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ABSTRACT 1 
Penalty-based strategies, such as congestion pricing, have been employed to improve traffic network 2 
efficiency, but they face criticism for their negative impact on users and equity concerns. Collaborative 3 
routing, which allows users to negotiate route choices, offers a solution that considers individual 4 
heterogeneity. Personalized incentives can encourage such collaboration and are more politically acceptable 5 
than penalties. This study proposes a collaborative routing strategy that uses personalized incentives to 6 
guide users towards desired traffic states while promoting multidimensional equity. Three equity 7 
dimensions are considered: accessibility equity (equal access to jobs, services, and education), inclusion 8 
equity (route suggestions and incentives that do not favor specific users), and utility equity (envy-free 9 
solutions where no user feels others have more valuable incentives). The strategy prioritizes equitable 10 
access to societal services and activities, ensuring accessibility equity in routing solutions. Inclusion equity 11 
is maintained through non-negative incentives that consider user heterogeneity without excluding anyone. 12 
An envy-free compensation mechanism achieves utility equity by eliminating envy over incentive-route 13 
bundles. A constrained traffic assignment (CTA) formulation and consensus optimization variant are then 14 
devised to break down the centralized problem into smaller, manageable parts and a decentralized algorithm 15 
is developed for scalability in large transportation networks and user populations. Numerical studies 16 
investigate the model's enhancement of equity dimensions and the impact of hyperparameters on system 17 
objective tradeoffs and demonstrate the algorithm convergence. 18 
 19 
Keywords: accessibility equity, inclusion equity; utility equity; collaborative routing; incentive mechanism   20 
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INTRODUCTION 1 

Background and motivation 2 

Congestion pricing mechanisms, employed by traffic operators, aim to enhance transportation 3 
system efficiency by targeting macro travel decisions and encouraging alternate modes or timings of travel. 4 
Dynamic tolls, as a form of pricing mechanism, influence users' route choices but are penalty-based and 5 
disproportionately impact low-income users, thus acting as a regressive tax (1). Existing congestion pricing 6 
strategies inadequately address traveler heterogeneity, as the use of user classes (2, 3) obscures individual 7 
differences in responses, leading to unmet needs. Such underrepresentation of individual characteristics 8 
may result in unintended favoritism, limiting what is termed "inclusion equity." To achieve inclusive 9 
consideration of users' interests, traffic operators must promote inclusion equity through personalized 10 
interventions that provide non-negative additional utilities. 11 

Personalized behavioral interventions present a complex challenge, as they must address not only 12 
increased computational demands and privacy concerns but also potential accusations of discrimination. 13 
Users evaluate the personalized options they receive, and interventions must prevent feelings of envy based 14 
on utility function assessments, referred to as "utility equity" in this study. The limited exploration of 15 
personalized interventions in the literature has left utility equity largely unexamined. To promote inclusion 16 
equity by incorporating individual heterogeneities, addressing the challenge of utility equity arising from 17 
personalization is essential.   18 

Moreover, prevailing congestion pricing approaches primarily emphasize improving mobility 19 
efficiency, aiming to align user equilibrium (UE) flows, which better reflect real-world scenarios, with 20 
system optimum (SO) conditions. Although SO conditions offer superior mobility efficiency, they can 21 
provoke equity concerns. In SO flow patterns, certain users with identical origins and destinations may 22 
encounter considerably longer travel times, resulting in "mobility equity" issues (4). Thus, several studies 23 
(4-7) underscore the significance of mobility equity, aiming to minimize travel cost disparities among 24 
travelers with matching O-D pairs. The fundamental inquiry concerns whether mobility equity sufficiently 25 
captures the true disparities experienced by transportation system users in terms of access and daily 26 
functionality. A more pertinent equity goal from a societal standpoint may be "accessibility equity," which 27 
emphasizes equal access to job opportunities, services, and resources for all travelers, rather than equal 28 
travel times for identical origin-destination trips. Empirical evidence (8) indicates prevalent accessibility 29 
inequity within transportation systems. Strategic remedies often proposed to address accessibility inequity 30 
include developing efficient public transit networks, encouraging companies to provide transportation 31 
subsidies, and coordinating regional housing and economic development (9). Promoting accessibility equity 32 
through operational solutions can supplement strategic ones to address systemic equity issues. 33 

In summary, the existing literature on pricing strategies predominantly centers on mobility 34 
efficiency through penalty-based system-level approaches. Little attention has been paid to equity concerns, 35 
with the focus limited to mobility equity. It also lacks comprehensive research and modeling to address 36 
multidimensional equity while factoring heterogeneities in individual user characteristics and needs. Also, 37 
the formulation of personalized strategies may exacerbate computational tractability issues due to the 38 
explosion in problem dimension. Specifically, if models are to capture individual characteristics, the 39 
computational burden increases not only with the size of the network but also with the number of users. 40 
Consequently, the modeling and solution design must meet practical requirements when dealing with 41 
problems of such high dimension. 42 

To enable equity more comprehensively, we propose the implementation of personalized incentives 43 
(in this study, cash or credits that have monetary value) as behavioral interventions, which would influence 44 
user route choices at the individual level. This approach, in contrast to penalty-based system-level 45 
strategies, considers the specific objectives and limitations of individual users, while simultaneously 46 
addressing system-level goals. Also, unlike centralized pricing strategies, the proposed mechanism employs 47 
collaborative routing, a more decentralized scheme made possible by emerging connectivity technologies, 48 
to ensure computational tractability. In collaborative routing, the traffic operator no longer coordinates 49 
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users' route choices according to system objectives in a centralized manner. Instead, each user works 1 
towards their individual contributions to these system objectives while requesting personalized incentives. 2 
Thereby, as shown in Figure 1, system objectives are represented as assigned goals to users, and the traffic 3 
operator nudges users to work towards these goals individually and voluntarily by providing personalized 4 
incentives. Users can negotiate with each other through vehicular on-board units (V2X) or smartphones 5 
(P2P networking). In multiple iterations of negotiations, users specify their routing preferences (not the 6 
final route choices but the tentative preference for each alternative route during the negotiations), 7 
corresponding incentives, and their expectations of other users' routing preferences. Together, they 8 
harmonize their individual interests with the assigned goals and the routing preference expectations of other 9 
users. That is, each user considers the expectations of routing preferences that other users have of routes 10 
this user is willing to consider so as to avoid large deviations from those expectations, and thereby promote 11 
consensus. Finally, a consensus is achieved among all users, who follow the consensus routing preferences 12 
while receiving the requested incentives from the traffic operator. Compared to a centralized approach, 13 
collaborative routing achieves system objectives in a decentralized manner, which decouples the problem 14 
dimension explosion issue from the number of users and enables scalable implementation of the proposed 15 
mechanisms. 16 

 17 

Figure 1: Conceptual framework of the collaborative routing strategy promoting accessibility 18 
equity, inclusion equity, and utility equity. 19 

This paper is organized as follows. Section 0 proposes a constrained traffic assignment formulation 20 
and highlights its advantages over the network design formulation. Section 0 describes the consensus 21 
optimization variant of the constrained traffic assignment formulation and develops a decentralized 22 
solution. Numerical studies are presented in Section 0. The paper concludes with a summary of 23 
contributions and potential future enhancements in Section 0.  24 

U
se
rs

Constraints

Inclusion EquityUtility Equity

Individual 
Travel Time

Personalized 
Incentives

Individual 
Routing 
Preferences

Deviation 
from Routing 
Preference 
Expectations

Equity Goals 
related to 
Services/ 
Resources

Requested 
Personalized 
Incentives

Routing 
Preference 
Expectations

Traffic Operator

System Objectives

Incentive 
Costs

Accessibility 
Equity

System 
Travel 
Time

Assigned Goal

Deviation 
from Routing 
Preference 
Expectations

Assigned Goal R
SU
s

N
egotiations

N
eg
ot
ia
tio
ns

O
ut
pu
ts



Wang and Peeta  

5 
 

CONSTRAINED TRAFFIC ASSIGNMENT FORMULATION 1 

Let us consider a traffic network {𝑁, 𝐴}, where 𝑁 represents the node set, and 𝐴 denotes the set of 2 
directed links. The set of vehicles/users is labeled 𝑉. For each individual user 𝑣 ∈ 𝑉, the node where it is 3 
positioned is its origin 𝑜!, and its final destination (this is not the local destinations used in the modeling 4 
approach) is denoted as 𝑑!. The alternative route set of user 𝑣 is 𝑃!. The routing preference 𝑓"! is defined 5 
as the probability that user 𝑣 will take route 𝑝! from 𝑃!; thus, ∑ 𝑓"!"!∈$! = 1. We assume that users with 6 
the same O-D pair have identical alternative route sets. Also, define 𝜽 ≜ 3𝜃"! , 𝑝! ∈ 𝑃! , 𝑣 ∈ 𝑉5, 𝒇 ≜7 
3𝑓"! , 𝑝! ∈ 𝑃! , 𝑣 ∈ 𝑉5. The collaborative routing strategy aims to provide personalized incentives 𝜃"!  for 8 
each local route 𝑝! ∈ 𝑃! for vehicle/user 𝑣 ∈ 𝑉 to influence the routing preferences and promote the system 9 
objectives shown in Figure 1. 10 

As depicted in Figure 2, the traffic operator proposes routing preferences for users that optimize 11 
system objectives, while enabling them to request incentives that facilitate adherence to these preferences. 12 
Hence, the decision variables of the upper-level optimization become 𝒇, which denotes the users’ routing 13 
preferences desired by the traffic operator. The lower-level model optimizes 𝜽, with the aim of generating 14 
the lowest value of incentives necessary to achieve these routing preferences. Specifically, the traffic-15 
operator desired routing preferences are fed into the behavioral model of the lower-level optimization, and 16 
the required incentives calculated based on these preferences are then used in the upper-level optimization 17 
to determine the incentive costs of the system. Therefore, in the constrained traffic assignment formulation, 18 
the hat operator is above 𝜽 as shown in Figure 2 because incentives are generated by solving the lower-19 
level problem given the desired routing preferences 𝒇. This formulation can be viewed as a “constrained” 20 
traffic assignment problem undertaken by a traffic operator with a more complex system objective 21 
(compared to SO) and more constrained behavioral and incentive requirements (represented by the lower-22 
level model). 23 

 24 

 25 

Figure 2: Bi-level structure of the constrained traffic assignment formulation. 26 

Incentive cost and mobility inefficiency measures 27 

As illustrated in Figure 1, the upper-level optimization model for traffic operators comprises of a 28 
tripartite objective function encompassing system mobility efficiency, incentive costs, and accessibility 29 
equity. Given the decision variables 𝒇, the corresponding required incentives generated by the lower-level 30 
optimization model are denoted by the vector  𝜽7 (the hat operator indicates that 𝜽7 is derived from 𝒇), then 31 
the expected total incentive costs are: 32 

 𝜋! =# # 𝜃%"!𝑓"!
"!∈$!%∈&

.	 (1) 

The expected total system travel time is used as the system mobility inefficiency measure (reducing 33 
the mobility inefficiency measure improves mobility efficiency). The probability that user 𝑣 ∈ 𝑉 uses link 34 
𝑎 ∈ 𝐴 can be represented using 𝑓9"!: 35 
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 𝑥'% = # 𝑓"!
"!∈$!,"!∋'

,	 (2) 

i.e., the sum of 𝑣’s routing preferences for routes containing link 𝑎. Then, the expected link flows are  1 

 𝑥' =#𝑥'%
%∈&

=# # 𝑓"!𝛿"!
'

"!∈$!%∈&

,	 (3) 

where 𝛿"!
%  is the link-route indicator variable that is equal to 1 when route 𝑝! contains link 𝑎. The expected 2 

link travel time of 𝑎 is 𝑐%(𝑥%), where 𝑐%(⋅) is the link performance function of link 𝑎 (for all	𝑎 ∈ 𝐴; 𝑐%(⋅) 3 
are assumed continuous and strictly increasing in this study). The expected route travel time can be 4 
represented as 5 

 𝑡"! = # 𝑐'(𝑥')
'∈"!

.	 (4) 

Note that 𝑐%(⋅), ∈ 𝑝! account for the effect of background traffic and the predicted newly-entering vehicles. 6 
Thus, Equation (4) does not explicitly incorporate background traffic. Therefore, the expected total system 7 
travel time is given as 8 

 𝜋* =# # 𝑡"!𝑓"!
"!∈$!%∈&

.	 (5) 

Accessibility inequity measure 9 

To quantify accessibility equity, we must first establish the perfect accessibility equity case, which 10 
represents the idealized scenario that we strive to achieve when considering accessibility equity alone. Let 11 
us assume that the traffic operator prioritizes equal access to employment, medical services, educational 12 
resources, and other societal activities that ought to be accessible to all. We can filter out trips associated 13 
with accessing these services/resources from all other trips and categorize them accordingly. Ideally, trips 14 
associated with accessing the same type of societal services/resources should have equal expected travel 15 
times. For instance, all commuting trips should have the same travel time, and the same applies to trips 16 
associated with medical visits. The destinations of such accessibility-sensitive trips are categorized into site 17 
groups 𝒢& ∈ 𝐺 based on their service/resource types, where 𝐺 is the set of all site groups. Then, user groups 18 
are defined corresponding to each site group 𝒢& as 𝑉𝒢" ≜ {𝑣|𝑣 ∈ 𝑉, 𝑑! ∈ 𝒢& 	}. This approach enables us to 19 
evaluate the inequality in accessibility within 𝒢& by examining the expected travel time disparity within 𝑉𝒢". 20 
This study measures the disparity of expected travel times within user group 𝑉𝒢" as follows: 21 

 𝜋+
𝒢" = # # 0𝑇%# − 𝑇%$3

-

%$∈&𝒢"%#∈&𝒢"

,	 (6) 

where 𝑇! = ∑ 𝑡"!𝑓"!"!∈$!  is the expected travel time of user 𝑣 ∈ 𝑉𝒢". Equation (6) is differentiable, making 22 
it more tractable when integrated in our optimization models. Also, compared to Gini coefficient, Equation 23 
(6) can better capture the impacts of high expected travel times due to the square operator (de Maio, 2007). 24 
Then, the system accessibility inequity (minimizing the accessibility inequity measure promotes 25 
accessibility equity) can be represented as the weighted average of the disparities of all site groups: 26 

 𝜋+ = # 𝜉𝒢"𝜋+
𝒢"

𝒢"∈.

,	 (7) 

where 𝜉𝒢"  is the weight for site group 𝒢& , reflecting the importance of accessibility equity of a specific 27 
category of societal services/activities from the perspective of the traffic operator (∑ 𝜉𝒢"𝒢"∈( = 1).  28 

Then the following unit-free objective function is used to represent the traffic operator’s objectives: 29 

 𝜋/ =
𝜋* +

1
𝜆 𝜋!

𝜋*,0
+ 𝜅

𝜋+
𝜋+,0

,	 (8) 
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where 𝜆 is the traffic operator’s “value of time” (i.e., the amount of money that a traffic operator is willing 1 
to invest to reduce the total system travel time by one unit). 𝜋),+  and 𝜋,,+  are the system mobility 2 
inefficiency measure and accessibility inequity measure, respectively, when no behavioral 3 
interventions/incentives are applied. 𝜅 is an adjustable weight of the mobility equity term. Since there is no 4 
incentive cost when no behavioral interventions/incentives are applied, 𝜋-  is converted into 

.
/
𝜋-  and 5 

benchmarked together with 𝜋) against 𝜋),+ to make it unit-free. By adjusting 𝜆 and 𝜅, the traffic operator 6 
can prioritize the three objectives of system efficiency, incentive cost, and accessibility equity according to 7 
their preferences. 8 

Inclusion equity and utility equity constraints 9 

Inclusion equity imposes a straightforward constraint on the incentives, which requires them to 10 
remain non-negative. This encourages users to participate and derive non-negative additional utilities.  11 

Utility equity imposes further constraints on the incentives 𝜽. Specifically, it mandates that the 12 
expected utility of any user must not be lower than their evaluation of the routing preference-incentive 13 
bundles of others who share the same origin-destination pair. This constraint on individual user behavior is 14 
similar to the envy-freeness property in (10), which addresses the issue of potential envy among users that 15 
could impede their participation. We start by presenting the utility functions of users, which determine how 16 
they evaluate a given routing preference-incentive bundle. The utility function consists of two components: 17 
individual mobility efficiency and incentive benefits. For a specific route 𝑝! ∈ 𝑃!, the utility of user 𝑣 ∈ 𝑉 18 
can be described as 19 

 𝑢%(𝑝%) = 𝛼% − 𝛽%𝑡"! + 𝜃%"! + 𝜖"! ,	 (9) 

where 𝛼!and 𝛽! are positive parameters capturing the individual characteristics/preferences of user 𝑣, 𝜖"! 20 
is the random term that represents the unobservable or unmeasurable factors of utility (the standard 21 
deviations of 𝜖"! , 𝑝! ∈ 𝑃! , 𝑣 ∈ 𝑉 are 1 in this study), and 𝑡"! is the expected travel time of route 𝑝!, which 22 
can be calculated using Equation (4) (as mentioned before, the hat operator in Equation (4) indicates that 23 
variables are derived from the equilibrium solution of the lower-level optimization, but calculations apply 24 
to non-equilibrium 𝒇 as well). Then, the expected utility of user 𝑣 ∈ 𝑉 is given by (11, 12) 25 

 𝑈% = ln # expD𝛼% − 𝛽%𝑡"! + 𝜃%"!E
"!∈$!

.	 (10) 

Equation (10) describes how user 𝑣 evaluates their own routing preferences and assigned incentives. How 26 
user 𝑣 assesses the routing preferences and incentives of other users with the same origin and destination 27 
is given by  28 

 𝑈%
%& = ln # exp 0𝛼% − 𝛽%𝑡"!& + 𝜃

%"!&3
"!&∈$!&

, 𝑣, 𝑣/ ∈ 𝑉, 𝑜% = 𝑜%& , 𝑑% = 𝑑%& .	 (11) 

Note that Equation (10) is a special case of Equation (11) when 𝑈! = 𝑈!! . Then, the utility equity 29 
constraints can be represented as  30 

 𝑈% ≥ 𝑈%%
& , ∀𝑣, 𝑣/ ∈ 𝑉, 𝑜% = 𝑜%& , 𝑑% = 𝑑%& ,	 (12) 

which ensures that each user 𝑣 ∈ 𝑉, utilizing their own utility function, values its own routing preferences 31 
and incentives more than those of any other user 𝑣0 ∈ 𝑉 that shares the same O-D pair. 32 

Lower-level equilibrium constraint 33 

In the lower-level problem, by assuming that the random terms in Equation (9) are independently 34 
and identically distributed (IID), we can define the routing preferences of users through a multinomial logit 35 
model:  36 
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 𝑓"! =
expD𝛼% − 𝛽%𝑡"! + 𝜃%"!E

∑ expD𝛼% − 𝛽%𝑡"!& + 𝜃%"!&E"!&∈$!
, 𝑝% ∈ 𝑃%, 𝑣 ∈ 𝑉.	 (13) 

Equations (4) and (13) form a routing preference updating rule. Users communicate their intended routes 1 
to the RSUs located within their local ranges. The RSUs, in turn, gather the routing preferences, update 𝑡"! 2 
by applying Equation (4),  and disseminate the information within the local range. The users then update 3 
their own routing preferences using Equation (13) and share them again. This iterative process continues 4 
until equilibrium is achieved, wherein the routing preferences of all users and RSUs reach a stable state of 5 
convergence. 6 

Bi-level constrained traffic assignment 7 

Combining Equations (1)-(8), the upper-level optimization is as follows: 8 

 

(𝐎𝐏𝐓/)min
𝒇,𝜽3

𝜋/ =
1
𝜋*,0

# # 𝑡"!𝑓"!
"!∈$!%∈&

+
1

𝜆𝜋*,0
# # 𝜃%"!𝑓"!

"!∈$!%∈&

 

																																	+
𝜅
𝜋+,0

# 𝜉𝒢" # # 0𝑇%# − 𝑇%$3
-

%$∈&𝒢"%#∈&𝒢"𝒢"∈.

,	
(14.1) 

 												𝐬. 𝐭.				D𝒇, 𝜽XE ∈ Φ, (14.2) 

 																							𝑓"! ≥ 0, ∀𝑝% ∈ 𝑃%, 𝑣 ∈ 𝑉, (14.3) 

 																							 # 𝑓"!
"!∈$!

= 1, ∀𝑣 ∈ 𝑉, (14.4) 

where Φ is the feasible region defined by the optimal solution set of the lower-level problem. Unlike in the 9 
network design formulation, 𝐎𝐏𝐓0 only have non-negativity constraints (14.3) and flow conservation 10 
constraints (14.4) for routing preferences. Other constraints including the utility equity constraint, incentive 11 
non-negativity constraint, and choice behavioral constraint, are all addressed by the lower-level problem 12 
and encoded in Φ; that is, R𝒇, 𝜽7S ∈ Φ is equivalent to 13 

 𝜃%"! ≥ 0, ∀𝑝% ∈ 𝑃%, 𝑣 ∈ 𝑉,	 (15.1) 

 𝑈%"
%#D𝜽X, 𝒇E − 𝑈%"D𝜽X, 𝒇E ≤ 0, ∀𝑣4 , 𝑣5 ∈ 𝑉, 𝑜%" = 𝑜%# , 𝑑%" = 𝑑%# , (15.2) 

 𝑓"! =
expD𝛼% − 𝛽%𝑡"! + 𝜃%"!E

∑ expD𝛼% − 𝛽%𝑡"!& + 𝜃%"!&E"!&∈$!
, 𝑝% ∈ 𝑃%, 𝑣 ∈ 𝑉. (15.3) 

 14 
Also, note that in Equation (14.1), the decision variables are 𝒇 and 𝜽7. Recall that in the network 15 

design formulation, there is a 1-to-1 mapping from 𝜽 to 𝒇T , and hence equilibrium routing preferences can 16 
be represented as 𝒇T(𝜽). In the following subsections, we analyze the properties of Φ and similarly establish 17 
a 1-to-1 mapping from 𝒇 to 𝜽7.    18 

Non-emptiness of feasible region 𝜱 19 

This subsection examines whether there always exists more than one 𝜽7 given 𝒇, such that R𝒇, 𝜽71S ∈20 
Φ. That is, can we always find feasible 𝜽7 given arbitrary 𝒇 that satisfies Equations (14.3) and (14.4)? To 21 
address this question, the incentives 𝜽7  are divided into two parts, logit choice compensations 𝝑2 ≜22 
3𝜗"!

2 , 𝑝! ∈ 𝑃!	, 𝑣 ∈ 𝑉5 and envy compensations 𝝑3 ≜ 3𝜗"!
3 , 𝑝! ∈ 𝑃!	, 𝑣 ∈ 𝑉5, that is 23 

 𝜽X = 𝝑6 + 𝝑7 .	 (16) 
The logit choice compensations 𝝑2 nudge each individual user’s routing preferences to the traffic-operator’s 24 
desired routing preferences 𝒇; the envy compensations 𝝑3 eliminate the envy (in terms of the expected 25 
utilities) among users with the same O-D pair. 26 
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Lemma 1.  Given arbitrary feasible 𝒇 satisfying Equations (14.3) and (14.4), there always exist 𝝑2, such 1 
that 𝜽7 = 𝝑2 satisfy the non-negativity constraint (15.1) and the behavioral constraint (15.3). 2 

Proof. 𝜽7 = 𝝑2 satisfy the non-negativity constraint (15.1) and the behavioral constraint (15.3). Denote 𝜗!2 ≜3 
min
"!∈$!

𝜗"!
2  and 𝑝!+ ≜ arg	min

"!∈$!
𝜗"!
2 , then, 𝛿𝜗"!

2 = 𝜗"!
2 − 𝜗!2 ≥ 0. Equation (15.3) implies  4 

 𝑓"! = expD𝛽%D𝑡"!' − 𝑡"!E + 𝛿𝜗"!
6 E 𝑓"!' , ∀𝑝% ∈ 𝑃%, 𝑣 ∈ 𝑉.	 (17) 

Therefore,  5 
 𝜗"!

6 = 𝜗%6 + ln𝑓"! − ln𝑓"!' + 𝛽%D𝑡"! − 𝑡"!'E, ∀𝑝% ∈ 𝑃%, 𝑣 ∈ 𝑉.	 (18) 
Hence, for non-negative 𝜗!2 , 𝜗"!

2  defined in Equation (18) satisfy the non-negativity constraint (15.1) and 6 
the behavioral constraint (15.3). □ 7 

Lemma 2.  Given arbitrary feasible 𝒇 satisfying Equations (14.3) and (14.4) and 𝝑2defined in Equation 8 
(18), there always exists 𝝑3 , such that 𝜽7 = 𝝑2 + 𝝑3  satisfy the non-negativity constraint (15.1), utility 9 
equity constraint (15.2) and behavioral constraint (15.3). 10 

Proof. With 𝝑2 as defined in Equation (18), the non-negativity constraint (15.1) and the behavioral 11 
constraint (15.3) are satisfied. If these two equations should still hold after adding 𝝑3, 𝜗"!

3  should be of the 12 
same value for all 𝑝! ∈ 𝑃!, which is denoted as 𝜗!3. Since 𝝑3 aim to eliminate the utility disparities among 13 
all users with the same O-D pair, for simplicity, the following proof assumes that 𝑣& and 𝑣4 have the same 14 
O-D pair. The utility disparities can be quantified as the envy between users. In particular, the envy of user 15 
𝑣& for user 𝑣4 can be specified as  16 

 𝑒45 = 𝑈%"
%# −𝑈%" = ln

∑ exp 0𝛼%" − 𝛽%"𝑡"!# + 𝜃
%"!#3"!#∈$!#

∑ exp 0𝛼%" − 𝛽%"𝑡"!" + 𝜃
%"!"3"!"∈$!"

.	 (19) 

When 𝑒&4 > 0, then user 𝑣& prefers 𝑣4’s routing preferences and incentives compared to his/her own ones. 17 
Utility equity implies that for all 𝑣& 	and	𝑣4 with the same O-D pair, 𝑒&4 ≤ 0. We introduce a procedural 18 
algorithm (10) to achieve utility equity.  19 
 20 

Algorithm  2 
    1: for each group of users with the same O-D pairs 𝑉5# , 𝜚1 ∈ Θ, where Θ is the set of O-D pairs. 

        2:     Find a user 𝑣& ∈ 𝑉5#, such that 𝑒&4 ≤ 0, ∀𝑣4 ∈ 𝑉5#, and set 𝜗!"
3 = 0. (see Theorem 1 in (13) 

for proof of 𝑣&’s existence).  
    3:     Update the set of non-envious users Γ5# = 3𝑣&|𝑒&4 ≤ 0, ∀𝑣4 ∈ 𝑉5#5.	
    4:     repeat until Γ5# = 𝑉5#. 
     5:         for 𝑣& ∈ 𝑉5# − Γ5# and max!$∈6%#

𝑒&4 = max
!$∈7%#

𝑒&4:  

     6:             Set 𝜗"!"
3 = .

8$!"8
max
!$∈6%#

𝑒&4 , 𝑝!" ∈ 𝑃!".  

     7:         end 
    8:         Update 𝑒4& , ∀𝑣4 ∈ 𝑉5# using Equation (19). 

    9:         Update the set of non-envious users Γ5# = 3𝑣&|𝑒&4 ≤ 0, ∀𝑣4 ∈ 𝑉5#5. 
  10:     end 
  11:     Set 𝜗"!"

3 = 𝜗"!"
3 + 𝜗5#

3 ∀𝑝!" ∈ 𝑃!" , 𝑣& ∈ 𝑉
5#, where 𝜗5#

3 ≥ 0 is an arbitrary value for each 𝜚1 ∈
Θ. 
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  12: end 
 1 

According to Theorem 2 in (13), for a group of users with the same O-D pair 𝑉5", such a procedural 2 
algorithm can eliminate envy among users within the group in |𝑉5"| − 1 iterations. Thereby, constraint 3 
(15.2) holds for 𝜽7 = 𝝑2 + 𝝑3. And in lines 5 and 9 of Algorithm 1, 𝜗"!"

3 ≥ 0 and 𝜗"!"
3 = 𝜗"!"&

3  for 𝑝!" , 𝑝!"
0 ∈4 

𝑃!". Therefore, if 𝜽
2 satisfies constraints (15.1) and (15.3), 𝜽7 = 𝝑2 + 𝝑3 will satisfy constraints (15.1) and 5 

(15.3). □ 6 

Lemmas 1 and 2 show that Φ is non-empty for arbitrary feasible 𝒇 satisfying Equations (14.3) and 7 
(14.4). That is, there are always feasible 𝜽7 to nudge users to any feasible desired 𝒇. However, unlike the 8 
lower-level equilibrium in the network design formulation, the mapping here from 𝒇 to 𝜽7 is not 1-to-1.  9 

Lemma 3.  If R𝒇, 𝜽7+S ∈ Φ, then there exist infinite number of 𝜽71, such that R𝒇, 𝜽71S ∈ Φ. 10 

Proof. If R𝒇, 𝜽7+S ∈ Φ, it means that  11 
 𝜃%"!

0 ≥ 0, ∀𝑝% ∈ 𝑃%, 𝑣 ∈ 𝑉,	 (20.1) 

 𝑈%"
%#D𝜽X0, 𝒇E − 𝑈%"D𝜽X

0, 𝒇E ≤ 0, ∀𝑣4 , 𝑣5 ∈ 𝑉, 𝑜%" = 𝑜%# , 𝑑%" = 𝑑%# , (20.2) 

 𝑓"! =
expD𝛼% − 𝛽%𝑡"! + 𝜃%"!

0 E

∑ exp0𝛼% − 𝛽%𝑡"!& + 𝜃%"!&
0 3"!&∈$!

, 𝑝% ∈ 𝑃%, 𝑣 ∈ 𝑉, (20.3) 

 12 
Suppose there exists 𝜽71, where 𝜃T"!

1 = 𝜃T"!
+ + 𝛥9!,:!

1 (Δ9!,:!
1 > 0 is the same for users with the same O-D 13 

pair). Then,  14 
 𝜃%"!

8 = 𝜃%"!
0 + 𝛥9!,:!

8 > 0, ∀𝑝% ∈ 𝑃%, 𝑣 ∈ 𝑉,	 (21) 

 
expD𝛼% − 𝛽%𝑡"! + 𝜃%"!

8 + 𝛥9!,:!
8 E

∑ exp 0𝛼% − 𝛽%𝑡"!& + 𝜃%"!&
8 + 𝛥9!,:!

8 3"!&∈$!

=
expD𝛼% − 𝛽%𝑡"! + 𝛾%𝜃%"!

0 E

∑ exp 0𝛼% − 𝛽%𝑡"!& + 𝛾%𝜃%"!&
0 3"!&∈$!

 

																																																																											= 𝑓"! , 𝑝% ∈ 𝑃%, 𝑣 ∈ 𝑉, 
(22) 

which indicates that the incentive non-negativity constraint and choice behavioral constraint hold for 𝜽71. 15 
And for ∀𝑣& , 𝑣4 ∈ 𝑉, 𝑜!" = 𝑜!$ , 𝑑!" = 𝑑!$ ,  16 

 

𝑈%"
%#D𝜽X8 , 𝒇E = ln # exp 0𝛼%" − 𝛽%"𝑡"!# + 𝜃"!#

8 3
"!#∈$!#

 

																						= ln # exp 0𝛼%" − 𝛽%"𝑡"!# + 𝜃"!#
0 3

"!#∈$!#

+ b𝑃%#b 𝛥9!# ,:!#
8 , 

(23) 

 𝑈%"D𝜽
X8 , 𝒇E = 𝑈%"

%"D𝜽X8 , 𝒇E = ln # exp0𝛼%" − 𝛽%"𝑡"!" + 𝛾%"𝜃"!"
0 3

"!"∈$!"

+ c𝑃%"c𝛥9!" ,:!"
8 , (24) 

where l𝑃!"l = m𝑃!$m (as 𝑃!" = 𝑃!$) is the number of alternative routes for their common O-D pair. From 17 
Equations (20.2), (23) and (24), we have  18 

 𝑈%"
%#D𝜽X0, 𝒇E − 𝑈%"D𝜽X

0, 𝒇E ≤ 0, ∀𝑣4 , 𝑣5 ∈ 𝑉, 𝑜%" = 𝑜%# , 𝑑%" = 𝑑%# .	 (25) 

Therefore, the utility equity constraint also holds for 𝜽71 . Since Δ9!,:!
1 , 𝑣 ∈ 𝑉  can be arbitrary positive 19 

values, there exist infinite number of 𝜽71 such that R𝒇, 𝜽71S ∈ Φ. □ 20 

Theorem 1. R𝒇, 𝜽7S ∈ Φ defines a 1-to-n mapping from 𝒇 to 𝜽7	satisfying Equations (14.3) and (14.4).  21 

Proof. Lemma 1 and Lemma 2 prove the existence of the mapping. And Lemma 3 shows that it is 1-to-𝑛. 22 
□ 23 
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Single-level constrained traffic assignment  1 

Theorem 1 makes 𝜽7 a necessary part of the decision variables in 𝐎𝐏𝐓0. To eliminate 𝜽7 from the 2 
decision variables and reduce the problem dimension by half, a 1-to-1 mapping from 𝒇 to 𝜽7 is established. 3 
First, replace constraint (14.2) in 𝐎𝐏𝐓0 with the following lower-level optimization problem.  4 

 𝜽X = arg	min
𝜽,;.=.(𝒇,𝜽)∈@

	# # 𝜃𝑝𝑣𝑓𝑝𝑣
𝑝𝑣∈𝑃𝑣𝑣∈𝑉

.	 (26) 

Lemma 4.  Replacing constraint (14.2) with Equation (26) does not change the local optimal solutions of 5 
𝑶𝑷𝑻0. 6 

Proof. Suppose R𝒇∗, 𝜽7∗S ∈ Φ are local optimal solutions of 𝐎𝐏𝐓0, which implies that    7 
 𝜋/D𝒇∗, 𝜽X∗E ≤ 𝜋/D𝒇∗ + 𝜹𝒇, 𝜽X∗ + 𝜹𝜽XE	 (27) 

for all 𝜹𝒇 and 𝜹𝜽7 with small 𝑙< norms. Let 𝜹𝒇 = 𝟎, then  8 
 𝜋/D𝒇∗, 𝜽X∗E ≤ 𝜋/D𝒇∗, 𝜽X∗ + 𝜹𝜽XE,	 (28) 

which reduces to  9 

 # # 𝜃"!
∗ 𝑓"!

"!∈$!%∈&

≤# # D𝜃"!
∗ + 𝛿𝜃"!E𝑓"!

"!∈$!%∈&

.	 (29) 

Therefore, 𝜽7∗ satisfies Equation (26) as well, which means that changing constraint (14.2) to Equation 10 
(26) does not exclude any local optimal solutions of 𝐎𝐏𝐓0. □ 11 

Lemma 5.  Equation (26) defines a 1-to-1 mapping from 𝒇 to 𝜽7	satisfying Equations (14.3) and (14.4).  12 

Proof. According to Lemma 6 in (13), if 𝜗5#
3 = 0, 𝜚1 ∈ Θ , then Algorithm 1 determines unique and 13 

minimum non-negative 𝝑3 given 𝒇 and 𝝑2, which defines a 1-to-1 mapping: 𝝑3R𝒇, 𝝑2S. Using Equation 14 
(18), we have 15 

 # # 𝜃"!𝑓"!
"!∈$!%∈&

= # # h|𝑝%|(𝜗%6 + 𝜗%7)𝑓"! + # D𝜗"!
6 − 𝜗%6E𝑓"!

"!∈$!

j
%∈&($B$∈C

,	 (30) 

where 𝜗!3 = 𝜗"!
3 , 𝑝! ∈ 𝑃! (line 11 in Algorithm 1 indicates that 𝜗"!

3 , ∀𝑣 ∈ 𝑉 have the same value, which is 16 
denoted as 𝜗!3 here).  17 

Let 𝜗u"!
2 ≜ 𝜗"!

2 − 𝜗!2 , ∀𝑝! ∈ 𝑃! , 𝑣 ∈ 𝑉  and 𝝑v3R𝒇, 𝝑v2S  be the corresponding envy compensations 18 
generated using Algorithm 1 with 𝜗5#

3 = 0. According to Equation (18), 𝝑v2  is deterministic. Also, as 19 
𝝑v3R𝒇, 𝝑v2S are the unique minimum non-negative envy compensations, 20 

 

# # h|𝑝%|(𝜗%6 + 𝜗%7)𝑓"! + # D𝜗"!
6 − 𝜗%6E𝑓"!

"!∈$!

j
%∈&($B$∈C

 

≥ # # h|𝑝%|D𝜗k%7E𝑓"! + # 𝜗k"!
6 𝑓"!

"!∈$!

j
%∈&($B$∈C

.	

(31) 

Equations (30) and (31) indicate that 𝜽v = 𝝑v3 + 𝝑v2  is a unique minimizer of Equation (26), and thus 21 
defines a 1-to-1 mapping from 𝒇 to 𝜽7	satisfying Equations (14.3) and (14.4). □ 22 

Then, we can specify the following constrained traffic assignment formulation with a bi-level 23 
structure and show its equivalence to 𝑶𝑷𝑻0. 24 

 

(𝐁𝐎𝐏𝐓/)min
𝒇
𝜋/ =

1
𝜋*,0

# # 𝑡"!𝑓"!
"!∈$!%∈&

+
1

𝜆0𝜋*,0
# # 𝜃%"!𝑓"!

"!∈$!%∈&

 

																																					+
𝜅
𝜋+,0

# 𝜉𝒢" # # 0𝑇%# − 𝑇%$3
-

%$∈&𝒢"%#∈&𝒢"𝒢"∈.

,	
(32.1) 
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 												𝐬. 𝐭.				𝜽X(𝒇) = arg	min
𝜽,;.=.(𝒇,𝜽)∈@

	# # 𝜃𝑝𝑣𝑓𝑝𝑣
𝑝𝑣∈𝑃𝑣𝑣∈𝑉

, (32.2) 

 																							𝑓"! ≥ 0, ∀𝑝% ∈ 𝑃%, 𝑣 ∈ 𝑉, (32.3) 

 																							 # 𝑓"!
"!∈$!

= 1, ∀𝑣 ∈ 𝑉, (32.4) 

While the lower-level optimization problem defines a 1-to-1 mapping from 𝒇 to 𝜽7, there is no 1 
closed-form function to represent it. Algorithm 1 is a procedural algorithm, and thus 𝜽7(𝒇)  is non-2 
differentiable, which does not aid solution algorithm design. According to Theorem 4 in (13), the sum of 3 
envy compensations of user group 𝑉5# is bounded on the upper side; that is, 4 

 # # 𝜗"!"
7

"!"∈$!"%"∈&($

≤ # ln # exp0𝛼%" − 𝛽%"𝑡"!" + 𝜗"!"
6 3

"!"∈$!"%"∈&($

= 𝜗̅B$
7 .	 (33) 

However, using Equation (18) to calculate 𝝑2(𝒇)  also makes 𝜽7(𝒇)  non-differentiable. Therefore, the 5 
minimization operator in Equation (18) can be smoothened as follows. 6 

 𝜗%6 ≜ min
"!∈$!

𝜗"!
6 ≈ −

1
𝐾 lnh # expD−𝐾𝜗"!

6 E
"!∈$!

j,	 (34) 

 𝑝%0 ≜ arg	min
"!∈$!

𝜗"!
6 ≈ q

exp 0−𝐾𝜗"!"
6 3

∑ exp 0−𝐾𝜗"!#
6 3"!#∈$!

|𝑝%" ∈ 𝑃%	r ⋅ t𝑝%"|𝑝%" ∈ 𝑃%u
D .	 (35) 

Therefore, the constrained traffic assignment model (CTA) can be represented as follows: 7 

 

(𝐂𝐓𝐀)min
𝒇
𝜋/ =

1
𝜋*,0

# # 𝑡"!𝑓"!
"!∈$!%∈&

 

																																+
1

𝜆𝜋*,0
h# # 𝜗"!

6 (𝒇)𝑓"!
"!∈$!%∈&

+ # 𝜗̅B$
7 (𝒇, 𝝑6)

B$∈C

j 

																																+
𝜅
𝜋+,0

# 𝜉𝒢" # # 0𝑇%# − 𝑇%$3
-

%$∈&𝒢"%#∈&𝒢"𝒢"∈.

,	

(36.1) 

 												𝐬. 𝐭.				 # 𝑓"!
"!∈$!

= 1, ∀𝑣 ∈ 𝑉, (36.2) 

 																							𝑓"! ≥ 𝜖, ∀𝑝% ∈ 𝑃%, 𝑣 ∈ 𝑉, (36.3) 
Note that formulation (49.1)-(49.3) does not generate individual envy compensations, but only the upper 8 
bound of the sum of envy compensations of each user group 𝜚1 , 𝜗̅5#

3 . Hence, the individual envy 9 
compensations are obtained using the following two steps: (i) generate the unique minimum envy 10 
compensation 𝜗u"!

3 , 𝑝! ∈ 𝑃! , 𝑣 ∈ 𝜚1  following Algorithm 1; and (ii) distribute the remaining group envy 11 
compensations, 𝜗̅5#

3 − ∑ ∑ 𝜗u"!
3

"!∈$!!∈5# , to each alternative of each user within the user group equally.  12 

DECENTRALIZED SOLUTION ALGORITHM 13 

This section first derives a consensus optimization formulation (COCTA) based on 𝐂𝐓𝐀 defined 14 
in Equations (36.1)-(36.3), which allows us to develop a decentralized solution algorithm to enable 15 
computational tractability in large-scale implementations. Denote the feasible region of routing preferences 16 
defined by Equations (36.2) and (36.3) as 𝛀. 17 

 (𝐂𝐎𝐂𝐓𝐀) min
𝒇,{𝒇!},{𝒇($},G𝒇𝒢"H	

Π =
1
𝜋*,0

# # 𝑡"!(𝒇
%)𝑓"!

%

"!∈$!%∈&

 (37.1) 



Wang and Peeta  

13 
 

																																																	+
1

𝜆𝜋*,0
h# # 𝜗"!

6 (𝒇𝒗)𝑓"!
%

"!∈$!%∈&

+ # 𝜗̅B$
7 D𝒇B$ , 𝝑6(𝒇B$)E

B$∈C

j 

																																																	+
𝜅
𝜋+,0

# 𝜉𝒢" # # y𝑇%#(𝒇
𝒢") − 𝑇%$(𝒇

𝒢")z
-

%$∈&𝒢"%#∈&𝒢"𝒢"∈.

,	

 												𝐬. 𝐭.				𝒇 ∈ 𝛀, (37.2) 

 																							𝒇%, 𝒇B$ , 𝒇𝒢" ∈ 𝛀, ∀𝑣 ∈ 𝑉, 𝜚8 ∈ Θ, 𝒢4 ∈ 𝐺 (37.3) 

 																							𝒇 = 𝒇% = 𝒇B$ = 𝒇𝒢" , ∀𝑣 ∈ 𝑉, 𝜚8 ∈ Θ, 𝒢4 ∈ 𝐺 (37.4) 

Lemma 6. 𝑪𝑶𝑪𝑻𝑨 is equivalent to 𝑪𝑻𝑨.  1 

Proof. Replace 𝒇! , 𝒇5# , 𝒇𝒢" in Π with 𝒇, then constraints (37.3) and (37.4) can be removed and 𝒇! , 𝒇5# , 𝒇𝒢" 2 
can be eliminated from the decision variables. Then, 𝐂𝐎𝐂𝐓𝐀  becomes 𝐂𝐓𝐀. □ 3 

The objective function (37.1) of 𝐂𝐎𝐂𝐓𝐀 can be reorganized as follows: 4 

 

Π =# # Ä
1
𝜋*,0

𝑡"!(𝒇
%)𝑓"!

% +
1

𝜆𝜋*,0
𝜗"!
6 (𝒇𝒗)𝑓"!

% Å
"!∈$!%∈&

 

								+ # Ç
1

𝜆𝜋*,0
𝜗̅B$
7 D𝒇B$ , 𝝑6(𝒇B$)EÉ

B$∈C

 

								+ #
𝜅𝜉𝒢"
𝜋+,0

# # y𝑇%#(𝒇
𝒢") − 𝑇%$(𝒇

𝒢")z
-

%$∈&𝒢"%#∈&𝒢"𝒢"∈.

.	

(38) 

Let 5 

 𝑔%(𝒇%) = # Ä
1
𝜋*,0

𝑡"!(𝒇
%)𝑓"!

% +
1

𝜆𝜋*,0
𝜗"!
6 (𝒇𝒗)𝑓"!

% Å
"!∈$!

, (39) 

 𝑔B$(𝒇
B$) = 	

1
𝜆𝜋*,0

𝜗̅B$
7 D𝒇B$ , 𝝑6(𝒇B$)E, (40) 

 𝑔𝒢"(𝒇
𝒢") =

𝜅𝜉𝒢"
𝜋+,0

# # y𝑇%#(𝒇
𝒢") − 𝑇%$(𝒇

𝒢")z
-

%$∈&𝒢"%#∈&𝒢"

, (41) 

Then 6 

 Π =#𝑔%(𝒇%)
%∈&

+ # 𝑔B$(𝒇
B$)

B$∈C

+ # 𝑔𝒢"(𝒇
𝒢")

𝒢"∈.

. (42) 

Incorporating constraints (37.4) into the objective function gives us the augmented Lagrangian: 7 

 

ℒ𝐂𝐎𝐂𝐓𝐀(𝒇, 	{𝒇%|𝑣 ∈ 𝑉}, 	{𝒇B$|𝜚8 ∈ Θ}, 	{𝒇𝒢"|𝒢4 ∈ 𝐺}) 
=#0𝑔%(𝒇%) + 〈𝜼%, 	𝒇% − 𝒇〉 +

𝜌%
2 c
|𝒇% − 𝒇|c

-
3

%∈&

 

				+ # y𝑔B$(𝒇
B$) + 〈𝜼B$ , 	𝒇B$ − 𝒇〉 +

𝜌B$
2 c|𝒇B$ − 𝒇|c

-z
B$∈C

 

				+ # y𝑔𝒢"(𝒇
𝒢") + 〈𝜼𝒢" , 	𝒇𝒢" − 𝒇〉 +

𝜌𝒢"
2 b|𝒇𝒢" − 𝒇|b

-
z

𝒢"∈.

. 

(43) 

Then, the following algorithm can be used to solve 𝐂𝐎𝐂𝐓𝐀. 8 
 9 

Algorithm  3 

  1: Initialize the decision variables 𝒇(+), 	3𝒇(+)
! |𝑣 ∈ 𝑉5, 	 ~𝒇(+)

5# m𝜚1 ∈ Θ , 	 ~𝒇(+)
𝒢" m𝒢& ∈ 𝐺 and dual 

variables 3𝜼(+)
! |𝑣 ∈ 𝑉5, 	 ~𝜼(+)

5# m𝜚1 ∈ Θ , 	 ~𝜼(+)
𝒢" m𝒢& ∈ 𝐺. Set 𝑟 ← 0; 
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  2: repeat until the convergence criteria are met. 

  3:     Update 𝒇(?@.) = argmin
𝒇∈𝛀

ℒ𝐂𝐎𝐂𝐓𝐀 Ñ𝒇, 	3𝒇(?)
! 5, 	 ~𝒇(?)

𝒢"  , 3𝜼(?)
! 5, 	 ~{𝜼(?)

𝒢" }Ö.	

  4:     Update 𝒇(?@.)
! = argmin

𝒇!
𝑔!(𝒇!) + 〈𝜼(?)

! , 	𝒇! − 𝒇(?@.)〉 +
G!
<
ml𝒇! − 𝒇(?@.)lm

<
, ∀𝑣 ∈ 𝑉. 

  5:     Update 𝒇(?@.)
5# = argmin

𝒇%#
𝑔5#(𝒇

5#) + 〈𝜼(?)
5# , 	𝒇5# − 𝒇(?@.)〉 +

G%#
<
ml𝒇5# − 𝒇(?@.)lm

<
, ∀𝜚1 ∈ Θ.  

  6:     Update 𝒇(?@.)
𝒢" = min

𝒇𝒢"
𝑔𝒢"R𝒇

𝒢"S + 〈𝜼(?)
𝒢" , 	𝒇𝒢" − 𝒇(?@.)〉 +

G𝓖𝒊
<
ml𝒇𝒢" − 𝒇(?@.)lm

<
, ∀𝒢& ∈ 𝐺. 

  7:     Update 𝜼(?@.)
! = 𝜼(?)

! + 𝜌!R𝒇(?@.)
! − 𝒇(?@.)S, ∀𝑣 ∈ 𝑉;	𝜼(?@.)

5# = 𝜼(?)
5# + 𝜌5# Ñ𝒇(?@.)

5# −

𝒇(?@.)Ö , ∀𝜚1 ∈ Θ;	𝜼(?@.)
𝒢" = 𝜼(?)

𝒢" + 𝜌𝒢" Ñ𝒇(?@.)
𝒢" − 𝒇(?@.)Ö , ∀𝒢& ∈ 𝐺. 

  8:     Set 𝑟 ← 𝑟 + 1. 
  9: end 

 1 
Algorithm 2 has an iterative structure. In each iteration, both the consensus variables 𝒇(?) and the 2 

local variables 𝒇(?)
! , 𝒇(?)

5# , 𝒇(?)
𝒢"  are updated. Specifically, the consensus variables are updated by minimizing 3 

the augmented Lagrangian that uses the local variables in the previous iteration. As the name suggests, the 4 
optimization in line 3 aims to create a consensus among the local variables (eventually, they should have 5 
the same values as implied by constraint (37.4)). Note that though the optimization problem in line 3 has 6 
the same dimension as 𝐂𝐓𝐀, it has a more standard quadratic programming form, which can be solved as 7 
follows: 8 

 𝒇(OPQ) = proj𝜴 q
∑ D𝜌%𝒇(O)% + 𝜼(O)% E%∈& +∑ 0𝜌B$𝒇(O)

B$ + 𝜼(O)
B$ 3B$∈C + ∑ 0𝜌𝒢"𝒇(O)

𝒢" + 𝜼(O)
𝒢" 3𝒢"∈.

∑ 𝜌%%∈& +∑ 𝜌B$B$∈C +∑ 𝜌𝒢"𝒢"∈.
r

= proj𝜴𝒛(O) 

(44) 

Note that the feasible set 𝛀 is an affine half space 3𝒇𝟎|𝑨𝒇𝟎 = 𝟏, 𝒇𝟎 ≥ 𝟎5 (here 𝑨𝒇𝟎 = 𝟏 is the matrix form 9 
of  ∑ 𝑓"!

+
"!∈$! = 1, ∀𝑣 ∈ 𝑉), which allows us to represent 𝒇("#$)&  as: 10 

 𝒇(012) = proj𝜴𝒛(𝑟) = %𝒛(𝑟) −𝑨𝑇 &𝑨𝑨𝑇'
−1
(𝑨𝒛(𝑟) −𝟏)*

𝜖+
,	 (45) 

where the [⋅]I@ operator applies max{⋅, 𝜖} to each element of the vector. As Equation (45) is composed 11 
solely of elementary linear algebra, the consensus updating step in line 3 of Algorithm 2 is considerably 12 
inexpensive in practice.   13 

The local variables are updated by solving local optimization problems, which has simpler 14 
objective functions and optimize a local copy of 𝒇. The local objective functions are simpler not only 15 
because 𝑔! , 𝑔5# , 𝑔𝒢" are small components of Π, but also because the problem dimension is greatly reduced 16 
though 𝒇! , 𝒇5# , 𝒇𝒢"  have the same dimension as 𝒇. For example, consider the optimization at line 4 in 17 
Algorithm 2. As Equation (39) shows, 𝑔!(𝒇!) are represented using 𝑡"! , 𝜗"!

2 , 𝑓"!
! , 𝑝! ∈ 𝑃!. And according 18 

to Equations (18), (34), and (35), 𝜗"!
2  is represented using 𝑡"! , 𝑝! ∈ 𝑃!. Then, for 𝑣& , 𝑣4 ∈ 𝑉,  19 

 
𝜕𝑔%"
𝜕𝑓"!#

%" = #
𝜕𝑔%"
𝜕𝑡"!"

⋅
𝜕𝑡"!"
𝜕𝑓"!#

%"
"!"∈$!"

+ #
𝜕𝑔%"
𝜕𝑓"!"

%" ⋅
𝜕𝑓"!"

%"

𝜕𝑓"!#
%"

"!"∈$!"

+ #
𝜕𝑔%"
𝜕𝜗"!"

6 ⋅ #
𝜕𝜗"!"

6

𝜕𝑡"!"&
⋅
𝜕𝑡"!"&

𝜕𝑓"!#
%"

"!"
& ∈$!""!"∈$!"

,	 (46) 

Therefore, if 𝑝!" and 𝑝!$ share no links, then 
JK4!"
JL4!$

!" = 0, ∀𝑝!" ∈ 𝑃!"; 	
JL4!"

!"

JL4!$
!" = 0, ∀𝑝!" ∈ 𝑃!", and thus 

JM!"
JL4!$

!" =20 
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0. This further implies that in the solution to the local optimization problem, 𝒇"!$(?@.)
!" = 𝒇"!$(?@.). Just as 1 

the toy example in Section 4.1 shows, when updating 𝒇(?@.)
! , most of the elements can simply be copied 2 

from 𝒇(?@.) . The “effective” decision variables of the local optimization problem are the routing 3 
preferences that affect 𝑡"! , 𝑝! ∈ 𝑃! . The label “local optimization” is partly because these routing 4 
preferences are either from user 𝑣 or some neighboring users (whose alternative routes have at least one 5 
shared link with any of the alternative routes of 𝑣). Another reason for this label is that it is intended to be 6 
solved by user 𝑣. In real world implementations, these local optimizations are performed by the computing 7 
units on CAVs or the smart phones of users. 8 

NUMERICAL STUDIES 9 

Data preparation and experiment settings 10 

Table 1 summarizes the specifications of the three traffic networks used in this study, and their 11 
layouts are shown in Figure 3. Since the proposed strategies generate personalized routing preferences and 12 
incentives for each user, using the original O-D demand data1 for these networks exceeds typically available 13 
computational resources. That is, though in practice the decentralized algorithm will run concurrently on 14 
thousands of computing units (of users’ phones or their vehicles), we employ a single computer with many 15 
threads to simulate this procedure. Therefore, though the proposed algorithm scales well with problem size 16 
in the real world, the study experiments cannot generate individual routing preferences and incentives for 17 
millions of users. To limit problem size, we reduce the total number of users while maintaining the original 18 
O-D demand distributions. For instance, Figure 3(b) visualizes the demand distributions among the 24 19 
nodes in the Sioux Falls network (Figure 3(a)).  The original demand is 360,600. Users are generated with 20 
a 0.1% probability, resulting in 362 users and 219 active O-D pairs (i.e., O-D pairs with positive demands). 21 
In addition, the capacity parameters in the link performance functions are changed to replicate comparable 22 
congestion levels. The capacity parameters of all links in the Sioux Falls network are multiplied by 1/3000. 23 
The numbers of active O-D pairs, generated users, and the corresponding capacity coefficients used in the 24 
Anaheim network (Figure 3(c)) and the Chicago Sketch network (Figure 3(d)) are also listed in Table 1.  25 
 26 

Table 1. Specifications of networks and demands. 27 

Network  
# of 
nodes 

# of 
edges 

# of 
ODs 

# of 
users 

Total # 
of paths 

Average # of 
links per path 

Average # of 
neighboring paths 

Capacity 
coeff. 

Sioux Falls 24 76 219 362 438 4.25 181.92 1/3000 
Anaheim 416 914 417 995 834 17.31 381.67 1/300 

Chicago Sketch 993 2950 1522 1932 3044 8.09 198.42 1/1200 
 28 
 29 

 
1 https://github.com/bstabler/TransportationNetworks 
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  1 

Figure 3: Traffic networks used in this study. 2 

For each network, two nodes are selected as societal service/resource-related sites, forming two 3 
user groups 𝑉𝒢". Specifically, for the Sioux Falls network, users heading to nodes 8 and 11 are categorized 4 
into two separate user groups for accessibility inequity measures; for the Anaheim network, nodes 6 and 15 5 
are selected; and for the Chicago Sketch network, nodes 8 and 11 are selected. The weights 𝜉𝒢" are set to 1. 6 
For each user 𝑣 , 𝛼!  is randomly sampled from a uniform distribution 𝑈(0, 10),  and 𝛽!  is randomly 7 
sampled from 𝑈(0.002, 0.004). Note that the units for travel times, incentives, and these parameters are 8 
omitted in the numerical studies as the objective function in Equation (38) is designed to be unit-free. 9 
𝜌! , 𝑣 ∈ 𝑉, 𝜌5# , 𝜚1 ∈ Θ, 𝜌𝒢" , 𝒢& ∈ 𝐺 are all set to 1000. 𝜖 in Equation (36.3) is set to 0.001. 10 

As a benchmark, original equilibrium routing preferences are computed using the method of 11 
successive averages when behavioral interventions are not considered (that is, no incentives). The 12 
corresponding mobility inefficiency measure 𝜋),+ and accessibility inequity measure 𝜋,,+ in the objective 13 
function are calculated. Figure 4 depicts the optimal solutions for the three objectives with different 𝜆 and 14 

(a) (b) 

(d) (c) 
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𝜅 for the Sioux Falls network. As 𝐂𝐓𝐀 is a non-linear, non-convex optimization problem, the optimal 1 
solutions denote the best ones from among 10 repetitions of Algorithm 2 with the same settings.  2 
 3 

Effectiveness in promoting mobility efficiency and three dimensions of equity 4 

 5 

Figure 4: System mobility inefficiency and accessibility inequity tradeoffs: (a) and (b) illustrate 𝝅𝑴 6 
and 𝝅𝑬, respectively, for different 𝜿 and 𝝀 (lighter colors indicate higher values); (c) and (d) plot 7 

𝝅𝑴/𝝅𝑴,𝟎 and 𝝅𝑬/𝝅𝑬,𝟎	for fixed 𝝀 and 𝜿, respectively. 8 

The insights for system accessibility can be summarized as follows:  9 
• The mobility inefficiency measure 𝜋)  increases with 𝜅 . This indicates that as the traffic 10 

operator prioritizes accessibility equity more, system efficiency can be slightly lowered. 11 
However, the sensitivity of 𝜋) to changes in 𝜅 is comparatively lower than that of 𝜆, which is 12 
illustrated in Figure 4(a) (the contour lines are almost parallel to the 𝜅 axis when 𝜅 is small). 13 
This is because 𝜅 is designed to balance the tradeoff between 𝜋,/𝜋,,+ and Ñ𝜋) +

.
/
	𝜋-Ö /𝜋),+. 14 

As a result, 𝜋)  does not change as much as 𝜋,  when 𝜅 changes because a decrease in 𝜋) 15 
increases 𝜋-, which moderates the overall reduction in 𝜋) +

.
/
	𝜋-.  16 

• Figure 4(b) shows that system accessibility inequity decreases significantly with increase in 𝜅 17 
as indicated by the deepening hues along the x-axis. This can be attributed to the traffic 18 
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operator's increased prioritization of achieving accessibility equity at the expense of mobility 1 
efficiency and incentive costs. Figure 4(c) illustrates similar tendencies in the percentage 2 
changes of 𝜋,/𝜋,,+ with changes in 𝜅. 3 

• However, the trend of 𝜋, observed with changes in 𝜆 is not straightforward. As depicted in 4 
Figure 4(b) and Figure 4(d), both 𝜋, and 𝜋,/𝜋,,+ initially increase with 𝜆, reaching a peak 5 
near 𝜆 =	0.003, before decreasing with further increases in 𝜆. Note that 𝛽! , 𝑣 ∈ 𝑉 range from 6 
0.002 to 0.004, which implies that the average value of time of users is around 0.003. When 7 
the traffic operator’s value of time 𝜆 falls below the average value of time of users, the travel 8 
time savings are generally not worth the invested incentives from the traffic operator's 9 
perspective. This is because travelers request more incentives than expected as they value time 10 
more highly than the traffic operator.   11 

 12 

Figure 5: Lorenz Curves of the expected travel times for societal service/resource-related nodes in 13 
the Sioux Falls network (x axes are the user percentage by travel time distributions; y axes are 14 

cumulative shares of total travel time). 15 

To evaluate the effectiveness of the proposed collaborative routing strategy in terms of promoting 16 
equitable access to societal services/activities, the Lorenz curves of the expected travel times of users 17 
heading to nodes 8 and 11 in the Sioux Falls network are shown in Figure 5. Nodes 8 and 11 are assumed 18 
to provide two different societal services/resources; thereby users heading to them form two user groups 19 
for accessibility inequity measures. The Lorenz curve is widely used to illustrate income/wealth 20 
distributions. The Lorenz curve here shows how the percentage share of the total group travel time changes 21 
as the percentage share of users by travel time distributions increases. It is also closely related to the Gini 22 
coefficient; the gray dashed line connecting (0%, 0%) and (100%, 100%) denotes perfect accessibility 23 
equity and the Gini coefficient is the ratio of the area between the Lorenz curve (solid black line) and the 24 
gray dashed line to the area between the gray dashed line and the x axis. Both Figure 5(a) and 10(b) show 25 
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that the Lorenz curves are closer to the perfect accessibility equity line as 𝜅 increases, indicating that the 1 
accessibility equity of both groups of users is enhanced.  2 

Efficiency evaluation of the decentralized algorithm (Algorithm 2) 3 

Figure 6 depicts the convergence performance of Algorithm 2. Figs. 11(a), 11(b) and 11(c) 4 
illustrate the trajectories of objective function (37.1) in the first 1000 iterations in the Sioux Falls, Anaheim, 5 
and Chicago Sketch networks, respectively. The red dashed lines denote the objective function value of the 6 
original equilibrium state (without behavior interventions) as benchmark. The results indicate that 7 
Algorithm 2 can identify acceptable solutions to the non-linear non-convex problem (𝐂𝐎𝐂𝐓𝐀) rather 8 
quickly; that is, 200-600 iterations to exceed the benchmark. But many more iterations may be required to 9 
find a good solution as the reduction in the objective function value greatly slows down with the number 10 
of iterations. Figure 6(d) shows that the convergence rate slows down when more users participate in the 11 
decentralized algorithm as it is harder to reach a consensus for a larger group of users. However, for all 12 
three networks, Algorithm 2 converges to a good solution within 1000 iterations, which is acceptable for 13 
practical deployment (each iteration takes tens milliseconds).  14 
 15 

 16 

Figure 6: Convergence performance of Algorithm 2. 17 
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 1 

Figure 7: Computational times of Algorithm 2. 2 

The computational performance of Algorithm 2 is evaluated using the average CPU times of the 3 
consensus step (line 3 in Algorithm 2) and the local optimization steps (lines 4, 5, and 6 in Algorithm 2). 4 
Figure 7(a) shows that the average computational time of the consensus step in all 1000 iterations of the 5 
Sioux Falls network increases with problem dimension (i.e., the dimension of routing preferences 𝒇) as line 6 
3 of Algorithm 2 is not executed in a decentralized manner in the experiments. However, Equations (44) 7 
and (45) indicate that each element of 𝒇(?@.) can be updated locally in practice. Updating different elements 8 
of 𝒇(?@.)  locally reduces the computational time of the consensus step, while also distributing the 9 
communication load and reduce physical transmission distance and communication delays.  10 

Figure 7(b) illustrates that the average computational times of the local updating steps (lines 4, 5, 11 
and 6 in Algorithm 2) are closely related to the average dimension of the local optimization problems (the 12 
local optimization problem for each user/RSU can have different dimensions). While the average local 13 
problem dimension and average CPU time increase significantly for the Anaheim network compared to the 14 
Sioux Falls network, the same is not true for the Chicago Sketch network. The average dimension of local 15 
optimization problems in the Chicago Sketch network is similar to that of the Sioux Falls network, leading 16 
its average CPU time for local updating steps to be slightly higher than that of the Sioux Fall network. This 17 
can be explained by the network statistics in Table 1; though the Chicago Sketch network has the largest 18 
numbers of nodes, edges, paths, and users, its average number of links per path (8.09) is much smaller than 19 
that of the Anaheim network (17.31). Hence, its paths are less coupled in terms of shared links and similar 20 
to those of the Sioux Falls network as indicated by the average number of neighboring paths. Note that the 21 
average number of neighboring users is directly related to the dimensions of local optimization problems 22 
as shown in Section 0, and is proportional to the average number of neighboring paths. Hence, this illustrates 23 
that the computational load of each computing unit in the proposed decentralized algorithm does not scale 24 
directly with network size or number of users. Instead, it depends more on the average dimension of local 25 
optimization problems.  26 

CONCLUDING COMMENTS 27 

To our knowledge, this study pioneers the integration of multidimensional equity considerations in 28 
traffic networks, reflecting user behavior and network context. It introduces collaborative routing strategies 29 
through incentive mechanisms, promoting equity in three dimensions. Firstly, the model accounts for 30 
accessibility equity, a recognized societal target in planning, but rarely addressed operationally. By 31 
producing routing outcomes sensitive to access equity, our strategy tackles this crucial dimension of traffic 32 
system inequity. Secondly, the incentive mechanism incorporates utility equity, a scarcely explored 33 
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constraint in incentive personalization, ensuring incentives do not provoke envy or perceived inequity, thus 1 
enhancing their practical appeal. Thirdly, inclusion equity is addressed by utilizing personalized incentives 2 
to shape user routing preferences, imposing non-negativity requirements reflecting realistic individual 3 
participation willingness. The resulting complexity due to multiple equity dimensions renders centralized 4 
solutions impractical, necessitating a decentralized approach for computational tractability. 5 

This study systematically integrates multidimensional equity considerations into the analytical 6 
modeling and quantitative analysis of collaborative routing strategies. Future research directions include: 7 
(i) using more comprehensive discrete choice models to accurately model users' route choice behavior; (ii) 8 
exploring the impact of path generation strategies on the proposed path-based model and its efficacy in 9 
promoting equity; (iii) incorporating the heterogeneity in the value of time in users' utilities to reflect their 10 
individual characteristics more accurately; (iv) extending the framework to dynamic traffic assignment to 11 
better capture traffic dynamics; and (v) incorporating more cost-efficient types of incentives in the proposed 12 
strategies.  13 
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