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Abstract
Motivated by the growing theoretical understand-
ing of neural networks that employ the Rectified
Linear Unit (ReLU) as their activation function,
we revisit the use of ReLU activation functions for
learning implicit neural representations (INRs).
Inspired by second order B-spline wavelets, we in-
corporate a set of simple constraints to the ReLU
neurons in each layer of a deep neural network
(DNN) to remedy the spectral bias. This in turn
enables its use for various INR tasks. Empirically,
we demonstrate that, contrary to popular belief,
one can learn state-of-the-art INRs based on a
DNN composed of only ReLU neurons. Next, by
leveraging recent theoretical works which char-
acterize the kinds of functions ReLU neural net-
works learn, we provide a way to quantify the
regularity of the learned function. This offers
a principled approach to selecting the hyperpa-
rameters in INR architectures. We substantiate
our claims through experiments in signal rep-
resentation, super resolution, and computed to-
mography, demonstrating the versatility and ef-
fectiveness of our method. The code for all ex-
periments can be found at https://github.
com/joeshenouda/relu-inrs.

1. Introduction
Recently, training deep neural networks (DNNs) to learn
implicit neural representations (INRs) has led to advance-
ments in various vision-related tasks. These include, but are
not limited to, computer graphics (Mildenhall et al., 2021),
image processing (Chen et al., 2021), and signal represen-
tation (Sitzmann et al., 2020). They have also shown great
promise in biomedical imaging, where they can be used for
sparse-view computed tomography (CT) (Sun et al., 2021;
Wu et al., 2023). Many INR tasks involve learning continu-
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Figure 1. (Left) A plot of the second order B-spline wavelet acti-
vation function. The red lines indicate the seven non-local ReLU
functions that make up a single second order B-spline wavelet,
shown in black. (Right) A BW-ReLU neural network with two
neurons represented as a constrained ReLU network with 14 neu-
rons. Within each group the orientation of each ReLU relative to
the others is fixed. The input and output weights are learned and
shared across groups of neurons. Shared input/output weights are
denoted by the same color.

ous representations of images, unlike image classification
tasks which train DNNs on high-dimensional data. INRs
learn a continuous representation of an image by training
a DNN on the low-dimensional coordinates of the image.
For such imaging tasks, the success of the INR hinges on
the ability of the DNN to efficiently approximate and learn
high-frequency components of the image. This has, thus far,
prohibited the use of DNNs with ReLU activations as they
have been shown to exhibit a spectral bias (Rahaman et al.,
2019)—an inherent bias of ReLU DNNs which causes them
to struggle in approximating high-frequency functions when
trained via gradient descent.

Therefore, in order to circumvent this problem while still
utilizing the power of neural networks, practitioners in the
INR community have adopted preprocessing techniques
(Mildenhall et al., 2021; Tancik et al., 2020) and many non-
standard activation functions. These include, but are not
limited to, the sine function (Sitzmann et al., 2020), the
Gaussian function (Ramasinghe & Lucey, 2022), or the
complex Gabor wavelet (Saragadam et al., 2023). How-
ever, using these highly unorthodox activation functions has
raised many questions about the theoretical properties of
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INRs (Yüce et al., 2022). Therefore, motivated by the fact
that a majority of our theoretical understanding of neural
networks is based on standard ReLU DNNs, we revisit the
use of ReLU activations for learning INRs.

Consider a shallow ReLU neural network of the form

f✓(x) =
KX

k=1

vk�(w
T
k x � bk) (1)

where �(z) = max{0, z}. The neural network function is
a linear combination of a set of “atomic functions”-in this
case the ReLU neurons {�(wT

k x � bk)}Kk=1. The mono-
tonically increasing nature of the ReLU activation function
implies that each ReLU neuron contributes globally to the
function and is highly coherent with the others. When at-
tempting to fit this network to data, if the weights of one
neuron changes, all the other neurons in the layer must also
adjust to correct for the influence of that one neuron. This
makes the function highly sensitive to even small changes
in the parameters, and results in a severely ill-conditioned
optimization problem. This ill-conditioning mandates an
inordinate number of iterations when training the network
using gradient-type optimization methods, even when using
modern optimizers such as Adam. This problem is exacer-
bated in INR tasks where the data is densely sampled, low
dimensional and exhibits high frequencies.

Guided by this simple insight, our investigation takes a
different approach than previous works and focuses solely
on remedying the optimization problem. This is in con-
trast to wholly replacing the activation functions of the
neurons which generate our features. Specifically, we exam-
ine whether a localized ReLU-based activation function can
effectively address and overcome the ill-conditioning. To
do this, we propose incorporating constraints to groups of
ReLU neurons within each of the hidden layers in a ReLU
DNN. For each group, all of the neurons share the same
weights. Our constraints ensure that every seven ReLU neu-
rons in the hidden layer is effectively applying the activation
function  (x) : R ! R where,

 (x) =
1

6
(�(x) + �(x � 3)) �

16

3
� (x � 1.5)

�
8

6
(� (x � 0.5) + � (x � 2.5))

+
23

6
(�(x � 1) + �(x � 2)) .

(2)

This activation function corresponds to a second order B-
spline wavelet introduced in Chui & Wang (1992); Unser
et al. (1993). A plot of the second order B-spline wavelet
in the univariate case is shown in Figure 1a. For ease of
exposition we will refer to neural networks that use this
activation function simply as BW-ReLU neural networks.

Thus, when training a BW-ReLU neural network of the form

g✓(x) =
KX

k=1

vk (w
T
k x � bk), (3)

we are still learning a function which can be exactly rep-
resented by a ReLU neural network with 7K neurons as
demonstrated in Figure 1b. At an intuitive level, the com-
pact nature of these neurons allows for each neuron to fit
different parts of the function without affecting the con-
tributions from other neurons. In Section 3 we provide a
more thorough discussion on the ill-conditioning and how
the unique properties of the BW-ReLU can remedy it. Our
experiments in Section 5 demonstrate the effectiveness of
this approach on various INR tasks.

Next, having developed a method for learning ReLU-based
INRs, we leverage the recently developed theory characteriz-
ing the kinds of functions ReLU neural networks learn when
fit to data (Savarese et al., 2019; Ongie et al., 2020; Parhi
& Nowak, 2021; Shenouda et al., 2023). We show how our
BW-ReLU neural network functions fit into this mathemati-
cal framework and how we can measure the variation norm

of these functions. This provides a measure of the regularity
of the learned function. We also give new insights into how
this regularity is effected when one reparameterizes the INR
with a scaling parameter c > 0 such that the neurons are de-
fined as v· (c·(wTx�b)). This heuristic is employed in all
of the activation functions introduced for INRs despite being
poorly understood (Sitzmann et al., 2020; Ramasinghe &
Lucey, 2022; Saragadam et al., 2023). Moreover, we show
how the variation norm of the BW-ReLU neural network
provides a good indication for how well the network can
generalize to unseen data. This suggests a principled way
to tune INRs without the need for an additional validation
dataset. In summary, our contributions are:

1. A method for learning ReLU-based INRs: By in-
corporating a simple set of constraints on the neurons
of a ReLU neural network, we can overcome the ill-
conditioning inherent to ReLU networks. We demon-
strate that this approach can be used in multiple INR
tasks and performs comparably to other INR architec-
tures that use unconventional activation functions.

2. Insights on INR generalization: We present a way to
measure the regularity of BW-ReLU neural networks
by leveraging recent theoretical results on the kinds of
functions ReLU neural networks learn. This regularity
is measured in terms of the variation norm. We discuss
how this perspective provides insights into some of the
heuristics employed in learning INRs and how BW-
ReLU neural networks with a lower variation norm
tend to generalize better.
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2. Related Works
The ReLU is perhaps the simplest activation function uti-
lized in DNNs. Thus much of the recent DNN theory has
focused on this setting (Bach, 2017; Savarese et al., 2019;
Arora et al., 2018; Ongie et al., 2020; Parhi & Nowak, 2021).
They are also useful in practice as they induce sparse acti-
vation which can be exploited for compression or speeding
up inference (Li et al., 2023; Kurtz et al., 2020; Mirzadeh
et al., 2024).

However, neural networks with ReLU activations are typ-
ically not utilized for INR tasks due to their spectral bias

(Rahaman et al., 2019). To remedy this, pre-processing
techniques (Tancik et al., 2020; Mildenhall et al., 2021) and
unconventional activation functions (Sitzmann et al., 2020;
Ramasinghe & Lucey, 2022; Saragadam et al., 2023) have
been used alongside or instead of traditional ReLU DNNs.
Our results brings into question the necessity of these un-
orthodox approaches by showing that a ReLU-based DNN
can be trained for various INR tasks.

Our approach is inspired by B-spline wavelets which were
first developed and studied in (Chui & Wang, 1992; Unser
et al., 1993; 1992). Moreover, our BW-ReLU neural net-
works are very related to the concept of ridgelets which
were originally developed and studied in (Candes, 1998;
Candès & Donoho, 1999).

Figure 2. Condition number of feature embedding matrix gener-
ated by ReLU vs. BW-ReLU neural networks during training.
We see that the ReLU produces a severely ill-conditioned feature
matrix at initialization and throughout training. In contrast, the
BW-ReLU neural network enjoys a very well conditioned feature
matrix all throughout training. The rate of convergence is also
correlated with how well conditioned the feature matrix in both
cases.

3. Remedying ReLU Neural Networks
In this section, we provide a more thorough discussion on
why ReLU neural networks tend to exhibit a spectral bias
when trained to fit low-dimensional datasets. We formalize
the intuitions presented in the introduction and explain how
the strong coherence between ReLU neurons results in an
ill-conditioned optimization problem, which significantly
slows down convergence. We also discuss key properties

of the second-order B-spline wavelet, which remedy this
ill-conditioning (and consequently the spectral bias) making
them suitable for INR tasks.

Consider approximating a univariate function u : D ! R
by a univariate ReLU neural network f : D ! R of the
form

f(x) =
KX

k=1

vk�(wkx � bk). (4)

Where x 2 D, wk 2 {�1, 1} and vk, bk, c 2 R. Here
D = [r1, r2] is a bounded domain, K denotes the width of
the network and � : R ! R denotes the ReLU activation
function defined as �(·) = max{0, ·}. The restriction of the
input weights wk to {�1, 1} follows from the homogeneity
of the ReLU (i.e., for any ↵ > 0 we have that �(↵z) =
↵�(z)). Now due to the fact that �(z) = z��(�z) we can
further restrict the input weights to be +1 by introducing a
skip connection

f(x) = c+ ax+
KX

k=1

vk�(x � bk) (5)

where x 2 D and vk, bk, c, a 2 R. By only considering
the approximation on the domain D, setting c = u(r1) and
bk 2 [�1, 1] the network can be further reduced to

f✓(x) = c+
KX

k=1

vk�(x � bk) (6)

where ✓ = (vk, bk)Kk=1 denotes the parameters of the net-
work.

Now suppose we train the neural network to approximate
u by sampling the function and training the network on a
univariate dataset (xi, yi)Ni=1 to minimizing the `2 loss. This
corresponds to solving the following optimization problem

min
✓

k�Tv � yk
2
2 = min

✓
vT��Tv � 2(�y)Tv, (7)

where y 2 RN is a vector containing the labels for all
N samples and v 2 RK is a vector containing the output
weight of each neuron. Moreover, � 2 RK⇥N is the feature
embedding matrix, which depends on the input biases and
is learned throughout training of the network,

�i =
⇥
�(x1 � bi), · · · ,�(xN � bi)

⇤
. (8)

Neural networks typically solve (7) via gradient descent.
If we consider the gradient step update on just the output
weights v then it is clear from (7) that this is equivalent to
taking a gradient descent step on the least squares problem
over a fixed set of features �. The effectiveness of each
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gradient step to minimize the objective is dependent on the
condition number of the Hessian, ��T (Boyd & Vanden-
berghe, 2004). For a real symmetric matrix A 2 Rm⇥m the
condition number is defined as (A) = �1

�m
where �1 and

�m are the largest and smallest eigenvalues respectively.

In the context of least squares, if the matrix ��T has a
very high condition number then the curvature of the loss
landscape (with respect to the output weights v) will vary
dramatically in different directions. This hinders the effec-
tiveness of each gradient step and results in requiring many
more gradient steps to converge.

When using ReLU activations, the feature embedding matrix
��T is typically severely ill-conditioned which results in
a slow converge. This ill-conditioning of the features is
present at initialization and persists throughout training, see
for example Figure 2. To understand why, consider two
ReLUs with biases that are close to each other. In this case
they are nearly colinear (causing ill-conditioning). On the
other hand, if all the neurons are orthogonal to each other
(impossible with ReLUs), then ��T would be perfectly
well conditioned.

To understand this quantitatively, consider approximating
the univariate function u : [�1, 1] ! R with a ReLU neural
network using a fixed set of neurons. Instead of minimizing
the `2 loss over a set of finite samples we will instead con-
sider minimizing the L2 loss between the neural network f✓
and the function u

min
v

1

2

Z

D

 
u(x) � u(�1) �

KX

k=1

vk�(x � bk)

!2

dx.

(9)

A simple expansion shows that solving this optimization
problem is equivalent to solving

min
v

vTG�v � rT
u,�v. (10)

Where ru,� 2 RK is defined as

(ru,�)i =

Z

D
(u(x) � u(�1))�(x � bi). (11)

Moreover, G� 2 RK⇥K is the Gram matrix for the feature
embedding matrix and is defined as,

Gi,j :=

Z

D
�(x � bi)�(x � bj)dx. (12)

Note that this is analogous to ��T discussed above. There-
fore, the condition number of G� determines how ill-
conditioned our problem is and indicates how effective each
gradient step will be. Theorem 4 in Zhang et al. (2023)
quantifies the condition number of G� .

Theorem 3.1 ((Zhang et al., 2023)). Suppose D = [�1, 1]
and {bj}Kj=1 are quasi-evenly spaced on [�1, 1], bj = �1+
2(j�1)

K + o( 1
K ). Let �1 � �2 � · · · � �K � 0 be the

eigenvalues of the Gram matrix G�, then the condition

number of G� satisfies

(G�) = �1/�K = ⌦(K3).

The theorem shows us that even when the ReLU neurons are
maximally separated, solving (7) for the output weights is a
severely ill-conditioned problem. Moreover, the condition
number of the feature matrix grows at a cubic rate. Thus, as
we increase the number of neurons in the network, which
increases the approximation power of the model, we are
simultaneously hindering the ability of gradient descent to
optimize the model.

We can potentially remedy this ill-conditioning by instead
considering second order B-spline wavelets as our activation
function (2) and approximating u by the following BW-
ReLU neural network,

g✓(x) =
KX

k=1

vk (wkx � bk). (13)

As discussed earlier this is equivalent to incorporating con-
straints on a regular ReLU neural network such that each
group of ReLU neurons share weight and have a fixed ori-
entation relative to the other neurons in the group. We first
present a simple proposition establishing that any ReLU
neural network can be represented by a BW-ReLU neural
network over a bounded domain.
Proposition 3.2. Let f : [�1, 1] ! R denote a ReLU

neural network with K neurons. The network is of the form

f(x) = c+
KX

k=1

vk�(wkx � bk) (14)

where vk 2 R, bk 2 [�1, 1], and wk 2 {�1,+1} are

the parameters of the model. Then there exists a BW-ReLU

neural network g : R ! R with the same number of neurons

of the form

g(x) = c+
KX

k=1

24vk 

✓
1

4
(wkx � bk)

◆
(15)

such that g represents f on the bounded domain [�1, 1].

The proof is in Appendix A. The proposition establishes
the fact that on a bounded domain (the setting relevant to
INRs) any function which we can represent using a ReLU
neural network can also be represented by a BW-ReLU
neural network with the same number of neurons. There-
fore, no representation power is lost by incorporating these
constraints into the ReLU network.
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Now consider approximating the function u : [�1, 1] ! R
by a univariate BW-ReLU neural network optimizing over
the output weights with a fixed set of neurons. The L2 loss
in this case is,

min
v

1

2

Z 1

0

 
u(x) �

KX

k=1

vk (wkx � bk)

!2

dx. (16)

This is equivalent to solving

min
v

vTG v � rT
u, v (17)

where

(G )i,j =

Z 1

0
 (wix � bi) (wjx � bj)dx. (18)

Our next theorem shows that the Gram matrix in this setting
is far better conditioned than in the case of ReLUs.

Theorem 3.3. Suppose D = [�1, 1] and consider a BW-

ReLU neural network with K = 2J � 1 neurons of the

form,

 j,k(x) = 2j/2 

✓
2j

3

2
(x+ 1) � k

◆
j = 0, . . . , J � 1

k = 0, . . . , 2j � 1,

for any J 2 N+
. For each scale j = 0, · · · , J � 1 we have

k = 0, ..., 2j � 1 shifted versions of the B-spline wavelets.

Let �1 � �2 · · · � �K � 0 be the eigenvalues of G .

Using these neurons the condition number of G satisfies

(G ) = �1/�K = O(1). (19)

The proof is in Appendix B, we note that the normalization
constant is not required and merely simplifies the analysis.
The proof relies on key properties of the B-spline wavelets.
In particular, the fact that they are semiorthogonal, this
ensures that wavelets of different scale are orthogonal to
each other. For instance in the dyadic wavelet system devel-
oped in the theorem h j,k, i,`i = 0 for any i 6= j and any
k, ` 2 Z.

In Figure 2 we present a numerical example of how the
condition number of the feature embedding matrix changes
during training when using a ReLU or BW-ReLU neural
network to fit a univariate function. This illustrates how
the Gram matrix of the feature embeddings remain well
conditioned both at initialization and throughout training
for the BW-ReLU neural network while the ReLU neural
network suffers from a poorly conditioned feature embed-
ding matrix all throughout training. We also see that the
well conditioned feature embedding matrix correlates with
a faster rate of convergence.

kg✓kV = 131.34
kg✓k= 131.34

g✓ (c = 0.5)

f �

(a)

kg✓kV = 17.76
kg✓k= 17.76

g✓ (c = 2.0)

f �

(b)

kg✓kV = 103.12
kg✓k= 103.12

g✓ (c = 6.0)

f �

(c)

Figure 3. The variation norm of BW-ReLU neural networks, g✓
with various scales trained on univariate data. The red dots indicate
our samples from the ground truth function f⇤. We see that making
c too low leads to a poor fit to the data and a very high variation
norm. On the other hand making c to large results in a very
oscillatory fit to the data. The interpolator which generalizes best
corresponds to the one with the lowest variation norm.

Moreover, our experiments in Section 5 also demonstrate
that deep BW-ReLU neural networks are not susceptible to
this ill-conditioning and can be utilized for real INR tasks.

The Gaussian (Ramasinghe & Lucey, 2022) and Gabor
wavelets (Saragadam et al., 2023) have also been utilized
as activation functions for INR tasks due to their localized
nature. However, there is little theory characterizing the
kinds of functions such networks learn and the effects their
hyperparameters have on the learned function. In the next
section we leverage the fact that we are ultimately learning a
ReLU neural network. This allows us to utilize much of the
recent theory characterizing of the function space associated
with ReLU neural networks giving insights into some of the
heuristics used when training INRs.

4. Variation Norm and Scale
Having demonstrated how we can learn ReLU-based INRs
by imposing constraints on groups of neurons, we now ex-
plain the benefits of obtaining such a representation. Due to
the prevalence and simplicity of the ReLU activation func-
tion, much of our theoretical understanding of DNNs has
been focused on those with ReLU activations. In particular,
a line of work (Bach, 2017; Savarese et al., 2019; Ongie
et al., 2020; Parhi & Nowak, 2021; Wojtowytsch, 2020;
Parhi & Nowak, 2023a; Siegel & Xu, 2023; Bartolucci et al.,
2023; Chen, 2023; Shenouda et al., 2023; Zeno et al., 2023)
has investigated the kinds of functions which are learned
when fitting ReLU neural networks to data. This math-
ematical framework has provided many insights into the
inner workings and success of neural networks. For in-
stance, it sheds light on why neural networks seemingly
break the curse of dimensionality (Klusowski & Barron,
2018) and how they differ from kernel methods (Parhi &
Nowak, 2023b). Moreover, this perspective offers an expla-
nation for the role of various heuristics that are commonly
employed when training neural networks such as weight
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decay, bottleneck linear layers and skip connections (Parhi
& Nowak, 2022; Shenouda et al., 2023). We will soon see
how this perspective can also provide insights into one of
the hyperparameters uniquely used when learning INRs.

These efforts have revealed that for neural networks with
ReLU activations the common regularization technique of
weight decay corresponds to regularizing a certain variation

norm (Kurková & Sanguineti, 2001). This norm is related
to total variation and is the appropriate norm for functions
represented by ReLU neural networks. This norm provides
a measure of smoothness for the learned function and, re-
markably, can be easily computed in terms of the weights
of the model (Neyshabur et al., 2015; Savarese et al., 2019;
Parhi & Nowak, 2021). In the univariate case, the variation
norm is the total variation of the derivative of the function
f✓ defined by the neural network. If f✓ has a continuous
derivative, then this is equivalent to the L1 norm of the
second derivative. The variation norm is also well-defined
for continuous functions having discontinuous derivatives
(in which case the second derivative will be a generalized
function having Dirac impulses). In the multivariate case,
the variation norm is essentially the L1 norm of the Radon
transform of the Laplacian (second derivative operator) of
the function. This is equivalent to considering the L1 norm
of the second derivative of the function along each direction
of the multidimensional domain. For a ReLU neuron, the
directional second derivative is 0 in all but one direction
determined by the orientation of the neuron. And in that
direction the second derivative is an impulse with magnitude
equal to the slope of the ReLU. Thus, the variation norm
has a clear connection to the smoothness of the function, as
measured by the size of the second derivatives. We refer the
reader to the recent survey Parhi & Nowak (2023a) for more
details. We now present this variation norm and show how
it can be computed for our BW-ReLU neural networks.

First, consider a function f✓ represented by a ReLU neural
network of the form,

f✓(x) =
KX

k=1

vk�(w
T
k x � bk), (20)

where ✓ = (vk,wk, bk)Kk=1 and �(·) : R ! R is the
ReLU activation function applied elementwise. Each neu-
ron, ⌘v,w(x) = v�(wTx � b) contributes to the variation
norm of the function. Explicitly, the variation norm for each
ReLU neuron is,

k⌘v,wkV = kvk2kwk2, (21)

where k · kV denotes the variation norm of a function. Note
the biases are not regularized. The norm of the entire func-
tion is computed by summing up the contribution from each

neuron such that,

kf✓kV =
KX

k=1

kvkk2kwkk2. (22)

Now consider a function represented by a BW-ReLU neural
network of the form

g✓(x) =
KX

k=1

vk (w
T
k x � bk). (23)

This network can be exactly represented by a ReLU neural
network with 7K neurons by the definition of the B-spline
wavelet activation function (2). For each BW-ReLU neuron
�w,v(x) = v (wTx � b) its variation norm is found by
summing up the variation norm of each of the scaled ReLUs
in the definition of the B-spline wavelet (2), from this we
get that

k�w,vkV = 16kvk2kwk2. (24)

We can see that it is simply a multiple of the total variation
of each ReLU neuron. Again, since the variation norm
of a neural network function consists of summing up the
variation norm of each neuron we have that for the BW-
ReLU neural network its variation norm can be explicitly
computed as,

kg✓kV = 16
KX

k=1

kvk2kwk2. (25)

4.1. Understanding Scaling via Regularization

It is common to introduce an additional hyperparameter to
the neurons used in INR applications, which scales each acti-
vation function as follows. Consider an activation function ⇣ .
Each neuron applies this activation function to wTx�b, pro-
ducing the output ⇣(wTx � b). Most INR networks employ
an additional activation scaling parameter c > 0, so that
each neuron output is instead computed by ⇣(c(wTx � b)).
The scaling parameter can have a significant impact for
certain activation functions, while being ineffectual others.

To illustrate, first consider the ReLU activation. In this case,
�(c(wTx � b)) = c�(wTx � b), so the the scaling affects
the magnitude of output but has no other effect. This is
due to the fact that the ReLU activation is homogeneous
(linear activations and leaky ReLUs are also homogeneous
in this way). However, the activations commonly used in
INR applications are inhomogeneous. Take for example,
the commonly used sine activation function sin(wTx � b)
(Sitzmann et al., 2020). In this case if we scale by c, then
sin(c(wTx � b)) has the same output range/magnitude but
will have faster or slower oscillations relative to sin(wTx�

b), if c > 1 or c < 1.
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Including the scaling parameter with inhomogeneous ac-
tivations functions, like the sine function, can change the
shape and variations of the activation function. Activation
functions like the Gaussian (Ramasinghe & Lucey, 2022)
the complex Gabor wavelets (Saragadam et al., 2023) and
the B-spline wavelet used here, are compressed or dilated
depending on whether c > 1 or c < 1, which also makes
the support of the activation function smaller or larger, ac-
cordingly. These observations illustrate why scaling the
activation function may have significant effects on INR per-
formance. Generally speaking, large values of c tend to
increase oscillations or variations in the activation function
(and possibly decrease the support of the activation func-
tion). This fact has been used to explain why large values
of c may help capture more detailed structure in INR appli-
cations (Yüce et al., 2022).

The story, however, is a bit subtle. Consider a standard
training problem of the form

min
✓

NX

i=1

`
⇣
yi,

KX

k=1

vk⇣
�
c(wT

k xi � bk)
�⌘

, (26)

where the minimization is with respect to all the weights and
biases. If we place no restrictions on the allowable ranges
of the input weights and biases, then the scaling factor c can
simply be absorbed into the weights and biases. So why
does c play a crucial role? One answer is that the neural
networks are trained via gradient descent methods, typically
initialized with small random weights. This, coupled with
the fact that the training objective is nonconvex, tends to
favor solutions that fit the data with weights of small mag-
nitudes (even though the data might also be fit using much
larger weights) (Vardi & Shamir, 2021). This is sometimes
referred to as the implicit regularization of gradient descent.

To understand why the scaling factor c can play a significant
role, it is enlightening to consider explicit regularization
in the form of the commonly used weight decay regular-
ization term, which is proportional to the sum of squared
weights in the network. This is supported by established
theoretical connections between weight decay and implicit
regularization (Chizat & Bach, 2020). The overall training
objective is to minimize the sum of losses plus the weight
decay regularization term

NX

i=1

`
⇣
yi,

KX

k=1

vk⇣
�
c(wT

k xi�bk)
�⌘

+�
KX

k=1

kvkk
2
2+kwkk

2
2,

where ` is a loss function and � > 0 is the weight decay
parameter. We can simply reparameterize the problem by
absorbing c into the weights to obtain an equivalent opti-
mization
NX

i=1

`
⇣
yi,

KX

k=1

vk⇣(w
T
k xi � bk)

⌘
+�

KX

k=1

kvkk
2
2 +

kwkk
2
2

c2
.

Both objectives have the same global minima. The second
objective clearly reveals the effect of the scaling factor. If
c > 1, then there is less regularization applied to the input
weights compared to the output weights, and vice-versa if
c < 1. So if c > 1, then the regularizer encourages solutions
with larger input weights and hence increased oscillations
or variations in inhomogeneous activation functions, like the
sine, Gabor, or B-spline wavelet activations. In the case of
localized activations like the wavelets, larger values of c also
reduce the support (spatial scale) of the activation functions.
However, unlike other activation functions, for B-spline
wavelets the scaling parameter’s effect on the regularity
of the function can be readily understood in terms of the
variation norm. Let us reparameterize our BW-ReLU neural
network with a fixed scale c > 0 such that,

g✓(x) =
KX

k=1

vk (c · (wT
k x � bk)). (27)

It follows from the previous discussion that the variation
norm of the function represented by this neural network can
be computed as,

kg✓kV = 16c
KX

k=1

kwkk2kvkk2. (28)

Thus a very high c result in functions that is more irregular
while using lower values of c can lead to smoother functions.

In Figure 3 we present a simple univariate data fitting prob-
lem to illustrate the role of the scaling parameter c and how
it can effect regularity of the learned function. We see that
the interpolator which generalizes best is the one that mini-
mizes the variation norm. Using a c value which is too large
results in a very oscillatory function with a high variation
norm. However, if we instead make c too small then the
output weight must increase considerably to compensate for
the wider B-spline wavelets. Moreover, in Section 5.4 we
illustrate how the variation norm can be a good indicator
for how well our learned function will perform when using
INRs to solve inverse problems.

5. Experiments
Here we demonstrate how our BW-ReLU neural networks
can be as effective as other INR architectures for three INR
tasks. We compare our method against SIREN (Sitzmann
et al., 2020), WIRE (Saragadam et al., 2023) and ReLUs +
Positional Encoding (P.E.) introduced in (Mildenhall et al.,
2021)1. The hyperparameters for each of the INR archi-
tectures were tuned to to give the best results. For all of
our experiments we utilized a three hidden layer DNN. The

1All the code for reproducing the experiments can be found at
https://github.com/joeshenouda/relu-inrs.
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(a) Original

31.5 dB (±0.311)

(b) BW-ReLU

31.2 dB (±0.196)

(c) SIREN

30.5 dB (±0.153)

(d) WIRE

27.5 dB (±0.059)

(e) ReLU+P.E. (f) ReLU

Figure 4. Experiments on computed tomography reconstruction for various INR architectures. We report average PSNR and standard
error across five random trials.

(a) Original

107.9 dB (±1.077)

(b) BW-ReLU

105.9 dB (±0.836)

(c) SIREN

87.2 dB (±6.102)

(d) WIRE

23.82 dB (±0.774)

(e) ReLU + P.E. (f) ReLU

Figure 5. Experiments on signal representation for various INR architectures. We report average PSNR and standard error across five
random trials.

(a) Original

27.1 dB (±0.013)

(b) BW-ReLU

26.3 dB (±0.212)

(c) SIREN

27.05 dB (±0.048)

(d) WIRE

26.2 dB (±0.083)

(e) ReLU+P.E. (f) ReLU

Figure 6. Experiments on the super resolution task for various INR architectures. We report average PSNR and standard error across five
random trials.

P
` kg

`
✓kV = 8650

(a) PSNR: 29.9 dB
c = 1

P
` kg

`
✓kV = 1978

(b) PSNR: 28.7 dB
c = 2

P
` kg

`
✓kV = 1292

(c) PSNR: 32.1 dB
c = 3

P
` kg

`
✓kV = 1571

(d) PSNR: 29.1 dB
c = 5

Figure 7. Four BW-ReLU DNNs trained on the CT reconstruction task with different values of c. All networks are trained to the same
training loss. We see that the c which produces the highest PSNR corresponds to the one with the lowest variation norm across all layers.

full training details for all experiments can be found in Ap-
pendix D.

5.1. Computed Tomography(CT) Reconstruction

In this experiment we simulated CT reconstruction by taking
100 equally spaced CT measurements of a 326 ⇥ 435 chest

X-ray image (Clark et al., 2013). Figure 4 shows the results
compared to other INR architectures showing that our BW-
ReLU neural networks perform just as well and perhaps
slightly better than conventional INR architectures.
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5.2. Signal Representation

In this experiment we fit the four INR architectures to the
standard 256 ⇥ 256 cameraman image. The results are
shown in Figure 5 where we have also included the case of
using a traditional ReLU DNN for comparison. The results
show that our method can perform comparably to the newly
introduced INR architectures achieving a high PSNR as fast
as the other methods.

5.3. Super resolution

We implemented 4⇥ super resolution on a single image from
the DIV2K image dataset (Agustsson & Timofte, 2017). In
this case our BW-ReLU neural networks performs slightly
better than the rest. The results on all four INR architectures
are shown in Figure 6.

5.4. Low Norm Solutions and Inverse Problems

For our last experiment we trained the BW-ReLU neural
network for the CT reconstruction task with three different
scaling parameters. In Figure 7 all three BW-ReLU neural
networks that were used to reconstruct the image achieved
the same training loss on the CT measurement data. How-
ever we see that the model with the smallest variation norm
across all 3 layers corresponds to the best reconstruction.
This suggests a principled methodology for choosing the
scaling parameter c in the case of inverse problems.

6. Conclusion
In this work we presented a simple way to utilize ReLU
DNNs for INR tasks. Unlike previous works we focusing
solely on remedying the ill-conditioning of the optimization
problem without sacrificing the ReLU by drawing a connec-
tion to B-spline wavelets. We then related our methodology
to the function space associated with ReLU neural networks
and showed how this framework can be useful in under-
standing and quantifying the regularity of our INRs. This
connection suggests a more principled approach to tuning
INRs. For future work it would interesting to apply this
technique to more INR tasks. In particular neural radiance
fields and physics informed neural networks.
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A. Proof of Lemma 3.2
Proof. Let  (x) denote the second order B-spline wavelet. We can express this as a linear combination of seven ReLU
functions,

 (x) =
1

6
�(x) �

8

6
�

✓
x �

1

2

◆
+

23

6
�(x � 1) �

16

3
�

✓
x �

3

2

◆
+

23

6
�(x � 2) �

8

6
�

✓
x �

5

2

◆
+

1

6
�(x � 3). (29)

With this representation of the B-spline wavelet, it is clear that one ReLU on the interval [�1, 1] can be represented in terms
of a B-spline wavelet as

�(x)1[�1,1] = 24 

✓
1

4
x

◆
1[�1,1], (30)

where 1[�1,1] denotes an indicator function on [�1, 1]. Therefore if we define g : [�1, 1] ! R as

g(x) = c+
KX

k=1

24vk 

✓
1

4
(wkx � bk)

◆
(31)

then clearly

f(x) = g(x) 8x 2 [�1, 1]. (32)

B. Proof of Theorem 3.3
Our proof relies on Gershgorin’s circle theorem which we recall here.
Theorem B.1 (Gershgorin circle theorem (Horn & Johnson, 2012)). Let A 2 Rn⇥n

with entries aij . For i = 1, · · · , n let

Ri be the sum of the absolute values of off diagonals in each row of A

Ri(A) =
X

i 6=j

|aij |.

Consider the n Gershgorin discs defined as

{z 2 C : |z � aii|  Ri(A)}.

Then every eigenvalue of A lies within at least one of the Gershgorin discs.

We now proceed to the proof of Theorem 3.3.

Proof of Theorem 3.3. Our proof follows by bounding the sum of the absolute values of the off-diagonals of each row of G 

and then employing Gershgorin’s circle theorem. Recall that, for each scale j = 0, . . . , J � 1 we have k = 0, 1, . . . , 2j � 1
shifted versions of the neurons at this scale. For ease of notation we define the neurons as

 j,k(x) := 2j/2 ·  (2j(3/2)(x+ 1) � k).

Note that the scaling factor 2j/2 ensures that the L2 norm of all the neurons are equal. The elements in G 2 RK⇥K

consist of inner products between every pair of neurons.

The diagonal entries of G are simply the squared L2 norm of each neuron,

k j,kk
2
2 =

Z

D
(2j/2 (2j(3/2)(x+ 1) � k))2dx

=

Z 1

�1
(2j/2 (2j(3/2)(x+ 1) � k))2dx
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Let t = 3
2 (x+ 1), then by a change of variables we have

k j,kk
2
2 =

2

3

Z 3

0
(2j/2 (2jt � k))2dt =

2

3

✓
1

4

◆
=

1

6
.

The 1
4 follows from the fact that k k

2
2 = 1

4 and our normalization ensures that translations and dilation of the wavelet
preserve its norm.

For the first row of G we have,

R1(G ) = 0.

This follows from the fact that each column in the first row consists of an inner product between  0,0 and  j,k for all
resolution of j > 0 and all possible shifts at each resolution. Since the B-spline wavelets are semiorthogonal (Chui & Wang,
1992) we must have that whenever i 6= j and for any k, ` 2 Z,

h j,k, i,`iL2(D) = 0.

Where h·, ·iL2 denotes the L2 inner product of two functions. From this we can conclude that (G )0,` = 0 for all
` = 0, · · · ,K � 1.

Now for the rest of the rows each row is identified with a neuron  j,k at a certain scale 2j and shift k. The columns in this
row are inner products of  j,k with all the other neurons in the network. These are the off-diagonals that we will bound. For
each neuron  j,k its inner product with all other neurons can be broken up into two cases.

Case 1: The other neurons are at a different scale. The first case consists of inner products between other neurons
which are at a different scale than  j,k i.e. h j,k, m,piL2 for j 6= m but any k, p. Again, thanks to the semiorthogonality
of the B-spline wavelets (Chui & Wang, 1992) we have

h j,k, m,piL2(D) = 0. (33)

Case 2: The other neurons are at the same scale. The second type of inner products are of the form,

h j,k, j,piL2(D), (34)

where k, p = 0, . . . , 2j � 1 and k 6= p. By the compactness of the B-spline wavelets, if |k � p| � 3 then the inner product is
zero. Therefore it remains to bound

h j,k, j,piL2(D)

for the case when |k � p| = 1 or |k � p| = 2. A direct computation, again applying a change of variables, reveals that for
the case of |k � p| = 1 we have

2

3

Z 3

0
2j/2 (2jt) · 2j/2 (2jt � 1)dt = 0.030864 = C1.

Furthermore, when |k � `| = 2 another computation reveals that

2

3

Z 3

0
2j/2 (2jt) · 2j/2 (2jt � 2)dt = �0.0030864 = C2.

At each scale j we could have at most two neuron functions which are at the same scale j but shifted by 1 and at most two
neuron functions which are at the same scale but shifted by 2. Therefore, by Gershgorin’s circle theorem we have that for all
the eigenvalues of G they must satisfy,

�i 2

⇢
z 2 R :

����z �
1

6

����  2 (|C1| + |C2|)

�
.

where 2(|C1| + |C2|) <
1
6 . Therefore,

(G ) = O(1). (35)
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C. Further Experiments on the Variation Norm
In this section we provide two more experiments demonstrating the correspondence between the optimal c parameter and
the network with the smallest variation norm across all layers. Our first experiment demonstrates that the same observation
holds for the superresolution experiment in Section 5. The results are shown in Figure 8. We also repeated the experiment in
Figure 7 on an alternative CT image. The results are shown in Figure 9.

Original
Full Resolution Image

P
` kg

(`)
✓ kV = 2304

(a) PSNR: 26.25 dB
c = 2

P
` kg

(`)
✓ kV = 1358

(b) PSNR: 27.01 dB
c = 3

P
` kg

(`)
✓ kV = 1468

(c) PSNR: 25.29 dB
c = 5

Figure 8. Three BW-ReLU DNNs trained on the superresolution task with different values of c. The c which produces the highest PSNR
corresponds to the one with the lowest variation norm across all layers.

Original
CT

P
` kg

(`)
✓ kV = 1147

(a) PSNR: 33.9 dB
c = 2

P
` kg

(`)
✓ kV = 1191

(b) PSNR: 32.5 dB
c = 3

P
` kg

(`)
✓ kV = 1601

(c) PSNR: 26.1 dB
c = 5

Figure 9. Three BW-ReLU DNNs trained on a different CT reconstruction task with different values of c. All networks are trained to the
same training loss. Again the c which produces the highest PSNR corresponds to the one with the lowest variation norm across all layers.

D. Training Details for Experiments
For all experiments we applied an exponential learning rate scheduler of the form

⌘(t) = ⌘0(r)
t/T ,

where ⌘0 is the initial learning rate, T is the total epochs we trained for and r is the decay rate.

D.1. Signal Representation

For the BW-ReLU DNN we used an initial learning rate of ⌘0 = 4e� 3 a scaling parameter applied to each neuron of c = 9.
For SIREN we trained with an initial learning rate of ⌘0 = 2e � 3 and set the scale !0 = 50. For WIRE we trained with
a learning rate of ⌘0 = 1e � 3 setting �0 = 10 and !0 = 20. Finally for ReLU + positional encoding we used an initial
learning rate of ⌘0 = 4e � 3. All models were trained for 1000 epochs and the decay rate for the learning rate was r = 0.1.
The architecture consisted of 3 hidden layers and 300 neurons per layer.
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D.2. Super Resolution

We performed super resolution by training the DNN to minimize the mean squared error between a low resolution image
of the Butterfly and a downsampled version of the full sample image produced by the DNN. For the BW-ReLU DNN we
trained with an initial learning rate of ⌘0 = 3e � 3 and scaling parameter c = 3. For SIREN we used an initial learning rate
of ⌘0 = 2e � 3 and set !0 = 12. For WIRE we used an initial learning rate of ⌘0 = 3e � 3 with !0 = 8 and �0 = 6. The
ReLU + positional encoding architecture used an initial learning rate of ⌘0 = 4e � 3. All models were trained for 2000
epochs and the decay rate for the learning rate scheduler was r = 0.2. In all cases the architecture consisted of 3 hidden
layers and 256 neurons per layer.

D.3. CT Reconstruction

We computed 100 equally spaced CT measurements of the X-ray image in the Radon domain. The DNN was trained by
computing the mean squared error between the Radon transform of the image generated by the DNN and the ground truth
CT measurements. For the BW-ReLU neural network we used a learning rate of ⌘0 = 2e � 3 with c = 3. For SIREN we
trained with a learning rate of ⌘0 = 1e � 3 and set !0 = 25. For WIRE a learning rate of ⌘0 = 5e � 3 was used setting
!0 = 7 and �0 = 10. Finally for the ReLU + positional encoding we trained with a learning rate of ⌘0 = 3e � 3. All
methods were trained for 10000 epochs and the decay rate for the learning rate scheduler was r = 0.1. In all cases the
architecture consisted of 3 hidden layers and 300 neurons per layer.

D.4. Low Norm Solutions and Inverse Problems

The learning rate we used in this experiment was varied for each value of c to ensure that all the networks achieved equal
training loss. We considered the DNN as a composition of three shallow BW-ReLU neural networks and summed up the
variation norm of each layer according to (28). In particular for the architecture defined as,

g(x) = W3 (c · W2 (c · W1 (c · W0x))) .

We can treat it as a composition of 3 shallow nets of the form

g(1)(x) = W1 (c · W0x) x 2 R2

g(2)(x) = W2 (c · Ix) x 2 RK

g(3)(x) = W3 (c · Ix) x 2 RK

and then the whole DNN is

g(x) = g3 � g2 � g1.

The sum of the variation norm across all layers would be
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