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Abstract

This paper investigates simultaneous preference and metric learning from a crowd
of respondents. A set of items represented by d-dimensional feature vectors and
paired comparisons of the form “item i is preferable to item j” made by each
user is given. Our model jointly learns a distance metric that characterizes the
crowd’s general measure of item similarities along with a latent ideal point for
each user reflecting their individual preferences. This model has the flexibility to
capture individual preferences, while enjoying a metric learning sample cost that is
amortized over the crowd. We first study this problem in a noiseless, continuous
response setting (i.e., responses equal to differences of item distances) to understand
the fundamental limits of learning. Next, we establish prediction error guarantees
for noisy, binary measurements such as may be collected from human respondents,
and show how the sample complexity improves when the underlying metric is low-
rank. Finally, we establish recovery guarantees under assumptions on the response
distribution. We demonstrate the performance of our model on both simulated data
and on a dataset of color preference judgments across a large number of users.

1 Introduction

In many data-driven recommender systems (e.g., streaming services, online retail), multiple users
interact with a set of items (e.g., movies, products) that are common to all users. While each user has
their individual preferences over these items, there may exist shared structure in how users perceive
items when making preference judgments. This is a reasonable assumption, since collections of
users typically have shared perceptions of similarity between items regardless of their individual item
preferences [1-3]. In this work we develop and analyze models and algorithms for simultaneously
learning individual preferences and the common metric by which users make preference judgments.

Specifically, suppose there exists a known, fixed set X’ of n items, where eachitemi € 1,...,nis
parameterized by a feature vector z; € R?. We model the crowd’s preference judgments between
items as corresponding to a common Mahalanobis distance metric dps(x,y) = || — y|| ps, where

le||az == Va&T Ma and M is a d x d positive semidefinite matrix to be learned. Measuring distances
with dps has the effect of reweighting individual features as well as capturing pairwise interactions
between features. To capture individual preferences amongst the items, we associate with each of
K users an ideal point uj, € R? for k € 1,..., K such that user k prefers items that are closer to
uy, than those items that are farther away, as measured by the common metric dps. The ideal point
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model is attractive since it can capture nonlinear notions of preference, and preference rankings are
determined simply by sorting item distances to each user point and can therefore be easily generalized
to items outside of X’ with known embedding features [4—7] . Furthermore, once a user’s point uy, is
estimated, in some generative modeling applications it can then be used to synthesize an “ideal” item
for the user located exactly at uy, which by definition would be their most preferred item if it existed.

In order to learn the metric and ideal points, we issue a series of paired comparison queries to each user
in the form “do you prefer item ¢ or item j?” Since such preferences directly correspond to distance
rankings in R?, these comparisons provide a signal from which the user points {ug }_ | and common
metric M can be estimated. The main contribution of this work is a series of identifiability, prediction,
and recovery guarantees to establish the first theoretical analysis of simultaneous preference and
metric learning from paired comparisons over multiple users. Our key observation is that by modeling
a shared metric between all users rather than learning separate metrics for each user, the sample
complexity is reduced from O(d?) paired comparisons per user to only O(d), which is the sample
cost otherwise required to learn each ideal point; in essence, when amortizing metric and preference
learning over multiple users, the metric comes for free. Our specific contributions include:

* Necessary and sufficient conditions on the number of items and paired comparisons required for
exact preference and metric estimation over generic items, when noiseless differences of item
distances are known exactly. These results characterize the fundamental limits of our problem
in an idealized setting, and demonstrate the benefit of amortized learning over multiple users.
Furthermore, when specialized to K = 1 our results significantly advance the existing theory of
identifiability for single-user simultancous metric and preference learning [7].

* Prediction guarantees when learning from noisy, one-bit paired comparisons (rather than exact
distance comparisons). We present prediction error bounds for two convex algorithms that learn full-
rank and low-rank metrics respectively, and again illustrate the sample cost benefits of amortization.

* Recovery guarantees on the metric and ideal points when learning from noisy, binary labels under
assumptions on the response distribution. Furthermore, we empirically validate the recovery
performance of our multi-user learning algorithms on both synthetic datasets as well as on real
psychometrics data studying individual and collective color preferences and perception.

Summary of related work: Metric and preference learning are both extensively studied problems
(see [8] and [9] for surveys of each). A common paradigm in metric learning is that by observing
distance comparisons, one can learn a linear [10—12], kernelized [13, 14], or deep metric [15, 16] and
use it for downstream tasks such as classification. Similarly, it is common in preference learning to use
comparisons to learn a ranking or to identify a most preferred item [5,6,17-19]. An important family
of these algorithms reduces preference learning to identifying an ideal point for a fixed metric [5,20].
The closest work to ours is [7], who perform metric and preference learning simultaneously from
paired comparisons in the single-user case and propose an alternating minimization algorithm that
achieves empirical success. However, that work leaves open the question of theoretical guarantees
for the simultaneous learning problem, which we address here. A core challenge when establishing
such guarantees is that the data are a function of multiple latent parameters (i.e., unknown metric
and ideal point(s)) that interact with each other in a nonlinear manner, which complicates standard
generalization and identifiability arguments. To this end, we introduce new theoretical tools and
advance the techniques of [12] who showed theoretical guarantees for learning a Mahalanobis metric
from triplet queries. We survey additional related work more extensively in Appendix B.

Notation: Let [K] := 1... K. Unless specified otherwise, ||| denotes the ¢5 norm when acting on a
vector, and the operator norm induced by the 5 norm when acting on a matrix. Let e; denote the ith
standard basis vector, 1 the vector of all ones, 0, the a x b matrix of all zeros (or O if the dimensions
are clear), and I the identity matrix, where the dimensionality is inferred from context. For a
symmetric d x d matrix A, let VeC*(A) = [A1,17 ALQ, RN Al,d7 A272, A213, ey AQ_’d, - Ad’d]T
denote the vectorized upper triangular portion of A, which is a D-length vector where D =
d(d+1)/2. Letu ®g v = vec*(uw™) denote the unique entries of the Kronecker product between
vectors u, v € R%, and let ® denote the Hadamard (or element-wise) product between two matrices.

2 Identifiability from unquantized measurements

In this section, we characterize the fundamental limits on the number of items and paired comparisons
per user required to identify M and {uk}szl exactly. In order to understand the fundamental



hardness of this problem, we begin by presenting identifiability guarantees under the idealized case
where we receive exact, noiseless difference of distance measurements!, before deriving similar
results in the case of noisy realizations of the sign of these differences in the following sections.

We formally define our model as follows: if user &k responds that they prefer item : to item j, then
lz; — uk|las < ||z; — wkl az. Equivalently, by defining

k
o) = llwi = wklis — s — weldy = & Mz; — 2] Ma; — 20l M(2; - z;), (1)

user k prefers item ¢ over item j if 5 (k) < 0 (otherwise j is preferred). In this section, we assume that

0; (k ) is measured exactly, and refer to this measurement type as an unquantized paired companson.
Let my, denote the number of unquantized paired comparisons answered by user k and let mp =
Z x—1 Mk denote the total number of comparisons made across all users.

It is not immediately clear if recovery of both M and {uy, }~_, is possible from such measurements,
which depend quadratically on the item vectors. In particular, one can conceive of pathological
examples where these parameters are not identifiable (i.e., there exists no unique solution). For
instance, suppose d = n, M = ol for a scalar o > 0, ; = e; for i € [n], and for each user

uy, = By 1 for a scalar §i. Then one can show that 5( J) = 0 for all 4, j, k, and therefore v, 51, ..., Bk
arc unidentifiable from any set of paired comparisons over X'. In what follows, we derive necessary
and sufficient conditions on the number and geometry of items, number of measurements per user,
and interactions between measurements and users in order for the latent parameters to be identifiable.

Note that eq. (1) includes a nonlinear interaction between M and wuy; however, by defining vy, =
—2Mwuy, (which we refer to as user k’s “pseudo-ideal point,” reflecting the component of wy, in the
column space of M) eq. (1) becomes linear in M and vy:

51(13) —x! Mx; — m;‘-FMa:j + (x; — x;) vy )
If M is full-rank and the system of equations admits unique solutions for M and {vk}szl, then
uy, can be recovered exactly from vy.? In other words, the non-convex eq. (1) can be solved in two
stages by first solving a linear relaxation (2) in terms of M and vy, and then solving for u. Note
that since M is symmetric, we may write ] Mx; = (vec*(2M — I © M), z; ®s x;). Defining
v(M) = vec*(2M — I ® M), from which M can be determined, we have

65,];) = (@ @s @ —xj ©s2))" (27— 25)7] {Vg’]::[)} '

By concatenating all user measurements in a single linear system, we can directly show conditions
for identifiability of M and {v }/_ | by characterizing when the system admits a unique solution. To
do so, we define a class of matrices that will encode the item indices in each pair queried to each user:

Definition 2.1. A a x b matrix S is a selection matrix if for every i € [a], there exist distinct indices
pi,q; € [b] such that S[i,p;] = 1, S[i,¢;] = —1, and S[i, j] = 0 for j € [b] \ {ps, ¢}

In Appendix C, we characterize several theoretical properties of selection matrices, which will be
useful in proving the results that follow.

For each user k, we represent their queried pairs by a my, x n selection matrix denoted S}, where each
row selects a pair of items corresponding to its nonzero entries. Letting X := [z, ..., ®,] € R,
Xy = [T1 ®s T1,...,Ty, Rg T,] € RP*" and §;, € R™* denote the vector of unquantized
measurement values for user k£, we can write the entire linear system over all users as a set of mp
equations with D + dK variables to be recovered:

v(M) 5 S$1X5 SiXT Opya 0 Omya
vy 1 52X® 0rns,d SgXT 011s,d

I . =|: where I' == . . . . . . 3
VK Ox SKX% Omud Omga -+ SkXT

'We use the term “measurement” interchangeably with “paired comparison.”

*If M were rank deficient, only the component of wy, in the row space of M affects & (I;) In this case, there
is an equlvalence class of user pomts that accurately model their responses. We then take uy, to be the minimum
norm solution, i.e., ux = M vy This generalizes Proposition 1 of [7] for the multiple user case.



From this linear system, it is clear that v/(M) (and hence M) and {v;}/_, (and hence {u;} |,
if M is full-rank) can be recovered exactly if and only if I" has full column rank. In the following
sections, we present necessary and sufficient conditions for this to occur.

2.1 Necessary conditions for identifiability

To build intuition, note that the metric M has D degrees of freedom and each of the K pseudo-ideal
points v;, has d degrees of freedom. Hence, there must be at least my > D + Kd measurements in
total (i.e., rows of I') to have any hope of identifying M and {v), }}*_,. When amortized over the K
users, this corresponds to each user providing at least d + P/x measurements on average. In general,
d of these measurements are responsible for identifying each user’s own pseudo-ideal point (since vy
is purely a function of user k’s responses), while the remaining P/k contribute towards a collective
set of D measurements needed to identify the common metric. While these D measurements must be
linearly independent from each other and from those used to learn the ideal points, a degree of overlap
is acceptable in the additional d measurements each user provides, as the vy,’s are independent of one
another. We formalize this intuition in the following proposition, where we let Sz := [ST, ..., SE]T
denote the concatenation of all user selection matrices.

Proposition 2.1. If T has full column rank, then ZkK:1 my > D+ dK and the following must hold:
(a) forall k € [K], rank(Sx X ™) = d, and therefore rank(Sy) > d and my, > d
(b) Zszl rank(S; [ XL XT]|) > D + dK, and therefore Zszl rank(Sy) > D+ dK

(c) rank(St [ XX XT|) = D+d, and therefore rank(St) > D +d, rank([ XTI XT]) =
D4+dandn>D+d+1

If Zszl my = D + dK exactly, then (a) and (b) are equivalent to my > d V k and each user’s
selection matrix having full row rank. (c) implies that the number of required items n scales as ©(d?);
in higher dimensional feature spaces, this scaling could present a challenge since it might be difficult
in practice to collect such a large number of items for querying. Finally, note that the conditions in
Proposition 2.1 are not sufficient for identifiability: in Appendix C.6, we present a counterexample
where these necessary properties are fulfilled, yet the system is not invertible.

2.2 Sufficient condition for identifiability

Next, we present a class of pair selection schemes that are sufficient for parameter identifiability
and match the item and measurement count lower bounds in Proposition 2.1. This result leverages
the idea that as long the the d measurements each user provides to learn their ideal point do not
“overlap” with the D measurements collectively provided to learn the metric, then the set of my total
measurements is sufficiently rich to ensure a unique solution. First, we define a property of certain
selection matrices where each pair introduces at least one new item that has not yet been selected:

Definition 2.2. An m x n selection matrix S is incremental if for all i € [m], at least one of the
following is true, where p; and g; are as defined in Definition 2.1: (a) for all j < i, S[j, p;] = 0; (b)
forall j <4, S[j,¢;] = 0.

We now present a class of invertible measurement schemes that builds on the definition of incremental-
ity. For simplicity assume that mr = D+ d K exactly, which is the lower bound from Proposition 2.1.
Additionally, assume without loss of generality that each m > d; if instead there existed a user £*
such that my~ = d exactly, one can show under the necessary conditions in Proposition 2.1 that the
system would separate into two subproblems where first the metric would need to be learned from
the other K — 1 users, and then vy~ is solved for directly from user k£*’s measurements.

Proposition 2.2. Let K > 1, and suppose my, > dVk € [K], mp = D+ dK,andn > D +d+ 1.

)

Suppose that for each k € [K|, there exists a d X n selection matrix S ,(cl and my, — d X n selection

matrix S,(f) such that Sy, = [ (s")T (81", and that the following are true:

(a) Forall k € [K], rank(S,(Cl)) =d



(b) Defining the D x n selection matrix S as §?) = [ ()T ... (Sﬁ))T]T, there exists a

(1)
D x D permutation P such that for each k € [K], [§§(2> } is incremental

Additionally, suppose each item x; is sampled i.i.d. from a distribution px that is absolutely continu-
ous with respect to the Lebesgue measure. Then with probability 1, T' has full column rank.

Remark 2.3. Tn Appendix C.6 we construct a pair selection scheme that satisfies the conditions?
in Proposition 2.2 while only using the minimum number of measurements and items, with my =
d+ P/k (and therefore mp = D + dK) and n = D 4 d 4 1. Importantly, this construction confirms
that the lower bounds on the number of measurements and items in Proposition 2.1 are in fact tight.
Since D = O(d?), if K = Q(d) then only m; = O(d) measurements are required per user. This
scaling demonstrates the benefit of amortizing metric learning across multiple users, since in the
single user case D + d = Q(d?) measurements would be required.

2.3 Single user case

In the case of a single user (KX = 1), it is straightforward to show that the necessary and sufficient
selection conditions in Proposition 2.1 and Proposition 2.2 respectively are equivalent, and simplify
to the condition that rank(.S) > D + d (where we drop the subscript on S1). In a typical use case, a
practitioner is unlikely to explicitly select pair indices that result in S being full-rank, and instead
would select pairs uniformly at random from the set of (’QL) unique item pairs. By proving a tail bound
on the number of random comparisons required for S to be full-rank, we have with high probability
that randomly selected pairs are sufficient for metric and preference identifiability in the single user
case. We summarize these results in the following corollary:

Corollary 2.3.1. When K = 1, if T is full column rank then rank(S) > D + d. Conversely, for
a fixed S satisfying rank(S) > D + d, if each x; is sampled i.i.d. according to a distribution px
that is absolutely continuous with respect to the Lebesgue measure then I is full column rank with
probability 1. If each pair is selected independently and uniformly at random withn = Q(D +d) and
mr = Q(D + d), then if x; is drawn i.i.d. from px, T has full column rank with high probability.

Importantly, the required item and sample complexity for randomly selected pairs matches the lower
bounds in Proposition 2.1 up to a constant. As we describe in Appendix C.7, we conjecture that a
similar result holds for the multiuser case (KX > 1), which is left to future work.

3 Prediction and generalization from binary labels

In practice, we do not have access to exact difference of distance measurements. Instead, paired
comparisons are one-bit measurements (given by the user preferring one item over the other) that are
sometimes noisy due to inconsistent user behavior or from model deviations. In this case, rather than
simply solving a linear system, we must optimize a loss function that penalizes incorrect response
predictions while enforcing the structure of our model. In this section, we apply a different set of
tools from statistical learning theory to characterize the sample complexity of randomly selected
paired comparisons under a general noise model, optimized under a general class of loss functions.

We assume that each pair p is sampled uniformly with replacement from the set of (g) pairs, and

the user k queried at each iteration is independently and uniformly sampled from the set of K users.

For a pair p = (i,7) given to user k, we observe a (possibly noisy) binary response yék) where

yék) = —1 indicates that user k prefers item ¢ to j, and yék) = 1 indicates that j is preferred. Let

S :={(p,k, yék))}p:(i’j) be an i.i.d. joint dataset over pairs p, selected users k, and responses yék),

where |S| denotes the number of such data points. We wish to learn M and vectors {uy, | that

3We note that these conditions are not exhaustive: in Appendix C.6 we construct an example where T is
full column rank, yet the conditions in Proposition 2.2 are not met. A general set of matching necessary and
sufficient identifiability conditions on {Sk}szl has remained elusive; towards this end, in Appendix C.7 we
describe a more comprehensive set of conditions that we conjecture are sufficient for identifiability.



predict the responses in S: given a convex, L-Lipschitz loss £: R — Rxq,* we wish to solve
1
min >0 () (s — @illig — e~ 2503) )
M {urH, |S] ZS: . M illn0) )
st M =0, Mllr < Ap, |ugllz < A V€ (K], 0] <y Vi gk

where Ap, Ay, ¥ > 0 are hyperparameters and 51(,k) is defined as in eq. (1). The constraint M > 0
ensures that M defines a metric, the Frobenius and /5 norm constraints prevent overfitting, and the

constraint on 51(7k) is a technical point to avoid pathological cases stemming from coherent & vectors.

The above optimization is non-convex due to the interaction between the M and w terms. Instead, as

in Section 2 we define vy, := —2Mwu;, and solve the relaxation’
min  R(M, {ve 1) s.t. M = 0, | M| r < Ar, [oillz < Ao Yk € [K], 1605 < vV, 5,k
Mﬁ{”k}kzl ’
F2) K 1 k T T T (5)
where R(M, {vi }i—1) = 5] Eé (yé ) (:1:Z Max; — x; Max; 4 vy, (x; — a:])>) .
S

The quantity R(M, {vi }_|) is the empirical risk, given dataset S. The empirical risk is an unbiased
estimate of the true risk given by

R(M, {v,}K ) =E [z (yzgm (2T M=, — a7 Ma; + v (z; mj)))] ,
where the expectation is with respect to a random draw of p = (i, j), k, and yj(pk) conditioned on the

choice of p and k. Let M and {#; }X_, denote the minimizers of the empirical risk optimization
in eq. (5), and let M* and {v;}X_ | minimize the true risk, subject to the same constraints. The
following theorem bounds the excess risk of the empirical optimum R(M , {0x X)) relative to the
optimal true risk R(M*, {v}}E ).

Theorem 3.1. Suppose ||x;||2 < 1 forall i € [n]. With probability at least 1 — 6,

— L 256 L2(A2. + K A2
ROV, {8} ) — RO, fu ) < \/ eI pog(a 4+ 1)
; 5 (0)
128 L2(\ K\2 8L2y2 log (%
V128 ?(’|§|+ ”)log(d2+d+1)+ —W|5Tg(6)’

Remark 3.2. To put this result in context, suppose || M*||r = d so that the average squared magnitude
of each entry is a constant, in which case we can set A\p = d. Similarly, if each entry of vy, is
dimensionless, then |[vy||2 o v/d and so we can set A, = v/d. We then have that the excess risk

in eq. (6) is 0] ( e I-gf\{ d) where O suppresses logarithmic factors, implying a sample complexity
of d? + K d measurements across all users, and therefore an average of d + d? /K measurements

per user. If K = Q(d), this is equivalent to O(d) measurements per user, which corresponds to the
parametric rate required per user in order to estimate their pseudo-ideal point vy. Similar to the case
of unquantized measurements, the O(d?) sample cost of estimating the metric from noisy one-bit
comparisons has been amortized across all users, demonstrating the benefit of learning multiple user
preferences simultaneously when the users share a common metric.

3.1 Low-rank modeling

In many settings, the metric M may be low-rank with rank » < d [8, 12]. In this case, M only
has dr degrees of freedom rather than d? degrees as in the full-rank case. Therefore if K = Q(d),
we intuitively expect the sample cost of learning the metric to be amortized to a cost of O(r)

4We restrict ourselves to the case where the loss is a function of 3 (lur — zillar — lur — =5 |3r)-

3Specifically we may choose A, = 2Ar ., resulting in a constraint set containing the solution to (4). To
see this, let M™, {uj; };—; be the solution to (4) and define vy, = —2M *uj,. Then ||v|l2 = 2||M*uj||2 <
2| M7 [[[luillz < 2( M7 (|7 lluglls < 2AFAu.




measurements per user. Furthermore, as each vy, is contained in the r-dimensional column space
of M, we also expect a sample complexity of O(r) to learn each user’s pseudo-ideal point. Hence,
we expect the amortized sample cost per user to be O(r) in the low-rank setting, which can be a
significant improvement over O(d) in the full-rank setting when r < d.

Algorithmically, ideally one would constrain the M and {17k}kK:1 that minimize the empirical
risk such that rank(M) = r and vy, € colsp(M ); unfortunately, such constraints are not convex.
Towards a convex algorithm, note that since vy, € colsp(M), rank([ M, vi, -, vk |) = rank(M) =
r. Thus, it is sufficient to constrain the rank of [ M, vy, -, vk ]. We relax this constraint to a convex
constraint on the nuclear norm ||[ M v - vk |||+, and solve a similar optimization problem to eq. (5):

min, RM Ao ) st M= 0,[M w1 vg]lle <A, 007 <y Vi gk (D)
M {vr}i_, /

We again let M* and {v}}X | minimize the true risk R(M, {v;}X_,), subject to the same con-
straints. The following theorem bounds the excess risk over this constraint set:

Theorem 3.3. Suppose ||x;||2 < 1 forall i € [n]. With probability at least 1 — 4,

ROV, (8}1) — ROM, {0 ) gzL,\/ Dlloghd + K) [(s+ 2minlnd ) IXIE | T3]

|S| K n VK
8L 8L%421og(2/9)
4+ S g (2d 4+ K + | S R08(2/0)
gl] o824+ K) 3]

To put this result in context, suppose that the items x; and ideal points uj, are sampled i.i.d. from
N(0, %I ). With this item distribution it is straightforward to show that with high probability,
[ X||> = O(%) (see [21]). Foragivenr < dlet M = %LLT, where L is a d x r matrix with
orthonormal columns sampled uniformly from the Grassmanian. With this choice of scaling we have
||[M||r = d, so that each element of M is dimensionless on average. Furthermore, recalling that
v, = —2Muy, with this choice of scaling E[||vx]|3] o d and so each entry of vj on average is
dimensionless. To choose a setting for \* recall that [M, vy, . . . v ] has rank r and therefore

M v - ol <VPI[IM vy - vK]lFS\/T’(d2+K]§1€1[a;§]||vk||§),

which one can show is O(y/r(d? + dKlog K)) with high probability and so we set A\, =
0] (\/ r(d? + dK log K )) With these term scalings, we have the following corollary:

Corollary 3.3.1. Letn > d, z;,uy ~ N(0, éI) and M = \%LLT, where L is a d X r matrix with

orthonormal columns. If K = Q(d2), then in the same setting as Theorem 3.3 with high probability
AT (5 * * ~ dr + Kr
R(M,{v} £ ) - R(IM*, {v;i} . )=0 < T) )

Remark 3.4. The scaling |S| = O(dr+ Kr) matches our intuition that O (dr) collective measurements
should be made across all users to account for the dr degrees of freedom in M, in addition to O(r)
measurements per user to resolve their own pseudo-ideal point’s r degrees of freedom. If K = Q(d),
then each user answering O(r) queries is sufficient to amortize the cost of learning the metric with
the same order of measurements per user as is required for their ideal point. Although Corollary 3.3.1
requires the even stronger condition that K = €(d?), we believe this is an artifact of our analysis and
that K = §(d) should suffice.® Even so, a €2(d?) user count scaling might be reasonable in practice
since recommender systems typically operate over large populations of users.

®The required user scaling of K = Q(d?) implies that Corollary 3.3.1 only recovers an amortized scaling of
O(r) measurements per user if the user count is very large. Nevertheless, the original statement of Theorem 3.3
does apply for any user count, and in this case the only drawback to not invoking K = €Q(d?) is that the
amortized scaling is larger than O(r + dr/K) measurements per user. We believe this scaling can in fact be
tightened to O(r 4 dr /K') measurements per user for all user counts K (not just K = Q(d?)), which we leave
to future work. See the proof of Corollary 3.3.1 for additional discussion.



4 Recovery guarantees

The results in the previous section give guarantees on the generalization error of a learned metric
and ideal points when predicting pair responses over /X', but do not bound the recovery error of the
learned parameters M, {0, } 1, with respect to M* and {v} }_ . Yet, in some settings such as data
generated from human responses [22,23] it may be reasonable to assume that a true M* and {v}; }szl
do exist that generate the observed data (rather than serving only as a model) and that practitioners
may wish to estimate and interpret these latent variables, in which case accurate recovery is critical.
Unfortunately, for an arbitrary noise model and loss function, recovering M * and {”Z}kK:l exactly
is generally impossible if the model is not identifiable. However, we now show that with a small
amount of additional structure, one can ensure that M and {vy }X_, accurately approximate M*
and {v} } | if a sufficient number of one-bit comparisons are collected.

We assume a model akin to that of [12] for the case of triplet metric learning. Let f: R — [0,1]
be a strictly monotonically increasing link function satisfying f(x) = 1 — f(—=x); for example,
f(z) = (1 +e*)~!is the logistic link and f(x) = ®(x) is the probit link where ®(-) denotes the
CDF of a standard normal distribution. Defining 6, (M, v) := ! Mx; — ijMa:j + vl (z; — )
for p = (i,J), we assume that P(yz(,k) = —1) = f(—0,(M*,v})) for some M* = 0 and v} €
colsp(M™*). This naturally reflects the idea that some queries are easier to answer (and thus less

noisy) than others. For instance, if 58?) < 0 such as may occur when x; very nearly equals user

k’s ideal point, we may assume that user k£ almost always prefers item ¢ to j and so f (—51-(]]-9)) —1

(since f is monotonic). Furthermore, we assume that eq. (5) is optimized with the negative log-
likelihood loss £y induced by f: £f(yp, p; M,v) := —log(f(ypd,(M,vy))). In Appendix E, we

show that we may lower bound the excess risk of M, {vy}X | by the squared error between the
unquantized measurements corresponding to M, {vy }H< | and M*, {v; }< |. We then utilize tools
from Section 2 combined with the results in Section 3 to arrive at the following recovery guarantee.

Theorem 4.1. Fix a strictly monotonic link function f satisfying f(z) = 1 — f(—x). Suppose for a
given item set X withn > D + d + 1 and ||z;|| < 1Vi € [n] that the pairs and users in dataset S
are sampled independently and uniformly at random, and that user responses are sampled according
to ]P(yz(yk) = —1) = f(=6,(M*,v})) where M*,{v;}K_, satisfy the constraints in (5). Let M,
{f)k}szl be the solution to (5) solved using loss L. Then with probability at least 1 — 6,

K
1 2 i * 1 ~ * 12
=0 (X5, X"1) (IIM =M+ 3 19— vl ) <

4 [L2(02 + KA2) BL?(\Z + K\2) ) 1 [L242log(2)
— | —E Y log(d2+d+1 22 log(d d+1 | =0
CN ST B D T e D G [

where Cy = min. ;< f'(2) and J = I, — %lnlf is the centering matrix. Furthermore, if
X is constructed by sampling each item i.i.d. from a distribution px with support on the unit
ball that is absolutely continuous with respect to the Lebesgue measure, then with probability 1,
Oin (JIXZ, XT]) > 0.

Remark 4.2. The key conclusion from this result is that since oin (J [X g , X T]) > (0 almost surely,

the recovery error of M, {o) }5_, with respect to M*, {v;}X_ is upper bounded by a decreasing
function of the number of data points, |S|. In other words, the metric and pseudo-ideal points are
identifiable from one-bit paired comparisons under an assumed response distribution. As discussed in
Section 2, the ideal points {u} }/_ are then also identifiable as long as M * is full-rank. We present
an analogous result for the case of a low-rank metric in Appendix E, and leave to future work a study
of the scaling of o, (J[XE, X7]) with respect to d and n.

5 Experimental results

Below we analyze the performance of the empirical risk minimizers given in eqgs. (5) and (7) on both
simulated and real-world data,” with further details deferred to Appendix F.

"Code available at https://github.com/gregcanal /multiuser-metric-preference



Simulated experiments: We first simulate data in a similar setting to Cor. 3.3.1 where x;, ujy ~
N(0, %I )and M* = \%LLT where L € R%*" is a random orthogonal matrix. To construct the

training dataset, we query a fixed number of randomly selected pairs per user and evaluate prediction
accuracy on a held-out test set, where all responses are generated according to a logistic link function
(injecting response noise). We evaluate the prediction accuracy of the Frobenius norm regularized
optimization in eq. (5) (referred to as Frobenius metric), designed for full-rank matrix recovery, as
well as the nuclear norm regularized optimization in eq. (7) (referred to as Nuclear full), designed for
low-rank metrics. We also compare against several ablation methods that modify the constraint sets in
(5) and (7): Nuclear metric, where || M ||.. and ||vg]||2 are constrained; Nuclear split, where || M| .
and ||[v1, -, vk]||« are constrained; and PSD only, where only M > 0 is enforced. We also
compare against Nuclear full, single, which is equivalent to Nuclear full when applied separately to
each user (learning a unique metric and ideal point), where test accuracy is averaged over all users.
To compare performance under a best-case hyperparameter setting, we tune each method’s respective
constraints using oracle knowledge of M* and {uZ}szl. Finally, we also evaluate prediction
accuracy when the ground-truth parameters are known exactly (i.e., M = M*, vy = —2M™*uy),
which we call Oracle. This accuracy gives the “best case” performance, and reflects the inherent
response noise in the generated data.

To test a low-rank setting, we set d = 10, r = 1, n = 100, and K = 10. We observe that Nuclear
full outperforms the baseline methods in terms of test accuracy, and is closely followed by Nuclear
split (Fig. 1a). Interestingly Nuclear metric, which also enforces a nuclear norm constraint on M,
does not perform as well, possibly because it does not encourage the pseudo-ideal points to lie in the
same low-rank subspace. While Nuclear metric does demonstrate slightly improved metric recovery
(Fig. 1b), Nuclear full and Nuclear split recover higher quality metrics for lower query counts
(which is the typical operating regime for human-in-the-loop systems) and exhibit significantly better
ideal point recovery (Fig. 1c), illustrating the importance of proper subspace alignment between
the pseudo-ideal points. To this end, unlike Nuclear split, Nuclear full explicitly encourages the
pseudo-ideal points to align with the column space of M, which may explain its slight advantage.
Finally, we note that Nuclear full, single results in the worst prediction accuracy, demonstrating the
benefit of a common metric model when the underlying metric is in fact shared. While the single
user case is not the focus of this work, in Appendix F.4 we compare the performance of Nuclear full,
single against the methods proposed in [7], which only considers the single user case.

Color dataset: We also study the performance of our model on a dataset of pairwise color preferences
across multiple respondents () = 48) [24]. In this setting, each color (n = 37) is represented as a
3-dimensional vector in CIELAB color space (lightness, red vs. green, blue vs. yellow), which was
designed as a uniform space for how humans perceive color [25]. Each respondent was asked to order
pairs of color by preference, as described in [26, Sec. 3.1]. Since all 2(327) possible pairs (including
each pair reversal) were queried for each respondent, we may simulate random pair sampling exactly.

As there are only d = 3 features, we constrain the Frobenius norm of the metric and optimize eq. (5)
using the hinge loss. Varying the number of pairs queried per user, we plot prediction accuracy
on a held-out test set (Learned M, crowd in Fig. 1d). As CIELAB is designed to be perceptually
uniform, we compare against a solution to eq. (5) that fixes M = I and only learns the points
{vi}32 | (Identity M in Fig. 1d). This method leads to markedly lower prediction accuracy than
simultaneously learning the metric and ideal points; this result suggests that although people’s
perception of color is uniform in this space, their preferences are not. We also compare against
a baseline that solves the same optimization as eq. (5) separately for each individual respondent
(learning a unique metric and ideal point per user), with prediction accuracy averaged over all
respondents (Learned M, single in Fig. 1d). Although learning individual metrics appears to result in
better prediction after many queries, in the low-query regime (< 20 pairs per user) learning a common
metric across all users results in slightly improved performance (see Appendix F for zoomed plot).
As d = 3 is small relative to the number of queries given to each user, the success of individual metric
learning is not unexpected; however, collecting O(d?) samples per user is generally infeasible for
larger d unlike collective metric learning which benefits from crowd amortization. Finally, learning
a single metric common to all users allows for insights into the crowd’s general measure of color
similarity. As can be seen in Fig. le, the learned metric is dominated by the “lightness” feature,
indicating that people’s preferences correspond most strongly to a color’s lightness. As an external
validation, this is consistent with the findings of Fig. 1 of [24].
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Figure 1: (a-c) Normally distributed items with d = 10, » = 1, n = 100 and K = 10. Error
bars indicate 1 standard error about the sample mean. For visual clarity, PSD only and Nuclear
full, single baselines are omitted from (b-c) due to poor performance. (d) Average color preference
prediction accuracy, where error bars indicate 2.5% and 97.5% percentiles. (e) Estimated color
preference metric. For (a-e), random train/test splitting was repeated over 30 trials.

6 Discussion

The main contribution of this work is a model for multi-user simultaneous metric and preference
learning consisting of a shared metric that captures the crowd’s common perceptions between items,
as well as user-specific ideal points that characterize individual preferences. Our core result is that
when querying paired comparisons over a large number of users, the sample cost of metric learning
is distributed over the crowd, with the total number of queries per user scaling with the rank of the
underlying metric.

One interesting avenue for future work is to study more flexible metric models, since as with
any Mahalanobis metric model it may not be the case that linear weightings of quadratic feature
combinations provide enough flexibility to adequately model certain preference judgements. While it
may be possible to generalize the linear metric results studied here to a more general Hilbert space,
another avenue to increase model flexibility is to acquire a richer set of features in the item set, which
would typically involve increasing the ambient dimension. In this setting, an important consideration
would be to ameliorate the requirement that the number of items scales as €2(d?). While this condition
is necessary for identifiability if the metric is full-rank, we believe that the item count should only
need to scale as Q(dr) if the metric has rank r < d (see Appendix C.3 for additional discussion).
Furthermore, in the case of metric learning from triplet queries it is known that only Q(r) items
are required for metric recovery in the low-rank case [12]. This suggests a potential strategy of
supplementing paired comparisons with triplet queries to reduce the number of required items.
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