TRB Annual Meeting

Promoting Multidimensional Equity through Collaborative Routing using Incentive

Full Title:

Abstract:

Manuscript Classifications:

Manuscript Number:
Article Type:
Order of Authors:

Additional Information:

Question

The total word count limit is 7500 words
including tables. Each table equals 250
words and must be included in your count.
Papers exceeding the word limit may be
rejected. My word count is:

Is your submission in response to a Call
for Papers? (This is not required and will
not affect your likelihood of publication.)

Mechanisms
--Manuscript Draft--

Promoting Multidimensional Equity through Collaborative Routing using Incentive
Mechanisms

Penalty-based strategies, such as congestion pricing, have been employed to improve
traffic network efficiency, but they face criticism for their negative impact on users and
equity concerns. Collaborative routing, which allows users to negotiate route choices,
offers a solution that considers individual heterogeneity. Personalized incentives can
encourage such collaboration and are more politically acceptable than penalties. This
study proposes a collaborative routing strategy that uses personalized incentives to
guide users towards desired traffic states while promoting multidimensional equity.
Three equity dimensions are considered: accessibility equity (equal access to jobs,
services, and education), inclusion equity (route suggestions and incentives that do not
favor specific users), and utility equity (envy-free solutions where no user feels others
have more valuable incentives). The strategy prioritizes equitable access to societal
services and activities, ensuring accessibility equity in routing solutions. Inclusion
equity is maintained through non-negative incentives that consider user heterogeneity
without excluding anyone. An envy-free compensation mechanism achieves utility
equity by eliminating envy over incentive-route bundles. A constrained traffic
assignment (CTA) formulation and consensus optimization variant are then devised to
break down the centralized problem into smaller, manageable parts and a
decentralized algorithm is developed for scalability in large transportation networks and
user populations. Numerical studies investigate the model's enhancement of equity
dimensions and the impact of hyperparameters on system objective tradeoffs and
demonstrate the algorithm convergence.

Planning and Analysis; Transportation Demand Management AEP60; Behavior
Change/Behavior Science/Nudge; Congestion Pricing; Incentives/Benefits;
Transportation Network Modeling AEP40; Mathematical Modeling; Optimization

TRBAM-24-02174
Presentation
Chaojie Wang

Srinivas Peeta

Response

7299

No

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Manuscript

Promoting Multidimensional Equity through Collaborative Routing using Incentive
Mechanisms

Chaojie Wang

School of Civil and Environmental Engineering
Georgia Institute of Technology, Atlanta, U.S., 30332
Email: chaojie.wang@gatech.edu

coNO UL WN -

9  Srinivas Peeta*
10  School of Civil and Environmental Engineering
11  H. Milton Stewart School of Industrial Engineering
12 Georgia Institute of Technology, Atlanta, U.S., 30332
13 Email: peeta@gatech.edu

15 Word Count: 7,049 words + 1 tables (250 words per table) = 7,299 words

18 Submitted to the 2024 Transportation Research Board Annual Meeting for Presentation [July 31 2023]

* Corresponding author



OCooONOULE, WN

10

Wang and Peeta

ABSTRACT

Penalty-based strategies, such as congestion pricing, have been employed to improve traffic network
efficiency, but they face criticism for their negative impact on users and equity concerns. Collaborative
routing, which allows users to negotiate route choices, offers a solution that considers individual
heterogeneity. Personalized incentives can encourage such collaboration and are more politically acceptable
than penalties. This study proposes a collaborative routing strategy that uses personalized incentives to
guide users towards desired traffic states while promoting multidimensional equity. Three equity
dimensions are considered: accessibility equity (equal access to jobs, services, and education), inclusion
equity (route suggestions and incentives that do not favor specific users), and utility equity (envy-free
solutions where no user feels others have more valuable incentives). The strategy prioritizes equitable
access to societal services and activities, ensuring accessibility equity in routing solutions. Inclusion equity
is maintained through non-negative incentives that consider user heterogeneity without excluding anyone.
An envy-free compensation mechanism achieves utility equity by eliminating envy over incentive-route
bundles. A constrained traffic assignment (CTA) formulation and consensus optimization variant are then
devised to break down the centralized problem into smaller, manageable parts and a decentralized algorithm
is developed for scalability in large transportation networks and user populations. Numerical studies
investigate the model's enhancement of equity dimensions and the impact of hyperparameters on system
objective tradeoffs and demonstrate the algorithm convergence.

Keywords: accessibility equity, inclusion equity; utility equity; collaborative routing; incentive mechanism



OooNOOTULPAW N

10

Wang and Peeta

INTRODUCTION

Background and motivation

Congestion pricing mechanisms, employed by traffic operators, aim to enhance transportation
system efficiency by targeting macro travel decisions and encouraging alternate modes or timings of travel.
Dynamic tolls, as a form of pricing mechanism, influence users' route choices but are penalty-based and
disproportionately impact low-income users, thus acting as a regressive tax (7). Existing congestion pricing
strategies inadequately address traveler heterogeneity, as the use of user classes (2, 3) obscures individual
differences in responses, leading to unmet needs. Such underrepresentation of individual characteristics
may result in unintended favoritism, limiting what is termed "inclusion equity." To achieve inclusive
consideration of users' interests, traffic operators must promote inclusion equity through personalized
interventions that provide non-negative additional utilities.

Personalized behavioral interventions present a complex challenge, as they must address not only
increased computational demands and privacy concerns but also potential accusations of discrimination.
Users evaluate the personalized options they receive, and interventions must prevent feelings of envy based
on utility function assessments, referred to as "utility equity” in this study. The limited exploration of
personalized interventions in the literature has left utility equity largely unexamined. To promote inclusion
equity by incorporating individual heterogeneities, addressing the challenge of utility equity arising from
personalization is essential.

Moreover, prevailing congestion pricing approaches primarily emphasize improving mobility
efficiency, aiming to align user equilibrium (UE) flows, which better reflect real-world scenarios, with
system optimum (SO) conditions. Although SO conditions offer superior mobility efficiency, they can
provoke equity concerns. In SO flow patterns, certain users with identical origins and destinations may
encounter considerably longer travel times, resulting in "mobility equity" issues (4). Thus, several studies
(4-7) underscore the significance of mobility equity, aiming to minimize travel cost disparities among
travelers with matching O-D pairs. The fundamental inquiry concerns whether mobility equity sufficiently
captures the true disparities experienced by transportation system users in terms of access and daily
functionality. A more pertinent equity goal from a societal standpoint may be "accessibility equity," which
emphasizes equal access to job opportunities, services, and resources for all travelers, rather than equal
travel times for identical origin-destination trips. Empirical evidence (§) indicates prevalent accessibility
inequity within transportation systems. Strategic remedies often proposed to address accessibility inequity
include developing efficient public transit networks, encouraging companies to provide transportation
subsidies, and coordinating regional housing and economic development (9). Promoting accessibility equity
through operational solutions can supplement strategic ones to address systemic equity issues.

In summary, the existing literature on pricing strategies predominantly centers on mobility
efficiency through penalty-based system-level approaches. Little attention has been paid to equity concerns,
with the focus limited to mobility equity. It also lacks comprehensive research and modeling to address
multidimensional equity while factoring heterogeneities in individual user characteristics and needs. Also,
the formulation of personalized strategies may exacerbate computational tractability issues due to the
explosion in problem dimension. Specifically, if models are to capture individual characteristics, the
computational burden increases not only with the size of the network but also with the number of users.
Consequently, the modeling and solution design must meet practical requirements when dealing with
problems of such high dimension.

To enable equity more comprehensively, we propose the implementation of personalized incentives
(in this study, cash or credits that have monetary value) as behavioral interventions, which would influence
user route choices at the individual level. This approach, in contrast to penalty-based system-level
strategies, considers the specific objectives and limitations of individual users, while simultaneously
addressing system-level goals. Also, unlike centralized pricing strategies, the proposed mechanism employs
collaborative routing, a more decentralized scheme made possible by emerging connectivity technologies,
to ensure computational tractability. In collaborative routing, the traffic operator no longer coordinates
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users' route choices according to system objectives in a centralized manner. Instead, each user works
towards their individual contributions to these system objectives while requesting personalized incentives.
Thereby, as shown in Figure 1, system objectives are represented as assigned goals to users, and the traffic
operator nudges users to work towards these goals individually and voluntarily by providing personalized
incentives. Users can negotiate with each other through vehicular on-board units (V2X) or smartphones
(P2P networking). In multiple iterations of negotiations, users specify their routing preferences (not the
final route choices but the tentative preference for each alternative route during the negotiations),
corresponding incentives, and their expectations of other users' routing preferences. Together, they
harmonize their individual interests with the assigned goals and the routing preference expectations of other
users. That is, each user considers the expectations of routing preferences that other users have of routes
this user is willing to consider so as to avoid large deviations from those expectations, and thereby promote
consensus. Finally, a consensus is achieved among all users, who follow the consensus routing preferences
while receiving the requested incentives from the traffic operator. Compared to a centralized approach,
collaborative routing achieves system objectives in a decentralized manner, which decouples the problem
dimension explosion issue from the number of users and enables scalable implementation of the proposed
mechanisms.
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Figure 1: Conceptual framework of the collaborative routing strategy promoting accessibility
equity, inclusion equity, and utility equity.

This paper is organized as follows. Section O proposes a constrained traffic assignment formulation
and highlights its advantages over the network design formulation. Section 0 describes the consensus
optimization variant of the constrained traffic assignment formulation and develops a decentralized
solution. Numerical studies are presented in Section 0. The paper concludes with a summary of
contributions and potential future enhancements in Section 0.
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CONSTRAINED TRAFFIC ASSIGNMENT FORMULATION

Let us consider a traffic network {N, A}, where N represents the node set, and A denotes the set of
directed links. The set of vehicles/users is labeled V. For each individual user v € V, the node where it is
positioned is its origin o,, and its final destination (this is not the local destinations used in the modeling
approach) is denoted as d,,. The alternative route set of user v is P,. The routing preference f,, is defined
as the probability that user v will take route p,, from P,; thus, ., ep fp, = 1. We assume that users with
the same O-D pair have identical alternative route sets. Also, define 6 = {9101;' Py, EP,VE V}, fz
{fpv,p,, EP,vE V}. The collaborative routing strategy aims to provide personalized incentives 6, for
each local route p,, € P, for vehicle/user v € V to influence the routing preferences and promote the system
objectives shown in Figure 1.

As depicted in Figure 2, the traffic operator proposes routing preferences for users that optimize
system objectives, while enabling them to request incentives that facilitate adherence to these preferences.
Hence, the decision variables of the upper-level optimization become f, which denotes the users’ routing
preferences desired by the traffic operator. The lower-level model optimizes 6, with the aim of generating
the lowest value of incentives necessary to achieve these routing preferences. Specifically, the traffic-
operator desired routing preferences are fed into the behavioral model of the lower-level optimization, and
the required incentives calculated based on these preferences are then used in the upper-level optimization
to determine the incentive costs of the system. Therefore, in the constrained traffic assignment formulation,
the hat operator is above 0 as shown in Figure 2 because incentives are generated by solving the lower-
level problem given the desired routing preferences f. This formulation can be viewed as a “constrained”
traffic assignment problem undertaken by a traffic operator with a more complex system objective
(compared to SO) and more constrained behavioral and incentive requirements (represented by the lower-
level model).

Given desired routing preferences f, infer behavioral constraints

| '

Upper-level Lower-level
pper-iev Traffic operator Users .
optimization optimization

t |

Given required incentives 8, infer incentive costs

Figure 2: Bi-level structure of the constrained traffic assignment formulation.

Incentive cost and mobility inefficiency measures

As illustrated in Figure 1, the upper-level optimization model for traffic operators comprises of a
tripartite objective function encompassing system mobility efficiency, incentive costs, and accessibility
equity. Given the decision variables f, the corresponding required incentives generated by the lower-level
optimization model are denoted by the vector  (the hat operator indicates that 8 is derived from f), then
the expected total incentive costs are:

T = Z Z Op, fow- (1)
VEV pyEP,
The expected total system travel time is used as the system mobility inefficiency measure (reducing
the mobility inefficiency measure improves mobility efficiency). The probability that user v € V uses link
a € A can be represented using fpv:
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Xg = Z Tou )

PvEPy,Py3a
i.e., the sum of v’s routing preferences for routes containing link a. Then, the expected link flows are

Xa= ) K=Y Y f 5 ()

VeV VEV pyEP,
where 87 is the link-route indicator variable that is equal to 1 when route p,, contains link a. The expected
link travel time of a is ¢, (x,), where ¢, (+) is the link performance function of link a (for all a € A; c,(+)
are assumed continuous and strictly increasing in this study). The expected route travel time can be
represented as

ty, = Z Ca(xq)- 4

aepy
Note that ¢, (+), € p,, account for the effect of background traffic and the predicted newly-entering vehicles.
Thus, Equation (4) does not explicitly incorporate background traffic. Therefore, the expected total system
travel time is given as

Ty = Z Z too v (5)

VEV pyEPy

Accessibility inequity measure

To quantify accessibility equity, we must first establish the perfect accessibility equity case, which
represents the idealized scenario that we strive to achieve when considering accessibility equity alone. Let
us assume that the traffic operator prioritizes equal access to employment, medical services, educational
resources, and other societal activities that ought to be accessible to all. We can filter out trips associated
with accessing these services/resources from all other trips and categorize them accordingly. Ideally, trips
associated with accessing the same type of societal services/resources should have equal expected travel
times. For instance, all commuting trips should have the same travel time, and the same applies to trips
associated with medical visits. The destinations of such accessibility-sensitive trips are categorized into site
groups G; € G based on their service/resource types, where G is the set of all site groups. Then, user groups
are defined corresponding to each site group G; as Vg, = {v|v € V,d,, € G; }. This approach enables us to
evaluate the inequality in accessibility within G; by examining the expected travel time disparity within Vs,
This study measures the disparity of expected travel times within user group V;; as follows:

2
mi= 0, 2 (b)), ©)
vj€Vg, vk€Vg,
where T, = Yo, ep, tp, fp, 18 the expected travel time of user v € V. Equation (6) is differentiable, making
it more tractable when integrated in our optimization models. Also, compared to Gini coefficient, Equation
(6) can better capture the impacts of high expected travel times due to the square operator (de Maio, 2007).
Then, the system accessibility inequity (minimizing the accessibility inequity measure promotes
accessibility equity) can be represented as the weighted average of the disparities of all site groups:

mg = Z Sy (7)
GieG
where &, is the weight for site group G;, reflecting the importance of accessibility equity of a specific
category of societal services/activities from the perspective of the traffic operator (Xg,e¢ &g, = 1)-
Then the following unit-free objective function is used to represent the traffic operator’s objectives:

T[M +_T[I T
7'[’:—/1—|—K—E, (8)

TTm,0 g0
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where A is the traffic operator’s “value of time” (i.e., the amount of money that a traffic operator is willing
to invest to reduce the total system travel time by one unit). my o and g, are the system mobility
inefficiency measure and accessibility inequity measure, respectively, when no behavioral
interventions/incentives are applied. k is an adjustable weight of the mobility equity term. Since there is no

incentive cost when no behavioral interventions/incentives are applied, m; is converted into 27 and

benchmarked together with 1), against ), o to make it unit-free. By adjusting A and «, the traffic operator
can prioritize the three objectives of system efficiency, incentive cost, and accessibility equity according to
their preferences.

Inclusion equity and utility equity constraints

Inclusion equity imposes a straightforward constraint on the incentives, which requires them to
remain non-negative. This encourages users to participate and derive non-negative additional utilities.

Utility equity imposes further constraints on the incentives 6. Specifically, it mandates that the
expected utility of any user must not be lower than their evaluation of the routing preference-incentive
bundles of others who share the same origin-destination pair. This constraint on individual user behavior is
similar to the envy-freeness property in (10), which addresses the issue of potential envy among users that
could impede their participation. We start by presenting the utility functions of users, which determine how
they evaluate a given routing preference-incentive bundle. The utility function consists of two components:
individual mobility efficiency and incentive benefits. For a specific route p,, € B,, the utility of user v € V
can be described as

u,(p,) = a, — ﬁvtpv + épy + €, ©

where a,and B, are positive parameters capturing the individual characteristics/preferences of user v, €,
is the random term that represents the unobservable or unmeasurable factors of utility (the standard
deviations of €,, , p, € P, v € V are 1 in this study), and t,, is the expected travel time of route p,,, which
can be calculated using Equation (4) (as mentioned before, the hat operator in Equation (4) indicates that
variables are derived from the equilibrium solution of the lower-level optimization, but calculations apply
to non-equilibrium f as well). Then, the expected utility of user v € V is given by (11, 12)

U,=1n Z exp(a,, — Butp, + épu)- (10)
PvEPy
Equation (10) describes how user v evaluates their own routing preferences and assigned incentives. How
user v assesses the routing preferences and incentives of other users with the same origin and destination
is given by
U,‘," =1In Z exp (av — [)’,,tpv, + épv,),v,v’ €V,o,=0,,d, =d,. (11)
D,IEP 1
Note that Equation (10) is a special case of Equation (11) when U, = U} . Then, the utility equity
constraints can be represented as

U, > U vv,v' €V, 0, =0,,d, =d,, (12)

which ensures that each user v € V, utilizing their own utility function, values its own routing preferences
and incentives more than those of any other user v’ € V that shares the same O-D pair.

Lower-level equilibrium constraint

In the lower-level problem, by assuming that the random terms in Equation (9) are independently
and identically distributed (IID), we can define the routing preferences of users through a multinomial logit
model:
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f = exp(ay — Botp, +6p,)

- Lpler, exp(ay, — Boty;, + ém’;)
Equations (4) and (13) form a routing preference updating rule. Users communicate their intended routes
to the RSUs located within their local ranges. The RSUs, in turn, gather the routing preferences, update t;,
by applying Equation (4), and disseminate the information within the local range. The users then update
their own routing preferences using Equation (13) and share them again. This iterative process continues
until equilibrium is achieved, wherein the routing preferences of all users and RSUs reach a stable state of
convergence.

, Py EB,,VEV. (13)

Bi-level constrained traffic assignment

Combining Equations (1)-(8), the upper-level optimization is as follows:

1 1 ~
SEOT S o VAN S o o
( )r?%nn Ty o Pvﬁ’v +/17TM0 Pvfpv

"" vEV pyEP, "T vEV pyEP
PvE€Ly D€Ly (141)

b b ) ) (1, )

Gi€G ‘l)jEVgi UkEVgi

s.t. (f,0)eo, (14.2)
fp, 2 0,Vp, €P,VEV, (14.3)
Z fo, =LYV EV, (14.4)
PvEPY

where @ is the feasible region defined by the optimal solution set of the lower-level problem. Unlike in the
network design formulation, OPT' only have non-negativity constraints (14.3) and flow conservation
constraints (14.4) for routing preferences. Other constraints including the utility equity constraint, incentive
non-negativity constraint, and choice behavioral constraint, are all addressed by the lower-level problem
and encoded in @; that is, (f, a) € & is equivalent to

6,,=0,Yp, €EB,VEV, (15.1)
U, (8,f) = Uy, (8.f) < 0,%v,v; €V, 0, = 0,,d,, = d,, (15.2)
_ exp(ay — Botp, +6p,)

- Spiep, exp(cty = Butyy + 0y

fou Py EB,VEV. (15.3)

Also, note that in Equation (14.1), the decision variables are f and 8. Recall that in the network
design formulation, there is a 1-to-1 mapping from 8 to f, and hence equilibrium routing preferences can
be represented as £(@). In the following subsections, we analyze the properties of ® and similarly establish
a 1-to-1 mapping from f to .

Non-emptiness of feasible region @

This subsection examines whether there always exists more than one 8 given f, such that ( f, ék) €
®. That is, can we always find feasible @ given arbitrary f that satisfies Equations (14.3) and (14.4)? To

A

address this question, the incentives @ are divided into two parts, logit choice compensations 9 2
{19;,1}, py €EBR,,VE V} and envy compensations 9¢ £ {1951;, Py €EP,,VE V}, that is

0 =29"+9° (16)
The logit choice compensations ¥ nudge each individual user’s routing preferences to the traffic-operator’s

desired routing preferences f; the envy compensations 9¢ eliminate the envy (in terms of the expected
utilities) among users with the same O-D pair.
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Lemma 1. Given arbitrary feasible f satisfying Equations (14.3) and (14.4), there always exist 9%, such
that @ = 9" satisfy the non-negativity constraint (15.1) and the behavioral constraint (15.3).

A

Proof. @ = 9" satisfy the non-negativity constraint (15.1) and the behavioral constraint (15.3). Denote 9, 2
min Oy, and pp £ argmin®}, , then, §9), =9} — 9} = 0. Equation (15.3) implies

PvEPy PvEPy

fo = exp(ﬁ,,(tpg —tp,) + 69%) fp9,VDy ER,VEV. (17)
Therefore,

Oh, =0, +Inf, —Inf,o+ B,(t,, —t,0), VP, ER,VEV. (18)

Hence, for non-negative 9}, 19},1; defined in Equation (18) satisfy the non-negativity constraint (15.1) and
the behavioral constraint (15.3). [

Lemma 2. Given arbitrary feasible f satisfying Equations (14.3) and (14.4) and 9'defined in Equation
(18), there always exists 9°, such that @ = 9" + 9 satisfy the non-negativity constraint (15.1), utility
equity constraint (15.2) and behavioral constraint (15.3).

Proof. With 9'as defined in Equation (18), the non-negativity constraint (15.1) and the behavioral
constraint (15.3) are satisfied. If these two equations should still hold after adding 9¢, 95 should be of the
same value for all p,, € P,, which is denoted as 9J;. Since ¥¢ aim to eliminate the utility disparities among
all users with the same O-D pair, for simplicity, the following proof assumes that v; and v; have the same

O-D pair. The utility disparities can be quantified as the envy between users. In particular, the envy of user

v; for user v; can be specified as

—n val-epvj €xp (avi - ﬁ"itpvj + vaj)_ (19)
vaiEPvi €xp (avi - ﬁ”itpvi + épvi)

When e;; > 0, then user v; prefers v;’s routing preferences and incentives compared to his/her own ones.

Utility equity implies that for all v; and v; with the same O-D pair, e;; < 0. We introduce a procedural

algorithm (70) to achieve utility equity.

vj

eij = Uy, — Uy,

Algorithm 2
1: for each group of users with the same O-D pairs V9, g, € O, where 0 is the set of O-D pairs.

2:  Find a user v; € V9, such that e;; < 0, Vv; € V%, and set 97, = 0. (see Theorem 1 in (13)
for proof of v;’s existence).

3:  Update the set of non-envious users 'k = {vilei]- <0,vy; € V"k}.

4:  repeat until ['?k = V@k,

5 for v; € V@ — [ and vﬂ%?é(k e = v;lgg}g(k ejj:
6: Set 19§vi = |Pj’i| vi-relzl%z’(k eij,Py; € By,
7: end
Update ej;, Vv; € V9 using Equation (19).
9: Update the set of non-envious users ['% = {vilei i <0,Vy; € VQk}.
10:  end

11:  Set '9151;1- = ﬁ;vi + 95, VD, € B, v; € VCk, where 95, > 0 is an arbitrary value for each g, €
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12: end

According to Theorem 2 in (13), for a group of users with the same O-D pair V¢, such a procedural
algorithm can eliminate envy among users within the group in [V ¢i| — 1 iterations. Thereby, constraint
(15.2) holds for 8 = ¥' + 9. And in lines 5 and 9 of Algorithm 1, Uy =0and 9y = 19;1,]_ for p,, py, €

By, Therefore, if 0! satisfies constraints (15.1) and (15.3), 8 = 9 + 9° will satisfy constraints (15.1) and
(15.3). I

Lemmas 1 and 2 show that @ is non-empty for arbitrary feasible f satisfying Equations (14.3) and
(14.4). That is, there are always feasible 8 to nudge users to any feasible desired f. However, unlike the
lower-level equilibrium in the network design formulation, the mapping here from f to 8 is not 1-to-1.

Lemma 3. If(f, @0) € D, then there exist infinite number of 0%, such that (f, 6") € .
Proof. 1If (f, 90) € &, it means that
63 =0,VYp, €B,vVEV, (20.1)
U,/ (8° f) = U,,(8% f) < 0,¥v, v €V, 0, = 0,,d,, = d,, (20.2)
exp(a, — Byty, + 65)
phep, EXP (av - ﬁvtp{, + é;,){])

f,, = P, EP,VEV, (20.3)

Suppose there exists 8%, where HAI’,‘U = 9191; + A’o‘de(A’;v,dv > 0 is the same for users with the same O-D
pair). Then,

0f =69 +4k , >0,vp,€P,VEV, Q1)
exp(a,, B ﬁvtp,, + HII;V + A];vrdv) . exp(av A ﬁvtpv + yvégv)
phep, EXP (av - ﬁvtp,’, + 9\;,(1’] + A’;y,dy) Zp,’,er exp (av - ﬁvtp,’, + )/1,9\21,7) (22)

= fpv,pv EP,vEV,
which indicates that the incentive non-negativity constraint and choice behavioral constraint hold for 8%.
And for Vv;,v; €V, 0,, = Oy ) dy, = dvj,

U:l] (6%, f) =1In Z exp (avl. =~ :Bvl'tpvj + 91”(11,-)

ijEPv-

0 ) (23)
= ln Z eXp (avi = ﬁ"itpvj + 931}}) + P-,;J AOU]-.dvji
pv]-EPv]-
%@Vkﬂmwﬂ:mEZmﬂ%—&%ﬁnﬁJ+MM%M (24)

Py;EPy;

where |Pvi| = Pv].| (as By, = Pv].) is the number of alternative routes for their common O-D pair. From
Equations (20.2), (23) and (24), we have

U,’,’j(@O,f) - U,,(6°%f) <0,vv,v, €V,0,, = 0y, dy, = doy.

j

(25)

Therefore, the utility equity constraint also holds for 8%. Since A’;v’dv,v € V can be arbitrary positive
values, there exist infinite number of 8% such that (f, ok ) ed. 0

Theorem 1. ( f, @) € ® defines a 1-to-n mapping from f to 0 satisfying Equations (14.3) and (14.4).
Proof. Lemma 1 and Lemma 2 prove the existence of the mapping. And Lemma 3 shows that it is 1-to-n.

0l

10
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Single-level constrained traffic assignment

Theorem 1 makes 8 a necessary part of the decision variables in OPT’. To eliminate 8 from the
decision variables and reduce the problem dimension by half, a 1-to-1 mapping from f to 8 is established.
First, replace constraint (14.2) in OPT' with the following lower-level optimization problem.

0 = arg min Z Z 7] .
9,s.t%f,0)€d> v, (26)

veV p €P,

Lemma 4. Replacing constraint (14.2) with Equation (26) does not change the local optimal solutions of
OPT'.

Proof. Suppose ( f, 3*) € @ are local optimal solutions of OPT’, which implies that

w'(f,8°) <7'(f* + 6f,0" + 80) @7)
for all 8f and 6@ with small [, norms. Let §f = 0, then
' (f,8%) <7'(f", 0" + 60), (28)

which reduces to
Z Z Q;Ufpv = Z Z (9;11 + 69Pv)fpv' (29)
VEV pyEP, VEV pyEP,

Therefore, 8" satisfies Equation (26) as well, which means that changing constraint (14.2) to Equation
(26) does not exclude any local optimal solutions of OPT'. [

Lemma 5. Equation (26) defines a I-to-1 mapping from f to 0 satisfying Equations (14.3) and (14.4).

Proof. According to Lemma 6 in (13), if 95, = 0,0, € O, then Algorithm 1 determines unique and
minimum non-negative 9¢ given f and 9°, which defines a 1-to-1 mapping: ﬂe(f,ﬂl). Using Equation
(18), we have

Z Z Opofoy = Z Z ('pﬂ({"vﬁ + 9 o, + Z (9%, —ﬁé)fpv) (30)

VEV pyEPy QKE® veVCk PyEPy
where 97 = 9y ,p, € P, (line 11 in Algorithm 1 indicates that ¥ , Vv € V have the same value, which is
denoted as 9¢ here).
Let 9} &9} —9.Vp, € P,v €V and 9°(f,9') be the corresponding envy compensations
generated using Algorithm 1 with 9§, = 0. According to Equation (18), 9! is deterministic. Also, as
9° ( f, ;91) are the unique minimum non-negative envy compensations,

> <|pv|<ﬁ;+ﬁs)ﬁ,y+ > (a;v_ﬁ;)fpv>

0KEO vEV K PyEPy 3D
= Z Z |pv|(]§178)f;7v + Z gévfpv )
0KEO® VeV PvEPy

Equations (30) and (31) indicate that 8 = 9¢ + 9" is a unique minimizer of Equation (26), and thus
defines a 1-to-1 mapping from f to @ satisfying Equations (14.3) and (14.4). [J

Then, we can specify the following constrained traffic assignment formulation with a bi-level
structure and show its equivalence to OPT".

1 1 A
BopTyminn =3 S 6+ LY Y g
( )mfll’lT[ 0 Z’vfpv + /107TM,0 Pvf%’v

VEV pyEPy, VEV pyEP,

+HLZ G > Y (T =T

Gi€G ‘U]'EVgl. vkEVgi

(32.1)
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s.t. 9(f) = argmin Z Z e, f ,
osciroee L L PPy (32.2)
fpy =2 0,Yp, EP,VEV, (32.3)
Z fo, = LYV EV, (32.4)
PvEPy

While the lower-level optimization problem defines a 1-to-1 mapping from f to 8, there is no
closed-form function to represent it. Algorithm 1 is a procedural algorithm, and thus 8(f) is non-
differentiable, which does not aid solution algorithm design. According to Theorem 4 in (73), the sum of
envy compensations of user group V ¢k is bounded on the upper side; that is,

Z Z 198 Z In Z exp a,, Byt po, T 19;,1;1_) =9¢,. (33)
v;€V @k Py, EPy; vi€VCk Py, EPy,
However, using Equation (18) to calculate 9'(f) also makes 8(f) non-differentiable. Therefore, the
minimization operator in Equation (18) can be smoothened as follows.

1
9t 2 gneilrpl ), = —Eln Z exp(—K9},) |, (34)
v PvE€Py
1
SR 12" HN
by = arg min vy ~ . |pvi Er pvilpvi v] - (35)
DvEPy vaje p, €XP (—K ﬁpv,-)

Therefore, the constrained traffic assignment model (CTA) can be represented as follows:

(CTA) mlnﬂ =—Z Z oy Sow

M0 VEV py€EPy
(S 80, + Z 5, (.9 (36.1)
TTpm,0

VEV py€EPy QkEG)

Y S S (),

Gi€G v]EVg vkEVg

Z foo, =LVVEV, (36.2)
PvEPy
fop = €YD, EB,VEV, (36.3)

Note that formulation (49.1)-(49.3) does not generate individual envy compensations, but only the upper
bound of the sum of envy compensations of each user group gy, ﬁgk. Hence, the individual envy
compensations are obtained using the following two steps: (i) generate the unique minimum envy
compensation z§§U,pv € B,,v € gy following Algorithm 1; and (ii) distribute the remaining group envy
compensations, 9, — Yveo, Xp,ep, 1§§v, to each alternative of each user within the user group equally.

DECENTRALIZED SOLUTION ALGORITHM

This section first derives a consensus optimization formulation (COCTA) based on CTA defined
in Equations (36.1)-(36.3), which allows us to develop a decentralized solution algorithm to enable
computational tractability in large-scale implementations. Denote the feasible region of routing preferences
defined by Equations (36.2) and (36 3) as Q.

(COCTA) min M= Y 6, (FIf (37.)

0 Q
FALFORY(F91) M0 eV poep,
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VEV py€EPy 0KE®

6 S ()

" Gi€G UIEVg vkEVg

,mizzﬁwwﬁZ%Wwwm>

st. fEQ, (37.2)
fo.fe, f9ie QvveV,o, €0,G,€EG (37.3)
f=f"=f%=f5VveV,0,€0,G€EG (37.4)

Lemma 6. COCTA is equivalent to CTA.

Proof. Replace fV, f, f9 in Il with f, then constraints (37.3) and (37.4) can be removed and f7, f¢, fi
can be eliminated from the decision variables. Then, COCTA becomes CTA. [

The objective function (37.1) of COCTA can be reorganized as follows:

M= Z Z( et P+ loﬁ;éV(f")fp';)

VEV pyEPy
+ Z ( ﬁek(fgk'gl(fgk))) (39)
0kE®
Py NN (1,050 - TG )
Gi€G E0 vj€Vg, vkEVg;
Let
1
B = (,TM o P + 5 (f”)fp';). (39)
PvEPy 1 0 M
9o, (F%) = —19 5 (o, 9L (fK)), (40)
96.F%) = Z > (0 -1,00) @n
EO0 vj€Vg, vkEVg;
Then
M= 0.0+ Y g5, (F%)+ ) g5, (F0. @)
VEV 0KEO Gi€G

Incorporating constraints (37.4) into the objective function gives us the augmented Lagrangian:

Leoera(f, {fPlv €V}, {F% oy € @} {foilg; € G})
=D (g + @ = n+ 20 - 117)

vev

+ 3 (902 + e, fox =+ 2251 pox — 1) @)
0K€E®

+ 3" (96,09 + o, g5 — £y + 2|15 p1|).
Gi€G

Then, the following algorithm can be used to solve COCTA.

Algorithm 3

1: Initialize the decision variables f ), {f’(’o)|v ev}, {f%‘)|gk € @}, { (0)|gl € G} and dual
variables {n’(’o)|v ev}, {n%‘)|gk € G)}, {n?5)|gi € G}. Setr « 0;
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2: repeat until the convergence criteria are met.

3: Update f(r+1) = ar]gemﬂin ['COCTA (fr {fl(ir)}' {f(g;)} ) {711(7r)}: {{U(gﬁ)}})

VvEV

4. Update f1(7r+1) = argfrpin 9v(f¥) + (Ufr)' M- f(r+1)) +
5: Update f(r+1) - ar?gjin ng(ka) + (n%{()l ka - f(T+1)> + ||f9k - f(r+1)|| va € @
Gi : Gi Gi  £G; Psi |1 £6: z

6: Update fi;, 1) = r;lginggi(f D)+ Mgy 9= feen) + 7||f i _f(r+1)|| VG €G.

7: Update 1)(ry1) = N(ry + pv(fI(JrH) fo+0), YV EV; "(r+1) n(r) + Poy (f(r+1)
. i
f(r+1))'va €06; Nev) = n(r) + pg, (f(r+1) f(r+1))'Vgi €EG.
8 Setr «<r+1.
9: end

Algorithm 2 has an iterative structure. In each iteration, both the consensus variables f -y and the

local variables f’(’r), f ?rk), f‘?;) are updated. Specifically, the consensus variables are updated by minimizing
the augmented Lagrangian that uses the local variables in the previous iteration. As the name suggests, the
optimization in line 3 aims to create a consensus among the local variables (eventually, they should have
the same values as implied by constraint (37.4)). Note that though the optimization problem in line 3 has
the same dimension as CTA, it has a more standard quadratic programming form, which can be solved as
follows:

Gi Gi
ZvEV(pvfI(]r) + nl(]r)) + ngee (pgkffrk) + nfrk)) + Zgiea (pgif(r) + TI(T))
Z‘UEV Pv + ZQkEQ ka + ZgiEG pgl (44)

f@+1) = Projg

= ProjpZz)
Note that the feasible set  is an affine half space { folAf° =1, > 0} (here Af°® = 1 is the matrix form
of ¥p,ep, fo, = 1,V € V), which allows us to represent f?, . as:

=11
f(.,.+1) = pI‘Oj.QZ(r) = [Z(r) - AT (AAT) (AZ(T) - 1)]€+, (45)

where the [-].4 operator applies max{-, €} to each element of the vector. As Equation (45) is composed
solely of elementary linear algebra, the consensus updating step in line 3 of Algorithm 2 is considerably
inexpensive in practice.

The local variables are updated by solving local optimization problems, which has simpler
objective functions and optimize a local copy of f. The local objective functions are simpler not only
because gy, 9o, Jg,; are small components of I, but also because the problem dimension is greatly reduced
though fY, f9, f9 have the same dimension as f. For example, consider the optimization at line 4 in
Algorithm 2. As Equation (39) shows, g, (f¥) are represented using t;, , 19{,1], fp, Dy € P,. And according
to Equations (18), (34), and (35), 19},1} is represented using t,, , py € P,. Then, for v;, v; €V,

agvi agvi atp,,i + agvi 6fp1;ii . agv 619 atp{]i
vi = ’ Vi Vi : Vi 1 ; TR (46)
afp"]' Py;EPy; atpvi afij Py;EPy; afpvi af;oy]- Py EPy, aﬁpvl ol atpvl a/‘;;v
oty,, a f
Therefore, if p,,, and P, share no links, then 5 p =0,VYpy, € B,;; af;’l = 0,Vp,, € B,,, and thus afp
v v v

J J J
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0. This further implies that in the solution to the local optimization problem, f Zi r+1) = [p, r+1)- Justas
Vj J

the toy example in Section 4.1 shows, when updating fl(’r +1)> most of the elements can simply be copied
from f(41). The “effective” decision variables of the local optimization problem are the routing
preferences that affect ¢, ,p, € B,. The label “local optimization” is partly because these routing
preferences are either from user v or some neighboring users (whose alternative routes have at least one
shared link with any of the alternative routes of v). Another reason for this label is that it is intended to be
solved by user v. In real world implementations, these local optimizations are performed by the computing
units on CAVs or the smart phones of users.

NUMERICAL STUDIES

Data preparation and experiment settings

Table 1 summarizes the specifications of the three traffic networks used in this study, and their
layouts are shown in Figure 3. Since the proposed strategies generate personalized routing preferences and
incentives for each user, using the original O-D demand data' for these networks exceeds typically available
computational resources. That is, though in practice the decentralized algorithm will run concurrently on
thousands of computing units (of users’ phones or their vehicles), we employ a single computer with many
threads to simulate this procedure. Therefore, though the proposed algorithm scales well with problem size
in the real world, the study experiments cannot generate individual routing preferences and incentives for
millions of users. To limit problem size, we reduce the total number of users while maintaining the original
O-D demand distributions. For instance, Figure 3(b) visualizes the demand distributions among the 24
nodes in the Sioux Falls network (Figure 3(a)). The original demand is 360,600. Users are generated with
a 0.1% probability, resulting in 362 users and 219 active O-D pairs (i.e., O-D pairs with positive demands).
In addition, the capacity parameters in the link performance functions are changed to replicate comparable
congestion levels. The capacity parameters of all links in the Sioux Falls network are multiplied by 1/3000.
The numbers of active O-D pairs, generated users, and the corresponding capacity coefficients used in the
Anaheim network (Figure 3(c)) and the Chicago Sketch network (Figure 3(d)) are also listed in Table 1.

Table 1. Specifications of networks and demands.

# of # of # of # of Total #  Average # of Average # of Capacity

Network nodes edges  ODs users  of paths  links per path  neighboring paths coeff.
Sioux Falls 24 76 219 362 438 4.25 181.92 1/3000
Anaheim 416 914 417 995 834 17.31 381.67 1/300
Chicago Sketch 993 2950 1522 1932 3044 8.09 198.42 1/1200

! https://github.com/bstabler/TransportationNetworks
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Figure 3: Traffic networks used in this study.

For each network, two nodes are selected as societal service/resource-related sites, forming two
user groups V;,. Specifically, for the Sioux Falls network, users heading to nodes 8 and 11 are categorized
into two separate user groups for accessibility inequity measures; for the Anaheim network, nodes 6 and 15
are selected; and for the Chicago Sketch network, nodes 8 and 11 are selected. The weights &g, are set to 1.
For each user v, a,, is randomly sampled from a uniform distribution U(0,10), and S, is randomly
sampled from U(0.002,0.004). Note that the units for travel times, incentives, and these parameters are
omitted in the numerical studies as the objective function in Equation (38) is designed to be unit-free.
P,V €V, o, 0k € 0,p5,G; € G are all set to 1000. € in Equation (36.3) is set to 0.001.

As a benchmark, original equilibrium routing preferences are computed using the method of
successive averages when behavioral interventions are not considered (that is, no incentives). The
corresponding mobility inefficiency measure 1y, o and accessibility inequity measure 7 o in the objective
function are calculated. Figure 4 depicts the optimal solutions for the three objectives with different A4 and
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k for the Sioux Falls network. As CTA is a non-linear, non-convex optimization problem, the optimal
solutions denote the best ones from among 10 repetitions of Algorithm 2 with the same settings.

Effectiveness in promoting mobility efficiency and three dimensions of equity
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(c) TI'M/TFM_(), /7o with A = 0.004.
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Figure 4: System mobility inefficiency and accessibility inequity tradeoffs: (a) and (b) illustrate my,;

and 1, respectively, for different x and A (lighter colors indicate higher values); (¢) and (d) plot
Ty /Ty o and 1tg /T o for fixed A and Kk, respectively.

The insights for system accessibility can be summarized as follows:

e The mobility inefficiency measure 1y, increases with k. This indicates that as the traffic
operator prioritizes accessibility equity more, system efficiency can be slightly lowered.
However, the sensitivity of 7y, to changes in k is comparatively lower than that of A, which is
illustrated in Figure 4(a) (the contour lines are almost parallel to the x axis when k is small).

This is because k is designed to balance the tradeoff between mg /mg o and (nM + % n,) /Ty 0-

As a result, Ty does not change as much as my when k changes because a decrease in 1y,

. . .. 1
increases 7;, which moderates the overall reduction in 1y, + 2 T

e Figure 4(b) shows that system accessibility inequity decreases significantly with increase in x
as indicated by the deepening hues along the x-axis. This can be attributed to the traffic
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operator's increased prioritization of achieving accessibility equity at the expense of mobility
efficiency and incentive costs. Figure 4(c) illustrates similar tendencies in the percentage
changes of mg /mg o with changes in k.

e However, the trend of myz observed with changes in A is not straightforward. As depicted in
Figure 4(b) and Figure 4(d), both mg and g /7 ¢ initially increase with A, reaching a peak
near 1 = 0.003, before decreasing with further increases in A. Note that 8,,, v € V range from
0.002 to 0.004, which implies that the average value of time of users is around 0.003. When
the traffic operator’s value of time A falls below the average value of time of users, the travel
time savings are generally not worth the invested incentives from the traffic operator's
perspective. This is because travelers request more incentives than expected as they value time
more highly than the traffic operator.

100% —~ 100% —~
75% =7 75% e
50% Pt 50% 1 -7
25% - " 25% JPtiae
0% == 0% ==
1000 Original Equilibrium 1000 Original Equilibrium
Yo Yo
75% 1 L= 75% 1 =
50% = 50% 7 =
25% == 25% =
0% 0%
k=0.01 k=0.01
100% 100%
75% A 75% A
50% - = 50%
25% A 25% A
0% T T T T 0% T T T T
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
k=0.1 k=0.1
(a) Lorenz Curves of the expected travel (b) Lorenz Curves of the expected travel
times of all users heading to node 8. times of all users heading to node 11.

Figure 5: Lorenz Curves of the expected travel times for societal service/resource-related nodes in
the Sioux Falls network (x axes are the user percentage by travel time distributions; y axes are
cumulative shares of total travel time).

To evaluate the effectiveness of the proposed collaborative routing strategy in terms of promoting
equitable access to societal services/activities, the Lorenz curves of the expected travel times of users
heading to nodes 8 and 11 in the Sioux Falls network are shown in Figure 5. Nodes 8 and 11 are assumed
to provide two different societal services/resources; thereby users heading to them form two user groups
for accessibility inequity measures. The Lorenz curve is widely used to illustrate income/wealth
distributions. The Lorenz curve here shows how the percentage share of the total group travel time changes
as the percentage share of users by travel time distributions increases. It is also closely related to the Gini
coefficient; the gray dashed line connecting (0%, 0%) and (100%, 100%) denotes perfect accessibility
equity and the Gini coefficient is the ratio of the area between the Lorenz curve (solid black line) and the
gray dashed line to the area between the gray dashed line and the x axis. Both Figure 5(a) and 10(b) show
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that the Lorenz curves are closer to the perfect accessibility equity line as k increases, indicating that the
accessibility equity of both groups of users is enhanced.

Efficiency evaluation of the decentralized algorithm (Algorithm 2)

Figure 6 depicts the convergence performance of Algorithm 2. Figs. 11(a), 11(b) and 11(c)
illustrate the trajectories of objective function (37.1) in the first 1000 iterations in the Sioux Falls, Anaheim,
and Chicago Sketch networks, respectively. The red dashed lines denote the objective function value of the
original equilibrium state (without behavior interventions) as benchmark. The results indicate that
Algorithm 2 can identify acceptable solutions to the non-linear non-convex problem (COCTA) rather
quickly; that is, 200-600 iterations to exceed the benchmark. But many more iterations may be required to
find a good solution as the reduction in the objective function value greatly slows down with the number
of iterations. Figure 6(d) shows that the convergence rate slows down when more users participate in the
decentralized algorithm as it is harder to reach a consensus for a larger group of users. However, for all
three networks, Algorithm 2 converges to a good solution within 1000 iterations, which is acceptable for
practical deployment (each iteration takes tens milliseconds).

20 20

— ()
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N

0

Iteration #: r Iteration #: r
(a) Convergence performance for SiouxFalls network. (b) Convergence performance for Anaheim network.
20.0 20
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(c) Convergence performance for ChicagoSketch network. (d) Convergence performance comparison for different networks.

Figure 6: Convergence performance of Algorithm 2.
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(a) Average CPU times of the consensus step for different networks. (b) Average CPU times of the local updating steps for different networks.

Figure 7: Computational times of Algorithm 2.

The computational performance of Algorithm 2 is evaluated using the average CPU times of the
consensus step (line 3 in Algorithm 2) and the local optimization steps (lines 4, 5, and 6 in Algorithm 2).
Figure 7(a) shows that the average computational time of the consensus step in all 1000 iterations of the
Sioux Falls network increases with problem dimension (i.e., the dimension of routing preferences f) as line
3 of Algorithm 2 is not executed in a decentralized manner in the experiments. However, Equations (44)
and (45) indicate that each element of f ;1) can be updated locally in practice. Updating different elements
of f(r4+1) locally reduces the computational time of the consensus step, while also distributing the
communication load and reduce physical transmission distance and communication delays.

Figure 7(b) illustrates that the average computational times of the local updating steps (lines 4, 5,
and 6 in Algorithm 2) are closely related to the average dimension of the local optimization problems (the
local optimization problem for each user/RSU can have different dimensions). While the average local
problem dimension and average CPU time increase significantly for the Anaheim network compared to the
Sioux Falls network, the same is not true for the Chicago Sketch network. The average dimension of local
optimization problems in the Chicago Sketch network is similar to that of the Sioux Falls network, leading
its average CPU time for local updating steps to be slightly higher than that of the Sioux Fall network. This
can be explained by the network statistics in Table 1; though the Chicago Sketch network has the largest
numbers of nodes, edges, paths, and users, its average number of links per path (8.09) is much smaller than
that of the Anaheim network (17.31). Hence, its paths are less coupled in terms of shared links and similar
to those of the Sioux Falls network as indicated by the average number of neighboring paths. Note that the
average number of neighboring users is directly related to the dimensions of local optimization problems
as shown in Section 0, and is proportional to the average number of neighboring paths. Hence, this illustrates
that the computational load of each computing unit in the proposed decentralized algorithm does not scale
directly with network size or number of users. Instead, it depends more on the average dimension of local
optimization problems.

CONCLUDING COMMENTS

To our knowledge, this study pioneers the integration of multidimensional equity considerations in
traffic networks, reflecting user behavior and network context. It introduces collaborative routing strategies
through incentive mechanisms, promoting equity in three dimensions. Firstly, the model accounts for
accessibility equity, a recognized societal target in planning, but rarely addressed operationally. By
producing routing outcomes sensitive to access equity, our strategy tackles this crucial dimension of traffic
system inequity. Secondly, the incentive mechanism incorporates utility equity, a scarcely explored
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constraint in incentive personalization, ensuring incentives do not provoke envy or perceived inequity, thus
enhancing their practical appeal. Thirdly, inclusion equity is addressed by utilizing personalized incentives
to shape user routing preferences, imposing non-negativity requirements reflecting realistic individual
participation willingness. The resulting complexity due to multiple equity dimensions renders centralized
solutions impractical, necessitating a decentralized approach for computational tractability.

This study systematically integrates multidimensional equity considerations into the analytical
modeling and quantitative analysis of collaborative routing strategies. Future research directions include:
(1) using more comprehensive discrete choice models to accurately model users' route choice behavior; (ii)
exploring the impact of path generation strategies on the proposed path-based model and its efficacy in
promoting equity; (iii) incorporating the heterogeneity in the value of time in users' utilities to reflect their
individual characteristics more accurately; (iv) extending the framework to dynamic traffic assignment to
better capture traffic dynamics; and (v) incorporating more cost-efficient types of incentives in the proposed
strategies.
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