
Cherno↵ Sampling for Active Testing and Extension to Active
Regression

Subhojyoti Mukherjee* Ardhendu Tripathy* Robert Nowak
UW-Madison Missouri S&T UW-Madison

Abstract

Active learning can reduce the number of sam-
ples needed to perform a hypothesis test and
to estimate the parameters of a model. In
this paper, we revisit the work of Cherno↵
that described an asymptotically optimal al-
gorithm for performing a hypothesis test. We
obtain a novel sample complexity bound for
Cherno↵’s algorithm, with a non-asymptotic
term that characterizes its performance at a
fixed confidence level. We also develop an ex-
tension of Cherno↵ sampling that can be used
to estimate the parameters of a wide variety
of models and we obtain a non-asymptotic
bound on the estimation error. We apply our
extension of Cherno↵ sampling to actively
learn neural network models and to estimate
parameters in real-data linear and non-linear
regression problems, where our approach per-
forms favorably to state-of-the-art methods.

1 Introduction

In contrast to common machine learning algorithms
that use independent and identically distributed (iid)
samples for training, active learning promises to use
fewer samples by allowing the algorithm to choose the
samples it is trained on. While the benefit of active
learning has been analyzed extensively for the prob-
lem of classification (Dasgupta, 2005; Hanneke, 2007;
Dasgupta et al., 2008; Balcan et al., 2009; Balcan and
Long, 2013; Zhang and Chaudhuri, 2014; Katz-Samuels
et al., 2021), there are fewer works (Cai et al., 2016;
Wu, 2018; Wu et al., 2019; Bu et al., 2019) that utilize
active learning for regression. In this paper we extend
an asymptotically optimal algorithm for active testing,

* Equal contribution. Proceedings of the 25th International
Conference on Artificial Intelligence and Statistics (AIS-
TATS) 2022, Valencia, Spain. PMLR: Volume 151. Copy-
right 2022 by the author(s).

that was developed by Cherno↵ (Cherno↵, 1959), to ac-
tive regression. We empirically show that this resulted
in more e�cient estimation of parameters in regression
models. In addition, we obtain non-asymptotic bounds
on the sample complexity and estimation error for Cher-
no↵’s algorithm in active testing and its extension in
active regression, respectively. Non-asymptotic bounds
characterize the performance of an algorithm when ex-
ecuted at a fixed confidence level, which is relevant for
real-world applications. While theoretical results for
active regression using maximum likelihood estimates
were given by Chaudhuri and Mykland (1993) and
Chaudhuri et al. (2015), our method is likelihood-free
and is applicable to sub-Gaussian observations.

To frame our contributions, let us first establish some
basic notation and a problem statement. Consider a
sequential learning problem in which the learner may
select one of n possible actions at each step. A sample
resulting from action i is a realization of a sub-Gaussian
random variable with mean µi(✓⇤), where the mean
µi(✓) is a known function parameterized by ✓ 2 ⇥.
The specific ✓⇤ 2 ⇥ that governs the observations is
not known. Each action may be performed multiple
times, resulting in i.i.d. observations, and observations
from di↵erent actions are also statistically independent.
This paper considers the problem of sequentially and
adaptively choosing actions for the following goals:

In Active Testing: ⇥ is finite and the goal is to
correctly determine the true hypothesis ✓⇤.

In Active Regression: ⇥ is a compact (uncountable)
space and the goal is to accurately estimate ✓⇤.

Below, we detail our contributions to both problems.

• We revisit Cherno↵’s sampling algorithm for the
sequential design of experiments (Cherno↵, 1959),
which is equivalent to the situation where the pa-
rameter space ⇥ is a finite set. The algorithm
provably minimizes the number of samples used to
identify ✓⇤ 2 ⇥ in the asymptotic high-confidence
setting. We derive a non-asymptotic sample com-
plexity bound for the algorithm in Cherno↵ (1959)

Cherno↵ Sampling for Active Testing and Extension to Active Regression

that characterizes its performance in low/medium
confidence regimes. We also provide theoretical
guarantees for three variations of the Cherno↵ sam-
pling algorithm. We prove a minimax lower bound
that shows that the algorithm in Cherno↵ (1959)
can be optimal in the medium confidence regime.
We also generalize it to handle sub-Gaussian dis-
tributions. Consequently, we replace the maxi-
mum likelihood criterion (which depends on the
probability distribution) with the minimum sum-
of-squared errors criterion (which depends only on
the mean functions).

• We extend the algorithm in Cherno↵ (1959) to han-
dle smoothly parameterized functions µi(✓) where
⇥ ✓ Rd. A brute-force approach could involve
using a finite, discrete covering of ⇥, but this is
impractical. Instead, we prove that an optimal
sampling distribution (according to Cherno↵’s cri-
terion) is generally sparse and may be obtained by
solving a simple eigenvalue optimization problem
closely related to the notion of E-optimality in ex-
perimental design (Dette and Studden, 1993). We
provide a convergence guarantee for the smoothly
parameterized setting that utilizes a new error
metric. We demonstrate that the extension of
Cherno↵ (1959) outperforms existing stage-based
algorithms in benchmark real-life datasets and in
a neural network experiment.

We derive our non-asymptotic sample complexity
bound for Cherno↵ (1959) using the techniques in
Naghshvar and Javidi (2013). The convergence proof
for active regression extends the techniques of Frostig
et al. (2015) and applies it to our extension of Cherno↵
(1959).

1.1 Related Work

The algorithm in Cherno↵ (1959) assumes that the
probability distribution of an observation from any ac-
tion i 2 [n] under any hypothesis ✓ 2 ⇥ is known to
the learner. Consider a partition of ⇥ = ⇥1 [⇥2 and
a hypothesis test between ✓⇤ 2 ⇥1 and ✓⇤ 2 ⇥2. The
objective is to choose actions such that the hypothesis
test can be performed using as few samples as possi-
ble. Using past observations, a maximum likelihood
estimate b✓ is found and let b✓ 2 ⇥1. The algorithm
in Cherno↵ (1959) chooses the next action according
to a probability mass function (pmf) p over actions
obtained by

argmax
p

inf
✓02⇥2

nX

i=1

p(i)KL(⌫i(x; b✓)k⌫i(x;✓0)), (1)

where p = (p(1), . . . , p(n)), ⌫i(·;✓) denotes the proba-
bility distribution of an observation from action i if ✓

were the true hypothesis, and KL denotes the Kullback-
Leibler divergence. The optimization (1) is similar to
those appearing in sample complexity lower bounds for
best-arm identification in multi-armed bandits Garivier
and Kaufmann (2016); Combes et al. (2017); Degenne
et al. (2020). In those works the inf is taken over all
✓0 having an optimal action that is di↵erent from that
under the true ✓⇤.

While the algorithm in Cherno↵ (1959) is asymptoti-
cally optimal under certain assumptions, subsequent
works Blot and Meeter (1973), Naghshvar and Javidi
(2013), Nitinawarat et al. (2013) have proposed modi-
fications that work well outside the asymptotic limit,
strengthen theoretical guarantees, and reduce the num-
ber of assumptions needed. Naghshvar and Javidi
(2013) proposed a two-phase Bayesian policy TP which
conducts forced exploration in the first phase and com-
putes a posterior belief over the hypotheses. Then in
the second phase, it switches to the optimal Cherno↵
sampling proportion in eq. (1) if the probability of
one hypothesis crosses a threshold. TP can relax an
assumption made in Cherno↵ (1959) which stated that
sampling any action always provides some information
about the true ✓⇤. If that assumption is true, then
Cherno↵ Sampling (CS), which has no such separa-
tion of phases, empirically outperforms TP. It also
enjoys both moderate and optimal asymptotic guaran-
tees. Nitinawarat et al. (2013) have modified Cherno↵
(1959) by adding a small amount of uniform exploration
to relax the previous assumption. In a di↵erent prob-
lem Vaidhiyan and Sundaresan (2017) have modified
CS to quickly identify an odd Poisson point process
having a di↵erent rate of arrival than others.

For estimating parameters of a regression model, e�-
cient methods for selecting actions have been studied
in the area of Optimum Experiment Design (Silvey,
1980; Pukelsheim, 2006; Pronzato and Pázman, 2013).
However a major focus in these works has been on large-
sample asymptotic properties of estimators obtained
from a fixed sampling distribution. While adaptive
sampling proportions have also been proposed (e.g.
Section 8.5 in Pronzato and Pázman (2013)), there
have been fewer works characterizing their theoretical
properties. Most theoretical work on active learning
has focused on learning binary classifiers that belong to
a particular hypothesis class (Dasgupta, 2005; Hanneke,
2007; Dasgupta et al., 2008; Balcan et al., 2009; Balcan
and Long, 2013; Zhang and Chaudhuri, 2014; Katz-
Samuels et al., 2021). The works of Chaudhuri and
Mykland (1993) and Chaudhuri et al. (2015) propose
adaptive sampling methods for obtaining maximum
likelihood estimates of the parameters in a regression
model. Chaudhuri et al. (2015) propose a two-stage
algorithm ActiveS that first samples uniformly at ran-

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

dom to obtain a preliminary estimate of the parameters,
which is then used to find a sampling proportion for
the second stage by solving an optimization problem.
In contrast CS is a fully adaptive algorithm and enjoys
a similar convergence under slightly stronger assump-
tions.

Sabato and Munos (2014) provides an active learning
algorithm for linear regression problems under model
mismatch. The same setting under heteroscedastic
noise has been studied by Chaudhuri et al. (2017)
where they propose a two-stage process adapted to
the noise. Fontaine et al. (2019) also studies the lin-
ear regression setting under heteroscedastic noise but
proposes a fully adaptive adaptive algorithm that is
similar to A-optimal design. Bu et al. (2019) studies a
di↵erent setting where ✓⇤ is changing with time. They
modify the algorithm of Chaudhuri et al. (2015) to
fully adaptive process where the optimization needs
to be solved at every round. Wu (2018) studies the
linear regression setting where the goal is to maximize
the diversity of the samples. Cai et al. (2016) studies
both the linear and non-linear regression setting and
proposes the heuristic EMCM without any convergence
guarantee. Similarly, Wu et al. (2019) also studies
the active regression for noiseless setting but they pro-
vide no convergence proof. As opposed to these works
CS has a convergence guarantee and performs well in
real-world benchmark problems.

Another line of work is the non-parametric setup of
Castro et al. (2005), where the objective is to estimate
an unknown function over its entire domain. Here
the error rates for learning are O (t��), and the ex-
ponent � decreases as the complexity of the hypothe-
sis class of functions increases (i.e., there is a slower
decrease in error when learning a more complicated
function). For example, if the hypothesis class consists
of Holder smooth functions defined on domain [0, 1]d

then � = 1/(d� 1 + 1/d). In contrast, our work is in
the parametric setting, where we only want to estimate
a single parameter ✓⇤ and � = 1. We show that the CS
algorithm has a smaller problem-dependent constant
in the error bound. The work of Goetz et al. (2018)
is also in a similar framework as that of Castro et al.
(2005). Other forms of optimal experiment design have
been explored in the context of active learning by Yu
et al. (2006), and in di↵erent bandit problems by Soare
et al. (2014); Fiez et al. (2019); Degenne et al. (2020).
Note that our objective of identifying ✓⇤ is a strictly
more di�cult objective than best-arm identification in
bandit problems.

2 Active Testing

A sequential policy ⇡ tasked to find ✓⇤ interacts with
the environment in an iterative fashion. At time t, the
policy samples action It and receives a random obser-
vation Yt that follows the distribution ⌫It(·;✓⇤), where
✓⇤ is the true value of the unknown parameter that
belongs to a set ⇥. In active testing, ⇥ contains J dis-
crete hypotheses. Let Ft := �(I1, Y1, I2, Y2, . . . , It, Yt)
denote the sigma-algebra generated by the sequence of
actions and observations till time t. Then ⇡ is said to
be �-PAC if: (1) at each t the sampling rule It is Ft�1

measurable, (2) it has a finite stopping time ⌧� with

respect to Ft, and (3) its final prediction b✓(⌧�) is based
on F⌧� and satisfies P(b✓(⌧�) 6= ✓⇤)  �. A table of
notation is provided in Appendix A.10. Based on the
observations (Y1, Y2, . . . , Yt), we define for every ✓ 2 ⇥
the sum of squared errors and the di↵erence between
the sum of squared errors for ✓ and ✓⇤ as follows:

Lt(✓) :=
tX

s=1

(Ys � µIs(✓))
2
, (2)

�t(✓) := Lt(✓)� Lt(✓
⇤). (3)

Assumption 1. An observation from any action un-
der any hypothesis has bounded range, i.e., Ys 2
[�p

⌘/2,
p
⌘/2] almost surely at every round s for some

fixed ⌘ > 0.

Suppose ⌫i(Y ;✓) are Gaussian distributions with mean

µi(✓) and variance 1/2. Let b✓(t) denote the estimate for

✓⇤ at time t. Using ⇥1 = {b✓(t)},⇥2 = ⇥ \ {b✓(t)} and
expressions for KL divergence of Gaussian distributions
in eq. (1), we obtain that CS, which is asymptotically
optimal, samples the next action according to a prob-
ability mass function (pmf) that is a solution to the
following maxmin optimization:

pb✓(t):=argmax
p

min
✓0 6=b✓(t)

nX

i=1

p(i)(µi(✓
0)� µi(b✓(t)))2. (4)

We can solve (4) by formulating it as a linear program:

max
p

z s.t.
nX

i=1

p(i)(µi(✓
0)�µi(b✓(t)))2 � z 8✓0 6=b✓(t),

(5)

where the optimization variables are the scalar z

and pmf p satisfying the constraints p(i) � 08i andPn
i=1 p(i) = 1.

Cherno↵ Sampling (CS): Inspired by the sampling
proportion in eq. (4), we use the same sampling strat-
egy even though the distributions {⌫i(Y ;✓)}ni=1 are
only assumed to be sub-Gaussian (Algorithm 1). Our

Cherno↵ Sampling for Active Testing and Extension to Active Regression

estimate of the most likely hypothesis (breaking ties

at random) given the data is b✓(t) := argmin✓2⇥ Lt(✓).
The action sampled at the next time t + 1 is chosen
by the randomized rule P(It+1 = i) = pb✓(t)(i), 8i 2 [n].
We stop sampling at ⌧� if the sum of squared errors for
all competing hypothesis is greater than that of b✓(⌧�)
by a threshold �(J, �) to be defined later.

Algorithm 1 Cherno↵ Sampling for Active Testing

1: Input: Confidence parameter �, threshold �(J, �)
2: Sample I1 2 [n] randomly, observe Y1 and find
b✓(1).

3: for t = 2, 3, . . . do
4: Sample It ⇠ pb✓(t�1) from (4) and observe Yt.

5: Calculate Lt(✓) from (2) 8✓ 2 ⇥, find b✓(t).
6: if Lt(✓0)�Lt(b✓(t)) > �(J, �)8✓0 6= b✓(t) then
7: Return b✓(t) as the true hypothesis.

In Cherno↵ (1959) they provide a sample complexity
upper bound only for the asymptotic regime when � !
0. We give a non-asymptotic fixed confidence sample
complexity upper bound in Theorem 1. The following
assumption, originally made by Cherno↵ (1959), is used
to prove Theorem 1.

Assumption 2. The mean of the observation from
any action under ✓⇤ is di↵erent from its mean under
any other hypothesis, i.e., mini2[n] min✓ 6=✓⇤ |µi(✓) �
µi(✓⇤)| > 0.

In subsequent works by Nitinawarat et al. (2013) and
Naghshvar and Javidi (2013), it was shown that the
above assumption can be relaxed if the algorithm is
modified. We make the assumption since we give a non-
asymptotic sample complexity bound for the original
algorithm.

Definition 1. Define the smallest squared di↵erence
of means between any two actions under any pair
of hypotheses ✓,✓0 as ⌘0 := mini2[n] min✓ 6=✓0(µi(✓) �
µi(✓0))2. By Assumption 2 we have ⌘0 > 0.

We define the threshold �(J, �) = log(CJ/�) where C

is a constant depending on ⌘, and ⌘0. The values ⌘ (or
an upper bound to it) and ⌘0 are known to the learner.

Theorem 1. (CS Sample Complexity) Let ⌧� de-
note the stopping time of CS in Algorithm 1. Let D0

be the objective value of the maxmin optimization in
(4) when ✓ = ✓⇤, i.e.,

D0 := max
p

min
✓0 6=✓⇤

nX

i=1

p(i)(µi(✓
0)� µi(✓

⇤))2.

Denote p✓ as the solution of (4) when b✓(t) is replaced
by any ✓ 2 ⇥, and D1 is the minimum possible objective

value over all p✓ when b✓(t) is replaced by ✓⇤, i.e.,

D1 := min
{p✓ :✓2⇥}

min
✓0 6=✓⇤

nX

i=1

p✓(i)(µi(✓
0)� µi(✓

⇤))2.

Assumption 2 ensures that D1 > 0. The sample com-
plexity of the �-PAC CS has the following upper bound,
where J := |⇥|, C = O((⌘/⌘0)2) is a constant:

E[⌧�]  O

✓
⌘ log(C) log J

D1
+

log(J/�)

D0
+ JC

1
⌘ �

D0
⌘2

◆
.

Proof. (sketch) Algorithm 1 stops at ⌧� when the
error for the returned hypothesis is smaller than the
error for all the other hypotheses by an amount of
�(J, �). To obtain an upper bound to E[⌧�], we instead
look at a di↵erent random time ⌧✓⇤ := min{t : �t(✓) >
�(J, �), 8✓ 6= ✓⇤}, which is the first time when the error
for the true hypothesis ✓⇤ is smaller than the error for
all other hypotheses by �(J, �). Either the hypothesis

returned by the Algorithm 1 is b✓(⌧�) = ✓⇤, in which
case ⌧� = ⌧✓⇤ , or ⌧✓⇤ has not occurred yet and ⌧� < ⌧✓⇤ .
Hence we focus on bounding E[⌧✓⇤]. The key random
quantity in the definition of ⌧✓⇤ is �t(✓), and using
Assumption 1 we can show that �t(✓) concentrates
to its expected value. The expected value E[�t(✓)]
is increasing with t for each ✓ 6= ✓⇤ and for large
enough t it will be greater than �(J, �). Since �t(✓)
concentrates to E[�t(✓)], for large enough t, �t(✓) will
also be greater than �(J, �) and ⌧✓⇤ would occur. To
quantify when ⌧✓⇤ occurs, we lower bound E[�t(✓)] as
follows:

E[�t(✓)] � E[⌧̃✓⇤D1 + (t� ⌧̃✓⇤)D0], (6)

where ⌧̃✓⇤ is the last time after which the error for the
true hypothesis ✓⇤ is always smaller than the errors for
all other hypotheses. Till the time ⌧̃✓⇤ , the CS sampling
proportion pb✓(t) may not be p✓⇤ , and E[�t(✓)] grows
at the slower “exploration” rate D1 defined in the
Theorem. After ⌧̃✓⇤ the CS proportion is p✓⇤ , and
E[�t(✓)] increases at the optimal “verification” rate
D0. We finally bound the sample complexity by using
E[⌧✓⇤] =

P
tP(⌧✓⇤ = t)  M +P(⌧✓⇤ > M \ ⌧̃✓⇤ 

M)+P(⌧✓⇤ > M \ ⌧̃✓⇤ > M) where, M = ⌘ log(C) log J
D1

+
log(J/�)

D0
. The two tail events above is shown to be

bounded by O(JC1/⌘
�
D0/⌘

2

) in Lemma 5. The full
proof is in Appendix A.2.5.

In the result of Theorem 1 the first term
⌘ log(C) log (J)/D1 bounds the number of samples

taken during the exploration phase when b✓(t) 6= ✓⇤.
This is the non-asymptotic term that is not present
in the analysis of Cherno↵ (1959). The second term
log (J/�)/D0 is the dominating term when � ! 0, and

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

it matches the asymptotic sample complexity expres-
sion of Cherno↵ (1959). Naghshvar and Javidi (2013)
also derive a moderate confidence bound for their pol-
icy called TP but su↵er from a worse non-asymptotic
term log(J/�)/DNJ where DNJ < D1 (DNJ is denoted
as I1(M) in Naghshvar and Javidi (2013)). TP do not
require the assumption that D1 > 0 as it conducts
forced exploration in the first stage. The TP policy is
asymptotically optimal but performs poorly in some
instances (see Example 1 and Section 4) due to the
fixed exploration in the first stage. We discuss further
results in Appendix A.1.1.

The following example shows that the non-asymptotic
term of CS may dominate.

Example 1. (Non-asymptotes matter) Consider
an environment with two actions and ⇥ = {✓⇤

,✓0
,✓00}.

The following table describes the values of µ1(·), µ2(·)
under these three hypotheses.

✓ = ✓⇤ ✓0 ✓
00

µ1(✓) = 1 0.001 0
µ2(✓) = 1 1.002 0.998

For a choice of � = 0.1, we can evaluate that
log(J)/D1 ⇡ 3 ⇥ 105 and log(J/�)/D0 ⇡ 3.4. While
Theorem 1 is only an upper bound, empirically we
do see that the non-asymptotic term dominates the
sample complexity. The Figure 1a shows a box plot
of the stopping times of four algorithms over 100 inde-
pendent trials on the above environment. A box plot
depicts a set of numerical data using their quartiles
(Tukey, 1977). A uniform sampling baseline (Unif)
performs much better than CS, as it samples action 1
half the time in expectation, and action 1 is the best
choice to distinguish ✓⇤ from both ✓0 and ✓00. TP
also performs poorly compared to Unif and CS in this
setting. The non-asymptotic term of TP scales as
log(J)/DNJ ⇡ 4⇥ 106.

T2 Sampling: Instead of sampling according to
the optimal verification proportion in line 4 of Al-
gorithm 1, we can use the following heuristic argu-
ment. At each time, consider the current most likely
b✓(t) and its “closest” competing hypothesis defined

as e✓(t) := argmin✓ 6=b✓(t) Lt(✓). The �-PAC heuristic

called Top-2 sampling (abbreviated as T2) samples an
action that best discriminates between them, i.e.,

It+1 := argmax
i2[n]

(µi(b✓(t))� µi(e✓(t)))2. (7)

This strategy requires lesser computation as we don’t
need to compute pb✓(t) which could be useful when J

or n is very large. It was proposed by Cherno↵ (1959)
without any sample complexity proof.

Proposition 1. (T2 Sample Complexity) Let ⌧�
denote the stopping time of T2 following the sampling

strategy of (7). Consider the set I(✓,✓0) ⇢ [n] of

actions that could be sampled following (7) when b✓(t) =
✓ and ✓̃(t) = ✓0, and let u✓✓0 denote a uniform pmf
supported on I(✓,✓0). Define

D
0
0 := min

✓,✓0 6=✓⇤

nX

i=1

u✓⇤✓(i)(µi(✓
0)� µi(✓

⇤))2,

D
0
1 := min

✓ 6=✓0,✓0 6=✓⇤

nX

i=1

u✓✓0(i)(µi(✓
0)� µi(✓

⇤))2,

where we assume that D
0
1 > 0. Then for a constant

C > 0 the sample complexity of T2 has the following
upper bound:

E[⌧�]  O

✓
⌘ log(C) log J

D0
1

+
log(J/�)

D0
0

+ JC
1
⌘ �

D0
0

⌘2

◆
.

The bound above has a similar form as in Theorem 1
with three terms. The first term does not scale with
error probability �, while the second term scales with
log(J/�). The denominators of the two terms are dif-
ferent from D0 and D1 due to the di↵erent sampling
rule of T2 and hence T2 is not asymptotically optimal.

Batch Updates: We can solve maxmin optimization
for pb✓(t) every B rounds instead of at each round.
This reduces computation while increasing the sample
complexity by only an additive term as shown below.

Proposition 2. (Batch-CS Sample Complexity)

Let ⌧�, D0, D1 be defined as in Theorem 1 and B be
the batch size. Then the sample complexity of �-PAC
Batch-CS is

E[⌧�]O

✓
B+

⌘ log(C) log J

D1
+
log(J/�)

D0
+BJC

1
⌘ �

D0
⌘2

◆
.

CS with Exploration: Recall that D1 > 0 (Assump-
tion 2) is required to prove Theorem 1. We now relax
this assumption with the policy CSE which follows the
proportion pb✓(t) with probability 1�✏t and uniform ran-

domly explores any other action i 2 [n] with probability
✏t. The exploration parameter ✏t is chosen to reduce
with time. Define De := min✓0 6=✓⇤

Pn
i=1

1
n (µi(✓0) �

µi(✓⇤))2 as the objective value for uniform sampling,
then De > 0.

Proposition 3. (CSE Sample Complexity) Let
⌧�, D0, C be defined as in Theorem 1, De be defined
as above, and ✏t := 1/

p
t. Then the sample complexity

bound of �-PAC CSE with ✏t exploration is given by

E[⌧�]O

✓
⌘ log(C) log J

De

+
log(J/�)

D0
+ JC

1
⌘ �

D0
⌘2

◆
.

We can see that the non-asymptotic term does not
depend on D1 and scales with De. Note that D0 >

Cherno↵ Sampling for Active Testing and Extension to Active Regression

D1 and D0 > De separately but De and D1 are not
comparable because D1 is defined as the minimum over
verification proportions for all the hypotheses while De

is defined using a uniform sampling proportion. When
� ! 0 then the asymptotic term dominates and so
CSE is asymptotically optimal. In Example 1 we can
calculate that log(J)/De ⇡ 2.1 and log(J/�)/D0=3.4.
So CSE performs similar to Unif (see Figure 1a) as
well as theoretically enjoy asymptotic and moderate
confidence guarantee similar to CS.

We now provide a brief proof sketch of the three propo-
sitions stated before. These proofs follows the tech-
nique of Theorem 1 with some key changes which
we state now. For Proposition 1 observe that T2
does not sample by p✓ but by the pmf u✓✓0 de-
fined in Proposition 1. This enables us to calculate
E[�t(✓)] � E[⌧̃✓⇤D

0
1 + (t � ⌧̃✓⇤)D0

0], where ⌧̃✓⇤ is de-
fined in Theorem 1. After this we can follow a similar
line of reasoning as Theorem 1 and bound T2 sam-
ple complexity. The proof is in Appendix A.3.2. For
Proposition 2 the key di↵erence with Theorem 1 is
that we calculate the p✓ after each batch of size B.
We bound the number of total number of batches m�

instead of ⌧�. As the stopping condition is only checked
at the end of every batch we divide the time ⌧� into
batches of size B and use a similar argument as in
Theorem 1 to bound m�. The proof is in Appendix A.4.
Finally, for Proposition 3 the key di↵erence is the new
exploration term De. By setting ✏s := 1/

p
s we obtain

E[�t(✓)] � E[⌧̃✓⇤De+(t� ⌧̃✓⇤)D0]. Then following the
same argument as in Theorem 1 we obtain the upper
bound to E[⌧�]. The proof is given in Appendix A.5.

Minimax lower bound: While Cherno↵ (1959) had
shown the policy to be optimal as � ! 0, we demon-
strate an environment where CS has optimal sam-
ple complexity for any fixed value of �. Let � =p
⌘/2. The following table depicts the values for

µ1(·), µ2(·), . . . , µn(·) under J di↵erent hypotheses:

✓ = ✓⇤ ✓2 ✓3 . . . ✓J
µ1(✓) = � �� �

J �� 2�
J . . . �� (J�1)�

J
µ2(✓) = ◆21 ◆22 ◆23 . . . ◆2J

...
...

µn(✓) = ◆n1 ◆n2 ◆n3 . . . ◆nJ

(8)

Each ◆ij is distinct and satisfies ◆ij < �/4J . µ1(·) is
such that the di↵erence of means across any pair of
hypotheses is at least �/J . Theorem 2 is proved in
Appendix A.6 by a change of measure argument. Note
that action 1 is better than all others in discriminating
between any pair of hypotheses, and any policy to
identify ✓⇤ cannot do better than allocating all its
samples to action 1.

Theorem 2. (Lower Bound) Any �-PAC pol-
icy ⇡ that identifies ✓⇤ in (8) satisfies E[⌧�] �

⌦
�
J
2��2 log(1/�)

�
. Applying Theorem 1 to the

same environment, the sample complexity of CS is
O
�
J
2��2 log(J/�)

�
which matches the lower bound

upto log factors.

3 Active Regression

In this section, we extend the Cherno↵ sampling policy
to smoothly parameterized hypothesis spaces, such as
⇥ ✓ Rd. The original sampling rule in (4) asks to
solve a maxmin optimization, where the min is over
all possible choices of the parameter that are not equal
to the parameter ✓ being verified. An extension of
the rule for when ✓⇤ can take infinitely many values
was first given by Albert (1961). In it, they want to
identify which of two partitions ⇥1 [⇥2 = ⇥ does
the true ✓⇤ belong to. For any given ✓1 2 ⇥1, their
verification sampling rule (specialized to the case of
Gaussian noise) is

p✓1 = argmax
p

inf
✓22⇥2

nX

i=1

p(i)(µi(✓1)� µi(✓2))
2
. (9)

Recall that b✓(t) := argmin✓2⇥ Lt(✓). Suppose we
want to find the optimal verification proportion for
testing b✓(t), the current best estimate of ✓⇤. Let

B{
r (b✓(t)) := {✓ 2 Rd : k✓ � b✓(t)k > r} denote the

complement of a ball of radius r > 0 centered at b✓(t).
Instantiate (9) with ✓1 = b✓(t), ⇥1 = ⇥ \ B{

r (b✓(t)) and
⇥2 = B{

r (b✓(t)). Denote the solution of this optimiza-
tion as pb✓(t),r and let pb✓(t) := limr!0 pb✓(t),r. In case
of multiple solutions, we let pb✓(t),r denote the set of all
possible maxima, and the limit is defined to be the limit
of a sequence of sets. We show in Theorem 3 that pb✓(t)
(or an element from it) can be computed e�ciently. For
any i 2 [n] the gradient of µi(·) evaluated at ✓ is a
column vector denoted as rµi(✓).

Theorem 3. Assume that µi(✓) for all i 2 [n] is a

di↵erentiable function, and the set {rµi(b✓(t)) : i 2 [n]}
of gradients evaluated at b✓(t) span Rd. Consider a

p.m.f. pb✓(t),r from (9) for verifying b✓(t) against all

alternatives in B{
r (b✓(t)). The limiting value of pb✓(t),r

as r ! 0 is

pb✓(t) := argmax
p
�min

nX

i=1

p(i)rµi(b✓(t))rµi(b✓(t))T
!
.

Proof. (sketch) Define gi(✓) := (µi(✓) � µi(b✓(t)))2
for any ✓. Introducing a probability density function
q over ⇥, we can rewrite the optimization for pb✓(t),r
from (9) as

max
p

inf
q:q(✓)=08✓2Br(b✓(t))

Z

⇥
q(✓)

nX

i=1

p(i)gi(✓)d✓. (10)

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

We consider a family Qr of pdfs supported on the
boundary of Br(b✓(t)). We show that the value of (10)
in the limit as r ! 0 is equal to

lim
r!0

max
p

inf
q2Qr

Z

⇥
q(✓)

nX

i=1

p(i)gi(✓)d✓. (11)

We use the Taylor series expansion for gi(✓) around b✓(t)
in (11). Then rgi(b✓(t)) = 0 and the second-order term

in the Taylor series is 0.5(✓ � b✓(t))Tr2
gi(b✓(t))(✓ �

b✓(t)) = (✓� b✓(t))Trµi(b✓(t))rµi(b✓(t))T (✓� b✓(t)). Us-
ing this in (11) along with the variational characteri-
zation of the minimum eigenvalue gives us the result.
The full proof is given in Appendix A.7.

To illustrate the use of Theorem 3, consider the problem
of active learning in a hypothesis space of parametric
functions {f✓ : ✓ 2 ⇥}. The target function is f✓⇤

for an unknown ✓⇤ 2 ⇥. Assume that the learner
may query the value of f✓⇤ at points x1, . . . ,xn in its
domain. If point xi is queried, then the learner observes
the value f✓⇤(xi) plus a realization of a zero-mean sub-
Gaussian noise. This coincides with the setting above
by setting µi(✓) := f✓(xi).

Algorithm 2 Cherno↵ Sampling for Active Regression

1: Input: Parametric model {µi(✓) : ✓ 2 ⇥, i 2 [n]}.
2: Sample I1 2 [n] randomly, observe Y1 and find
b✓(1).

3: for t = 2, 3, . . . do
4: Sample It ⇠ pb✓(t�1) (Theorem 3), observe Yt.

5: Compute b✓(t) = argmin✓2⇥ Lt(✓).

Step 4 of Algorithm 2 requires solving the convex
eigenvalue optimization in Theorem 3, which takes
O((n3 + n

2
d
2 + nd

3)
p
n+ d) operations ignoring log

factors (Nesterov and Nemirovskii, 1994, Chap. 6). The
results of Albert (1961) imply that for any r > 0 the
iterates in Algorithm 2 will converge to within r of
✓⇤ using an optimal number of samples in the high
confidence (� ! 0) regime. In Theorem 4 we obtain

a finite time bound on the expected loss of b✓(t). De-
fine `s(✓) := (Ys � µIs(✓))

2 as the squared error for ✓
at round s. The average empirical loss is defined as
bPt(✓) :=

1
t

Pt
s=1 `s(✓).

Assumption 3. We assume that �max

�
r2

µi (✓)
�


�1 for each i 2 [n] and all ✓ 2 ⇥.

Assumption 3 is a mild assumption on the curvature
of the mean function at any ✓ 2 ⇥.

Theorem 4. (Dense CS Sample Complexity)

Suppose `1(✓), `2(✓), · · · , `t(✓) : Rd ! R are squared

loss functions from a distribution that satisfies Assump-
tion 3 and Assumption 4 in Appendix A.8.2. Further
define Pt(✓) = 1

t

Pt
s=1 EIs⇠pb✓s�1

[`s(✓)|Fs�1] where,

b✓t = argmin✓2⇥

Pt
s=1 `s(✓). If t is large enough such

that � log(dt)
t  c

0 min
n

1
C1C2

,
diameter(B)

C2

o
then for a

constant � � 2 and universal constants C1, C2, c
0, we

show that

(1� ⇢t)
�
2
t

t
� C

2
1

t�/2

 E
h
Pt(b✓t)� Pt (✓

⇤)
i

 (1 + ⇢t)
�
2
t

t
+
max
✓2⇥

(Pt(✓)�Pt (✓⇤))

t�
,

where �2
t := E


1
2

���r bPt (✓⇤)
���
2

(r2Pt(✓⇤))�1

�
, and ⇢t :=

�
C1C2 + 2⌘2�21

�q� log(dt)
t .

Proof. (sketch) The first step in the proof is to relate
r2 bPt(✓) to r2

Pt(✓⇤) for any ✓ in a ball B around ✓⇤.
The ball B is assumed in Assumption 4 to be a neigh-
borhood where r2

`s(✓) satisfies a Lipschitz property.
Assumption 4 in Appendix A.8.2 are standard and have
also been made by Frostig et al. (2015) and Chaudhuri
et al. (2015). Using Assumption 3 and Assumption 4,
we can show that for t as large as mentioned in the
Theorem statement, (1) r2

Pt(✓⇤) is sandwiched in
the positive semidefinite order by scaled multiples of
r2 bPt(✓) for any ✓ 2 B, and (2) the empirical error min-

imizing b✓(t) is in the ball B with probability 1� 1/t� ,
which is the good event E . Using a Taylor series expan-
sion around b✓(t) and the fact that r bPt(b✓(t)) = 0 along
with the relation between r2 bPt(✓) and r2

Pt(✓⇤), we

can obtain an upper bound to kb✓(t)� ✓⇤kr2Pt(✓⇤) in

terms of kr bPt(✓⇤)k(r2Pt(✓⇤))�1 that can be shown to be

decreasing with t. Further, kb✓(t)�✓⇤kr2Pt(✓⇤) can also

be used to obtain an upper bound to Pt(b✓(t))� Pt(✓⇤)
using a Taylor series expansion. Finally we can
bound E[Pt(b✓t)� Pt(✓⇤)] = E[(Pt(b✓t)� Pt(✓⇤))I(E)] +
E[(Pt(b✓t) � Pt(✓⇤))I(E{)] where I(·) is the indicator.
Since P(E{)  1/t� , the second term can be bounded
as max✓2⇥ (Pt(✓)� Pt (✓⇤)) /t� , while the first term
simplifies to (1 + ⇢t)�2

t /t. The full proof is in Ap-
pendix A.8.

The quantity EIs⇠p✓ [`s(✓)] characterizes the worst-case
loss we could su↵er at time s due to estimation error.
This is because E[`s(✓)] = EIsE[(Ys � µIs(✓))

2 | Is] =
EIs [(µIs(✓

⇤) � µIs(✓))
2 + 1/2], and the definition of

p✓ ensures that
Pn

i=1 p✓(i)(µi(✓0) � µi(✓))2 is max-
imized for the most confusing ✓0 62 Br(✓) at small
enough ✏. We contrast this with the average-case loss

Cherno↵ Sampling for Active Testing and Extension to Active Regression

EIs⇠Uniform([n])[(µIs(✓
0)� µIs(✓)

2], which is not larger
than the expected value under Is ⇠ p✓ due to the
argmax in (9). It can thus be seen that the Cherno↵
sampling allows us to bound a more stringent notion of
risk than traditionally looked at in the literature. The
theorem bounds the running average of the worst-case
losses at each time step. The simplified bound of The-
orem 4 scales as O(d

p
log(dt)/t + 1/t2) (See Table 2

in Appendix A.8).

The term �
2
t includes a norm under (r2

Pt(✓⇤))�1. It
is bounded by a quantity proportional to the max-
imum eigenvalue of (r2

Pt(✓⇤))�1, equivalently the
inverse of the minimum eigenvalue of r2

Pt(✓⇤) =
2
t

Pt
s=1

Pn
i=1 pb✓(s�1)(i)rµi(✓⇤)rµi(✓⇤)T . If b✓(t) ⇡

✓⇤, which is true for large t, then pb✓(t) is the optimiza-
tion solution in Theorem 3 and it maximizes the mini-
mum eigenvalue of

Pn
i=1 pb✓(t)(i)rµi(b✓(t))rµi(b✓(t))T .

Thus CS approximately minimizes an upper bound to
the estimation error.

4 Experiments

In this section we show numerical evaluations of CS
against other algorithms. The confidence intervals (CI)
that we plotted are just mean ±1 standard deviation.
A wider CI means more variability in performance
across di↵erent trials. We run each experiment over 50
independent trials.

Active testing experiment (3 Group setting):
Consider an environment of 50 actions and 6 param-
eters. The actions can be divided into three groups.
The first group contains a single action that most e↵ec-
tively discriminates ✓⇤ from all other hypotheses. The
second group consists of 5 actions, each of which can
discriminate one hypothesis from the others. Finally,
the third group of 44 actions are barely informative
as their means are similar under all hypotheses. The
mean values under all hypotheses are given in Appendix
A.9.1. We show the empirical performance of di↵erent
policies in the Figure 1b. Both CS and T2 outperforms
TP which conducts a uniform exploration over the ac-
tions in the second group in its first phase. T2 performs
well as it samples the action in the first group when
✓⇤ is either the most-likely or the second most-likely
hypothesis. Unif performs the worst as it uniformly
samples all actions, including the non-informative ac-
tions in the third group. CS outperforms CSE as it does
not conduct forced exploration over non-informative
actions. Batch-CS with B = 5, 10, 15 has increasing
sample complexity with larger batches.

Non-Linear Model: Consider a non-linear class of
functions parameterized as µi(✓) := 1/(1+exp(�xT

i ✓)),
where k✓k2 = 1, each action has an associated feature

vector xi 2 R2 and it returns a value whose expectation
is µi(✓⇤). The goal is to choose actions such that the es-

timation error kb✓(t)�✓⇤k2 reduces using as few samples
as possible. The setting consist of three groups of ac-
tions: a) the optimal action, b) the informative action
(orthogonal to optimal action) that maximally reduces

the uncertainty of b✓(t) and c) the 48 less-informative
actions as shown in Figure 1c. Appendix A.9.2 contains
more implementation details. We apply CS and CSE
to this problem and compare it to baselines Unif, and
ActiveS. Figure 1d shows that CS outperforms ActiveS
and is able to find ✓⇤ quickly. CS performs similar
to EMCM but note that EMCM has no convergence
guarantees and requires hyper-parameter tuning.

Neural Network: Consider a collection of data points
{xi 2 R2 : i 2 [n]}, each of which is assigned a ground
truth scalar mean value by a non-linear function. The
particular form for the mean function of action i is the
following: µi(✓⇤) = c1�(wT

1 xi + b1) + c2�(wT
2 xi + b2),

where ✓⇤ = (w1, b1,w2, b2, c1, c2) is the parameter
characterizing the ground truth function, and �(·) :=
max{0, ·} is the non-linear ReLU activation function.
This is a single hidden-layer neural network with in-
put layer weights w1,w2 2 R2, biases b1, b2 2 R,
and output weights c1, c2 2 {�1, 1}. Our objec-
tive in the experiment is to learn the neural net-
work from noisy observations: {(xIs , µIs(✓

⇤) + noise) :
s 2 [t], noise is i.i.d. zero mean Gaussian} collected by
sampling (I1, I2, . . . , It) according to the Cherno↵ pro-
portions defined in Algorithm 2. The architecture of
the network is known, but the weights and biases must
be learned. The data points are shown in a scatter
plot in Figure 1e. More implementation details are
in Appendix A.9.3. The non-uniformity of the data
distribution increases the di�culty of the learning task.
The performance of a learning algorithm is measured
by tracking the estimation error kb✓(t) � ✓⇤k2 during
the course of training. The plot in Figure 1f shows the
average and standard deviation of the estimation error
over 10 trials for CS, CSE, ActiveS and Unif baseline.
Again both CS and CSE outperforms Unif and ActiveS.
We note that other works (Cohn, 1996; Fukumizu, 2000)
have also considered active training of neural networks.
Other approaches for active sampling have been de-
scribed in the survey by Settles (2009). Our neural
network learning experiment shows the generality of
our approach in active sampling.

Real Dataset: We consider two real world datasets
from UCI called Red Wine (Cortez et al., 2009) (1600
actions) and Air Quality (De Vito et al., 2008) (1500
actions). The performance is shown in Figure 1g and
Figure 1h respectively where CS and CSE outperforms
ActiveS and Unif. Further experiment details are in
Appendix A.9.4, including Figure 2 which shows that

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: (a) Sample complexity over Example 1 with � = 0.1. (b) Sample complexity over 3 Group setting with
� = 0.1. U = Unif, B1 = Batch-CS (B = 5), B2 = Batch-CS (B = 10), B3 = Batch-CS (B = 15). The green
triangle marker represents the mean stopping time. The horizontal line across each box represents the median.
(c) The action feature vectors in R2 for active regression experiment. Inf = Informative action, Opt = Optimal
action, Less-inf = Less informative action. (d) Shows average error rate for Active Regression. (e) Training data
for neural network example shown as red dots. Yellow to red colors indicate increasing values for the target mean
function. Black lines denote “activation” boundaries of the two hidden layer neurons. (f) Learning a neural
network model. (g), (h) Experiment with Red Wine and Air Quality Dataset.

in the real-world dataset CS proportion is sparse over
the actions.

5 Conclusions, Limitations, & Future
Work

This paper proposes a unifying approach to solve ac-
tive testing and active regression problems. We obtain
non-asymptotic guarantees on the performance of CS
in active testing and extend it to the problem of active
regression. CS has comparable performance to exist-
ing state-of-the-art methods and is a relatively easy
algorithm to implement. Nevertheless, its sampling
proportion is updated before collecting each sample,
which increases the computational cost (one solution
for this is Batch-CS which solves the optimization only
after collecting a batch of samples). Further, Assump-
tion 2 is a strong assumption, and other works have
removed that in the context of active testing by modify-
ing the CS strategy (one solution for this is CSE which
incorporates a certain amount of random sampling).

CS can be excessively aggressive in the initial stages.
This is because it chooses actions according to a sam-
pling proportion that is optimal when b✓(t) = ✓⇤, which
is not true initially. Other methods of exploration could
be useful in the earlier stages.

The extension of CS to active regression requires to
find the least squares estimate b✓(t) which could be com-
putationally expensive. Theoretical guarantees require
several assumptions which may not always be satisfied.
In addition to the regularity assumptions, we also need
the smoothness of the mean function for Theorem 4.
Future directions include obtaining a lower bound for
the active testing in the moderate confidence regime
and incorporating the geometry of the actions in the
sampling strategy for the regression setting. Another
direction is to obtain the sampling proportions when
the mean function is not di↵erentiable everywhere.

Cherno↵ Sampling for Active Testing and Extension to Active Regression

Acknowledgements: This work was partially sup-
ported by AFOSR grant FA9550-18-1-0166. The first
author was supported by 2019-20 Chancellor’s Op-
portunity Fellowship by the University of Wisconsin-
Madison.

References

Albert, A. E. (1961). The sequential design of exper-
iments for infinitely many states of nature. The
Annals of Mathematical Statistics, pages 774–799.

Balcan, M.-F., Beygelzimer, A., and Langford, J.
(2009). Agnostic active learning. Journal of Com-
puter and System Sciences, 75(1):78–89.

Balcan, M.-F. and Long, P. (2013). Active and passive
learning of linear separators under log-concave dis-
tributions. In Conference on Learning Theory, pages
288–316. PMLR.

Blot, W. J. and Meeter, D. A. (1973). Sequential exper-
imental design procedures. Journal of the American
Statistical Association, 68(343):586–593.

Bu, Y., Lu, J., and Veeravalli, V. V. (2019). Active
and adaptive sequential learning with per time-step
excess risk guarantees. In 2019 53rd Asilomar Con-
ference on Signals, Systems, and Computers, pages
1606–1610. IEEE.

Cai, W., Zhang, M., and Zhang, Y. (2016). Batch mode
active learning for regression with expected model
change. IEEE transactions on neural networks and
learning systems, 28(7):1668–1681.

Castro, R., Willett, R., and Nowak, R. (2005). Faster
rates in regression via active learning. In NIPS,
volume 18, pages 179–186.

Chaudhuri, K., Jain, P., and Natarajan, N. (2017).
Active heteroscedastic regression. In International
Conference on Machine Learning, pages 694–702.
PMLR.

Chaudhuri, K., Kakade, S. M., Netrapalli, P., and
Sanghavi, S. (2015). Convergence rates of active
learning for maximum likelihood estimation. In Ad-
vances in Neural Information Processing Systems,
pages 1090–1098.

Chaudhuri, P. and Mykland, P. A. (1993). Nonlinear
experiments: Optimal design and inference based
on likelihood. Journal of the American Statistical
Association, 88(422):538–546.

Cherno↵, H. (1959). Sequential design of experiments.
The Annals of Mathematical Statistics, 30(3):755–
770.

Cohn, D. A. (1996). Neural network exploration us-
ing optimal experiment design. Neural Networks,
9(6):1071 – 1083.

Combes, R., Magureanu, S., and Proutiere, A. (2017).
Minimal exploration in structured stochastic ban-
dits. In Advances in Neural Information Processing
Systems, pages 1763–1771.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and
Reis, J. (2009). Modeling wine preferences by data
mining from physicochemical properties. Decision
support systems, 47(4):547–553.

Dasgupta, S. (2005). Coarse sample complexity bounds
for active learning. In NIPS, volume 18, pages 235–
242.

Dasgupta, S., Hsu, D. J., and Monteleoni, C. (2008).
A general agnostic active learning algorithm. In In-
ternational Symposium on Artificial Intelligence and
Mathematics, ISAIM 2008, Fort Lauderdale, Florida,
USA, January 2-4, 2008.

De Vito, S., Massera, E., Piga, M., Martinotto, L., and
Di Francia, G. (2008). On field calibration of an
electronic nose for benzene estimation in an urban
pollution monitoring scenario. Sensors and Actuators
B: Chemical, 129(2):750–757.

Degenne, R., Ménard, P., Shang, X., and Valko, M.
(2020). Gamification of pure exploration for linear
bandits. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceed-
ings of Machine Learning Research, pages 2432–2442.
PMLR.

Dette, H. and Studden, W. J. (1993). Geometry of
e-optimality. The Annals of Statistics, 21(1):416–433.

Fiez, T., Jain, L., Jamieson, K. G., and Ratli↵, L.
(2019). Sequential experimental design for transduc-
tive linear bandits. In Wallach, H., Larochelle, H.,
Beygelzimer, A., dÁlché Buc, F., Fox, E., and Gar-
nett, R., editors, Advances in Neural Information
Processing Systems, volume 32, pages 10667–10677.
Curran Associates, Inc.

Fontaine, X., Perrault, P., Valko, M., and Perchet, V.
(2019). Online a-optimal design and active linear
regression. arXiv preprint arXiv:1906.08509.

Frostig, R., Ge, R., Kakade, S. M., and Sidford, A.
(2015). Competing with the empirical risk minimizer
in a single pass. In Grünwald, P., Hazan, E., and
Kale, S., editors, Proceedings of The 28th Conference
on Learning Theory, volume 40 of Proceedings of
Machine Learning Research, pages 728–763, Paris,
France. PMLR.

Fukumizu, K. (2000). Statistical active learning in mul-
tilayer perceptrons. IEEE Transactions on Neural
Networks, 11(1):17–26.

Garivier, A. and Kaufmann, E. (2016). Optimal best
arm identification with fixed confidence. In Confer-
ence on Learning Theory, pages 998–1027.

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

Goetz, J., Tewari, A., and Zimmerman, P. (2018).
Active learning for non-parametric regression using
purely random trees. Advances in Neural Informa-
tion Processing Systems, 31.

Hanneke, S. (2007). A bound on the label complexity
of agnostic active learning. In Proceedings of the 24th
international conference on Machine learning, pages
353–360.

Hsu, D., Kakade, S., Zhang, T., et al. (2012). A tail
inequality for quadratic forms of subgaussian random
vectors. Electronic Communications in Probability,
17.

Huang, R., Ajallooeian, M. M., Szepesvári, C., and
Müller, M. (2017). Structured best arm identification
with fixed confidence. In Hanneke, S. and Reyzin,
L., editors, International Conference on Algorithmic
Learning Theory, ALT 2017, 15-17 October 2017,
Kyoto University, Kyoto, Japan, volume 76 of Pro-
ceedings of Machine Learning Research, pages 593–
616. PMLR.

Katz-Samuels, J., Zhang, J., Jain, L., and Jamieson,
K. (2021). Improved algorithms for agnostic
pool-based active classification. arXiv preprint
arXiv:2105.06499.

Lattimore, T. and Szepesvári, C. (2020). Bandit algo-
rithms. Cambridge University Press.

Naghshvar, M. and Javidi, T. (2013). Active sequen-
tial hypothesis testing. The Annals of Statistics,
41(6):2703–2738.

Nesterov, Y. and Nemirovskii, A. (1994). Interior-
point polynomial algorithms in convex programming.
SIAM.

Nitinawarat, S., Atia, G. K., and Veeravalli, V. V.
(2013). Controlled sensing for multihypothesis test-
ing. IEEE Transactions on Automatic Control,
58(10):2451–2464.

Pronzato, L. and Pázman, A. (2013). Design of experi-
ments in nonlinear models. Lecture notes in statistics,
212.

Pukelsheim, F. (2006). Optimal design of experiments.
SIAM.

Sabato, S. and Munos, R. (2014). Active regression by
stratification. arXiv preprint arXiv:1410.5920.

Settles, B. (2009). Active learning literature survey.
Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin–Madison.

Silvey, S. (1980). Optimal design: an introduction to
the theory for parameter estimation. Monographs
on applied probability and statistics. Chapman and
Hall.

Soare, M., Lazaric, A., and Munos, R. (2014). Best-
arm identification in linear bandits. In Advances in
Neural Information Processing Systems, pages 828–
836.

Tsybakov, A. B. (2008). Introduction to nonparametric
estimation. Springer Science & Business Media.

Tukey, J. W. (1977). Exploratory data analysis, vol-
ume 2. Reading, MA.

Vaidhiyan, N. K. and Sundaresan, R. (2017). Learning
to detect an oddball target. IEEE Transactions on
Information Theory, 64(2):831–852.

Wu, D. (2018). Pool-based sequential active learning
for regression. IEEE transactions on neural networks
and learning systems, 30(5):1348–1359.

Wu, D., Lin, C.-T., and Huang, J. (2019). Active learn-
ing for regression using greedy sampling. Information
Sciences, 474:90–105.

Yu, K., Bi, J., and Tresp, V. (2006). Active learning
via transductive experimental design. In Proceed-
ings of the 23rd international conference on Machine
learning, pages 1081–1088.

Zhang, C. and Chaudhuri, K. (2014). Beyond
disagreement-based agnostic active learning. In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Sys-
tems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 442–450.

Cherno↵ Sampling for Active Testing and Extension to Active Regression

Contents

1 Theoretical Comparison and Probability Tools . A.1

1.1 Theoretical Comparison .A.1.1

1.2 Probability Tools . A.1.2

2 Cherno↵ Sample Complexity Proof . A.2

2.1 Concentration Lemma . A.2.1

2.2 Concentration of TY t . A.2.2

2.3 Proof of correctness for General Sub-Gaussian Case . A.2.3

2.4 Stopping time Correctness Lemma for the Gaussian Case . A.2.4

2.5 Proof of CS Sample Complexity (Theorem 1) . A.2.5

3 Proof of T2 Sample Complexity . A.3

3.1 Concentration Lemma . A.3.1

3.2 Proof of T2 Sample Complexity (Proposition 1) . A.3.2

4 Proof of Sample Complexity of Batch-CS (Proposition 2) . A.4

5 Proof of CSE Sample Complexity (Proposition 3) .A.5

6 Minimax Optimality Proof (Theorem 2) . A.6

7 Proof of Theorem 3 (Continuous hypotheses) . A.7

7.1 How to solve the optimization .A.7.1

8 CS Proof for Continuous Hypotheses . A.8

8.1 Theoretical Comparisons for Active Regression . A.8.1

8.2 Discussion on Definitions and Assumptions for Continuous Hypotheses . A.8.2

8.3 Concentration Lemma for Continuous Hypotheses .A.8.3

8.4 Support Lemma for Continuous Hypotheses. .A.8.4

8.5 Proof of CS Convergence for Continuous Hypotheses (Theorem 4) .A.8.5

9 Additional Experiment Details .A.9

9.1 Hypothesis Testing Experiments . A.9.1

9.2 Active Regression Experiment for Non-linear Reward Model .A.9.2

9.3 Active Regression Experiment for Neural Networks .A.9.3

9.4 Active Regression for the UCI Datasets . A.9.4

10 Table of Notations . A.10

A Appendix

A.1 Theoretical Comparison of Active Testing and Probability Tools

In this section we compare theoretically our work against other existing works in active testing. We also state a
few standard lemmas in Probability Tools that we use to prove our results.

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

A.1.1 Theoretical Comparison of Active Testing

Active Testing: We compare our work against Cherno↵ (1959), Albert (1961) which extended Cherno↵ (1959)
to continuous hypotheses space partitioned into two disjoint space, and the recent active testing algorithms
of Naghshvar and Javidi (2013); Nitinawarat et al. (2013). We first recall the following problem complexity
parameters as follows:

D0 := max
p

min
✓0 6=✓⇤

nX

i=1

p(i)(µi(✓
0)� µi(✓

⇤))2, D1 := min
{p✓ :✓2⇥}

min
✓0 6=✓⇤

nX

i=1

p✓(i)(µi(✓
0)� µi(✓

⇤))2

DNJ:=

min
✓2⇥

min
✓0 6=✓

nX

i=1

p✓0(i)(µi(✓)�µi(✓
0))2
!2

max
p

min
✓2⇥

min
✓0 6=✓

nX

i=1

p(i)(µi(✓)�µi(✓
0))2 (12)

De := min
✓0 6=✓⇤

nX

i=1

1

n
(µi(✓

0)� µi(✓
⇤))2 (13)

where, the quantity DNJ is defined in Naghshvar and Javidi (2013) and is an artifact of the forced exploration
conducted by their algorithm. Note that DNJ < D1 by definition. Also, D0 > De and D0 > D1 and De > 0 by
definition. Note that due to the factor DNJ , TP can perform worse than CS in certain instances (see Active
testing experiment in Figure 1a, and Figure 1b). We summarize out result in context of other existing results in
the following table:

Sample Complexity Bound Comments

E[⌧�]  C log J/�
D0

+ o
�
log 1

�

�
Upper bound in Cherno↵
(1959).Optimal for � ! 0.

E[⌧�]  C log J/�
D0

+ o
�
log 1

�

�
Upper bound in Albert (1961).
Optimal for � ! 0. Extension to
compound hypotheses.

E[⌧�]  C log J/�
D0

+ o
�
log 1

�

�
Upper bound in (Nitinawarat
et al., 2013). Bound valid for
discrete hypotheses. It does not
require Assumption 2.

E[⌧�]  O

⇣
log(J)
DNJ

+ log(J/�)
D0

⌘
Upper bound of TP in Naghsh-
var and Javidi (2013). Valid for
any � 2 (0, 1]. Asymptotically
optimal for � ! 0.

E[⌧�]  O

⇣
log(J)
D1

+ log(J/�)
D0

⌘
CS (Ours). Valid for any � 2
(0, 1]. Asymptotically optimal
for �!0.

E[⌧�]  O

⇣
log(J)
De

+ log(J/�)
D0

⌘
CSE (Ours). Valid for any � 2
(0, 1]. Asymptotically optimal
for � ! 0. Does not require As-
sumption 2.

Table 1: Active Testing (top) and Regression (bottom) comparison. DNJ < D1, D1 < D0, and De < D0.

A.1.2 Probability Tools

Lemma 1. (Restatement of Lemma 15.1 in Lattimore and Szepesvári (2020), Divergence Decom-

position) Let B and B
0 be two bandit models having di↵erent optimal hypothesis ✓⇤ and ✓

0⇤ respectively. Fix
some policy ⇡ and round n. Let PB,⇡ and PB0,⇡ be two probability measures induced by some n-round interaction
of ⇡ with B and ⇡ with B

0 respectively. Then

KL (PB,⇡||PB0,⇡) =
nX

i=1

EB,⇡[Zi(n)] ·KL(µi(✓)||µi(✓
⇤))

Cherno↵ Sampling for Active Testing and Extension to Active Regression

where, KL (.||.) denotes the Kullback-Leibler divergence between two probability measures and Zi(n) denotes the
number of times action i has been sampled till round n.

Lemma 2. (Restatement of Lemma 2.6 in Tsybakov (2008)) Let P,Q be two probability measures on the
same measurable space (⌦,F) and let ⇠ ⇢ F be any arbitrary event then

P(⇠) +Q
⇣
⇠
{
⌘
> 1

2
exp (�KL(P||Q))

where ⇠{ denotes the complement of event ⇠ and KL(P||Q) denotes the Kullback-Leibler divergence between P and
Q.

Lemma 3. (Hoe↵ding’s Lemma) Let Y be a real-valued random variable with expected value E[Y] = µ, such
that a  Y  b with probability one. Then, for all � 2 R

E
⇥
e
�Y
⇤
 exp

✓
�µ+

�
2(b� a)2

8

◆

Lemma 4. (Proposition 2 of (Hsu et al., 2012)) Let u1, . . . ,un be a martingale di↵erence vector sequence
(i.e., E [ui | u1, . . . ,ui�1] = 0 for all i = 1, . . . , n) such that

nX

i=1

E
h
kuik2 | u1, . . . ,ui�1

i
 v and kuik  b

for all i = 1, . . . , n, almost surely. For all t > 0

Pr

"�����

nX

i=1

ui

����� >
p
v +

p
8vt+ (4/3)bt

#
 e

�t

A.2 Cherno↵ Sample Complexity Proof

A.2.1 Concentration Lemma

Lemma 5. Define Lt(✓⇤) as the sum squared errors for the hypothesis parameterized by ✓⇤. Let ⌧✓⇤ = min{t :
Lt(✓0)� Lt(✓⇤) > �(J, �), 8✓0 6= ✓⇤}. Then we can bound the probability that ⌧✓⇤ is larger than t as

P(⌧✓⇤ > t)  JC1 exp (�C2t)

where, J := |⇥|, C1 := 110 + 55max

⇢
1,

⌘
2

2D2
1c

�
, C2 :=

2D2
1 min{(c� 1)2, c}

⌘2
, ⌘ > 0 defined in Definition 1 and

D1 := min
✓2⇥,✓0 6=✓⇤

Pn
i=1 p✓(i)(µi(✓0)� µi(✓⇤))2.

Proof. We consider the following events when the di↵erence of squared errors is below certain values:

⇠✓0✓⇤(t) := {Lt(✓
0)� Lt(✓

⇤) < �(J, �)},
⇠̃✓0✓⇤(t) := {Lt(✓

0)� Lt(✓
⇤) < ↵(J)}.

Then we define the time ⌧✓⇤ as follows:

⌧✓⇤ := min{t : Lt(✓
0)� Lt(✓

⇤) > �(J, �), 8✓0 6= ✓⇤}

which is the first round when Lt(✓0) crosses �(J, �) threshold against Lt(✓⇤) for all ✓0 6= ✓⇤. We also define the
time ⌧̃✓0✓⇤ as follows:

⌧̃✓0✓⇤ := min{t : Lt0(✓
0)� Lt0(✓

⇤) > ↵(J), 8t0 > t} (14)

which is the first round when Lt(✓0) crosses ↵(J) threshold against Lt(✓⇤). We will be particularly interested in
the time

⌧̃✓⇤ := max
✓0 6=✓⇤

{⌧̃✓0✓⇤}. (15)

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

Let �t(✓0) denote the di↵erence of squared errors between hypotheses ✓0 and ✓⇤ (for Gaussian noise model, it is
equal to the log-likelihood ratio between hypotheses parameterized by ✓0 and ✓⇤) shown below.

�t(✓
0) = Lt(✓

0)� Lt(✓
⇤). (16)

A key thing to note that for D1 > 0 (Assumption 2) the E[�t(✓0)] > tD1 which is shown as follows:

EIt,Y t [�t(✓
0)] = EIt,Y t [Lt(✓

0)� Lt(✓
⇤)] = EIt,Y t

"
tX

s=1

(Ys � µIs(✓
⇤))2 �

tX

s=1

(Ys � µIs(✓))
2

#

=
tX

s=1

EIsEYs|Is

h
(µIs(✓

⇤)� µIs(✓))
2 |Is

i

=
tX

s=1

nX

i=1

P(Is = i) (µi(✓
⇤)� µi(✓))

2
(a)
� tD1

where, (a) follows from the definition of D1 in Theorem 1. Then it follows that,

P(⇠̃✓0✓⇤(t)) = P(�t(✓
0) < ↵(J)) = P(�t(✓

0)� E[�t(✓
0)] < ↵(J)� E[�t(✓

0)])

(a)
 P(�t(✓

0)� E[�t(✓
0)] < ↵(J)� tD1)

where, in (a) the choice of tD1 follows as E[�t(✓0)] � tD1 for D1 > 0. Similarly, we can show that E[�s(✓0)] � D0

for all rounds s � ⌧̃✓⇤ where ⌧̃✓⇤ is defined in (15). Then we can show that,

P(⇠✓0,✓⇤(t)| ⌧̃✓⇤) = P(�t(✓
0) < �(J, �)| ⌧̃✓⇤) = P(�t(✓

0)� E[�t(✓
0)] < �(J, �)� E[�t(✓

0)]| ⌧̃✓⇤)

(a)
 P (�t(✓

0)� E[�t(✓
0)] < �(J, �)� (t� ⌧̃✓⇤)D0| ⌧̃✓⇤)

(b)
= P

✓
�t(✓

0)� E[�t(✓
0)] < D0

✓
�(J, �)

D0
� t+ ⌧̃✓⇤)

◆
| ⌧̃✓⇤

◆

where, in (a) the choice of (t� ⌧̃✓⇤)D0 follows as E[�s(✓0)] � D0 for any round s > ⌧̃✓⇤ , and finally in (b) the

quantity D0

✓
�(J, �)

D0
� t+ ⌧̃✓⇤)

◆
is negative for t � (1+ c)

✓
↵(J)

D1
+
�(J, �)

D0

◆
and ⌧̃✓⇤ <

↵(J)

D1
+

tc

2
which allows

us to apply the concentration inequality for conditionally independent random variables stated in Lemma 8. Then
we can show that,

P(⌧✓⇤ > t)  P(
[

✓0 6=✓⇤

⇠✓0✓⇤(t))

= P

0

@

8
<

:
[

✓0 6=✓⇤

⇠✓0✓⇤(t)

9
=

;
\

{⌧̃✓⇤ <
↵(J)

D1
+

tc

2
}

1

A+ P

0

@
[

✓0 6=✓⇤

{⇠✓0✓⇤(t)}
\

{⌧̃✓⇤ � ↵(J)

D1
+

tc

2
}

1

A


X

✓0 6=✓⇤

P
✓
{⇠✓0✓⇤(t)}

\
{⌧̃✓⇤ <

↵(J)

D1
+

tc

2
}
◆
+
X

✓0 6=✓⇤

P
✓
⌧̃✓⇤ � ↵(J)

D1
+

tc

2

◆

=
X

✓0 6=✓⇤

P
✓
⇠✓0✓⇤(t) | ⌧̃✓⇤ <

↵(J)

D1
+

tc

2

◆
P
✓
⌧̃✓⇤ <

↵(J)

D1
+

tc

2

◆

+
X

✓0 6=✓⇤

P
✓
⇠̃✓0✓⇤(t0) is true for some t

0
>
↵(J)

D1
+

tc

2

◆


X

✓0 6=✓⇤

P
✓
⇠✓0✓⇤(t) | ⌧̃✓⇤ <

↵(J)

D1
+

tc

2

◆
+
X

✓0 6=✓⇤

X

t0:t0�↵(J)
D1

+ tc
2

P
⇣
⇠̃✓0✓⇤(t0)

⌘


X

✓0 6=✓⇤

P
✓
�t(✓

0)� E[�t(✓
0)] < D0

✓
�(J, �)

D0
� t+ ⌧̃✓⇤

◆
| ⌧̃✓⇤ <

↵(J)

D1
+

tc

2

◆

+
X

✓0 6=✓⇤

X

t0:t0�↵(J)
D1

+ tc
2

P (�t0(✓
0)� E[�t0(✓

0)] < ↵(J)� t
0
D1)

Cherno↵ Sampling for Active Testing and Extension to Active Regression


X

✓0 6=✓⇤

P
✓
�t(✓

0)� E[�t(✓
0)] < D0

✓
�(J, �)

D0
+
↵(J)

D1
� t+

tc

2

◆◆

+
X

✓0 6=✓⇤

X

t0:t0�↵(J)
D1

+ tc
2

P (�t0(✓
0)� E[�t0(✓

0)] < ↵(J)� t
0
D1)

(a)
 exp (4)

X

✓0 6=✓⇤

exp

✓
�2D2

1t(c/2 � 1)2

⌘2

◆
+ exp (4)

X

✓0 6=✓⇤

exp

✓
�2D2

1tc

⌘2

◆

1� exp

✓
�2D2

1

⌘2

◆

(b)
 exp (4)

X

✓0 6=✓⇤

exp

✓
�
2D2

1t(
c
2 � 1)2

⌘2

◆
+ exp (4)

X

✓0 6=✓⇤

exp

✓
�2D2

1tc

⌘2

◆✓
1 + max

⇢
1,

⌘
2

2D2
1

�◆

(c)
 55

X

✓0 6=✓⇤

exp

✓
�
2D2

1t(
c
2 � 1)2

⌘2

◆
+ 55

X

✓0 6=✓⇤

exp

✓
�2D2

1tc

⌘2

◆
+ 55

X

✓0 6=✓⇤

exp

✓
�2D2

1tc

⌘2

◆
max

⇢
1,

⌘
2

2D2
1

�


X

✓0 6=✓⇤

exp

✓
�
2D2

1tmin{(c2 � 1)2, c}
⌘2

◆
110 + 55max

⇢
1,

⌘
2

2D2
1

��
(d)
 JC1 exp (�C2t)

where, (a) follows from Lemma 6 and Lemma 7, (b) follows from the identity that 1/(1 � exp(�x))  1 +

max{1, 1/x} for x > 0, (c) follows for 0 < c < 1, and in (d) we substitute C1 := 110 + 55max

⇢
1,

⌘
2

2D2
1

�
,

C2 :=
2D2

1 min{(c/2 � 1)2, c}
⌘2

and J := |⇥|.

Lemma 6. Let �t(✓0) := Lt(✓0) � Lt(✓⇤) from (16), D1 := min
✓2⇥,✓0 6=✓⇤

Pn
i=1 p✓(i)(µi(✓0) � µi(✓⇤))2, and ↵(J)

and �(J, �) be the two thresholds. Then we can show that

X

✓0 6=✓⇤

P
✓
�t(✓

0)� E[�t(✓
0)] < D0

✓
�(J, �)

D0
+
↵(J)

D1
� t+

tc

2

◆◆
 exp (4)

X

✓0 6=✓⇤

exp

✓
�2D2

1t(c/2 � 1)2

⌘2

◆
.

for some constant c such that 0 < c < 1.

Proof. Let us recall that the critical number of samples is given by (1 + c)M where

M :=
�(J, �)

D0
+
↵(J)

D1
. (17)

and c is a constant. Then we can show that for some 0 < c < 1,

X

✓0 6=✓⇤

P
✓
�t(✓

0)� E[�t(✓
0)] < D0

✓
�(J, �)

D0
+
↵(J)

D1
� t+

tc

2

◆◆

(a)


X

✓0 6=✓⇤

exp

0

BBB@
�
2D2

0

✓
�(J, �)

D0
+
↵(J)

D1
+ t(c/2 � 1)

◆2

t⌘2

1

CCCA
(b)

X

✓0 6=✓⇤

exp

�2D2

1 (M + t(c/2 � 1))2

t⌘2

!

(c)

X

✓0 6=✓⇤

exp

✓
�2D2

1t
2(c/2 � 1)2 + 4D2

1tM(c/2 � 1)

t⌘2

◆
(d)

X

✓0 6=✓⇤

exp

✓
�2D2

1t
2(c/2 � 1)2 + 4⌘20Mt(c/2 � 1)

t⌘2

◆

(e)

X

✓0 6=✓⇤

exp

✓
�2D2

1t
2(c/2 � 1)2 + 4⌘20t(c/2 � 1)

t⌘2

◆
(f)
=

X

✓0 6=✓⇤

exp

✓
4⌘20(1� c/2)

⌘2

◆
exp

✓
�2D2

1t(c/2 � 1)2

⌘2

◆

(g)

X

✓0 6=✓⇤

exp (4(1� c/2)) exp

✓
�2D2

1t(c/2 � 1)2

⌘2

◆
 exp (4)

X

✓0 6=✓⇤

exp

✓
�2D2

1t(c/2 � 1)2

⌘2

◆

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

where (a) follows from Lemma 8 and noting that D0

✓
�(J, �)

D0
+
↵(J)

D1
� t+

tc

2

◆
< 0 for t > (1 + c)M , the

inequality (b) follows from definition of M and noting that D0 � D1, (c) follows as for M > 1 we can show that
M

2 + 2tM(c/2 � 1) + t
2(c/2 � 1)2 � 2tM(c/2 � 1) + t

2(c/2 � 1)2, (d) follows as D1 � ⌘0, (e) follows as M > 1, (f)
follows as 0 < c < 1, and (g) follows as ⌘0  ⌘.

Lemma 7. Let �t0(✓0) := Lt0(✓0)� Lt0(✓⇤) from (16), D1 = min
✓2⇥,✓0 6=✓⇤

Pn
i=1 p✓(i)(µi(✓0)� µi(✓⇤))2, and ↵(J)

be the threshold depending only on J . Then for some constant 0 < c < 1 and ⌘ defined in Definition 1 we show
that

X

✓0 6=✓⇤

X

t0:t0>↵(J)
D1

+ tc
2

P (�t0(✓
0)� E[�t0(✓

0)] < ↵(J)� t
0
D1)  exp (4)

X

✓0 6=✓⇤

exp

✓
�2D2

1tc

⌘2

◆

1� exp

✓
�2D2

1

⌘2

◆ .

.

Proof. Let us recall that

X

✓0 6=✓⇤

X

t0:t0>↵(J)
D1

+ tc
2

P (�t0(✓
0)� E[�t0(✓

0)] < ↵(J)� t
0
D1)

(a)


X

✓0 6=✓⇤

X

t0:t0>↵(J)
D1

+ tc
2

exp

✓
�2(↵(J)� t

0
D1)2

t0⌘2

◆

=
X

✓0 6=✓⇤

X

t0:t0>↵(J)
D1

+ tc
2

exp

✓
�2D2

1(t
0)2 + 2↵(J)2 � 4D1↵(J)t0

t0⌘2

◆

(b)

X

✓0 6=✓⇤

X

t0:t0>↵(J)
D1

+ tc
2

exp

✓
�2D2

1(t
0)2

t0⌘2

◆
exp

✓
4⌘↵(J)t0 � 2↵(J)2

t0⌘2

◆

(c)

X

✓0 6=✓⇤

X

t0:t0>↵(J)
D1

+ tc
2

exp (4) exp

✓
�2D2

1t
0

⌘2

◆
(d)
 exp (4)

X

✓0 6=✓⇤

exp

✓
�2D2

1

✓
↵(J)

D1
+

tc

2

◆
/⌘

2

◆

1� exp

✓
�2D2

1

⌘2

◆

= exp (4)
X

✓0 6=✓⇤

exp

✓
�2D1↵(J)

⌘2
� D

2
1tc

⌘2

◆

1� exp

✓
�2D2

1

⌘2

◆
(e)
 exp (4)

X

✓0 6=✓⇤

exp

✓
�2⌘0↵(J)

⌘2

◆
exp

✓
�2D2

1tc

⌘2

◆

1� exp

✓
�2D2

1

⌘2

◆

(f)
 exp (4)

X

✓0 6=✓⇤

exp
⇣
� 2D2

1tc
⌘2

⌘

1� exp
⇣
� 2D2

1
⌘2

⌘

where (a) follows from Lemma 8 and noting that ↵(J)� t
0
D1 < 0 for t0 > ↵(J)

D1
+ tc

2 , (b) follows as D1  ⌘, the
inequality (c) follows as for ↵(J) > 1 we can show that

4⌘↵(J)t0 � 2↵(J)2

t0⌘2
 4 =) 4⌘↵(J)t0 � 2↵(J)2  4t0⌘2 =) t

0 � 2↵(J)2

4⌘↵� 4⌘2
=
↵(J)

2⌘

1

1� ⌘
↵(J)

!

which is true in this lemma as t0 > ↵(J)
D1

+ tc
2 , D1  ⌘ and ↵(J) > ⌘. Then (d) follows by applying the infinite

geometric progression formula, (e) follows as D1 � ⌘0, and (f) follows as exp

✓
�2⌘0↵(J)

⌘2

◆
 1.

Cherno↵ Sampling for Active Testing and Extension to Active Regression

A.2.2 Concentration of �t

Lemma 8. Define �s(✓) = `s(✓) � `s(✓⇤). Let ✏ > 0 be a constant and ⌘ > 0 is the constant defined in
Assumption 1. Then we can show that,

P(�t(✓)� E[�t(✓)]  �✏)  exp

✓
�2✏2

t⌘2

◆
.

Proof. Recall that �s(✓) = `s(✓)� `s(✓⇤) = (2Ys � µIs(✓)� µIs(✓
⇤))(µIs(✓

⇤)� µIs(✓)). Define Vs = �s(✓)�
E[�s(✓)]. Note that E[Vs] = 0 which can be shown as follows:

E[Vs] = E[�s(✓)� E[�s(✓)]] =
nX

i=1

P(Is = i)(µi(✓
⇤)� µi(✓))

2 �
nX

i=1

P(Is = i)(µi(✓
⇤)� µi(✓))

2 = 0.

Also note that
Pt

s=1 Vs = �t(✓)� E[�t(✓)]. Next, we show that the moment generating function of the random
variable Vs is bounded. First note that the reward Ys is bounded between �p

⌘/2 and
p
⌘/2. It then follows that:

Vs = �s(✓)� E[�s(✓)]

= (2Ys � µIs(✓)� µIs(✓
⇤))(µIs(✓

⇤)� µIs(✓))�
nX

i=1

P(Is = i)(µi(✓
⇤)� µi(✓))

2  2⌘.

Similarly, it can be shown that Vs � �2⌘. Hence, for the bounded random variable Vs 2 [�2⌘, 2⌘] we can show
from Hoe↵ding’s lemma in Lemma 3 that

E[exp (�Vs)]  exp

✓
�
2

8
(2⌘ � (�2⌘))2

◆
= exp

�
2�2⌘2

�

for some � 2 R. Now for any ✏ > 0 we can show that

P(�t(✓)� E[�t(✓)]  �✏) = P

tX

s=1

Vs  �✏
!

= P

�

tX

s=1

Vs � ✏

!

= P
⇣
e
��

Pt
s=1 Vs � e

�✏
⌘ (a)

 e
��✏E

h
e
��

Pt
s=1 Vs

i

= e
��✏E

h
E
h
e
��

Pt
s=1 Vs

��b✓(t� 1)
ii

(b)
= e

��✏E
h
E
h
e
��Vt |b✓(t� 1)

i
E
h
e
��

Pt�1
s=1 Vs

��b✓(t� 1)
ii

 e
��✏E

h
exp

�
2�2⌘2

�
E
h
e
��

Pt�1
s=1 Vs

��b✓(t� 1)
ii

= e
��✏

e
2�2⌘2

E
h
e
��

Pt�1
s=1 Vs

i

...

(c)
 e

��✏
e
2�2t⌘2

(d)
 exp

✓
�2✏2

t⌘2

◆

where (a) follows by Markov’s inequality, (b) follows as Vs is conditionally independent given b✓(s� 1), (c) follows
by unpacking the term for t times and (d) follows by taking � = ✏/4t⌘2.

A.2.3 Proof of correctness for General Sub-Gaussian Case

Lemma 9. Let Lt(✓) be the sum of squared errors of the hypothesis parameterized by ✓ based on observation
vector Yt from an underlying sub-Gaussian distribution. Let ⌧✓⇤✓ := min{t : Lt(✓⇤)� Lt(✓) > �(J, �)}. Then we
can show that

P (L⌧✓⇤✓
(✓⇤)� L⌧✓⇤✓

(✓) > �(J, �))  �

J

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

where, �(J, �) := log

 �
1 + ⌘2

/⌘2
0

�
J

�

!
.

Proof. Let ��t(✓) := Lt(✓⇤)�Lt(✓) be the di↵erence of sum of squared errors between hypotheses parameterized
by ✓⇤ and ✓. We again define ⌧✓⇤✓(Y t) := min{t : ��t(✓) > �(J, �)}. For brevity in the following proof we drop
the Y

t in ⌧✓⇤✓(Y t). Then we can show that

P(9t < 1,��t(✓) > �(J, �)) =
1X

t=1

P (⌧✓⇤✓ = t,��t(✓) > �(J, �))

=
1X

t=1

P (⌧✓⇤✓ = t,��t(✓)� E[��t(✓)] > �(J, �)� E[��t(✓)])


1X

t=1

P (⌧✓⇤✓ = t,��t(✓)� E[��t(✓)] > �(J, �) + tD1)

(a)


1X

t=1

exp

�2 (�(J, �) + tD1)

2

t⌘2

!
(b)


1X

t=1

exp

✓
�
✓
�(J, �) +

t
2
D

2
1

t⌘2

◆◆

=
1X

t=1

exp

✓
�
✓
�(J, �) +

tD
2
1

⌘2

◆◆
= exp (��(J, �))

⇥
1 + exp(�D

2
1/⌘

2) + exp(�2D2
1/⌘

2) + exp(�3D2
1/⌘

2) + . . .
⇤

(c)
= exp (��(J, �)) 1

1� exp (�D2
1/⌘

2)

(d)
 exp (��(J, �))

✓
1 +

⌘
2

D2
1

◆
(e)
 �

J
.

where, (a) follows from Lemma 8 and noting that �E[��t(✓)]  �tD0, (b) follows as (�(J, �)+ tD0)2 � 2�(J, �)+
t
2
D

2
0 for a, b > 0, (c) follows from the infinite geometric series sum formula, (d) follows as 1/1�exp(�x)  1 + 1/x

for x > 0, and (e) follows as �(J, �) := log

 �
1 + ⌘2

/⌘2
0

�
J

�

!
and noting that D1 � ⌘0.

A.2.4 Stopping time Correctness Lemma for the Gaussian Case

Lemma 10. Let Lt(✓) be the sum of squared errors of the hypothesis parameterized by ✓ based on observation
vector Yt from an underlying Gaussian distribution. Let ⌧✓⇤✓ := min{t : Lt(✓⇤)� Lt(✓) > �(J, �)}. Then we can
show that

P (L⌧✓⇤✓
(✓⇤)� L⌧✓⇤✓

(✓) > �(J, �))  �

J

where we define the threshold function as,

�(J, �) := log(J/�) (18)

Proof. Let ��t(✓) := Lt(✓⇤)� Lt(✓) be the log-likelihood ratio between hypotheses parameterized by ✓⇤ and ✓.
Define ⌧✓⇤✓(Y t) := min{t : ��t(✓) > �(J, �)}. For brevity in the following proof we drop the Y

t in ⌧✓⇤✓(Y t).
Then we can show that at time t � ⌧✓⇤✓ we have

��t(✓) > �(J, �) =) exp (��t(✓)) > exp (�(J, �))

=)

0

BB@

tQ
s=1

P(YIs = ys|Is,✓)

tQ
s=1

P(YIs = ys|Is,✓⇤)

1

CCA > exp (�(J, �))

=) exp (��(J, �))

0

BB@

tQ
s=1

P(YIs = ys|Is,✓)

tQ
s=1

P(YIs = ys|Is,✓⇤)

1

CCA > 1. (19)

Cherno↵ Sampling for Active Testing and Extension to Active Regression

Following this we can show that the probability of the event {��t(✓) > �(J, �)} is upper bounded by

P(9t < 1,��t(✓) > �(J, �)) =
1X

t=1

P (⌧✓⇤✓ = t) =
1X

t=1

E[I{⌧✓⇤✓ = t}]

(a)


1X

t=1

E

2

664I{⌧✓⇤✓ = t} exp (��(J, �))

0

BB@

tQ
s=1

P(YIs = ys|Is,✓)

tQ
s=1

P(YIs = ys|Is,✓⇤)

1

CCA

3

775

= exp (��(J, �))
1X

t=1

Z

Rt

I{⌧✓⇤✓ = t}

tQ
s=1

P(YIs = ys|Is,✓)

tQ
s=1

P(YIs = ys|Is,✓⇤)

tY

s=1

P(YIs = ys|Is,✓⇤)dy1dy2 . . . dyt

= exp (��(J, �))
1X

t=1

Z

Rt

I{⌧✓⇤✓ = t}
tY

s=1

P(YIs = ys|Is,✓)dy1dy2 . . . dyt

= exp (��(J, �))
1X

t=1

P(⌧✓⇤✓ = t|It,✓)  exp (��(J, �))
(b)
 �

J
.

where, (a) follows from (19), and (b) follows from (18). The claim of the lemma follows.

A.2.5 Proof of CS Sample Complexity (Theorem 1)

Theorem 1. (Restatement) Let ⌧� denote the stopping time of CS in Algorithm 1. Let D0 be the objective
value of the maxmin optimization in (4) when ✓ = ✓⇤, i.e.,

D0 := max
p

min
✓0 6=✓⇤

nX

i=1

p(i)(µi(✓
0)� µi(✓

⇤))2.

Denoting p✓ as the solution of (4) when b✓(t) is replaced by any ✓ 2 ⇥, let D1 be the minimum possible objective

value of (4) over all p✓ when b✓(t) is replaced by ✓⇤, i.e.,

D1 := min
{p✓ :✓2⇥}

min
✓0 6=✓⇤

nX

i=1

p✓(i)(µi(✓
0)� µi(✓

⇤))2.

Assumption 2 ensures that D1 > 0. The sample complexity of the �-PAC CS has the following upper bound, where
J := |⇥|, C = O((⌘/⌘0)2) is a constant:

E[⌧�]  O

✓
⌘ log(C) log J

D1
+

log(J/�)

D0
+ JC

1
⌘ �

D0
⌘2

◆
.

Proof. Step 1 (Definitions): Define Lt(✓) as the total sum of squared errors of hypothesis ✓ till round t. Let,
��t(✓) := Lt(✓⇤)� Lt(✓) be the di↵erence of squared errors between ✓⇤ and ✓. Note that the p.m.f. p✓ is the
Cherno↵ verification proportion for verifying hypothesis ✓.

Step 2 (Define ⌧� and partition): We define the stopping time ⌧� for the policy ⇡ as follows:

⌧� := min{t : 9✓ 2 ⇥, Lt(✓
0)� Lt(✓) > �(J, �), 8✓0 6= ✓} (20)

where, �(J, �) is the threshold function.

Step 3 (Define bad event): We define the bad event ⇠�(✓) for the sub-optimal hypothesis ✓ 6= ✓⇤ as follows:

⇠
�(✓) = {b✓(⌧�) = ✓, L⌧�(✓

0)� L⌧�(✓) > �(J, �), 8✓0 6= ✓}. (21)

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

The event ⇠�(✓) denotes that a sub-optimal hypothesis ✓ is declared the optimal hypothesis when it has a smaller
sum of squared errors than any other hypothesis ✓0 at ⌧�.

Step 4 (Decomposition of bad event): In this step we decompose the bad event to show that only comparing
✓ against ✓⇤ is enough to guarantee a �-PAC policy. First we decompose the bad event ⇠�(✓) as follows:

⇠
�(✓) ={b✓(⌧�) = ✓, L⌧�(✓

0)� L⌧�(✓) > �(J, �), 8✓0 6= ✓}
(a)
={b✓(⌧�) = ✓, L⌧�(✓

0)� L⌧�(✓) > �(J, �), 8✓0 2 ⇥ \ {✓⇤}}| {z }
part A

\
{b✓(⌧�) = ✓, L⌧�(✓

⇤)� L⌧�(✓) > �(J, �)| {z }
part B

}

✓{b✓(⌧�) = ✓, L⌧�(✓
⇤)� L⌧�(✓) > �(J, �)} (22)

where, (a) follows by decomposing the event in two parts containing ✓ 2 ⇥ \ {✓⇤} and {✓⇤}, (b) follows by noting
that the intersection of events holds by taking into account only the event in part B.

Step 5 (Proof of correctness): In this step we want to show that based on the ⌧� definition and the bad event
⇠
�(✓) the CS stops and outputs the correct hypothesis ✓⇤ with 1� � probability. As shown in Step 4, we can
define the error event ⇠�(✓) as follows:

⇠
�(✓) ✓{b✓(⌧�) = ✓, L⌧�(✓

⇤)� L⌧�(✓) > �(J, �)}

Define ⌧✓⇤✓ = min{t : ��t(✓) > �(J, �)}. Then we can show for the stopping time ⌧�, the round ⌧✓⇤✓ from

Lemma 9 and the threshold �(J, �) := log

 �
1 + ⌘2

/⌘2
0

�
J

�

!
we have

P
⇣
⌧� < 1, b✓(⌧�) 6= ✓⇤

⌘
 P (9✓ 2 ⇥ \ {✓⇤}, 9t 2 N : ��t(✓) > �(J, �))


X

✓ 6=✓⇤

P (L⌧✓⇤✓
(✓⇤)� L⌧✓⇤✓

(✓) > �(J, �), ⌧✓⇤✓ < 1)
(a)

X

✓ 6=✓⇤

�

J
 �

where, (a) follows from Lemma 9.

Step 6 (Sample complexity analysis): In this step we bound the total sample complexity satisfying the
�-PAC criteria. We define the stopping time ⌧� as follows:

⌧� := min
n
t : Lt(✓

0)� Lt(b✓(t)) > �(J, �), 8✓0 6= b✓(t)
o

We further define the time ⌧✓⇤ for the hypothesis ✓⇤ as follows:

⌧✓⇤ := min {t : Lt(✓
0)� Lt(✓

⇤) > �(J, �), 8✓0 6= ✓⇤} . (23)

We also define the critical number of samples as (1 + c)M where M is defined as follows:

M :=

✓
↵(J)

D1
+

C
0 + log(J/�)

D0

◆
(24)

where, C 0 = log
�
1 + ⌘2

/⌘2
0

�
. Hence C

0 + log(J/�) follows from the definition of �(J, �) in Lemma 9. We define the
term D1 as follows:

D1 := min
{p✓ :✓2⇥}

min
✓0 6=✓⇤

nX

i=1

p✓(i)(µi(✓
0)� µi(✓

⇤))2 (25)

and the term D0 as follows:

D0 := min
✓0 6=✓⇤

nX

i=1

p✓⇤(i)(µi(✓
0)� µi(✓

⇤))2 (26)

Cherno↵ Sampling for Active Testing and Extension to Active Regression

It then follows that

E[⌧�]  E[⌧✓⇤] =
1X

t=0

P(⌧✓⇤ = t)
(a)
 1 + (1 + c)M +

X

t:t>(1+c)M

P(⌧✓⇤ > t)

(b)
 1 + (1 + c)

✓
↵(J)

D1
+

C
0 + 4 log(J/�)

D0

◆
+ J

X

t:t>

0

@
↵(J)

D1
+
log(J/�)

D0

1

A(1+c)

C1 exp(�C2t)

(c)
 1 + (1 + c)

✓
↵(J)

D1
+

C
0 + 4 log(J/�)

D0

◆
+ JC1

exp

✓
�C2(1 + c)

✓
↵(J)

D1
+

4 log(J/�)

D0

◆◆

1� exp (�C2)

(d)
 1 + (1 + c)

✓
↵(J)

D1
+

C
0 + 4 log(J/�)

D0

◆
+ JC1

exp

✓
�C2(1 + c)

✓
↵(J)

D0
+

4 log(J)

D0
+

4 log(1/�)

D0

◆◆

1� exp (�C2)

(e)
 1 + (1 + c)

✓
↵(J)

D1
+

C
0 + log(J/�)

D0

◆
+ JC1

exp

✓
�C2

✓
↵(J) + 4 log J

D0

◆
exp

✓
�4C2

log(1/�)

D0

◆◆

1� exp (�C2)

(f)
= 1 + (1 + c)

✓
b log J

D1
+

C
0 + log(J/�)

D0

◆
+ JC1

exp

✓
�C2

✓
(b+ 4) log J

D0

◆
exp

✓
�4C2

log(1/�)

D0

◆◆

1� exp (�C2)

 1 + (1 + c)

✓
b log J

D1
+

C
0 + log(J/�)

D0

◆
+ JC1

✓
1

J

◆C2(b+4)/D0

�
4C2/D0

✓
1 + max{1, 1

C2
}
◆

 1 + (1 + c)

✓
b log J

D1
+

C
0 + log(J/�)

D0

◆
+ C1(2 +

1

C2
)J

1�
C2(b+ 4)

D0 �

4C2

D0

(g)
 1 + 2

✓
b log J

D1
+

C
0 + log(J/�)

D0

◆
+

✓
165 +

⌘
2

D2
1

◆✓
2 +

⌘
2

D2
1

◆
J

1�
D

2
1(b+ 4)

2⌘2D0 �

D
2
1

⌘2D0

 1 + 2

✓
b log J

D1
+

C
0 + log(J/�)

D0

◆
+

✓
165 +

⌘
2

D2
1

◆2

J

1�
D

2
1(b+ 4)

2⌘2D0 �

D0

⌘2

(h)
 1 + 2

✓
b log J

D1
+

C
0 + log(J/�)

D0

◆

| {z }
Term A

+

✓
165 +

⌘
2

⌘20

◆2

J

�
1�
⌘
2
0(b+ 4)

2⌘3
�

| {z }
Term B

⇥
✓
�

D0

⌘2
◆

| {z }
Term C

(27)

where, (a) follows from definition of M in (24), (b) follows from Lemma 5, C1 := 110 + 55max

⇢
1,

⌘
2

2D2
1

�
,

C2 :=
2D2

1 min{(c/2 � 1)2, c}
⌘2

, (c) follows by applying the geometric progression formula, (d) follows as D1  D0.

The inequality (e) follows as c > 0, (f) follows by setting ↵(J) = b log J for some constant b > 1, (g) follows by
setting c = 1

2 in C1 and C2, and (h) follows as D1 � ⌘0, and D0  ⌘.

Now, note that in (27) the Term C  1 as � 2 (0, 1). Now for the Term B we need to find an b such that Term B

 J

1�
⌘
2
0(b+ 4)

2⌘3
+

b

⌘ log J . Hence,

✓
165 +

⌘
2

⌘20

◆2

J

1�
⌘
2
0(b+ 4)

2⌘3  J

1�
⌘
2
0(b+ 4)

2⌘3
+

b

⌘ log J =)
✓
165 +

⌘
2

⌘20

◆2

 J

b

⌘ log J =) ⌘ log

✓
165 +

⌘
2

⌘20

◆
 b

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

So for a constant b > 1 such that if b satisfies the following condition

b = ⌘ log

✓
165 +

⌘
2

⌘20

◆
> log

✓
1 +

⌘
2

⌘20

◆
(28)

then we have that Term B  J

1�
⌘
2
0(b+ 4)

2⌘3
+

b

⌘ log J . Hence we set the value of C = 165 + ⌘
2
/⌘

2
0 > C

0 which
shows up in our theorem statement. Plugging this in (27) we get that the expected sample complexity is upper
bounded by

E[⌧�]  1 + 2

0

BB@

⌘ log

✓
165 +

⌘
2

⌘20

◆
log J

D1
+

log

✓
1 +

⌘
2

⌘20

◆
+ log(J/�)

D0

1

CCA+ J

1�
⌘
2
0(b+ 4)

2⌘3
+

b

⌘ log J �

D0

⌘2

(a)
 1 + 2

0

BB@

⌘ log

✓
165 +

8⌘2

⌘20

◆
log J

D1
+

log

✓✓
165 +

⌘
2

⌘20

◆
J

�

◆

D0

1

CCA+ J

1+

log

✓
165 +

⌘
2

⌘20

◆

⌘ log J �

D0

⌘2

(b)
 1 + 2

✓
⌘ log(C) log J

D1
+

log(CJ/�)

D0

◆
+ J

1+
log(C)

⌘ log J �

D0

⌘2

= 1 + 2

✓
⌘ log(C) log J

D1
+

log(CJ/�)

D0

◆
+ J · J

log(C)1/⌘

log J �

D0

⌘2

= O

✓
⌘ log(C) log J

D1
+

log(J/�)

D0
+ J(C)1/⌘�D0/⌘

2

◆

where, (a) follows as 2 log

✓
165 +

⌘
2

⌘20

◆
� log

✓
1 +

⌘
2

⌘20

◆
, and in (b) we substitute C =

✓
165 +

⌘
2

⌘20

◆
. The claim of

the Theorem follows.

A.3 Proof of T2 Sample Complexity

A.3.1 Concentration Lemma

This section contains concentration lemma equivalent to the Lemma 5 of Appendix A.2.

Lemma 11. Define Lt(✓⇤) as the sum of squared error of the hypothesis parameterized by ✓⇤. Let ⌧✓⇤ = min{t :
Lt(✓0)� Lt(✓⇤) > �(J, �), 8✓0 6= ✓⇤}. Then we can bound the probability of the event

P(⌧✓⇤ > t)  JC
0
1 exp (�C

0
2t)

where, J := |⇥|, C 0
1 := 110 + 55max

⇢
1,

⌘
2

2D02
1

�
, C 0

2 :=
2D02

1 min{(c� 1)2, c}
⌘2

, ⌘ > 0 defined in Definition 1 and

D
0
1 := min✓ 6=✓0,✓0 6=✓⇤

Pn
i=1 u✓✓0(i)(µi(✓0)� µi(✓⇤))2.

Proof. We define the event

⇠✓0✓⇤(t) = {Lt(✓
0)� Lt(✓

⇤) < �(J, �)}
⇠̃✓0✓⇤(t) = {Lt(✓

0)� Lt(✓
⇤) < ↵(J)}

Then we define the time ⌧✓⇤ as follows:

⌧✓⇤ = min{t : Lt(✓
0)� Lt(✓

⇤) > �(J, �), 8✓0 6= ✓⇤}

Cherno↵ Sampling for Active Testing and Extension to Active Regression

which is the first round Lt(✓0) crosses �(J, �) threshold against Lt(✓⇤) for all ✓0 6= ✓⇤. We also define the time
⌧̃✓⇤ as follows:

⌧̃✓0✓⇤ = min{t : Lt0(✓
0)� Lt0(✓

⇤) > ↵(J), 8t0 > t}

which is the first round when Lt(✓⇤) crosses ↵(J) threshold against Lt(✓0). Then we define the time

⌧̃✓⇤ = max
k

{⌧̃✓⇤✓0}

as the last time ⌧̃✓⇤✓0 happens. Define the term D
0
0 and D

0
1 as

D
0
0 := min

✓,✓0 6=✓⇤

nX

i=1

u✓⇤✓(i)(µi(✓
0)� µi(✓

⇤))2, D
0
1 := min

✓ 6=✓0,✓0 6=✓⇤

nX

i=1

u✓✓0(i)(µi(✓
0)� µi(✓

⇤))2

Let �t(✓0) := Lt(✓0) � Lt(✓⇤) be the sum of squared errors between hypotheses parameterized by ✓0 and ✓⇤.
Then it follows that,

P(⇠̃✓0✓⇤(t)) = P(�t(✓
0)� tD

0
1 < ↵(J)� tD

0
1)

 P(�t(✓
0)� E[�t(✓

0)] < ↵(J)� tD
0
1)

Similarly, we can show that,

P(⇠✓0✓⇤(t)) = P(�t(✓
0)� E[�t(✓

0)] < �(J, �)� E[�t(✓
0)])

 P(�t(✓
0)� E[�t(✓

0)] < �(J, �)� (t� ⌧̃✓⇤)D0
0)

= P
✓
�t(✓

0)� E[�t(✓
0)] < D

0
0

✓
�(J, �)

D0
0

� t+ ⌧̃✓⇤)

◆◆

Then following the same approach as in Lemma 5 we can show that,

P(⌧✓⇤ > t)  P(
[

✓0 6=✓⇤

⇠✓0✓⇤(t))

 P

0

@

8
<

:
[

✓0 6=✓⇤

⇠✓0✓⇤(t)

9
=

;
\

{⌧̃✓⇤ <
↵(J)

D0
1

+ tc}

1

A+ P
✓
{⇠✓0✓⇤(t)}

\
{⌧̃✓⇤ � ↵(J)

D0
1

+ tc}
◆


X

✓0 6=✓⇤

P
✓
{⇠✓0✓⇤(t)}

\
{⌧̃✓⇤ <

↵(J)

D0
1

+ tc}
◆
+
X

✓0 6=✓⇤

X

t0:t0�↵(J)

D0
1

+tc

P
⇣
⇠̃✓0✓⇤(t0)

⌘


X

✓0 6=✓⇤

P
✓
{⇠✓0✓⇤}

\
{⌧̃✓⇤ <

↵(J)

D0
1

+ tc}
◆
+
X

✓0 6=✓⇤

X

t0:t0�↵(J)

D0
1

+tc

P (�t0(✓
0)� t

0
D

0
1 < ↵(J)� t

0
D

0
1)


X

✓0 6=✓⇤

P
✓
�t0(✓

0)� E[�t0(✓
0)] < D

0
0

✓
�(J, �)

D0
0

+
↵(J)

D0
1

� t+ tc

◆◆

+
X

✓0 6=✓⇤

X

t0:t0�↵(J)

D0
1

+tc

P (�t0(✓
0)� t

0
D

0
1 < ↵(J)� t

0
D

0
1)

(a)


X

✓0 6=✓⇤

exp (4) exp

✓
�
2D02

1 t(
c
2 � 1)2

⌘2

◆
+
X

✓0 6=✓⇤

exp (4)

exp

✓
�2D02

1 tc

⌘2

◆

1� exp

✓
�2D02

1

⌘2

◆

(b)
 55

X

✓0 6=✓⇤

exp

✓
�
2D02

1 t(
c
2 � 1)2

⌘2

◆
+ 55

X

✓0 6=✓⇤

exp

✓
�2D02

1 tc

⌘2

◆
+ 55

X

✓0 6=✓⇤

exp

✓
�2D02

1 tc

⌘2

◆
max

⇢
1,

⌘
2

2D02
1

�

(c)
 JC

0
1 exp (�C

0
2t)

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

where, (a) follows from Lemma 6 and Lemma 7 as their result holds for any D
0
1, D

0
0 > 0, (b) follows from the

same steps as in Lemma 5 as D0
1  D

0
0, D

0
1 > 0, D0

0 > 0, and in (c) we substitute C
0
1 := 110 + 55max

⇢
1,

⌘
2

2D2
1

�
,

C
0
2 :=

2D2
1 min{(c2 � 1)2, c}

⌘2
, and J := |⇥|.

A.3.2 Proof of T2 Sample Complexity (Proposition 1)

Proposition 1. (Restatement) Let ⌧� denote the stopping time of T2 stops sampling following the sampling

strategy of (7). Consider the set I(✓,✓0) ⇢ [n] of actions that could be sampled following (7) when b✓(t) = ✓ and
✓̃(t) = ✓0, and let u✓✓0 denote a uniform pmf supported on I(✓,✓0). Define

D
0
0 := min

✓,✓0 6=✓⇤

nX

i=1

u✓⇤✓(i)(µi(✓
0)� µi(✓

⇤))2,

D
0
1 := min

✓ 6=✓0,✓0 6=✓⇤

nX

i=1

u✓✓0(i)(µi(✓
0)� µi(✓

⇤))2,

where we assume that D0
1 > 0. Then for a constant C > 0 the sample complexity of T2 has the following upper

bound:

E[⌧�]  O

✓
⌘ log(C) log J

D0
1

+
log(J/�)

D0
0

+ JC
1/⌘
�
D0

0/⌘
2

◆
.

Proof. Step 1 (Definitions): Let the action i✓✓0 := argmax
i2[n]

(µi(✓) � µi(✓0))2. Let b✓(t) denote the most

likely hypothesis at round s and ✓̃(t) be the second most likely hypothesis at round s. Note that T2 only

samples the action i✓✓0 at round t when b✓(t) = ✓ and ✓̃(t) = ✓0. Again, let Lt(✓) denote the total sum of
squared errors of hypothesis ✓ till round t. We further define the set I := {i 2 [n] : i = argmaxi02[n](µi0(✓) �
µi0(✓0))2 for some ✓,✓0 2 ⇥}.

Step 2 (Define stopping time ⌧�): We define the time ⌧� for the policy T2 as follows:

⌧� := min{t : 9✓ 2 ⇥, Lt(✓
0)� Lt(✓) > �(J, �), 8✓0 6= ✓} (29)

where, �(J, �) is the threshold function.

Step 3 (Define bad event): We define the bad event ⇠�(✓) for the sub-optimal hypothesis ✓ as follows:

⇠
�(✓) := {L⌧�(✓

0)� L⌧�(✓) > �(J, �), 8✓0 6= ✓}. (30)

The event ⇠�(✓) denotes that a sub-optimal hypothesis ✓ has been declared optimal at time ✓ and its sum of
squared error is smaller than any other hypothesis ✓0 6= ✓ at ⌧�.

Step 4 (Decomposition of bad event): Decomposing the bad event follows the same approach in Theorem 1.
A crucial thing to note is that the stopping time ⌧� only depends on the threshold function �(J, �) and not on the
sampling rule. Again we can decompose the bad event to show that only comparing ✓ against ✓⇤ is enough to
guarantee a �-PAC policy. Finally following (22) we can decompose the bad event ⇠�(✓) as follows:

⇠
�(✓) ✓{b✓(⌧�) = ✓, L⌧�(✓

⇤)� L⌧�(✓) > �(J, �)} (31)

such that we compare the sub-optimal hypothesis ✓ only with optimal hypothesis ✓⇤.

Step 5 (Control bad event): The control of the bad event follows the same approach in Theorem 1. We
want to show that based on the definition of ⌧� and the bad event ⇠�(✓) the T2 stops and outputs the correct
hypothesis ✓⇤ with 1� � probability. As shown in Step 4, we can define the error event ⇠�(✓) as follows:

⇠
�(✓) ✓{b✓(⌧�) = ✓, L⌧�(✓

⇤)� L⌧�(✓) > �(J, �)}

Cherno↵ Sampling for Active Testing and Extension to Active Regression

Again define ⌧✓⇤✓ := min{t : ��t(✓) > �(J, �)}. Then following the same steps as in Step 5 of Theorem 1 we can
show that

P
⇣
⌧� < 1, b✓(⌧�) 6= ✓⇤

⌘
 P (9✓ 2 ⇥ \ {✓⇤}, 9t 2 N : ��t(✓) > �(J, �))


X

✓ 6=✓⇤

P (L⌧✓⇤✓
(✓⇤)� L⌧✓⇤✓

(✓) > �(J, �), ⌧✓⇤✓ < 1)
(a)

X

✓ 6=✓⇤

�

J
 �

where (a) follows follows from Lemma 9 and the definition of �(J, �).

Step 6 (Sample complexity analysis): In this step we bound the total sample complexity of T2 satisfying
the �-PAC criteria. Recall that the set I := {i 2 [n] : i = argmaxi02[n](µi0(✓) � µi0(✓0))2 for some ✓,✓0 2 ⇥}.
Note that T2 does not sample by the Cherno↵ p.m.f. p✓. Rather it samples by the p.m.f.

u✓✓0 :=
1

|I(✓✓0)| (32)

where, I(✓✓0) := {i 2 I : i = argmaxi02[n](µi0(✓) � µi0(✓0))2 for ✓,✓0 2 ⇥}. Hence u✓✓0 is a uniform random

p.m.f between all the maximum mean squared di↵erence actions between hypotheses ✓ and ✓0 which are b✓(t) and
✓̃(t) respectively for some rounds s 2 [⌧�]. The rest of the analysis follows the same steps as in Step 6 of Theorem
1 as the proof does not rely on any specific type of sampling proportion. We define the stopping time ⌧� as follows:

⌧� = min
n
t : Lt(✓

0)� Lt(b✓(t)) � �(J, �), 8✓0 6= b✓(t)
o
.

We further define the time ⌧✓⇤ for the hypothesis ✓⇤ as follows:

⌧✓⇤ := min {t : Lt(✓
0)� Lt(✓

⇤) � �, 8✓0 6= ✓⇤} (33)

We also define the critical number of samples as (1 + c)M 0 where M
0 is defined as follows:

M :=

✓
↵(J)

D0
1

+
C

0 + log(J/�)

D0
0

◆
(34)

where, C 0 = log(1 + ⌘2
/⌘2

0), c > 0 is a constant, and we define the term D
0
1 as follows:

D
0
1 := min

✓ 6=✓0,✓0 6=✓⇤

nX

i=1

u✓✓0(i)(µi(✓
0)� µi(✓

⇤))2

and the term D
0
0 as follows:

D
0
0 := min

✓,✓0 6=✓⇤

nX

i=1

u✓⇤✓(i)(µi(✓
0)� µi(✓

⇤))2.

It then follows that

E[⌧�]  E[⌧✓⇤] =
1X

t=0

P(⌧✓⇤ > t)
(a)
 1 + (1 + c)M +

X

t:t>(1+c)M

P(⌧✓⇤ > t)

(b)
 1 + (1 + c)

✓
b log J

D0
1

+
C

0 + log(J/�)

D0
0

◆
+
X

✓0 6=✓⇤

X

t:t>

0

@
↵(J)

D0
1

+
4 log(J/�)

D0
0

1

A(1+c)

C1 exp(�C2t)

 1 + (1 + c)

✓
b log J

D0
1

+
C

0 + log(J/�)

D0
0

◆
+
X

✓0 6=✓⇤

C1

exp

✓
�C2

✓
↵(J)

D0
1

+
4 log(J/�)

D0
0

◆◆

1� exp (�C2)

(c)
 1 + 2

✓
b log J

D0
1

+
C

0 + log(J/�)

D0
0

◆

| {z }
Term A

+

✓
165 +

2⌘2

⌘20

◆2

J

�
1�
⌘
2
0(b+ 4)

2⌘3
�

| {z }
Term B

⇥
✓
�

D
0
0

⌘2
◆

| {z }
Term C

(35)

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

where, (a) follows from definition of M in (34), (b) follows from Lemma 11 where C1 := 110 + 55max

⇢
1,

⌘
2

2D2
1

�
,

C2 :=
2D2

1 min{(c2 � 1)2, c}
⌘2

, and (c) follows the same steps in Theorem 1 by setting c = 1
2 in C1 and C2.

Again, note that in (35) the Term C  1 as � 2 (0, 1). So for a constant b > 1 such that if b satisfies the following
condition

b = ⌘ log

✓
165 +

⌘
2

⌘20

◆
> log

✓
1 +

⌘
2

⌘20

◆
(36)

we have that Term B  J

1�
⌘
2
0(b+ 4)

2⌘3
+

b

⌘ log J . Hence, Plugging this in (35) we get that the expected sample
complexity is of the order of

E[⌧�]  O

✓
⌘ log(C) log J

D0
1

+
log(J/�)

D0
0

+ JC
1/⌘
�
D0

0/⌘
2

◆
.

where, C = 165 +
⌘
2

⌘20

. The claim of the theorem follows.

A.4 Proof of Proposition 2 (Batched Setting)

Proposition 2. (Restatement) Let ⌧�, D0, D1 be defined as in Theorem 1 and B be the batch size. Then the
sample complexity of �-PAC Batch-CS is

E[⌧�]O

✓
B+

⌘ log(C) log J

D1
+
log(J/�)

D0
+BJC

1
⌘ �

D0
⌘2

◆
.

Proof. We follow the same proof technique as in Theorem 1. We define the last phase after which the algorithm
stops as m� defined as follows:

m� = min{m : LmB(✓
0)� LmB(b✓(t)) > �(J, �), 8✓0 6= b✓(t)}.

We further define the phase m✓⇤ as follows:

m✓⇤ = min{m : LmB(✓
0)� LmB(b✓(t)) > �(J, �), 8✓0 6= ✓⇤}.

Then we can show that the expected last phase m� is bounded as follows:

E[m�]  E[m✓⇤] =
1X

m=1

P(m✓⇤ > m)  1 + (1 + c)M1| {z }
Part A

+
X

m0:m0>(1+c)M1

P(m✓⇤ > m
0)| {z }

Part B

(37)

where, in Part A we define the critical number of phases

M1 =
↵(J)

BD1
+
�(J, �)

BD0
.

and D0, D1 as defined in Theorem 1. Note that this definition of M1 is di↵erent that the critical number of
samples defined in Theorem 1. Now we control the Part B. As like Lemma 5 we define the following bad events

⇠✓0✓⇤(m) = {LmB(✓
0)� LmB(✓

⇤) < �(J, �)}
⇠̃✓0✓⇤(m) = {LmB(✓

0)� LmB(✓
⇤) < ↵(J)}

We further define the last good phase m̃✓0✓⇤ as follows:

m̃✓0✓⇤ = min{m : Lm0B(✓
0)� Lm0B(✓

⇤) > ↵(J), 8m0
> m}

and m̃✓⇤ = max
✓0 6=✓⇤

{m̃✓0✓⇤}

Cherno↵ Sampling for Active Testing and Extension to Active Regression

denote the last phase after which in all subsequent phases we have ✓⇤ is b✓(t). We further define m̃✓⇤ as

m̃✓⇤ =
↵(J)

BD1
+

mc

2
.

Note that this definition of m̃✓⇤ is di↵erent that ⌧̃✓⇤ in Lemma 5. Using Lemma 6 we can further show the event
⇠✓0✓⇤ is bounded as follows:

P(⇠✓0✓⇤(m)) = P

0

B@LmB(✓
0)� LmB(✓

⇤)| {z }
:=�mB(✓0,✓⇤)

< �(J, �)

1

CA

 P
✓
�mB(✓

0
,✓⇤)� E[�mB(✓

0
,✓⇤)] < D0

✓
�(J, �)

D0
�B(m� m̃✓⇤)

◆◆

(a)
 exp (4B)

X

✓0 6=✓⇤

exp

�
2D2

1Bm
�
c
2 � 1

�2

⌘2

!
(38)

where, (a) follows usinf the same steps as in Lemma 6. Similarly we can show that,

P
⇣
⇠̃✓0✓⇤(m)

⌘
=
X

✓ 6=✓0

X

m0:m0>
↵(J)

BD1
+
mc

2

P (�m0B � E[�m0B] < ↵(J)� E[�m0B])

(a)

X

✓ 6=✓0

X

m0:m0>
↵(J)

BD1
+
mc

2

P (�m0B � E[�m0B] < ↵(J)�m
0
BD1)

(b)
 exp (4)

X

✓0 6=✓⇤

exp

✓
�2D2

1mcB

2

◆

1� exp

✓
�2D2

1cB

2

◆ (39)

where, (a) follows as E[�m0B] � m
0
BD1 for all m0

>
↵(J)
BD1

+ mc
2 , and (b) follows using the same steps as in

Lemma 7.

Finally using eq. (38) and eq. (39) we can show that the Part B is bounded as follows:

P(m✓⇤ > m)  P

0

@

8
<

:
[

✓0 6=✓⇤

⇠✓0✓⇤(m)

9
=

;
\⇢

m̃✓⇤ <
↵

BD1
+

mc

2

�1

A+
X

✓ 6=✓0

X

m0:m0>
↵(J)

BD1
+
mc

2

P
⇣
⇠̃✓0✓⇤(m0)

⌘

(a)


X

✓0 6=✓⇤


110 + 55max{1, ⌘

2

2D2
1B

}
�

| {z }
:=C1

exp

0

BB@� 2D2
1Bmin{(c/2 � 1)2, c}

⌘2| {z }
:=C2

m

1

CCA  JC1 exp (�C2m)

where, (a) follows from the same steps as in Lemma 5, and using eq. (38) and eq. (39). Plugging this back in
eq. (37) we get that

E[m�]  1 + (1 + c)

✓
↵(J)

BD1
+
�(J, �)

BD0

◆
+ J

X

m:m>
↵(J)

BD1
+
�(J, �)

BD0

C1 exp (�C2m)

(b)
 1 + 2

0

BB@
⌘ log

�
165 + ⌘2

/B⌘2
0

�
log J

BD1
+

log
�
1 + ⌘2

/⌘2
0B
�
+ log

✓
J

�

◆

BD0

1

CCA+ J

1+
log
�
165 + ⌘2

/B⌘2
0

�

log J �
D0/⌘

2

(b)
 O

✓
1 +

⌘ log(C) log J

BD1
+

log(J/�)

BD0
+ JC

1/�
�
D0/⌘

2

◆

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

where, (a) follows using the same steps as in Step 6 of Theorem 1, and in (b) we substitute C :=
�
165 + ⌘2

/⌘2
0

�
>�

165 + ⌘2
/B⌘2

0

�
. Finally, the expected total number of samples is given by

E[⌧�]  BE[m�] = O

✓
B +

⌘ log(C) log J

D1
+

log(J/�)

D0
+BJC

1/�
�
D0/⌘

2

◆
.

The claim of the proposition follows.

A.5 Sample Complexity Proof of CSE

Proposition 3. (Restatement) Let ⌧�, D0, C be defined as in Theorem 1, De be defined as above, and
✏t := 1/

p
t. Then the sample complexity bound of �-PAC CSE with ✏t exploration is given by

E[⌧�]O

✓
⌘ log(C) log J

De

+
log(J/�)

D0
+ JC

1/⌘
�
D0/⌘

2

◆
.

Proof. Recall that

D1 := min
{p✓ :✓2⇥}

min
✓0 6=✓⇤

nX

i=1

p✓(i)(µi(✓
0)� µi(✓

⇤))2.

Define De := min✓0 6=✓⇤
Pn

i=1
1
n (µi(✓0)�µi(✓⇤))2 as the objective value of uniform sampling optimization. Finally

define the quantity at round s as

D
✏s
1 := (1� ✏s)D1 + ✏sDe (40)

Let �t(✓0) := Lt(✓0)� Lt(✓⇤). Note that following Assumption 1 we can show that

�s(✓
0)�D

✏s
1

(a)
 4⌘, �s(✓

0)�D0  4⌘

where, (a) follows as D1  ⌘ and De  ⌘ which implies (1� ✏)D1 + ✏De  ⌘ as ✏ 2 (0, 1). Now define the quantity

↵(J) :=
C

0 log J

De

,

�(J, �) :=
C

0 + log(J/�)

D0

where, the constant C 0 := log
�
1 + ⌘2

/⌘2
0

�
. Now define the failure events

⇠✓0✓⇤(t) := {Lt(✓
0)� Lt(✓

⇤) < �(J, �)},
⇠̃✓0✓⇤(t) := {Lt(✓

0)� Lt(✓
⇤) < 2↵(J)}

where, ↵(J) :=
C

0 log J

De
, and �(J, �) =

C
0 + log(J/�)

D0

. Then we define the time ⌧✓⇤ .⌧̃✓0✓⇤ and ⌧̃✓⇤ as follows:

⌧✓⇤ := min{t : Lt(✓
0)� Lt(✓

⇤) > �(J, �), 8✓0 6= ✓⇤}
⌧̃✓0✓⇤ := min{t : Lt0(✓

0)� Lt0(✓
⇤) > 2↵(J), 8t0 > t}

⌧̃✓⇤ := max
✓0 6=✓⇤

{⌧̃✓0✓⇤}.

Then we have that Assumption 2 is no longer required which can be shown as follows

EIt,Y t [�t(✓
0)] = EIt,Y t [Lt(✓

0)� Lt(✓
⇤)] = EIt,Y t

"
tX

s=1

(Ys � µIs(✓
⇤))2 �

tX

s=1

(Ys � µIs(✓))
2

#

=
tX

s=1

EIsEYs|Is

h
(µIs(✓

⇤)� µIs(✓))
2 |Is

i

=
tX

s=1

nX

i=1

P(Is = i) (µi(✓
⇤)� µi(✓))

2

Cherno↵ Sampling for Active Testing and Extension to Active Regression

In the case when D1 � 0, we can show that

EIt,Y t [�t(✓
0)]

(a)
�

tX

s=1

((1� ✏s)D1 + ✏sDe)

=
⌧̃✓⇤X

s=1

(1� ✏s)D1 +
⌧̃✓⇤X

s=1

✏sDe +
tX

s=⌧̃✓⇤+1

(1� ✏s)D0 +
tX

s=⌧̃✓⇤+1

✏sDe

(b)
�

⌧̃✓⇤X

s=1

✏sDe +
tX

s=⌧̃✓⇤+1

De �
tX

s=⌧̃✓⇤+1

✏sD0 +
tX

s=⌧̃✓⇤+1

✏sDe

(c)
� 2

p
⌧̃✓⇤De � 2De + (t� ⌧̃✓⇤ � 1)De � kD0

= (t� 1)De + 2
p
⌧̃✓⇤De � ⌧̃✓⇤De � (kD0 + 2De)

(d)
� (t� 1)De �

✓
↵(J)

De
+

tc

2

◆
De

= (t� 1)De � ↵(J)� tc

2
De

=

✓
t� 1� tc

2

◆
De � ↵(J) = tDe

✓
1� 1

t
� c

2

◆
� ↵(J)

(e)
� tDe

✓
1

2
� c

2

◆

| {z }
c1

�↵(J)

= c1tDe � ↵(J)

where, (a) follows due to the forced exploration definition, (b) follows by dropping D1, (c) follows ✏s >
1p
s
and

R t
1

1p
s
ds = 2

p
s � 2 and D0 � De, and (d) follows by definition of ⌧̃✓⇤ = ↵(J)

De
+ tc

2 and trivially assuming that

2
p
⌧̃✓⇤De � (kD0 + 2De) > 0 for large enough ⌧̃✓⇤ , and (e) follows as t � 2. Next we can show that for t � ⌧̃✓⇤

E[�t(✓
0)]

(a)
=

tX

s=⌧̃✓⇤

(1� ✏s)D0 +
tX

s=⌧̃✓⇤

✏sDe

(b)
�

tX

s=⌧̃✓⇤

(1� ✏s)D0 +
tX

s=⌧̃✓⇤

✏s
D0

n

= (t� ⌧̃✓⇤)D0 �
tX

s=⌧̃✓⇤

✏sD0 +
tX

s=⌧̃✓⇤

✏s
D0

n

= (t� ⌧̃✓⇤)D0 �D0
n� 1

n

tX

s=⌧̃✓⇤

✏s

� (t� ⌧̃✓⇤)D0 � kD0

= (t� ⌧̃✓⇤ � k)D0

where, (a) follows from the definition of exploration, and (b) follows from as D0  nDe, It follows that

P(⇠✓0,✓⇤(t)) = P(�t(✓
0) < �(J, �))

= P(�t(✓
0)� E[�t(✓

0)] < �(J, �)� E[�t(✓
0)])

(a)
 P (�t(✓

0)� E[�t(✓
0)] < �(J, �)� (t� ⌧̃✓⇤ � k)D0)

(b)
= P

✓
�t(✓

0)� E[�t(✓
0)] < D0

✓
�(J, �)

D0
� t+ ⌧̃✓⇤ + k)

◆◆

Once we define the failure events we can follow the same proof technique as Theorem 2 and show that

P(⇠̃✓0✓⇤(t))
(a)
 P(�t(✓

0)� E[�t(✓
0)] < 2↵(J)� c1tDe)

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

where, in (a) the choice of c1tD1 follows as E[�t(✓0)] � c1tDe as De > 0. It follows from Lemma 5 since D0 � De

and De > 0 that the probability of the failure event is bounded as follows:

P(⌧✓⇤ > t)  P(
[

✓0 6=✓⇤

⇠✓0✓⇤(t))

= P

0

@

8
<

:
[

✓0 6=✓⇤

⇠✓0✓⇤(t)

9
=

;
\

{⌧̃✓⇤ <
↵(J)

De

+
tc

2
}

1

A+ P

0

@
[

✓0 6=✓⇤

{⇠✓0✓⇤(t)}
\

{⌧̃✓⇤ � ↵(J)

De

+
tc

2
}

1

A


X

✓0 6=✓⇤

P
✓
{⇠✓0✓⇤(t)}

\
{⌧̃✓⇤ <

↵(J)

De

+
tc

2
}
◆
+
X

✓0 6=✓⇤

X

t0:t0�↵(J)
De

+ tc
2

P
⇣
⇠̃✓0✓⇤(t0)

⌘ (a)
 JC1 exp (�C2t)

where, in (a) we substitute C1 := 110+55max

⇢
1,

⌘
2

2(De)
2

�
, C2 :=

2(De)
2 min{(c/2 � 1)2, c}

⌘2
, c > 0 is a constant,

and J := |⇥|. Now we define the critical number of samples as follows:

M :=

✓
C

0 log J

De

+
C

0 + log(J/�)

D0

◆

where, C 0 = log
�
1 + ⌘2

/⌘2
0

�
. Then we can bound the sample complexity for some constant c > 0 as follows:

E[⌧�]  E[⌧✓⇤] =
1X

t=0

P(⌧✓⇤ > t)  1 + (1 + c)M +
X

t:t>(1+c)M

P(⌧✓⇤ > t)

(a)
 O

✓
⌘ log(C) log J

De

+
log(J/�)

D0

+ J(C)1/⌘�D0/⌘
2

◆

where, in (a) we substitute log(C) = log(165 + ⌘2

⌘2
0
) > C

0 and the rest follows as log(C)/D0 < log(C)/De.

A.6 Minimax Optimality Proof (Theorem 2)

Example 2. We define an environment model Bj consisting of N actions and J hypotheses with true hypothesis
✓⇤ = ✓j (j-th column) as follows:

✓ = ✓1 ✓2 ✓3 . . . ✓J
µ1(✓) = � �� �

J �� 2�
J . . . �� (J�1)�

J
µ2(✓) = ◆21 ◆22 ◆23 . . . ◆2J

...
...

µn(✓) = ◆n1 ◆n2 ◆n3 . . . ◆nJ

where, each ◆ij is distinct and satisfies ◆ij < �/4J . Note that we introduce such ◆ij for di↵erent hypotheses so as
not to violate Assumption 2. ✓1 is the optimal hypothesis in A1, ✓2 is the optimal hypothesis in A2 and so on
such that for each Aj and j 2 [J] we have column j as the optimal hypothesis.

Theorem 2. (Restatement) Any �-PAC policy ⇡ that identifies ✓⇤ in (8) satisfies E[⌧�] � ⌦
�
J
2��2 log(1/�)

�
.

Applying Theorem 1 to the same environment, the sample complexity of CS is O
�
J
2��2 log(J/�)

�
which matches

the lower bound upto log factors.

Proof. The proof follows the standard change of measure argument. We follow the proof technique in Theorem 1
of Huang et al. (2017). We first state a problem setup in Example 2.

Let, ⇤1 be the set of alternate models having a di↵erent optimal hypothesis than ✓⇤ = ✓1 such that all models
having di↵erent optimal hypothesis than ✓1 such as A2, A3, . . . AJ are in ⇤1. Let ⌧� be the stopping time for any
�-PAC policy ⇡. Let Zi(t) denote the number of times the action i has been sampled till round t. Let b✓(t) be the

predicted optimal hypothesis at round ⌧�. We first consider the model A1. Define the event ⇠ = {b✓(t) 6= ✓⇤} as

the error event in model A1. Let the event ⇠0 = {b✓(t) 6= ✓
0⇤} be the corresponding error event in model A2. Note

that ⇠{ ⇢ ⇠
0. Now since ⇡ is �-PAC policy we have PA1,⇡(⇠)  � and PA2,⇡(⇠

{)  �. Hence we can show that,

Cherno↵ Sampling for Active Testing and Extension to Active Regression

2� � PA1,⇡(⇠) + PA2,⇡(⇠
{)

(a)
� 1

2
exp (�KL (PA1,⇡||PA2,⇡))

KL (PA1,⇡||PA2,⇡) � log

✓
1

4�

◆

nX

i=1

EA1,⇡[Zi(⌧�)] ·
⇣
µi(✓

⇤) � µi(✓
0⇤)
⌘2 (b)

� log

✓
1

4�

◆

✓
�� �+

�

J

◆2

EA1,⇡[Z1(⌧�)] +
nX

i=2

(◆i1 � ◆i2)
2EA1,⇡[Zi(⌧�)]

(c)
� log

✓
1

4�

◆

✓
1

J

◆2

�2EA1,⇡[Z1(⌧�)] +
nX

i=2

(◆i1 � ◆i2)
2EA1,⇡[Zi(⌧�)] � log

✓
1

4�

◆

✓
1

J

◆2

�2EA1,⇡[Z1(⌧�)] +
nX

i=2

�2

4J2
EA1,⇡[Zi(⌧�)]

(d)
� log

✓
1

4�

◆
(41)

where, (a) follows from Lemma 2, (b) follows from Lemma 1, (c) follows from the construction of the bandit

environments, and (d) follows as (◆ij � ◆ij0)2  �2

4J2 for any i-th action and j-th hypothesis pair.

Now, we consider the alternate model A3. Again define the event ⇠ = {b✓(t) 6= ✓⇤} as the error event in model A1

and the event ⇠0 = {b✓(t) 6= ✓
00⇤} be the corresponding error event in model A3. Note that ⇠{ ⇢ ⇠

0. Now since ⇡ is
�-PAC policy we have PB1,⇡(⇠)  � and PA3,⇡(⇠

{)  �. Following the same way as before we can show that,

✓
2

J

◆2

�2EA1,⇡[Z1(⌧�)] +
nX

i=2

�2

4J2
EA1,⇡[Zi(⌧�)]

(d)
� log

✓
1

4�

◆
. (42)

Similarly we get the equations for all the other (J � 2) alternate models in ⇤1. Now consider an optimization
problem

min
xi:i2[n]

X
xi

s.t.

✓
1

J

◆2

�2
x1 +

�2

4J2

nX

i=2

xi � log(1/4�)

✓
2

J

◆2

�2
x1 +

�2

4J2

nX

i=2

xi � log(1/4�)

...
✓
J � 1

J

◆2

�2
x1 +

�2

4J2

nX

i=2

xi � log(1/4�)

xi � 0, 8i 2 [n]

where the optimization variables are xi. It can be seen that the optimum objective value is J
2��2 log(1/4�).

Interpreting xi = EA1,⇡[Zi(⌧�)] for all i, we get that EA1,⇡[⌧�] =
P

i xi which gives us the required lower bound.
Let p✓⇤ be the sampling p.m.f for the environment A1 for verifying ✓⇤. We also know that the Cherno↵ verification

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

in (4) has a nice linear programming formulation as stated in (5). Using that for A1 we can show that,

max z

s.t. p✓⇤(1)�2

✓
1

J

◆2

+
nX

i=2

p✓⇤(i)(◆i✓⇤ � ◆i✓0)2 � z

p✓⇤(1)�2

✓
2

J

◆2

+
nX

i=2

p✓⇤(i)(◆i✓⇤ � ◆i✓00)2 � z

...

p✓⇤(1)�2

✓
J � 1

J

◆2

+
nX

i=2

p✓⇤(i)(◆i✓⇤ � ◆i✓000)2 � z

nX

i=1

p✓⇤(i) = 1.

We can relax this further by noting that (◆i✓⇤ � ◆i✓0)2  �2

4J2 for all i 2 [n] and ✓⇤
,✓0 2 ⇥. Hence,

max z s.t. p✓⇤(1)�2

✓
1

J

◆2

+
nX

i=2

p✓⇤(i)
�2

4J2
� z

p✓⇤(1)�2

✓
2

J

◆2

+
nX

i=2

p✓⇤(i)
�2

4J2
� z

...

p✓⇤(1)�2

✓
J � 1

J

◆2

+
nX

i=2

p✓⇤(i)
�2

4J2
� z

nX

i=1

p✓⇤(i) = 1.

Solving this above optimization gives that p✓⇤(1) = 1, and p✓⇤(2) = p✓⇤(3) = . . . = p✓⇤(n) = 0. Similarly, for
verifying any hypothesis ✓ 2 ⇥ we can show that the verification proportion is given by p✓ = (1, 0, 0, . . . , 0| {z }

(J-1) zeros

). This

also shows that for Example 2,

D0 = min
✓0 6=✓⇤

nX

i=1

p✓⇤(i)(µi(✓
0)� µi(✓

⇤))2 = p✓⇤(1)�2

✓
1

J

◆2

+
nX

i=2

p✓⇤(i)(◆i✓⇤ � ◆i✓0)2 =
�2

J2

D1 = min
{p✓ :✓2⇥}

min
✓0 6=✓⇤

nX

i=1

p✓(i)(µi(✓
0)� µi(✓

⇤))2
(a)
� p✓(1)�

2

✓
1

J

◆2

+
nX

i=2

p✓(i)(◆i✓ � ◆i✓0)2 =
�2

J2

where, (a) follows as the verification of any hypothesis ✓ is a one hot vector p✓ = (1, 0, 0, . . . , 0| {z }
(J-1) zeros

). Note that

⌘/4 = �2. Plugging this in Theorem 1 gives us that the upper bound of CS as

E[⌧�]  O

✓
J
2�2 log(�4

/⌘
4
0)� log J

�2
+

J
2 log(J/�)

�2
+ J log(�4

/⌘
4
0)

1/�2

�
�2/(J2�4)

◆

 O

✓
J
2 log(�4

/⌘
4
0)� log J +

J
2 log(J/�)

�2

◆
 O

✓
J
2 log(J/�)

�2

◆
.

The claim of the theorem follows.

A.7 Proof of Theorem 3 (Continuous hypotheses)

Theorem 3. (Restatement) Assume that µi(✓) for all i 2 [n] is a di↵erentiable function, and the set {rµi(b✓(t)) :
i 2 [n]} of gradients evaluated at b✓(t) span Rd. Consider a p.m.f. pb✓(t),r from (9) for verifying b✓(t) against all

Cherno↵ Sampling for Active Testing and Extension to Active Regression

alternatives in B{
r (b✓(t)). The limiting value of pb✓(t),r as r ! 0 is

pb✓(t) := argmax
p
�min

nX

i=1

p(i)rµi(b✓(t))rµi(b✓(t))T
!
.

Proof. For brevity we drop the b✓(t) argument from the notation for the closed ball Br and its complement B{
r

centered at b✓(t). Denoting gi(✓) := (µi(✓)� µi(b✓(t)))2 for any generic ✓, we can rewrite the optimization using a
probability density function (p.d.f.) q over parameters in ⇥, as explained subsequently.

pb✓(t),r = argmax
p

inf
✓2B{

r

nX

i=1

p(i)gi(✓)

= argmax
p

inf
q:q(✓)=08✓2Br

Z

⇥
q(✓)

nX

i=1

p(i)gi(✓)d✓. (43)

The above equality is true because if in the LHS, the inner infimum was attained at a ✓ 2 ⇥, then the same value
can be attained in the RHS by a degenerate p.m.f. q that puts all its mass on that ✓. Conversely, suppose the
inner infimum in the RHS was attained at a p.d.f. q⇤. Since the objective function is a linear in q, the objective
value is the same for a degenerate pdf that puts all its mass on one of the support points of q⇤, and this value
can also be attained by the LHS infimum.

Let i = sup✓2Br
gi(✓), = maxi i, then  ! 0 as r ! 0. Since gi(b✓(t)) = 0 for all i we have that  > 0.

Consider a family Qr of pdfs supported on the boundary of Br, i.e.,

Qr :=

⇢
q :

Z

⇥
q(✓)d✓ = 1, q(✓0) = 0 if k✓0 � b✓(t)k 6= ✏

�
.

For any pmf p, the suboptimality gap in (43) by restricting the infimum to be over the set Qr is non-negative,
and is upper bounded by

inf
q2Qr

nX

i=1

p(i)

Z

⇥
q(✓)gi(✓)d✓ 

nX

i=1

p(i)

Z

✓:k✓�b✓(t)k=r
q(✓)d✓  , (44)

where the first inequality is true for any q(✓) 2 Qr and the second inequality is true because  is an upper bound
to the integrand at any point on the surface of Br. For any r > 0, we have that

0  inf
q:q(✓)=08✓2Br

Z

⇥
q(✓)

nX

i=1

p(i)gi(✓)d✓  inf
q2Qr

Z

⇥
q(✓)

nX

i=1

p(i)gi(✓)d✓  ,

where the first inequality is due to gi(✓) � 0, the second inequality is because the domain of inf is reduced, and
the third inequality is by (44). As r ! 0, the quantity ! 0 and the suboptimality gap also tends to zero. Hence
for any pmf p,

lim
r!0

inf
q:q(✓)=08✓2Br

Z

⇥
q(✓)

nX

i=1

p(i)gi(✓)d✓ = lim
r!0

inf
q2Qr

Z

⇥
q(✓)

nX

i=1

p(i)gi(✓)d✓.

Since the above is true for any p, it also holds for the maximizer of the infimum at each value of r in the convergent
series to 0. Hence, we have that

lim
r!0

pb✓(t),r = lim
r!0

argmax
p

inf
q:q(✓)=08✓2Br

Z

⇥
q(✓)

nX

i=1

p(i)gi(✓)d✓

= lim
r!0

argmax
p

inf
q2Qr

Z

⇥
q(✓)

nX

i=1

p(i)gi(✓)d✓.

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

Consider the multivariable Taylor series of gi around b✓(t), for a ✓ 2 Br.

gi(✓) = gi(b✓(t)) + (✓ � b✓(t))Trgi(b✓(t))

+ 0.5(✓ � b✓(t))Tr2
gi(b✓(t))(✓ � b✓(t)) + o(k✓ � b✓(t)k3).

For indices j, k 2 [d] we can evaluate

rgi(✓) =
h
@gi
@✓j

(✓)
i

j
=
h
2(µi(✓)� µi(b✓(t)))@µi

@✓j
(✓)
i

j
, and

r2
gi(✓) =

h
@2gi

@✓j@✓k
(✓)
i

j,k

=
h
2(µi(✓)� µi(b✓(t))) @2µi

@✓j@✓k
(✓) + 2@µi

@✓j
(✓) @µi

@✓k
(✓)
i

j,k

giving that rgi(b✓(t)) = 0 and r2
gi(b✓(t)) = 2rµi(b✓(t))rµi(b✓(t))T . Then pb✓(t),r is the solution to the following:

max
p

inf
q2Qr

Z

⇥
q(✓)

nX

i=1

p(i)gi(✓)d✓

= max
p

inf
q2Qr

Z

✓:k✓�b✓(t)k=r
q(✓)

nX

i=1

p(i)
⇣
(✓ � b✓(t))Trµi(b✓(t))rµi(b✓(t))T (✓ � b✓(t)) + o(k✓ � b✓(t)k3)

⌘
d✓

= max
p

inf
q2Qr

Z

✓:k✓�b✓(t)k=r

(✓ � b✓(t))T
Pn

i=1 p(i)rµi(b✓(t))rµi(b✓(t))T (✓ � b✓(t))
(✓ � b✓(t))T (✓ � b✓(t))

q(✓)k✓ � b✓(t)k2d✓ + o(r3)

= max
p

min eigenvalue

nX

i=1

p(i)rµi(b✓(t))rµi(b✓(t))T
!
r
2 + o(r3).

The last equality uses the variational characterization of the minimum eigenvalue of a matrix and the fact that
the inf would put all its mass on the ✓ aligned with the corresponding eigenvector to attain the minimum value.
In the limit r ! 0, the second term is insignificant compared to the first and we get the required result.

A.7.1 How to solve the optimization

The optimization in Theorem 3 can be solved using convex optimization software. This is because the objective
function, i.e., the minimum eigenvalue function is a concave function of the matrix argument, and the domain
of the optimization {p :

Pn
i=1 p(i) = 1, p(i) � 08i 2 [n]} is a convex set. Hence we can maximize the objective

over the domain. The set of gradients {rµi(b✓(t)) : i 2 [n]} span Rd. Hence the optimal objective value is
positive. Note that the verification proportions are the solution to a convex optimization problem. So we can
terminate it early to get an approximate solution. Ignoring accuracy factors, a solution can be obtained in
O((n3 + n

2
d
2 + nd

3)
p
n+ d) operations (Nesterov and Nemirovskii, 1994).

A.8 CS Convergence Proof for Smooth Hypotheses Space

A.8.1 Theoretical Comparisons for Active Regression

From the result of Chaudhuri et al. (2015) we can show that the ActiveS algorithm enjoys a convergence guarantee
as follows:

E
h
PU

⇣
b✓(t)

⌘
� PU (✓⇤)

i
 O

�
2
U

p
log(dt)

t
+

R

t2

!
(45)

Cherno↵ Sampling for Active Testing and Extension to Active Regression

where, PU is the loss under uniform measure, R is the maximum loss under any measure for any ✓ 2 ⇥, and �2
U

is defined as

�
2
U

(a)
=

1

t2
Trace

"
tX

s=1

tX

s0=1

E`s⇠D [r`s (✓⇤)]E`s0⇠D

h
r`s0 (✓⇤)>

i!
I� (✓

⇤)�1
IU (✓⇤) I� (✓

⇤)�1

#

=
1

t2
Trace

"
tX

s=1

tX

s0=1

E`s⇠D [r`s (✓⇤)]E`s0⇠D

h
r`s0 (✓⇤)>

i!
I� (✓

⇤)�1
IU (✓⇤) I� (✓

⇤)�1

#

(b)
=

1

t2
Trace

"
tX

s=1

tX

s0=1

I� (✓
⇤)

!
I� (✓

⇤)�1
IU (✓⇤) I� (✓

⇤)�1

#

= Trace
h
IU (✓⇤) I� (✓

⇤)�1
i

(46)

where, in (a) the loss `s and `s0 are i.i.d drawn from the same distribution D, and I�, IU are the Fisher information
matrix under the sampling distribution � and U , and (b) follows from Lemma 5 of Chaudhuri et al. (2015). Note
that ActiveS is a two-stage process that samples according to the uniform distribution U to build an estimate of
✓⇤ and then solves an SDP to build the sampling proportion � that minimizes the quantity �2

U and follows that
sampling proportion � for the second stage. It follows that

�
2
U = Trace

h
IU (✓⇤) I� (✓

⇤)�1
i

 �max(IU (✓⇤))�max(I�
�
✓⇤)�1

�
d  �1

�min,ActiveS
dC3⌘.

where �min,ActiveS = �min(I� (✓⇤)). We also have that

IU (✓
⇤) = EIs⇠Ur2

✓=✓⇤`s(✓) = EIs⇠Ur2
✓=✓⇤(Ys � µIs(✓))

2

= EIs⇠U2 (Ys � µi(✓
⇤))r2

µIs(✓
⇤)� 2rµIs(✓

⇤)rµIs(✓
⇤)T

= 2
nX

i=1

punif (i)
⇥
(Ys � µi(✓

⇤))r2
µIs(✓

⇤)�rµIs(✓
⇤)rµIs(✓

⇤)T
⇤

This leads to the following bound on the maximum eigenvalue of the matrix IU (✓⇤)

�max[IU (✓
⇤)]  �max[

nX

i=1

punif (i) (Ys � µi(✓
⇤))r2

µIs(✓
⇤)]  �1C3⌘.

Plugging this in the statement of the result in eq. (45) we get that

E
h
PU

⇣
b✓(t)

⌘
� PU (✓⇤)

i
 O

d
p

log(dt)

t
+

R

t2

!

where we are only concerned with the scaling with the dimension d. Comparing this to our result in Theorem 4
we have the following convergence rate

E
h
Pt(b✓t)� Pt (✓

⇤)
i
 (1 + ⇢t)

�
2
t

t
+

R

t2
(47)

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

where Pt is a worst case measure over the data points. Next, we can show that,

�
2
t := E

���r bPt (✓
⇤)
���
2

(r2Pt(✓⇤))�1

�
= E

h
r bPt (✓

⇤)T r2
Pt (✓

⇤)�1 r bPt (✓
⇤)
i

(a)
 E

h
�max

⇣
r2

Pt (✓
⇤)�1

⌘
kr bPt (✓

⇤) k2
i

(b)
 E

h
�max

⇣
r2

Pt (✓
⇤)�1

⌘
dC3⌘

i

= E
h�
�min

�
r2

Pt (✓
⇤)
���1

dC3⌘

i

= E

2

4

�min

2

t

tX

s=1

nX

i=1

pb✓s
(i)rµi(✓

⇤)rµi(✓
⇤)T
!!�1

dC3⌘

3

5

 2dC3⌘

�min,CS

where, (a) follows from the min-max theorem (variational characterization of the maximum eigenvalue), in (b) the
quantity kr bPt (✓⇤) k2  d

2
C3⌘ almost surely by assumption and C3 is a constant, and (c) follows where �min,CS

is a lower bound to E
⇣
�min

⇣
1
t

Pt
s=1

Pn
i=1 pb✓s

(i)rµi(✓⇤)rµi(✓⇤)T
⌘⌘�1

�
. Plugging this in our result in eq. (47)

we get

E
h
Pt(b✓t)� Pt (✓

⇤)
i
 O

d
p
log(dt)

t
+

R

t2

!
,

where again we are only concerned with the scaling with the dimension d. The convergence result is summarized
below in this table:

Sample Complexity Bound Comments

E
h
PU

⇣
b✓(t)

⌘
� PU (✓⇤)

i
 O

✓
d

p
log(dt)

t + R
t2

◆
Loss of ActiveS (Chaudhuri et al.,
2015). The PU is loss under uni-
form measure over data points in
pool.

E
h
Pt(b✓t)� Pt (✓⇤)

i
 O

✓
d

p
log(dt)

t + R
t2

◆
Loss for CS (Ours). The Pt is
loss under a worst-case measure
over data points.

Table 2: Active Regression comparison.

The two upper bounds have the same scaling, even though Pt is a di↵erent loss measure than PU . The proof has
steps similar to that of Chaudhuri et al. (2015), with some additional arguments to handle the fact that our loss
measure varies with time.

A.8.2 Discussion on Definitions and Assumptions for Continuous Hypotheses

Definition 2. We define the following star-norm quantity at round t as

kAk⇤ =
���
�
r2

Pt (✓
⇤)
��1/2 ·A ·

�
r2

Pt (✓
⇤)
��1/2

��� .

Now we state the two following assumptions required by the Theorem 4. Also note that we define the squared
loss function `s(✓) = (µIs(✓)� Ys)2, the cumulative loss function Ls(✓) =

Ps
s0=1 `s0(✓

⇤) =
Ps

s0=1(µIs0 (✓)� Ys0)2,
and `1(✓), `2(✓), . . . , `t(✓) for any ✓ 2 ⇥ are not independent. In contrast Chaudhuri et al. (2015) assumes that
the loss functions are independent for any time s 2 [t]. Next we state the assumptions used for the proof of
Theorem 4.

Cherno↵ Sampling for Active Testing and Extension to Active Regression

Assumption 3 in Section 3 is a mild assumption on the bounded nature of the eigenvalues of the Hessian matrix
r2

✓=✓0µIs (✓) evaluated at any ✓0 2 ⇥. Then following assumption states a few regularity assumptions required
for Theorem 4. A similar set of assumptions has also been used by Chaudhuri et al. (2015); Bu et al. (2019).

Assumption 4. (Assumptions for Theorem 4): We assume the following assumptions hold with probability
1:

1. (Convexity of `s): The loss function `s is convex for all time s 2 [t].

2. (Smoothness of `s): The `s is smooth such that the first, second, and third derivatives exist at all interior
points in ⇥.

3. (Regularity Conditions):

(a) ⇥ is compact and `s(✓) is bounded for all ✓ 2 ⇥ and for all s 2 [t].

(b) ✓⇤ is an interior point in ⇥.

(c) r2
`s(✓⇤) is positive definite, for all s 2 [t] .

(d) There exists a neighborhood B of ✓⇤ and a constant C1, such that r2
`s(✓) is C1 -Lipschitz. Hence, we

have that
��r2

`s(✓)�r2
`s (✓0)

��
⇤  C1 k✓ � ✓0kr2Ps(✓⇤), for ✓,✓0 in this neighborhood.

4. (Concentration at ✓⇤
): We further assume that kr`s (✓⇤)k(r2Ps(✓⇤))�1  C2 hold with probability one.

Assumption 4 (c) is di↵erent from that of Chaudhuri et al. (2015), where they assumed that r2E[s](✓⇤) is
positive definite, where s are i.i.d. loss functions from some distribution. In our case the loss functions are not
i.i.d., which is why we make the assumption on the loss at every time s.

A.8.3 Concentration Lemmas for Continuous Hypotheses

Lemma 12. The probability that kr bPt(✓⇤)k(r2P (✓⇤))�1 crosses the threshold

r
c� log(dt)

t
> 0 is bounded by

P

kr bPt(✓

⇤)k(r2Pt(✓⇤))�1 � C2

r
c� log(dt)

t

!
 1

tc�
.

Proof. Define us := r(Ys � µIs(✓
⇤))2. Then we have u1,u2, . . . ,ut as random vectors such that

E

2

4
�����

tX

s=1

us

�����

2

(r2Pt(✓⇤))�1

����u1, . . . ,us�1

3

5 = E
"

tX

s=1

us
> �r2

Pt (✓
⇤)
��1

us | u1, . . . ,us�1

#
 tC

2
2

Also we have that kusk  C2. Finally we have that

E[r✓=✓⇤us] = �2
nX

i=1

pb✓s�1
(µi(✓

⇤)� µi(✓
⇤))r✓=✓⇤µi(✓

⇤) = 0.

Then following Lemma 4 and by setting ✏ = c� log(dt) we can show that

P

k1
t

tX

s=1

usk2
(r2Pt(✓

⇤))�1
� E

"
k1
t

tX

s=1

usk2
(r2Pt(✓

⇤))�1

#
>

1

t

q
8tC2

2 ✏+
4C2

3✏

!

= P

k1
t

tX

s=1

usk2
(r2Pt(✓

⇤))�1
> C

2
1 + C2

r
8✏

t
+

4C2

3✏

!

 P

k

tX

s=1

usk2
(r2Pt(✓

⇤))�1
> C2

r
8✏

t

!
= P

k

tX

s=1

usk2
(r2Pt(✓

⇤))�1
> 4C2

r
c� log(dt)

t

!

 exp(�c� log(dt)) =

✓
1

dt

◆c�

 1

tc�

The claim of the lemma follows.

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

Lemma 13. Let bPt(✓⇤) = 1
t

Pt
s=1 `s(✓

⇤) and r2
Pt(✓⇤) = 1

t

Pt
s=1 r2E[`s(✓⇤)|Fs�1]. Then we can bound the

P

�max(r2 bPt(✓

⇤)�r2
Pt(✓

⇤)) >

r
8⌘2�21c� log(dt)

t

!
 2

(dt)�
,

where c > 0 is a constant.

Proof. Recall that bPt(✓⇤) = 1
t

Pt
s=1 `s(✓

⇤) and r2
Ps(✓⇤) = r2E[`s(✓⇤)|Fs�1]. We define r2

Pt(✓⇤) =
1
t

Pt
s=1 r2E[`s(✓⇤)|Fs�1]. Denote, Vs = 2r✓=✓⇤µIs(✓)r✓=✓⇤µIs(✓)

>�2
Pn

i=1 pb✓s�1
(i)r✓=✓⇤µi(✓)r✓=✓⇤µi(✓)>.

Then we can show that,

P

�max(r2 bPt(✓

⇤)�r2
Pt(✓

⇤)) >

r
8⌘2�21c� log(dt)

t

!

= P

�max

r2

✓=✓⇤
1

t

tX

s=1

`s(✓)�
1

t

tX

s=1

r2
✓=✓⇤E[`s(✓)|Fs�1]

!
>

r
8⌘2�21c� log(dt)

t

!

= P

�max

r2

✓=✓⇤
1

t

tX

s=1

�
`s(✓)�r2

✓=✓⇤E[`s(✓)|Fs�1]
�
!

>

r
8⌘2�21c� log(dt)

t

!

(a)
= P

�max

1

t

tX

s=1

(Ys � µIs(✓
⇤))r2

✓=✓⇤µIs(✓
⇤) +

1

t

tX

s=1

Vs

!
>

r
8⌘2�21c� log(dt)

t

!

 P

�max

1

t

tX

s=1

�2 (Ys � µIs(✓
⇤))r2

✓=✓⇤µIs(✓
⇤)

!
>

1

2

r
8⌘2�21c� log(dt)

t

!

+ P

�max

1

t

tX

s=1

Vs

!
>

1

2

r
8⌘2�21c� log(dt)

t

!

(b)
 P

1

t

tX

s=1

�2 (Ys � µIs(✓
⇤))�max

�
r2

✓=✓⇤µIs(✓
⇤)
�
>

1

2

r
8⌘2�21c� log(dt)

t

!

+ P

1

t

tX

s=1

�max (Vs) >
1

2

r
8⌘2�21c� log(dt)

t

!
(48)

(c)
 2 exp

✓
� t

28⌘2�21c� log(dt)

4t
· 1

2tc⌘2�21

◆
(d)
 2

✓
1

dt

◆�

.

where, (a) follows from substituting the value of r2
✓=✓⇤`s(✓) � r2

✓=✓⇤E[`s(✓)|Fs�1] from Lemma 16, and (b)
follows by triangle inequality, (c) follows by using two concentration inequalities stated below, and (d) follows by
simplifying the equations.

Cherno↵ Sampling for Active Testing and Extension to Active Regression

Denote Qs = �2 (Ys � µIs(✓
⇤))�max

�
r2

✓=✓⇤µIs(✓
⇤)
�
. Also note that �max

�
r2

✓=✓⇤µIs(✓
⇤)
�
 �1.

P(
tX

s=1

�2 (Ys � µIs(✓
⇤))�max

�
r2

✓=✓⇤µIs(✓
⇤)
�
� ✏) = P

�

tX

s=1

Qs � ✏

!

= P
⇣
e
��

Pt
s=1 Qs � e

�✏
⌘ (a)

 e
��✏E

h
e
��

Pt
s=1 Qs

i
= e

��✏E
h
E
h
e
��

Pt
s=1 Qs

��b✓(t� 1)
ii

(b)
= e

��✏E
h
E
h
e
��Qt |b✓(t� 1)

i
E
h
e
��

Pt�1
s=1 Qs

��b✓(t� 1)
ii

 e
��✏E

h
exp

�
2�2�21⌘

2
�
E
h
e
��

Pt�1
s=1 Qs

��b✓(t� 1)
ii

= e
��✏

e
2�2⌘2�2

1E
h
e
��

Pt�1
s=1 Qs

i

...

(c)
 e

��✏
e
2�2t⌘2�2

1

(d)
 exp

✓
� 2✏2

t⌘2�21

◆
.

where (a) follows by Markov’s inequality, (b) follows as Qs is conditionally independent given b✓(s� 1), (c) follows
by unpacking the term for t times and (d) follows by taking � = ✏/4t�21⌘

2. Next we bound the second term of
(48) below.

P(
tX

s=1

�max (Vs) � ✏) = P

�

tX

s=1

�max (Vs) � �✏

!
= P

⇣
e
�
Pt

s=1 �max(Vs) � e
�✏
⌘ (a)

 e
��✏E

h
e
�
Pt

s=1 �max(Vs)
i

= e
��✏E

h
E
h
e
�
Pt

s=1 �max(Vs)
��b✓(t� 1)

ii

(b)
= e

��✏E
h
E
h
e
��max(Vt)|b✓(t� 1)

i
E
h
e
�
Pt�1

s=1 �max(Vs)
��b✓(t� 1)

ii

(c)
 e

��✏E
h
exp

�
2c�2�21⌘

2
�
E
h
e
�
Pt�1

s=1 �max(Vs)
��b✓(t� 1)

ii

= e
��✏

e
2c�2⌘2�2

1E
h
e
�
Pt�1

s=1 �max(Vs)
i

...

(d)
 e

��✏
e
2c�2t⌘2�2

1

(e)
 exp

✓
� 2✏2

tc⌘2�21

◆

where (a) follows by Markov’s inequality, (b) follows as �max(Vs) is conditionally independent given b✓(s � 1).
In the inequality (c) using the always valid upper bound of 2�1, we have that E[�max(Vt)]  2�1. So the term

in inequality (c) will become e
��✏

e
2�2t⌘2�t

1+4t��1 . Hence, we can upper bound the inequality (c) by a constant

c > 0 such that we have E[e��max(Vt) | b✓(t� 1)]  e
2�2�2

1⌘
2

e
2�⇥2�1 = exp(2�2�21⌘

2 + 4��1)  exp(2c�2�21⌘
2). The

inequality (d) follows by unpacking the term for t times and (e) follows by taking � = ✏/4tc�21⌘
2.

A.8.4 Support Lemma for Continuous Hypotheses

Lemma 14. Let the j-th row and k-th column entry in the Hessian matrix r2
✓=✓0(`s(✓)) be denoted as

[r2
✓=✓0(`s(✓))]jk. Then we have that

[r2
✓=✓0(`s(✓))]jk = 2

@µIs(✓)

@✓j

@µIs(✓)

@✓k
+ 2 (µIs(✓)� Ys)

@
2
µIs(✓)

@✓j@✓k
.

Proof. We want to evaluate the Hessian r2
✓=✓0(`s(✓)) at any ✓0 2 ⇥. We denote the j-th row and k-th column

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

entry in the Hessian matrix as [r2
✓=✓0(`s(✓))]jk. Then we can show that

[r2
✓=✓0(`s(✓))]jk :=

@

@✓j


@(µIs(✓)� Ys)2

@✓k

�
=

@

@✓j


2(µIs(✓)� Ys)

@µIs(✓)

@✓k

�

=
@

@✓j


2µIs(✓)

@µIs(✓)

@✓k
� 2Ys

@µIs(✓)

@✓k

�

= 2
@µIs(✓)

@✓j

@µIs(✓)

@✓k
+ 2µIs(✓)

@
2
µIs(✓)

@✓j@✓k
� 2Ys

@
2
µIs(✓)

@✓j@✓k
� 2

@µIs(✓)

@✓j

@Ys

@✓k

= 2
@µIs(✓)

@✓j

@µIs(✓)

@✓k
+ 2 (µIs(✓)� Ys)

@
2
µIs(✓)

@✓j@✓k

The claim of the lemma follows.

Lemma 15. Let the j-th row and k-th column entry in the Hessian matrix r2
✓=✓0(E[`s(✓)|Fs�1]) be denoted as

[r2
✓=✓0(E[`s(✓)|Fs�1])]jk. Then we have that

⇥
r2

✓=✓0E[`s(✓)|Fs�1]
⇤
jk

= 2
nX

i=1

pb✓s�1
(i)

✓
@µi(✓)

@✓j

@µi(✓)

@✓k
+ 2 (µi(✓)� µi(✓

⇤))
@
2
µi(✓)

@✓j@✓k

◆
.

Proof. Now we want to evaluate the Hessian r2
✓=✓0(E[`s(✓)|Fs�1]) at any ✓0 2 ⇥. We denote the j-th row and

k-th column entry in the Hessian matrix as [r2
✓=✓0(E[`s(✓)|Fs�1])]jk. Then we can show that

r2
✓=✓0E[`s(✓)|Fs�1] = r2

✓=✓0
�
µ
2
Is(✓) + E[Y 2

s |Fs�1]� 2E[Ys|Fs�1]µIs(✓)
�

= r2
✓=✓0

nX

i=1

pb✓s�1
(i)

✓
µ
2
i (✓) + µ

2
i (✓

0) +
1

2
� 2µi(✓

⇤)µi(✓)

◆

= r2
✓=✓0

nX

i=1

pb✓s�1
(i)

✓
(µi(✓

⇤)� µi(✓))
2 +

1

2

◆

= r2
✓=✓0

nX

i=1

pb✓s�1
(i)
⇣
(µi(✓

⇤)� µi(✓))
2
⌘

(49)

We now denote the j-th row and k-th column entry of the Hessian Matrix r2
✓=✓0((µi(✓) � µi(✓⇤))2) as⇥

r2
✓=✓0((µi(✓)� µi(✓⇤))2)

⇤
jk
. Then we can show that

⇥
r2

✓=✓⇤((µi(✓)� µi(✓
⇤))2)

⇤
jk

:=
@

@✓j


@(µi(✓)� µi(✓⇤))2

@✓k

�
=

@

@✓j


2(µi(✓)� µi(✓

⇤))
@µi(✓)

@✓k

�

=
@

@✓j


2µi(✓)

@µi(✓)

@✓k
� 2µi(✓

⇤)
@µi(✓)

@✓k

�

= 2
@µi(✓)

@✓j

@µi(✓)

@✓k
+ 2µi(✓)

@
2
µi(✓)

@✓j✓k

� 2µi(✓
⇤)
@
2
µi(✓)

@✓j✓k
� 2

@µi(✓)

@✓j

@µi(✓⇤)

@✓k

= 2
@µi(✓)

@✓j

@µi(✓)

@✓k
+ 2 (µi(✓)� µi(✓

⇤))
@
2
µi(✓)

@✓j@✓k

Plugging this back in eq. (49) we get that

⇥
r2

✓=✓0E[`s(✓)|Fs�1]
⇤
jk

= 2
nX

i=1

pb✓s�1
(i)

✓
@µi(✓)

@✓j

@µi(✓)

@✓k
+ 2 (µi(✓)� µi(✓

⇤))
@
2
µi(✓)

@✓j@✓k

◆
.

Cherno↵ Sampling for Active Testing and Extension to Active Regression

Lemma 16. The sum of the di↵erence of the Hessians
Pt

s=1 r2
✓=✓0`s (✓)� E

⇥
r2

✓=✓0`s (✓) | Fs�1
⇤
is given by

tX

s=1

r2
✓=✓0`s (✓)� E

⇥
r2

✓=✓0`s (✓) | Fs�1
⇤
=

tX

s=1

✓
� 2(Ys � µIs(✓))

@
2
µIs(✓)

@✓j@✓k
+ 2

@µIs(✓)

@✓j

@µIs(✓)

@✓k

� 2
nX

i=1

pb✓s�1
(i)
@µi(✓)

@✓j

@µi(✓)

@✓k

◆
.

Proof. First note that the di↵erence r2
✓=✓0`s (✓)� E

⇥
r2

✓=✓0`s (✓) | Fs�1
⇤
jk

is given by

r2
✓=✓0`s (✓)� E

⇥
r2

✓=✓0`s (✓) | Fs�1
⇤ (a)
=2

@µIs(✓)

@✓j

@µIs(✓)

@✓k
+ 2 (µIs(✓)� Ys)

@
2
µIs(✓)

@✓j@✓k

� 2
nX

i=1

pb✓s�1
(i)

✓
@µi(✓)

@✓j

@µi(✓)

@✓k
� (µi(✓)� µi(✓

⇤))
@
2
µi(✓)

@✓j@✓k

◆

=� 2(Ys � µIs(✓))
@
2
µIs(✓)

@✓j@✓k
+ 2

@µIs(✓)

@✓j

@µIs(✓)

@✓k

� 2
nX

i=1

pb✓s�1
(i)
@µi(✓)

@✓j

@µi(✓)

@✓k
(50)

where, (a) follows from Lemma 14 and Lemma 15. Plugging this equality in Equation (50) below we get

tX

s=1

r2
✓=✓0`s (✓)� E

⇥
r2

✓=✓0`s (✓) | Fs�1
⇤
=

tX

s=1

✓
� 2(Ys � µIs(✓))

@
2
µIs(✓)

@✓j@✓k
+ 2

@µIs(✓)

@✓j

@µIs(✓)

@✓k

� 2
nX

i=1

pb✓s�1
(i)

✓
@µi(✓)

@✓j

@µi(✓)

@✓k
� 2 (µi(✓)� µi(✓

⇤))
@
2
µi(✓)

@✓j@✓k

◆◆
.

The claim of the lemma follows.

Lemma 17. Let b✓t � ✓⇤ =
⇣
r2 bPt(e✓t)

⌘�1
r bPt(✓⇤) where e✓t is between b✓t and ✓⇤. Then we can show that

���b✓t � ✓⇤
���
r2Pt(✓⇤)


����
�
r2

Pt (✓
⇤)
�1/2 ⇣r2 bPt(e✓t)

⌘�1 �
r2

Pt (✓
⇤)
�1/2

����
���r bPt (✓

⇤)
���
(r2Pt(✓⇤))�1

.

Proof. We begin with the definition of
���b✓t � ✓⇤

���
r2Pt(✓⇤)

as follows:

���b✓t � ✓⇤
���
r2Pt(✓⇤)

(a)
=
q
(b✓t � ✓⇤)Tr2Pt (✓⇤) (b✓t � ✓⇤)

(b)
=

s✓⇣
r2 bPt(e✓t)

⌘�1
r bPt (✓⇤)

◆T

r2Pt (✓⇤)

✓⇣
r2 bPt(e✓t)

⌘�1
r bPt (✓⇤)

◆

(c)

����r

2
Pt (✓

⇤)1/2
⇣
r2 bPt(e✓t)

⌘�1
r2

Pt (✓
⇤)1/2

����

r⇣
r bPt (✓⇤)T (r2Pt(✓⇤))�1 r bPt (✓⇤)

⌘

=

����
�
r2

Pt (✓
⇤)
�1/2 ⇣r2 bPt(e✓t)

⌘�1 �
r2

Pt (✓
⇤)
�1/2

����
���r bPt (✓

⇤)
���
(r2Pt(✓⇤))�1

.

where, (a) follows as kxkM =
p
xTMx, (b) follows as kb✓t � ✓⇤kr2Pt(✓⇤) =

⇣
r2 bPt(e✓)

⌘�1
r bPt(✓⇤), and (c) follows

from Cauchy Schwarz inequality.

The claim of the lemma follows.

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

A.8.5 Proof of Main Theorem 4

Theorem 4. (Restatement) Suppose `1(✓), `2(✓), · · · , `t(✓) : Rd ! R are squared loss functions from
a distribution that satisfies Assumption 3 and Assumption 4 in Appendix A.8.2. Further define Pt(✓) =
1
t

Pt
s=1 EIs⇠pb✓s�1

[`s(✓)|Fs�1] where, b✓t = argmin✓2⇥

Pt
s=1 `s(✓). If t is large enough such that � log(dt)

t 

c
0 min

n
1

C1C2
,
diameter(B)

C2

o
then for a constant � � 2 and universal constants C1, C2, c

0, we can show that

(1� ⇢t)
�
2
t

t
� C

2
1

t�/2
 E

h
Pt(b✓t)� Pt (✓

⇤)
i
 (1 + ⇢t)

�
2
t

t
+
max
✓2⇥

(Pt(✓)�Pt (✓⇤))

t�
,

where �2
t := E


1
2

���r bPt (✓⇤)
���
2

(r2Pt(✓⇤))�1

�
, and ⇢t :=

�
C1C2 + 2⌘2�21

�q� log(dt)
t .

Proof. Step 1: We first bound the
���r2 bPt(✓)�r2

Pt (✓⇤)
���
⇤
as follows

���r2 bPt(✓)�r2
Pt (✓

⇤)
���
⇤

(a)

���r2 bPt(✓)�r2 bPt (✓

⇤)
���
⇤
+
���r2 bPt (✓

⇤)�r2
Pt (✓

⇤)
���
⇤

(b)
 C1 k✓ � ✓⇤kr2Pt(✓⇤) +

r
8⌘2�21c� log(dt)

t
(51)

where, (a) follows from triangle inequality, and (b) is due to Assumption 4.3.d and Lemma 13.

Step 2 (Approximation of r2
Pt (✓⇤)): By choosing a su�ciently smaller ball B1 of radius of min {1/ (10C1) ,

diameter (B)}), the first term in (51) can be made small for ✓ 2 B1. Also, for su�ciently large t, the second

term in (51) can be made arbitrarily small (smaller than 1/10), which occurs if
q

� log(dt)
t  c0p

2⌘2�2
1

. Hence for

large t and ✓ 2 B1 we have

1

2
r2 bPt(✓) � r2

Pt (✓
⇤) � 2r2 bPt(✓) (52)

Step 3 (Show b✓t in B1): Fix a e✓ between ✓ and ✓⇤ in B1. Apply Taylor’s series approximation

bPt(✓) = bPt (✓
⇤) +r bPt (✓

⇤)> (✓ � ✓⇤) +
1

2
(✓ � ✓⇤)> r2 bPt(e✓) (✓ � ✓⇤)

We can further reduce this as follows:

bPt(✓)� bPt (✓
⇤)

(a)
= r bPt (✓

⇤)> (✓ � ✓⇤) +
1

2
k✓ � ✓⇤k2r2 bPt(e✓)

(b)
� r bPt (✓

⇤)> (✓ � ✓⇤) +
1

4
k✓ � ✓⇤k2r2Pt(✓⇤)

� �k✓ � ✓⇤kr2Pt(✓⇤)

���r bPt (✓
⇤)
���
(r2Pt(✓⇤))�1

+
1

4

⇣
k✓ � ✓⇤kr2Pt(✓⇤)

⌘> ⇣
k✓ � ✓⇤kr2Pt(✓⇤)

⌘

= k✓ � ✓⇤kr2Pt(✓⇤)

✓
�
���r bPt (✓

⇤)
���
(r2Pt(✓⇤))�1

+
1

4
k✓ � ✓⇤kr2Pt(✓⇤)

◆
(53)

where, (a) follows as k✓ � ✓⇤k2r2 bPt(e✓)
:= (✓ � ✓⇤)> r2 bPt(e✓) (✓ � ✓⇤), and (b) follows as e✓ is in between ✓ and ✓⇤

and then using (52). Note that in (53) if the right hand side is positive for some ✓ 2 B1, then ✓ is not a local

minimum. Also, since
���r bPt (✓⇤)

���! 0, for a su�ciently small value of
���r bPt (✓⇤)

��� , all points on the boundary of

B1 will have values greater than that of ✓⇤
. Hence, we must have a local minimum of bPt(✓) that is strictly inside

B1 (for t large enough). We can ensure this local minimum condition is achieved by choosing an t large enough

so that
q

� log(dt)
t  c

0 min
n

1
C1C2

,
diameter(B)

C2

o
, using Lemma 12 (and our bound on the diameter of B1). By

convexity, we have that this is the global minimum, b✓t, and so b✓t 2 B1 for t large enough. We will assume now
that t is this large from here on.

Cherno↵ Sampling for Active Testing and Extension to Active Regression

Step 4 (Bound
���b✓t � ✓⇤

���
r2Pt(✓⇤)

): For the b✓(t) that minimizes the sum of squared errors, 0 = r bPt(b✓t). Again,

using Taylor’s theorem if b✓t is an interior point, we have:

0 = r bPt(b✓t) = r bPt (✓
⇤) +r2 bPt(e✓t)

⇣
b✓t � ✓⇤

⌘
(54)

for some e✓t between ✓⇤ and b✓t. Now observe that e✓t is in B1 (since, for t large enough, b✓t 2 B1). Thus it follows
from (54) that,

b✓t � ✓⇤ =
⇣
r2 bPt(e✓t)

⌘�1
r bPt (✓

⇤) (55)

where the invertibility is guaranteed by (52) and the positive definiteness of r2
Pt (✓⇤) (by Assumption 4 (3c)).

We finally derive the upper bound to
���b✓t � ✓⇤

���
r2Pt(✓⇤)

as follows

���b✓t � ✓⇤
���
r2Pt(✓⇤)

(a)

����
�
r2

Pt (✓
⇤)
�1/2 ⇣r2 bPt(e✓t)

⌘�1 �
r2

Pt (✓
⇤)
�1/2

����
���r bPt (✓

⇤)
���
(r2Pt(✓⇤))�1

(b)
 cC2

r
� log(dt)

t
(56)

where (a) follows from Lemma 17, and (b) from Lemma 12, (53), and c is some universal constant.

Step 5 (Introducing ez): Fix a ezt between ✓⇤ and b✓t. Apply Taylor’s series

Pt(b✓t)� Pt (✓
⇤) =

1

2

⇣
b✓t � ✓⇤

⌘>
r2

Pt (ezt)
⇣
b✓t � ✓⇤

⌘
(57)

Now note that both e✓t and ezt are between b✓t and ✓⇤
, which implies e✓t ! ✓⇤ and ezt ! ✓⇤ since b✓t ! ✓⇤. By (51)

and (56) and applying the concentration inequalities give us
���r2 bPt(e✓t)�r2

Pt (✓
⇤)
���
⇤
 ⇢t (58)

��r2
Pt (ezt)�r2

Pt (✓
⇤)
��
⇤  C1 kezt � ✓⇤kr2Pt(✓⇤)  ⇢t (59)

where ⇢t = c
�
C1C2 + 2⌘2�21

�q� log(dt)
t .

Step 6 (Define M1,t and M2,t): It follows from the inequality (58) that

r2 bPt(e✓t) � (1 + ⇢t)r2
Pt (✓

⇤) =) r2 bPt(e✓t)�r2
Pt (✓

⇤) � ⇢tr2
Pt (✓

⇤)

=) r2
Pt (✓

⇤)�1/2 (bPt(e✓t)�r2
Pt (✓

⇤))r2
Pt (✓

⇤)�1/2 � ⇢tI

=) kr2 bPt(e✓t)�r2
Pt (✓

⇤)k⇤  ⇢t.

Then we can use the inequalities (58) and (59) to show that

(1� ⇢t)r2
Pt (✓

⇤) � r2 bPt(e✓t) � (1 + ⇢t)r2
Pt (✓

⇤)

(1� ⇢t)r2
Pt (✓

⇤) � r2
Pt (ezt) � (1 + ⇢t)r2

Pt (✓
⇤) .

Now we define the two quantities M1,t and M2,t as follows:

M1,t :=
�
r2

Pt (✓
⇤)
�1/2 ⇣r2 bPt(e✓t)

⌘�1 �
r2

Pt (✓
⇤)
�1/2

M2,t :=
�
r2

Pt (✓
⇤)
��1/2 r2

Pt (ezt)
�
r2

Pt (✓
⇤)
��1/2

.

Step 7 (Lower bound Pt(b✓t)� Pt (✓⇤)): Now for the lower bound it follows from Equation (57) that

Pt(b✓t)� Pt (✓
⇤) =

1

2

⇣
b✓t � ✓⇤

⌘>
r2

Pt (ezt)
⇣
b✓t � ✓⇤

⌘

=
1

2

⇣
b✓t � ✓⇤

⌘>
r2

Pt(✓
⇤)

1
2r2

Pt(✓
⇤)�

1
2r2

Pt (ezt)r2
Pt(✓

⇤)�
1
2r2

Pt(✓
⇤)

1
2

⇣
b✓t � ✓⇤

⌘

(a)
=

1

2
uTM2,tu

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

where, in (a) we define the vector u :=
⇣
b✓t � ✓⇤

⌘>
r2

Pt(✓⇤)
1
2 . Now observe from the definition of and then

using the min-max theorem we can show that

Pt(b✓t)� Pt (✓
⇤) � 1

2
�min (M2,t)u

Tu

=
1

2
�min (M2,t)

���b✓t � ✓⇤
���
2

r2Pt(✓⇤)

=
1

2
�min (M2,t)

���r2 bPt(e✓t)
⇣
b✓t � ✓⇤

⌘���
2

(r2 bPt(e✓t))
�1r2Pt(✓⇤)(r2 bPt(e✓t))

�1

� 1

2
(�min (M1,t))

2
�min (M2,t)

���r2 bPt(e✓t)
⇣
b✓t � ✓⇤

⌘���
2

(r2Pt(✓⇤))�1

(a)
=

1

2
(�min (M1,t))

2
�min (M2,t)

���r bPt (✓
⇤)
���
2

(r2Pt(✓⇤))�1

where, in (a) we use the eq. (55).

Step 8: Define I(E) as the indicator that the desired previous events hold, which we can ensure with probability

greater than 1� 2

✓
1

dt

◆�

. Then we can show that:

E
h
Pt(b✓t)� Pt (✓

⇤)
i
�E

h⇣
Pt(b✓t)� Pt (✓

⇤)
⌘
I(E)

i

�1

2
E

(�min (M1,t))

2
�min (M2,t)

���r bPt (✓
⇤)
���
2

(r2Pt(✓⇤))�1
I(E)

�

� (1� c
0
⇢t)

1

2
E
���r bPt (✓

⇤)
���
2

(r2Pt(✓⇤))�1
I(E)

�

=(1� c
0
⇢t)

1

2
E
���r bPt (✓

⇤)
���
2

(r2Pt(✓⇤))�1
(1� I(not E))

�

(a)
= (1� c

0
⇢t)

✓
�
2
t �

1

2
E
���r bPt (✓

⇤)
���
2

(r2Pt(✓⇤))�1
I(not E)

�◆

� (1� c
0
⇢t)�

2
t � E

���r bPt (✓
⇤)
���
2

(r2Pt(✓⇤))�1
I(not E)

�

where, in (a) we have �2
t :=

���r bPt (✓⇤)
���
2

(r2Pt(✓⇤))�1
, and c

0 is an universal constant.

Step 9: Define the random variable Z =
���r bPt (✓⇤)

���
(r2Pt(✓⇤))�1

. With a failure event probability of less than

2

✓
1

dt

◆�

for any z0, we have:

E
⇥
Z

2
I(not E)

⇤
= E

⇥
Z

2
I(not E)I

�
Z

2
< z0

�⇤
+ E

⇥
Z

2
I(not E)I

�
Z

2 � z0

�⇤

 z0E[I(not E)] + E
⇥
Z

2
I
�
Z

2 � z0

�⇤

 z0

2t�
+ E


Z

2Z
2

z0

�

 z0

2t�
+

E
⇥
Z

4
⇤

z0


p
E [Z4]

t�/2

where z0 = t
�/2
p
E [Z4].

Cherno↵ Sampling for Active Testing and Extension to Active Regression

Step 10 (Upper Bound): For an upper bound we have that:

E
h
Pt(b✓t)� Pt (✓

⇤)
i
= E

h⇣
Pt(b✓t)� Pt (✓

⇤)
⌘
I(E)

i
+ E

h⇣
Pt(b✓t)� Pt (✓

⇤)
⌘
I(not E)

i

 E
h⇣

Pt(b✓t)� Pt (✓
⇤)
⌘
I(E)

i
+

max✓2⇥ (Pt(✓)� Pt (✓⇤))

t�

since the probability of not E is less than
1

t�
. Now for an upper bound of the first term, observe that

E
h⇣

Pt(b✓t)� Pt (✓
⇤)
⌘
I(E)

i
1

2
E

(�max (M1,t))

2
�max (M2,t)

���r bPt (✓
⇤)
���
2

(r2Pt(✓⇤))�1
I(E)

�

 (1 + c
0
⇢t)

1

2
E
���r bPt (✓

⇤)
���
2

(r2Pt(✓⇤))�1
I(E)

�

 (1 + c
0
⇢t)

1

2
E
���r bPt (✓

⇤)
���
2

(r2Pt(✓⇤))�1

�

=(1 + c
0
⇢t)

�
2
t

t

where, c0 is another universal constant.

A.9 Additional Experiment Details

A.9.1 Hypothesis Testing Experiments

In all the active testing experiments we use the threshold function for the Gaussian distribution as proved in
Lemma 10. Hence the threshold function used is

� = log(J/�).

Note that this threshold function is smaller than the general sub-Gaussian threshold function proved in Lemma 9.

Example 1: Recall that the Example 1 is given by the following table under the three di↵erent hypotheses
{✓⇤

,✓0
,✓00}

✓ = ✓⇤ ✓0 ✓
00

µ1(✓) = 1 0.001 0
µ2(✓) = 1 1.002 0.998

We can show that under p✓⇤ we have the following optimization problem

max z

s.t. p(1)0.9992 + p(2)0.0022 � z

p(1)12 + p(2)0.0022 � z.

The solution to the above optimization is given by p✓⇤ = [p(1), p(2)] = [1, 0]. Similarly we can show that p✓0 we
have the following optimization problem

max z

s.t. p(1)0.0012 + p(2)0.0022 � z

p(1)0.0012 + p(2)0.0042 � z.

The solution to the above optimization is given by p✓0 = [p(1), p(2)] = [0, 1]. Finally we can show that p✓00 we
have the following optimization problem

max z

s.t. p(1)0.0012 + p(2)0.0042 � z

p(1)12 + p(2)0.0022 � z.

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

The solution to the above optimization is given by p✓00 = [p(1), p(2)] = [0, 1]. Hence, D1 :=
minp✓2⇥ min✓0 6=✓⇤

Pn
i=1 p✓(i)(µi(✓0) � µi(✓⇤))2 = 0.0022 = 4 ⇥ 10�6. Similarly, we can compute that

D0 := maxp min✓0 6=✓⇤
Pn

i=1(µi(✓0)� µi(✓⇤))2 = 0.9992. Hence the non-asymptotic term (log J)/D1 = 0.3⇥ 106

and the asymptotic term log(J/�)/D0 = 3.4.

Active Testing environment (3 Group setting): In this setting there are three groups of actions. In first
group there is a single action that discriminates best between all pair of hypotheses. In second group there are 5
actions which can discriminate one hypotheses from others. Finally in the third group there are 44 actions which
cannot discriminate between any pair of hypotheses. The following table describes the µ1(·), µ2(·), . . . , µ50(·)
under di↵erent hypotheses as follows:

✓ = ✓⇤ ✓2 ✓3 ✓4 ✓5 ✓6
µ1(✓) = 3 0 0 0 0 0
µ2(✓) = 2 3 2 2 2 2
µ3(✓) = 2 2 3 2 2 2
µ4(✓) = 2 2 2 3 2 2
µ5(✓) = 2 2 2 2 3 2
µ6(✓) = 2 2 2 2 2 3
µ7(✓) = 1 + ◆7,1 1 + ◆7,2 1 + ◆7,3 1 + ◆7,4 1 + ◆7,5 1 + ◆7,6

...
...

µ50(✓) = 1 + ◆50,1 1 + ◆50,2 1 + ◆50,3 1 + ◆50,4 1 + ◆50,5 1 + ◆50,6

In the above setting,we define ◆i,j for the i-th action and j-th hypothesis as a small value close to 0 and ◆i,j 6= ◆i0,j0

for any pair of hypotheses j, j0 2 [J] and actions i, i0 2 [n].

A.9.2 Active Regression Experiment for Non-linear Reward Model

Algorithmic Details: We describe each of the algorithm used in this setting as follows:

1. EMCM: The EMCM algorithm of Cai et al. (2016) first quantifies the change as the di↵erence between the
current model parameters and the new model parameters learned from enlarged training data, and then
chooses the data examples that result in the greatest change.

2. CS: The CS policy used is stated as in Section 3. To calculate the least square estimate b✓(t) we use the
python scipy.optimize least-square function which solves a nonlinear least-squares problem.

3. Unif: The Unif policy samples each action uniform randomly at every round.

4. ActiveS: The ActiveS policy in Chaudhuri et al. (2015) is a two-stage algorithm. It first samples all actions
uniform randomly to build an initial estimate of ✓⇤. It then solves an Semi-definite Programming (SDP)
to obtain a new sampling distribution that minimizes the quantity �2

U as defined in Equation (46). In the
second stage ActiveS follows this new sampling distribution to sample actions.

Implementation Details: This setting consist of 50 measurement actions divided into three groups. The first
group consist of the optimal action xi⇤ := (1, 0) in the direction of ✓⇤ := (1, 0). The second group consist of the
informative action x2 := (0, 1) which is orthogonal to xi⇤ and selecting it maximally reduces the uncertainty of
b✓(t). Finally the third group consist of 48 actions such that xi := (0.71± ◆i, 0.71⌥ ◆i) for i 2 [3, 50] where ◆i is a
small value close to 0 and ◆i 6= ◆i0 . Note that these 48 actions are less informative in comparison to action 2. This
is shown in Figure 1c.

A.9.3 Active Regression Experiment for Neural Networks

Implementation Details: At every time step, we use the the least squares optimizer of scipy to find b✓t. Since
c1, c2 2 {�1, 1}, we solve four di↵erent least squares problems at each step corresponding to all (c1, c2) choices,
and use the values returned by the problem having the smallest sum of squares as our current estimate for
(w1,w2, b1, b2). The derivative with respect to any parameter is found by the backward pass of automatic
di↵erentiation.

Cherno↵ Sampling for Active Testing and Extension to Active Regression

Figure 2: CS Proportions over 1600 actions in Red Wine Dataset. Note that CS Proportion is sparse.

A.9.4 Active Regression for the UCI Datasets

Implementation Details: The UCI Red Wine Quality dataset consist of 1600 samples of red wine with each
sample i having feature xi 2 R11. We first fit a least square estimate to the original dataset and get an estimate
of ✓⇤. The reward model is linear and given by xT

It
✓⇤ +noise where xIt is the observed action at round t, and the

noise is a zero-mean additive noise. Note that we consider the 1600 samples as actions. Then we run each of our
benchmark algorithms on this dataset and reward model and show the result in Figure 1g. We further show the
CS proportion on this dataset in fig. 2 and show that it is indeed sparse with proportion concentrated on few
actions. The Air quality dataset consist of 1500 samples each of which consist of 6 features. We again build an
estimate of ✓⇤ by fitting a least square regression on this dataset. We use a similar additive noise linear reward
model as described before and run all the benchmark algorithms on this dataset.

Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

A.10 Table of Notations

Notation Definition
n Total number of actions
J Total number of hypotheses
⇥ Parameter Space

µi(✓) Mean of action i under hypothesis ✓
⇡ Policy
� Probability of error of �-PAC policy
⌧� Stopping time of �-PAC policy

�(J, �) log(CJ/�), C is a constant depending on ⌘, ⌘0
↵(J) b log(J), b > 0
Y

t Vector of rewards observed till round t

I
t Vector of actions sampled till round t

Is action sampled at round s

Zi(t) Number of time action i is sampled till round t

⌘ Constant > 0 s.t. Ys 2 [�⌘/2, ⌘/2]
⌘0 mini2[n] min✓ 6=✓0(µi(✓)� µi(✓0))2

p✓ p.m.f. to verify hypothesis ✓ (Solution to Cherno↵ optimization in (4))
KL(.||.) Kullback-Leibler divergence
b✓(t) Most likely hypothesis at round t

✓̃(t) Second most likely hypothesis at round t

Lt(✓) Sum of squared errors till round t under hypothesis ✓
`s(✓) Squared error at a specific round s under hypothesis ✓

�t(✓,✓⇤) Lt(✓)� Lt(✓⇤)
�s(✓,✓⇤) `s(✓)� `s(✓⇤) at a specific round s

⇠
�(✓,✓⇤) Event that {L⌧�(✓

0)� L⌧�(✓) > �(J, �), 8✓0 6= ✓}
(1 + c)M Critical number of samples (1 + c)O (log J/D1 + log(J/�)/D0), for a constant c > 0

I {i 2 [n] : i = argmaxi02[n](µi0(✓)� µi0(✓0))2 for some ✓,✓0 2 ⇥}
� Constant � 2, controlling the convergence rate
d Dimension of the parameter space ⇥
C 165 + ⌘

2
/⌘

2
0

D0 max p min✓0 6=✓⇤
Pn

i=1 p(i)(µi(✓0)� µi(✓⇤))2

D1 min{p✓ :✓2⇥} min✓0 6=✓⇤
Pn

i=1 p✓(i)(µi(✓0)� µi(✓⇤))2

D
0
0 min

✓,✓0 6=✓⇤

Pn
i=1 u✓⇤✓(i)(µi(✓0)� µi(✓⇤))2

D
0
1 min✓ 6=✓0,✓0 6=✓⇤

Pn
i=1 u✓✓0(i)(µi(✓0)� µi(✓⇤))2

Pt(✓)
1
t

Pt
s=1 EIs⇠pb✓s�1

[Ls(✓)|Fs�1]

punif pmf of a uniform distribution over the actions.
PU (✓) EIs⇠punif [Ls(✓)]

�
2
t E

���r bPt (✓⇤)
���
2

(r2Pt(✓⇤))�1

�2
t E

���r bPt (✓⇤)
���
2

(r2PU (✓⇤))�1

�
2
U Trace

h
IU (✓⇤) I� (✓⇤)�1

i
where IU and I� are Fisher Information matrices.

Table 3: Table of Notations

