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Abstract. Lack of real-world data in clinical fields poses a major obstacle for
training deep learning models.Using data augmentation can increase data volume,
making the training of deep learning models more effective. This paper aims to
investigate different techniques for generating realistic multivariate synthetic fall
data, addressing the challenge of limited fall data availability. We experimented
with three traditional time series data augmentation techniques, a generative AI
approach with diffusion, and extraction of data from public video recordings of
older adults falling. We evaluated the effectiveness of the generated data with
both an LSTM model trained offline and using the SmartFall App running the
LSTM model in real-time. Initial results indicate a 7-10% increase in the F1-score
for the fall detection model when trained with additional data generated through
the diffusion method during offline evaluation and a notable improvement of 24%
was observed with the real-time evaluation of the model.

Keywords: Time series data generation · Fall detection · Diffusion model · Video
data extraction

1 Introduction

Falling poses a significant health risk for older adults globally [9]. In fact, the injury posed
by falling in older adults are the leading cause of unintentional death in individuals over
85 years old [15]. Research on wearable device technologies like smartwatches and IMU
sensors for fall detection has become popular due to their affordability, portability, and
non-intrusiveness. In complex physiological processes like fall onset, deep learning strug-
gles with limited training data as fall events are rare and large data collection is difficult.
Researchers have collected simulated fall data in controlled environments, a costly and
labor-intensive process. Data augmentation or synthetic data generation techniques are
one of the standard approaches to addressing the issue of small datasets[5]. Generative
AI, like GANs, VAEs, and Diffusion Models, is prominent in creating synthetic data for
images and time series.Diffusion models have become a popular method among deep gen-
erative models, showcasing outstanding performance in diverse applications [17]. More
recently, virtual IMU signal has been reported as a reliable alternative way for synthetic
data. For instance, an engineering pipeline was proposed to generate on-body virtual sen-
sor data utilizing data of a different modality (i.e., video) [6]. Therefore, we have adopted
the methodology presented in [8] for the extraction of video fall data publicly available
from two long-term care facilities in British Columbia [14].

In this work our contributions include: A) Introducing the Diffusion model for data
generation. B) Extracting fall data from videos using pose estimation. C) Validating
synthetic data techniques. D) Comparing fall detection model performance with real and
synthetic data using the SmartFall App. E) Showing the effectiveness of data generated
with the Diffusion model and video extraction in improving fall detection models.
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2 Experimental Setup
Datasets: We employed three fall-based datasets as input to different synthetic data
generation techniques and one video dataset for extraction of fall data for impact as-
sessment. Those are SmartFallMM’s smartwatch data (accelerometer data) (collected in
our laboratory) [2], the UniMiB[11], and the K-Fall [18]. All those datasets have various
simulated falls and activities of daily life performed by healthy young adults. The video
dataset is a real-life video recording of older adults falling in a long-term care facility in
British Columbia [14].

Data Preprocessing, Deep learning Model, Training and Evaluation: We
used a basic LSTM deep learning model, which is favored for time series data due to its
capability to learn temporal dynamics. The detail of the architecture can be found in our
technical report[1]. Our model, deployed and tested in our SmartFall App, outperformed
1D CNN, Gradient Boosting, and Random Forest [10].

The input data is pre-processed by segmenting into overlapping windows with a step
size of 10, using a window size of 128 across all experiments. Different training scenarios are
explored, with baseline models trained solely on original datasets, without any synthetic
data. The dataset is split into training, validation, and test sets at a ratio of 70/20/10,
and a 5-fold validation method is applied. Baseline models serve as the reference. New
LSTM models are trained using combined original and synthetic data, while validation
and testing are conducted solely on real data. Performance evaluation includes standard
metrics: Precision, Recall, F1-score, and Accuracy, to assess the effectiveness of synthetic
data from various methods.

We validate the best model using generated data with the SmartFallMM dataset
in a real-world setting via the SmartFall App [12]. Three students participated in the
evaluation under IRB 7846 at Texas State University. They wore watches on the left wrist
with the SmartFall App installed, executing falls on an air mattress and daily activities.
Both correct and incorrect predictions were recorded.

3 Synthetic Data Generation
Basic Data Augmentations: We employed three data augmentation techniques, namely
Jittering [13], Magnitude Warping [13], and Rotation [16]. Jittering involves augmenting
time series data with random Gaussian noise. Magnitude warping is a technique applied
to time series datasets where the magnitude of each sample is modified. This modification
is achieved by multiplying the original time series with a cubic spline curve. The rotation
augmentation technique serves as a means to simulate various sensor placements (e.g. left
vs right wrist), introducing the diversity of data patterns without modifying the inherent
labels associated with the data.

Diffusion Method: Denoising Diffusion Probabilistic Models (DDPMs) represent a
class of generative AI models that have demonstrated remarkable success in synthesizing
high-quality data across domains such as images and audio [4, 7]. We have integrated
diffusion models with a U-Net architecture adapted from previous work [7]. Originally
designed for image analysis, this U-Net architecture has been reconfigured for time-series
data using one-dimensional (1D) convolutional layers with a kernel size of 7 and padding
of 3, capturing essential temporal dependencies in time series data. Figure 1 represents
the architecture used for this work.

Upon receiving the time-series input, the data undergoes normalization with RM-
SNorm, which stabilizes the training process. The network architecture, comprising ResNet
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blocks and Linear Attention units, executes downsampling and upsampling operations to
refine features and preserve temporal information. Time and sinusoidal positional em-
beddings are integrated within each block, ensuring the model’s responsiveness to the
diffusion timesteps and sequence positions. Li’s original model [7] posed challenges in
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Fig. 1: Schematic of the U-Net Architecture Adapted for Time-Series Data.

handling variable-length accelerometer data for different types of falls and lacked a stable
normalization technique. We improved the model by incorporating a padding strategy
during preprocessing, enabling consistent input size and avoiding loss of information.
Detail of the method can be found in our technical report[1].

Extraction of fall data from video via Pose Estimation: We have adopted the
methodology presented in [8] for the extraction of video fall data. To extract the fall data
correctly, we edited 34 publicly available videos sourced from [14]. We first isolated the
falling person in the video by cropping the frame around them to reduce the time for
the extraction process and to zoom in on the most relevant data to extract. We ensure
to include 1 to 2 seconds of pre-fall and post-fall segments. Resolution and brightness
adjustments are made for each video. The 3D pose estimation extracted 17 joint positions
from each video’s detected human skeleton. For generating synthetic data, if we aim to
add video fall data to the SmartFallMM dataset, we focus on extracting accelerometer
data from the left wrist joint position. Alternatively, for UniMiB, we extract accelerometer
data from the left and right hips’ joint positions. If we are creating synthetic data for
UniMiB, we will extract accelerometer data from the left and right hips’ joint positions.
After pose estimation, we use 3D keypoints to extract acceleration data. Calculating
velocity from position changes, then acceleration from velocity changes, we extract about
30 fall samples. Figure 2 outlines this methodology for deriving accelerometer readings
from a video capturing an elderly person’s fall.

4 Results
Offine Evaluation of Fall Detection Model: Figure 3(a) compares datasets and
synthetic data using three methods. Results from 5-fold validation, including precision,
recall, F1-score, and accuracy, are shown for each. Each colored line represents the vari-
ation of each metric across different datasets. Abbreviations SF, UM, and KF represent
SmartFallMM, UniMiB, and K-Fall datasets, while DF, VE, Jit, MW, and Ro stand for
Diffusion, Video Extraction, Jittering, Magnitude Warping, and Rotation. Only Smart-
FallMM dataset (SF) achieves F1 score of 0.72 and accuracy of 0.77. With synthetic
data, especially using diffusion, SF’s F1-score improves to 0.80, nearly 10% better. Pose
estimation-based data extraction also boosts performance. We additionally assessed and
compared results across two other public datasets, UniMiB and K-Fall. The baseline F1
score and accuracy for UniMiB (UM) are 0.79 and 0.78, respectively. We noted a en-
hancement in performance by incorporating synthetic data generated via the diffusion
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Fig. 2: Accelerometer data extraction process from video frames.

method. The F1 score increased from 0.79 to 0.85, reflecting an improvement rate of
nearly 7%. Despite incorporating diffusion-generated and video-extracted data, there was
no improvement observed for K-Fall (KF). This could be attributed to the larger size of
the K-Fall dataset compared to the other two datasets, the added data does not lead to
more generalization with the simple LSTM architecture.
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Fig. 3: (a)Evaluation of SmartafallMM, UniMiB, and K-Fall with Synthetic Data Gener-
ated using three different methods. (b)Real world result with SmartFallMM.

The better performance gap of synthetic data from diffusion and pose extraction
methods as compared to basic augmentation likely stems from the quality of the added
information. Data from diffusion and pose extraction enriches the dataset with meaningful
patterns and the generated data aligns better with real data.

Real-time Evaluation of Fall Detection Model Figure 3(b) showcases the real-
time evaluation result for the top-performing offline model. We only tested the offline
model with SmartFallMM watch data because our SmartFall app exclusively uses watch-
sensed data. We share results from testing the SmartFall App across three participants,
starting with an initial F1 score of 0.62 using basic LSTM model for SF. Next, we evalu-
ated top models trained with a mix of synthetic and real data: SF with Diffusion and SF
with Video Extracted. The top SmartFall App model, trained with diffusion-generated
data, achieved an F1 score of 0.86 (24% improvement), while the video-extracted data
model reached 0.76 (14% improvement). Real-time testing confirms synthetic data’s ef-
fectiveness in enhancing fall detection methods.

5 Discussion and Future Work
This study explores methods to generate synthetic fall data to overcome data scarcity.
Enhanced performance is observed in offline evaluation for SmartFallMM and UniMiB
with diffusion and video-extracted synthetic fall data. Additionally, promising real-time
performance is demonstrated for SmartFallMM with synthetic data from diffusion and
video extraction. In the future, we aim to identify the ideal balance of real and synthetic
data for training robust models, alongside exploring video extraction methods via AI
platforms like Sora [3], which generate videos from textual descriptions.
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