
Nearest Neighbor Search Under Uncertainty

Blake Mason1 Ardhendu Tripathy2 Robert Nowak1

1Department of Electrical and Computer Engineering., University of Wisconsin, Madison, Wisconsin, USA
2Computer Science Department., Missouri University of Science and Technology, Rolla, Missouri, USA

Abstract

Nearest Neighbor Search (NNS) is a central task
in knowledge representation, learning, and reason-
ing. There is vast literature on efficient algorithms
for constructing data structures and performing
exact and approximate NNS. This paper studies
NNS under Uncertainty (NNSU). Specifically, con-
sider the setting in which an NNS algorithm has
access only to a stochastic distance oracle that pro-
vides a noisy, unbiased estimate of the distance
between any pair of points, rather than the exact
distance. This models many situations of practical
importance, including NNS based on human simi-
larity judgements, physical measurements, or fast,
randomized approximations to exact distances. A
naive approach to NNSU could employ any stan-
dard NNS algorithm and repeatedly query and av-
erage results from the stochastic oracle (to reduce
noise) whenever it needs a pairwise distance. The
problem is that a sufficient number of repeated
queries is unknown in advance; e.g., a point may
be distant from all but one other point (crude dis-
tance estimates suffice) or it may be close to a large
number of other points (accurate estimates are nec-
essary). This paper shows how ideas from cover
trees and multi-armed bandits can be leveraged to
develop an NNSU algorithm that has optimal de-
pendence on the dataset size and the (unknown)
geometry of the dataset.

1 INTRODUCTION

This paper considers Nearest Neighbor Search under Uncer-
tainty (NNSU). To motivate the NNSU problem, consider
the following application. Suppose we have a database of
N genomic sequences of length L of different species and
wish to query the database to find the closest relative of a

newly discovered species. Computing the exact distance in
RL between two sequences requires O(L) operations. Using
efficient NNS algorithms, one can construct a data structure
in O(NL logN) time and perform a NN search in O(L logN).
To reduce this complexity, one can randomly subsample the
sequences at `⌧ L locations and compute an unbiased es-
timate of distance in O(`) time and find nearest neighbors
in O(` log(n)) operations. If an algorithm can manage the
added uncertainty of this procedure, this can improve com-
putational complexity greatly.

In other settings, uncertainty is naturally present in the mea-
surements due to the presence of noise. For instance, re-
searchers gathering data to map the topology of the internet,
rely on noisy one-way-delay measurements to infer distance
between servers Eriksson et al. [2010] and, detecting the
closest server to a given host can be challenging due to
this noise. In preference learning, researchers gather pair-
wise comparisons from people and attempt to learn which
items are most preferred Jamieson and Nowak [2011], Yue
and Joachims [2009]. To simplify such problems, human
judgments are frequently modelled as distance comparisons
Shepard [1962], Kruskal [1964], Mason et al. [2017] with
the smallest distance representing the most preferred item,
but the noise inherent to human judgements makes these
problems challenging. In general, we define the NNSU prob-
lem as follows:

NNSU - Problem Statement: Consider a set of n points
X = {x1, · · · ,xn} in a metric space (M ,d). The metric
is unknown, but for any pair of points we can query a
stochastic oracle for a noisy, unbiased estimate of their
distance. The problem is to use the oracle to efficiently
build a data structure such that for any new query point
q, it returns its nearest neighbor xq := minxi2X d(q,xi)
with probability at least 1�d in as few additional oracle
queries as possible.

The NNSU problem is very different from the standard
Nearest Neighbor Search (NNS) problem1. To develop

1Note that NNSU is distinct from the problem of Approximate

Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021), PMLR 161:1777–1786.

noise-tolerant methods, it is tempting to simply extend an
NNS algorithm by repeatedly calling the stochastic oracle a
pre-specified r times each time a distance measurement is
needed and averaging the results. The simplicity of this idea
masks the difficulty of doing it correctly. If r is too small, an
algorithm will make errors, but if r is too large, the number
of distance queries and hence the computational cost will
be unnecessarily high. To control the probability of error,
r can be no smaller than (d(q,xq)�d(q,xq0))

�2 where xq0

is the second nearest neighbor to q. Since this quantity de-
pends on knowledge of the nearest neighbor distances, it
is impossible to specify r in practice. Additionally, even if
(d(q,xq)�d(q,xq0))

�2 were known, setting r in proportion
to it is only necessary to handle the worst case; far fewer
calls to the stochastic oracle are sufficient to eliminate points
that are far from q. Our proposed algorithm is adaptive to
the level of noise and the geometry of X . It is guaranteed
to minimize the number of calls to the distance oracle for a
specified probability of error.

1.1 RELATED WORK

One of the first algorithms for the NNS problem is the clas-
sical KD-Tree algorithm by Bentley [1975]. KD-Trees
first build a tree-based data structure in O(n log(n)) compu-
tations. By paying this cost up front, when presented with a
query point, the tree can be used to return the nearest neigh-
bor in only O(log(n)) computations. The core drawback of
the KD-Tree is that it lacks a uniform accuracy guarantee
and may fail to return the correct nearest neighbor for certain
query points Dasgupta and Sinha [2013]. A variety of meth-
ods attempt to achieve similar computational complexity for
the NNS problem while also providing robust accuracy guar-
antees Dasgupta and Sinha [2013], Krauthgamer and Lee
[2004], Beygelzimer et al. [2006], and we refer the reader to
Bhatia et al. [2010] for a survey of techniques and theoreti-
cal results. Another line of work attempts to instead return
an approximate nearest neighbor that is almost as close as
the true nearest neighbor. We refer the reader to Wang and
Banerjee [2014], Andoni et al. [2018] for an overview.

A related problem to NNSU is the noisy nearest neighbor
graph problem. In this setting, one wishes to learn the graph
that connects each node in X to its nearest neighbor. Mason
et al. [2019] provide an adaptive method that utilizes multi-
armed bandits to find the nearest neighbor graph from a set
of n points in O(n log(n)D2) samples in favorable settings
and O(n2D2) at worst where D2 is a problem dependent pa-
rameter quantifying the effect of the noise. Their method
is adaptive to noise, but requires additional assumptions
to achieve the optimal rate of O(n log(n)) samples for that

Nearest Neighbor identification as in this case, the measurements
themselves are corrupted by noise, but one wishes to find an exact
nearest neighbor. We extend to finding an approximate nearest
neighbor under uncertainty as well in this work.

problem. Bagaria et al. [2017] study nearest neighbor search
in high-dimensional data. In their setting, the distance func-
tion is a known, componentwise function. Their algorithm
subsamples to approximate distances. This improves depen-
dence on dimension, though the dependence on n is linear.

1.2 MAIN CONTRIBUTIONS

In this paper, we leverage recent developments in multi-
armed bandits to solve the nearest neighbor search prob-
lem using noisy measurements. We design a novel ex-
tension of the Cover-Tree algorithm from Beygelz-
imer et al. [2006] for the NNSU problem. A main inno-
vation is reducing the problem of learning a cover of a
set from noisy data to all-e-good identification for multi-
armed bandits studied in Mason et al. [2020]. Addition-
ally, we make use of efficient methods for adaptive hy-
pothesis testing to minimize calls to the stochastic ora-
cle Jamieson and Jain [2018]. We refer to the resulting
algorithm as the Bandit-Cover-Tree. We show that
it requires O(n log2(n)k) calls to the distance oracle for
construction and O(log(n)k) calls for querying the near-
est neighbor of a new point, where k captures the effect
of noise and the geometry of X . This nearly matches the
state of the art for the NNS problem despite the added
challenge of uncertainty in the NNSU problem. Further-
more, we show how to extend Bandit-Cover-Tree for
approximate nearest neighbor search instead. Finally, we
demonstrate that Bandit-Cover-Tree can be used to
learn a nearest neighbor graph in O(n log2(n)k) distance
measurements, nearly matching the optimal rate given in
Mason et al. [2019] but without requiring the additional
assumptions from that work.

1.3 NOTATION

Let (M ,d) be a metric space with distance function d satis-
fying the standard axioms. Given xi,x j 2X , let d(xi,x j) =
di, j. For a query point q define xq := argminx2X d(xi,q).
For a query point q and xi 2X , let dq,i denote d(q,xi). Ad-
ditionally, for a set S , define the distance from any point
x 2 (M ,d) to S as d(x,S) := infz2S dx,z, the smallest dis-
tance a point in S . Though the distances are unknown,
we are able to draw independent samples of its true value
according to a stochastic distance oracle, i.e. querying

Q(i, j) yields a realization of di, j +h , (1)

where h is a zero-mean subGaussian random variable as-
sumed to have scale parameter s = 12. We let d̂i, j(s) denote
the empirical mean of the s queries of the distance oracle,
Q(i, j). The number of Q(i, j) queries made until time t is

2s = 1 can be relaxed to any subGuassian distribution. The
subGaussian assumption itself can be relaxed by considering other
confidence widths in our algorithm.

1778

denoted as Ti, j(t). All guarantees will be shown to hold with
probability 1� d where we refer to d > 0 as the failure
probability.

2 COVER TREES FOR NEAREST
NEIGHBOR SEARCH

Before presenting our method and associated results, we the
review Cover Tree algorithm from Beygelzimer et al.
[2006] for the NNS problem. As the name suggests, a cover
tree is a tree-based data structure where each level of the
tree forms a cover of X .

Definition 1. Given a set X ⇢ (M ,d), a set C ⇢X is a

cover of X with resolution e if for all x 2X , there exists a

c 2C such that d(x,c) e .

Each level is indexed by an integer i which decreases as
one descends the tree. To avoid additional notation, we will
represent the top of the tree as level • and the bottom as�•
though in practice one would record integers itop and ibottom
denoting the top and bottom level of the tree and need only
explicitly store the tree between these levels. Each node
in the tree corresponds to a point in X , but points in X
may correspond to multiple nodes in the tree. Reviewing
Beygelzimer et al. [2006], let Ci denote the set of nodes at
level i. The cover tree algorithm is designed so that each
level of the tree i obeys three invariants:

1. nesting: Ci ⇢Ci�1. Hence, the points corresponding
to nodes at level i are also correspond to nodes in all
lower levels.

2. covering tree: For every p2Ci�1, there exists a q2Ci

such that d(p,q)  2i, and child node p is connected
to parent node q in the cover tree.

3. Separation: For any p,q 2Ci with p 6= q, d(p,q)> 2i.

These invariants are originally derived from Krauthgamer
and Lee [2004]. Beygelzimer et al. [2006] show that their
routines obey these invariants, and we will make use of
them in our proofs and to build intuition. The core idea
of this method is that the i

th level of the tree is a cover
of resolution 2i. Given a query point q, when navigating
the tree at level i, one identifies all possible ancestor nodes
of xq at that level. When descending the tree, this set is
refined until only a single parent is possible, xq itself. The
nesting invariance allows one to easily traverse the tree from
parent to child. The covering tree invariance connects xq

to its parents and ancestors so that one may traverse the
tree with query point q and end at xq. Lastly, the separation

invariance ensures that there is a single parent to each node
which avoids redundancy and improves memory complexity.

In order to quantify the sample complexity of cover trees,
we require a notion of the effective dimensionality of the

points X . In this paper, we will make use of the expansion

constant as in [Haghiri et al., 2017, Krauthgamer and Lee,
2004, Beygelzimer et al., 2006]. Let B(x,r) denote the ball
of radius r > 0 centered at x 2 (M ,d) according to the
distance measure d.

Definition 2. The expansion constant of a set of points S is

the smallest c� 2 such that |S \B(x,2r)| c|S \B(x,r)|
for any x 2S and any r > 0.

The expansion constant is sensitive to the geometry in X .
For example, for points in a low-dimensional subspace,
c = O(1) independent of the ambient space. By contrast,
if points that are spread out on the surface of a sphere in Rd ,
c = O(2d). In general c is smaller if the pairwise distances
between points in X are more varied.

3 THE BANDIT COVER TREE
ALGORITHM FOR NNSU

The Bandit Cover Tree algorithm is comprised of
three methods. Given a cover tree and query point
q, Noisy-Find-Nearest finds q’s nearest neighbor.
Noisy-Insert allows one to insert points into a tree and
can be used to construct a new tree. Noisy-Remove can
remove points from the tree and is deferred to the appendix.

3.1 FINDING NEAREST NEIGHBORS WITH A
COVER TREE

We begin by discussing how to identify the nearest neigh-
bor of a query point q in the set X given a cover tree T
on X . Throughout, we take T to denote the cover tree.
We may identify T by the covers at each level: T :=
{C•, · · · ,Ci,Ci�1, · · · ,C�•}. Assume that we are given a
fixed query point q, and the expansion constant of the
set X [{q} is bounded by c. Our method to find xq is
Noisy-Find-Nearest and is given in Algorithm 1. It
is inspired by Beygelzimer et al. [2006], but a crucial dif-
ference is how the algorithm handles noise. At a high level,
as it proceeds down each level i, it keeps track of a set
Qi ⇢Ci of all possible ancestors of xq. Given Qi, to proceed
to level i� 1, the algorithm first computes the set of chil-
dren of nodes in Qi given by the set Q⇢Ci�1. Qi�1 ⇢ Q is
then computed by forming a cover of Q at resolution 2i�1.
Ideally, this is the set

Q̃i�1 :=
⇢

j 2 Q : d(q, j)min
k2Q

d(q,k)+2i�1
�

(2)

However, constructing this set requires calling the stochastic
distance oracle and presents a trade-off:

1. By using many repeated queries to the stochastic oracle,
we can more confidently declare if j 2 Q̃i�1 at the
expense of higher sample complexity.

1779

Algorithm 1 Noisy-Find-Nearest
Require: Cover tree T , failure probability d , expansion

constant c if known, query point q, callable distance
oracle Q(·, ·), subroutine Identify-Cover.

1: Let Q• =C•, a = n+1
2: for i = • down to i =�• do
3: Let Q =

S
p2Qi

children(p)
4: if c is known: then
5: Let a = min

nl
log(n)

log(1+1/c2)
+1
m
,n
o
+1

6: \\ Identify the set: { j 2 Q : d(q, j) 
mink2Q d(q,k)+2i�1}

7: Qi�1 = Identify-Cover(Q,d/a,Q(·, ·),q, i)
8: return find-smallest-in-set(Q�•,d/a)

2. By using fewer calls to the oracle, we can more quickly
declare if j 2 Q̃i�1, at the expense of lower accuracy.

To handle the noise, we make use of anytime confidence
widths, Cd (t) such that for an empirical estimate of the dis-
tance dq, j: d̂q, j(t) of t samples, we have P(S•

t=1 |d̂q, j(t)�
dq, j| > Cd (t))  d . For this work, we take Cd (t) =q

4log(log2(2t)/d)
t

akin to Howard et al. [2018]. This al-
lows us to quantify how certain or uncertain an estimate
of any distance is. Furthermore, to guard against settings
where the number of samples needed to detect the set
Q̃i�1 in Eq (2) is large, we introduce some slack and in-
stead detect a set Qi such that it contains every j 2 Q

such that dq, j  d(q,Q)+2i�1 and no j worse than dq, j 
d(q,Q)+2i�1 +2i�2. In particular, this contains all points
in Q̃i�1 and none that are much worse. This has the ad-
vantage of controlling the number of calls to the stochastic
oracle. As the algorithm descends the tree, i decreases and
the slack of 2i�2 goes to zero ensuring that the algorithm
returns the correct nearest neighbor. To handle both of these
challenges, we reduce the problem of learning Q̃i�1 to the
problem of finding all e-good arms in mutli-armed bandits
studied in Mason et al. [2020] and refer to this method as
Identify-Cover given in Alg. 2.

This process of exploring children nodes and computing
cover sets terminates when the algorithm reaches level
i = �• and Q�• contains xq. Note that in practice the
algorithm could terminate when it reaches the bottom
of the cover tree, i = ibottom. At this level, it calls a
simple elimination scheme find-smallest-in-set
given in the appendix that queries the stochastic oracle
and returns xq 2 Q�•. To control the overall probabil-
ity of error in Noisy-Find-Nearest, each call to
Identify-Cover and find-smallest-in-set is
run with failure probability d/a for a chosen to control the
family-wise error rate.

Algorithm 2 Identify-Cover
Require: Failure probability d , query point q, Oracle

Q(·, ·), and set Q, Cover resolution 2i

1: Query oracle once for each point in Q

2: Initialize Tj 1, update d̂q, j for each j 2 Q

3: Empirical cover set: bG = { j : d̂q, j maxk d̂q,k +2i}
4: Ut = mink d̂q,k(Tk)+Cd/|Q|(Tk)+2i

5: Lt = mink d̂q,k(Tk)�Cd/|Q|(Tk)+2i +2i�1

6: Known points: K = { j : d̂q, j(Tj) � Cd/|Q|(Tj) >

Ut or d̂q, j(Tj)+Cd/|Q|(Tj)< Lt}
7: while K 6= Q do
8: j1(t) = argmin

j2 bG\K
d̂q, j(Tj)+Cd/|Q|(Tj)

9: j2(t) = argmax
j2 bGc\K

d̂q, j(Tj)�Cd/|Q|(Tj)

10: j
⇤(t) = argmin j d̂q, j(Tj)�Cd/|Q|(Tj)

11: Call oracle Q(q, j1), Q(q, j2), and Q(q, j
⇤)

12: Update Tj1 , d̂q, j1 , Tj2 , d̂q, j2 , Tj⇤ , d̂q, j⇤

13: Update bounds Lt ,Ut , sets bG, K

14: return The set cover set with resolution 2i: { j :
d̂q, j(Tj)+Cd/|Q|(Tj)< Lt}

3.1.1 Approximate NNSU

In some applications, finding an exact nearest neighbor may
be unnecessary and an approximate nearest neighbor may
be sufficient. In the noiseless case, this has been shown to
improve the complexity of nearest neighbor search Andoni
et al. [2018]. An e-approximate nearest neighbor is defined
as any point in the set

{i : d(q, i) (1+ e)min
j

d(q, j)}.

In this section, we show to how to extend
Noisy-Find-Nearest to return an e-approximate
nearest neighbor instead of the exact nearest neigh-
bor and provide psuedocode for this method in the
appendix. To do so, add an additional line that exits
the for loop if d(q,Qi) � 2i+1(1 + 1/e). Then, return
xqe = argmin j2Qi

d(q,x j). To see why this condition
suffices, note that the nesting and covering tree invariances
jointly imply that d(xq,Qi)  2i+1. Hence, by the triangle
inequality

d(q,Qi) d(q,xq)+d(xq,Qi) d(q,xq)+2i+1.

Since we exit when d(q,Qi)� 2i+1(1+1/e),

2i+1(1+1/e) d(q,xq)+2i+1 () 2i+1  ed(q,xq).

Therefore,

d(q,Qi) d(q,xq)+2i+1  (1+ e)d(q,xq).

Hence, there exists an e-approximate nearest neighbor in
Qi. If this condition is never satisfied, which occurs when

1780

e is vanishingly small, the algorithm terminates normally
and returns the exact nearest neighbor. We give pseudocode
for this procedure in the appendix. The algorithm is similar
to Noisy-Find-Nearest except that it makes use of
a simple thresholding bandit, akin to the one we use in
Noisy-Insert to check if d(q,Qi) � 2i+1(1+ 1/e) by
querying the stochastic oracle.

3.2 BUILDING AND ALTERING A COVER TREE

In this section we demonstrate how to insert points into a
cover tree by calling the stochastic oracle. Constructing a
cover tree can be achieved by simply beginning with an
empty tree and inserting points one at a time. Removing
points from a cover tree is similar operationally to insertion
with slight complications and we defer it to the appendix.

3.2.1 Insertion

Suppose we have access to a cover tree T on a set S .
We wish to insert a point p into T such that we now have
a cover tree on the set S [{p}. Intuitively, the insertion
algorithm can be thought of as beginning at the highest
resolution cover, at level �• and climbing back up the tree,
inserting p in each cover set Ci for all i until it reaches a level
ip such that min j2Cip

d(p, j)  2ip where a suitable parent
node exists. The algorithm then chooses a parent p

0 2Cip

for p such that d(p, p
0)  2ip and terminates. As trees are

traditionally traversed via their roots not their leaves, we
state this algorithm recursively beginning at the top.

We provide pseudocode in Algorithm 3. The algorithm
draws on ideas from Beygelzimer et al. [2006] but includes
additional logic to handle uncertainty. In particular, lines
2-8 implement a simple thresholding bandit based on the
techniques of Jamieson and Jain [2018] for adaptive hypoth-
esis testing with family-wise probability of error control.
This allows us to identify all points within 2i of the nearest
in the set Q. This must be done for every candidate level i

that p might be inserted into until it reaches level ip.

This requires careful handling to ensure the algorithm suc-
ceeds with high probability. Each time the thresholding op-
eration is called, there is a chance that the algorithm makes a
mistake. Noisy-Insert is recursive and performs a this
operation in every recursive call. Hence, if it makes an error
on any call, the algorithm may fail. Thus, we must ensure
that the probability of Noisy-Insert making an error
in any recursive call is at most d . Since the level ip where
p is added is unknown and depends on the query point p,
the number of recursive calls before success is unknown to
the algorithm. Therefore, it is not a priori obvious how to
perform the appropriate Bonferroni correction to ensure the
probability of an error in any recursive call is bounded by
d . A seemingly attractive approach is to use a summable

Algorithm 3 Noisy-Insert
Require: Cover tree T on n points, cover set Qi, failure

probability d , point p to be inserted, callable distance
oracle Q(·, ·), level i

Optional: Empirical estimates of d̂p,i and Ti for any i 2Ci

1: Let Q =
S

j2Qi
children(j)

2: Query oracle once for each point in Q\{ j : Tj = 0}
3: Set Ti 1, update d̂p,i for each j 2 Q\{ j : Tj = 0}
4: \\ compute the set { j 2 Q : d(p, j) 2i}
5: Known points: K = { j : d̂p, j(Tj) + Cd/n(Tj) 

2i or d̂p, j(Tj)�Cd/n(Tj)> 2i}
6: while |K| 6= |Q| do
7: Compute j

⇤(t) = argmin j 62K d̂p, j(Tj)�Cd/n(Tj)

8: Call oracle Q(p, j
⇤) and update Tj⇤ , d̂p, j⇤ , K

9: \\ If d(p,Q)> 2i

10: Qi�1 = { j 2 Q : d̂p, j(Tj)+Cd/n(Tj) 2i}
11: if Qi�1 = /0 then
12: Return:“no parent found”
13: else
14: lower = Noisy-Insert(p,T ,Qi�1, i �

1,d ,Q(·, ·),{ j 2 Q : d̂p, j(Tj)},{ j 2 Q : Tj})
15: if Qi\Qi�1 6= /0 and lower = “no parent found” then
16: Choose any p

0 2 Qi\Qi�1
17: Insert p in children(p

0) \\ Assign a parent to p

18: Return:“parent found”
19: else
20: Return:“no parent found”

sequence of di depending on the level i such that Âi di = d .
For instance, di = d · 2�i would be suitable if the root of
T is at level 1. However, due to repeated calls to lines 2-8,
this would lead to an additional multiplicative factor of the
height of the cover tree affecting the sample complexity.

Instead, Noisy-Insert shares samples between rounds.
By the nesting invariance, we have that Ci⇢Ci�1. Therefore,
when we descend the tree from level i to i�1, we already
have samples of the distance of some points in Ci�1 to p.
We simply reuse these samples and share them from round
to round. Furthermore, since T is assumed to be a cover
tree on n points, we trivially union bound each confidence
width to hold with probability 1�d/n such that all bounds
for all recursive calls holds with probability at least 1�d .

4 THEORETICAL GUARANTEES OF
BANDIT COVER TREE

We measure performance along several axes: 1) how much
memory is necessary to store the data structure, 2) how
many calls to the distance oracle are needed at query time,
3) How many calls to the distance oracle are needed to for
construction, and 4) the accuracy of the data structure in
returning the correct nearest neighbor and performing other

1781

operations. Since we only have access to a stochastic ora-
cle, ensuring the accuracy of the Bandit Cover Tree
(BCT) is especially delicate.

4.1 MEMORY

We begin by showing that a cover tree can efficiently be
stored. Naively, a cover tree T on X can be stored using
O(n(itop� ibottom)) memory where n= |X | and itop� ibottom
is the height of the tree. This follows from each level having
at most n nodes trivially and there being itop� ibottom levels.
For a well balanced tree, we expect that itop � ibottom =
O(log(n)) leading to an overall memory complexity of
O(n log(n)). In fact, it is possible to do better.

Lemma 3. A bandit cover tree requires O(n) space to be

stored.

O(n) memory is possible due to the nesting and covering
tree invariants. By the nesting invariant, if a point p is
present in the i

th cover Ci, then it is present in the cover
sets of all lower levels. By the covering tree invariant, each
point has a unique parent in the tree. Therefore, to store a
cover tree, one need only store 1) which level of the tree
each point first appears in 2) each point’s parent node in the
level above where it appears. After a node first appears in
the tree, it may be represented implicitly in all lower levels.
In particular, when all methods query the children of any
node p, we define p 2 children(p). Formally, we define an
implicit and explicit node as follows:

Definition 4. A node p 2 Ci in level i of cover tree T is

explicit if p 62 {C•, · · · ,Ci+1} (i.e. it is not present in all

previous levels.) Otherwise, any p 2 Ci is referred to as

implicit.

4.2 ACCURACY

Next, we show that BCT is accurate with high probability.
This requires three guarantees:

1. Search accuracy: Given a cover tree T on set X and
query point q, Noisy-Find-Nearest correctly
identifies q’s nearest neighbor with high probability.

2. Insertion accuracy: Given a cover tree T and a point p

to be inserted, Noisy-Insert returns a valid cover
tree that includes p with high probability.

3. Removal accuracy: Given a cover tree T and a point p

to be removed, Noisy-Remove returns a valid cover
tree that without p (deferred to appendix).

4.2.1 Search Accuracy

We begin by showing that for any q 2 (M ,d)
Noisy-Find-Nearest returns xq with high proba-
bility. The proof is deferred to the appendix, but the

argument is sketched as follows. First, by appealing
to results from Mason et al. [2020], we can guaran-
tee that Identify-Cover succeeds with probability
1� d/a . Second, we show that for the choice of a in
Noisy-Find-Nearest, the probability that any call to
Identify-Cover fails is bounded by 1�d . Finally, we
show that if we correctly identify the necessary cover sets,
which happens with probability at least 1�d , we my appeal
to Theorem 2 of Beygelzimer et al. [2006] to ensure that our
method returns xq.

Lemma 5. Fix any d  1/2 and a query point q. Let T be

a cover tree on a set X . Noisy-Find-Nearest returns

xq 2X with probability at least 1�d .

4.2.2 Insertion Accuracy

The proof that Noisy-Insert succeeds with high proba-
bility in adding any point p to a cover tree T follows the
argument of Lemma 5 similarly. In particular, given a set
Q, it hinges on the idea that we can use a threshold bandit
to identify the set { j 2 Q : d(p, j) 2i} correctly with high
probability by calling the stochastic oracle. If this procedure
succeeds, then Noisy-Insert has correctly identified the
subset of Q that are within 2i of the point p to be inserted.
If { j 2 Q : d(p, j)  2i} = /0, we may instead verify that
d(p,Q) > 2i and can compute a new cover set Qi�1. The
following lemma ensures that Noisy-Insert succeeds
with high probability.

Lemma 6. Fix any d > 0. Let T be a cover tree on a set

X and p be a point to insert. Noisy-Insert correctly

returns a cover tree on X [{p} with probability at least

1�d .

To construct a cover tree from scratch given a set X , one
need only call Noisy-Insert n times, once for each
point in X beginning with an empty tree and run each
call with failure probability d/n. The following corollary
ensures that this leads to a cover tree satisfying the three
invariances with probability 1�d .

Corollary 7 (Construction of a Cover Tree). Fix any d >
0 and a set X 2 (M ,d). Calling Noisy-Insert with

failure probability d/n iteratively over the points in X
yields a cover tree that satisfies the nesting, covering tree,

and separation invariances with probability 1�d .

4.3 QUERY TIME COMPLEXITY

In the previous section, we proved that the algorithm suc-
ceeds with probability 1�d for search and insertion, with
removal deferred to the appendix. In this section we begin
to answer the question of how many calls to the stochastic
distance oracle it requires to perform these operations.

1782

We begin by analyzing the query time complexity of
Bandit Cover Tree: the number of calls to the dis-
tance oracle made when answering a nearest neighbor query.
To do so, we will make use of the expansion constant, a
data-dependent measure of dimensionality. In particular, for
a query point q. We assume that the set X [{q} has an
expansion constant of c as defined in Definition 2. Note that
this quantity is for analysis purposes only and is not required
by the algorithm. Noisy-Find-Nearest can take in the
expansion constant or a bound on it if it is known, but this
is not required by the algorithm. In particular, knowing a
bound on c helps control the height of the tree. This allows
Noisy-Find-Nearest to use a smaller union bound
and leads to a tighter dependence on n.

To bound query time, we appeal to the concept of explicit
and implicit nodes as discussed in Section 4.1 and Defini-
tion 4. Each point in X may correspond to multiple nodes
in the tree. The first time a point appears as a node at the
highest level where it is present, we say that it is explicitly

represented and is implicity represented in all levels there-
after by the nesting invariant of cover trees. Recall that the
set of nodes at each level i of the cover tree is denoted Ci.
Noisy-Find-Nearest proceeds by computing a cover
set Qi ⇢Ci at each level of the tree. Extending the concept
of explicit and implicit representations of nodes, we say that
a cover set Qi is implicitly represented if it only contains
nodes that are implicitly represented. This plays an impor-
tant role in our computation of query time. We may use the
size of the last explicitly represented cover to help bound
to complexity of the Identify-Cover subroutine in Al-
gorithm 2. This routine is called for every level of the tree.
Then, by bounding the height of the tree, we can control the
total number of calls to the distance oracle.

Theorem 8. Fix d < 1/2, a cover tree T on set X , and a

query point q. Let |X | = n and assume that the expan-

sion rate of X [{q} is c (unknown to the algorithm).

If Noisy-Find-Nearest succeeds, which occurs with

probability 1�d , then Noisy-Find-Nearest returns

q’s nearest neighbor in at most

O

⇣
c

17 log(n) log
⇣

n

d

⌘
k
⌘

calls to the stochastic distance oracle where parameter k is

defined in the proof and satisfies

k  B max
�
[d(q,xq)�d(q,xq0)]

�2 , d
�2
min

where xq0 is q’s second nearest neighbor, dmin :=
min j,k(x j,xk) is the smallest pairwise distance in X , and

B > 0 is a universal constant.
3

Remark 9. The dependence of c
17

can be improved

to c
7

matching Beygelzimer et al. [2006] by redefining

3The dependence on c is large theoretically, however Beygelz-
imer et al. [2006] suffer similar theoretical dependencies on c but
show that in practice the dependence is more mild.

Lt = min j d̂q, j(Tj)�Cd/|Q|(Tj) + 2i
in the pseudocode of

Identify-Cover. For most instances, this will lead to

better performance, though a potentially worse worst-case

bound on k in pathological cases.

The above result scales as O

⇣
c

O(1) log2(n)
⌘

. The following
corollary highlights that if c is known, this can be improved
to O

⇣
c

O(1) log(n) log(log(n))
⌘

.

Corollary 10. Under the same conditions as Theorem 8,

if any bound c̃ � c on the expansion rate c is given to the

algorithm, the number of queries to the distance oracle is at

most

O

✓
c̃

17 log(n) log
✓

c̃ log(n)
d

◆
k
◆

calls to the stochastic oracle.

The term k captures the average effect of noise on this
problem. It is similar to the term D�2 in given in Mason
et al. [2019] for identifying the Nearest Neighbor Graph
of X from a stochastic distance oracle. As the noise vari-
ance goes to 0, this term becomes 1. Furthermore, k is
adaptive to the geometry of X and in most cases is much
smaller than its bound in Theorem 8. Intuitively, the bound
on k states that the number of repeated samples is never
worse that what is necessary to 1) distinguish between q’s
nearest neighbor and second nearest neighbor and 2) dis-
tinguish between any two points in X . Crucially, however,
Noisy-Find-Nearest adapts to the level of noise, the
geometry of X and need not know these values a priori.

4.4 INSERTION TIME AND BUILD TIME
COMPLEXITY

Next, we bound the number of calls to the distance oracle
necessary to insert a new point p into a cover tree T .

Theorem 11. Fix d > 0, a cover tree T on set X , and

a point to insert p. Let |X | = n and assume that the ex-

pansion rate of X [{p} is c. Run Noisy-Insert with

failure probability 1�d and pass it the root level cover set:

Citop
and level i = itop. If Noisy-Insert succeeds, which

occurs with probability 1� d , then it returns a cover tree

on X [{p} in at most

O

⇣
c

7 log(n) log
⇣

n

d

⌘
kp

⌘

calls to the noisy distance oracle where parameter kp is

defined in the proof and depends on X and p.

Remark 12. As in the statement of Theorem 8, the term kp

captures the average effect of noise on this problem, and as

the noise variance goes to 0, this term becomes 1.

1783

As discussed in Section 3.2.1, to construct a cover tree from
scratch, one need only call Noisy-Insert on each point
in X and add them the tree one at a time. The following
theorem bounds the complexity of this process.

Theorem 13. Fix d > 0 and set n points X . Assume that the

expansion rate of X is c. Calling Noisy-Insert with

failure probability d/n on each point in X one at a time,

returns a cover tree T on X correctly with probability at

least 1�d in at most

O

⇣
c

7
n log(n) log

⇣
n

d

⌘
ek
⌘

calls to the noisy distance oracle where ek := 1
n

Âi2X k i for

k i defined in the proof of Theorem 11.

4.5 EXTENSION TO THE NEAREST NEIGHBOR
GRAPH PROBLEM

In this section we extend the results of Mason et al. [2019]
for learning nearest neighbor graphs from a stochastic dis-
tance oracle. In this setting, given a set X 2 (M ,d), one
wishes to learn the directed graph G(X) that connects each
x2X to its nearest neighbor in X \{x}. While Mason et al.
[2019] also leverage a bandit subroutine, the bandit algo-
rithm considered in this work is markedly different from the
one considered in Mason et al. [2019]. This problem is well
studied in the noiseless regime and at times referred to as
the all nearest neighbor problem Clarkson [1983], Sankara-
narayanan et al. [2007], Vaidya [1989]. Mason et al. [2019]
provide the first algorithm that learns the nearest neighbor
graph using only a stochastic oracle and show that in special
cases it achieves a rate of O(n log(n)D�2) which is matches
the optimal rate for the noiseless problem with only a multi-
plicative penalty of D�2 accounting for the effect of noise.
Unfortunately, the condition necessary to show that result
is stringent. In fact, it can be shown that the separation con-
dition of Mason et al. [2019] is equivalent to the special
case that c = 2. The authors conjectured that the condition
was not necessary and showed empirically that it should
be possible to achieve O(n log(n)) complexity in the noisy
setting without their separation condition. This motivates
the question of if similar performance can be achieved under
more general conditions than those needed in Mason et al.
[2019]. We answer this question in the affirmative and show
how to extend the Bandit-Cover-Tree to achieve near
optimal performance on the nearest neighbor graph problem
without the need for any additional assumptions on the data.
This proceeds in two steps:

1. Build a cover tree T on X with probability 1�d/2.
2. For each x 2X , find its nearest neighbor in X \{x}

using T with probability 1�d/2n.

The above is sufficient to specify each edge of the
nearest neighbor graph. Note that T is a cover

tree on X not X \{x} so we cannot blindly use
Noisy-Find-Nearest as it will return x itself. To find
x’s nearest neighbor in X \{x}, one may instead modify
Noisy-Find-Nearest so that Identify-Cover is
called on the set Qi\{x} instead of Qi. Then, when the algo-
rithm terminates, the final set Qibottom will have 2 points: x

and its nearest neighbor in X \{x}. A simple union bound
ensures that this process succeeds with probability 1� d .
The following Lemma bounds the total number of samples.

Lemma 14. Via the above procedure,

Bandit-Cover-Tree returns the nearest neighbor

graph of X with probability 1�d in

O

c

7
n log(n) log

⇣
n

d

⌘
ek + Â

x2X
c

7 log(n) log
⇣

n

d

⌘
kx

!

for ek defined in Theorem 13 and kx as in Theorem 8.

The proof follows by combining the guarantees of Theo-
rems 8 and 13. In particular, the above bound scales as
O(c7

n log2(n)k) which matches the rate of Mason et al.
[2019] with an additional log factor. Importantly, the above
result makes no assumptions on the set X , and instead the
bound scales with the expansion rate, c. Hence, we achieve
near optimal performance for the nearest neighbor graph
problem with under far more general conditions.

5 CONCLUSION

In this paper, we introduced the Bandit Cover Tree
framework for the Nearest Neighbor Search under Un-
certainty (NNSU) problem. BCT builds on top of the
Cover Tree algorithm by Beygelzimer et al. [2006].
We present three methods, Noisy-Find-Nearest,
Noisy-Insert, and Noisy-Remove, and bound their
accuracy, memory footprint, build complexity, insertion and
removal complexities, and query complexities. In particular,
we show a query complexity that is O(log(n)), insertion
complexity that is O(log2(n)), removal complexity that is
O(log2(n)), and a construction complexity of O(n log2(n)).
The query complexity matches the state of the art n depen-
dence for the NNS problem of O(log(n)) despite the added
uncertainty of the NNSU problem. The additional log(n)
term present in the insertion and removal guarantee stems
from a union bound which is necessary when dealing with a
stochastic oracle, though it may be possible that by giving
the algorithm access to the expansion constant, this can be
improved to an additional doubly logarithmic term instead.
Hence, the insertion, construction, and removal complex-
ities are also near the state of the art for NNS. Lastly a
memory footprint of O(n) and accuracy of 1� d are both
optimal in this problem. In particular, a tree with n leaves
requires W(n) memory to store, and though a dependence
on d is unavoidable when dealing with a stochastic oracle,

1784

BCTs enjoy a probability 1� d probability of success for
any specified d > 0.

Note that we focus on controlling the number of calls to
the distance oracle in this work and assume that an individ-
ual call requires O(1) work. We expect that for practical
problems the bulk of the computational effort will be many
repeated calls to the oracle. It is an open question for fu-
ture work to control the computational complexity in the
noisy regime considering all operations, not just calls to the
stochastic oracle.

Furthermore, the results depend strongly on the expansion
rate, c. Some works such as Haghiri et al. [2017], Dasgupta
and Sinha [2013] trade accuracy for improved dependence
on c or other measures of dimension. Instead, these algo-
rithms guarantee that xq is correctly returned with probabil-
ity at least 1�dc,n for any q. Though dc,n is tunable, it often
depends on c or other parameters potentially unknown to
the practitioner. These methods often achieve good empiri-
cal performance, however. It may be interesting to develop
methods that achieve lower theoretical accuracy but enjoy a
softer dependence on c.

References

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Ap-
proximate nearest neighbor search in high dimensions.
arXiv preprint arXiv:1806.09823, 7, 2018.

Vivek Bagaria, Govinda M Kamath, Vasilis Ntranos, Mar-
tin J Zhang, and David Tse. Medoids in almost
linear time via multi-armed bandits. arXiv preprint

arXiv:1711.00817, 2017.

Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Communications of the

ACM, 18(9):509–517, 1975.

Alina Beygelzimer, Sham Kakade, and John Langford.
Cover trees for nearest neighbor. In Proceedings of

the 23rd international conference on Machine learning,
pages 97–104. ACM, 2006.

Nitin Bhatia et al. Survey of nearest neighbor techniques.
arXiv preprint arXiv:1007.0085, 2010.

Kenneth L Clarkson. Fast algorithms for the all nearest
neighbors problem. In 24th Annual Symposium on Foun-

dations of Computer Science (sfcs 1983), pages 226–232.
IEEE, 1983.

Sanjoy Dasgupta and Kaushik Sinha. Randomized partition
trees for exact nearest neighbor search. In Conference on

Learning Theory, pages 317–337, 2013.

Brian Eriksson, Paul Barford, Joel Sommers, and Robert
Nowak. A learning-based approach for ip geolocation. In

International Conference on Passive and Active Network

Measurement, pages 171–180. Springer, 2010.

Siavash Haghiri, Debarghya Ghoshdastidar, and Ulrike von
Luxburg. Comparison based nearest neighbor search.
arXiv preprint arXiv:1704.01460, 2017.

Steven R Howard, Aaditya Ramdas, Jon McAuliffe, and
Jasjeet Sekhon. Uniform, nonparametric, non-asymptotic
confidence sequences. arXiv preprint arXiv:1810.08240,
2018.

Kevin Jamieson and Lalit Jain. A bandit approach to multi-
ple testing with false discovery control. In Proceedings

of the 32nd International Conference on Neural Informa-

tion Processing Systems, NIPS’18, page 3664–3674, Red
Hook, NY, USA, 2018. Curran Associates Inc.

Kevin G Jamieson and Robert Nowak. Active ranking using
pairwise comparisons. In Advances in Neural Information

Processing Systems, pages 2240–2248, 2011.

Robert Krauthgamer and James R Lee. Navigating nets:
simple algorithms for proximity search. In Proceedings of

the fifteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 798–807. Society for Industrial and
Applied Mathematics, 2004.

Joseph B Kruskal. Nonmetric multidimensional scaling: a
numerical method. Psychometrika, 29(2):115–129, 1964.

Blake Mason, Lalit Jain, and Robert Nowak. Learning low-
dimensional metrics. In Advances in neural information

processing systems, pages 4139–4147, 2017.

Blake Mason, Ardhendu Tripathy, and Robert Nowak.
Learning nearest neighbor graphs from noisy distance
samples. In Advances in Neural Information Processing

Systems, pages 9586–9596, 2019.

Blake Mason, Lalit Jain, Ardhendu Tripathy, and Robert
Nowak. Finding all {e}-good arms in stochastic ban-
dits. Advances in Neural Information Processing Systems,
2020.

Jagan Sankaranarayanan, Hanan Samet, and Amitabh Varsh-
ney. A fast all nearest neighbor algorithm for applications
involving large point-clouds. Computers & Graphics, 31
(2):157–174, 2007.

Roger N Shepard. The analysis of proximities: Multidi-
mensional scaling with an unknown distance function. i.
Psychometrika, 27(2):125–140, 1962.

Pravin M Vaidya. An o(n logn) algorithm for the all-nearest-
neighbors problem. Discrete & Computational Geometry,
4(2):101–115, 1989.

Huahua Wang and Arindam Banerjee. Randomized block
coordinate descent for online and stochastic optimization.
arXiv preprint arXiv:1407.0107, 2014.

1785

Yisong Yue and Thorsten Joachims. Interactively optimizing
information retrieval systems as a dueling bandits prob-
lem. In Proceedings of the 26th Annual International Con-

ference on Machine Learning, pages 1201–1208, 2009.

1786

	Introduction
	Related Work
	Main Contributions
	Notation

	Cover Trees for Nearest Neighbor Search
	The Bandit Cover Tree Algorithm for NNSU
	Finding Nearest Neighbors with a Cover Tree
	Approximate NNSU

	Building and Altering a Cover Tree
	Insertion

	Theoretical Guarantees of Bandit Cover Tree
	Memory
	Accuracy
	Search Accuracy
	Insertion Accuracy

	Query Time Complexity
	Insertion Time and Build Time Complexity
	Extension to the Nearest Neighbor Graph Problem

	Conclusion

