
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

A C C E P T E D A T J O U R N A L O F S O F T W A R E E V O L U T I O N A N D P R O C E S S

Semantic Similarity Loss for Neural Source Code Summarization

Chia-Yi Su Collin McMillan

1Department of Computer Science and Engineering,

University of Notre Dame, Notre Dame, Indiana,

USA

Correspondence

Corresponding author Chia-Yi Su, Holy Cross Dr,

Notre Dame, 46556, Indiana, USA.

Email: csu3@nd.edu

Present address

Holy Cross Dr, Notre Dame, 46556, Indiana, USA.

Abstract

This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for

neural source code summarization. Code summarization is the task of writing natural language descriptions

of source code. Neural code summarization refers to automated techniques for generating these descriptions

using neural networks. Almost all current approaches involve neural networks as either standalone models or

as part of a pretrained large language models e.g., GPT, Codex, LLaMA. Yet almost all also use a categorical

cross-entropy (CCE) loss function for network optimization. Two problems with CCE are that 1) it computes

loss over each word prediction one-at-a-time, rather than evaluating a whole sentence, and 2) it requires a

perfect prediction, leaving no room for partial credit for synonyms. In this paper, we extend our previous

work on semantic similarity metrics to show a procedure for using semantic similarity as a loss function to

alleviate this problem, and we evaluate this procedure in several settings in both metrics-driven and human

studies. In essence, we propose to use a semantic similarity metric to calculate loss over the whole output

sentence prediction per training batch, rather than just loss for each word. We also propose to combine our

loss with CCE for each word, which streamlines the training process compared to baselines. We evaluate our

approach over several baselines and report improvement in the vast majority of conditions.

K E Y W O R D S

source code summarization, neural models, optimization, loss functions, human ratings and feedback

1 INTRODUCTION

Source code “summaries” form the basis for programmer documentation of software. A summary is a natural language description

of the behavior of a section of source code. Even a short summary such as “reads list of music files and plays them over speakers”

gives a programmer an idea of the purpose of a section of code without ever needing to read the code itself. The process of

writing summaries is called source code summarization1. The expense of code summarization leads programmers to avoid it and

drives strong research interest into automating the process. The ability to write natural language descriptions of source code on

demand has long been a dream of software engineering researchers2, and recent progress in neural source code summarization

has drawn this dream within reach.

Neural code summarization refers to code summarization techniques based on neural networks. Almost all current related

research uses neural models in one way or another (see Section 2). The workhorse of most approaches is the encoder-decoder

architecture in which the source code is “encoded” and a summary is “decoded” as a prediction of the model. Recent advances

in academia have focused on the encoding process, such as representing the code as an abstract syntax tree (AST)3, via a graph

neural network (GNN)4, or customized attention networks5,6. In contrast, advances in industry have tended to come from scale

and specialized fine-tuning. Large language models (LLMs) including GPT-4, Codex, and LLaMA have demonstrated abilities

in explaining and summarizing source code.7,8.

Yet the training and fine-tuning procedures for practically all of these approaches are based on categorical cross-entropy loss

(CCE), which does not always reflect how a human would grade model performance. This loss function is calculated at the

end of each prediction and is used to update the model during training. The family of CCE calculate loss for each word as it is

predicted, one word at a time. i.e., if the model has predicted “reads list of” so far and next predicts the word “sound” instead

of the reference “music”, CCE will compute the loss solely on that word being incorrect. The model will be penalized solely

Journal of Software Evolution and Process 2024;00:1–19 wileyonlinelibrary.com/journal/ © 2024 Copyright Holder Name 1

a
rX

iv
:2

3
0
8
.0

7
4
2
9
v
2

[c

s.
S

E
]

 1
1
 J

u
n
 2

0
2
4

2 Su ET AL.

because of that one wrong word, rather than a holistic view of “sound” being similar to “music” in the context of the sentence

predicted so far. Wieting et al.9 refer to this flaw as the loss function lacking the ability to offer “partial credit.” The result is that

the loss function does not reflect how humans view the output. Unlike CCE and similar functions, humans tolerate mistakes of

words or grammar as long as the meaning of the sentence is unchanged.

In this paper, we evaluate the use of semantic similarity as a loss function for code summarization. Specifically, we focus on

the semantic similarity metrics between reference summary and the predicted summary. First, we extend our previous work

on semantic similarity metrics10 to show how to use semantic similarity as a loss function during training. In our previous

work, we introduced a metric called USE for evaluating code summaries during model testing (after training only). Including

USE as part of the training process is much more complicated, though potentially much more rewarding as work in other

domains shows9. Yet, we do not merely duplicate previous training procedures for a software engineering problem: an additional

contribution is that, unlike semantic similarity loss functions in other domains, our loss function is a drop-in replacement for

CCE. Existing baselines require an additional reinforcement learning step which adds complexity and reduces uptake by the

community. Throughout this paper, we refer to our USE-based loss function as use-seq.

We present our evaluation in two experiments. First, we train different neural code summarization techniques under standard

conditions (i.e., using CCE) and with our USE-based loss function and compare them using automated metrics such as BLEU,

METEOR, and USE. Second, we conduct a study with human experts who rate predicted outputs from our approach and from

the model trained with the baseline CCE.

Note we conduct our experiments using several academic source code summarization models, but also an approach of our own

design using fine-tuning of an industrial LLM. The advantage to using academic models is that we can control key experimental

variables such as the contents of the training set. However, a disadvantage is that their small size means they tend to underperform

compared to large, industrial models. So, to evaluate if our idea is still relevant at large scale, we fine-tune the LLaMa 7B model

by Touvron et al.11 using the LoRA procedure12,13,14. This fine-tuned LLM is an additional novel contribution of this paper. We

compare and contrast using CCE, two other baselines, and use-seq loss. We find that our approach benefits both the compact

academic models and large industrial ones.

Novelty Statement The key novel contribution of this paper lies in: 1) our procedure for using a semantic similarity metric

as a loss function instead of only an evaluation metric, and 2) our evaluation of the semantic similarity loss for the software

engineering task of code summarization. This paper is built on our own previous work of semantic similarity10, and is inspired

by semantic similarity as loss in other domains9. However, this paper makes a novel contribution with a new procedure and

evaluation for code summarization. Our procedure is not a duplicate of semantic similarity loss from other domains. As Section 6

will show, we make adjustments specific to the software engineering domain that are not necessarily optimal in a general purpose

natural language task, yet are preferred by programmers in experiments.

2 BACKGROUND AND RELATED WORK

This section discusses key related work and background.

2.1 Source Code Summarization

Source code summarization is the task of generating short, natural language descriptions of source code. The term “code

summarization” was coined by Haiduc et al.1 in 2010 and the topic has been an active research area since. Between 2010 and

2017, most approaches were IR and template-based37. From 2017 to present, neural models have proliferated. Table 1 shows

selected papers in the last five years. The progression has been to larger models that explicitly include the code context. Different

families have formed, namely AST-based such as ast-attendgru3, codegnngru4, transformer approaches19, and setransformer26.

Recently, LLM-based dialogue systems such as ChatGPT or tools such as Github Copilot have shown potential in describing

code behavior38,39. While these tools are not directly comparable because the underlying training data and code analysis

procedures are proprietary, they are represented by LLMs fine-tuned on code summarization tasks, as we will show in the

following sections. Note that our goal in this paper is to present a loss function for improving code summarization across the

board, rather than claiming one single “best” neural model. Thus, our experiments cover different approaches that model code

summarization as fine tuning of LLMs (see Section 4). The idea of fine tuning a large language model to summarize code has

been presented before40,41,30,28,29,20,24 – this paper builds on the idea with an improved procedure that trains the model with

semantic similarity.

Semantic Similarity Loss for Neural Source Code Summarization 3

2.2 Semantic Similarity Metrics

Semantic similarity metrics are the automatic metrics to evaluate the source code summary. The vast majority of the automatic

metrics nowadays focus on evaluating the quality between reference summary and the predicted summary such as BLEU42,

METEOR43,CrystalBLEU44, and USE10, which this paper relies on. Another category is to compute the similarity between

source code and the summary, which benefits the case where we do not have the good reference summary. For example,

Mastropaolo et al.45 proposed SIDE that gives the summary similar to the source code 1.0 and the summary dissimilar to the

source code -1.0 based on contrastive learning. This paper focuses on the metrics that compare the reference summary and the

predicted summary and uses the USE as an example. We leave the other metrics as our future work.

2.3 Loss Functions in Neural Networks

Neural models of code summarization (like models for most NLP applications), predict code summaries one word at a time.

During training, the network is run several times with several inputs in a “batch.” The concept of batch is to divide the entire

dataset into several small groups because we cannot fit the entire dataset into the GPU. In most code summarization approaches,

all the words for a summary for a code sample are sent in the same batch (other code samples/summaries may be in that same

batch, too). Then the loss is computed over the entire batch and used to update the network. The loss function used in, to our

knowledge, all published code summarization techniques is Categorical Cross-Entropy (CCE) loss. CCE uses two values to

compute loss over each word in the batch: 1) the value in the reference for that word, and 2) the network’s output at each word

prediction. The value in the reference is usually a one-hot vector (denoted y) that is the length of the vocabulary size (denoted C).

The network’s output is also a vocab-size-length vector (denoted ŷ), adjusted with softmax to represent the predicted probability

for the word at each element location, on a 0-1 scale. The loss function formula is then:

CCE(y, ŷ) = –

C
∑

i=1

yi log ŷi

Since y is usually a one-hot vector, for any given word the formula usually simplifies to log ŷr, where r is the position of the

reference word. We show hypothetical CCE values in Table 2 while illustrating our approach.

T A C F

Alon et al. (2019) 15,16 x x

LeClair et al. (2019) 3 x x

Nie et al. (2019) 17 x

Haldar et al. (2020) 18 x x

Ahmad et al. (2020) 19 x

Haque et al. (2020) 5 x x

LeClair et al. (2020) 4 x x

Feng et al. (2020) 20 x x

Bansal et al. (2021) 21 x x

Zügner et al. (2021) 22 x

Liu et al. (2021) 23 x x

Mastropaolo et al. (2021) 24 x x

Kuang et al. (2022) 25 x x

Tang et al. (2022) 6 x x

Li et al. (2022) 26 x x

Khan et al. (2022) 27 x x

Ahmed et al. (2022) 28 x x x

Gu et al. (2022) 29 x x

Su et al. (2023) 30 x x

Gao et al. (2023) 31 x x

Geng et al. (2023) 32 x x

Zhang et al. (2023) 33 x x

Gao et al. (2023) 34 x x

Wang et al. (2023) 35 x x x

Geng et al. (2024) 36 x x x

T A B L E 1 Snapshot of the past five years in source code summarization. Column T means use of source code as Text. A

signifies learning from AST. C implies learning chiefly from code context. F means primary a fine-tuning approach for an LLM.

4 Su ET AL.

2.4 Semantic Similarity Loss

Alternatives to CCE have been proposed that compute loss based on semantic similarity. Two approaches stand out as particularly

relevant to code summarization: 1) using the n-gram sequence similarity metric BLEU to compute loss46,47, and 2) SimiLE,

which uses cosine similarity of an embedding vector model to compute loss9. SimiLE represents a family of techniques based

on embedding vector similarity48,49,50and includes improvements such as a length penalty.

We expand on more details of these approaches in Section 4.2, but the key advantage over CCE is that they calculate loss

over an entire output sequence prediction instead of each individual word. However, a key disadvantage is that they require an

additional reinforcement learning phase after normal CCE training that adds complexity and experimental variables. In contrast,

our approach is a drop-in replacement for CCE, and our approach is designed and evaluated for the domain-specific SE task of

code summarization. As we will show in Section 6, adjustments useful in general natural language such as a length penalty are

not necessarily ideal for code summarization, where programmers tend to value accuracy over conciseness.

3 APPROACH

This section discusses our approach to the semantic similarity loss function we propose called use-seq. The use-seq calculation

is broadly divided into six steps. We show concrete outputs for each word at each step in Table 2.

T A B L E 2 Example of loss calculation for each word at each step. The batch loss is the average loss from each step. CCE

values are hypothetical for illustration.

predicted word step 3 step 4 step 5 (cce) step 6

records 0.8665 0.8665 2.954 0.0400 0.1182

a 0.8665 0.8665 2.954 0.0500 0.1477

sound 0.8665 m m 0.8000 0.8000

file 0.8665 0.8665 2.954 0.0600 0.1772

batch loss: 0.3108

USE score: 0.8665

1) Convert predicted sequence into natural language. During training, each training batch will consist of at least one example

subroutine and summary. Then the model will predict each position of the output one-at-a-time using the “teacher forcing”

procedure. For example, consider a subroutine with the reference summary “records a music file”, but where the model makes

an error by predicting the word “sound” instead of “music”. We demonstrate the prediction process for this sample in Table 3.

T A B L E 3 Demonstration of prediction process

training input reference word predicted word

1 <s> records records

2 <s> records a a

3 <s> records a music sound

4 <s> records a music file file

5 <s> records a music file </s> </s>

The model will receive the reference training input, so that the last word “file” is predicted using the correct previous word

“music.” However, the total predicted sequence still contains the error. In CCE, the loss is calculated for each predicted word to

the reference word. In our use-seq approach, we convert the predicted words back into a sequence, in this case “records a

sound file.” The special tokens <s> and </s> are the start and the end tokens. The adoption of those tokens in the example is to

show the entire process of the model prediction.

2) Compute semantic similarity. The next step is to take each predicted and reference sequence, obtain the USE vector for

each sequence, then compute the cosine distance between the two vectors. The USE vector is a 512-length vector from the

universal sentence encoder model51. Technically, we could use any word sequence encoder to produce these vectors, but a recent

paper finds that USE produces results most in line with human preferences for code summarization10.

Semantic Similarity Loss for Neural Source Code Summarization 5

3) Broadcast semantic similarity to each word. The semantic similarity calculation in use-seq applies to the entire sequence.

However, loss is usually calculated for each individual prediction, which in our case is each word. We assign the loss for each

word to be equal to the loss for each sequence. For example, the cosine distance between the reference and predicted sequences

above is 0.8665, so each word “records”, “a”, “sound”, “file” will receive a loss of 0.8665.

4) Mask semantic similarities to avoid inappropriate penalties. It is possible that USE will return a score that indicates a

strongly dissimilar predicted sequence, even when some individual word predictions may be correct. It is also possible that USE

will indicate a similar sequence, even when individual word predictions may be incorrect. For example, “disconnect db” and

“initialize database connections” are two opposite sentences, but we had 0.5613 as the USE for these two sentences. Although

this score is lower compared with “connect db” and “initialize database connections," which we had 0.6963 as the USE score,

0.5613 is still very high for the opposite sentence. In these situations, a naive application of sequence similarity to each word

could have the effect of rewarding the model for incorrect word predictions or penalizing the model for correct word predictions.

To avoid these problems, we create a mask in which, for each word prediction, if the prediction is correct, only use the sequence

similarity broadcast to that word if the cosine similarity is positive. Likewise, if the prediction is incorrect, only use the sequence

similarity broadcast if the cosine similarity is negative. The effect is to provide an extra reward to correct predictions when the

sequence similarity is high, while also giving a penalty to incorrect predictions when the sequence similarity is low. In Table 2,

“m” denotes a mask for the word “sound” because “sound” is incorrect even though the overall sentence similarity is high as

indicated in Table 2 that the USE score is 0.8665.

5) Adjust semantic similarities using exponentiated reward. In preliminary experiments, we noticed that semantic similarity

values tend to be distributed such that small differences from the mean seem to have less overall meaning than large ones. In

other words, semantic similarity is most useful in reporting that a sequence is very similar or dissimilar, while values around the

mean are harder to interpret. Our observation corroborates findings in using human ratings of similarity, such as by Korbak et

al.52, and our remedy is similar: we adjust each semantic similarity score using an exponential function adjusted by parameter β.

The formula is exp(R(xi)/β), where xi is the word prediction for position i in the sequence, and R is the reward function, which in

our case is the USE similarity score for the sequence where xi originates. The effect of this function is to push values beyond a

certain threshold to have much more effect on the loss. The value β is a parameter which allows us to scale the similarity scores.

For example, in Table 2, the scaled reward value becomes exp(0.8665/1) = 0.8665 when beta is 1. We use β = 1.0 as a default

value for LLMs because it is recommended by Korbak et al.52. However, we explore the different values in Section 4.7. We use

β = 0.8 as a default value for purpose-built models because our ablation study finds that β = 0.8 shows the improvement over all

datasets and across all metrics and datasets.

6) Combine the semantic similarities with CCE for each predicted word. A problem we noticed in preliminary experiments

was that using semantic similarity scores as a loss in from-scratch training leads to very unstable and poor results – an observation

also found in using semantic similarity for other domains50. The solution in related work is to train the model to convergence

using CCE, then add a fine-tuning step with semantic similarity loss. The problem with adding a fine-tuning step is added

complexity of the training procedure and creation of new experimental variables (how far to train after convergence with CCE,

what parameters/methods of fine-tuning, etc.). Our solution is instead to use semantic similarity to adjust CCE for each word

(alluded to in Step 4). We multiply the CCE for each word to the semantic similarity score for that word. We formalize entire

procesure in Equation 1.

R(xi) =

{

USE if xi is correct

0 if xi if incorrect

loss(y, ŷ) = –

C
∑

i=1

yi log ŷi ∗ exp(R(xi)/β) (1)

Since y is usually a one-hot vector, for any given word the formula usually simplifies to log ŷr, where i is the position of the

word; R(xi) is the reward function; β is the hyperparameter. We show hypothetical CCE values in Table 2 while illustrating our

approach.

While the description above is sufficient to reproduce our approach, given its complexity we encourage other researchers to read

our implementation in the function custom_use_seq() at line 191 of file custom/qs_loss.py in our reproducibility

package (Section 9).

6 Su ET AL.

4 EXPERIMENT

This section describes our controlled experiment involving code summarization models and automated metrics. Note that this

experiment is distinct from our human study in Section 6.

4.1 Research Questions

Our research objective is to test whether semantic similarity loss improves model training results for the task of source code

summarization. We formalize our experiments based on Wohlin et al.53. We define the independent variable as the loss function

in the model and the dependent variable as the results in terms of the automatic metrics i.e. BLEU, METEOR, and USE. The

hypothesis is that use-seq should perform better than any other loss functions in any circumstance e.g. use-seq should

have better performance than CCE in both purpose-built models and LLMs. Towards that end, we ask the following Research

Questions (RQs):

RQ1 What are the differences in performance among use-seq and the baselines for purpose-built source code summarization

models?

RQ2 What are the differences in performance between use-seq and the primary baseline for select Large Language Models

(LLMs) fine-tuned for source code summarization?

The rationale behind RQ1 is that our approach should benefit several neural network-based models of code summarization

among the many that have been published in recent years. These models tend to be relatively small (on the order of 30m-50m

parameters), but are purpose-built under highly-controlled experimental settings that are available to the public. While the

performance may or may not be as high as industrial solutions such as ChatGPT or Copilot, the advantage is that we can be

more certain of the effect of different experimental variables when we have access to all model details and training data.

The rationale behind RQ2 is that our approach should, in theory, benefit any model type based on neural networks, including

very large ones. There are several approaches to use the pretrained Large Language Models (LLMs) for downstream tasks. We

can either use prompt techniques or finetuning the models for the tasks. The advantage of those approaches is that it allows for

the use of much bigger models (100m up to many billions of parameters) that tend to have better results, at least in terms of

automated metrics. This paper mainly focuses on the finetuning method because our main goal is to show that the model trained

with use-seq improves the training results.

However, the disadvantage is that the pretraining process is so expensive that it is constrained to large industrial organizations54.

Many details such as the training data sets are closed source – a major hazard for research because the training set may contain

some or all of the test set55. So, we ask RQ2 to test our approach in a fine-tuning setting to be current with the latest techniques,

but we retain RQ1 as a balance in a setting where we have maximum control over experimental variables.

4.2 Baselines

There are three baselines for our work in our experiment: CCE, BLEU, and SimiLe. Categorical Cross-entropy (CCE) loss, as

we established in Section 2, is by far the main means of computing loss for text generation tasks, including code summarization.

It represents the state-of-the-practice. BLEU is usually used as a metric for evaluation, but has been proposed as a loss function

for text generation46,47. Using BLEU in this fashion represents an n-gram text similarity metric. Finally, SimiLe is a semantic

text similarity metric repurposed as a loss function9. The technique is the most similar approach in the literature to this paper. It

combines a vector-based text similarity technique (SIM by Wieting and Gimpel56) with a length error penalty component. Note

that in this paper, we replaced SIM with USE as the text similarity foundation for SimiLe. Compared with SIM, USE is newer,

trained on a large corpus of text, and has a highly-supported implementation for reproducibility. In addition, using USE reduces

experimental variables as we can determine that the difference between SimiLe and other approaches is more likely to be due to

the loss function formula instead of differences in the text similarity calculation.

Note that BLEU and SimiLe rely on a reinforcement learning-like training procedure that is more complex than the one

needed for our approach. As Wu et al.57 and Yasui et al.50 point out, using a text similarity metric out-of-the-box as a loss

function tends to lead to very unstable training results. Therefore, the recommended procedure is to train using CCE to allow the

Semantic Similarity Loss for Neural Source Code Summarization 7

model to converge, then fine tune using the semantic similarity loss. In our experiments, we report BLEU and SimiLe results

after one epoch of fine tuning after the CCE loss convergence. Since the number of samples in our datasets is small (as opposed

to internet-scale LLM training), we use the same learning rate and other hyperparameters during the fine-tuning epoch.

In contrast, an advantage of our approach is that we do not require the additional fine tune epoch and related procedural

complexity. Our approach is a drop-in replacement for CCE and we train models using it in the same way.

4.3 Datasets

We use three datasets. The first dataset, named funcom-java, consists of about 2 million Java methods. The dataset was

originally introduced by LeClair and McMillan58, who advocate a split-by-project configuration to avoid data redundancy. We

used the updated version of the dataset introduced by Bansal et al.21, who applied additional filtering techniques to remove code

clones as suggested by Allamanis59.

We also generated a subset of the above Java dataset, which we call funcom-java-long , to focus on the methods that

have the higher number of code tokens and implement the key data preprocessing filters suggested by Shi et al.60. It contains

the subroutines that have top 10% highest number of code tokens. The reason that we focus on these functions is based on the

observation made by Haque et al. 61 that many Java functions are trivially short such as getters and setters. The focus of the

methods that have a higher number of code tokens can show that our approach is able to tackle more challenging and realistic

methods because these methods are harder to understand and have less training data.

Lastly, we compiled a dataset of Python functions from 40,000 Python projects we downloaded from GitHub, named

funcom-python. We employed the same preprocessing and splitting methods as recommended by LeClair and McMillan58

and Bansal et al.21 to create a dataset of 270k functions.

4.4 Metrics

We use the metrics METEOR, USE, and BLEU. BLEU by Papineni et al.42 is an n-gram based text similarity metric used for

over twenty years in several areas of research including code summarization. METEOR by Banerjee and Lavie43 updates the

idea of BLEU to include the semantic similarity of each word. METEOR is preferred to BLEU for code summarization in light

of recent evidence finding that METEOR is more correlated to human judgment10,62. USE is the semantic similarity metric

proposed by Haque et al.10 that is the basis for our semantic similarity loss functions, described in Section 2.

We calculated statistical significance using a paired t-test for METEOR and USE between use-seq and the baselines for

each code summarization technique, using the procedure suggested by Roy et al.62 for code summarization. However, we do

not calculate statistical tests for BLEU because BLEU is a corpus-level metric and not considered reliable when calculated at

sentence-level42. Space limitations prevent us from printing full results in this document, so we report when the test was not

significant at the p > 0.05 level with an asterisk in Table 5.

4.5 Code Summarization Models

We answer our RQs in the context of four purpose-built code summarization models. These models represent different families

of models that we identified in Section 2. In our view, these approaches serve as “mouse models” which may have some distance

from in-practice use, but have the major advantage that we can tightly regulate experimental variables including complete

training in the laboratory setting and reproducibility at reasonable cost. The four models are:

ast-attendgru An approach that encodes the target function’s Abstract Syntax Tree (AST) via a flattened representation and a

recurrent neural network (a GRU)3.

codegnngru An approach by LeClair et al. 4 that is similar to ast-attendgru except that it uses a graph neural network

(GNN) to encode the AST.

transformer Essentially this approach uses a vanilla Transformer encoder-decoder design, proposed for use on code

summarization by Ahmad et al.19.

setransformer A hybrid Transformer-CNN model proposed recently by Li et al.26 that encodes the AST and textual

information from the code.

8 Su ET AL.

We train all four models from scratch on the training set from each dataset. Our main interest is to test our loss function rather

than other variables, so we follow the training procedure established by several recent papers21,5,4: train for ten epochs, select

the epoch for which the validation accuracy was the highest, then report metric scores over the testing set for that epoch. Key

hyperparameters are shown in Table 4:

T A B L E 4 Training hyperparameters and settings

Java Python

t tokens in target subroutine 50 50

w words in summary 13 13

v source code vocabulary size 75k 100k

z summary vocabulary size 10908 11000

e embedding dimensions 100 100

b batch size 50 50

r learning rate 1e-4 1e-4

o optimizer Adam Adam

We used t and w reported by Haque et al.5 and Bansal et al.21. The values for v and z are suggestions from a study of code

summarization datasets58. We decided e, b, r, and o during pilot studies and constrained by hardware limitations – our goal is for

our experiments to be reproducible with moderately-priced professional hardware.

4.6 Fine-tuned Large Language Models

We also answer our RQs in the context of fine-tuned large language models (LLMs). State-of-the-art performance in many

text generation tasks is often produced by fine-tuning so-called foundation models. A foundation model is an LLM that is

pre-trained on internet-scale text datasets. Then the foundation model is fine-tuned by further training on a relatively small

dataset of domain-specific examples. There are hundreds of possible fine-tuning configurations, and a comprehensive study

of fine-tuning for source code summarization is not available yet in the literature and is beyond the scope of this single paper.

However, our goal is to determine the usefulness of our semantic similarity loss function in a wide range of models, so we

chose two approaches consistent with related work for other text generation tasks. Given the high cost of fine-tuning LLMs and

the immense number of experimental variables given the rapidly changing research frontier, we limit ourselves to comparing

use-seq to CCE for the funcom-java-long dataset.

One LLM we use is the LLaMA 7B parameter model by Touvron et al.11. We fine-tune this model with the Alpaca-LoRA

procedure using the settings and implementation available from Taori et al.12. Technically, we set the Instruction text

to “please describe the following source code”, the Input text to the target function’s source code, and the Response text

to the source code summary during fine tuning. Then we fine tune for one epoch using the default parameters (listed in our

reproducibility package, Section 9). During inference, we use the same Instruction and Input text setup, but extract the

text after Response as the summary.

We also use the GPT2 124m parameter model by Radford et al.63. We use a complete fine-tune procedure (as opposed to a

weight matrix reduction technique such as LoRA) based on OpenAI’s GPT2 124m parameter snapshot. We use hyperparameters

recommended by Karpathy64 in a public GPT2 implementation. We fine tune for 18 epochs, at which point validation accuracy

diverges from training accuracy, indicating possible overfitting. We acknowledge that these parameter choices are somewhat

arbitrary, but our objective is to test the effect of training with CCE versus use-seq, rather than an exhaustive search for all

optimal parameters. Our idea was to use reasonable settings from related work, and compare performance differences when

changing only a single experimental variable: the loss function.

In addition to 124m parameter GPT2, we use 220m CodeT5+40 with complete finetuning procedure to show that our

use-seq loss can be applied to broader language models i.e. the large language model with the encoder-decoder architecture.

We finetune for three epochs. We use the hyperparameters set in the finetuning script in the CodeT5+ repository. We use the

same hyperparameters for both CCE and use-seq because our main goal is to show that the model trained with use-seq is

better than the model trained with CCE loss.

Note that we intend for these models to be representative of applying the technique to fine-tuning commercial LLMs, to

the extent possible in a research setting where we exert control of experimental variables and are able to open source release

Semantic Similarity Loss for Neural Source Code Summarization 9

experimental artifacts. As Hellendoorn and Sawant54 point out, large, closed source LLMs such as GPT3.5 or GPT4 produce

strong results at the expense of accessibility of the internals to the research community. Smaller models capable of being run

in-house also have the major advantage of not requiring proprietary code data to be sent to a third party. The loss of data custody

required to use e.g. GPT4 is not tenable for many organizations. Furthermore, emerging evidence is showing that commercial

LLMs do not always provide stable results, making them difficult to benchmark in a controlled experiment38,39. Therefore, we

evaluate our idea in the situation of in-house, open source production.

4.7 Ablation Study

To show the necessity of the reward mechanism that we introduce in Section 3 and study the different β value, we conduct the

ablation study with the GPT2 model. We used the GPT2 model because this model does not require weight matrix reduction

technique to finetune. Also, this model has the best performance among the models that do not need weight matrix reduction

technique. As an additional verification, we also used the dataset proposed by Su and McMillan65 to finetune the GPT2 model

with the parameters that we introduce in Section 4.6. Specifically, we focus on 170k dataset because it has exactly the same

method as in funcom-java-long. However, instead of obtaining summary from human programmers, the summary of this

dataset is generated by using GPT-3.5.

4.8 Hardware/Software Details

Our hardware platform is a workstation with an AMD 5900X CPU, 128GB memory, and two Nvidia A5000 GPUs. Our software

platform consists of Ubuntu 22.04, Python 3.10, CUDA 11.4, Tensorflow 2.9.1, and Pytorch 2.0.0.

5 EXPERIMENTAL RESULTS

This section discusses our experimental results and answers to research questions RQ1 and RQ2.

5.1 RQ1: Purpose-built Models

Table 5 summarizes our experimental results for RQ1. In short, we find that use-seq outperforms the baselines in most

conditions over the three datasets and four purpose-built code summarization models. We observe the strongest overall

performance in the transformer model, with 34.16 METEOR and 52.23 USE scores in the funcom-java-long

dataset. These are about a 2% and 3% improvement over SimiLE and CCE for these metrics in funcom-java-long. In

funcom-java and funcom-python, the improvements are mostly in the 1-2% range.

It is important to note that these improvements come at practically no cost, since use-seq is a drop-in replacement for CCE.

These improvements cover a broad spectrum, as we observe them over datasets with two different programming languages and

over several model architectures. So, even a modest increase in metrics scores can have a big impact on the state-of-the-art

because the increases benefit many approaches at almost no cost.

We observe higher rates of improvement using BLEU score, with increases in the 2-7% range for transformer over the

three datasets. The highest performing model in terms of BLEU is ast-attendgru with use-seq over funcom-python,

which at 20.12 BLEU is 12% higher than the same model using SimiLE and 18% higher than CCE. We attribute this difference

between BLEU and METEOR/USE to BLEU’s use of exact-match n-grams versus METEOR/USE’s word similarity approach.

Our approach includes a mask that scales the reward based on sentence similarity, but retains a high penalty for incorrect words

even in “good” sequence predictions (Section 3, step 4). In contrast, the BLEU and SimiLE functions reward the model when

the overall sequence is “good”, even when individual word predictions are incorrect. The result is that our approach gets more

individual word predictions correct, and this result manifests itself as bigger gains for BLEU than METEOR or USE.

Two exceptions to the general rule of improvement are: 1) METEOR/USE scores for setransformer over

funcom-python, and 2) a handful of results that lack statistical significance, especially for codegnngru over

funcom-python. One explanation is that setransformer and codegnngru rely more than other models on the code’s

10 Su ET AL.

AST (even ast-attendgru, which has separate encoders), which is often less informative in Python (e.g., due to dynamic

typing), which was also observed by Tang et al.6.

T A B L E 5 Results of automatic metrics for RQ1. M=METEOR, U=USE, B=BLEU. W is the number of times use-seq

was the highest over all metrics and datasets. An asterisk indicates METEOR or USE results that are not statistically different

from use-seq according to a paired t-test at the p < 0.05 level.

funcom-java-long funcom-java funcom-python

model loss M U B M U B M U B W

ast-attendgru cce 33.21 50.12 18.94 35.30 52.89 18.33 26.48 43.27 16.96

bleu 33.43 50.02 18.92 35.56 53.03 18.68 26.41 42.37 17.64

simile 33.34 49.87 18.87 35.68 53.18 18.77 26.54 42.66 17.89

use-seq 33.74 50.52 19.38 35.96 53.74 19.07 28.42 44.00 20.12 9/9

codegnngru cce 32.98 49.85 18.75 35.82 53.26 18.77 25.32 41.86 16.80

bleu 32.53 49.46 18.66 35.64 53.21 18.61 25.74* 42.14* 16.93

simile 32.47 49.52 18.66 36.03* 53.43 18.66 25.56* 42.13* 16.81

use-seq 33.97 50.92 19.51 36.17 53.84 19.25 25.89 42.17 16.51 8/9

transformer cce 33.57 51.60 19.07 35.86 53.89 18.39 26.97 44.02 15.70

bleu 33.52 51.60 18.92 35.92 53.84 18.60 26.89 43.62 16.37

simile 33.40 51.31 18.90 35.98 53.79 18.63 26.87 43.76 16.35

use-seq 34.16 52.23 19.63 36.17 54.45 18.97 27.38 44.31 17.56 9/9

setransformer cce 32.60 49.56 18.38 35.64 53.09 18.26 27.92 43.48 18.10

bleu 32.21 48.80 18.49 35.99 53.36 18.69 28.59* 43.94 18.76

simile 32.22 48.66 18.48 36.03* 53.43 18.66 28.61* 44.05 18.91

use-seq 33.51* 50.79* 19.04* 36.35* 54.14* 19.12* 28.57* 44.02* 19.46* 7/9

5.2 RQ2: Large Language Models

We find that use-seq improves fine-tuning results by a statistically-significant margin for all of the LLM models i.e. GPT2,

LLaMA, and CodeT5+ models. Table 6 shows these results for RQ2. For GPT2, we observe a 8% improvement in METEOR,

a 4% improvement in USE, and a 8% improvement in BLEU. For LLaMA, we observed improvements of 3% and 5% for

METEOR and BLEU. USE was a statistical tie with only a 0.2% increase that was not found to be significant. Although CodeT5+

has the least improvement among these models, we still observe at least 1% improvement with a statistically-significant margin

in both METEOR and USE. These results are in broad agreement with findings from RQ1.

These results point to the usefulness of use-seq even at scale. The purpose-built code summarization models that we used

are in the range of 30-50m parameters4,19,26, while the GPT2 model we used is 124m parameters, the CodeT5+ is 220m, and

the LLaMA model we used is 7B parameters. The purpose-built code summarization models have no pretraining data, and

the GPT2, CodeT5+, and LLaMA models each have different sets of pretraining data composed of differing amounts of text,

code, and other types of language artifacts. It is likely that additional hyperparameter tuning and model optimization would

yield higher overall scores, though the evidence here is that use-seq confers an advantage to a wide variety of models under

different conditions. Meanwhile, baselines except CCE are not practical for these larger models as they would require at least

one additional training epoch (around 60 hours for funcom-java-long for LLaMA on our hardware).

T A B L E 6 Results of automatic metrics for RQ2. An asterisk indicates METEOR or USE results that are not statistically

different from use-seq according to a paired t-test at the p < 0.05 level.

funcom-java-long

model loss M U B

gpt2 cce 32.77 51.37 19.02

use-seq 35.51 53.50 20.58

llama7b cce 39.60* 59.60* 23.22*

use-seq 40.87 59.73 24.40

codet5+ cce 17.33* 46.58 0.23*

use-seq 17.53 47.20 0.00

Semantic Similarity Loss for Neural Source Code Summarization 11

5.3 Results of Ablation Study

Table 7 summarizes the results of the ablation study for reward mechanism. Overall, the model with the reward mechanism

that we introduce shows the strongest improvement across three metrics and two different datasets. Specifically, we find a 5%

improvement in METEOR, a 4% improvement in USE, and an 8% improvement in BLEU with the reward mechanism on

funcom-java-long dataset compared with the model without reward mechanism. For GPT-3.5, we find the 5% improvement

in METEOR, 2% improvement in USE, and the 14% improvement in BLEU. Moreover, we find 11% drop in BLEU score when

we compare CCE with the model without the reward mechanism on GPT-3.5 summary. These results show the necessity of

the reward mechanism to adjust the final reward, so the models do not reward the incorrect prediction and penalize the correct

prediction.

Table 8 shows the results for different β values. In short, we find β = 0.8 has the improvements over three different metrics i.e.

BLEU, METEOR, and USE and two different datasets compared with β = 1.0. Specifically, we observe that β = 0.8 has the

strongest improvement on USE and BLEU, which has a 0.7% improvement on USE and a 2% improvement on BLEU among

these different β values on the funcom-java-long dataset. Although β = 0.8 does not have the strongest improvement in

terms of GPT-3.5 summary, the improvement between β = 0.8 and β = 0.6 is relatively small compared with the improvement

between β = 0.8 and β = 1.0. The improvement between β = 0.8 and β = 1.0 is 1% versus 0.1% improvement between β = 0.8

and β = 0.6 in terms of METEOR. These results show that β = 0.8 is an appropriate choice because it shows improvements over

a wide variety of datasets and metrics.

T A B L E 7 Result of ablation study on reward mechanism. cce means the model trained with the cce loss. use-seq means the

model trained with the use-seq loss with the reward mechanism that we proposed. use-seq-ablate means the usq-seq loss without

reward mechanism that we proposed.

dataset loss M U B

funcom-java-long cce 32.77 51.37 19.02

use-seq-ablate 33.76 51.48 19.12

use-seq 35.51 53.50 20.58

GPT-3.5 summary cce 33.68 62.42 12.90

use-seq-ablate 37.43 63.30 11.42

use-seq 39.35 64.78 13.00

T A B L E 8 Result of ablation study on selection of β

dataset β M U B

funcom-java-long 1.2 35.71 51.99 17.22

1.0 35.51 53.50 20.58

0.8 35.68 53.88 20.94

0.6 36.05 52.29 17.14

GPT-3.5 summary 1.2 39.63 65.00 13.49

1.0 39.35 64.78 13.00

0.8 39.83 65.01 13.36

0.6 39.90 65.31 13.70

5.4 Examples

We provide four examples in Table 9 to illustrate different scenarios of how the models perform. Example 1 shows a method

called draw() where use-seq resulted in better summaries throughout the experiment. The fine-tuned LLaMA model

predicted an addition modifier “control” with use-seq, which not only more-closely matched the reference, but provided an

extra word that humans reported as being more accurate (see our human study in the next section). Likewise, Example 2 shows

how use-seq led the LLaMA model to output additional relevant information compared to CCE. In general, the predictions

using use-seq are longer than with CCE, likely because during training, predictions of the end-of-sequence token will be

12 Su ET AL.

penalized especially heavily when they are both wrong and cause the sequence to lack information from the reference. If the

predicted sequence is not similar enough to the reference, the USE score will be low (Section 3, step 3), and that low score will

amplify the penalty of a mispredicted token such as the end of sequence token (Section 3, step 4).

Examples 3 and 4 show where use-seq does not necessarily always help. Example 3 is an oddity because it is an exception

to the general rule of more verbose summaries from use-seq, as it missed the word “xy” modifying dataset. It also shows how

human sometimes prefer the more verbose summaries, even if the metrics scores are lower. Example 4 shows a similar situation

for LLaMA, where the more verbose summary gets lower metrics scores, but actually includes more relevant information in

the summary. These situations tend to favor use-seq because use-seq generally leads to more verbose predictions. We will

explore the issue of verbosity in summaries more in our human study in the next section.

T A B L E 9 The prediction examples. Transformer means of output from the purpose-built model. llama7b refers to the output

from finetuned Llama. M=METEOR, U=USE. H=1 means summary was considered more accurate in the human study (dash

means summary not shown in human study). The number underneath the method name is the identification number of that

method in the funcom-java-long dataset, which we provide for reproducibility. Note that for illustration we deliberately

chose some examples where use-seq does not show improvement.

1. draw() reference draw the control fps panel in the control sketch window M U H

7848915 transformer cce draws the graphic 10.75 26.12 -

use-seq draws the outline of the current page 26.35 27.36 -

llama7b cce draw the fps 16.13 37.20 0

use-seq draws the control fps 33.58 39.54 1

2. destroyMainPart() reference destroys one of the main parts of the given docking graph M U H

13278733 transformer cce removes the main part of the graph 55.56 75.73 -

use-seq destroys the main part of the graph 63.44 81.56 -

llama7b cce destroys the main part 30.64 56.77 -

use-seq destroy the main part of the docking graph 72.79 82.85 -

3. createDataset() reference creates a sample dataset M U H

35061399 transformer cce creates a dataset for the chart 10.64 10.55 -

use-seq creates a dataset 10.00 36.93 -

llama7b cce creates an xy dataset 10.64 10.55 1

use-seq creates a dataset 19.94 17.68 0

4. copySubstring() reference copy string to clipboard M U H

40467691 transformer cce copies the substring of the specified 11.90 50.24 -

use-seq copies the substring of the code string code 22.72 57.02 -

llama7b cce copies a substring of the text to the clipboard 33.33 69.99 -

use-seq copies the substring from the given start to the given end to the clipboard 30.00 47.25 -

5.5 Threats to Validity

We divide Key threats to validity into three different categories i.e. internal, construct, and external threats to validity based on

Wohlin et al.53. The internal threats to validity include datasets and the pretrainng data used in the LLMs. The datasets are a

threat to validity because different test inputs could yield very different results. To help mitigate this risk, we use datasets over

two languages (Java and Python), with a special emphasis on subroutines with more code tokens in Java. key risk to the LLMs is

that the training data is closed source and we cannot guarantee that the test sets (which are derived from open source projects) are

not in the training set. We aim to mitigate this risk by contrasting the LLM part of the experiment from the code summarization

models (for which there is no pretraining data) and by using LLMs that are reportedly trained on different datasets. The construct

threats to validity is the code summarization models and LLMs we train/fine-tune. The code summarization models, training,

and fine-tuning procedures can also affect the results, as e.g., more epochs for training may yield better or worse results. We

mitigate this risk by using established experimental procedures in code summarization models and by making diverse choices

for the LLMs (e.g., LoRA versus a complete fine-tuning, LLaMA versus GPT2 and CodeT5+) to decrease the risk of the results

being meaningful in only a special setting. The external threats to validity is use-seq might not be able to be applied to the

Semantic Similarity Loss for Neural Source Code Summarization 13

most up-to-date LLMs. We mitigate this by conducting the experiments with three different types of LLMs i.e. LLaMA, GPT2,

and CodeT5+.

6 HUMAN STUDY

This section describes our study with human programmers. In short, we recruited human experts to compare the summaries

generated by the LLaMA 7B model that we fine-tuned using CCE and use-seq.

6.1 Research Questions

The objective of the human study is to show that use-seq not only has better performance in terms of automatic metrics but is

preferred by the programmers. The independent variable for this experiment is loss functions. The dependent variable is the

results from the human experts. The hypothesis is that the improved summary should reflect on the results of both automatic

metrics and the human experts. Therefore, we ask the following research questions:

RQ3 How do human experts rank cce and use-seq in terms of the quality attributes accuracy, completeness, conciseness,

and similarity to a reference?

RQ4 Which of cce and use-seq do human experts prefer overall, independent of individual quality attributes?

The rationale behind RQ3 is that many years of studies in source code summarization use four quality attributes to compare

summaries. These are: 1) Accuracy, which refers to whether the information in the summary is correct, 2) Completeness, which

refers to whether the summary contains all the information it should, 3) Conciseness, which refers to whether the summary is

overly verbose or contains unnecessary information, and 4) Similarity to a reference, which is a human judgment about whether

a summary is similar to the summary for a code in the gold set. These quality attributes have a very long history in evaluating

code comments66,67,68, so we use them as the basis for evaluating our approach.

The rationale behind RQ4 is that human experts may have their own subjective opinion about the quality difference between

two summaries, and this opinion may be separate from the quality attributes typically studied in the literature. People are unique,

and sometimes may prefer one thing over another for unpredictable reasons. We study RQ4 to capture these unpredictable

preferences.

6.2 Study Design

Our study design centers around a web survey in which participants read the source code of a subroutine and a summary for

that subroutine, then answer five questions (see Figure 1). The survey consisted of a tutorial with definitions and examples of

the quality attributes, followed by four “pages” per subroutine. On the first page, the people saw the subroutine source code,

one summary generated by the model after fine-tuning with CCE, one summary generated by the model after fine-tuning with

use-seq (order of summaries in UI was random and did not indicate its origin to avoid demand characteristic bias69), and the

following question:

Q1 Independent of other factors, which summary is more accurate?

The next page showed the same information, but with the following two questions. We asked these questions in a separate

page to avoid a bias from showing a positively-worded question alongside a negatively-worded one70:

Q2 Which summary is missing more information that is important for understanding the method?

Q3 Which summary contains more unnecessary information?

The next page showed the same information, but with the following question:

Q4 Overall, which summary is better in your opinion?

Semantic Similarity Loss for Neural Source Code Summarization 15

results in Section 5.4, where use-seq tends to find more words to explain what the components of the subroutine do, such as

using the word “control” to modify “fps” in Example 1, Table 9.

The use-seq approach does not always perform well in completeness, as Example 2, Table 9 shows. But in general, the

errors use-seq makes tend to be in generating summaries that are too verbose. CCE outperforms use-seq by a 2-1 margin in

conciseness. In addition, similarity to the reference does not seem to be associated with higher overall preference. The users did

tend to view use-seq as generating summaries more similar to the reference than CCE, though the difference is the lowest of

any quality attribute, and the users did not see the reference until the last question page.

To provide another view of the data, we also grouped the responses by participant (Figure 3). We define “group by participant”

as the number of times that participant responded with each option. The mean value is visible as the red line in the boxplots, and

the median value is the black middle line. Raw minimum, maximum, median, and mean values for use-seq are in the table.

All participants rated all 56 methods. An “average” participant rated 32 (median) or 30.58 (mean) of the methods as preferring

use-seq in terms of accuracy, compared to fewer than 20 for CCE, and undecided for six.

F I G U R E 2 Aggregate survey responses. Each column indicates the total number of survey replies for a quality attribute and

summaries from one loss function. With 29 participants and 56 functions, there are 1624 responses per attribute. For example,

there were ∼900 responses in which participants preferred use-seq in terms of accuracy versus ∼550 for CCE.

The results broadly concur with the aggregate survey responses. The overall preference responses lean towards use-seq,

where a typical user preferred use-seq in 30 (median) or 29.48 (mean) of 56 methods. The accuracy, completeness, and overall

similarity likewise lean towards use-seq, though again conciseness does not, and again similarity only slightly favors use-seq.

As an additional check, we performed a Friedman paired statistical test for each of the quality attributes, grouped by participant.

We report Qobserved, Qcritical, and p values for these tests in Figure 3. The Friedman test is the correct test because there are three

sets of values, and each set of values are paired because they are tied to a specific participant over the same set of methods. It is

also a non-parametric test, making it suitable for use in preference rankings where preference itself is measurable, but the degree

of difference in preference is difficult to measure72. In general, strongest statistical significance occurred for the overall and

accuracy questions, which supports the general conclusion that participants preferred summaries from use-seq in part due to

the higher overall accuracy.

7.1 Threats to Validity

We also divide the key threats to validity in this study into three different categories as in the previous section. The internal

threat to validity involves our choice for the model, the subroutines, and the participants. We attempted to mitigate these risks by

16 Su ET AL.

min max med mean Qobs Qcrit p

accurate 21 41 32 30.58 41.45 5.99 <0.01

complete 5 40 26 24.69 15.52 5.99 <0.01

concise 1 29 8 10.83 13.50 5.99 <0.01

overall 17 38 30 29.48 46.41 5.99 <0.01

similarity 9 34 24 23.59 7.122 5.99 <0.01

F I G U R E 3 Table shows a statistical summary of responses for use-seq grouped by participant, followed by Friedman

significance test results. For example, an “average” participant, in terms of accuracy, preferred 30.58 summaries by use-seq

compared to ∼19 for CCE, and had no preference for ∼6. Boxplots show comparisons grouped by participant for all questions.

choosing a random sample of subroutines and human programmers large enough to provide a representative sample, but the

risk remains that different results are possible with different inputs. Another internal threat to validity is that the participants

might fake the information in the online platforms such as Prolific or the participants might just click through without reading

the information carefully. We mitigate this threat by manually inspecting the time that the participants spent on each question.

We do not include the programming knowledge test because those questions can be easily answered by using AI-based tools

such as ChatGPT73. The construct threats to validity include the survey interface design and the wording of the questions. We

attempted to mitigate threats from the survey interface and questions by adhering to practice in related work, it is possible

that differently-worded questions or interface design could change the study results. The external threat to validity is that the

programmer that we hired to evaluate the summary might not be good at Java programming. We mitigated this threat by setting

the constraint that the participants should be at least 25 years old, which eliminates the undergraduate students.

Semantic Similarity Loss for Neural Source Code Summarization 17

8 DISCUSSION

The integration of semantics similarity to the loss function is not limited to USE score. The use of the USE scores demonstrated

that it is possible to integrate the semantic similarity into the loss function to give the reward for the correct prediction and

penalize the wrong prediction. The future experiments include exploring the use of different semantic metrics between reference

summary and predicted summary such as CrystalBLEU44 and the use of semantic metrics between source code and predicted

summary such as SIDE45.

Our approach is likely to have an impact beyond code summarization. Within the field of Software Engineering, several tasks

involve learning representations of code and writing or modifying text, such as bug report description and triage, test generation,

and automatic privacy notification. In fields beyond SE, use-seq may have applications in numerous areas of text generation,

such as neural machine translation and general tasks involving fine-tuning of LLMs. We demonstrated how our approach can be

used in fine-tuning LLMs for one task, with other areas as future work.

9 CONCLUSION

This paper moves the state-of-the-art forward in five ways:

1. We introduce a procedure for using a semantic similarity loss function (that we call use-seq), that we designed for the

software engineering task of code summarization.

2. We evaluate our approach with four purpose-built code summarization models over datasets in two programming languages

against three baselines (CCE, BLEU, SimiLE). We show how use-seq achieves improvements in several conditions.

3. We propose and implement code summarization as fine-tuning of two industrial language models.

4. We evaluate our approach over a Java dataset against the state-of-the-practice CCE using automated metrics.

5. We perform a study with 29 human programmers to evaluate summaries for 54 Java methods. We compare and contrast

summaries generated by LLaMA with use-seq versus LLaMA with CCE.

Overall, we found that use-seq improves purpose-built code summarization approaches by 2-3% when measured by

automated metrics METEOR and USE, and up to 12% when measured by BLEU. This is a strongly positive result considering

that the improvement 1) is consistent over multiple approaches and datasets, and 2) comes at practically no cost or additional

training procedure complexity. The use-seq loss function may be used as a drop-in replacement for CCE, unlike baselines

which require additional steps.

We have designed an evaluated our approach for the problem of code summarization in the domain of software engineering.

Key considerations we made for our target problem include 1) computing USE to compare summaries, which is the semantic

similarity measure that recent literature10 found is most associated with human programmer judgments of summary similarity,

2) we mask semantic similarities to avoid inappropriate penalties for correct word predictions when the sequence similarity is

overall poor (and avoid rewarding incorrect words when the sequence similarity is good), and 3) we do not include a length

penalty as baselines from NLP do, since people tend to prefer accuracy to conciseness.

To encourage maximum reproducibility and accessibility of our research, we provide our implementation code, training data,

evaluation scripts, and further results via an online repository in Code Availability and Data Availability Section. Note that the

full code of the examples provided in Section 5.4 of this paper are available by using the ID number under the example method

name with the fid index in the funcom-java-long dataset we provide in Data Availability Section.

ACKNOWLEDGMENTS

This work is supported in part by NSF CCF-2100035 and CCF-2211428. Any opinions, findings, and conclusions expressed

herein are the authors and do not necessarily reflect those of the sponsors

CONFLICT OF INTEREST

The authors declare no potential conflict of interests.

18 Su ET AL.

DATA AVAILABILITY

The funcom-python dataset that we propose is in our APCL Huggingface repository:

https://huggingface.co/datasets/apcl/funcom-python/tree/main

Also, we released the prediction files and models on LLM in our APCL Hugginface repository:

https://huggingface.co/apcl/funcom_useloss/tree/main

CODE AVAILABILITY

We release our code for experiments in our APCL Github repository, https://github.com/apcl-research/funcom-useloss

REFERENCES
1. Haiduc S, Aponte J, Moreno L, Marcus A. On the use of automated text summarization techniques for summarizing source code. In: IEEE.

2010:35–44

2. Robillard MP, Marcus A, Treude C, et al. On-demand developer documentation. In: IEEE. 2017:479–483

3. LeClair A, Jiang S, McMillan C. A neural model for generating natural language summaries of program subroutines. In: IEEE Press. 2019:795–806

4. LeClair A, Haque S, Wu L, McMillan C. Improved code summarization via a graph neural network. In: 2020:184–195

5. Haque S, LeClair A, Wu L, McMillan C. Improved Automatic Summarization of Subroutines via Attention to File Context. International

Conference on Mining Software Repositories. 2020. doi: 10.1145/3379597.3387449

6. Tang Z, Shen X, Li C, et al. AST-trans: code summarization with efficient tree-structured attention. In: 2022:150–162

7. MacNeil S, Tran A, Hellas A, et al. Experiences from using code explanations generated by large language models in a web software development

e-book. In: 2023:931–937

8. Ross SI, Martinez F, Houde S, Muller M, Weisz JD. The programmer’s assistant: Conversational interaction with a large language model for

software development. In: 2023:491–514

9. Wieting J, Berg-Kirkpatrick T, Gimpel K, Neubig G. Beyond BLEU: Training Neural Machine Translation with Semantic Similarity. In:

2019:4344–4355

10. Haque S, Eberhart Z, Bansal A, McMillan C. Semantic similarity metrics for evaluating source code summarization. In: 2022:36–47

11. Touvron H, Lavril T, Izacard G, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971. 2023.

12. Taori R, Gulrajani I, Zhang T, et al. Stanford Alpaca: An Instruction-following LLaMA model. https://github.com/tloen/alpaca-lora; 2023.

13. Wang E. Alpaca-LoRA. https://github.com/tatsu-lab/stanford_alpaca; 2023.

14. Hu EJ, Wallis P, Allen-Zhu Z, et al. LoRA: Low-Rank Adaptation of Large Language Models. In: 2023.

15. Alon U, Brody S, Levy O, Yahav E. code2seq: Generating sequences from structured representations of code. International Conference on

Learning Representations. 2019.

16. Alon U, Zilberstein M, Levy O, Yahav E. code2vec: Learning distributed representations of code. Proceedings of the ACM on Programming

Languages. 2019;3(POPL):1–29. doi: 10.1145/3290353

17. Nie P, Rai R, Li JJ, Khurshid S, Mooney RJ, Gligoric M. A framework for writing trigger-action todo comments in executable format. In: ACM.

2019:385–396

18. Haldar R, Wu L, Xiong J, Hockenmaier J. A Multi-Perspective Architecture for Semantic Code Search. arXiv preprint arXiv:2005.06980. 2020.

19. Ahmad WU, Chakraborty S, Ray B, Chang KW. A Transformer-based Approach for Source Code Summarization. arXiv preprint arXiv:2005.00653.

2020.

20. Feng Z, Guo D, Tang D, et al. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. In: 2020:1536–1547

21. Bansal A, Haque S, McMillan C. Project-level encoding for neural source code summarization of subroutines. In: IEEE. 2021:253–264

22. Zügner D, Kirschstein T, Catasta M, Leskovec J, Günnemann S. Language-Agnostic Representation Learning of Source Code from Structure and

Context. In: 2021.

23. Liu S, Chen Y, Xie X, Siow JK, Liu Y. Retrieval-Augmented Generation for Code Summarization via Hybrid {GNN}. In: 2021.

24. Mastropaolo A, Scalabrino S, Cooper N, et al. Studying the usage of text-to-text transfer transformer to support code-related tasks. In: IEEE.

2021:336–347.

25. Kuang L, Zhou C, Yang X. Code comment generation based on graph neural network enhanced transformer model for code understanding in

open-source software ecosystems. Automated Software Engineering. 2022;29(2):43. doi: 10.1007/s10515-022-00341-1

26. Li Z, Wu Y, Peng B, et al. Setransformer: A transformer-based code semantic parser for code comment generation. IEEE Transactions on Reliability.

2022. doi: 10.1109/TR.2022.3154773

27. Khan JY, Uddin G. Automatic code documentation generation using gpt-3. In: 2022:1–6.

28. Ahmed T, Devanbu P. Few-shot training LLMs for project-specific code-summarization. In: 2022:1–5.

29. Gu J, Salza P, Gall HC. Assemble foundation models for automatic code summarization. In: IEEE. 2022:935–946.

30. Su CY, Bansal A, Jain V, Ghanavati S, McMillan C. A Language Model of Java Methods with Train/Test Deduplication. In: ESEC/FSE 2023.

Association for Computing Machinery 2023; New York, NY, USA:2152–2156

31. Gao S, Gao C, He Y, et al. Code Structure–Guided Transformer for Source Code Summarization. ACM Transactions on Software Engineering and

Methodology. 2023;32(1):1–32.

32. Geng M, Wang S, Dong D, et al. Interpretation-based Code Summarization. In: 2023.

33. Zhang M, Zhou G, Yu W, Huang N, Liu W. Ga-scs: Graph-augmented source code summarization. ACM Transactions on Asian and Low-Resource

Language Information Processing. 2023;22(2):1–19.

34. Gao Y, Zhang H, Lyu C. EnCoSum: enhanced semantic features for multi-scale multi-modal source code summarization. Empirical Software

Engineering. 2023;28(5):126.

35. Wang Z, Yu X, Feng Y, Zhao D. An Intra-Class Relation Guided Approach for Code Comment Generation. In: 2023:1291–1303.

36. Geng M, Wang S, Dong D, et al. Large Language Models are Few-Shot Summarizers: Multi-Intent Comment Generation via In-Context Learning.

2024.

37. Song X, Sun H, Wang X, Yan J. A Survey of Automatic Generation of Source Code Comments: Algorithms and Techniques. IEEE Access. 2019.

Semantic Similarity Loss for Neural Source Code Summarization 19

38. Jin X, Larson J, Yang W, Lin Z. Binary code summarization: Benchmarking chatgpt/gpt-4 and other large language models. arXiv preprint

arXiv:2312.09601. 2023.

39. Sun W, Fang C, You Y, et al. Automatic Code Summarization via ChatGPT: How Far Are We?. arXiv preprint arXiv:2305.12865. 2023.

40. Wang Y, Wang W, Joty S, Hoi SC. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and

Generation. In: Moens MF, Huang X, Specia L, Yih SWt., eds. Proceedings of the 2021 Conference on Empirical Methods in Natural Language

ProcessingAssociation for Computational Linguistics 2021; Online and Punta Cana, Dominican Republic:8696–8708

41. Bender EM, Gebru T, McMillan-Major A, Shmitchell S. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?. In: FAccT ’21.

Association for Computing Machinery 2021; New York, NY, USA:610–623

42. Papineni K, Roukos S, Ward T, Zhu WJ. BLEU: a method for automatic evaluation of machine translation. In: Association for Computational

Linguistics. 2002:311–318

43. Banerjee S, Lavie A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In: 2005:65–72.

44. Eghbali A, Pradel M. CrystalBLEU: Precisely and Efficiently Measuring the Similarity of Code. In: ASE ’22. Association for Computing

Machinery 2023; New York, NY, USA

45. Mastropaolo A, Ciniselli M, Di Penta M, Bavota G. Evaluating Code Summarization Techniques: A New Metric and an Empirical Characterization.

In: ICSE ’24. Association for Computing Machinery 2024; New York, NY, USA

46. Ranzato M, Chopra S, Auli M, Zaremba W. Sequence level training with recurrent neural networks. In: 2016.

47. Pasunuru R, Bansal M. Multi-Reward Reinforced Summarization with Saliency and Entailment. In: 2018:646–653

48. Chen Y, Lu X. Deep category-level and regularized hashing with global semantic similarity learning. IEEE transactions on cybernetics.

2020;51(12):6240–6252. doi: 10.1109/TCYB.2020.2964993

49. Nakatani Y, Kajiwara T, Ninomiya T. Comparing BERT-based Reward Functions for Deep Reinforcement Learning in Machine Translation. In:

2022:37–43.

50. Yasui G, Tsuruoka Y, Nagata M. Using semantic similarity as reward for reinforcement learning in sentence generation. In: 2019:400–406

51. Cer D, Yang Y, Kong Sy, et al. Universal sentence encoder. arXiv preprint arXiv:1803.11175. 2018.

52. Korbak T, Shi K, Chen A, et al. Pretraining language models with human preferences. arXiv preprint arXiv:2302.08582. 2023.

53. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in software engineering. Springer Science & Business Media,

2012.

54. Hellendoorn VJ, Sawant AA. The growing cost of deep learning for source code. Communications of the ACM. 2021;65(1):31–33. doi:

10.1145/3501261

55. Xu FF, Alon U, Neubig G, Hellendoorn VJ. A systematic evaluation of large language models of code. In: 2022:1–10

56. Wieting J, Gimpel K. ParaNMT-50M: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations. In:

2018:451–462

57. Wu Y, Schuster M, Chen Z, et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv

preprint arXiv:1609.08144. 2016.

58. LeClair A, McMillan C. Recommendations for Datasets for Source Code Summarization. In: 2019:3931–3937

59. Allamanis M. The adverse effects of code duplication in machine learning models of code. In: 2019:143–153

60. Shi L, Mu F, Chen X, et al. Are We Building on the Rock? On the Importance of Data Preprocessing for Code Summarization. In: ESEC/FSE

2022. Association for Computing Machinery 2022:107–119

61. Haque S, Bansal A, Wu L, McMillan C. Action Word Prediction for Neural Source Code Summarization. 28th IEEE International Conference on

Software Analysis, Evolution and Reengineering. 2021. doi: 10.1109/SANER50967.2021.00038

62. Roy D, Fakhoury S, Arnaoudova V. Reassessing Automatic Evaluation Metrics for Code Summarization Tasks. In: 2021

63. Radford A, Wu J, Child R, et al. Language models are unsupervised multitask learners. OpenAI blog. 2019;1(8):9.

64. Karpathy A. nanoGPT: The simplest, fastest repository for training/finetuning medium-sized GPTs.. https://github.com/karpathy/nanoGPT; 2023.

65. Su CY, McMillan C. Distilled GPT for source code summarization. Automated Software Engineering. 2024;31(1):22.

66. Sridhara G, Hill E, Muppaneni D, Pollock L, Vijay-Shanker K. Towards automatically generating summary comments for java methods. In: ACM.

2010:43–52

67. Ferretti C, Saletta M. Naturalness in Source Code Summarization. How Significant is it?. In: IEEE. 2023:125–134.

68. Rani P, Blasi A, Stulova N, Panichella S, Gorla A, Nierstrasz O. A decade of code comment quality assessment: A systematic literature review.

Journal of Systems and Software. 2023;195:111515.

69. Dell N, Vaidyanathan V, Medhi I, Cutrell E, Thies W. " Yours is better!" participant response bias in HCI. In: 2012:1321–1330

70. Chyung SY, Barkin JR, Shamsy JA. Evidence-based survey design: The use of negatively worded items in surveys. Performance Improvement.

2018;57(3):16–25. doi: 10.1002/pfi.21749

71. Sievertsen HH, Gino F, Piovesan M. Cognitive fatigue influences students’ performance on standardized tests. Proceedings of the National

Academy of Sciences. 2016;113(10):2621–2624. doi: 10.1073/pnas.1516947113

72. Sheldon MR, Fillyaw MJ, Thompson WD. The use and interpretation of the Friedman test in the analysis of ordinal-scale data in repeated measures

designs. Physiotherapy Research International. 1996;1(4):221–228. doi: 10.1002/pri.66

73. Ghorbani A, Cassee N, Robinson D, et al. Autonomy Is an Acquired Taste: Exploring Developer Preferences for GitHub Bots. In: ICSE ’23. IEEE

Press 2023:1405–1417

