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Abstract

Label efficiency has become an increasingly important objective in deep learning
applications. Active learning aims to reduce the number of labeled examples
needed to train deep networks, but the empirical performance of active learning
algorithms can vary dramatically across datasets and applications. It is difficult
to know in advance which active learning strategy will perform well or best in a
given application. To address this, we propose the first adaptive algorithm selection
strategy for deep active learning. For any unlabeled dataset, our (meta) algorithm
TAILOR (Thompson Actlve Learning algORithm selection) iteratively and adap-
tively chooses among a set of candidate active learning algorithms. TAILOR uses
novel reward functions aimed at gathering class-balanced examples. Extensive
experiments in multi-class and multi-label applications demonstrate TAILOR ’s
effectiveness in achieving accuracy comparable or better than that of the best of
the candidate algorithms. Our implementation of TAILOR is open-sourced at
https://github.com/jifanz/TAILOR.

1 Introduction

Active learning (AL) aims to reduce data labeling cost by iteratively and adaptively finding informative
unlabeled examples for annotation. Label-efficiency is increasingly crucial as deep learning models
require large amount of labeled training data. In recent years, numerous new algorithms have been
proposed for deep active learning [Sener and Savarese, 2017, |Gal et al., 2017, |Ash et al., [2019,
Kothawade et al., 2021} |Citovsky et al., [2021} Zhang et al., 2022]. Relative label efficiencies among
algorithms, however, vary significantly across datasets and applications [Beck et al., 2021, |Zhan
et al., [2022]. When it comes to choosing the best algorithm for a novel dataset or application,
practitioners have mostly been relying on educated guesses and subjective preferences. Prior work
[Baram et al.,|2004, |Hsu and Lin, 2015, |Pang et al., 2018] have studied the online choice of active
learning algorithms for linear models, but these methods become ineffective in deep learning settings
(see Section [2). In this paper, we present the first principled approach for automatically selecting
effective deep AL algorithms for novel, unlabeled datasets.

We reduce the algorithm selection task to a multi-armed bandit problem. As shown in Figure[I] the
idea may be viewed as a meta algorithm adaptively choosing among a set of candidate AL algorithms
(arms). The objective of the meta algorithm is to maximize the cumulative reward incurred from
running the chosen candidate algorithms. In Section[d] we propose reward functions that encourage
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the collection of class-balanced labeled set. As mentioned above, deep AL algorithms are generally
proposed to maximize different notions of informativeness. As a result, by utilizing our algorithm
selection strategy TAILOR , we annotate examples that are both informative and class-diverse.

To highlight some of our results, as shown in Figure[2]for the CelebA dataset, TAILOR outperforms all
candidate deep AL algorithms and collects the least amount of labels while reaching the same accuracy
level. TAILOR achieves this by running a combination of candidate algorithms (see Appendix [E) to
yield an informative and class-diverse set of labeled examples (see Figure c)).
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Our key contributions are as follows:

* To our knowledge, we propose the first adaptive algorithm selection strategy for deep active
learning. Our algorithm TAILOR works particularly well on the challenging and prevalent class-
imbalance settings [Kothawade et al., [2021}, Emam et al., 2021, |Zhang et al.,[2022].

¢ Our framework is general purpose for both multi-label and multi-class classification. Active
learning is especially helpful for multi-label classification due to the high annotation cost of
obtaining multiple labels for each example.

e TAILOR can choose among large number (e.g. hundreds) of candidate deep AL algorithms even

under limited (10 or 20) rounds of interaction. This is particularly important since limiting the

number of model retraining steps and training batches is essential in large-scale deep active

learning [Citovsky et al., 2021]].

In Section 5} we provide regret analysis of TAILOR . Although TAILOR can be viewed as a sort of

contextual bandit problem, our regret bound is better than that obtained by a naive reduction to a

linear contextual bandit reduction [Russo and Van Roy, |[2014].

* We provide extensive experiments on four multi-label and six multi-class image classification
datasets (Section[6). Our results show that TAILOR obtains accuracies comparable or better than
the best candidate strategy for nine out of the ten datasets. On all of the ten datasets, TAILOR
succeeds in collecting datasets as class-balanced as the best candidate algorithm. Moreover, with a
slightly different reward function designed for active search, TAILOR performs the best in finding
the highest number of positive class labels on all multi-label datasets.

2 Related Work

Adaptive Algorithm Selection in Active Learning. Several past works have studied the adaptive
selection of active learning algorithms for linear models. [Donmez et al. [2007] studied the limited
setting of switching between two specific strategies to balance between uncertainty and diversity.
To choose among off-the-shelf AL algorithms, [Baram et al.|[2004] first proposed a framework that
reduced the AL algorithm selectino task to a multi-armed bandit problem. That approach aims to
maximize the cumulative reward in a Classification Entropy Maximization score, which measures
the class-balancedness of predictions on unlabeled examples, after training on each newly labeled
example. However, this becomes computationally intractable for large datasets with computationally
expensive models. To remedy this problem, Hsu and Lin|[2015] and [Pang et al.| [2018] proposed
the use of importance weighted training accuracy scores for each newly labeled example. The
training accuracy, however, is almost always 100% for deep learning models due to their universal
approximation capability, which makes the reward signals less effective. Moreover, [Hsu and Lin



[2015]] reduced their problem to an adversarial multi-armed bandit problem while |Pang et al. [2018]
also studied the non-stationarity of rewards over time.

Lastly, we would like to distinguish the goal of our paper from the line of Learning Active Learning
literature [Konyushkova et al.,|[2017}|Shao et al., 2019|Zhang et al.| 2020, |Gonsior et al.,[2021} [Loffler
and Mutschler, |[2022], where they learn a single paramtereized policy model from offline datasets.
These policies can nonetheless serve as individual candidate algorithms, while TAILOR aims to select
the best subsets that are adapted for novel dataset instances.

Multi-label Deep Active Learning. Many active learning algorithms for multi-label classification
based on linear models have been proposed [Wu et al.| [2020], but few for deep learning. Multi-
label active learning algorithms are proposed for two types of annotation, example-based where all
associated labels for an example are annotated, and example-label-based where annotator assigns a
binary label indicating whether the example is positive for the specific label class.

While Citovsky et al.| [2021], [Min et al. [2022] both propose deep active learning algorithms for
example-label-based labels, we focus on example-based annotation in this paper. To this end,
Ranganathan et al.|[2018]] propose an uncertainty sampling algorithm that chooses examples with the
lowest class-average cross entropy losses after trained with weak supervision. We find the EMAL
algorithm by Wu et al.|[2014] effective on several datasets, despite being proposed for linear models.
EMAL is based on simple uncertainty metric where one averages over binary margin scores for
each class. Lastly, a multi-label task can be seen as individual single-label binary classification
tasks for each class [Boutell et al.| |2004]. By adopting this view, one can randomly interleave the
above-mentioned AL algorithms for every class. In this paper, we include baselines derived from
least confidence sampling [Settles,|[2009], GALAXY [Zhang et al.,|2022] and most likely positive
sampling [Warmuth et al., 2001} [2003| Jiang et al., 2018|].

Balanced Multi-class Deep Active Learning. Traditional uncertainty sampling algorithms have
been adopted for deep active learning. These algorithms select uncertain examples based on scores
derived from likelihood softmax scores, such as margin, least confidence and entropy [Tong and
Koller, 2001} |Settles, 2009, [Balcan et al., 2006, |[Kremer et al.,|2014]. The latter approaches leverage
properties specific to neural networks by measuring uncertainty through dropout [Gal et al.,[2017],
adversarial examples [Ducoffe and Precioso, 2018] and neural network ensembles [Beluch et al.|
2018]. Diversity sampling algorithms label examples that are most different from each other, based
on similarity metrics such as distances in penultimate layer representations [Sener and Savarese|
2017} Geifman and El-Yaniv, 2017, (Citovsky et al.| 2021] or discriminator networks [Gissin and
Shalev-Shwartz, 2019]. Lastly, gradient embeddings, which encode both softmax likelihood and
penultimate layer representation, have become widely adopted in recent approaches [Ash et al.,[2019|
2021, |Wang et al., 2021} |[Elenter et al., 2022, Mohamadi et al.,[2022]. As an example, Ash et al.
[2019] uses k-means++ to query a diverse set of examples in the gradient embedding space.

Unbalanced Multi-class Deep Active Learning. More general and prevalent scenarios, such as
unbalanced deep active classification, have received increasing attention in recent years [Kothawade
et al., 2021, Emam et al.| 2021, Zhang et al.| [2022, Coleman et al., [2022, Jin et al., 2022, |Aggar{
wal et al., [2020, (Cai, 2022]. For instance, [Kothawade et al.| [2021] label examples with gradient
embeddings that are most similar to previously collected rare examples while most dissimilar to
out-of-distribution ones. [Zhang et al.|[2022]] create linear one-vs-rest graphs based on margin scores.
To collect a more class-diverse labeled set, GALAXY discovers and labels around the optimal
uncertainty thresholds through a bisection procedure on shortest shortest paths.

3 Problem Statement

3.1 Notation

In pool based active learning, one starts with a large pool of N unlabeled examples X =
{z1, 9, ...,z } with corresponding ground truth labels Y = {y1,y2, ..., yn } initially unknown
to the learner. Let K denote the total number of classes. In multi-label classification, each label y; is
denoted as y; € {0, 1} with each element y; ; representing the binary association between class j
and example z;. On the other hand, in a multi-class problem, each label y; € {e;}c[x] is denoted
by a canonical one-hot vector, where ¢; is the j-th canonical vector representing the j-th class.
Furthermore, at any time, we denote labeled and unlabeled examples by L, U C X correspondingly,



where LN U = (). We let Ly C X denote a small seed set of labeled examples and Uy = X\ Lo
denote the initial unlabeled set. Lastly, an active learning algorithm .4 takes as input a pair of labeled
and unlabeled sets (L, U) and returns an unlabeled example A(L,U) € U.

3.2 Adaptive Algorithm Selection Framework

In this section, we describe a generic framework that encompasses the online algorithm selection
settings in|Baram et al.|[2004], |[Hsu and Lin/[2015] and [Pang et al. [2018]. As shown in Algorithm
the meta algorithm has access to M candidate algorithms. At the beginning of any round ¢, a multi-set
of B algorithms are chosen, where the same algorithm can be chosen multiple times. One example is
selected by each algorithm in the multiset sequentially, resulting in a total of B unique examples. The
batch of examples are then labeled all at once. At the end of the round, their corresponding rewards
are observed based on the newly annotated examples {(z%7, y'/) ;3:1 selected by the algorithms.
The model is also retrained on labeled examples before proceeding to the next round.

Overall, the meta algorithm aims to maximize the future cumulative reward based on noisy past
reward observations of each candidate algorithm. Th reward function r : X x Y — R is measured
based on an algorithm’s selected examples and corresponding labels. There are two key components
to this framework: the choice of reward function and a bandit strategy that optimizes future rewards.
Our particular design will be presented in Section [4]

Algorithm 1 General Meta Active Learning Framework for Baram et al.|[2004], Hsu and Lin|[2015]],
Pang et al.|[2018]]
Define: M candidate algorithms A = {Ai}ie[ M]s pool X, total number of rounds 7', batch size B.
Initialize: Labeled seed set Ly C X, unlabeled set Uy = X\ L and initial policy It
fort=1,...,T do
Meta algorithm II* chooses multiset of algorithms A,, ,,Aq, ,, .-, Aa, 5, Where indexes
Qt.1, ..., oq,p € [M]. Initialize selection set S < 0.
forj=1,...,Bdo
Run algorithm to select unlabeled example z%/ := Aa, ;(Li—1,U;_1\S;) that is unselected.
Insert the example z%7: S; < S; U {at7}.
end for
Annotate {27 };3:1 and observe labels {y* }le. Update sets Ly < L;—1 USy, Up < Up—1\S;.
Observe reward r/ = r(z"7, y*7) for each algorithm Ay, ,, where j € [B].
Update policy statistics based on %7, y*7 and r*7 to obtain II**! and retrain model on L.
end for - 5 '
Objective: Maximize cumulative reward -, 5777, 7.

We make the following two crucial assumptions for our framework:

Assumption 3.1. Any candidate batch active learning algorithm A can be decomposed into an
iterative selection procedure A that returns one unlabeled example at a time.

The assumption has been inherently made by our framework above where an deep active learning
algorithm returns one unlabeled example at a time. It entails that running A once to collect a
batch of B examples is equivalent with running the iterative algorithm A for B times. As noted
in Appendix most existing deep active learning algorithms can be decomposed into iterative
procedures and thus can serve as candidate algorithms in our framework.

Assumption 3.2. For each round ¢ € [T'], we assume there exist ground truth reward distributions
Pi 1, ..., P p for each candidate algorithm. Furthermore, for each element j € [B] in the batch,

we make the iid assumption that reward r*J -~ Pt o, ; is sampled from the distribution of the
corresponding selected algorithm.

The iid assumption is made for theoretical simplicity by all of Baram et al.|[2004], [Hsu and Lin
[2015], Pang et al. [2018]]. We say the distributions are non-stationary if for any ¢ € [M], P, ; varies
with respect to time ¢. Both this paper and |Pang et al.| [2018] study non-stationary scenarios, whereas
Baram et al.|[2004] and |[Hsu and Lin|[2015]] assume the distributions are stationary across time.



4 Thompson Active Learning Algorithm Selection

In this section, we present the two key components of our design, reward function and bandit strategy.
In Section[4.T] we first present a class of reward functions designed for deep active learning under
class imbalance. In Section by leveraging the structure of such reward functions, we reduce the
adaptive algorithm selection framework from Section [3.2]into a novel bandit setting. In Section [4.3]
we then propose our algorithm TAILOR which is specifically designed for this setting. When using
TAILOR on top of deep AL algorithms, the annotated examples are informative and class-diverse.

4.1 Reward Function

We propose reward functions that encourage selecting examples so that every class is well represented
in the labeled dataset, ideally equally represented or “class-balanced". Our reward function works
well even under practical scenarios such as limited number of rounds and large batch sizes [Citovsky
et al., 2021]. The rewards we propose can be efficiently computed example-wise as opposed to
Baram et al.|[2004] and are more informative and generalizable than |[Hsu and Lin| [2015] and |Pang
et al.[[2018]. Our class-balance-based rewards are especially effective for datasets with underlying
class imbalance. Recall y € {0, 1} for multi-label classification and y € {e;} X, for multi-class
classification. We define the following types of reward functions.

* Class Diversity: To encourage better class diversity, we propose a reward that inversely weights
each class by the number of examples already collected. For each round ¢ € [T,

— L= t.
7ndw z y K ; 1 COUNTt( ))y <vdwvy>

where COUNT? (i) denotes the number of examples in class i after ¢ — 1 rounds and y.; denotes
the i-th element of y. We let v’;;, denote the inverse weighting vector.

* Multi-label Search: As shown in Table|l| multi-label classification datasets naturally tend to have
sparse labels (more 0’s than 1’s in y). Therefore, it is often important to search for positive labels.
To encourage this, we define a stationary reward function for multi-label classification:

1

Tsearch €T y Zyz = Uposvy> where Upos = El

* Domain Specific: Lastly, we would like to note that domain experts can define specialized

weighting vectors of different classes v, € [+, +|¥ that are adjusted over time ¢. The
reward function simply takes the form 7 (z,y) = (v}, ,y). As an example of multi-label
classification of car information, one may prioritize classes of car brands over classes of car types,

thus weighting each class differently. They can also adjust the weights over time based on needs.

4.2 Novel Bandit Setting

We now present a novel bandit reduction that mirrors the adaptive algorithm selection framework
under this novel class of rewards. In this setup, v; € [—, 7% is arbitrarily chosen and non-
stationary. On the other hand, for each candidate algorithm 4; € A, we assume the labels y are
sampled iid from a stationary 1-sub-Gaussian distribution Py; with mean 6°. Both the stationary
assumption in Py: and the iid assumption are made for simplicity of our theoretical analysis only. We
will describe our implementation to overcome the non-stationarity in Py: in Section|6.1l Although
we make the iid assumption analogous to Assumption we demonstrate the effectiveness of
our algorithm in SectionEthrough extensive experiments. Additionally, note that 6 € [0, 1]¥ for
multi-label classification and §* € A~ takes value in the K dimensional probability simplex for
multi-class classification. In our bandit reduction, at each round ¢,

1. Nature reveals weighting vector v?;
2. Meta algorithm chooses algorithms a1, ..., o', which sequentially select unlabeled examples;

3. Observe batch of labels y*!, ..., y**# all at once, where y*J WPy s
4. Objective: maximize rewards defined as 7/ = (v?, y?7).



This setting bears resemblance to a linear contextual bandit problem. Indeed, one can formulate such
a problem close to our setting by constructing arms ¢! = vec(vle, ) € [f%, %]KM. Here, vec(-)
vectorizes the outer product between v? and the i-th canonical vector e;. A contextual bandit algorithm
observes reward r = (¢!, 0*) + ¢ after pulling arm i, where 6* = vec([6', 62, ...,6M]) € [0, 1]KM
and ¢ is some sub-Gaussian random noise. However, this contextual bandit formulation does not take
into account the observations of {y*/ }le at each round, which are direct realizations of 6!, ..., 6.
In fact, standard contextual bandit algorithms usually rely on least squares estimates of §*, ..., #M
based on the reward signals [Russo and Van Roy, 2014]. As will be shown in Proposition [5.1] a
standard Bayesian regret upper bound from Russo and Van Roy [2014] is of order O(BM iK1 \/T)
Our algorithm TAILOR , on the other hand, leverages the observations of 3%J ~ IP,.:.; and has regret

upper bounded by 5(3 VMT) (Theorem lﬂb, similar to a stochastic multi-armed bandit.

Algorithm 2 TATLOR : Thompson Active Learning Algorithm Selection

Input: M candidate algorithms A = {Ai}ie[ M]s pool X, total number of rounds 7', batch size B.
Initialize: Foreachi € [M],a' =bi =1 e R+".
fort=1,...,T do
Nature reveals v € [— %, =]%.
Choose candidate algorithms:
forj=1,...,Bdo R R
For each i € [M], sample " ~ Beta(a’, b®) for multi-label or §° ~ Dir(a*) for multi-class.
Choose a7 « arg max; ¢ (v*, 6%).
end for
Run chosen algorithms to collect batch:
forj=1,...,Bdo
Run algorithm A,:.; to select unlabeled example 2%/ and insert into .S;.
end for
Annotate examples in .S, to observe y*7 for each j € [B].
Update posterior distributions:
For each algorithm i € [M]:  a’ <= a’ + 37, iy, b b 4+ 3, i, (1 —y").
Retrain neural network to inform next round.
end for

4.3 TAILOR

We are now ready to present TAILOR , a Thompson Sampling [Thompson,|1933] style meta algorithm
for adaptively selecting active learning algorithms. The key idea is to maintain posterior distributions
for 6, ...,0M. As shown in Algorithm at the beginning we utilize uniform priors Unif({2) over the
support €, where Q = A=) and [0, 1]¥ respectively for multi-label and multi-class classification.
We note that the choice of uniform prior is made so that it is general purpose for any dataset. In
practice, one may design more task-specific priors.

Over time, we keep an posterior distribution over each ground truth mean @ for each algorithm
i € [M]. With a uniform prior, the posterior distribution is an instance of either element-wise
Beta distributior]!] for multi-label classification or Dirichlet distribution for multi-class classification.
During each round ¢, we draw samples from the posteriors, which are then used to choose the best
action (i.e., candidate algorithm) that has the largest predicted reward. After the batch of B candidate
algorithms are chosen, we then sequentially run each algorithm to collect the batch of unlabeled
examples. Upon receiving the batch of annotations, we then update the posterior distribution for each
algorithm. Lastly, the neural network model is retrained on all labeled examples thus far.

5 Analysis

In this section, we present regret upper bound of TAILOR and compare against a linear contextual
bandit upper bound from Russo and Van Roy|[2014]. Our time complexity analysis is in Appendix[5.T.

"For z € [0,1]* and a,b € 2zt we say z ~ Beta(a, b) if for each ¢ € [d], z; ~ Beta(a;, b;).



Given an algorithm 7, the expected regret measures the difference between the expected cumulative
reward of the optimal action and the algorithm’s action. Formally for any fixed instance with
O = {0, ...,0M}, the expected regret is defined as

T B

R(w,0):=E Z max (v', 0" — Go‘w>
t=1 j=1 €M

where the expectation is over the randomness of the algorithm, e.g. posterior sampling in TAILOR .

Bayesian regret simply measures the average of expected regret over different instances
BR(r) := Egipy(a)icim [R(m, {07}L)]

where ) denotes the support of each 6 and Py(£2) denotes the prior. Recall 2 = [0, 1]% for multi-
label classification and Q = A1 for multi-class classification. While TAILOR is proposed based
on uniform priors Py (€2) = uniform(€2), our analysis in this section holds for arbitrary Py as long as
the prior and posterior updates are modified accordingly in TAILOR .

First, we would like to mention a Bayesian regret upper bound for the contextual bandit formulation
mentioned in This provides one upper bound for TAILOR . As mentioned, the reduction to a
contextual bandit is valid, but is only based on observing rewards and ignores the fact that TAILOR

observes rewards and the full realizations 37 of 6" that generate them. So one anticipates that this
bound may be loose.

Proposition 5.1 (Russo and Van Roy [2014]). Let Teonteat be the posterior sampling algorithm for
linear contextual bandit presented in|Russo and Van Roy|[2014], the Bayesian regret is bounded by

BR(Wcontemt) S 6(BM%K% IOg T\/f)

where B is the batch size, M is the number of candidate algorithms, K is the number of classes, and
T is the number of rounds.

We omit the proof in this paper and would like to point the readers to section 6.2.1 in Russo and
'Van Roy| [2014] for the proof sketch. As mentioned in the paper, detailed confidence ellipsoid
of least squares estimate and ellipsoid radius upper bound can be recovered from pages 14-15 of
Abbasi-Yadkori et al.| [2011]).

We now present an upper bound on the Bayesian regret of TAILOR , which utilizes standard sub-
Gaussian tail bounds based on observations of y%7 instead of confidence ellipsoids derived from only
observing reward signals of 77,

Theorem 5.2 (Proof in Appendix [B). The Bayesian regret of TAILOR is bounded by

BR(TAILOR) < O(B\/MT(logT + log M))
where B is the batch size, M is the number of candidate algorithms and T is total number of rounds.

We delay our complete proof to Appendix [B] To highlight the key difference of our analysis from
Russo and Van Roy|[2014], their algorithm only rely on observations of 7% for each round ¢ € [T]
and element j € [B] in a batch. To estimate ', ..., 0, they use the least squares estimator to
form confidence ellipsoids. In our analysis, we utilize observations of y’s up to round ¢ and form
confidence intervals directly around each of (v?, §1), ..., (v*, 6™) by unbiased estimates { (v’,5).

5.1 Time Complexity

Let Nipqin denote the total neural network training. The time complexity of collecting each batch
for each active learning algorithm A; can be separated into P; and (Q;, which are the computa-
tion complexity for preprocessing and selection of each example respectively. As examples of
preprocessing, BADGE [Ash et al.,[2019] computes gradient embeddings, SIMILAR [Kothawade
et al.|, [2021] further also compute similarity kernels, GALAXY [Zhang et al., 2022] constructs
linear graphs, etc. The selection complexities are the complexities of each iteration of K-means++
in BADGE, greedy submodular optimization in SIMILAR, and shortest shortest path computa-
tion in GALAXY. Therefore, for any individual algorithm 4;, the computation complexity is then



CLASS IMB  BINARY IMB

DATASET K N RATIO RATIO
CELEBA [LIU ET AL.,[2018]] 40 162770 .0273 2257
COCO [LIN ET AL.,[2014] 80 82081 .0028 .0367
VOC [EVERINGHAM ET AL.,2010] 20 10000 .0749 .0721
CAR [[KRAUSE ET AL.,[2013]] 10 12948 1572 .1200
IMAGENET [[DENG ET AL.,[2009] 1000 1281167 5631 —
KUzUsHII-49 [[CLANUWAT ET AL., 2018 49 23236 .0545 —
CALTECH256 [|GRIFFIN ET AL.,[2007] 256 24486 .0761 —
IMB CIFAR-10 [[KRIZHEVSKY ET AL.,[2009]] 2 50000 111 —
IMB CIFAR-100 [[KRIZHEVSKY ET AL.,|2009] 10 50000 .0110 —
IMB SVHN [INETZER ET AL.,[2011] 2 73257 0724 —

Table 1: Details for multi-label and multi-class classification datasets. ' and N denote the number
of classes and pool size respectively. Class Imbalance Ratio represents the class imbalance ratio
between the smallest and the largest class. We also report Binary Imbalance Ratio for multi-label
datasets, which is defined as the average positive ratio over classes, i.e., % Zie[ K] (N;/N) where N;

denotes the number of examples in class <.

O(Ntrain + TP; + TBQ);) where T is the total number of rounds and B is the batch size. When
running TAILOR , as we do not know which algorithms are selected, we provide a worst case upper
bound of O(N¢pqin +T - (Zf\il P;) 4T B-max;cp Qs), where the preprocessing is done for every
candidate algorithm. In practice, some of the preprocessing operations such as gradient embedding
computation could be shared among multiple algorithms, thus only need to be computed once. As a
practical note in all of our experiments, TAILOR is more than 20% faster than the slowest candidate
algorithm as it selects a diverse set of candidate algorithms instead of running a single algorithm
the entire time. Also, the most significant time complexity in practice often lies in neural network
retraining. The retraining time dominates the running time of all algorithms including reward and
Thompson sampling complexities.

6 Experiments

In this section, we present results of TAILOR in terms of classification accuracy, class-balance of
collected labels, and total number of positive examples for multi-label active search. Motivated by
the observations, we also propose some future directions at the end.

6.1 Setup

Datasets. Our experiments span ten datasets with class-imbalance as shown in Table|l. For multi-
label experiments, we experiment on four datasets including CelebA, COCO, VOC and Stanford Car
datasets. While the Stanford Car dataset is a multi-class classification dataset, we transform it into a
multi-label dataset as detailed in Appendix For multi-class classification datasets, ImageNet,
Kuzushiji-49 and Caltech256 are naturally unbalanced datasets, while CIFAR-10 with 2 classes,
CIFAR-100 with 10 classes and SVHN with 2 classes are derived from the original dataset following
Zhang et al.|[2022]]. Specifically, we keep the first K — 1 classes from the original dataset and treat
the rest of the images as a large out-of-distribution K -th class.

Implementation Details. We conduct experiments on varying batch sizes anywhere from B = 500
to B = 10000. To mirror a limited training budget [Citovsky et al., 2021, |[Emam et al., [2021], we
allow 10 or 20 batches in total for each dataset, making it extra challenging for our adaptive algorithm
selection due to the limited rounds of interaction.

Moreover, we assumed observations of y are sampled from stationary distributions Pz, ..., Pgar in our
analysis. However, these distributions could be dynamically changing. In our implementation, we use
a simple trick to discount the past observations, where we change the posterior update in Algorithm 2]
toa’ ¢ ya' + 3 iy yb) and b% < vb? + D jratizi(1— y»7) . We set the discounting factor
v to be .9 across all experiments. As will be discussed in Section we find non-stationarity in



{Pgx }# | an interesting future direction to study. Lastly, we refer the readers to Appendix B for
additional implementation details.

Baseline Algorithms. In our experiments, we choose a representative and popular subset of the deep
AL algorithms and active search algorithms discussed in Section [2]as our baselines. To demonstrate
the ability of TAILOR , number of candidate algorithms M ranges from tens to hundreds for different
datasets. The baselines can be divided into three categories:

¢ We include off-the-shelf active learning and active search algorithms such as EMAL [Wu et al.,
2014]] and Weak Supervision [Ranganathan et al.,[2018| for multi-label classification and Confi-
dence sampling [Settles, 2009], BADGE [Ash et al., 2019], Modified Submodular optimization
motivated by [Kothawade et al.|[2021]] for multi-class classification. More implementation details
can be found in Appendices[A.T|and[A2]
* We derive individual candidate algorithms based on a per-class decomposition [Boutell et al.|
2004]. For most likely positive sampling [Warmuth et al., 2001, 2003} Jiang et al.,|2018], an active
search strategy and abbreviated as MLP, we obtain K algorithms where the i-th algorithm selects
examples most likely to be in the ¢-th class.
For multi-label classification, we also include K individual GALAXY algorithms [Zhang et al.,
2022] and K Uncertainty sampling algorithms. To further elaborate, the original GALAXY
work by |Zhang et al. [2022] construct K one-vs-rest linear graphs, one for each class. GALAXY
requires finding the shortest shortest path among all K graphs, an operation whose computation
scales linearly in K. When K is large, this becomes computationally prohibitive to run. Therefore,
we instead include K separate GALAXY algorithms, each only bisecting on one of the one-vs-rest
graphs. This is equivalent with running K GALAXY algorithms, one for each binary classification
task between class ¢ € [K] and the rest.
For Uncertainty sampling in multi-label settings, we similarly have K individual uncertainty
sampling algorithms, where the ¢-th algorithm samples the most uncertain example based only on
the binary classification task of class i.
As baselines for each type of algorithms above, we simply interleave the set of K algorithms
uniformly at random.
We compare against other adaptive meta selection algorithms, including Random Meta which
chooses candidate algorithms uniform at random and ALBL Sampling [Hsu and Lin, 2015]]. The
candidate algorithms include all of the active learning baselines. In Appendix|C| we also provide
an additional study of including active search baselines as candidate algorithms.

— = Random (1 alg)
Uncertainty (40 algs)

— = GALAXY (40 algs)

30001 = MLP (40 algs)

EMAL (1 alg)

2500 Weak Sup (1 alg)

—— Random Meta (81 algs)
ALBL Meta (81 algs)

3500

-
-
7

°
®

v
/" — = Random (1lg)

Confidence (1 alg)

— = GALAXY (49 algs)

—— MLP (49 algs)
BADGE (1 alg)
Modified Submodular (1 alg)

—— Random Meta (101 algs)
ALBL Meta (101 algs)

—— TAILOR Div (ours, 101 algs) 500

— = Random (1 alg)
Confidence (1 alg)
— = GALAXY (2 algs)
—— MLP (2 algs)
BADGE (1 alg)
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—— Random Meta (7 algs) 0.6
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2000

1500

Balanced Accuracy
Balanced Accuracy
Number of Positive Labels

0.80 1000

5000 10000 15000 20000 25000 30000 35000 40000 2000 4000 6000 8000 10000 20000 40000 60000 80000 100000
Number of Labels Number of Labels Number of Labels
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Figure 3: Performance of TAILOR against baselines on selected settings. (a) and (b) shows accuracy
metrics of the algorithms. (c) shows class-balancedness of labeled examples. All performances are
averaged over four trials with standard error plotted for each algorithm. The curves are smoothed
with a sliding window of size 3.

6.2 Results

Multi-class and Multi-label Classification. For evaluation, we focus on TAILOR’s comparisons
against both existing meta algorithms and the best baseline respectively. In all classification experi-
ments, TAILOR uses the class diversity reward in Section @ For accuracy metrics, we utilize mean
average precision for multi-label classification and balanced accuracy for multi-class classification.
As a class diversity metric, we look at the size of the smallest class based on collected labels. All
experiments are measured based on active annotation performance over the pool [Zhang et al.,2022].



As shown in Figures[2] [3|and Appendix D, when comparing against existing meta algorithms, TAILOR
performs better on all datasets in terms of both accuracy and class diversity metrics. ALBL sampling
performs similar to Random Meta in all datasets, suggesting the ineffectiveness of training accuracy
based rewards proposed in [Hsu and Lin [2015] and |Pang et al. [2018]. When comparing against
the best baseline algorithm, TAILOR performs on par with the best baseline algorithm on nine out
of ten datasets in terms of accuracy and on all datasets in terms of class diversity. On the CelebA
dataset, TAILOR even outperforms the best baseline by significant margin in accuracy. As discussed
in Appendix [E] TAILOR achieves this by selecting a combination of other candidate algorithm instead
of choosing only the best baseline. On four out of the ten datasets, TAILOR outperforms the best
baseline in class diversity. Collectively, this shows the power of TAILOR in identifying the best
candidate algorithms over different dataset scenarios. Moreover in Appendix we conduct an
ablation study of the accuracy of the rarest class (determined by the ground truth class distribution).
TAILOR significantly outperform baselines suggesting its advantage in improving the accuracy on
all classes. Lastly, shown in Appendix [E, we also find TAILOR selects algorithms more aggressively
than existing meta algorithms. The most frequent algorithms also align with the best baselines.

On the other hand for the Caltech256 dataset shown in Figure
TAILOR under-performs confidence sampling in terms of accu- —
: . == Fondom 1o

racy. We conjecture this is because the larger classes may not have " | = vrcetan o s

. . 8000001 = = GALAXY (40 algs)
sufficient examples and have much space for improvement be- — §,,,,,| — 1o / Z
fore learning the smaller classes. Nevertheless, TAILOR was able covoon]  memk SR %) e A

. . leta algs) 4

to successfully collect a much more class-diverse dataset while AR Seore (o 172 9
staying competitive to other baseline methods.

N\

500000

2 400000

mber of Positive Labels

Multi-label Search. We use the multi-label search reward pro-  zo /
posed in Section[f.T. As shown in Figure[d]and Appendix[D.3} on ™G w00 —os00 w00 o0
three of the four datasets, TAILOR performs better than the best e

baseline algorithm in terms of total collected positive labels. On  Figure 4: Total positive labels
the fourth dataset, TAILOR performs second to and on par with the for active search, CelebA

best baseline. This shows TAILOR’s ability in choosing the best

candidate algorithms for active search.

6.3 Future Work

While our experiments focus on class-imbalanced settings, TAILOR’s effectiveness on balanced
datasets warrants future study through further experiments and alternative reward design. We also
find studying non-stationarity in label distributes {Py, }}£, an interesting next step.

7 Choosing Candidate Algorithms

Our paper proposes an adaptive selection procedure over candidate deep AL algorithms. When
judging individual deep AL algorithms, current standards in the research community tend to focus on
whether an algorithm performs well on all dataset and application instances. However, we see value
in AL algorithms that perform well only in certain instances. Consider, for example, an AL algorithm
that performs well on 25% of previous applications, but poorly on the other 75%. One may wish
to include this algorithm in TAILOR because the new application might be similar to those where it
performs well. From the perspective of TAILOR , a “good" AL algorithm need not perform well on all
or even most of a range of datasets, it just needs to perform well on a significant number of datasets.

On the other hand, as suggested by our regret bound that scales with M, one should not include
too many algorithms. In fact, there are exponential number of possible AL algorithms, which could
easily surpass our labeling budget and overwhelm the meta selection algorithm. In practice, one
could leverage extra information such as labeling budget, batch size and model architecture to choose
proper set of candidate algorithms to target their settings.
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A Implementation Details

A.1 Deep Active Learning Decomposition

For any uncertainty sampling algorithm, picking the top-B most uncertain examples can be easily
decomposed into an iterative procedure that picks the next most uncertain example. Next, for diversity
based deep active learning algorithms, one usually rely on a greedy iterative procedure to collect
a batch, e.g. K-means++ for BADGE [Ash et al., 2019] and greedy K-centers for Coreset [Sener|
and Savarese| 2017]. Lastly, deep active learning algorithms such as Cluster-Margin [Citovsky
et al.,[2021] and GALAXY [Zhang et al.; 2022] have already proposed their algorithms as iterative
procedures that select unlabeled examples sequentially.

A.2 Implementation of Modified Submodular

Instead of requiring access to a balanced holdout set [[Kothawade et al., 2021], we construct the
balanced set using training examples. We use the Submodular Mutual Information function FLQMI
as suggested by Table 1 of Kothawade et al. [2021]. The proposed greedy submodular optimization is
itself an iterative procedure that selects one example at a time. While SIMILAR usually performs
well, our modification that discards the holdout set is unfortunately ineffective in our experiments.
This is primarily due to the lack of the holdout examples, which may often happen in practical
scenarios.

A.3 Stanford Car Multi-label Dataset
We transform the original labels into 10 binary classes of

If the brand is “Audi".

If the brand is “BMW".

If the brand is “Chevrolet".

If the brand is “Dodge".

If the brand is “Ford".

If the car type is “Convertible".

If the car type is “Coupe".

If the car type is “SUV".

If the car type is “Van".

If the car is made in or before 2009.

e Al o

,_.
e

A.4 Negative Weighting for Common Classes

For multi-label classifications, for some classes, there could be more positive associations (label of 1s)
than negative associations (label of Os). Therefore, in those classes, the rarer labels are negative. In
class diverse reward (v’ ,y) in Section IAE, we implement an additional weighting of 17, * vg;yt,
where * denotes an elementwise multiplication. Here, each element 1% ., € {1, —1} takes value

rare,i
—1 when COUNTY(4) is larger than half the size of labeled set. This negative weighting can been
seen as upsampling negative class associations when positive associations are the majority.

A.5 Model Training

All of our experiments are conducted using the ResNet-18 architecture [He et al., 2016] pretrained on
ImageNet. We use the Adam optimizer [Kingma and Ba, [2014] with learning rate of 1e-4 and weight
decay of Se-5.

B Proof of Theorem[5.2

Our proof follows a similar procedure from regret analysis for Thompson Sampling of the stochastic
multi-armed bandit problem [Lattimore and Szepesvari, 2020]. Let o/ := {a"/}/L and y' :=
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{yt7} ]le denote the actions and observations from the i-th round. We define the history up to ¢ as

Hy = {a',y', a2, y2, ..., at~ y!=1}. Moreover, for each i € [M], we define H; ; = {y* € H, :

at'd = i} as the history of all observations made by choosing the i-th arm (algorithm).

Now we analyze reward estimates at each round ¢. When given history H; and arm i € [M], each
observation y € Hy ; is an unbiased estimate of 6" as y ~ Py:. Therefore, for any fixed v, (v*, y) is
an unbiased estimate of the expected reward (v, 6%), which we denote by p!".

For each arm 4, we can then obtain empirical reward estimate /i iit" of the true expected reward '’
by it = m D oyeH, (v, y) where i** = 0if |Hy ;| = O Since expected rewards and reward

estimates are bounded by [—1, 1], by standard sub-Gaussian tail bounds, we can then construct
confidence interval,

. . A 1
P(vi € [M],t € [T], [ — ) < db¥) > 1-

where db' = ,/%%fﬁ). Additionally, we define upper confidence bound as U’ =
clip_ 11]( b4 ght).

At each iteration t, we have the posterior distribution P(© = -|H;) of the ground truth © =
{61}M,. © = {6'}M, is sampled from this posterior. Consider i% = argmax;c,,(v?,6%) and
ot = argmax;¢ (v, 0°). The distribution of i is determined by the posterior P(© = -|H). The

distribution of a7 is determined by the distribution of ©, which is also P(© = -|H,). Therefore, i’
and o7 are identically distributed. Furthermore, since the upper confidence bounds are deterministic

functions of i when given H,, we then have E[U"*" |H,] = E[U"* | Hy).

As a result, we upper bound the Bayesian regret by

BR(TAILOR) = Z Z i — et

t=1 j=1

—F ZZ it Utz (Ut,a“'j _ 'ut.,ozt‘j)

t=1 j=1

Now, note that since i’ € [~1,1] we have clip_, ;) ("' +d"") = clip_., ) (" +d""),
where only the upper clip takes effect. Based on the sub-Gaussian confidence intervals
P (Vi € [M],t € [T],|a"" — p™| < d™) > 1 — £, we can derive the following two confidence
bounds:

P(Vi € [M],t € [T], pu"" > U) = P(Vi

€ [M],t e [T], ﬂt’i > clip_, 1](ﬂtvi + dbh)
Vi€ [M],t € [T], ut" > it + d), since pt* < 1

(
=P(
=P(vi € [M],t € [T], p"" = "' > d"") < o
P(Vi € [M],t € [T),U"" — ub* > 2d"") = P(Vi € [M],t € [T, clipj_, 1y (5" + d"") — u"* > 2d"")
<P(Vi € [M],t € [T], g 4 db* — pbt > thﬂ‘)
=P(Vi € [M],t € [T], g — pb* > d*?) < >
Now with the decomposition,
T B . L
BR(TAILOR) =E | ) " pht — phe™”
t=1 j=1
T B . . T B L L
—E Z Zﬂt,l* _ Ut,l* + E ZZ Ut,Oé . ut7a J
t=1 j=1 t=1 j=1
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we can bound the two expectations individually.

First, to bound |E [ZL Zle pbis — U“i}, we note that p!# — U™ is negative with high

probability. Also, the maximum value this can take is bounded by 2 as u*, U € [—1, 1]. Therefore,
we have

T B T B 1
DD out U < | DY T0-PEE <= U 2 Pt > UMY | S2TB- o =

t=1 j=1 t=1 j=1

Next, to bound E {Zt 1 Z LUt ad _ ut""w} we decompose it similar to the above:

T B , _ T B _ , T B
E S ot -t < (ST Topte — et s 2ty | 4+ (0N 24t

t=1 j=1 t=1 j=1 t=1 j=1

<B4+ ZZ 32log(MT?)

tl_]l 1\/|Hta’f7|

where recall that | H; ;| is the number of samples collected using algorithm ¢ in rounds < ¢.

To bound the summation, we utilize the fact that
|Hiv1,:| — |Hei| < B. As aresult, we get

32log(MT?)
ZZ 1v |Ht at1|

t=1 j=1

lle 1< £ foreach k € [|Hy |, |Heq1,4]], since

T M |Hr:l

IN

\/32 log MT2) B

-

=11i=1 k=1

M
< O(V/B(logT +1log M) > \/@)
=1

< O(/B(logT +1log M)) - O(WBMT) = O(B\/MT(log T + log M))

where last two inequalities follow from simple algebra and the fact that Zﬁl |Hp ;| =TB.

Finally, to combine all of the bounds above, we get BR(TAILOR) < B + B +
O(B\/MT(logT +1log M)) = O(B\/MT(log T + log M)).
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C Study of Candidate Algorithms

We compare the performance when we use the following two sets of candidate algorithms:

1. Active learning algorithms only: Uncertainty sampling, GALAXY and EMAL for multi-
label classification; Uncertainty sampling, GALAXY and BADGE for multi-class classifica-

tion.

2. Active learning and search algorithms: Uncertainty sampling, GALAXY, MLP, EMAL
and Weak Sup for multi-label classification; Uncertainty sampling, GALAXY, MLP, BADGE

and Modified Submodular for multi-class classification.

Note Modified Submodular is classified as an active search algorithms since we are using a balanced
set of training examples as the conditioning set. We are effectively searching for examples similar to

the ones that are annotated in these classes.

As shown in Figures [5]and [6} regardless of the meta algorithm, the performance is better when using
active learning algorithms as candidates only. Nonetheless, even with active search algorithms as

candidates, TAILOR still outperforms other meta active learning algorithms.
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D Full Results

All of the results below are averaged from four individual trials except for Imagenet, which is the
result of a single trial.

D.1 Multi-label Classification

= = Random (1 alg)
0.90 35001 - Uncertainty (40 algs)
= = GALAXY (40 algs)
. 088 » 3000 == MLP (40 algs)
8 o —— EMAL (1 alg)
g 086 v 25001 —— Weak Sup (1 alg)
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D.2 Multi-class Classification
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Figure 11: CIFAR-10, 2 classes
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Figure 13: SVHN, 2 classes
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D.3 Multi-label Search
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Figure 17: CelebA, Total Number of Positive Labels
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Figure 19: VOC, Total Number of Positive Labels

D.4 Rarest Class Accuracy

We conduct an ablation study of the accuracy on the rarest class (determined by the ground truth class
distribution). TAILOR significantly outperform baselines.
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E What Algorithms Does TAILOR Choose?

In the following two figures, we can see TAILOR chooses a non-uniform set of algorithms to focus on
for each dataset. On CelebA, TAILOR out-perform the best baseline, EMAL sampling, by a significant
margin. As we can see, TAILOR rely on selecting a combination of other candidate algorithms instead
of only selecting EMAL.

On the other hand, for the Stanford car dataset, we see TAILOR ’s selection mostly align with the
baselines that perform well especially in the later phase.
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Figure 22: TAILOR Top-10 Most Selected Candidate Algorithms on CelebA Dataset
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Figure 23: TAILOR Top-10 Most Selected Candidate Algorithms on Stanford Car Dataset

In the following figures, we plot the number of times the most frequent candidate algorithm is chosen.
As can be shown, TAILOR chooses candidate algorithm much more aggressively than other meta
algorithms in eight out of the ten settings.
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Figure 28: Kuzushiji-49, Number of Pulls of The Most Frequent Selection
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Figure 31: COCO, Number of Pulls of The Most Frequent Selection
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Figure 32: VOC, Number of Pulls of The Most Frequent Selection
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