear steerable network trained on the original data set converge in the same direction as
a linear fully-connected network trained on the group-augmented data set. This suggests the
equivalence between training with linear steerable networks and data augmentation;

* when trained on the same original data set, a linear steerable network always attains a wider
margin on the group-augmented data set compared to a fully-connected network;

* when the underlying distribution is group-invariant, a GF-trained linear steerable network
achieves a tighter generalization bound compared to its non-equivariant counterpart. This
improvement in generalization is not necessarily dependent on the group size, but rather it
depends on the support of the invariant distribution.

Before we end this section, we note that a similar topic has recently been explored by Lawrence et al.
[2021] in the context of linear Group Convolutional Neural Networks (G-CNNs), a special case of
the equivariant steerable networks considered in this work. However, we point out that the models
they studied were not truly group-invariant, and thus their implicit bias result does not explain the
improved generalization of G-CNNs. We will further elaborate on the comparison between our work
and [Lawrence et al., 2021] in Section 2.

2 Related work

Implicit biases: Recent studies have shown that for linear regression with the logistic or exponential
loss on linearly separable data, the linear predictor under GD/SGD converges in direction to the
max-LQ—margin SVM [Soudry et al., 2018, Nacson et al., 2019, Gunasekar et al., 2018a]. These
results are extended to linear fully-connected networks and linear Convolutional Neural Networks
(CNNs) by Gunasekar et al. [2018b] under the assumption of directional convergence and alignment
of the network parameters, which are later proved by Ji and Telgarsky [2019a,b], Lyu and Li [2020],
Ji and Telgarsky [2020]. The implicit regularization of gradient flow (GF) is further generalized
to linear tensor networks by Yun et al. [2021]. For overparameterized nonlinear networks in the
infinite-width regime, rigorous analysis on the optimization of DNNs has also been studied from the
neural tangent kernel [Jacot et al., 2018, Du et al., 2019, Allen-Zhu et al., 2019] and the mean-field
perspectives [Mei et al., 2019, Chizat and Bach, 2018]. However, these models are not explicitly
designed to be group-invariant/equivariant, and the implicit bias of gradient-based methods might
guide them to converge to sub-optimal solutions in learning tasks with intrinsic group symmetry.

Equivariant neural networks. Since their introduction by Cohen and Welling [2016], group
equivariant network design has become a burgeoning field with numerous applications from computer
vision to scientific computing. Unlike the implicit bias induced by training algorithms, equivariant
networks explicitly incorporate symmetry priors into model design through either group convolutions
[Cheng et al., 2019, Weiler et al., 2018, Sosnovik et al., 2020, Zhu et al., 2022] or, more generally,
steerable convolutions [Weiler and Cesa, 2019, Cohen et al., 2019, Worrall et al., 2017]. Despite their
empirical success, it remains largely unknown why and whether equivariant networks trained under
gradient-based methods actually converge to solutions with smaller test risk in group-symmetric
learning tasks [Sokolic et al., 2017, Sannai et al., 2021]. In a recent study, Elesedy and Zaidi [2021]
demonstrated a provably strict generalisation benefit for equivariant networks in linear regression.
However, the network studied therein is non-equivariant and only symmetrized after training; such
test-time data augmentation is different from practical usage of equivariant networks.



Comparison to Lawrence et al. [2021]. A recent study by Lawrence et al. [2021] also analyzes
the implicit bias of linear equivariant G-CNNs, which are a special case of the steerable networks
considered in this work. However, the networks studied therein are not truly equivariant/invariant.
More specifically, the input space &) they considered is the set of functions on the group G, i.e.,
Xo = {f : G — R}, and the input G-action is given by the regular representation

[0o(9)f1(9") = f(g7"g"), VgeGVfeX. (1)

In their case, due to the transitivity of the regular representation (1), G-invariant linear functions
® : Xy — R are constrained to the (trivial) form:

o(f)=CY_ flg),

geG

where C' is a multiplicative constant. To avoid learning this trivial function, Lawrence et al. [2021]
chose to parameterize ® using a linear G-CNN, in which the final layer is replaced by a fully-
connected layer. While this fully-connected layer provides the capability to learn more complex
and nontrivial functions, it simultaneously undermines the property of group invariance. Therefore,
their implicit bias result does not explain the improved generalization of G-CNNs. In contrast, we
assume Euclidean inputs with non-transitive group actions, allowing linear steerable networks to
learn non-trivial group-invariant models.

3 Background and problem setup

We provide a brief background in group theory and group-equivariant steerable networks. We also
explain the setup of our learning problem for group-invariant binary classification.

3.1 Group and group equivariance

A group is a set G equipped with a binary operator, the group product, satisfying the axioms of
associativity, identity, and invertibility. We always assume in this work that G is finite, i.e., |G| < oo,
where |G| denotes its cardinality.

Given a vector space X, let GL(X') be the general linear group of X’ consisting of all invertible linear
transformations on X. A map p : G — GL(X) is called a group representation (or linear group
action) of G on X if p is a group homomorphism from G to GL(X'), namely

p(gh) = p(g)p(h) € GL(X), Vg,h€G. )
When the representation p is clear from the context, we also abbreviate the group action p(g)x as gx.

Given a pair of vector spaces X', ) and their respective G-representations p and py, a linear map
¥ : X — Y issaid to be G-equivariant if it commutes with the G-representations px and py, i.e.,

Vopx(g)=py(g)oV¥, Vged. 3)

Linear equivariant maps are also called intertwiners, and we denote by Home (p, py) the space of
all intertwiners satisfying (3). When py = Id is the trivial representation, then ¥[px (¢)(x)] = ¥[x]
for all x € A’; namely, U becomes a G-invariant linear map.

3.2 Equivariant steerable networks and G-CNNs

Let Xy = R% be a dy-dimensional input Euclidean space, equipped with the usual inner product.
Let pg : G — GL(A)) be a G-representation on Xj. Suppose we have an unknown target function
f*: Xo = R% — R that is G-invariant under po, i.e., f*(gx) = f*(po(g)x) = f*(x) forall g € G
and x € Xj. The goal of equivariant steerable networks is to approximate f* using an L-layer neural
network f = Uy oWy _; o---0 U, that is guaranteed to be also G-invariant.

Since the composition of equivariant maps is also equivariant, it suffices to specify a collection of
G-representation spaces {(X;, p;) H-,, with (X, pr) = (R, 1d) being the trivial representation, such
that each layer U; € Homg(pi—1,p1) : Xj—1 — A} is G-equivariant. Equivalently, we want the



following diagram to be commutative,

B e R A
Po(g)l ’“(“”l ”““”l pol(tz;)l mg)l , VgeaG. “)
XO \111 Xl \I/2 XZ ‘1’3 . \PL—l XL71 % XL

Equivariant steerable networks. Given the representations {(X}, p;)}/,, a (linear) steerable
network is constructed as follows. For each | € [L] := {1,---, L}, we choose a finite collection

of N; (pre-computed) intertwiners {1/){ };V:ll C Homg (p;—1, p1). Typically, {wlj }j\f:zl is a basis of
Homg (p;—1, pi), but it is not necessary in our setting. The [-th layer equivariant map Wj***" : X}, —
A, of a steerable network is then parameterized by

TP wy) = > wiv](x), Vx € Xy, %)
JE[N]
where the coefficients w; = [wlj ];re[ N € RM: are the trainable parameters of the [-th layer. An

L-layer linear steerable network feer(x; W) is then defined as the composition

Foeer (3 W) = Wy (- - - WHT (WY (x5 W1 ); W) -+ 3 W), (6)

where W = [wl]le eIl 1L:1 RNt = Weer is the collection of all trainable parameters. The network
fsteer(x; W) defined in (6) is referred to as a steerable network because it steers the layer-wise output
to transform according to any specified representation.

G-CNNs. A special case of the steerable networks is the group convolutional neural network
(G-CNN), wherein the hidden representation space (X}, p;) for each ! € [L — 1] is set to

X = (Rdl)G ={x;:G— Rdl}7 pi(g)xi(h) = xl(g_lh) e R" Vg,h e G. @)

The representation p; € GL(A}) in (7) is known as the regular representation of G. Intuitively,
x; € X} can be viewed as a matrix of size d; x |G/, and p;(¢g) is a permutation of the columns of x;.

With this choice of {(X;, pi) }1 ., the first-layer equivariant map of a G-CNN is defined as
TGN (x-wi)(g) =w] g 'x e RT,  vx e R%, (8)

where w; = (w{k) ik € R xd1 are the trainable parameters of the first layer. Eq. (8) is called

a G-lifting map as it lifts a Euclidean signal x € R% to a function W$"“N(x; w1) on G. For the

subsequent layers, equivariance is achieved through group convolutions, and the readers are referred
to the appendix for a detailed explanation.

Assumptions on the representations. The input representation py € GL(X, = R%) is assumed to
be given, and p;, = 1 € GL(X, = R) is set to the trivial representation for group-invariant outputs.
In this work, we make the following special choices for the first-layer representation (p1, X7) as well
as the equivariant map U§*"(x, w1) in a general steerable network.

Assumption 3.1. We adopt the regular representation (7) for the first layer, and set the first-layer
equivariant map V' (x; w1 ) to the G-lifting map (8).

Remark 3.2. The rationale of Assumption 3.1 is for the network to have enough capacity to
parameterize any G-invariant linear classifier; this will be further explained in Proposition 3.6.
We note that the representations (p;, X;) and steerable maps V5" (x, w;) for all subsequent layers,
l€{2,---,L— 1}, can be arbitrary.

Under Assumption 3.1, we can characterize the linear steerable networks feer(; W) in the following
proposition.

Proposition 3.3. Let feer(x; W) be the linear steerable network satisfying Assumption 3.1, where
W = [Wl}le € Wieer is the collection of all model parameters. There exists a multi-linear map

M : (wa, - ,wr) = M(wa,- - ,wr) € R4 such that for all x € R and W € Wyeer,
fsteer<x§ W) = fsteer(i; W) = <§7 WIM(W27 T 7WL)> , 9
where X = ﬁ deG gX is the average of all elements on the group orbit of x € R%,



Although a straightforward proof of Proposition 3.3 can be readily derived using Schur’s Lemma,
we have opted to include an elementary proof of Proposition 3.3 in the appendix for the sake of
completeness. If we define

fsteer(w) = WlM(WQ, T 7WL)7 Psteer( = ‘G‘ Z g steer )a (10)
geG

where g == po(g) ", then
Feer (i W) = (X, Pateer (W) = (X, Puteer(W)) - 1
By the multi-linearity of M (wa, -+ ,wpr), one can verify that fee(X; W), Pyeer(W), and
Pieer (W) are all L-homogeneous in W, that is, for all v > 0 and W € Weee,
Foteer (3 VW) = 1L fiteer (3 W), Pateer (VW) = 0 Piteer (W), Piteer (VW) = v Peer (W) (12)

Remark 3.4. In comparison, an L-layer linear fully-connected network fi.(x; W) is given by
fre( W) = wiwi g wix = (x,Pe(W)), Pr(W):=wp--wp. (13)

where W = [wy][_, € Wy == ( lL;ll Rdl*“dl) x RIL-1_ It is worth noting that when G = {e}

is the trivial group, a linear fully-connected network fi.(x; W) is identical with a linear G-CNN,
which is a special case of linear steerable networks. See Remark A.1 for details.

3.3 Group-invariant binary classification

Consider a binary classification data set S = {(x;,y;) : i € [n]}, where x; € R% and y; €
{%1},Vi € [n]. We assume that S are i.i.d. samples from a G-invariant distribution D defined below.
Definition 3.5. A distribution D over R% x {1} is said to be G-invariant with respect to a
representation py € GL(R%) if

(po(9) ®1d), D =D, Vg € G, (14)

where (po(g) @ 1d)(x,y) = (po(9)x, y), and (po(g) ®1d), D == D o (po(g) ® 1d) ™" is the push-
forward measure of D under py(g) ® 1d.

It is easy to verify that the Bayes optimal classifier f* : R% — {+1} (the one achieving the
smallest population risk) for a G-invariant distribution D is necessarily a G-invariant function, i.e.,
f*(gx) = f*(x),Yg € G. Therefore, to learn f* using (linear) neural networks, it is natural to
approximate f* using an equivariant steerable network

FH(x) == sign (feer(x; W) = sign ((X, Psreer(W))) . (15)

After choosing the exponential 10ss fexp : R X {£1} — Ry, Lexp (3, y) == exp(—5y), as a surrogate
loss function, the empirical risk minimization over S for the steerable network fyeer(x; W) becomes

w{g}&mr EPS[EH W S Z gexp X, P, steer )> ; yz) = Z: éexp(<ii y fsleer(vv)> 5 yi)- (16)

On the other hand, since Pyee, (W) = 3 € R always corresponds to a G-invariant linear predictor—

we have slightly abused the notation by identifying 3 € R% with the map x ++ (x, 3)—one can

alternatively consider the empirical risk minimization directly over the invariant linear predictors 3:
n

min £(8;5) ==Y lexp((xi8) , 4i), (17)

BERY i=1
where ]Ré? C R% is the subspace of all G-invariant linear predictors, which is characterized by the
following proposition.

Proposition 3.6. Let Ré? C R% be the subspace of G-invariant linear predictors, i.e., RY —
{,8 eRY :B3Tx =pBTgx,vVx € R% Vg € G}. Then



(a) Ré? is characterized by

1
R‘éﬂ = ﬂ ker(I — g ) = Range Gl Z g . (18)
geG 9€G

(b) Let A : R% — R% pe the group-averaging map,

AB) =B = — > 9B (19)

Gl =2

Then its adjoint AT : 3 ﬁ deG g B is a projection operator from R% to RdG". In
other words, Range(A") = RdGD and ATo AT = AT,

(c) If G acts unitarily on Xy, i.e., po(g~1) = po(g) ", then A = AT is self-adjoint. This implies
that A : B — B is an orthogonal projection from R% onto Ré). In particular, we have

B=p < BERY, and |B| <|B,V8 €R". (20)

Proposition 3.6 combined with (10) demonstrates that a linear steerable network fyeer(1; W) =
(+, Psteer(W)) can realize any G-invariant linear predictor 3 € Rg); that is, {Pgeer(W) : W €
Witeer } = Ré). Therefore (16) and (17) are equivalent optimization problems parameterized in
different ways. However, minimizing (16) using gradient-based methods may potentially lead to
different classifiers compared to those obtained from optimizing (17) directly.

Gradient flow. Given an initialization W (0) € Wier, the gradient flow {W (t)},>¢ for (16) is the
solution of the following ordinary differential equation (ODE),

dwW -
5 = VWEPL(W;8) = —Vw gﬁexp(<xi,Psteer<W)> i) - @n

The purpose of this work is to inspect the asymptotic behavior of the G-invariant linear predictors
Bsteer(t) = Psteer (W (t)) parameterized by the linear steerable network trained under gradient flow

(21). In particular, we aim to analyze the directional limit of Bgeer(t) as t — 00, i.e., lim;_, oo HZS::f Eg T

Before ending this section, we make the following assumption on the gradient flow W (¢) that also
appears in the prior works Ji and Telgarsky [2020], Lyu and Li [2020], Yun et al. [2021].

Assumption 3.7. The gradient flow W (t) satisfies Lp,..,(W (to); S) < 1 for some to > 0.

This assumption implies that the data set S = {(x;,¥;) : ¢ € [n]} can be separated by a G-invariant
linear predictor Pyeer(W (t0)), and our analysis is focused on the “late phase" of the gradient flow
training as t — oo.

4 Implicit bias of linear steerable networks

Our main result on the implicit bias of gradient flow on linear steerable networks in binary classifica-
tion is summarized in the following theorem.

Theorem 4.1. Under Assumption 3.1 and Assumption 3.7, let Beer(t) = Prsteer(W (t)) be the time-
evolution of the G-invariant linear predictors parameterized by a linear steerable network trained
with gradient flow on the data set S = {(x;,y;) : i € [n]}; ¢f Eq. (21). Then

(a) The directional limit B33, = lim;_,o Hgst“:ggu exists and B33, X ﬁ > gec g'~*, where

~* is the max-L?-margin SVM solution for the transformed data S = {(X;,v;) : i € [n]}:

~* =arg min ||y|]?, sty (X)) > 1,Vi € [n]. (22)
~yER%

Furthermore, if G acts unitarily on the input space Xy, i.e., g~' = g, then B35, o v*.



(b) Equivalently, 33%., is proportional to the unique minimizer 3* of the problem

B* = arg Brgﬂié}o ||ProjRange(A),3H27 st. BERY, andy; (x;,B) > 1,Vi € [n], (23)

where Projg,qe(.4) I8 the projection from R% 1o Range(A) = Range (IiCl?\ Ygea g). More-
over, if G acts unitarily on Xy, then

Blier o 07 = arg min, IBII°, st.BERE, andy; (x;,8) > 1,Vie[n].  (24)

Namely, B3, achieves the maximum L?-margin among all G-invariant linear predictors.

Theorem 4.1 suggests that gradient flow implicitly guides a linear steerable network toward the
unique G-invariant classifier with a maximum margin defined by the input representation pyg.

Remark 4.2. According to Remark 3.4, when G = {e} is a trivial group, then a linear G-CNN
(which is a special case of linear steerable networks) reduces to a fully-connected network fi.(x; W).

Since the representation of a trivial group is always unitary, we have the following corollary which
also appeared in Ji and Telgarsky [2020] and Yun et al. [2021].

Corollary 4.3. Let {W (t)}1>0 C Wk be the gradient flow of the parameters when training a linear
fully-connected network on the data set S = {(x;,v;),1 € [n]}, i.e.,

dW

5 = VWL (W;S) = —Vw ;fexp«xi,mwn )| - (25)

Then the classifier Bi.(t) = Pi.(W (t)) converges in a direction that aligns with the max-L?-margin
SVM solution ~* for the original data set S = {(x;,y;) : i € [n]},

y* =arg min [|v]?, sty (xi,y) > 1,Vi € [n]. (26)
~€ER0

Remark 4.4. While Theorem 4.1 provides a complete characterization of the implicit bias exhibited
by gradient flow in linear steerable networks, it is imperative to note that the convergence rate
to the directional limit is, in fact, exponentially slow. This is consistent with the findings in, e.g.,
[Soudry et al., 2018, Yun et al., 2021]. A comprehensive analysis of gradient flow behavior in a
non-asymptotic regime falls outside the scope of this current study.

5 The equivalence between steerable networks and data augmentation

Compared to hard-wiring symmetry priors into model architectures through equivariant steerable
networks, an alternative approach to incorporate symmetry into the learning process is by training a
non-equivariant model with the aid of data augmentation. In this section, we demonstrate that these
two approaches are equivalent for binary classification under a unitary assumption for pg.

Corollary 5.1. Let B35, = lim_, oo HZ:Z:E:;H be the directional limit of the linear predictor

Bsteer(t) = Psieer (W (t)) parameterized by a linear steerable network trained using gradient flow

on the original data set S = {(x;,y:),% € [n]|}. Correspondingly, let B° = lim;_, o ”gfig;”

Bic(t) = Pee(W(t)) (13), be that of a linear fully-connected network trained on the augmented data
set Sawg = {(9%i,i),1 € [n], g € G}. If G acts unitarily on Xy, then

seer = Pre - 27

In other words, the effect of using a linear steerable network for group-invariant binary classification
is exactly the same as conducting data-augmentation for non-invariant models.

Remark 5.2. The equivalence between data augmentation and training with a linear steerable
network is valid only in an asymptotic sense, yet the underlying training dynamics differ substantially.
Specifically, Bseer(t) is assured to maintain G-invariance throughout the training process, whereas
B (t) achieves G-invariance solely in the limiting case as t — co. Moreover, the equivalence only
holds for “full-batch" data-augmentation over the entire group orbits.



Remark 5.3. For Corollary 5.1 to hold, it is crucial that py € GL(Xy) is unitary, as otherwise the
limit direction Bg° of a linear fully-connected network trained on the augmented data set is generally

not G-invariant (and hence cannot be equal to 332, € Ré“ ); see Example 5.4.

Example 5.4. Let G = Zy = {0, 1}. Consider a (non-unitary) G-representation py on Xy = R2,

m@ =l 1 w@=5 YR e

Let S = {(x,9)} = {((1,2) 7, +1)} be a training set with only one point. By Theorem 4.1, the limit
direction 352, of a linear-steerable-network—parameteriZed linear predictor satisfies

1
RN S *{0 1} 7[8 ﬂ MM 29)

qEG 3 3

where v* = (0, 3) " is the max-margin SVM solution for the transformed data set S = {(X,y)} =
{((0,3)T, +1)}. On the contrary, by Corollary 4.3, the limit direction 35° of a linear fully-connected
network trained on the augmented data set Sy = {((1,2) ", +1), ((—=1,4) ", +1)} aligns with the
max-margin SVM solution 7y, for Sag,

B X Youg = arggégg Y17, sty (x,9) > 1,V(X,9) € Saug (30)
= (027 0'4) <X ﬁqteer (31)

However, we demonstrate below that the equivalence between linear steerable networks and data
augmentation can be re-established for non-unitary po by defining a new inner product on R%,

1/2
(v,w)p =v' e Z po(g w, VYv,weX,=R%, (32)
|Gl 22
When py is unitary, (v, w) , = (v, w) is the normal Euclidean inner product. With this new inner

product, we modify the linear fully-connected network and its empirical loss on the augmented data
set Swg = {(9xi,¥i) 1 g € G,i € [n]} as

e (% W) == (x, Pr(W)),, (33)
£p0 W Saug Z dexp ftc gxz, yi) = Z dexp <<gxiapfc(w)>p0 ayi) . (34)
geG i=1 geG i=1

The following corollary shows that, for non-unitary py on &p, the implicit bias of a linear steerable
network is again the same as that of a modified linear fully-connected network f2°(x; W) trained
under data augmentation.

By,

Corollary 5.5. Let 3% 1820 @)l

the limit direction of B (t) = Pr (W (t)) under the gradient flow of the modified empirical loss
EPPO& (W Saug) (34) for a linear fully-connected network on the augmented data set Sy,y. Then

be the same as that in Corollary 5.1. Let B{%° = lim;_,

steer

1/2
steer ‘Gl Z pO %OCO’OO~ (35)
geG

Consequently, we have (X, 33%;) < (x, B£") g Jorallx € Rdo.

6 Improved margin and generalization

We demonstrate in this section the improved margin and generalization of linear steerable networks
over their non-invariant counterparts. In what follows, we assume py to be unitary.

The following theorem shows that the margin of a linear-steerable-network-parameterized predictor
B on the augmented data set S, is always larger than that of a linear fully-connected network
Be°, suggesting improved L2-robustness of the steerable-network-parameterized classifier.



Theorem 6.1. Let 32, be the directional limit of a linear-steerable-network-parameterized predictor
trained on the original data set S = {(x;,y;),1 € [n]}; let B5° be that of a linear fully-connected
network also trained on the same data set S. Let Meer and My, respectively, be the (signed) margin
of B3 and B on the augmented data set Syy = {(g%xi,vy:) : 1 € [n],g € G}, ie,

Meer == min g, </6§125ra gXi> , Mg = min </6?c07 gXi> . (36)

. ”
i€[n],geG i€[n],geG !

Then we always have Mgeer > Mie.

Finally, we aim to quantify the improved generalization of linear steerable networks compared to
fully-connected networks in binary classification of linearly separable group-invariant distributions
defined below.

Definition 6.2. A distribution D on R% x {+1} is called linearly separable if there exists 3 € R%
such that

Pxyy~p [y (x,8) 2 1] = 1. (37)

It is easy to verify (by Lemma F.1) that if D is G-invariant and linearly separable, then D can be
separated by a G-invariant linear classifier. The following theorem establishes the generalization
bound of linear steerable networks in separable group-invariant binary classification.

Theorem 6.3. Let D be a G-invariant distribution over R% x {£1} that is linearly separable by an
invariant classifier By € Rg). Define

R =inf{r > 0: ||X|| < r with probability 1} . (38)

Let S = {(x;,y:)};—, be i.i.d. samples from D, and let 333, be the limit direction of a steerable-

steer
network-parameterized linear predictor trained using gradient flow on S. Then, for any 6 > 0, we

have with probability at least 1 — § (over random samples S ~ D") that

SR, [los1/5)
vn 2n

Remark 6.4. In comparison, let Bg° be the limit direction of a fully-connected-network-
parameterized linear predictor trained on S. Then with probability at least 1 — §, we have

2RI Bl |, [log(1/9)

Vn 2n
where R = inf {r > 0: ||x|| < r with probability 1}. This is the classical generalization result for
max-margin SVM (see, e.g., Shalev-Shwartz and Ben-David [2014].) Eq. (40) can also be viewed as
a special case of Eq. (39), as a fully-connected network is a G-CNN with G = {e} (cf. Remark 4.2),
and therefore X = x and R = R.

Pix,y)~p [y 7# sign ((x, Bieer))] < (39)

Pacyy~p [y # sign ((x, 8))] < (40)

By Proposition 3.6, the map x — X is an orthogonal projection, and thus we always have R < R.
Therefore the generalization bound for steerable networks in (39) is always smaller than that of the
fully-connected network in (40).

Remark 6.5. A comparison between Eq. (39) and Eq. (40) reveals that the improved generalization
of linear steerable network does not necessarily depend on the group size |G|. Instead, it depends on
how far the distribution D’s support is from the subspace RY | such that R could be much smaller
than R. In fact, if the support of D is contained in RdG“, then R = R, and the steerable network
does not achieve any generalization gain. This is consistent with Theorem 4.1, as in this case, the
transformed data set S = {(X;, y;) : i € [n]} is the same as the original data set S.

7 Conclusion and future work

In this work, we analyzed the implicit bias of gradient flow on general linear group-equivariant
steerable networks in group-invariant binary classification. Our findings indicate that the parameter-
ized predictor converges in a direction that aligns with the unique group-invariant classifier with a
maximum margin that is dependent on the input representation. As a corollary of our main result,



we established the equivalence between data augmentation and learning with steerable networks in
our setting. Finally, we demonstrated that linear steerable networks outperform their non-invariant
counterparts in terms of improved margin and generalization bound.

A limitation of our result is that the implicit bias of gradient flow studied herein holds in an asymptotic
sense, and the convergence rate to the directional limit might be extremely slow. This is consistent
with the findings in, e.g., [Soudry et al., 2018, Yun et al., 2021]. Understanding the behavior of
gradient flow in a non-asymptotic regime is an important direction for future work. Furthermore, in
our current framework, we assume that the first-layer equivariant map is represented by the G-lifting
map. This assumption ensures that the linear steerable network possesses sufficient capacity to
parameterize all G-invariant linear classifiers. Exploring the implicit bias of steerable networks
without this assumption would be a compelling next step. The removal of this constraint could
facilitate the generalization of our findings from finite groups to compact groups.
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A G-CNNs

A special case of the steerable networks is the group convolutional neural network (G-CNN), wherein
equivariance is achieved through group convolutions. More specifically, for each | € [L — 1], the
hidden representation space (X}, p;) is set to

X = (Rdl)G ={x:G— Rdl}, pi(g)xi(h) = xl(g_lh) IS Rdl,Vg,h ed. 41)

The representation p; € GL(AX]) in (41) is known as the regular representation of G. Intuitively,
x; € X can be viewed as a matrix of size d; X |G/, and p;(g) is a permutation of the columns of x;.
With this choice of {(X;, pi)}~, a (linear) G-CNN is built as follows.

First layer: the first-layer equivariant map W§"“NN : X, — X; of a G-CNN is defined as
TGN (x-wi)(g) =w] g 'x e RT,  vx e R%, (42)

where wi = (w{k) ik € R x*d1 are the trainable parameters of the first layer. Eq. (42) is called a
G-lifting map as it lifts a Euclidean signal x € R% to a function ¥§"NN(x: w) on G.

Hidden layers: Forl € {2,--- L — 1}, define \IllG'CNN : i1 — A} as the group convolutions,
UFNN(Gw)(9) = Y w/ (W g)x(h) € R, Vx € X, (43)
heG

where w;(g) € R%4-1%4 Vg € G. Equivalently, w; € R%-1*4xICl can be viewed as a 3D tensor.

Last layer: Define W$NN . X, — X as the group-pooling followed by a fully-connected layer,

G-CNN /.
vy (x;wpr)

Z ), Vxe Xy, (44)

geG

IG |
where w, € R% -1 is the weight of the last layer. An L-layer linear G-CNN is then the composition
faoxn(x; W) = UFOWN(C L wFON(OFN( wy)iwa) -+ swy), W=[wiz,, (45)

where W € Rdoxd1 [HlL:}l Rdl*IXdl”Gq x R¥2-1 = Wg.cnn are the trainable weights.

Remark A.1. As a special case of linear steerable networks, a linear G-CNN fg.cnn(x; W) (45)
can be written as

fa-onn (35 W) = (x, Po.onn(W)) = (X, Pa.onn (W) (46)
where
L1
PoosnW) =wi [ [T | Do wil9) | | we, Paow(W) = @l Zg Pe.oxn(W) (47)
1=2 \geG 9€G

B Proofs in Section 3

Proposition 3.3. Let feer(x; W) be the linear steerable network satisfying Assumption 3.1, where
W = [wl}lL:l € Witeer 1S the collection of all model parameters. There exists a multi-linear map

M : (wo, -+, wr) = M(wa,---,wr) € R% such that for all x € R and W € Wieer,
fsleer(x; W) = fsteer(i; W) = <ia WlM(W27 e 7WL)> 5 (48)
where X = ﬁ deG gX is the average of all elements on the group orbit of x € R%,

Proof. Since the linear steerable network feer(x; W) is G-invariant, we have fyeer(X; W) =
fsteer(9%; W) for all g € G. Therefore,

fsleer(x W |G| Z fsteer gx W) fsteer |G| Z gxXiw | = fsteer(i; W)» (49)
geG geG
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where the second equality is due to the linearity of fyeer(x; W) in x. We thus have

fsteer(x; W) = fsleer(i§ W) = \I/%eer(_ o \I,;teer(,l/iteer(i; Wl); WQ) T ;WL) (50)
= (VX w), B(wa, -, WL ), (51)
where ®(wy, -, wr) € &) = (Rdl)G is multi-linear with respect to (wy,--- ,wr). Under
Assumption 3.1, we have

fsteer(x; W) = Z <\Ilslleer(i; W)(g), (I)(W27 e aWL)(g)> (52)

geG
= Z <WIg_1§7q>(W27"' >WL)(g)> (53)

geG
=D (WX, ®(wa,---,wi)(9)) (54)

geG
= <x, w1 | Y ®(wa, -+, wL)(g) > (55)

geG

= <27W1M(W27"' 7WL)>7 (56)
where M(wa, -+, wp) =3 5 ®(Wa2, -+, wg)(g) is also multi-linear in (w2, -, wr). O

Proposition 3.6. Let Ré? C R% bpe the subspace of G-invariant linear predictors, i.e., R‘é? =
{,@ ERY :B3Tx =pBTgx,vVx € R% Vg € G}. Then

(a) Ré‘) is characterized by

RY = ﬂ ker(I — g") = Range \G| Zg . (57)
geG geG

(b) Let A : R% — R% be the group-averaging map,

A(B) = LS9 (58)
e =

Then its adjoint A" : 3 ﬁ deG g' B is a projection operator from R to RdGO. In
other words, Range(AT) = R% and AT o AT = AT.

(c) If G acts unitarily on Xy, i.e., po(9g~") = po(g) ", then A = AT is self-adjoint. This implies

that A : 3 — B is an orthogonal projection from R% onto RdGO. In particular, we have

B=p < BERY, and |B] <|B,Y8 €R". (59)

Proof. To prove (a), for the first equality, a vector 3 € Ré? if and only if 0 = BT (I — g)x =
((I—9)"B,x),Vx € R% Vg € G. This is equivalent to 3 € | . ker(I — g "), and therefore

RE =, ker(I—g").
For the second equality, if 3 €

geG

gec ker(I —g "), then (I — g7)B = 0,¥g € G. Hence

-

\Glg;[ 9B =5~ |G|g§€;;9" (60)

\G| ZgTﬁ € Range \G| Zg (61)
geG geG
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On the other hand, if 8 = ﬁ Zhec hTy for some y € R%, then for all g € G,

(I-¢")B= Z 'y |G|Z W'y @Z(hgfyzo. (62)

heG heG
Thus B € (), ker(I — gh).
Point (b) can be easily derived from (57) and (60).

To prove (c), notice that
1
|G|Zg ‘G|Zg —@g;ngt. (63)

Hence A = AT is self-adjoint. This combined with point (b) implies that A = AT : 3 — Bis an
orthogonal projection from R% onto Rdco. O

C Proof of Theorem 4.1

Theorem 4.1. Under Assumption 3.1 and Assumption 3.7, let Byeer(t) = Psteer (W (t)) be the time-
evolution of the G-invariant linear predictors parameterized by a linear steerable network trained
with gradient flow on the data set S = {(x;,y;) : i € [n]}; ¢f Eq. (21). Then

—1; Bseer(t 1 T
= limy 00 Hﬁs:m(tg\l exists and B35S, x el dec g'~*, where

~* is the max-L?-margin SVM solution for the transformed data S = {(X;,v;) : i € [n]}:

(a) The directional limit 359

steer

~* =arg min ||v]|%, sty (X, y) > 1,Vi € [n]. (64)
~yeRo
Furthermore, if G acts unitarily on the input space Xy, i.e., g~' = g, then B35, < v*.

(b) Equivalently, B33, is proportional to the unique minimizer 3* of the problem

ﬁ* = arg ,GIgﬂlkIdlo ||PrOjRange(_A)/8H27 s.t. /6 S RdGov and Yi <Xi7ﬁ> Z LVIL S [TL], (65)

where Projg a4y is the projection from R 7o Range(A) = Range (|G\ > gec g). More-
over, if G acts unitarily on Xy, then
18I, st.BERY, andy; (x;,B) > 1,Vi € [n].  (66)

e} * .

/gsteer X ﬁ - a‘rg min
BER%0

Namely, B3, achieves the maximum L?-margin among all G-invariant linear predictors.

Before proving Theorem 4.1, we need the following lemma which holds for general L-homogeneous
networks, of which linear steerable networks are a special case. Note that in what follows, || - ||
always denotes the Euclidean norm of a tensor viewed as a one-dimensional vector.

Lemma C.1 (paraphrased from Lyu and Li [2020] and Ji and Telgarsky [2020]). Under Assump-
tion 3.7, we have the following results of directional convergence and alignment.

(a) Lp, (W(t);S) = 0, ast — oco. Consequently,

W(t)|| = oo and || Pseer (W (1)) || — o0
(b) The directional convergence and alignment of the parameters W (t) and the gradients
VwLp,.(W(t)),
b W) i YWER (W (1) 5)
o0 [W(D] = [[VwLp,.(W(t); 5)|
Sfor some W™ € Wyeer with ||[W|| = 1.

i (67)

(c) The limit W is along the direction of a first-order stationary point of the constrained
optimization problem

r%n W%, s.t. yi (Xs, Poeer(W)) > 1, Vi € [n]. (68)

In other words, there exists a scaling factor T > 0 such that TW *° satisfies the Karush-Kuhn-
Tucker (KKT) conditions of (68).
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Proof of Theorem 4.1. The first part of the proof is inspired by Gunasekar et al. [2018b]. To prove (a),
let W = [wie]; = limy o vy be the limit direction of W (t), and let W = [W°]F, =

TW, 1 > (, be the stationary point of problem (68) by Lemma C.1. The KKT condition for W
implies the existence of dual variables «; > 0, ¢ € [n], such that

e Primal feasibility:

Yi <,Psleer(woo)7xi> >1, Vi € [TL} (69)

* Stationarity:

vthiteer (Z azyzxz> (70)

e Complementary slackness:

vi <7’steer(\7\//°°),xi> S1 — a; = 0. 1)

We claim that v* = 5“6&(\7\700) is a stationary point of the following problem

min ||'yH sty (Xiyy) > 1, Vi € [n]. (72)
~yER4o

That is, there exists &; > 0, ¢ € [n], such that the following conditions are satisfied.
e Primal feasibility:
Yi <ﬁsteer(wm)7iz’> >1, Vi € [’I’L] (73)

* Stationarity:

Zalyzxz (74)

* Complementary slackness:

Yi <ﬁteer(vA\7°°),z> >1 — & =0. (75)

Indeed, Eq. (73) holds due to Eq. (69) and <Psteer(\~7V°°), xi> = <fsleer(VV°°),m>. Moreover, by
the definition of Pyeer(W) and Pyeer(W) in (10), we have for any z € R,
Vi, Pateer(W) -z = 2[M (wa, -+ ,wp)]" (76)

vwlpsteer( Zg Z W2a"' 7WL)]T :Z[M(WQ;"' aWL)}T- (77)

geqG

IGI

Therefore Eq. (70) implies

Wil)o - leps[eer (Z alyzxz> - (Z aiyixi> : [M(«’gov tee ,WEO)]T (78)
i=1

Hence
Paeer(W™) = WM (W5, -, W) (Z%W%) 1M (W52, w3
=1
=cY Y%, (79)
=1
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where ¢ = | M(W5°,--- ,w5°)||> > 0. From (73) we know that fsleer(wo") # 0 and hence ¢ > 0.
Let &; = ca;,Vi € [n]. Then &; > 0, and the stationarity (74) is satisfied due to Eq. (79), and
the complementary slackness also holds due to &; being a positive scaling of «; for all i € [n].
Therefore v* = Pgeer(W™) is a stationary point of (72). Since problem (72) is strongly convex,

~* = Pteer (W) is in fact the unique minimizer of (72). Hence the limit direction of the predictor
Psteer (W (1)) is

PuaW(0) (B T0e697) P W)

IR O R (4, ) Pt
o (\Gl dogea ) Pacer (\IT\’VV‘,((tg)I\) B (ﬁ 2 gec gT) Picer (WOO)
== 5 (W[ (2 P (W e

| (@ )y eGgT> Paee (i) | [[ (8 S o) P (W) |
a5 (82)

geG

where the third equality is due to P, being L-homogeneous (12), and the fourth equality comes
from the continuity of Py and that Pyee (W) = (ﬁ > e gT) Peer (WOO) # 0 (because
otherwise (69) can not hold.)

Finally, if G acts unitarily on X, then Eq. (74) combined with Proposition 3.6 implies that v* =
fsteer(vvoo) S Rg) Hence

steer |G| Zg 7 = |G| Zg (83)

geG
where the last equality is again due to Proposition 3.6. This concludes the proof of (a).

To prove (b), we first show that problem (65) has a unique minimizer. To prove this, notice that
ProjRange(4) : R% — Range(A) is injective; indeed, for any 3 € R,

Projrange( )8 =0 = B € Range(A)" = ker(AT). (84)

Thus 0 = A" 3 = 3, where the second equality is due to A" being a projection onto Range(A') =
RdGO (Proposition 3.6) and B8 € RdGO. Therefore the objective function in (65) is strongly convex on
RdGD and there exists a unique minimizer.

To show B3, o B*, it suffices to verify that ﬁ > geq 9" = B* is the minimizer of (65). To this
end, we notice that

. \Tl;| > ogec gy =AT~y* € RdGO by Proposition 3.6;

e foralli € [n]

<Xz7 ‘Gl Zg > =Y Xz77*> > 1. (85)

geG

Thus ﬁ > e g'~* satisfies the constraints in (65). Assume for the sake of contradiction that
|Tl:\ > gec 9" # B, then by the uniqueness of the minimizer of (65) we have

~ . . . 1 X
||’7|| = HPro‘]Range(A)l6 H < Pro]Range(A)@ Z gT’Y ’ (86)
geG

where 7 := Projg,pee(.4)3". We make the following two claims to be proved shortly:

¢ Claim 1: Yi <§ai2> =Y <,8*,XZ‘> >1,Vi € [TL]

16



¢ Claim 2: ProjRange(A)ﬁ Yecd V="

These two claims combined with (86) imply that - satisfies the constraint in (64) and has a smaller
norm compared to v*, ||¥|| < ||v*||. This contradicts the fact that 4* is the minimizer of problem
(64). Therefore we have ﬁ PP gy =B~

If we assume in addition that py is unitary on Xy, then A = AT : 3 +— 3 is an orthogonal projection
from R% onto R% = Range(A). Therefore Projpange(4)3 = B for B € R% and hence problems
(65) and (66) are equivalent.

Finally, we prove the above two claims.
Proof of Claim 1: y; (7,%;) = y; (8%,x;) > 1,Vi € [n].
Since ¥ = Projrange(4)3”, we have
5 — B* € Range(A)*: = ker(AT). (87)
Hence
ATy = AT =p", (88)

where the second equality is due to 3* € R% = Range(A") and AT = AT o AT is a projection;
cf. Proposition 3.6. Therefore, for all ¢ € [n],

yi (7. %) = yi (AT, %) = 5 (B, x;) > 1. (89)
Proof of Claim 2: Projg,,.( A)AT')'* = ~*.

We first note that both Projg e ( A)AT'*/* and v* are in the affine space A" ~v* + ker(A"). Indeed,

(AT'y* - ProjRange(A)AT'y*) € Range(A)* = ker(A"), (90)
AT(v* — AT~*) = ATy* — AT AT~ = 0. 1)
This also implies
AT (ProjgangeaATY") = AT7" 92)
Moreover, for any ¢ € [n],
Yi <ProjRange(A)AT'y*,E> =y <AT (ProjRange(A)AT'y*) ;Xi> 93)
=y (ATy",x) =y (v, %) > 1. %4)

Hence Projgpee( A)AT'y* also satisfies the constraint in (64). Since the orthogonal projection
Projp,nge( A).AT')'* achieves the minimal norm among all vectors in the affine space A" ~* +ker(A")
zxél;i)ch includes ", this can only happen when Projg,,ee( A)AT'y* = ~* is the unique minimizer of

This concludes the proof of Theorem 4.1. O

D Proofs in Section 5

Hgf:““ggu be the directional limit of the linear predictor

Corollary 5.1. Ler B3, = lim;

steer
Bsteer(t) = Psieer (W (t)) parameterized by a linear steerable network trained using gradient flow
on the original data set S = {(x;,y;),1 € [n]}. Correspondingly, let B> = lim; ”gfcig;”
Bic(t) = Pee(W(t)) (13), be that of a linear fully-connected network trained on the augmented data
set Sawg = {(9%i, i), 1 € [n], g € G}. If G acts unitarily on Xy, then
sotce)er = IBfOCO 95)
In other words, the effect of using a linear steerable network for group-invariant binary classification
is exactly the same as conducting data-augmentation for non-invariant models.
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Proof. By Theorem 4.1, a positive scaling v* = 7835, of Bac., satisfies the KKT condition of (22).
That is, there exists «; > 0, ¢ € [n], such that

* Primal feasibility:

yi (", %) > 1, Vi€ [n]. (96)
e Stationarity:
=)y 97)
* Complementary slackness:
Yi <’7*,ii> >1 = «; =0. (98)

Using Corollary 4.3, we only need to show that ~* is also the solution of

arg min [y[?  s.t oy (9x5,7) > 1,Vi € [n],Vg € G. (99)
~y€ER%0
That is, there exists &; , > 0, Vi € [n],Vg € G, such that
e Primal feasibility:
Yi <7*7gx’i> Z 17 Vi € [n]7v.g € G. (100)

* Stationarity:
Z Z i g Yi X (101)
i=1 geqG

* Complementary slackness:

yi (Y, 9%i) > 1 = &y =0. (102)

Indeed, we set ¢&; g = ﬁai > 0. Since v* € Ré“ if pg is unitary (this can also be observed from

Eq. (97)), we have y; (v*, gx;) = y; (7*,%i),Vg € G,Vi € [n]. Hence we have primal feasibility
(100) from (96),

i (7", 9%i) = <’)’ 3] > hgxz> =y (v, %) =21, Vie[n],Vgeai. (103)
heG

Stationarity (101) holds since

Z > Gigyigxi = Z Z Yo% = 2—:1 aiyiXi =", (104)

i=1 geG i=1 geqG

where the last equality comes from (97). Finally, if y; (v*, gx;) > 1, then (103) and (98) imply that

e = — oy = 0. 105
a »g |G‘ «Q ( )
This proves the condition for complementary slackness (102). [
Corollary 5.5. Let 335, be the same as that in Corollary 5.1. Let 31" = lim;_, HB Eg\l be

the limit direction of Bf° (t) = P (W (t)) under the gradient flow of the modified empirical loss
Cg;c (W; Saug) (34) for a linear fully-connected network on the augmented data set Sy,g. Then

1/2

Seer X ‘G| > polg p0,00 (106)

geG

Consequently, we have (X, 33%,) < (x, B£°) g Jorall x € Rdo.
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Proof. The proof is similar to that of Corollary 5.1. By Theorem 4.1, the limit direction 832, is
proportional to ﬁ > e g ~*, where ~* satisfies the same KKT condition ((96), (97) and (98))
of problem (22) as in the proof of Corollary 5.1. On the other hand, note that the loss function
Eg;c (W Saug) (34) for the modified fully-connected network on the augmented data set Sy is
equivalent to

E”p(; W Saug Z dexp ( ng7PfC( )>po 7yz) (107)

geG i=1
= Z Zeexp ((Agxi, Pt (W)) , 4i) (108)

geqG i=1
= Lp (W Sae), (109)

where
1/2
- \G\ Z polg . Swe = {(Agxi,y;) i € [n],g € G}. (110)
geG

Therefore, by Corollary 4.3, 3£°"° is proportional to the solution Vaue Of

Vo = arg min [1II*, sty {Agxi, y) 2 1,Vi € [n], Vg € G. (11
y

We claim that 7, = A~ (ﬁ PR gT’y*). To see this, let &; ; = o, Vi € [n], where ai; > 0 is
the dual variable for v* of problem (22). We verify below that the KKT conditions for problem (111)
are satisfied for the primal-dual pair A~ (ﬁ Ygea gT'y*) and (0% ¢)ien],geG-

* Primal feasibility: for any i € [n] and h € G,

1
< |G| > g’y ,Ahxi> =yi<G| doatr, hxz> (112)

geG geG

y<7, mZg hxl> (113)

geG
=y (VX)) > 1, (114)

where the first equality is due to AT = A being symmetric, and the last inequality is due to
(96).
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* Stationarity:

AT %” Y gty =4 ﬁ DA DI (115)
geG geG i=1
= A*@ dog" | > awi )y hxi (116)
geG i=1 heG
:A-A_Qﬁz:aiyiz ZgThxi (117)
i=1 geG heG
=4 A S e | S| Yok a1s)
i=1 geG heG
- |Oc[¥i|yl' 3 Anx, (119)
i=1 heG
= Z > @ gyiAgxi, (120)

where the first equality is due to (97), and the last equality comes from the definition of the
dual variable @; , = ﬁai,w € [n], Vg € G.

e Complementary slackness: if y; <A‘1 (\%I > gec gT'y*) 7Agxi> > 1 for some i € [n]
and g € G, then (114) and (98) imply that a;; 4 = ﬁai = 0.

Hence ¥, = A~ (‘—Cl;‘ Y ogeG gT'y*) is indeed the solution of (111). Therefore,

1 £ *
Soer O g7 D 977" = Ay o ABE (121)
geG

This completes the proof. O

E Proofs of Theorem 6.1

Theorem 6.1. Let 3%, be the directional limit of a linear-steerable-network-parameterized predictor
trained on the original data set S = {(x;,y;),1 € [n]}; let B5° be that of a linear fully-connected
network also trained on the same data set S. Let Meer and My, respectively, be the (signed) margin
of B3, and B on the augmented data set Sy,g = {(9%i,v:) 1t € [n],g € G}, ie,

Msteer = min Yi <6sol<;engxi> ) Mfc = min Yi <B?covgxl> . (122)
i€[n],g€G i€[n],g€G

Then we always have Mgeer > Mie.

Proof. By Corollary 4.3 and Corollary 5.1, we have

ﬁsotger O( 7;.66]’ = a’rg Iélﬂl%go ||7||27 S't‘ yi <’Y7gx’t> Z 17vg 6 G7VIZ e [n]’ (123)
Yy
B o< v = arg min [|v]]*, sty (v,%;) > 1,Vi € [n]. (124)
~y€eR%0

Moreover, the margin M., of the steerable network 3
L. Consider the following three cases.

l1¥steer |l

oer ON the augmented data set Sayg 1S Miteer =

* Case 1: min;c(p) geq i (Vi, 9%i) > 1. In this case, ~;; also satisfies the more restrictive
constraint in (123). Therefore v, = ..» Which implies

steer = chov and  Mseer = Mrc. (125)

steer
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* Case 2: min;ep,) gee ¥i (Vie, 9Xi) < 0. This implies that ~;, and hence B¢° has a non-
positive margin on Dj,g. Thus

Mfc < 0< Mqteer (126)

s Case 3: 0 < min;ep,) gea Vi (Ve 9%i) < 1. In this case, define
Ve

Yo = — —— <. 127)
minjen] gec Yi (Vier 9%i)

Then 7 satisfies the constraint in (123), and hence

1751 > [ Yteer I (128)
Therefore
. ) minie[n},gEG Yi <7ftv ng> 1
My = min  y; (B, g%xi) = " == (129)
© iellgec”t ¥l (74|
1
> 7% 1= Msteer~ (130)
[[steer |

This completes the proof. O

F Proof of Theorem 6.3

To prove Theorem 6.3, we need first the following preliminaries.
Lemma F.1. If D is G-invariant and linearly separable, then D can be linearly separated by a
G-invariant classifier. That is, there exists 3 € Ré? such that

Picy)~p [y (x,8) 2 1] = 1. (131)

Proof. Since D is linearly separable, there exists 3y € R% such that P ,)p [y (x, B0) > 1] = 1.
Let 8 = I%H > e g' B € Ré?, and we aim to show that D can also be linearly separated by 3.
Indeed, for all (x,y) € R% x {£1},

y(x,B8) <l = y<x,|é,|ZgTﬁo> <l = y<|é,| ZQX7ﬂ0><1 (132)

geG geG
= dg € G, s.t. y(gx,5) < 1. (133)
Let £ = {(x,y) : y (x,B80) < 1} C R% x {+£1}, then
P(x,y)ND [ X ﬂ < 1 Z ]P) (x y)N'D gXa /80> < 1] (134)
geG
=) _D{(x,9): (polg) ®1d)(x,y) € E} (135)
geG
= (polg) @ 1d), =>"D(E (136)
geG geG
=Y Piyep v (x,80) < 1] =0, (137)
geG
where the second equality in (136) is due to D being G-invariant. Therefore D can be separated by
B cRY. O

Definition F.2 (Empirical Rademacher complexity). Let F C RZ be a class of real-valued functions
on Z, and let S = (21, ,2n) be a set of n samples from Z. The (empirical) Rademacher

complexity Ry (F,S) of F over S is defined as

~ 1 n
Rn(F,S) = —Egs~ n | sup oif(zi)|, (138)
where o = (01, -+ ,0,) are the i.i.d. Rademacher variables satisfying Plo; = 1] = Plo; = —1] =

1/2.
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Lemma F.3 (Talagrand’s Contraction Lemma, Lemma 8 in Mohri and Medina [2014]). Let ®; :
R — R, i € [n], be 1-Lipschitz functions, F C R be a function class, and S = (z1,...,2,) € Z"
be a set of n samples from Z. Then

~ 1 i
Ru(F,S) > —Egoqt11n | Sup 0i®; 0 f(z;)] . (139)
(F,8) >~ {1}[}@2 (2:)
Lemma F4. Let H = {x — (8,x): 8 € Ré’, 18I < B} be the function space of G-invariant
linear functions of bounded norm, and let Sy = {x1,--- ,X,} C R be a set of n samples from
R, Then
~ B mMax;¢n] HiZH
Rn(H,5%) < ——————— 140
(M, Sx) T (140)
Proof. By the definition of empirical Rademacher complexity (138), we have
nRy(H, Sx) = Eqy sup > 0i (B,x;) (141)
| BEREYIBII<B i=1 |
=E, | sup Y 0i(B8,%) (142)
| BEREYIBII<B i=1 |

=E,  sup <ﬁ,Zaixi> (143)

d
BeRZ,|IBII<B i=1

= BE., Zoiii (144)
i=1
o\ 1/2
S B Eo- Zo—iii 5 (145)
i=1
where (142) is due to 3 € RdGO. Since 01, - -+ , 0y, are i.i.d., we have
n 2
]Eo- Zaiii :]Eo- ZO‘Z‘O'J‘ <i“ij> (146)
i=1 i
= (&%) Eq0i0; + Y _ |IKi[|*Eoo? (147)
i#j i=1
=Y [%il* < nmax [|%;*. (148)
=1 i€[n]
Eq. (145) combined with (148) completes the proof. ]

We also need the following standard result on the generalization bound based on the Rademacher
complexity [Shalev-Shwartz and Ben-David, 2014].

Lemma F.5. Let 1 be a set of hypotheses, Z = R% x {41} be the set of labeled samples, and
L:HxZ—][0,00), (h,z)—£L(h,z), (149)

be a loss function satisfying 0 < £(h,z) < c forall z € Z and h € H. Define the function class
F=L4(H, ) ={z+ C(h,z): h € H}. Then, for any § > 0 and any distribution D on Z, we have
with probability at least 1 — § over i.i.d. samples S = (z1,--- ,Zy) ~ D" that

sup Lo(h) — Ls(h) < 2R (F) + 1/ 128L/D)

) (150)
heH 2n
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where Lp(h) == E,.pl(h,z) and Ls(h) = L3  ((h,z;) are, respectively, the population

and empirical loss of a hypothesis h € H, and R,,(F) = ESNDnﬁn(]: ,S) is the Rademacher
complexity of F.

Finally, we can prove Theorem 6.3 restated below
Theorem 6.3. Let D be a G-invariant distribution over R% x {£1} that is linearly separable by an
invariant classifier By € Ré". Define

R =inf{r > 0: ||X|| < r with probability 1} . (151)

Let S = {(x;,vi)};—, be i.i.d. samples from D, and let 333, be the limit direction of a steerable-
network-parameterized linear predictor trained using gradient flow on S. Then, for any 6 > 0, we

have with probability at least 1 — § (over random samples S ~ D") that

2RBol| ,  [los(1/8)

Pixy)~p [y # sign ((X, Beer) )] < NG o (152)

Proof of Theorem 6.3. Let H = {B € RY : ||8] < ||Boll} and with slight abuse of notation
we identify 3 € H with the invariant linear map x — (x,3). According to Theorem 4.1, let
B* = 7B T > 0, be the minimizer of (24). Since by assumption 3 also satisfies the constraint in
(24), we have ||3*|| < ||Bo||, and hence B* € H.

Consider the ramp loss ¢ defined as
C:H x (RY x {£1}) = [0,1], (8, (x,y)) — min{l, max{0,1 —y (x,8)}}. (153)
It is easy to verify that £ upper bounds the 0-1 loss: for all 3 € H and (x,y) € R% x {£1},

UB, (%,9)) = Liyzsign((x.8))} (154)
This implies that
Pxynn [y # sign (%, Biear))] = Py ly # sign ((x, 57))] (155)
= E(x,y)~D L {yssin((x,6*))} (156)
< Egy)~nl(B (x,9)) = Lp(B7). (157)

Since Lg(3*) is always 0 by definition (24) and 8* € H, we have by Lemma F.5 that
Pix,y)~p [y # sign ((x, Bieer))] < Lp(B") = Lp(B%) — Ls(B7) < sup, Lp(B) — Ls(B) (158)
€

log(1/0)
2n

where ' = U(H, ) = {(x,y) = £(B, (x,y)) : B € H}. Therefore, to prove Theorem 6.3 it suffices

to show that R, (F) < RlBoll Ty this end, let § = {(xi,¥:) : © € [n]} be aset of n labeled samples,

f
and let Sx = {x; : i € [n]} be the corresponding set of unlabeled inputs, then

< 2R, (F) + (159)

Ra(F,S) = HE ?‘QEZ“J Xi, Yi) (160)
i=1

fE sup ol (B, (xi,y (161)
- ﬁeH; )

—E i 1 0,1 — y; (x5, 162
- Sgglzla min {1, max{ yi (x4, 8)}} (162)

n

1
= —E, ®i((x4,8)), 163
n o sup ;:1 0:®;((x:,8)) (163)

where ®; : R — R, a — min {1, max{0,1 — y;a}}, is 1-Lipschitz. Lemma F.3 thus implies that
Ra(F, ) < Ru(H, Sx)- (164)
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Using Lemma F.4 and the fact that X < R with probability 1 over (x,y) ~ D, we arrive at

[1Boll
v

This completes the proof of Theorem 6.3. O

~ ~

Rn("f) = ESNDan(.F, S) < ESND’”Rn(Ha Sx) §

|

(165)
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