
Efficient Active Learning with Abstention

Yinglun Zhu
Department of Computer Sciences
University of Wisconsin-Madison

Madison, WI 53706
yinglun@cs.wisc.edu

Robert Nowak
Department of Electrical and Computer Engineering

University of Wisconsin-Madison
Madison, WI 53706
rdnowak@wisc.edu

Abstract

The goal of active learning is to achieve the same accuracy achievable by passive
learning, while using much fewer labels. Exponential savings in terms of label
complexity have been proved in very special cases, but fundamental lower bounds
show that such improvements are impossible in general. This suggests a need
to explore alternative goals for active learning. Learning with abstention is one
such alternative. In this setting, the active learning algorithm may abstain from
prediction and incur an error that is marginally smaller than random guessing. We
develop the first computationally efficient active learning algorithm with abstention.
Our algorithm provably achieves polylog(1") label complexity, without any low
noise conditions. Such performance guarantee reduces the label complexity by
an exponential factor, relative to passive learning and active learning that is not
allowed to abstain. Furthermore, our algorithm is guaranteed to only abstain on
hard examples (where the true label distribution is close to a fair coin), a novel
property we term proper abstention that also leads to a host of other desirable
characteristics (e.g., recovering minimax guarantees in the standard setting, and
avoiding the undesirable “noise-seeking” behavior often seen in active learning).
We also provide novel extensions of our algorithm that achieve constant label
complexity and deal with model misspecification.

1 Introduction

Active learning aims at learning an accurate classifier with a small number of labeled data points
(Settles, 2009; Hanneke, 2014). Active learning has become increasingly important in modern
application of machine learning, where unlabeled data points are abundant yet the labeling process
requires expensive time and effort. Empirical successes of active learning have been observed in
many areas (Tong and Koller, 2001; Gal et al., 2017; Sener and Savarese, 2018). In noise-free or
certain low-noise cases (i.e., under Massart noise (Massart and Nédélec, 2006)), active learning
algorithms with provable exponential savings over the passive counterpart have been developed
(Balcan et al., 2007; Hanneke, 2007; Dasgupta et al., 2009; Hsu, 2010; Dekel et al., 2012; Hanneke,
2014; Zhang and Chaudhuri, 2014; Krishnamurthy et al., 2019; Katz-Samuels et al., 2021). On the
other hand, however, not much can be said in the general case. In fact, Kääriäinen (2006) provides
a ⌦(1

"2) lower bound by reducing active learning to a simple mean estimation problem: It takes
⌦(1

"2) samples to distinguish ⌘(x) = 1
2 + " and ⌘(x) = 1

2 � ". Even with the relatively benign
Tsybakov noise (Tsybakov, 2004), Castro and Nowak (2006, 2008) derive a ⌦(poly(1")) lower bound,
again, indicating that exponential speedup over passive learning is not possible in general. These
fundamental lower bounds lay out statistical barriers to active learning, and suggests considering a
refinement of the label complexity goals in active learning (Kääriäinen, 2006).

Inspecting these lower bounds, one can see that active learning suffers from classifying hard examples
that are close to the decision boundary. However, do we really require a trained classifier to do well

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

on those hard examples? In high-risk domains such as medical imaging, it makes more sense for the
classifier to abstain from making the decision and leave the problem to a human expert. Such idea is
formalized under Chow’s error (Chow, 1970): Whenever the classifier chooses to abstain, a loss that
is barely smaller than random guessing, i.e., 1

2 � �, is incurred. The parameter � should be thought as
a small positive quantity, e.g., � = 0.01. The inclusion of abstention is not only practically interesting,
but also provides a statistical refinement of the label complexity goal of active learning: Achieving
exponential improvement under Chow’s excess error. When abstention is allowed as an action,
Puchkin and Zhivotovskiy (2021) shows, for the first time, that exponential improvement in label
complexity can be achieved by active learning in the general setting. However, the approach provided
in Puchkin and Zhivotovskiy (2021) can not be efficiently implemented. Their algorithm follows
the disagreement-based approach and requires maintaining a version space and checking whether or
not an example lies in the region of disagreement. It is not clear how to generally implement these
operations besides enumeration (Beygelzimer et al., 2010). Moreover, their algorithm relies on an
Empirical Risk Minimization (ERM) oracle, which is known to be NP-Hard even for a simple linear
hypothesis class (Guruswami and Raghavendra, 2009).

In this paper, we break the computational barrier and design an efficient active learning algorithm with
exponential improvement in label complexity relative to conventional passive learning. The algorithm
relies on weighted square loss regression oracle, which can be efficiently implemented in many cases
(Krishnamurthy et al., 2017, 2019; Foster et al., 2018, 2020). The algorithm also abstains properly,
i.e., abstain only when it is the optimal choice, which allows us to easily translate the guarantees
to the standard excess error. Along the way, we propose new noise-seeking noise conditions and
show that: “uncertainty-based” active learners can be easily trapped, yet our algorithm provably
overcome these noise-seeking conditions. As an extension, we also provide the first algorithm that
enjoys constant label complexity for a general set of regression functions.

1.1 Problem setting

Let X denote the input space and Y denote the label space. We focus on the binary classification
problem where Y = {+1,�1}. The joint distribution over X ⇥ Y is denoted as DXY . We use DX

to denote the marginal distribution over the input space X , and use DY|x to denote the conditional
distribution of Y with respect to any x 2 X . We define ⌘(x) := Py⇠DY|x(y = +1) as the
conditional probability of taking a positive label. We consider the standard active learning setup where
(x, y) ⇠ DXY but y is observed only after a label querying. We consider hypothesis class H : X ! Y .
For any classifier h 2 H, its (standard) error is defined as err(h) := P(x,y)⇠DXY (h(x) 6= y).

Function approximation. We focus on the case where the hypothesis class H is induced from a
set of regression functions F : X ! [0, 1] that predicts the conditional probability ⌘(x). We write
H = HF := {hf : f 2 F} where hf (x) := sign(2f(x)� 1). The “size” of F is measured by the
well-known complexity measure: the Pseudo dimension Pdim(F) (Pollard, 1984; Haussler, 1989,
1995). We assume Pdim(F) < 1 throughout the paper.1 Following existing works in active learning
(Dekel et al., 2012; Krishnamurthy et al., 2017, 2019) and contextual bandits (Agarwal et al., 2012;
Foster et al., 2018; Foster and Rakhlin, 2020; Simchi-Levi and Xu, 2020), we make the following
realizability assumption.

Assumption 1 (Realizability). The learner is given a set of regressors F : X ! [0, 1] such that

there exists a f
?
2 F characterize the true conditional probability, i.e., f

? = ⌘.

The realizability assumption allows rich function approximation, which strictly generalizes the setting
with linear function approximation studied in active learning (e.g., in (Dekel et al., 2012)). We relax
Assumption 1 in Section 4.2 to deal with model misspecification.

Regression oracle. We consider a regression oracle over F , which is extensively studied in the
literature in active learning and contextual bandits (Krishnamurthy et al., 2017, 2019; Foster et al.,
2018, 2020). Given any set S of weighted examples (w, x, y) 2 R+ ⇥X ⇥Y as input, the regression

1See Appendix D for formal definition of the Pseudo dimension. Many function classes of practical interests
have finite Pseudo dimension: (1) when F is finite, we have Pdim(F) = O(log|F|); (2) when F is a set of
linear functions/generalized linear function with non-decreasing link function, we have F = O(d); (3) when F
is a set of degree-r polynomial in Rd, we have Pdim(F) = O(

�
d+r
r

�
).

2

oracle outputs
bf = argmin

f2F

X

(w,x,y)2S

w(f(x)� y)2. (1)

The regression oracle solves a convex optimization problem with respect to the regression function,
and admits closed-form solutions in many cases, e.g., it is reduced to least squares when f is linear.
We view the implementation of the regression oracle as an efficient operation and quantify the
computational complexity in terms of the number of calls to the regression oracle.

Chow’s excess error (Chow, 1970). Let h? := hf? 2 H denote the Bayes classifier. The standard

excess error of classifier h 2 H is defined as err(h) � err(h?). Since achieving exponential
improvement (of active over passive learning) with respect to the standard excess error is impossible
in general (Kääriäinen, 2006), we introduce Chow’s excess error next. We consider classifier of the
form bh : X ! Y [{?} where ? denotes the action of abstention. For any fixed 0 < � <

1
2 , the

Chow’s error is defined as
err�(bh) := P(x,y)⇠DXY (

bh(x) 6= y,bh(x) 6= ?) + (1/2� �) · P(x,y)⇠DXY (
bh(x) = ?). (2)

The parameter � can be chosen as a small constant, e.g., � = 0.01, to avoid excessive abstention: The
price of abstention is only marginally smaller than random guess. The Chow’s excess error is then
defined as err�(bh)� err(h?) (Puchkin and Zhivotovskiy, 2021). For any fixed accuracy level " > 0,
we aim at constructing a classifier bh : X ! Y [{?} with " Chow’s excess error and polylog(1")
label complexity. We also relate Chow’s excess error to standard excess error in Section 3.
Remark 1. Competing against the optimal Chow’s error, i.e., err�(bh)� infh:X!{+1,�1,?} err�(h),
will eliminate active learning gains. As in Kääriäinen (2006), it suffices to consider a simple problem

with X = {x}. In order to achieve " excess error against the optimal Chow’s classifier, we need

to distinguish cases ⌘(x) = 1
2 � � � 2" and ⌘(x) = 1

2 � � + 2", which inevitably requires ⌦(1
"2)

samples. We defer a detailed discussion (with pictorial explanations) of Chow’s excess error in

Appendix B.

1.2 Contributions and paper organization

We provide informal statements of our main results in this section. Our results depend on complexity
measures such as value function disagreement coefficient ✓ and eluder dimension e (formally defined
in Section 2 and Appendix C). These complexity measures are previously analyzed in contextual
bandits (Russo and Van Roy, 2013; Foster et al., 2020) and we import them to the active learning
setup. These complexity measures are well-bounded for many function classes of practical interests,
e.g., we have ✓, e = eO(d) for linear and generalized linear functions on Rd.

Our first main contribution is that we design the first computationally efficient active learning algo-
rithm (Algorithm 1) that achieves exponential labeling savings, without any low noise assumptions.
Theorem 1 (Informal). There exists an algorithm that constructs a classifier bh : X ! {+1,�1,?}

with Chow’s excess error at most " and label complexity eO(✓Pdim(F)
�2 · polylog(1")), without any low

noise assumptions. The algorithm can be efficiently implemented via a regression oracle: It takes

eO(✓Pdim(F)
" �3) oracle calls for general F , and eO(✓Pdim(F)

" �) oracle calls for convex F .

The formal statements are provided in Section 2. The statistical guarantees (i.e., label complexity)
in Theorem 1 is similar to the one achieved in Puchkin and Zhivotovskiy (2021), with one critical
difference: The label complexity provided in Puchkin and Zhivotovskiy (2021) is in terms of the
classifier-based disagreement coefficient ✓̌ (Hanneke, 2014). Even for a set of linear classifier, ✓̌ is
only known to be bounded in special cases, e.g., when DX is uniform over the unit sphere (Hanneke,
2007). On the other hand, we have ✓  d for any DX (Foster et al., 2020).

We say that a classifier bh : X ! {+1,�1,?} enjoys proper abstention if it abstains only if abstention
is indeed the optimal choice (based on Eq. (2)). For any classifier that enjoys proper abstention,
one can easily relate its standard excess error to the Chow’s excess error, under commonly studied
Massart/Tsybakov noises (Massart and Nédélec, 2006; Tsybakov, 2004). The classifier obtained
in Theorem 1 enjoys proper abstention, and achieves the following guarantees (formally stated in
Section 3.1).

3

Theorem 2 (Informal). Under Massart/Tsybakov noise, with appropriate adjustments, the classifier

learned in Theorem 1 achieves the minimax optimal label complexity under standard excess error.

We also propose new noise conditions that strictly generalize the usual Massart/Tsybakov noises,
which we call noise-seeking conditions. At a high-level, the noise-seeking conditions allow abundant
data points with ⌘(x) equal/close to 1

2 . These points are somewhat “harmless” since it hardly matters
what label is predicted at that point (in terms of excess error). These seemingly “harmless” data
points can, however, cause troubles for any active learning algorithm that requests the label for any
point that is uncertain, i.e., the algorithm cannot decide if |⌘(x)� 1

2 | is strictly greater than 0. We
call such algorithms “uncertainty-based” active learners. These algorithms could wastefully sample
in these “harmless” regions, ignoring other regions where erring could be much more harmful. We
derive the following proposition (formally stated in Section 3.2) under these noise-seeking conditions.

Proposition 1 (Informal). For any labeling budget B & 1
�2 · polylog(1"), there exists a learning

problem such that (1) any uncertainty-based active learner suffers standard excess error ⌦(B�1);

yet (2) the classifier bh learned in Theorem 1 achieves standard excess error at most ".

The above result demonstrates the superiority of our algorithm over any “uncertainty-based” active
learner. Moreover, we show that, under these strictly harder noise-seeking conditions, our algorithm
still achieve guarantees similar to the ones stated in Theorem 2.

Before presenting our next main result, we first consider a simple active learning problem with
X = {x}. Under Massart noise, we have |⌘(x)� 1

2 | � ⌧0 for some constant ⌧0 > 0. Thus, it takes
no more than O(⌧�2

0 log 1
�) labels to achieve " standard excess error, no matter how small " is. This

example shows that, at least in simple cases, we can expect to achieve a constant label complexity
for active learning, with no dependence on 1

" at all. To the best of our knowledge, our next result
provides the first generalization of such phenomenon to a general set of (finite) regression functions,
as long as its eluder dimension e is bounded.

Theorem 3 (Informal). Under Massart noise with parameter ⌧0 and a general (finite) set of regression

function F . There exists an algorithm that returns a classifier with standard excess error at most "

and label complexity O(e·log(|F|/�)
⌧2
0

), which is independent of
1
" .

A similar constant label complexity holds with Chow’s excess error, without any low noise assump-
tions. We also provide discussion on why previous algorithms do not achieve such constant label
complexity, even in the case with linear functions. We defer formal statements and discussion to
Section 4.1. In Section 4.2, we relax Assumption 1 and propose an algorithm that can deal with
model misspecification.

Paper organization. The rest of this paper is organized as follows. We present our main algorithm
and its guarantees in Section 2. We further analyze our algorithm under standard excess error in
Section 3, and discuss other important properties of the algorithm. Extensions of our algorithm,
e.g., achieving constant label complexity and dealing with model misspecification, are provided in
Section 4. We defer the discussion of additional related work and all proofs to the Appendix due to
lack of space.

2 Efficient active learning with abstention

We provide our main algorithm (Algorithm 1) in this section. Algorithm 1 is an adaptation of the
algorithm developed in Krishnamurthy et al. (2017, 2019), which studies active learning under the
standard excess error (and Massart/Tsybakov noises). We additionally take the abstention option into
consideration, and manually construct classifiers using the active set of (uneliminated) regression
functions (which do not belong to the original hypothesis class). These new elements allow us to
achieve " Chow’s excess error with polylog(1") label complexity, without any low noise assumptions.

4

Algorithm 1 Efficient Active Learning with Abstention
Input: Accuracy level " > 0, abstention parameter � 2 (0, 1/2) and confidence level � 2 (0, 1).

1: Define T := eO(✓Pdim(F)
" �), M := dlog2 T e and C� := O(Pdim(F) · log(T/�)).

2: Define ⌧m := 2m for m � 1, ⌧0 := 0 and �m := (M �m+ 1) · C� .
3: for epoch m = 1, 2, . . . ,M do
4: Get bfm := argminf2F

P⌧m�1

t=1 Qt(f(xt)� yt)2.
// We use Qt 2 {0, 1} to indicate whether the label of xt is queried.

5: (Implicitly) Construct active set of regression functions Fm ✓ F as

Fm :=

(
f 2 F :

⌧m�1X

t=1

Qt(f(xt)� yt)
2


⌧m�1X

t=1

Qt(bfm(xt)� yt)
2 + �m

)
.

6: Construct classifier bhm : X ! {+1,�1,?} as

bhm(x) :=

(
?, if [lcb(x;Fm), ucb(x;Fm)] ✓

⇥
1
2 � �,

1
2 + �

⇤
;

sign(2 bfm(x)� 1), o.w.

and construct query function gm(x) :=
�
1
2 2 (lcb(x;Fm), ucb(x;Fm))

�
· (bhm(x) 6= ?).

7: if epoch m = M then
8: Return classifier bhM .
9: for time t = ⌧m�1 + 1, . . . , ⌧m do

10: Observe xt ⇠ DX . Set Qt := gm(xt).
11: if Qt = 1 then
12: Query the label yt of xt.

Algorithm 1 runs in epochs of geometrically increasing lengths. At the beginning of epoch m 2 [M],
Algorithm 1 first computes the empirical best regression function bfm that achieves the smallest
cumulative square loss over previously labeled data points (bf1 can be selected arbitrarily); it then
(implicitly) constructs an active set of regression functions Fm, where the cumulative square loss
of each f 2 Fm is not too much larger than the cumulative square loss of empirical best regression
function bfm. For any x 2 X , based on the active set of regression functions, Algorithm 1 constructs
a lower bound lcb(x;Fm) := inff2Fm f(x) and an upper bound ucb(x;Fm) := supf2Fm

f(x) for
the true conditional probability ⌘(x). An empirical classifier bhm : X ! {+1,�1,?} and a query
function gm : X ! {0, 1} are then constructed based on these confidence ranges and the abstention
parameter �. For any time step t within epoch m, Algorithm 1 queries the label of the observed data
point xt if and only if Qt := gm(xt) = 1. Algorithm 1 returns bhM as the learned classifier.

We now discuss the empirical classifier bhm and the query function gm in more detail. Consider the
event where f

?
2 Fm for all m 2 [M], which can be shown to hold with high probability. The

constructed confidence intervals are valid under this event, i.e., ⌘(x) 2 [lcb(x;Fm), ucb(x;Fm)].
First, let us examine the conditions that determine a label query. The label of x is not queried if

• Case 1: bhm(x) = ?. We have ⌘(x) 2 [lcb(x;Fm), ucb(x;Fm)] ✓ [12 � �,
1
2 + �]. Abstention

leads to the smallest error (Herbei and Wegkamp, 2006), and no query is needed.

• Case 2: 1
2 /2 (lcb(x;Fm), ucb(x;Fm)). We have sign(2 bfm(x)� 1) = sign(2f?(x)� 1). Thus,

no excess error is incurred and there is no need to query.

The only case when label query is issued, and thus when the classifier bhm may suffer from excess
error, is when

1

2
2 (lcb(x;Fm), ucb(x;Fm)) and [lcb(x;Fm), ucb(x;Fm)] *


1

2
� �,

1

2
+ �

�
(3)

hold simultaneously. Eq. (3) necessarily leads to the condition w(x;Fm) := ucb(x;Fm) �
lcb(x;Fm) > �. Our theoretical analysis shows that the event must (w(x;Fm) > �) happens in-

5

frequently, and its frequency is closely related to the so-called value function disagreement coefficient

(Foster et al., 2020), which we introduce as follows.2

Definition 1 (Value function disagreement coefficient). For any f
?
2 F and �0, "0 > 0, the value

function disagreement coefficient ✓
val
f? (F , �0, "0) is defined as

sup
DX

sup
�>�0,">"0

⇢
�
2

"2
· PDX

�
9f 2 F : |f(x)� f

?(x)| > �, kf � f
?
k
DX

 "
��

_ 1,

where kfk
2
DX

:= Ex⇠DX [f
2(x)].

Combining the insights discussed above, we derive the following label complexity guarantee for
Algorithm 1 (we use ✓ := supf?2F,◆>0 ✓

val
f? (F , �/2, ◆) and discuss its boundedness below). 3

Theorem 4. With probability at least 1� 2�, Algorithm 1 returns a classifier with Chow’s excess

error at most " and label complexity O(✓Pdim(F)
�2 · log2(✓Pdim(F)

" �) · log(✓Pdim(F)
" � �)).

Theorem 4 shows that Algorithm 1 achieves exponential label savings (i.e., polylog(1")) without any
low noise assumptions. We discuss the result in more detail next.

• Boundedness of ✓. The value function disagreement coefficient is well-bounded for many
function classes of practical interests. For instance, we have ✓  d for linear functions on Rd and
✓  Clink · d for generalized linear functions (where Clink is a quantity related to the link function).
Moreover, ✓ is always upper bounded by complexity measures such as (squared) star number and
eluder dimension (Foster et al., 2020). See Appendix C for the detailed definitions/bounds.

• Comparison to Puchkin and Zhivotovskiy (2021). The label complexity bound derived in
Theorem 4 is similar to the one derived in Puchkin and Zhivotovskiy (2021), with one critical
difference: The bound derived in Puchkin and Zhivotovskiy (2021) is in terms of classifier-based

disagreement coefficient ✓̌ (Hanneke, 2014). Even in the case with linear classifiers, ✓̌ is only
known to be bounded under additional assumptions, e.g., when DX is uniform over the unit
sphere.

Computational efficiency. We discuss how to efficiently implement Algorithm 1 with the regres-
sion oracle defined in Eq. (1). 4 Our implementation relies on subroutines developed in Krishnamurthy
et al. (2017); Foster et al. (2018), which allow us to approximate confidence bounds ucb(x;Fm)
and lcb(x;Fm) up to ↵ approximation error with O(1

↵2 log
1
↵) (or O(log 1

↵) when F is convex and
closed under pointwise convergence) calls to the regression oracle. To achieve the same theoretical
guarantees shown in Theorem 4 (up to changes in constant terms), we show that it suffices to (i)
control the approximation error at level O(�

log T), (ii) construct the approximated confidence bounds
clcb(x;Fm) and ducb(x;Fm) in a way such that the confidence region is non-increasing with respect
to the epoch m, i.e., (clcb(x;Fm),ducb(x;Fm)) ✓ (clcb(x;Fm�1),ducb(x;Fm�1)) (this ensures that
the sampling region is non-increasing even with approximated confidence bounds, which is impor-
tant to our theoretical analysis), and (iii) use the approximated confidence bounds clcb(x;Fm) and
ducb(x;Fm) to construct the classifier bhm and the query function gm. We provide our guarantees
as follows, and leave details to Appendix E (we redefine ✓ := supf?2F,◆>0 ✓

val
f? (F , �/4, ◆) in the

Theorem 5 to account to approximation error).
Theorem 5. Algorithm 1 can be efficiently implemented via the regression oracle and enjoys the

same theoretical guarantees stated in Theorem 4. The number of oracle calls needed is eO(✓Pdim(F)
" �3)

2Compared to the original definition studied in contextual bandits (Foster et al., 2020), our definition takes
an additional “sup” over all possible marginal distributions DX to account for distributional shifts incurred by
selective querying (which do not occur in contextual bandits). Nevertheless, as we show below, our disagreement
coefficient is still well-bounded for many important function classes.

3It suffices to take ✓ := ✓
val
f? (F , �/2, ◆) with ◆ / p

�" to derive a slightly different guarantee. See
Appendix E.

4Recall that the implementation of the regression oracle should be viewed as an efficient operation since it
solves a convex optimization problem with respect to the regression function, and it even admits closed-form
solutions in many cases, e.g., it is reduced to least squares when f is linear. On the other hand, the ERM
oracle used in Puchkin and Zhivotovskiy (2021) is NP-hard even for a set of linear classifiers (Guruswami and
Raghavendra, 2009).

6

for a general set of regression functions F , and eO(✓Pdim(F)
" �) when F is convex and closed under

pointwise convergence. The per-example inference time of the learned bhM is eO(1
�2 log

2(✓Pdim(F)
"))

for general F , and eO(log 1
�) when F is convex and closed under pointwise convergence.

With Theorem 5, we provide the first computationally efficient active learning algorithm that achieves
exponential label savings, without any low noise assumptions.

3 Guarantees under standard excess error

We provide guarantees for Algorithm 1 under standard excess error. In Section 3.1, we show that
Algorithm 1 can be used to recover the usual minimax label complexity under Massart/Tsybakov
noise; we also provide a new learning paradigm based on Algorithm 1 under limited budget. In
Section 3.2, we show that Algorithm 1 provably avoid the undesired noise-seeking behavior often
seen in active learning.

3.1 Recovering minimax optimal label complexity

One way to convert an abstaining classifier bh : X ! Y [{?} into a standard classifier ȟ : X ! Y

is by randomizing the prediction in its abstention region, i.e., if bh(x) = ?, then its randomized
version ȟ(x) predicts +1/� 1 with equal probability (Puchkin and Zhivotovskiy, 2021). With such
randomization, the standard excess error of ȟ can be characterized as

err(ȟ)� err(h?) = err�(bh)� err(h?) + � · Px⇠DX (bh(x) = ?). (4)

The standard excess error depends on the (random) abstention region of bh, which is difficult to
quantify in general. To give a more practical characterization of the standard excess error, we
introduce the concept of proper abstention in the following.

Definition 2 (Proper abstention). A classifier bh : X ! Y [{?} enjoys proper abstention if and only

if it abstains in regions where abstention is indeed the optimal choice, i.e.,
�
x 2 X : bh(x) = ?

✓�

x 2 X : ⌘(x) 2
⇥
1
2 � �,

1
2 + �

⇤
=: X� .

Proposition 2. The classifier bh returned by Algorithm 1 enjoys proper abstention. With randomization

over the abstention region, we have the following upper bound on its standard excess error

err(ȟ)� err(h?)  err�(bh)� err(h?) + � · Px⇠DX (x 2 X�). (5)

The proper abstention property of bh returned by Algorithm 1 is achieved via conservation: bh will
avoid abstention unless it is absolutely sure that abstention is the optimal choice.5 To characterize
the standard excess error of classifier with proper abstention, we only need to upper bound the term
Px⇠DX (x 2 X�), which does not depends on the (random) classifier bh. Instead, it only depends on
the marginal distribution. We next introduce the common Massart/Tsybakov noise conditions.
Definition 3 (Massart noise, Massart and Nédélec (2006)). A distribution DXY satisfies the Massart

noise condition with parameter ⌧0 > 0 if Px⇠DX (|⌘(x)� 1/2|  ⌧0) = 0.

Definition 4 (Tsybakov noise, Tsybakov (2004)). A distribution DXY satisfies the Tsybakov noise

condition with parameter � � 0 and a universal constant c > 0 if Px⇠DX (|⌘(x)� 1/2|  ⌧)  c ⌧
�

for any ⌧ > 0.

As in Balcan et al. (2007); Hanneke (2014), we assume knowledge of noise parameters (e.g., ⌧0,�).
Together with the active learning lower established in Castro and Nowak (2006, 2008), and focusing
on the dependence of ", our next theorem shows that Algorithm 1 can be used to recover the minimax
label complexity in active learning, under the standard excess error.

5On the other hand, however, the algorithm provided in Puchkin and Zhivotovskiy (2021) is very unlikely to
have such property. In fact, only a small but nonzero upper bound of abstention rate is provided (Proposition
3.6 therein) under the Massart noise with �  ⌧0

2 ; yet any classifier that enjoys proper abstention should have
exactly zero abstention rate.

7

Theorem 6. With an appropriate choice of the abstention parameter � in Algorithm 1 and random-

ization over the abstention region, Algorithm 1 learns a classifier ȟ at the minimax optimal rates: To

achieve " standard excess error, it takes e⇥(⌧�2
0) labels under Massart noise and takes e⇥("�2/(1+�))

labels under Tsybakov noise.

Remark 2. In addition to recovering the minimax rates, the proper abstention property is desirable

in practice: It guarantees that bh will not abstain on easy examples, i.e., it will not mistakenly flag

easy examples as “hard-to-classify”, thus eliminating unnecessary human labeling efforts.

Algorithm 1 can also be used to provide new learning paradigms in the limited budget setting, which
we introduce below. No prior knowledge of noise parameters are required in this setup.

New learning paradigm under limited budget. Given any labeling budget B > 0, we can then
choose � ⇡ B

�1/2 in Algorithm 1 to make sure the label complexity is never greater than B (with
high probability). The learned classifier enjoys Chow’s excess error (with parameter �) at most "; its
standard excess error (with randomization over the abstention region) can be analyzed by relating the
� · Px⇠DX (x 2 X�) term in Eq. (5) to the Massart/Tsybakov noise conditions, as discussed above.

3.2 Abstention to avoid noise-seeking

Active learning algorithms sometimes exhibit noise-seeking behaviors, i.e., oversampling in regions
where ⌘(x) is close to the 1

2 level. Such noise-seeking behavior is known to be a fundamental barrier
to achieve low label complexity (under standard excess error), e.g., see Kääriäinen (2006). We show
in this section that abstention naturally helps avoiding noise-seeking behaviors and speeding up active
learning.

To better illustrate how properly abstaining classifiers avoid noise-seeking behavior, we first propose
new noise conditions below, which strictly generalize the usual Massart/Tsybakov noises.
Definition 5 (Noise-seeking Massart noise). A distribution DXY satisfies the noise-seeking Massart

noise condition with parameters 0  ⇣0 < ⌧0  1/2 if Px⇠DX (⇣0 < |⌘(x)� 1/2|  ⌧0) = 0.

Definition 6 (Noise-seeking Tsybakov noise). A distribution DXY satisfies the noise-seeking Tsy-

bakov noise condition with parameters 0  ⇣0 < 1/2, � � 0 and a universal constant c > 0 if

Px⇠DX (⇣0 < |⌘(x)� 1/2|  ⌧)  c ⌧
�

for any ⌧ > ⇣0.

Compared to the standard Massart/Tsybakov noises, these newly proposed noise-seeking conditions
allow arbitrary probability mass of data points whose conditional probability ⌘(x) is equal/close to
1/2. As a result, they can trick standard active learning algorithms into exhibiting the noise-seeking
bahaviors (and hence their names). We also mention that the parameter ⇣0 should be considered as an
extremely small quantity (e.g., ⇣0 ⌧ "), with the extreme case corresponding to ⇣0 = 0 (which still
allow arbitrary probability for region {x 2 X : ⌘(x) = 1/2}).

Ideally, any active learning algorithm should not be heavily affected by these noise conditions
since it hardly matters (in terms of excess error) what label is predicted over region {x 2 X :
|⌘(x)� 1/2|  ⇣0}. However, these seemingly benign noise-seeking conditions can cause troubles
for any “uncertainty-based” active learner, i.e., any active learning algorithm that requests the label
for any point that is uncertain (see Definition 10 in Appendix F for formal definition). In particular,
under limited budget, we derive the following result.
Proposition 3. Fix ", �, � > 0. For any labeling budget B & 1

�2 · log2(1
" �) · log(

1
" � �), there exists

a learning problem (with a set of linear regression functions) satisfying Definition 5/Definition 6 such

that (1) any “uncertainty-based” active learner suffers expected standard excess error ⌦(B�1); yet

(2) with probability at least 1� �, Algorithm 1 returns a classifier with standard excess error at most

".

The above result demonstrates the superiority of our Algorithm 1 over any “uncertainty-based” active
learner. Moreover, we show that Algorithm 1 achieves similar guarantees as in Theorem 6 under the
strictly harder noise-seeking conditions. Specifically, we have the following guarantees.
Theorem 7. With an appropriate choice of the abstention parameter � in Algorithm 1 and random-

ization over the abstention region, Algorithm 1 learns a classifier ȟ with "+ ⇣0 standard excess error

after querying e⇥(⌧�2
0) labels under Definition 5 or querying e⇥("�2/(1+�)) labels under Definition 6.

8

The special case of the noise-seeking condition with ⇣0 = 0 is recently studied in (Kpotufe et al.,
2021), where the authors conclude that no active learners can outperform the passive counterparts
in the nonparametric regime. Theorem 7 shows that, in the parametric setting (with function
approximation), Algorithm 1 provably overcomes these noise-seeking conditions.

4 Extensions

We provide two adaptations of our main algorithm (Algorithm 1) that can (1) achieve constant
label complexity for a general set of regression functions (Section 4.1); and (2) adapt to model
misspecification (Section 4.2). These two adaptations can also be efficiently implemented via
regression oracle and enjoy similar guarantees stated in Theorem 5. We defer computational analysis
to Appendix G and Appendix H.

4.1 Constant label complexity

We start by considering a simple problem instance with X = {x}, where active learning is reduced to
mean estimation of ⌘(x). Consider the Massart noise case where ⌘(x) /2 [12 � ⌧0,

1
2 + ⌧0]. No matter

how small the desired accuracy level " > 0 is, the learner should not spend more than O(log(1/�)
⌧2
0

)

labels to correctly classify x with probability at least 1 � �, which ensures 0 excess error. In the
general setting, but with Chow’s excess error, a similar result follows: It takes at most O(log(1/�)�2)

samples to verify if ⌘(x) is contained in [12 � �,
1
2 + �] or not. Taking the optimal action within

{+1,�1,?} (based on Eq. (2)) then leads to 0 Chow’s excess error. This reasoning shows that, at
least in simple cases, one should be able to achieve constant label complexity no matter how small "
is. One natural question to ask is as follows.

Is it possible to achieve constant label complexity in the general case of active learning?

We provide the first affirmative answer to the above question with a general set of regression function
F (finite), and under general action space X and marginal distribution DX . The positive result
is achieved by Algorithm 2 (deferred to Appendix G.2), which differs from Algorithm 1 in two
aspects: (1) we drop the epoch scheduling, and (2) apply a tighter elimination step derived from
an optimal stopping theorem. Another change comes from the analysis of the algorithm: Instead
of analyzing with respect to the disagreement coefficient, we work with the eluder dimension

e := supf?2F
ef?(F , �/2).6 To do that, we analyze active learning from the perspective of regret

minimization with selective querying (Dekel et al., 2012), which allows us to incorporate techniques
developed in the field of contextual bandits (Russo and Van Roy, 2013; Foster et al., 2020). We defer
a detailed discussion to Appendix G.1 and provide the following guarantees.
Theorem 8. With probability at least 1� 2�, Algorithm 2 returns a classifier with expected Chow’s

excess error at most " and label complexity O(e·log(|F|/�)
�2), which is independent of

1
" .

Based on discussion in Section 3, we can immediately translate the above results into standard excess
error guarantees under the Massart noise (with � replaced by ⌧0). We next discuss why existing
algorithms/analyses do not guarantee constant label complexity, even in the linear case.

1. Epoch scheduling. Many algorithms proceed in epochs and aim at halving the excess error after
each epoch (Balcan et al., 2007; Zhang and Chaudhuri, 2014; Puchkin and Zhivotovskiy, 2021).
One inevitably needs log 1

" epochs to achieve " excess error.
2. Relating to disagreement coefficient. The algorithm presented in Krishnamurthy et al. (2019)

does not use epoch scheduling. However, their label complexity are analyzed with disagreement
coefficient, which incurs a

P1/"
t=1

1
t = O(log 1

") term in the label complexity.
Remark 3. Algorithm 2 also provides guarantees when x is selected by an adaptive adversary

(instead of i.i.d. sampled x ⇠ DX). In that case, we simultaneously upper bound the regret and the

label complexity (see Theorem 10 in Appendix G.2). Our results can be viewed as a generalization of

the results developed in the linear case (Dekel et al., 2012).

6We formally define eluder dimension in Appendix C. As examples, we have e = O(d · log 1
�) for linear

functions in Rd, and e = O(Clink · d log 1
�) for generalized linear functions (where Clink is a quantity related to

the link function).

9

4.2 Dealing with model misspecification

Our main results are developed under realizability (Assumption 1), which assumes that there exists a
f
?
2 F such that f? = ⌘. In this section, we relax that assumption and allow model misspecification.

We assume the learner is given a set of regression function F : X ! [0, 1] that may only approximates

the conditional probability ⌘. More specifically, we make the following assumption.

Assumption 2 (Model misspecification). There exists a f 2 F such that f approximate ⌘ up to

 > 0 accuracy, i.e., supx2X

��f̄(x)� ⌘(x)
��  .

We use a variation of Algorithm 1 to adapt to model misspecification (Algorithm 3, deferred to
Appendix H.1). Compared to Algorithm 1, the main change in Algorithm 3 is to apply a more
conservative step in determining the active set Fm at each epoch: We maintain a larger active set of
regression function to ensure that f is not eliminated throughout all epochs. Our algorithm proceeds
without knowing the misspecification level . However, the excess error bound presented next holds
under the condition that   " (i.e., it requires that the misspecification is no larger than the desired
accuracy). Abbreviate ✓ := sup◆>0 ✓

val
f

(F , �/2, ◆), we achieve the following guarantees.

Theorem 9. Suppose   ". With probability at least 1� 2�, Algorithm 3 returns a classifier with

Chow’s excess error O(" · ✓ · log(Pdim(F)
" � �)) and label complexity O(✓Pdim(F)

�2 · log2(Pdim(F)
" �) ·

log(Pdim(F)
" � �)).

We only provide guarantee when   ", since the learned classifier suffers from an additive  term in
the excess error (see Appendix H.2 for more discussion). On the other hand, the (inefficient) algorithm
provided in Puchkin and Zhivotovskiy (2021) works without any assumption on the approximation
error. An interesting future direction is to study the relation between computational efficiency and
learning with general approximation error.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their helpful comments. This work is partially supported by
NSF grant 1934612 and AFOSR grant FA9550-18-1-0166.

References
Alekh Agarwal, Miroslav Dudík, Satyen Kale, John Langford, and Robert Schapire. Contextual

bandit learning with predictable rewards. In Artificial Intelligence and Statistics, pages 19–26.
PMLR, 2012.

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. Taming
the monster: A fast and simple algorithm for contextual bandits. In International Conference on

Machine Learning, pages 1638–1646. PMLR, 2014.
Martin Anthony. Uniform glivenko-cantelli theorems and concentration of measure in the mathemati-

cal modelling of learning. Research Report LSE-CDAM-2002–07, 2002.
Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin based active learning. In International

Conference on Computational Learning Theory, pages 35–50. Springer, 2007.
Alina Beygelzimer, Daniel J Hsu, John Langford, and Tong Zhang. Agnostic active learning without

constraints. Advances in neural information processing systems, 23, 2010.
Olivier Bousquet and Nikita Zhivotovskiy. Fast classification rates without standard margin assump-

tions. Information and Inference: A Journal of the IMA, 10(4):1389–1421, 2021.
Rui M Castro and Robert D Nowak. Upper and lower error bounds for active learning. In The 44th

Annual Allerton Conference on Communication, Control and Computing, volume 2, page 1, 2006.
Rui M Castro and Robert D Nowak. Minimax bounds for active learning. IEEE Transactions on

Information Theory, 54(5):2339–2353, 2008.
CK Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on information

theory, 16(1):41–46, 1970.

10

Sanjoy Dasgupta, Adam Tauman Kalai, and Adam Tauman. Analysis of perceptron-based active
learning. Journal of Machine Learning Research, 10(2), 2009.

Ofer Dekel, Claudio Gentile, and Karthik Sridharan. Selective sampling and active learning from
single and multiple teachers. The Journal of Machine Learning Research, 13(1):2655–2697, 2012.

Dylan Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits with
regression oracles. In International Conference on Machine Learning, pages 3199–3210. PMLR,
2020.

Dylan Foster, Alekh Agarwal, Miroslav Dudík, Haipeng Luo, and Robert Schapire. Practical
contextual bandits with regression oracles. In International Conference on Machine Learning,
pages 1539–1548. PMLR, 2018.

Dylan J Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-dependent
complexity of contextual bandits and reinforcement learning: A disagreement-based perspective.
arXiv preprint arXiv:2010.03104, 2020.

David A Freedman. On tail probabilities for martingales. the Annals of Probability, pages 100–118,
1975.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In International Conference on Machine Learning, pages 1183–1192. PMLR, 2017.

Venkatesan Guruswami and Prasad Raghavendra. Hardness of learning halfspaces with noise. SIAM

Journal on Computing, 39(2):742–765, 2009.

Steve Hanneke. A bound on the label complexity of agnostic active learning. In Proceedings of the

24th international conference on Machine learning, pages 353–360, 2007.

Steve Hanneke. Theory of active learning. Foundations and Trends in Machine Learning, 7(2-3),
2014.

David Haussler. Decision theoretic generalizations of the pac model for neural net and other learning
applications. 1989.

David Haussler. Sphere packing numbers for subsets of the boolean n-cube with bounded vapnik-
chervonenkis dimension. Journal of Combinatorial Theory, Series A, 69(2):217–232, 1995.

Radu Herbei and Marten H Wegkamp. Classification with reject option. The Canadian Journal of

Statistics/La Revue Canadienne de Statistique, pages 709–721, 2006.

Daniel Joseph Hsu. Algorithms for active learning. PhD thesis, UC San Diego, 2010.

Tzu-Kuo Huang, Alekh Agarwal, Daniel J Hsu, John Langford, and Robert E Schapire. Efficient and
parsimonious agnostic active learning. Advances in Neural Information Processing Systems, 28,
2015.

Matti Kääriäinen. Active learning in the non-realizable case. In International Conference on

Algorithmic Learning Theory, pages 63–77. Springer, 2006.

Julian Katz-Samuels, Jifan Zhang, Lalit Jain, and Kevin Jamieson. Improved algorithms for agnostic
pool-based active classification. In International Conference on Machine Learning, pages 5334–
5344. PMLR, 2021.

Vladimir Koltchinskii. Rademacher complexities and bounding the excess risk in active learning.
The Journal of Machine Learning Research, 11:2457–2485, 2010.

Samory Kpotufe, Gan Yuan, and Yunfan Zhao. Nuances in margin conditions determine gains in
active learning. arXiv preprint arXiv:2110.08418, 2021.

Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, and John Langford. Active
learning for cost-sensitive classification. In International Conference on Machine Learning, pages
1915–1924. PMLR, 2017.

Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, and John Langford. Active
learning for cost-sensitive classification. Journal of Machine Learning Research, 20:1–50, 2019.

Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature representations
in bandits and in rl with a generative model. In International Conference on Machine Learning,
pages 5662–5670. PMLR, 2020.

11

Andrea Locatelli, Alexandra Carpentier, and Samory Kpotufe. Adaptivity to noise parameters in
nonparametric active learning. In Proceedings of the 2017 Conference on Learning Theory, PMLR,
2017.

Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of Statistics, 34
(5):2326–2366, 2006.

Stanislav Minsker. Plug-in approach to active learning. Journal of Machine Learning Research, 13
(1), 2012.

D Pollard. Convergence of Stochastic Processes. David Pollard, 1984.
Nikita Puchkin and Nikita Zhivotovskiy. Exponential savings in agnostic active learning through

abstention. arXiv preprint arXiv:2102.00451, 2021.
Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic

exploration. In NIPS, pages 2256–2264. Citeseer, 2013.
Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set

approach. In International Conference on Learning Representations, 2018.
Burr Settles. Active learning literature survey. 2009.
Shubhanshu Shekhar, Mohammad Ghavamzadeh, and Tara Javidi. Active learning for classification

with abstention. IEEE Journal on Selected Areas in Information Theory, 2(2):705–719, 2021.
David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal algorithm

for contextual bandits under realizability. Available at SSRN 3562765, 2020.
Simon Tong and Daphne Koller. Support vector machine active learning with applications to text

classification. Journal of machine learning research, 2(Nov):45–66, 2001.
Alexander B Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of

Statistics, 32(1):135–166, 2004.
Chicheng Zhang and Kamalika Chaudhuri. Beyond disagreement-based agnostic active learning.

Advances in Neural Information Processing Systems, 27, 2014.

12

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Our results in the misspecification
setting (i.e., in Section 4.2) are derived under an assumption. We provide discussion on such
assumption in Appendix H.2, and leave a comprehensive study of the problem for future work.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our paper is
theoretical in nature, and there is no negative societal impact of our work in the foreseeable
future.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?
[Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions are

clearly stated in the statement of each theorem.
(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs are provided

in the Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

13

A Additional related work

Learning with Chow’s excess error is closely related to learning under Massart noise (Massart and
Nédélec, 2006), which assumes that no data point has conditional expectation close to the decision
boundary, i.e., P(|⌘(x)� 1/2|  ⌧0) = 0 for some constant ⌧0 > 0. Learning with Massart noise
is commonly studied in active learning (Balcan et al., 2007; Hanneke, 2014; Zhang and Chaudhuri,
2014; Krishnamurthy et al., 2019), where eO(⌧�2

0) type of guarantees are achieved. Instead of making
explicit assumptions on the underlying distribution, learning with Chow’s excess error empowers
the learner with the ability to abstain: There is no need to make predictions on hard data points that
are close to the decision boundary, i.e., {x : |⌘(x)� 1/2|  �}. Learning with Chow’s excess error
thus works on more general settings and still enjoys the eO(��2) type of guarantee as learning under
Massart noise (Puchkin and Zhivotovskiy, 2021).7 We show in Section 3 that statistical guarantees
achieved under Chow’s excess error can be directly translated to guarantees under (usual and more
challenging versions of) Massart/Tsybakov noise (Massart and Nédélec, 2006; Tsybakov, 2004).

Active learning at aim competing the best in-class classifier with few labels. A long line of work
directly works with the set of classifiers (Balcan et al., 2007; Hanneke, 2007, 2014; Huang et al.,
2015; Puchkin and Zhivotovskiy, 2021), where the algorithms are developed with (in general) hard-
to-implement ERM oracles (Guruswami and Raghavendra, 2009) and the the guarantees dependence
on the so-called disagreement coefficient (Hanneke, 2014). More recently, learning with function
approximation have been studied inactive learning and contextual bandits (Dekel et al., 2012; Agarwal
et al., 2012; Foster et al., 2018; Krishnamurthy et al., 2019). The function approximation scheme
permits efficient regression oracles, which solve convex optimization problems with respect to
regression functions (Krishnamurthy et al., 2017, 2019; Foster et al., 2018). It can also be analyzed
with the scale-sensitive version of disagreement coefficient, which is usually tighter than the original
one (Foster et al., 2020; Russo and Van Roy, 2013). Our algorithms are inspired Krishnamurthy
et al. (2019), where the authors study active learning under the standard excess error. The main
deviation from Krishnamurthy et al. (2019) is that we need to manually construct a classifier bh with
an abstention option and bh /2 H, which leads to differences in the analysis of excess error and label
complexity. We borrow techniques developed in contextual bandits Russo and Van Roy (2013); Foster
et al. (2020) to analyze our algorithm.

Although one can also apply our algorithms in the nonparametric regime with proper pre-processing
schemes such discretizations, our algorithm primarily works in the parametric setting with finite
pseudo dimension (Haussler, 1995) and finite (value function) disagreement coefficient (Foster et al.,
2020). Active learning has also been studied in the nonparametric regime (Castro and Nowak, 2008;
Koltchinskii, 2010; Minsker, 2012; Locatelli et al., 2017). Notably, Shekhar et al. (2021) studies
Chow’s excess error with margin-type of assumptions. Their setting is different to ours and poly(1")
label complexities are achieved. If abundant amounts of data points are allowed to be exactly at the
decision boundary, i.e., ⌘(x) = 1

2 , Kpotufe et al. (2021) recently shows that, in the nonparametric
regime, no active learner can outperform the passive counterpart.

B Why Chow’s excess error helps?

For illustration purpose, we focus on the simple case where X = {x} in this section. The active
learning problem is then reduced to mean estimation of the conditional probability ⌘(x) 2 [0, 1].

Learning with standard excess error. Fix any " > 0. With respect to the conditional probability
⌘(x), we define the positive region S+," :=

⇥
1�"
2 , 1

⇤
and the negative region S�," := [0, 1+"

2]. These
regions are interpreted as follows: If ⌘(x) 2 S+," (resp. ⌘(x) 2 S�,"), then labeling x as positive
(resp. negative) incurs no more than " excess error. Under standard excess error, we define the
flexible region as Sstandard

flexible," := S+," \ S�," = [1�"
2 ,

1+"
2] (the grey area in the top plot in Fig. 1).

Two important implications of the flexible region are as follows: (1) if ⌘(x) 2 S
standard
flexible," , labeling x

as either positive or negative would lead to excess error at most "; and (2) if ⌘(x) /2 S
standard
flexible," , then a

classifier must correctly label x as either positive or negative to guarantee " excess error. Since the

7However, passive learning with abstention only achieves error rate 1
n� with n samples (Bousquet and

Zhivotovskiy, 2021).

14

flexible region is of length " under standard excess error, distinguishing two points at the edge of the
flexible region, e.g., ⌘(x) = 1

2 � " and ⌘(x) = 1
2 + ", leads to label complexity lower bound ⌦(1

"2).

0 11
2

1+✏
2

1�✏
2

�
+

0 11
2

1+✏
2

1�✏
2

�
+

?

1
2 � � � ✏ 1

2 + � + ✏

0 11
2

1
2 + � � ✏1

2 � � + ✏

�
+

?

1
2 � � � ✏ 1

2 + � + ✏

+ positive

� negative

? abstention

zero-mass region

0 11
2

1+✏
2

1�✏
2

�
+

1
2 � � 1

2 + �

flexible region

Figure 1: Illustration of regions S+,", S�," and S?,". (1) top plot: learning with standard
excess error err(bh) � err(h?); (2) second plot: learning with standard excess error err(bh) �
err(h?) and Massart noise with parameter �; (3) third plot: learning with Chow’s excess error
err�(bh) � err(h?); and (4) bottom plot: learning against the optimal Chow’s excess error, i.e.,
err�(bh)� infh:X!{+1,�1,?} err�(h).

Learning with Chow’s excess error. Now we turn our attention to the Chow’s error. We consider
S+," and S�," as before, and define a third abstention region S?," := [12 � � � ",

1
2 + � + "] If

⌘(x) 2 S?,", then abstaining on x leads to Chow’s excess error at most ". We define the positive
flexible region as SChow

flexible,+," := S?," \ S?," = [1�"
2 ,

1
2 + � + "], which is of length � + 3"

2 . The
negative flexible region is defined similarly (see the second plot in Fig. 1). Since both positive and
negative flexible regions are longer than �, it takes at most eO(1

�2) samples to identify a labeling
action with at most " Chow’s excess error. Without loss of generality, we assume ⌘(x) < 1

2 . It takes
eO(1

�2) samples to construct a confidence interval [lcb(x), ucb(x)] (of ⌘(x)) of length at most �
2 . If

⌘(x) < 1��
2 , we observe ucb(x)  1

2 and know that labeling x negative ensures at most " excess
error. If ⌘(x) 2 [1��

2 ,
1
2], we observe [lcb(x), ucb(x)] ✓ [12 � �,

1
2 + �] ✓ S?,". Thus, choosing to

abstain on x again ensures at most " excess error. To summarize, learning with Chow’s excess error
in the general case resembles the behavior of learning under Massart noise: Hard examples that are
close to the decision boundary are not selected for labeling (see the third plot in Fig. 1), and learning
is possible with eO(1

�2) labels.

Why not compete against the optimal Chow’s error. As shown in the last plot in Fig. 1, the
flexible regions become narrow (of length O(")) again when competing against the optimal Chow’s
error. Abstention becomes the only action that guarantees at most " excess error over region
(12 ���",

1
2 +�+"). One then needs to distinguish cases ⌘(x) = 1

2 +��2" and ⌘(x) = 1
2 +�+2",

which requires ⌦(1
"2) samples. It is also unreasonable to compete against the optimal Chow’s error:

When ⌘(x) = 1
2 + � � 2", ⌦(1

"2) samples are required to decide whether take action +1 or action ?;
however, with only eO(1

�2) samples, one can already guarantee ⌘(x) > 1
2 (and take the positive label

in the usual case).

15

C Disagreement coefficient, star number and eluder dimension

We provide formal definitions/guarantees of value function disagreement coefficient, eluder dimension
and star number in this section. These results are developed in Foster et al. (2020); Russo and
Van Roy (2013). Since our guarantees are developed in terms of these complexity measures, any
future developments on these complexity measures (e.g., with respect to richer function classes)
directly lead to broader applications of our algorithms.

We first state known upper bound on value function disagreement coefficient with respect to nice sets
of regression functions.
Proposition 4 (Foster et al. (2020)). For any f

?
2 F and �, " > 0, let ✓

val
f? (F , �, ") be the value

function disagreement coefficient defined in Definition 1. Let � : X ! Rd
be a fixed feature mapping

and W ✓ Rd
be a fixed set. The following upper bounds hold true.

• Suppose F := {x 7! h�(x), wi : w 2 W} is a set of linear functions. We then have

supf2F,�>0,">0 ✓
val
f (F , �, ")  d.

• Suppose F := {x 7! �(h�(x), wi) : w 2 W} is a set of generalized linear functions

with any fixed link function � : R ! R such that 0 < cl < �
0
 cu. We then have

supf2F,�>0,">0 ✓
val
f (F , �, ")  cu

cl
2
· d.

We next provide the formal definition of value function eluder dimension and star number (Foster
et al., 2020; Russo and Van Roy, 2013).
Definition 7 (Value function eluder dimension). For any f

?
2 F and � > 0, let ěf?(F , �) be the

length of the longest sequence of data points x
1
, . . . , x

m
such that for all i, there exists f

i
2 F such

that

|f
i(xi)� f

?(xi)| > �, and

X

j<i

(f i(xj)� f
?(xj))2  �

2
.

The value function eluder dimension is defined as ef?(F , �0) := sup���0
ěf?(F , �).

Definition 8 (Value function star number). For any f
?
2 F and � > 0, let šf?(F , �) be the length

of the longest sequence of data points x
1
, . . . , x

m
such that for all i, there exists f

i
2 F such that

|f
i(xi)� f

?(xi)| > �, and

X

j 6=i

(f i(xj)� f
?(xj))2  �

2
.

The value function eluder dimension is defined as sf?(F , �0) := sup���0
šf?(F , �).

Since the second constrain in the definition of star number is more stringent than the counterpart in
the definition of eluder dimension, one immediately have that sf?(F , �)  ef?(F , �). We provide
known upper bounds for eluder dimension next.
Proposition 5 (Russo and Van Roy (2013)). Let � : X ! Rd

be a fixed feature mapping and

W ✓ Rd
be a fixed set. Suppose supx2X

k�(x)k2  1 and supw2W
kwk2  1. The following upper

bounds hold true.

• Suppose F := {x 7! h�(x), wi : w 2 W} is a set of linear functions. We then have

supf?2F
ef?(F , �) = O(d log 1

�).

• Suppose F := {x 7! �(h�(x), wi) : w 2 W} is a set of generalized linear functions with any

fixed link function � : R ! R such that 0 < cl < �
0
 cu. We then have supf?2F

ef?(F , �) =

O
��

cu
cl

�2
d log

�
cu
�

��
.

The next result shows that the disagreement coefficient (with our Definition 1) can be always upper
bounded by (squared) star number and eluder dimension.
Proposition 6 (Foster et al. (2020)). Suppose F is a uniform Glivenko-Cantelli class.

For any f
? : X ! [0, 1] and �, " > 0, we have ✓

val
f? (F , �, ")  4(sf?(F , �))2, and ✓

val
f? (F , �, ") 

4 ef?(F , �).

16

The requirement that F is a uniform Glivenko-Cantelli class is rather weak: It is satisfied as long as
F has finite Pseudo dimension (Anthony, 2002).

In our analysis, we sometimes work with sub probability measure (due to selective sampling). Our
next result shows that defining the disagreement coefficient over all (sub) probability measures will
not affect its value. More specifically, denote e✓valf? (F , �, ") be the disagreement coefficient defined in
Definition 1, but with sup taking over all probability and sub probability measures. We then have the
following equivalence.

Proposition 7. Fix any �0, "0 � 0. We have e✓valf? (F , �0, "0) = ✓
val
f? (F , �0, "0).

Proof. We clearly have e✓valf? (F , �0, "0) � ✓
val
f? (F , �0, "0) by additionally considering sub probability

measures. We next show the opposite direction.

Fix any sub probability measure eDX that is non-zero (otherwise we have Px⇠ eDX
(·) = 0). Suppose

Ex⇠ eDX
[1] =  < 1. We can now consider its normalized probability measure DX such that

DX (!) =
eDX (!)

 (for any ! in the sigma algebra). Now fix any � > �0 and " > "0. We have

�
2

"2
· P eDX

⇣
9f 2 F : |f(x)� f

?(x)| > �, kf � f
?
k
2
eDX

 "
2
⌘

=
�
2

"2/
· P

DX

⇣
9f 2 F : |f(x)� f

?(x)| > �, kf � f
?
k
2
DX

 "
2
/

⌘

=
�
2

"
2 · P

DX

⇣
9f 2 F : |f(x)� f

?(x)| > �, kf � f
?
k
2
DX

 "
2
⌘

 ✓
val
f? (F , �0, "0),

where we denote " := "
p

> ", and the last follows from the fact that DX is a probability measure.

We then have e✓valf? (F , �0, "0)  ✓
val
f? (F , �0, "0), and thus the desired result.

D Concentration results

The Freedman’s inequality is quite common in the field of active learning and contextual bandits,
e.g., (Freedman, 1975; Agarwal et al., 2014; Krishnamurthy et al., 2019; Foster et al., 2020). We thus
state the result without proof.
Lemma 1 (Freedman’s inequality). Let (Zt)tT be a real-valued martingale difference sequence

adapted to a filtration Ft, and let Et[·] := E[· | Ft�1]. If |Zt|  B almost surely, then for any

⌘ 2 (0, 1/B) it holds with probability at least 1� �,

TX

t=1

Zt  ⌘

TX

t=1

Et[Z
2
t] +

log ��1

⌘
.

Lemma 2. Let (Zt)tT to be real-valued sequence of random variables adapted to a filtration Ft. If

|Zt|  B almost surely, then with probability at least 1� �,

TX

t=1

Zt 
3

2

TX

t=1

Et[Zt] + 4B log(2��1),

and

TX

t=1

Et[Zt]  2
TX

t=1

Zt + 8B log(2��1).

Proof. This is a direct consequence of Lemma 1.

We define/recall some notations first. Fix any epoch m 2 [M] and any time step t within
epoch m. For any f 2 F , we denote Mt(f) := Qt((f(xt) � yt)2 � (f?(xt) � yt)2), and

17

bRm(f) :=
P⌧m�1

t=1 Qt(f(xt) � yt)2. Recall that we have Qt = gm(xt). We define filtration
Ft := �((x1, y1), . . . , (xt, yt)),8 and denote Et[·] := E[· | Ft�1].

We first provide a simple concentration result with respect to a finite F .
Lemma 3. Suppose F is finite. Fix any � 2 (0, 1). For any ⌧, ⌧

0
2 [T] such that ⌧ < ⌧

0
, with

probability at least 1� �, we have

⌧ 0X

t=⌧

Mt(f) 
⌧ 0X

t=⌧

3

2
Et[Mt(f)] + C�(F),

and

⌧ 0X

t=⌧

Et[Mt(f)]  2
⌧ 0X

t=⌧

Mt(f) + C�(F),

where C�(F) = 8 log
⇣

|F|·T 2

�

⌘
.

Proof. We first notice that Mt(f) adapts to filtration Ft, and satisfies |Mt(f)|  1. The results
follow by taking Lemma 2 together with a union bound over f 2 F and ⌧, ⌧ 0 2 [T].

Although one can not directly apply a union bound as in Lemma 3 in the case when the set of
regression function F is infinite (but has finite Pseudo dimension by assumption), it turns out that
similar guarantees as in Lemma 3 can be derived. We first recall the formal definition of the Pseudo
dimension of F .
Definition 9 (Pseudo Dimension, Pollard (1984); Haussler (1989, 1995)). Consider a set of real-

valued function F : X ! R. The pseudo-dimension Pdim(F) of F is defined as the VC dimension

of the set of threshold functions {(x, ⇣) 7! (f(x) > ⇣) : f 2 F}.

Lemma 4 (Krishnamurthy et al. (2019)). Suppose Pdim(F) < 1. Fix any � 2 (0, 1). For any

⌧, ⌧
0
2 [T] such that ⌧ < ⌧

0
, with probability at least 1� �, we have

⌧ 0X

t=⌧

Mt(f) 
⌧ 0X

t=⌧

3

2
Et[Mt(f)] + C�(F),

and

⌧ 0X

t=⌧

Et[Mt(f)]  2
⌧ 0X

t=⌧

Mt(f) + C�(F),

where C�(F) = C ·

⇣
Pdim(F) · log T + log

⇣
Pdim(F)·T

�

⌘⌘
 C

0
·
�
Pdim(F) · log

�
T
�

��
, where

C,C
0
> 0 are universal constants.

We will be primarily using Lemma 4 in the following. However, one can replace Lemma 4 with
Lemma 3 to derive results with respect to a finite set of regressions F .

E Proofs of results in Section 2

We give the proof of Theorem 4 and Theorem 5. Supporting lemmas used in the proofs are deferred
to Appendix E.1.

Fix any classifier bh : X ! {+1,�1,?}. For any x 2 X , we introduce the notion

excess�(bh;x) :=
Py|x

�
y 6= sign(bh(x))

�
·
�bh(x) 6= ?

�
+
�
1/2� �

�
·
�bh(x) = ?

�
� Py|x

�
y 6= sign(h?(x))

�

=
�bh(x) 6= ?

�
·
�
Py|x

�
y 6= sign(bh(x))

�
� Py|x

�
y 6= sign(h?(x))

��

+
�bh(x) = ?

�
·
��
1/2� �

�
� Py|x

�
y 6= sign(h?(x))

��
(6)

8
yt is not observed (and thus not included in the filtration) when Qt = 0. Note that Qt is measurable with

respect to �((Ft�1, xt)).

18

to represent the excess error of bh at point x 2 X . Excess error of classifier bh can be then written as
excess�(bh) := err�(bh)� err(h?) = Ex⇠DX [excess�(bh;x)].
Theorem 4. With probability at least 1� 2�, Algorithm 1 returns a classifier with Chow’s excess

error at most " and label complexity O(✓Pdim(F)
�2 · log2(✓Pdim(F)

" �) · log(✓Pdim(F)
" � �)).

Proof. We analyze under the good event E defined in Lemma 4, which holds with probability at least
1� �. Note that all supporting lemmas stated in Appendix E.1 hold true under this event.

We analyze the Chow’s excess error of bhm, which is measurable with respect to F⌧m�1 . For any
x 2 X , if gm(x) = 0, Lemma 9 implies that excess�(bhm;x)  0. If gm(x) = 1, we know that
bhm(x) 6= ? and 1

2 2 (lcb(x;Fm), ucb(x;Fm)). Note that bhm(x) 6= h
?(x) only if sign(2f?(x) �

1) · sign(2 bfm(x) � 1)  0. Since f
?
, bfm 2 Fm by Lemma 5. The error incurred in this case can

be upper bounded by 2|f?(x)� 1/2|  2w(x;Fm), which results in excess�(bhm;x)  2w(x;Fm).
Combining these two cases together, we have

excess�(bhm)  2Ex⇠DX [(gm(x) = 1) · w(x;Fm)].

Take m = M and apply Lemma 8, with notation ⇢m := 2�m + C� , leads to the following guarantee.

excess�(bhM) 
8⇢M
⌧M�1�

· ✓
val
f?

⇣
F , �/2,

p
⇢M/2⌧M�1

⌘

= O

✓
Pdim(F) · log(T/�)

T �
· ✓

val
f?

⇣
F , �/2,

p
C�/T

⌘◆
,

where we use the fact that T
2  ⌧M�1  T and definitions of �m and C�. Simply considering

✓ := supf?2F,◆>0 ✓
val
f? (F , �/2, ◆) as an upper bound of ✓valf? (F , �/2,

p
C�/T) and taking

T = O

✓
✓Pdim(F)

" �
· log

✓
✓Pdim(F)

" � �

◆◆

ensures that excess�(bhM)  ".

We now analyze the label complexity (note that the sampling process of Algorithm 1 stops at time
t = ⌧M�1). Note that E[(Qt = 1) | Ft�1] = Ex⇠DX [(gm(x) = 1)] for any epoch m � 2 and
time step t within epoch m. Combine Lemma 2 with Lemma 7 leads to

⌧M�1X

t=1

(Qt = 1) 
3

2

⌧M�1X

t=1

E[(Qt = 1) | Ft�1] + 4 log ��1

 3 +
3

2

M�1X

m=2

(⌧m � ⌧m�1) · 4⇢m
⌧m�1�

2
· ✓

val
f?

⇣
F , �/2,

p
⇢m/2⌧m�1

⌘
+ 4 log ��1

 3 + 6
M�1X

m=2

⇢m

�2
· ✓

val
f?

⇣
F , �/2,

p
⇢m/2⌧m�1

⌘
+ 4 log ��1

 3 + 4 log ��1 +
18 log T ·M · C�

�2
· ✓

val
f?

⇣
F , �/2,

p
C�/T

⌘

= O

✓Pdim(F)

�2
·

✓
log

✓
✓Pdim(F)

" �

◆◆2

· log

✓
✓Pdim(F)

" � �

◆!
,

with probability at least 1� 2� (due to an additional application of Lemma 2); where we plug the
above choice of T and upper bound other terms as before.

A slightly different guarantee for Algorithm 1. The stated Algorithm 1 takes ✓ :=
supf?2F,◆>0 ✓

val
f? (F , �/2, ◆) as an input (the value of ✓ can be upper bounded for many function

class F , as discussed in Appendix C). However, we don’t necessarily need to take ✓ as an input to
the algorithm. Indeed, we can simply run a modified version of Algorithm 1 with T = Pdim(F)

" � .

19

Following similar analyses in proof of Theorem 4, set ◆ :=
p
C�/T /

p
�", the modified version

achieves excess error

excess�(bhM) = O

✓
" · ✓

val
f? (F , �/2, ◆) · log

✓
Pdim(F)

" � �

◆◆

with label complexity

O

✓
val
f? (F , �/2, ◆) · Pdim(F)

�2
·

✓
log

✓
Pdim(F)

" �

◆◆2

· log

✓
Pdim(F)

" � �

◆!
.

We now discuss the efficient implementation of Algorithm 1 and its computational complexity. We
first state some known results in computing the confidence intervals with respect to a set of regression
functions F .
Proposition 8 (Krishnamurthy et al. (2017); Foster et al. (2018, 2020)). Consider the setting studied

in Algorithm 1. Fix any epoch m 2 [M] and denote Bm := {(xt, Qt, yt)}
⌧m�1

t=1 . Fix any ↵ > 0. For

any data point x 2 X , there exists algorithms Alglcb and Algucb that certify

lcb(x;Fm)� ↵  Alglcb(x;Bm,�m,↵)  lcb(x;Fm) and

ucb(x;Fm)  Algucb(x;Bm,�m,↵)  ucb(x;Fm) + ↵.

The algorithms take O(1
↵2 log

1
↵) calls of the regression oracle for general F and take O(log 1

↵)
calls of the regression oracle if F is convex and closed under pointwise convergence.

Proof. See Algorithm 2 in Krishnamurthy et al. (2017) for the general case; and Algorithm 3 in
Foster et al. (2018) for the case when F is convex and closed under pointwise convergence.

We next discuss the computational efficiency of Algorithm 1. Recall that we redefine ✓ :=
supf?2F,◆>0 ✓

val
f? (F , �/4, ◆) in the Theorem 5 to account to approximation error.

Theorem 5. Algorithm 1 can be efficiently implemented via the regression oracle and enjoys the

same theoretical guarantees stated in Theorem 4. The number of oracle calls needed is eO(✓Pdim(F)
" �3)

for a general set of regression functions F , and eO(✓Pdim(F)
" �) when F is convex and closed under

pointwise convergence. The per-example inference time of the learned bhM is eO(1
�2 log

2(✓Pdim(F)
"))

for general F , and eO(log 1
�) when F is convex and closed under pointwise convergence.

Proof. Fix any epoch m 2 [M]. Denote ↵ := �
4M and ↵m := (M�m)�

4M . With any observed x 2 X ,
we construct the approximated confidence intervals clcb(x;Fm) and ducb(x;Fm) as follows.

clcb(x;Fm) := Alglcb(x;Bm,�m,↵)� ↵m and ducb(x;Fm) := Algucb(x;Bm,�m,↵) + ↵m.

For efficient implementation of Algorithm 1, we replace lcb(x;Fm) and ucb(x;Fm) with clcb(x;Fm)

and ducb(x;Fm) in the construction of bhm and gm.

Based on Proposition 8, we know that

lcb(x;Fm)� ↵m � ↵  clcb(x;Fm)  lcb(x;Fm)� ↵m and

ucb(x;Fm) + ↵m ducb(x;Fm)  ucb(x;Fm) + ↵m + ↵.

Since ↵m + ↵ 
�
4 for any m 2 [M], the guarantee in Lemma 6 can be modified as gm(x) = 1 =)

w(x;Fm) � �
2 .

Fix any m � 2. Since Fm ✓ Fm�1 by Lemma 5, we have

clcb(x;Fm) � lcb(x;Fm)� ↵m � ↵ � lcb(x;Fm�1)� ↵m�1 � clcb(x;Fm�1) and
ducb(x;Fm)  ucb(x;Fm) + ↵m + ↵  ucb(x;Fm�1) + ↵m�1 ducb(x;Fm�1).

These ensure (gm(x) = 1)  (gm�1(x) = 1). Thus, the guarantees stated in Lemma 7 and
Lemma 8 still hold (with �

2 replaced by �
4 due to modification of Lemma 6). The guarantee stated in

20

Lemma 9 also hold since clcb(x;Fm)  lcb(x;Fm) and ducb(x;Fm) � ucb(x;Fm) by construction.
As a result, the guarantees stated in Theorem 4 hold true with changes only in constant terms.

We now discuss the computational complexity of the efficient implementation. At the beginning of
each epoch m. We use one oracle call to compute bfm = argminf2F

P⌧m�1

t=1 Qt(f(xt)� yt)2. The
main computational cost comes from computing clcb andducb at each time step. We take ↵ = ↵ := �

4M

into Proposition 8, which leads to O((log T)2

�2 · log(log T
�)) calls of the regression oracle for general

F and O(log(log T
�)) calls of the regression oracle for any convex F that is closed under pointwise

convergence. This also serves as the per-example inference time for bhM . The total computational cost
of Algorithm 1 is then derived by multiplying the per-round cost by T and plugging T = eO(✓Pdim(F)

" �)
into the bound (for any parameter, we only keep poly factors in the total computational cost and keep
poly or polylog dependence in the per-example computational cost).

E.1 Supporting lemmas

We use E to denote the good event considered in Lemma 4, and analyze under this event in this
section. We abbreviate C� := C�(F) in the following analysis.
Lemma 5. The followings hold true:

1. f
?
2 Fm for any m 2 [M].

2.
P⌧m�1

t=1 Et[Mt(f)]  2�m + C� for any f 2 Fm.

3. Fm+1 ✓ Fm for any m 2 [M � 1].

Proof. 1. Fix any epoch m 2 [M] and time step t within epoch m. Since E[yt] = f
?(xt), we

have Et[Mt(f)] = E[Qt(f(x) � f
?(x))2] = E[gm(x)(f(x) � f

?(x))2] � 0 for any f 2 F .
By Lemma 4, we then have bRm(f?)  bRm(f) + C�/2  bRm(f) + �m for any f 2 F . The
elimination rule in Algorithm 2 then implies that f?

2 Fm for any m 2 [M].

2. Fix any f 2 Fm. With Lemma 4, we have
⌧m�1X

t=1

Et[Mt(f)]  2

⌧m�1X

t=1

Mt(f) + C�

= 2 bRm(f)� 2 bRm(f?) + C�

 2 bRm(f)� 2 bRm(bfm) + C�

 2�m + C�,

where the third line comes from the fact that bfm is the minimizer of bRm(·); and the last line
comes from the fact that f 2 Fm.

3. Fix any f 2 Fm+1. We have

bRm(f)� bRm(bfm)  bRm(f)� bRm(f?) +
C�

2

= bRm+1(f)� bRm+1(f
?)�

⌧mX

t=⌧m�1+1

Mt(f) +
C�

2

 bRm+1(f)� bRm+1(bfm+1)�
⌧mX

t=⌧m�1+1

Et[Mt(f)]/2 + C�

 �m+1 + C�

= �m,

where the first line comes from Lemma 4; the third line comes from the fact that bfm+1 is the
minimizer with respect to bRm+1 and Lemma 4; the last line comes from the definition of �m.

21

Lemma 6. For any m 2 [M], we have gm(x) = 1 =) w(x;Fm) > �.

Proof. We only need to show that ucb(x;Fm) � lcb(x;Fm)  � =) gm(x) = 0. Suppose
otherwise gm(x) = 1, which implies that both

1

2
2 (lcb(x;Fm), ucb(x;Fm)) and [lcb(x;Fm), ucb(x;Fm)] *


1

2
� �,

1

2
+ �

�
. (7)

If 1
2 2 (lcb(x;Fm), ucb(x;Fm)) and ucb(x;Fm) � lcb(x;Fm)  �, we must have lcb(x;Fm) �

1
2 � � and ucb(x;Fm)  1

2 + �, which contradicts with Eq. (7).

We introduce more notations. Fix any m 2 [M]. We use nm := ⌧m � ⌧m�1 to denote the length of
epoch m, and use abbreviation ⇢m := 2�m + C� . Denote (X ,⌃,DX) as the (marginal) probability
space, and denote Xm := {x 2 X : gm(x) = 1} 2 ⌃ be the region where query is requested within
epoch m. Since we have Fm+1 ✓ Fm by Lemma 5, we clearly have Xm+1 ✓ Xm. We now define
a sub probability measure µm := (DX)

|Xm
such that µm(!) = DX (! \ Xm) for any ! 2 ⌃. Fix

any time step t within epoch m and any m  m. Consider any measurable function F (that is DX

integrable), we have

Ex⇠DX [(gm(x) = 1) · F (x)] =

Z

x2Xm

F (x) dDX (x)



Z

x2Xm

F (x) dDX (x)

=

Z

x2X

F (x) dµm(x)

=: Ex⇠µm [F (x)], (8)

where, by a slightly abuse of notations, we use Ex⇠µ[·] to denote the integration with any sub
probability measure µ. In particular, Eq. (8) holds with equality when m = m.
Lemma 7. Fix any epoch m � 2. We have

Ex⇠DX [(gm(x) = 1)] 
4⇢m

⌧m�1�
2
· ✓

val
f?

⇣
F , �/2,

p
⇢m/2⌧m�1

⌘
.

Proof. We know that (gm(x) = 1) = (gm(x) = 1) · (w(x;Fm) > �) from Lemma 6. Thus, for
any m  m, we have

Ex⇠DX [(gm(x) = 1)] = Ex⇠DX [(gm(x) = 1) · (w(x;Fm) > �)]

 Ex⇠µm [(w(x;Fm) > �)]

 Ex⇠µm

⇣ �
9f 2 Fm, |f(x)� f

?(x)| > �/2
�⌘

, (9)

where the second line uses Eq. (8) and the last line comes from the facts that f?
2 Fm and

w(x;Fm) > � =) 9f 2 Fm, |f(x)� f
?(x)| > �/2.

For any time step t, let m(t) denote the epoch where t belongs to. From Lemma 5, we know that,
8f 2 Fm,

⇢m �

⌧m�1X

t=1

Et

h
Qt

�
f(xt)� f

?(xt)
�2i

=

⌧m�1X

t=1

Ex⇠DX

h
(gm(t)(x) = 1) ·

�
f(x)� f

?(x)
�2i

=
m�1X

m=1

nm · Ex⇠µm

h
(f(x)� f

?(x))2
i

= ⌧m�1Ex⇠⌫m

h
(f(x)� f

?(x))2
i
, (10)

22

where we use Qt = gm(t)(xt) = (gm(t)(x) = 1) and Eq. (8) on the second line, and define a new
sub probability measure

⌫m :=
1

⌧m�1

m�1X

m=1

nm · µm

on the third line.

Plugging Eq. (10) into Eq. (9) leads to the bound

Ex⇠DX [(gm(x) = 1)]

 Ex⇠⌫m

 ⇣
9f 2 F ,

��f(x)� f
?(x)

�� > �/2,Ex⇠⌫m

h�
f(x)� f

?(x)
�2i


⇢m

⌧m�1

⌘�
,

where we use the definition of ⌫m again (note that Eq. (9) works with any m  m). Combining the
above result with the discussion around Proposition 7 and Definition 1, we then have

Ex⇠DX [(gm(x) = 1)] 
4⇢m

⌧m�1 �
2
· ✓

val
f?

⇣
F , �/2,

p
⇢m/2⌧m�1

⌘
.

Lemma 8. Fix any epoch m � 2. We have

Ex⇠DX [(gm(x) = 1) · w(x;Fm)] 
4⇢m
⌧m�1 �

· ✓
val
f?

⇣
F , �/2,

p
⇢m/2⌧m�1

⌘
.

Proof. Similar to the proof of Lemma 7, we have

Ex⇠DX [(gm(x) = 1) · w(x;Fm)] = Ex⇠DX [(gm(x) = 1) · (w(x;Fm) > �) · w(x;Fm)]

 Ex⇠µm [(w(x;Fm) > �) · w(x;Fm)]

for any m  m. With ⌫m = 1
⌧m�1

Pm�1
m=1 nm · µm, we then have

Ex⇠DX [(gm(x) = 1) · w(x;Fm)]

 Ex⇠⌫m [(w(x;Fm) > �) · w(x;Fm)]

 Ex⇠⌫m

"
(9f 2 Fm,

��f(x)� f
?(x)

�� > �/2) ·

sup

f,f 02Fm

|f(x)� f
0(x)|

!#

 2Ex⇠⌫m

"
(9f 2 Fm,

��f(x)� f
?(x)

�� > �/2) ·

sup

f2Fm

|f(x)� f
?(x)|

!#

 2

Z 1

�/2
Ex⇠⌫m

"
sup

f2Fm

��f(x)� f
?(x)

�� � !

!#
d!

 2

Z 1

�/2

1

!2
d! ·

✓
⇢m

⌧m�1
· ✓

val
f?

⇣
F , �/2,

p
⇢m/2⌧m�1

⌘◆


4⇢m
⌧m�1 �

· ✓
val
f?

⇣
F , �/2,

p
⇢m/2⌧m�1

⌘
,

where we use similar steps as in the proof of Lemma 7.

Lemma 9. Fix any m 2 [M]. We have excess�(bhm;x)  0 if gm(x) = 0.

Proof. Recall that

excess�(bh;x) =
�bh(x) 6= ?

�
·
�
Py

�
y 6= sign(bh(x))

�
� Py

�
y 6= sign(h?(x))

��

+
�bh(x) = ?

�
·
��
1/2� �

�
� Py

�
y 6= sign(h?(x))

��
.

We now analyze the event {gm(x) = 0} in two cases.

Case 1: bhm(x) = ?.

23

Since ⌘(x) = f
?(x) 2 [lcb(x;Fm), ucb(x;Fm)], we know that ⌘(x) 2 [12 � �,

1
2 + �] and thus

Py

�
y 6= sign(h?(x))

�
�

1
2 � �. As a result, we have excess�(bhm;x)  0.

Case 2: bhm(x) 6= ? but 1
2 /2 (lcb(x;Fm), ucb(x;Fm)).

In this case, we know that sign(bhm(x)) = sign(h?(x)) whenever ⌘(x) 2 [lcb(x;Fm), ucb(x;Fm)].
As a result, we have excess�(bhm;x)  0 as well.

F Proofs of results in Section 3

Proposition 2. The classifier bh returned by Algorithm 1 enjoys proper abstention. With randomization

over the abstention region, we have the following upper bound on its standard excess error

err(ȟ)� err(h?)  err�(bh)� err(h?) + � · Px⇠DX (x 2 X�). (5)

Proof. The proper abstention property of bh returned by Algorithm 1 is achieved via conservation: bh
will avoid abstention unless it is absolutely sure that abstention is the optimal choice. The proper
abstention property implies that Px⇠DX (bh(x) = ?)  Px⇠DX (x 2 X�). The desired result follows
by combining this inequality with Eq. (4).

Theorem 6. With an appropriate choice of the abstention parameter � in Algorithm 1 and random-

ization over the abstention region, Algorithm 1 learns a classifier ȟ at the minimax optimal rates: To

achieve " standard excess error, it takes e⇥(⌧�2
0) labels under Massart noise and takes e⇥("�2/(1+�))

labels under Tsybakov noise.

Proof. The results follow by taking the corresponding � in Algorithm 1 and then apply Proposition 2.
In the case with Massart noise, we have Px⇠DX (x 2 X�) = 0 when � = ⌧0; and the corresponding
label complexity scales as eO(⌧�2

0). In the case with Tsybakov noise, we have Px⇠DX (x 2 X�) =
"
2

when � = ("
2c)

1/(1+�). Applying Algorithm 1 to achieve "
2 Chow’s excess error thus leads to

"
2 + "

2 = " standard excess error. The corresponding label complexity scales as eO("�2/(1+�)).

Theorem 7. With an appropriate choice of the abstention parameter � in Algorithm 1 and random-

ization over the abstention region, Algorithm 1 learns a classifier ȟ with "+ ⇣0 standard excess error

after querying e⇥(⌧�2
0) labels under Definition 5 or querying e⇥("�2/(1+�)) labels under Definition 6.

Proof. For any abstention parameter � > 0, we denote X⇣0,� := {x 2 X : ⌘(x) 2 [12 � �,
1
2 +

�], |⌘(x) � 1/2| > ⇣0} as the intersection of the region controlled by noise-seeking conditions
and the (possible) abstention region. Let bh be the classifier returned by Algorithm 1 and ȟ be its
randomized version (over the abstention region). We denote S := {x 2 X : bh(x) = ?} be the
abstention region of bh. Since bh abstains properly, we have S ✓ {x 2 X : |⌘(x)� 1/2|  �} =: X� .
We write S0 := S \ X⇣0,� , S1 := S \ S0 and S2 := X \ S. For any h : X ! Y , we define the
notation excess(h;x) := (Py|x

�
y 6= sign(h(x))

�
� Py|x

�
y 6= sign(h?(x))

�
), and have excess(h) =

Ex⇠DX [excess(h;x)]. We then have

excess(ȟ)

= Ex⇠DX

⇥
excess(ȟ;x) · (x 2 S0)

⇤
+ Ex⇠DX

⇥
excess(ȟ;x) · (x 2 S1)

⇤
+ Ex⇠DX

⇥
excess(ȟ;x) · (x 2 S2)

⇤

 � · Ex⇠DX [(x 2 S0)] + ⇣0 · Ex⇠DX [(x 2 S1)] + Ex⇠DX [excess�(bh;x) · (x 2 S2)]

 � · Ex⇠DX [(x 2 X⇣0,�)] + ⇣0 + "/2,

where the bound on the second term comes from the fact that S ✓ X� and the bound on the third
term comes from the same analysis that appears in the proof of Theorem 4 (with "/2 accuracy). One
can then tune � in ways discussed in the proof of Theorem 6 to bound the first term by "/2, i.e.,
� · Ex⇠DX [(x 2 X⇣0,�)]  "/2, with similar label complexity.

24

Proposition 3. Fix ", �, � > 0. For any labeling budget B & 1
�2 · log2(1

" �) · log(
1

" � �), there exists

a learning problem (with a set of linear regression functions) satisfying Definition 5/Definition 6 such

that (1) any “uncertainty-based” active learner suffers expected standard excess error ⌦(B�1); yet

(2) with probability at least 1� �, Algorithm 1 returns a classifier with standard excess error at most

".

Before proving Proposition 3, we first construct a simple problem with linear regression function and
give the formal definition of “uncertainty-based” active learner.

Example 1. We consider the case where X = [0, 1] and DX = unif(X). We consider feature

embedding � : X ! R2
, i.e., �(x) = [�1(x),�2(x)]>. We take �1(x) := 1 for any x 2 X , and

define �2(x) as

�2(x) :=

⇢
0, x 2 Xhard,

1, x 2 Xeasy,

where Xeasy ✓ X is any subset such that DX (Xeasy) = p, for some constant p 2 (0, 1), and Xhard =
X \Xeasy. We consider a set of linear regression function F := {f✓ : f✓(x) = h�(x), ✓i, k✓k2  1}.

We set f
? = f✓? , where ✓

? = [✓?1 , ✓
?
2]

>
is selected such that ✓

?
1 = 1

2 and ✓
?
2 = unif({± 1

2}).

Definition 10. We say an algorithm is a “uncertainty-based” active learner if, for any x 2 X , the

learner

• constructs an open confidence interval (lcb(x), ucb(x)) such that ⌘(x) 2 (lcb(x), ucb(x));9

• queries the label of x 2 X if
1
2 2 (lcb(x), ucb(x)).

Proof. With any given labeling budget B, we consider the problem instance described in Example 1
with p = B

�1
/2. We can easily see that this problem instance satisfy Definition 5 and Definition 6.

We first consider any “uncertainty-based” active learner. Let Z denote the number of data points
lie in Xeasy among the first B random draw of examples. We see that Z ⇠ B(B,B

�1
/2) follows a

binomial distribution with B trials and B
�1

/2 success rate. By Markov inequality, we have

P
✓
Z �

3

2
E[Z]

◆
= P

✓
Z �

3

4

◆


2

3
.

That being said, with probability at least 1/3, there will be Z = 0 data point that randomly drawn
from the easy region Xeasy. We denote that event as E . Since ⌘(x) = f

?(x) = 1
2 for any x 2 Xhard,

any “uncertainty-based” active learner will query the label of any data point x 2 Xhard. As a result,
under event E , the active learner will use up all the labeling budget in the first B rounds and observe
zero label for any data point x 2 Xeasy. Since the easy region Xeasy has measure B

�1
/2 and

✓
?
2 = unif({± 1

2}), any classification rule over the easy region would results in expected excess error
lower bounded by B

�1
/4. To summarize, with probability at least 1

3 , any “uncertainty-based” active
learner without abstention suffers expected excess error ⌦(B�1).

We now consider the classifier returned by Algorithm 1.10 For the linear function considered in
Example 1, we have Pdim(F)  2 (Haussler, 1989) and ✓valf? (F , �/2, ")  2 for any " � 0 (see
Appendix C). Thus, by setting T = O(1

" � · log(1
" � �)), with probability at least 1� �, Algorithm 1

return a classifier bh with Chow’s excess error at most " and label complexity O(1
�2 · log2(1

" �) ·

log(1
" � �)) = poly(1� , log(

1
" � �)). Since bh enjoys proper abstention, it never abstains for x 2 Xeasy.

Note that we have ⌘(x) = 1
2 for any x 2 Xhard. By randomizing the decision of bh over the abstention

region, we obtain a classifier with standard excess error at most ".

9By restricting to learners that construct an open confidence interval containing ⌘(x), we do not consider the
corner cases when lcb(x) = 1

2 or ucb(x) = 1
2 and the confidence interval close.

10The version that works with an infinite set of regression functions using concentration results presented
in Lemma 4. Or, one can first discretie the set of regression function and then use the version presented in
Algorithm 1.

25

G Omitted details for Section 4.1

We introduce a new perspective for designing and analyzing active learning algorithms in Ap-
pendix G.1 (with new notations introduced). Based on this new perspective, we present our algorithm
and its theoretical guarantees in Appendix G.2. Supporting lemmas are deferred to Appendix G.3.

G.1 The perspective: Regret minimization with selective sampling

We view active learning as a decision making problem: at each round, the learner selects an action,
suffers a loss (that may not be observable), and decides to query the label or not. At a high level, the
learner aims at simultaneously minimizing the regret and the number of queries; and will randomly
return a classifier/decision rule at the end of the learning process.

The perspective is inspired by the seminal results derived in Dekel et al. (2012), where the authors
study active learning with linear regression functions and focus on standard excess error guarantees.
With this regret minimization perspective, we can also take advantage of fruitful results developed in
the field of contextual bandits (Russo and Van Roy, 2013; Foster et al., 2020).

Decision making for regret minimization. To formulate the regret minimization problem, we
consider the action set A = {+1,�1,?}, where the action +1 (resp. �1) represents labeling any
data point x 2 X as positive (resp. negative); and the action ? represents abstention. At each round
t 2 [T], the learner observes a data point xt 2 X (which can be chosen by an adaptive adversary),
takes an action at 2 A, and then suffers a loss, which is defined as

`t(at) = (sign(yt) 6= at, at 6= ?) +

✓
1

2
� �

◆
· (at = ?).

We use a?t := sign(2f?(xt)�1) = sign(2⌘(xt)�1) to denote the action taken by the Bayes optimal
classifier h?

2 H. Denote filtration Ft := �((xi, yi)
t
i=1). We define the (conditionally) expected

regret at time step t 2 [T] as

Regrett = E[`t(at)� `t(a
?
t) | Ft�1].

The (conditionally) expected cumulative regret across T rounds is defined as

Regret(T) =
TX

t=1

Regrett,

which is the target that the learner aims at minimizing.

Selective querying for label efficiency. Besides choosing an action at 2 A at each time step, our
algorithm also determines whether or not to query the label yt with respect to xt. Note that such
selective querying protocol makes our problem different from contextual bandits (Russo and Van Roy,
2013; Foster et al., 2020): The loss `t(at) of an chosen at may not be even observed.

We use Qt to indicate the query status at round t, i.e.,

Qt = (label yt of xt is queried).

The learner also aims at minimizing the total number of queries across T rounds, i.e.,
PT

t=1 Qt.

Connection to active learning. We consider the following learner for the above mentioned decision
making problem. At each round, the learner constructs a classifier bht : X ! {+1,�1,?} and a
query function gt : X ! {0, 1}; the learner then takes action at = bht(xt) and decides the query
status as Qt = gt(xt).

26

Conditioned on Ft�1, taking expectation over `t(at) leads to the following equivalence.

E[`t(at) | Ft�1] = E


(sign(yt) 6= at, at 6= ?) +

✓
1

2
� �

◆
· (at = ?) | Ft�1

�

= E
 �

sign(yt) 6= bh(xt),bh(xt) 6= ?
�
+

✓
1

2
� �

◆
·
�bh(xt) = ?

�
| Ft�1

�

= P(x,y)⇠DXY

�
sign(y) 6= bh(x),bh(x) 6= ?

�
+

✓
1

2
� �

◆
· P(bh(x) = ?)

= err�(bht).

This shows that the (conditionally) expected instantaneous loss precisely captures the Chow’s error
of classifier bht. Similarly, we have

E[`t(a?t) | Ft�1] = P(x,y)⇠DXY ((y 6= sign(2⌘(x)� 1))) = err(h?).

Combining the above two results, we notice that the (conditionally) expected instantaneous regret

exactly captures the Chow’s excess error of classifier bht, i.e.,

Regrett = err�(bht)� err(h?).

Let bh ⇠ unif({bht}
T
t=1) be a classifier randomly selected from all the constructed classifiers. Taking

expectation with respect to this random selection procedure, we then have

Ebh⇠unif({bht}
T
t=1)

[err�(bh)� err(h?)] =
TX

t=1

(err�(bht)� err(h?))/T = Regret(T)/T. (11)

That being said, the expected Chow’s excess error of bh can be sublinear in T . If the total number of
queries is logarithmic in T , this immediately implies learning a classifier with exponential savings in
label complexity.

G.2 Algorithm and main results

We present an algorithm that achieves constant label complexity next (Algorithm 2). Compared to
Algorithm 1, Algorithm 2 drops the epoch scheduling, uses a sharper elimination rule for the active
set (note that � doesn’t depend on T , due to applying optimal stopping theorem in Lemma 10), and is
analyzed with respect to eluder dimension (Definition 7) instead of disagreement coefficient. As a
result, we shave all three sources of log 1

" , and achieve constant label complexity for general F (as
long as it’s finite and has finite eluder dimension). We abbreviate e := supf?2F

ef?(F , �/2).

27

Algorithm 2 Efficient Active Learning with Abstention (Constant Label Complexity)
Input: Time horizon T 2 N, abstention parameter � 2 (0, 1/2) and confidence level � 2 (0, 1).

1: Initialize bH := ;. Set T := O(e
" � · log(|F|

�)) and � := 1
2 log

�
|F|

�

�
.

2: for t = 1, 2, . . . , T do
3: Get bft := argminf2F

P
i<t Qi(f(xi)� yi)2.

// We use Qt 2 {0, 1} to indicate whether the label of xt is queried.
4: (Implicitly) Construct active set of regression function Ft ✓ F as

Ft :=

(
f 2 F :

t�1X

i=1

Qi(f(xi)� yi)
2


t�1X

i=1

Qi(bft(xi)� yi)
2 + �

)
.

5: Construct classifier bht : X ! {+1,�1,?} as

bht(x) :=

(
?, if [lcb(x;Ft), ucb(x;Ft)] ✓

⇥
1
2 � �,

1
2 + �

⇤
;

sign(2 bft(x)� 1), o.w.

Update bH = bH [{bht}. Construct query function gm : X ! {0, 1} as

gt(x) :=

✓
1

2
2 (lcb(x;Ft), ucb(x;Ft))

◆
· (bht(x) 6= ?).

6: Observe xt ⇠ DX . Take action at := bht(xt). Set Qt := gt(xt).
7: if Qt = 1 then
8: Query the label yt of xt.
9: Return bh := unif(bH).

Before proving Theorem 8. We define some notations that are specialized to Appendix G.

We define filtrations Ft�1 := �(x1, y1, . . . , xt�1, yt�1) and Ft�1 := �(x1, y1, . . . , xt). Note that
we additionally include the data point xt in the filtration Ft�1 at time step t � 1. We denote
Et[·] := E[· | Ft�1]. For any t 2 [T], we denote Mt(f) := Qt((f(xt) � yt)2 � (f?(xt) � yt)2).
We have

P⌧
i=1 Et[Mt(f)] =

P⌧
t=1 Qt(f(xt)� f

?(xt))2. For any given data point xt 2 X , we use
abbreviations

ucbt := ucb(xt;Ft) = sup
f2Ft

f(xt) and lcbt := lcb(xt;Ft) = inf
f2Ft

f(xt)

to denote the upper and lower confidence bounds of ⌘(xt) = f
?(xt). We also denote

wt := ucbt � lcbt = sup
f,f 02Ft

|f(xt)� f
0(xt)|

as the width of confidence interval.

Theorem 8. With probability at least 1� 2�, Algorithm 2 returns a classifier with expected Chow’s

excess error at most " and label complexity O(e·log(|F|/�)
�2), which is independent of

1
" .

Proof. We first analyze the label complexity of Algorithm 2. Note that Algorithm 2 constructs bht and
gt in forms similar to the ones constructed in Algorithm 1, and Lemma 6 holds for Algorithm 2 as
well. Based on Lemma 6, we have Qt = gt(xt) = 1 =) wt > �. Thus, taking ⇣ = � in Lemma 13
leads to

TX

t=1

(Qt = 1) <
17 log(2|F|/�)

2�2
· ef?(F , �/2),

with probability one. The label complexity of Algorithm 2 is then upper bounded by a constant as
long as ef?(F , �/2) is upper bounded by a constant (which has no dependence on T or 1

").

28

We next analyze the excess error of bh. We consider the good event E defined in Lemma 12, which
holds true with probability at least 1� �. Under event E , Lemma 15 shows that

TX

t=1

E[`t(at)� `t(a
?
t) | Ft�1] 

17
p
2�

�
· ef?(F , �/2).

Since

E
h
E[`t(at)� `t(a

?
t) | Ft�1] | Ft�1

i
= E[`t(at)� `t(a

?
t) | Ft�1],

and |E[`t(at)� `t(a?t) | Ft�1]|  1 by construction, applying Lemma 2 with respect to E[`t(at)�
`t(a?t) | Ft�1] further leads to

Regret(T) =
TX

t=1

E[`t(at)� `t(a
?
t) | Ft�1] 

34
p
2�

�
· ef?(F , �/2) + 8 log(2��1),

with probability at least 1� 2� (due to the additional application of Lemma 2). Since bh ⇠ unif(bH),
based on Eq. (11), we thus know that

Ebh⇠unif(bH)[err�(
bh)� err(h?)] =

TX

t=1

�
err�(bht)� err(h?)

�
/T



34
p
2�

�
· ef?(F , �/2) + 8 log

�
2��1

�
!
/T

Since T := O(e
" � · log(|F|

�)), we then know that the expected Chow’s excess error is at most ".

Theorem 10. Consider the setting where the data points {xt}
T
t=1 are chosen by an adaptive adversary

with yt ⇠ DY|xt
. With probability at least 1� �, Algorithm 2 simultaneously guarantees

TX

t=1

E[`t(at)� `t(a
?
t) | Ft�1] 

34
p
2�

�
· ef?(F , �/2),

and
TX

t=1

(Qt = 1) <
17 log(2|F|/�)

2�2
· ef?(F , �/2).

Proof. The proof follows the same analysis as in the first part of the proof of Theorem 8 (simply
stopped at the step with conditioning on Ft�1).

We redefine e := supf?2F
ef?(F , �/4) in the following Theorem 11 to account for the induced

approximation error in efficient implementation.
Theorem 11. Algorithm 2 can be efficiently implemented via the regression oracle and enjoys the

same theoretical guarantees stated in Theorem 8 or Theorem 10. The number of oracle calls needed is

O(e
" �3 · log(

|F|

�) · log(1�)) for a general set of regression functions F , and O(e
" � · log(|F|

�) · log(1�))
when F is convex and closed under pointwise convergence. The per-example inference time of

the learned bhM is O(1
�2 log

1
�) for general F , and O(log 1

�) when F is convex and closed under

pointwise convergence.

Proof. Denote Bt := {(xi, Qi, yi)}
⌧t�1

i=1 At any time step t 2 [T] of Algorithm 2, we construct
classifier bht and query function gt with approximated confidence bounds, i.e.,

clcb(x;Ft) := Alglcb(x;Bt,�t,↵) and ducb(x;Ft) := Algucb(x;Bt,�t,↵),

where Alglcb and Algucb are subroutines discussed in Proposition 8 and ↵ := �
4 .

Since the theoretical analysis of Theorem 8 and Theorem 10 do not require an non-increasing (with
respect to time step t) sampling region, i.e., {x 2 X : gt(x) = 1}, we only need to approximate
the confidence intervals at �

4 level. This slightly save the computational complexity compared to
Theorem 5, which approximates the confidence interval at �

4dlog Te
level. The rest of the analysis of

computational complexity follows similar steps in the proof of Theorem 5.

29

G.3 Supporting lemmas

Consider a sequence of random variables (Zt)t2N adapted to filtration Ft. We assume that
E[exp(�Zt)] < 1 for any � and µt := E

⇥
Zt | Ft�1

⇤
. We also denote

 t(�) := logE
⇥
exp(� · (Zt � µt)) | Ft�1

⇤
.

Lemma 10 (Russo and Van Roy (2013)). With notations defined above. For any � � 0 and � > 0,

we have

P

8⌧ 2 N,

⌧X

t=1

�Zt 

⌧X

t=1

(�µt + t(�)) + log

✓
1

�

◆!
� 1� �. (12)

Lemma 11. Fix any � 2 (0, 1). For any ⌧ 2 [T], with probability at least 1� �, we have

⌧X

t=1

Mt(f) 
⌧X

t=1

3

2
Et[Mt(f)] + C�,

and

⌧X

t=1

Et[Mt(f)]  2
⌧X

t=1

Mt(f) + C�,

where C� := log
⇣

2|F|

�

⌘
.

Proof. Fix any f 2 F . We take Zt = Mt(f) in Lemma 10. We can rewrite

Zt = Qt

�
(f(xt)� f

?(xt))
2 + 2(f(xt)� f

?(xt))"t
�
,

where we use the notation "t := f
?(xt)� yt. Since Et["t] = 0 and Et[exp(�"t) | Ft�1]  exp(�

2

8)
a.s. by assumption, we have

µt = Et[Zt] = Qt(f(xt)� f
?(xt))

2
,

and

 t(�) = logE
⇥
exp(� · (Zt � µt)) | Ft�1

⇤

= logEt[exp(2�Qt(f(xt)� f
?(xt) · "t))]


�
2(Qt(f(xt)� f

?(xt))
2

2

=
�
2
µt

2
,

where the last line comes from the fact that Qt 2 {0, 1}. We can similarly upper bound
E[exp(�Zt)] = E[Et[exp(�Zt)]]  exp(�+ �2

2) by noticing the range fact that µt  1.

Plugging the above results into Lemma 10 with � = 1 leads to
⌧X

t=1

Mt(f) 
⌧X

t=1

3

2
Et[Mt(f)] + log ��1

.

Following the same procedures above with Zt = �Mt(f) and � = 1 leads to
⌧X

t=1

3

2
Et[Mt(f)]  2

⌧X

t=1

Mt(f) + log ��1
.

The final guarantees comes from taking a union abound over f 2 F and splitting the probability for
both directions.

We use E to denote the good event considered in Lemma 11, we use it through out the rest of this
section.

30

Lemma 12. With probability at least 1� �, the followings hold true:

1. f
?
2 Ft for any t 2 [T].

2.
P⌧�1

t=1 Et[Mt(f)]  2C� for any f 2 F⌧ .

Proof. The first statement immediately follows from Lemma 11 (the second inequality) and the fact
that � := C�/2 in Algorithm 2.

For any f 2 F⌧ , we have
⌧�1X

t=1

Et[Mt(f)]  2
⌧�1X

t=1

Qt

�
(f(xt)� yt)

2
� (f?(xt)� yt)

2
�
+ C�

 2
⌧�1X

t=1

Qt

⇣
(f(xt)� yt)

2
� (bf⌧ (xt)� yt)

2
⌘
+ C�

 2C�, (13)

where the first line comes from Lemma 11, the second line comes from the fact that bf⌧ is the minimize
among F⌧ , and the third line comes from the fact that f 2 F⌧ and 2� = C� .

Lemma 13. For any ⇣ > 0, with probability 1, we have

TX

t=1

(Qt = 1) · (wt > ⇣) <

✓
16�

⇣2
+ 1

◆
· ef?(F , ⇣/2).

Remark 4. Similar upper bound has been established in the contextual bandit settings forPT
t=1 (wt > ⇣) (Russo and Van Roy, 2013; Foster et al., 2020). Our results is established

with an additional (Qt = 1) term due to selective querying in active learning.

Proof. We give some definitions first. We say that x is ⇣-independent of a sequence x1, . . . , x⌧

if there exists a f 2 F such that |f(x)� f
?(x)| > ⇣ and

P
i⌧ (f(xi) � f

?(xi))2  ⇣
2. We

say that x is ⇣-dependent of x1, . . . , x⌧ if we have |f(x)� f
?(x)|  ⇣ for all f 2 F such thatP

i⌧ (f(xi)� f
?(xi))2  ⇣

2. The eluder dimension ěf?(F , ⇣) can be equivalently defined as the
length of the longest sequence x1, . . . , x⌧ such that each xi is ⇣-independent of all its predecessors.

For any t 2 [T], and we denote St = {xi : Qi = gi(xi) = 1, i 2 [t]} as the queried data points up to
time step t. We assume that |St| = ⌧ and denote St = (xg(1), . . . , xg(⌧)), where g(i) represents the
time step where the i-th queried data point is queried.

Claim 1. For any j 2 [⌧], xg(j) is ⇣
2 -dependent on at most 16�

⇣2 disjoint subsequences of
xg(1), . . . , xg(j�1).

For any xg(j) 2 St, recall that

wg(j) = ucbg(j) � lcbg(j) = max
f,f 02Fg(j)

|f(xt)� f
0(xt)|.

If mg(j) > ⇣, there must exists a f 2 Fg(j) such that
��f(xg(j))� f

?(xg(j))
�� >

⇣
2 . Focus on

this specific f 2 Fg(j) ✓ F . If xg(j) is ⇣
2 -dependent on a subsequence xg(i1), . . . , xg(im) (of

xg(1), . . . , xg(j�1)), we must have

X

km

(f(xg(ik))� f
?(xg(ik)))

2
>
⇣
2

4
.

Suppose xg(j) is ⇣
2 -dependent on K disjoint subsequences of xg(1), . . . , xg(j�1), according to

Lemma 12, we must have

K ·
⇣
2

4
<

X

i<j

(f(xg(i))� f
?(xg(i)))

2 =
X

k<g(j)

Qk(f(xk)� f
?(xk))

2
 4�,

31

which implies that K <
16�
⇣2 .

Claim 2. Denote d := ěf?(F , ⇣/2) � 1 and K =
⌅
⌧�1
d

⇧
. There must exists a j 2 [⌧] such that xg(j)

is ⇣
2 -dependent on at least K disjoint subsequences of xg(1), . . . , xg(j�1).

We initialize K subsequences Ci = {xg(i)}. If xg(K+1) is ⇣
2 -dependent on each Ci, we are done.

If not, select a subsequence Ci such that xg(K+1) is ⇣
2 -independent of and add xg(K+1) into this

subsequence. Repeat this procedure with j > K + 1 until xg(j) is ⇣
2 -dependent of all Ci or j = ⌧ .

In the later case, we have
P

iK |Ci| = ⌧ � 1 � Kd. Since |Ci|  d by definition, we must have
|Ci| = d for all i 2 [K]. As a result, xg(⌧) must be ⇣

2 -dependent of all Ci.

It’s easy to check that
⌅
⌧�1
d

⇧
�

⌧
d � 1. Combining Claim 1 and 2, we have

⌧

d
� 1 

�
⌧ � 1

d

⌫
 K <

16�

⇣2
.

Rearranging leads to the desired result.

The following Lemma 14 is a restatement of Lemma 9 in the regret minimization setting.

Lemma 14. If Qt = 0, we have E
⇥
`t(at)� `t(a?t) | Ft�1

⇤
 0.

Proof. Recall we have at = bht(xt). We then have

E
⇥
`t(at)� `t(a

?
t) | Ft�1

⇤

= Pyt|xt

�
yt 6= sign(bht(xt))

�
·
�bht(xt) 6= ?

�
+
�
1/2� �

�
· 1
�bht(xt) = ?

�
� Pyt|xt

�
yt 6= sign(h?(xt))

�

=
�bht(xt) 6= ?

�
·
�
Pyt|xt

�
yt 6= sign(bht(xt))

�
� Pyt|xt

�
yt 6= sign(h?(xt))

��

+
�bht(xt) = ?

�
·
��
1/2� �

�
� Pyt|xt

�
yt 6= sign(h?(xt))

��
.

We now analyze the event {Qt = 0} in two cases.

Case 1: bht(xt) = ?.
Since ⌘(xt) = f

?(xt) 2 [lcbt, ucbt], we further know that ⌘(xt) 2 [12 � �,
1
2 + �] and thus

Pyt|xt

�
yt 6= sign(h?(xt))

�
�

1
2 � �. As a result, we have E

⇥
`t(at)� `t(a?t) | Ft�1

⇤
 0.

Case 2: bht(xt) 6= ? but 1
2 /2 (lcbt, ucbt).

In this case, we know that sign(bht(xt)) = sign(h?(xt)) whenever ⌘(xt) 2 [lcbt, ucbt]. As a result,
we have E

⇥
`t(at)� `t(a?t) | Ft�1

⇤
= 0.

Lemma 15. Assume µ(xt) 2 [lcbt, ucbt] and f
?

is not eliminated across all t 2 [T]. We have

TX

t=1

E[`t(at)� `t(a
?
t) | Ft�1] 

17
p
2�

�
· ef?(F , �/2). (14)

Proof. Lemma 14 shows that non-positive conditional regret is incurred at whenever Qt = 0, we
then have

TX

t=1

E[`t(at)� `t(a
?
t) | Ft�1] 

TX

t=1

(Qt = 1)E
⇥
`t(at)� `t(a

?
t) | Ft�1

⇤

=
TX

t=1

(Qt = 1) · (wt > �) · |2f?(xt)� 1|



TX

t=1

(Qt = 1) · (wt > �) · 2wt,

32

where we use Lemma 6 and Lemma 14 on the second line; and the last line comes from the fact that
|f

?
�

1
2 |  wt whenever f? is not eliminated and a query is issued. We can directly apply wt  1

and Lemma 13 to bound the above terms by eO(
ef? (F,�/2)

�2), which has slightly worse dependence on
�. Following Foster et al. (2020), we take a slightly tighter analysis below.

Let ST := {xi : Qi = 1, i 2 [T]} denote the set of queried data points. Suppose |ST | = ⌧ . Let
i1, . . . , i⌧ be a reordering of indices within ST such that wi1(xi1) � wi2(xi2) � . . . � wi⌧ (xi⌧).
Consider any index t 2 [⌧] such that wit(xit) � �. For any ⇣ � �, Lemma 13 implies that

t 

TX

t=1

(Qt = 1) · (wt(xt) > ⇣) 
17�

⇣2
· ef?(F , ⇣/2) 

17�

⇣2
· ef?(F , �/2). (15)

Taking ⇣ = wit(xit) in Eq. (15) leads to the fact that

wit(xit) 

r
17� · ef?(F , �/2)

t
.

Taking ⇣ = � in Eq. (15) leads to the fact that

⌧ 
17�

�2
· ef?(F , �/2).

We now have
TX

t=1

(Qt = 1) · (wt > �) · 2wt =
⌧X

t=1

(wit > �) · 2wit(xit)

 2
⌧X

t=1

r
17� · ef?(F , �/2)

t



q
34� · ef?(F , �/2) · ⌧


17
p
2�

�
· ef?(F , �/2).

H Omitted details for Section 4.2

H.1 Algorithm and main results

Algorithm 3 achieves the guarantees stated in Theorem 9. Theorem 9 is proved based on supporting
lemmas derived in Appendix H.3. Note that, under the condition   ", we still compete against the
Bayes classifier h? = hf? in the analysis of Chow’s excess error Eq. (2).
Theorem 9. Suppose   ". With probability at least 1� 2�, Algorithm 3 returns a classifier with

Chow’s excess error O(" · ✓ · log(Pdim(F)
" � �)) and label complexity O(✓Pdim(F)

�2 · log2(Pdim(F)
" �) ·

log(Pdim(F)
" � �)).

Proof. We analyze under the good event E defined in Lemma 4, which holds with probability at least
1� �. Note that all supporting lemmas stated in Appendix H.3 hold true under this event.

We analyze the Chow’s excess error of bhm, which is measurable with respect to F⌧m�1 . For any x 2 X ,
if gm(x) = 0, Lemma 20 implies that excess�(bhm;x)  2. If gm(x) = 1, we know that bhm(x) 6= ?

and 1
2 2 (lcb(x;Fm), ucb(x;Fm)). Since f 2 Fm by Lemma 17 and supx2X

|f(x)� f
?(x)|  

by assumption. The error incurred in this case is upper bounded by

excess�(bhm;x)  2|f?(x)� 1/2|

 2+ 2|f(x)� 1/2|

 2+ 2w(x;Fm).

33

Algorithm 3 Efficient Active Learning with Abstention under Misspecification
Input: Accuracy level " > 0, abstention parameter � 2 (", 1/2) and confidence level � 2 (0, 1).

1: Define T := Pdim(F)
" � , M := dlog2 T e and C� := O(Pdim(F) · log(T/�)).

2: Define ⌧m := 2m for m � 1, ⌧0 = 0 and �m := (M �m+ 1) ·
�
2"2⌧M�1 + 2C�

�
.

3: for epoch m = 1, 2, . . . ,M do
4: Get bfm := argminf2F

P⌧m�1

t=1 Qt(f(xt)� yt)2.
// We use Qt 2 {0, 1} to indicate whether the label of xt is queried.

5: (Implicitly) Construct active set of regression function Fm ✓ F as

Fm :=

(
f 2 F :

⌧m�1X

t=1

Qt(f(xt)� yt)
2


⌧m�1X

t=1

Qt(bfm(xt)� yt)
2 + �m

)
.

6: Construct classifier bhm : X ! {+1,�1,?} as

bhm(x) :=

(
?, if [lcb(x;Fm), ucb(x;Fm)] ✓

⇥
1
2 � �,

1
2 + �

⇤
;

sign(2 bfm(x)� 1), o.w.

and query function gm : X ! {0, 1} as

gm(x) :=

✓
1

2
2 (lcb(x;Fm), ucb(x;Fm))

◆
· (bhm(x) 6= ?).

7: if epoch m = M then
8: Return classifier bhM .
9: for time t = ⌧m�1 + 1, . . . , ⌧m do

10: Observe xt ⇠ DX . Set Qt := gm(xt).
11: if Qt = 1 then
12: Query the label yt of xt.

Combining these two cases together, we have

excess�(bhm)  2+ 2Ex⇠DX [(gm(x) = 1) · w(x;Fm)].

Take m = M and apply Lemma 19 leads to the following guarantee.

excess�(bhM)  2+
72�M
⌧M�1�

· ✓
val
f

⇣
F , �/2,

p
�M/⌧M�1

⌘

 2+O

✓
"
2

�
+

Pdim(F) · log(T/�)

T �

◆
· ✓

val
f

⇣
F , �/2,

p
C�/T

⌘

= O

✓
" · ✓ · log

✓
Pdim(F)

" � �

◆◆
,

where we take ✓ := sup◆>0 ✓
val
f

(F , �/2, ◆) as an upper bound of ✓val
f

(F , �/2,
p
C�/T), and use the

fact that T = Pdim(F)
" � and the assumptions that   " < �.

We now analyze the label complexity (note that the sampling process of Algorithm 3 stops at time
t = ⌧M�1). Note that E[(Qt = 1) | Ft�1] = Ex⇠DX [(gm(x) = 1)] for any epoch m � 2 and

34

time step t within epoch m. Combine Lemma 2 with Lemma 18 leads to
⌧M�1X

t=1

(Qt = 1) 
3

2

⌧M�1X

t=1

E[(Qt = 1) | Ft�1] + 4 log ��1

 3 +
3

2

M�1X

m=2

(⌧m � ⌧m�1) · 36�m
⌧m�1 �

2
· ✓

val
f

⇣
F , �/2,

p
�m/⌧m�1

⌘
+ 4 log ��1

 3 + 48
M�1X

m=2

�m

�2
· ✓

val
f

⇣
F , �/2,

p
�m/⌧m�1

⌘
+ 4 log ��1

 3 + 4 log ��1 +O

✓
M

2
· "

2
· T

�2
+

M
2
· C�

�2

◆
· ✓

val
f

⇣
F , �/2,

p
C�/T

⌘

= O

✓Pdim(F)

�2
·

✓
log

✓
Pdim(F)

" �

◆◆2

· log

✓
Pdim(F)

" � �

◆!

with probability at least 1� 2� (due to an additional application of Lemma 2); where we use the fact
that T = Pdim(F)

" � and the assumptions that   " < � as before.

Theorem 12. Algorithm 3 can be efficiently implemented via the regression oracle and enjoys the

same theoretical guarantees stated in Theorem 9. The number of oracle calls needed is eO(Pdim(F)
" �3)

for a general set of regression functions F , and eO(Pdim(F)
" �) when F is convex and closed under

pointwise convergence. The per-example inference time of the learned bhM is eO(1
�2 log

2(Pdim(F)
"))

for general F , and eO(log 1
�) when F is convex and closed under pointwise convergence.

Proof. Note that classifier bhm and query function qm in Algorithm 3 are constructed in the way
as the ones in Algorithm 1, Thus, Algorithm 3 can be efficiently implemented in the same way
as discussed in Theorem 5, and enjoys the same per-round computational complexities. The total
computational complexity is then achieved by multiplying the per-round computational complexity
by T = Pdim(F)

" � .

H.2 Discussion on   "

We provide guarantees (in Theorem 9) when   " since the learned classifier suffers from an
additive  term in the excess error, as shown in the proof of Theorem 9. We next give preliminary
discussions on this issue by relating active learning with to a (specific) regret minimization problem
and connecting to existing lower bound in the literature. More specifically, we consider the perspective
and notations discussed in Appendix G.1. Fix any epoch m � 2 and time step t within epoch m. We
have

Regrett = E[`t(at)� `t(a
?
t) | Ft�1] = err�(bhm)� err(h?) = excess�(bhm) = eO

✓
+

✓

2m �

◆
,

where the bound comes from similar analysis as in the proof of Theorem 9. Summing the instanta-
neous regret over T rounds, we have

Regret(T) =
TX

t=1

Regrett

 2 +
MX

m=2

(⌧m � ⌧m�1) · excess�(bhm)

 eO
✓
 · T +

✓

�

◆
.

The above bound indicates an additive regret term scales as  · T . On the other hand, it is known
that an additive  · T regret is in general unavoidable in linear bandits under model misspecification

35

(Lattimore et al., 2020). This connection partially explains/justifies why we only provide guarantee
for Theorem 9 under   ".

There are, however, many differences between the two learning problems. We list some distinctions
below.

1. The regret minimization problem considered in Appendix G.1 only takes three actions A =
{+1,�1,?}, yet the lower bound in linear bandits is established with a large action set (Lattimore
et al., 2020);

2. A standard contextual bandit problem will observe loss (with respect to the pulled action) at each
step t 2 [T], however, the active learning problem will only observe (full) feedback at time steps
when a query is issued, i.e., {t 2 [T] : Qt = 1}.

We leave a comprehensive study of the problem for feature work.

H.3 Supporting lemmas

We use the same notations defined in Appendix E, except bhm, gm and �m are defined differently. We
adapt the proofs Theorem 4 (in Appendix E) to deal with model misspecification.

Note that although we do not have f
?
2 F anymore, one can still define random variables of the

form Mt(f), and guarantees in Lemma 4 still hold. We use E to denote the good event considered
in Lemma 4, we analyze under this event through out the rest of this section. We also only analyze
under the assumption of Theorem 9, i.e., 2  ".
Lemma 16. Fix any epoch m 2 [M]. We have

bRm(f)  bRm(f?) +
3

2
· 

2
⌧m�1 + C�,

where C� := 8 log
⇣

|F|·T 2

�

⌘
.

Proof. From Lemma 4 we know that

bRm(f)� bRm(f?) 

⌧m�1X

t=1

3

2
· Et

h
Qt

�
f(xt)� f

?(xt)
�2i

+ C�


3

2
· 

2
⌧m�1 + C�,

where we use the fact that Et[yt | xt] = f
?(xt) (and thus Et[Mt(f)] = Et[Qt(f(xt) � f

?(xt))2])
on the first line; and use the fact supx|f(x)� f

?(x)|   on the second line.

Lemma 17. The followings hold true:

1. f 2 Fm for any m 2 [M].

2.
P⌧m�1

t=1 Et[Mt(f)]  4�m for any f 2 Fm.

3.
P⌧m�1

t=1 E[Qt(xt)(f(xt)� f(xt))2]  9�m for any f 2 Fm.

4. Fm+1 ✓ Fm for any m 2 [M � 1].

Proof. 1. Fix any epoch m 2 [M]. By Lemma 4, we have bRm(f?)  bRm(f) + C�/2 for any
f 2 F . Combining this with Lemma 16 leads to

bRm(f)  bRm(f) +
3

2
·
�

2
⌧m�1 + C�

�

 bRm(f) + �m,

for any f 2 F , where the second line comes from the definition of �m (recall that we have   "

by assumption). We thus have f 2 Fm for any m 2 [M].

36

2. Fix any f 2 Fm. With Lemma 4, we have
⌧m�1X

t=1

Et[Mt(f)]  2

⌧m�1X

t=1

Mt(f) + C�

= 2 bRm(f)� 2 bRm(f?) + C�

 2 bRm(f)� 2 bRm(f) + 32⌧m�1 + 3C�

 2 bRm(f)� 2 bRm(bfm) + 32⌧m�1 + 3C�

 2�m + 32⌧m�1 + 3C�

 4�m,

where the third line comes from Lemma 16; the fourth line comes from the fact that bfm is the
minimizer of bRm(·); and the fifth line comes from the fact that f 2 Fm.

3. Fix any f 2 Fm. With Lemma 4, we have
⌧m�1X

t=1

Et[Qt(xt)(f(xt)� f(xt))
2] =

⌧m�1X

t=1

Et[Qt(xt)((f(xt)� f
?(xt)) + (f?(xt)� f(xt)))

2]

 2

⌧m�1X

t=1

Et[Qt(xt)(f(xt)� f
?(xt))

2] + 2⌧m�1
2

= 2

⌧m�1X

t=1

Et[Mt(f)] + 2⌧m�1
2

 8�m + 2⌧m�1
2

 9�m,

where we use (a+ b)2  a
2 + b

2 on the second line; and use statement 2 on the fourth line.

4. Fix any f 2 Fm+1. We have

bRm(f)� bRm(bfm)  bRm(f)� bRm(f?) +
C�

2

= bRm+1(f)� bRm+1(f
?)�

⌧mX

t=⌧m�1+1

Mt(f) +
C�

2

 bRm+1(f)� bRm+1(f) +
3

2

2
⌧m + C� �

⌧mX

t=⌧m�1+1

Et[Mt(f)]/2 + C�

 bRm+1(f)� bRm+1(bfm+1) +
3

2

2
⌧m + 2C�

 �m+1 +
3

2

2
⌧m + 2C�

 �m,

where the first line comes from Lemma 4; the third line comes from Lemma 16 and Lemma 4; the
fourth line comes from the fact that bfm+1 is the minimizer with respect to bRm+1 and Lemma 4;
the last line comes from the definition of �m.

Since the classifier bhm and query function gm are defined in the same way as in Algorithm 1,
Lemma 6 holds true for Algorithm 3 as well. As a result of that, Lemma 7 and Lemma 8 hold true
with minor modifications. We present the modified versions below, whose proofs follow similar steps
as in Lemma 7 and Lemma 8 but replace f

? with bf (and thus using concentration results derived in
Lemma 17).

37

Lemma 18. Fix any epoch m � 2. We have

Ex⇠DX [(gm(x) = 1)] 
36�m
⌧m�1 �

2
· ✓

val
f

⇣
F , �/2,

p
�m/⌧m�1

⌘
.

Lemma 19. Fix any epoch m � 2. We have

Ex⇠DX [(gm(x) = 1) · w(x;Fm)] 
36�m
⌧m�1�

· ✓
val
f

⇣
F , �/2,

p
�m/⌧m�1

⌘
.

Lemma 20. Fix any m 2 [M]. We have excess�(bhm;x)  2 if gm(x) = 0.

Proof. Recall that

excess�(bh;x) =
�bh(x) 6= ?

�
·
�
Py|x

�
y 6= sign(bh(x))

�
� Py|x

�
y 6= sign(h?(x))

��

+
�bh(x) = ?

�
·
��
1/2� �

�
� Py|x

�
y 6= sign(h?(x))

��
.

We now analyze the event {gm(x) = 0} in two cases.

Case 1: bhm(x) = ?.

Since f(x) 2 [lcb(x;Fm), ucb(x;Fm)] by Lemma 17, we know that ⌘(x) = f
?(x) 2 [12 � � �

,
1
2 +�+] and thus Py

�
y 6= sign(h?(x))

�
�

1
2 ���. As a result, we have excess�(bhm;x)  .

Case 2: bhm(x) 6= ? but 1
2 /2 (lcb(x;Fm), ucb(x;Fm)).

We clearly have excess�(bhm;x)  0 if sign(bhm(x)) = sign(h?(x)). Now consider the case when
sign(bhm(x)) 6= sign(h?(x)). Since f(x) 2 [lcb(x;Fm), ucb(x;Fm)] and |f(x)� f

?(x)|  , we
must have |f

?(x)� 1/2|   in that case, which leads to excess�(bhm;x)  2|f?(x) � 1/2| 
2.

38

	Introduction
	Problem setting
	Contributions and paper organization

	Efficient active learning with abstention
	Guarantees under standard excess error
	Recovering minimax optimal label complexity
	Abstention to avoid noise-seeking

	Extensions
	Constant label complexity
	Dealing with model misspecification

	Additional related work
	Why Chow's excess error helps?
	Disagreement coefficient, star number and eluder dimension
	Concentration results
	Proofs of results in sec:epoch
	Supporting lemmas

	Proofs of results in sec:standardexcesserror
	Omitted details for sec:constant
	The perspective: Regret minimization with selective sampling
	Algorithm and main results
	Supporting lemmas

	Omitted details for sec:misspecified
	Algorithm and main results
	Discussion on
	Supporting lemmas

