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Analysis of singularly perturbed stochastic chemical reaction networks
motivated by applications to epigenetic cell memory*

Simone Brunoff Felipe A. Campos'$ Yi Fu® Domitilla Del Vecchiof Ruth J. Williams?

Abstract.

Epigenetic cell memory, the inheritance of gene expression patterns across subsequent cell divisions, is
a critical property of multi-cellular organisms. In recent work [10], a subset of the authors observed in a
simulation study how the stochastic dynamics and time-scale differences between establishment and erasure
processes in chromatin modifications (such as histone modifications and DNA methylation) can have a critical
effect on epigenetic cell memory. In this paper, we provide a mathematical framework to rigorously validate and
extend beyond these computational findings. Viewing our stochastic model of a chromatin modification circuit
as a singularly perturbed, finite state, continuous time Markov chain, we extend beyond existing theory in
order to characterize the leading coefficients in the series expansions of stationary distributions and mean first
passage times. In particular, we characterize the limiting stationary distribution in terms of a reduced Markov
chain, provide an algorithm to determine the orders of the poles of mean first passage times, and determine
how changing erasure rates affects system behavior. The theoretical tools developed in this paper not only
allow us to set a rigorous mathematical basis for the computational findings of our prior work, highlighting
the effect of chromatin modification dynamics on epigenetic cell memory, but they can also be applied to other
singularly perturbed Markov chains beyond the applications in this paper, especially those associated with
chemical reaction networks.

Key words. singular perturbation, continuous time Markov chain, multimodal stationary distribution, mean
first passage times, epigenetic cell memory, chromatin modification circuits

MSC codes. 92C40, 92C42, 60J28

1 Introduction

1.1 Background Epigenetic cell memory, the inheritance of gene expression patterns
across subsequent cell divisions [22], is a critical property of multi-cellular organisms of intense
interest in the field of systems biology [30,31]. It has previously been discovered that chro-
matin modifications, such as DNA methylation and histone modifications, are key mediators
of epigenetic cell memory [1,14,21,24] (see references in [10] for more biological background).
More precisely, it was found via simulations of stochastic models that the time scale separation
between establishment (fast) and erasure (slow) of these modifications extends the duration
of cell memory, and that different asymmetries between erasure rates of chromatin modifica-
tions can lead to different gene expression patterns [10-12]. Here, we provide a mathematical
framework to rigorously validate these computational findings and to further explore models
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of chromatin modification circuits. We do this in a way that the results obtained and the tools
developed can be applied to other mathematical models beyond the applications in this paper,
especially stochastic models of chemical reaction networks.

1.2 Focus of our work In this paper, we consider different versions of the chromatin
modification circuit proposed in [10]. In particular, we start with simpler circuits that include
histone modifications only and then we consider more elaborate circuits that include also DNA
methylation. All of these circuits can be viewed as examples of Stochastic Chemical Reaction
Networks (SCRNs). A SCRN is a continuous time Markov chain living in the non-negative
integer lattice in d-dimensions, where the components of the Markov chain track the number
of molecules of each of d species in the network over time, and each jump of the Markov chain
corresponds to the firing of a reaction in the network [2|. A more precise description is given
in Section 3.2.

In order to analyze these stochastic models, we first determine how the stationary distri-
butions and mean first passage times between states vary when a small parameter £ (non-
dimensional parameter that scales the speed of the basal erasure of all the chromatin modifi-
cations) tends to zero. To this end, we show that the stationary distributions and the mean first
passage times of these singularly perturbed Markov chains admit series expansions in € and
we develop theoretical tools to determine the coefficients in these expansions. Then, we focus
on determining how the different erasure rates of chromatin modifications affect the behavior
of the chromatin modification circuit models. This latter study is conducted by exploiting
comparison theorems for Markov chains recently developed in [13].

One of the key features of our work is that these tools and the associated mathematical
results are not only applicable to the chromatin modification models, but they can also be
used to analyze other models that respect the same set of assumptions.

1.3 Related work As mentioned in the previous paragraph, the stochastic behavior of
the chromatin modification circuit models can be described by singularly perturbed continuous
time Markov chains. There is some literature on discrete and continuous time, singularly
perturbed Markov chains, especially by Avrachenkov et al. [6], Hassin & Haviv [20], Beltran
and Landim [7,8], and Yin & Zhang [32]. Avrachenkov et al. [6] gave general characterizations
of series expansions for the stationary distribution and mean first passage times of a singularly
perturbed discrete time Markov chain with finite state space. While their theory can be in
principle translated to continuous time Markov chains, our work mostly deals directly with the
singularly perturbed continuous time Markov chains and provides more concrete theoretical
results for the leading coefficients of the stationary distribution series expansion and the orders
of the poles of the mean first passage times. For the leading coeflicients in the series expansion
for the mean first passage times, we use in part the results of Avrachenkov & Haviv [5] and
Avrachenkov et al. [6] and adapt their work to the continuous time Markov chain setting. We
treat in detail the case where the chain for £ = 0 has more than one absorbing state and at
least one transient state. Furthermore, we also provide an interpretation of leading coefficients
in the series expansion of the stationary distribution in terms of a certain restricted Markov
chain. An algorithm we give to determine the order of the pole of the mean first passage time
extends the work of Hassin & Haviv [20] from discrete time to continuous time. We also extend
the original algorithm’s scope to treat mean first passage times to a subset of states, instead
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of just a single state. Beltran and Landim [7,8] study metastable and tunneling behavior for a
sequence {nV }%—; of time-homogeneous continuous time Markov chains with countable state
spaces. Under an acceleration of time by a factor 6y, they give conditions under which the trace
of the accelerated process on the metastates is asymptotically Markovian as N — oco. For our
case, this would correspond to accelerating time for n’ = X¢ by Oy ~ é Beltran and Landim
identified the transition rates for the limiting Markov chain and proved that its stationary
distribution can be obtained as a limit from the stationary distribution for n’. While this
work is potentially related to what we did, it requires knowing the stationary distribution
for ™ a priori. Our approach does not need to know that stationary distribution explicitly
and we also study mean first passage times, giving explicit asymptotics for both. Finally,
Yin & Zhang [32] conducted an extensive study focused on determining matched asymptotic
expansions for the marginal distributions at time ¢ of singularly perturbed continuous time
Markov chains. Their infinitesimal generators, generalizing those of Phillips & Kokotovic [29]
and Pan & Basar (28], are of the form Q(e) = éQ(O) + QW and can be time dependent. For
the time independent case, this would correspond to studying the marginal distributions of our
Markov chain X¢ in the "linear" case and at time é as € — 0, i.e., lim._y Xg(é). Thus, while
their work potentially might provide information about stationary distributions as ¢ — 0, we
directly study the power series expansion (in ¢) of the stationary distribution of X¢, and we
also study series expansions of mean first passage times for X¢, and we develop more concrete
analyses for both.

1.4 Outline of the paper In Section 2 we introduce two simplified models for the chro-
matin modification circuit that do not include DNA methylation. Through these examples,
we introduce the mathematical setting and questions we address in this paper. We describe
the basic setup and definitions needed for this paper in Section 3. We present our main results
in Section 4. Some proofs are given there, whilst others are in the Supplementary Information
(SI). Further applications of the theoretical tools developed in Section 4 for chromatin modifi-
cation circuits that include DNA methylation are presented in Section 5. Concluding remarks
are given in Section 6.

1.5 Preliminaries and notation Denote the set of integers by Z. For an integer d > 2 we
denote by Z¢ the set of d-dimensional vectors with entries in Z. Denote by Z, = {0,1,2,...},
the set of non-negative integers. For an integer d > 2 we denote by Zi the set of d-dimensional
vectors with entries in Z. We denote by 1 a vector of any dimension where all entries are 1’s.
The size of 1 will be understood from the context. The set of real numbers will be denoted
by R, Ry = [0,00), R>¢ = (0,00), and d-dimensional Euclidean space will be denoted by RY
for d > 2. For integers n,m > 1, the set of n x m matrices with real-valued entries will be
denoted by R™ ™. The set of complex numbers will be denoted by C.

Let X be a finite set. If needed, we will enumerate the entries of X by {1,...,|X|}. For
a matrix A = (Azy)eyecx with real-valued entries, we denote the kernel of A by ker(A) :=
{z € R* . Az = 0} and the nullity of A by nullity(A) := dim(ker(A4)). We denote the
spectrum of A by sp(A) and the spectral radius by spr(A) = max{|A| : X € sp(4)}. A
matrix Q = (Quy)zyecx Will be called a Q-matrix if Q,, > 0 for every  # y € X and
Q1 = 0. We denote the identity matrix, which has 1’s on the diagonal and zeros elsewhere,
by I = (I4y)zyecx. For a vector v = (v;)zcx we denote by diag((vs)zex) the diagonal matrix
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in X with entries given by v. Vectors are column vectors unless indicated otherwise and a
superscript of 1" will denote the transpose of a vector or matrix. For integers n,m > 1 and
a matrix A € R™™, we denote by ||All = (327, D21, |A; j|2)Y/2 the Frobenius norm of A,

For a vector v € R", we denote the Euclidean norm of v by ||v| = (321, |v:?)/2.

Definition 1.1. Given a matriz A©) in R™™, a real-analytic perturbation of A©) is a
matriz-valued function A : [0,e9) — R™™ ™, where €9 > 0, and

(1.1) Ae) = ZskA(k), 0 <e <ey,
k=0
in which {A®) : k >0} is a sequence of matrices in R"*™ such that

o
(1.2) ZskHA(k)H < 00, for every 0 < e < &.
k=0

Such a perturbation is called linear if A(e) = A©) + A for 0 <e < g.

By (1.2), a real-analytic perturbation of A can be extended to a function F(z) :=
S22 528 A®) defined on B(0,e9) = {z € C : |2| < go}. The function F will be called an
analytic perturbation or complex-analytic perturbation of A(?). This extension will
allow us to invoke results in complex analysis in order to study real-analytic perturbations.
An example of this is the following result.

Proposition 1.2. Let A : [0,e9) — R™ "™ be a real-analytic perturbation of A©) such that
A~Y(e) emists for every 0 < & < eg. Then, there is e1 € (0,20) and p € Z such that

(1.3) A7Ne) = Z B®) 0<e<e,
k=—p

where > 772 e¥|BR)|| < 0o for every 0 < e < e1, {B®) : k> —p} is a sequence of matrices

in R™ " BP) is not the identically zero matriz and p is called the order of the pole at
e=0.

This result is given in the analytic setting as Theorem 2.4 in [6]. Proposition 1.2 follows by
extending A(-) to a complex disk, then using Cramer’s rule as in the proof of Theorem 2.4
in [6] and checking that the matrices {B*) : k£ > —p} obtained are real-valued.

2 Motivating Example: Chromatin Modification Circuit In order to understand how
the interactions among known chromatin modifications influence epigenetic cell memory, we
consider the chemical reaction model of the gene’s inner chromatin modification circuit intro-
duced in [10]. This model has the nucleosome with DNA wrapped around it, D, as a basic unit
that can be modified either with activating marks, such as H3K4 methylation (H3K4me3) or
H3K4 acetylation (H3K4ac), or repressive marks, such as H3K9 methylation (H3K9me3) or
DNA methylation. H3K4me3 and H3K4ac are two histone modifications that promote a less

Here, we chose to fix a particular norm on R™*™, although other choices of norm will often work.
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compact DNA around the nucleosomes and they are then associated with gene activation (see
Chapter 3 of [1] and [33]). In the model, it is assumed that H3K4me3 and H3K4ac co-exist
and the nucleosome with either of these modifications is represented by D*. On the contrary,
both the histone modification H3K9me3 and DNA methylation cause the DNA to be tightly
wrapped around the nucleosome and therefore, they are associated with gene repression [22].
A nucleosome with DNA methylation only, H3K9 methylation (H3K9me3) only or both is
represented by DY, DY and DY, respectively.

One of the key parameters of the system is € > 0, a non-dimensional parameter that scales
the speed of basal erasure of all chromatin modifications. We are interested in studying the
behavior of the system in the limiting regime ¢ — 0, in which the chromatin modification
system has a bimodal limiting stationary distribution [10]. One peak corresponds to the active
chromatin state (most of the nucleosomes are modified with activating marks) and the other
one is in the repressed chromatin state (most of the nucleosomes are modified with repressive
marks). We aim to derive formulas that characterize, as € goes to 0, the behavior of the
stationary distribution and the “time to memory loss” of the active (repressed) state, defined
as the mean first passage time to reach the repressed (active) state, starting from the active
(repressed) state.

Two other critical parameters of the system are p and p’: they capture the asymmetry
between the erasure rates of repressive and activating chromatin modifications. More precisely,
i (i) quantifies the asymmetry between erasure rates of repressive histone modifications
(DNA methylation) and activating histone modifications. Part of our study is to analytically
determine how p and ' affect the stationary distribution and the time to memory loss of the
active and repressed states.

In this section, we introduce two simplified models of the chromatin modification circuit in
which, compared to the full model described above, DNA methylation is not included and the
only chromatin marks are histone modifications. We will use these simpler models in Section
4 to directly apply and then better understand the theory developed in this paper. Then, in
Section 5 we deal with more elaborate models that also include DNA methylation. Note that,
for consistency, we use the same notation for the species and the reaction rate constants as
the one used in the paper where these models were introduced [10].

2.1 1D model We first consider a simplified model in which a gene has a total of Dot > 2
nucleosomes, where each nucleosome either has an activating histone modification, D*, or a
repressive histone modification, DR, and there are no unmodified nucleosomes in this sim-
plified model. If the amounts of nucleosomes having repressive (D®) and activating (D?)
modifications are denoted as npr and npa, respectively, then we have the conservation law
npr +npa = Dior. We call this the 1D model because it suffices to keep track of the amount of
DR (for example), since the amount of DA can be deduced by the conservation law. Further-
more, the basal and recruited erasure of D (DR) coincide with the basal de-novo establishment
and maintenance of D® (D?). The chemical reaction system for this 1D model is the following:

A LA
O DA +DF 22, DR 4 DR @ DA, pR,
(2.1)

kR R
@ DR 4+ DA £ DA+ DA (@) DR —5 DA,
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(a) @ (b) state x = npe Dy =3 (€
pA 2 DR =D oy Q1x1(6)
% ® *—0—0—0 Npr Qx,x-l(g) *

Figure 1: 1D model. (a) Chemical reaction system. The numbers on the arrows correspond to
the chemical reactions associated with the arrows as described in (2.1) in the main text. (b) Markov
chain graph. Here, we consider Dy, = 3 and we use black dots to represent the states, red arrows to
represent transition rates that are O(1), and blue arrows to represent transition rates that are O(e). (c)
Directions of the potential transitions of X¢ starting from a state x, whose rates are given in equation
(2.2).

where 6, ké, l%g, k]g, Eg > 0. Here, the form of the reaction rate constants is due to the fact
that reactions with the same reactants and products have been combined. We denote the

reaction volume by V, and let ¢ := kgf&ﬁ?/m = kg(D(S:,t/V)’ where 04 = 0 + Eé. We also
consider the constant u := %, which captures the asymmetry between the erasure rates of
repressive and activating histone modifications. We introduce the constant b such that pub = g—f,
with ép := 0 + l_cg. Then, 4 = 5% and dr := daub = 6%#(). So, as € — 0, both §4
and dp go to 0, with Dy, %, 1, and b fixed.

Now, consider a continuous time Markov chain X¢, with state space X := {0,..., Dot },

where Dyioy > 2 is an integer, which keeps track of npr through time. Given that we have
the conservation law npr + npa = Diot, npa can be obtained as a function of npr, that is
npa = Diot — npr. Assuming stochastic mass-action kinetics (including the usual volume
scaling of rate constants [16]), the infinitesimal generator Q(g) 2 for X¢ is given by:

kg kg Y-
(71‘ + 57Dt0t> (Dtot — l‘) if¢=1
A A
(22) Qz,w+€(5) = 1% (kVE(DtOt - .T) + b&kVEDtm) €T if ¢ =-1
0 otherwise,

forw € X, 0 € Z\{0} and v+ ¢ € X, and Qq2(¢) = — X e\ (4} Qay(e) for @ € X We
extend this definition to € = 0 by defining Q, ,(0) := lim.0 Q4 y(¢) for z,y € X. We will
follow a similar convention for other examples. We consider X° to be the continuous time
Markov chain with infinitesimal generator given by Q(0). The process X° corresponds to a
SCRN model associated with the autocatalytic reactions (1) and (3) in (2.1), alone. Note that

(2.3) Q) =Q0 40,  £>0,

for appropriate matrices Q(® and QM) in RI*IXI*I. By (2.3), we can see that Q(-) is a real-
analytic (and moreover linear) perturbation of Q(®) (see Section 1.5 for definitions). Note that

2Note that Q(e) is sometimes called an infinitesimal transition matrix. The entries Q. 4(¢) for x # y are
the infinitesimal transition rates of going from z to y: P[X°(t+h) = y|X°(t) = 2] = Qa,y(e)h+0(h) as h — 0.
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for every ¢ > 0, X¢ is irreducible, while X° has a transient communicating class {1, ..., Dyt —
1} and two absorbing states (0 and Dyt) (see SI - Section S.8). Because of this discontinuity
at ¢ = 0, we say that Q(-) is a singular perturbation of QO (see Section 3.1 for a precise
definition).

We first want to determine the probability for the gene to be in the active state a (z = 0),
repressed state r (x = Dyot) or one of the intermediate states (z € {1,...,Diot — 1}) after
a long time (life-time of the organism), as a function of €. We are especially interested in
the limit of the stationary distribution for the system, m(¢), as ¢ — 0 (i.e., the basal erasure
rate of the chromatin modifications is much lower than their maintenance rate). Since X¢ is
irreducible for ¢ > 0 (and it has a finite state space), it has a unique stationary distribution
m(e). In Section 3.1 we show that 7(0) := lim._,o 7(¢) exists and the function 7(-) admits a
convergent power series expansion:

oo
(2.4) m(e) = Zskw(k) for 0 <e < ey,
k=0

for some €1 > 0. In order to determine 7(0), we can take limits and observe that 7(0)Q(0) =0
and so 7(0) is a stationary distribution for Q(0). Indeed, 7(0) is a specific mixture of atoms
on the two absorbing states (0 and Dy,t) for X°.

In Figure 2 we see how the function 7(g) changes as € — 0 for several values of p with Dyet,

A
kVE and b fixed. Furthermore, for this simpler chromatin modification circuit, because of the
birth-death structure of X¢, we can obtain explicit formulas for 7(g) when ¢ > 0 (see SI -
Section S.8). On letting ¢ — 0, we obtain:

bHDtot

T Dot ifx=0
(2.5) 70(0) = 4 0 if2e{l,... Dy —1}
m if x = Dtot.

Thus, 7,(0) # 0 only for x = 0 and x = Dy, and m(0) increases as p increases, while 7, _, (0)
decreases as i increases.

For continuous time Markov chains beyond the one-dimensional birth-death processes seen
here, determining 7(0) will be a considerable task. In Section 4.1, we address the problem of
determining 7(0), together with the whole expansion (2.4), in a systematic way, for a class of
singularly perturbed Markov chains that includes our models of chromatin modification cir-
cuits. For the 1D model considered here, the derivation of the first two terms in the expansion
is given in Section 4.1.2.

Now, in order to evaluate the time to memory loss of the active and repressed states, let us
define the first passage time as 7, = inf{t > 0: X°(¢) = y} for a state y € X'. We will see in
(3.4) that the mean first passage time (MFPT) for X* starting from = € X, hy y(e) = Ez[7;],
has a Laurent series expansion of the form:

(2.6) hay(e) =

Cg;pf’+...+%+60+601+--~ for 0 <e <egy,

for some £g,y > 0, for some natural number p > 0 and where c_j, # 0. Then, considering the
repressed state r = Dy and the active state a = 0, we define the time to memory loss of the
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Figure 2: Histograms for the stationary distribution 7(¢) of the Markov chain X¢ defined
by (2.2), for different values of ¢ and u. The plot was generated by numerically solving
m(e)Q(e) = 0 using the Eigenvector function in Mathematica. The parameters used were

Dtot 50k/V—1 and b= 1.

repressed state as hy4(e) and the time to memory loss of the active state as hq (). Now, we
are interested in the derivation of analytical formulas for h,q(c) and hq, (). This will allow
us to understand how the time to memory loss changes as ¢ — 0, and how the asymmetry of
the system, represented by u, affects this limit. For this case study, exploiting its birth-death
structure, we can directly derive relevant formulas (see SI - Section S.8, SI - Equations (S.65)-
(5.66)). In particular, defining X = Qg 2+1(€), 75 = Qza—1(€), wWith Qg »11(¢) and Q z—1(¢)

ASAS.. S , )
defined in (2.2), and 7§ = =_2—£, for j = 1,2,..., Dyt — 1, the time to memory loss of the
J
repressed state is given by

ViS5
Dtot—1 Dtot—1 re i—1 1 1
(27)  hrale) = D (14 Z DI Bl EE DD I
’yDtot =2 Vi Ty

.. . - i s — 1Dy —2 YDy s — s . .
Similarly, defining 7§ = ytot—ztot ztot=? - for j = 1,2,..., D¢t — 1, the time to memory
J Dtot =17 Dot =2 ""Diot —J

loss of the active state is given by

Dtot—1 Dtot—1 ~€ i—1

TDyor—1 Tio1 1 1
(2.8) ha,r(g):Tg 1+ Z ~s + Z A\E , 1+ZE T

i=2 Dtot—¢ j=1"1J )\Dtot—l

Since A and vf,  are the only transition rates that are O(e) with the rest being O(1), the
time to memory loss of both the active and repressed states are O(e~!), that is, p = 1, and as
€ — 0, these mean times tend to infinity.
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(a) (b) npa Np = Diwt —Hpr —Hpa (C)
state x = (xi,22) "= (npr, fipa)” fa(x,3)
D
® @ Dot =3 T )
2 R «— @ Jr(x1,X)
4_ —o—
/—\M/—\ lT Ge(x,%) | (a,%)
DR ® DA —e—e
lT lT gi(xl’xz)
e

Figure 3: 2D model. (a) Chemical reaction system. The numbers on the arrows correspond to
the reactions associated with the arrows as described in (2.9) in the main text. (b) Markov chain
graph. Here, we consider D,y = 3 and we use black dots to represent the states, red arrows to
represent transition rates that are O(1), and blue arrows to represent transition rates that are O(e).
(c) Directions of the possible one step transitions for X¢ starting from a state x = (x1,72)”, whose
rates are given in equation (2.10).

Furthermore, 7%, with € {1,2, ..., Dyt }, are the only rates that depend on u (they are linear
in p). Examining (2.7) and (2.8) with this observation in mind, we see that, if u is increased
(that is, the erasure rate of the repressive histone modification is increased compared to that
of the active histone modification), hg,(¢) increases, while h, o(¢) decreases. The opposite
happens when p is decreased.

More complicated situations arise when we do not have a birth-death structure to work with,
as in the model of the next example. To evaluate how critical system parameters affect the
time to memory loss for such more elaborate systems, in Section 4, we develop an algorithm
to determine p (see Section 4.2.1), we give an expression for the leading term in the series
expansion of the mean first passage time, and we exploit theoretical results developed in our
paper [13] for comparing continuous time Markov chains, to determine how the asymmetry of
the system affects the time to memory loss (see Section 4.3).

2.2 2D model Let us consider a model in which, compared to the previous one, we
assume that a nucleosome can also be unmodified. More precisely, in this case we denote
the number of nucleosomes unmodified (D), modified with repressive modifications (D®), and
modified with activating modifications (D*) by np, npr and npa, respectively, and we have
that np+npr+npa = Dyet, with Doy representing the total number of nucleosomes within the
gene. Furthermore, each histone modification autocatalyzes its own production and promotes
the erasure of the other one [10,17|. The chemical reaction system is the following:

(2.9)
kivo + kv, A A R HA L A A S+kp A PR kB R
O D " DA 2)D+D* 24 DA+ DA, 3) DY —5 D, (O D* +DF -2 D+ DR,
ko + kiy 5y S+ kg A KR A
G) D Lrethw, pR @ D+ DR M, pR 4 DR @) DR L b ®) DR 4+ DA L2 Dy DA,

where k:{;‘vo,k{;‘[,,kﬁ,d, Eé,ké,kﬁ,o,k%,kﬁ,l}g,kg > (0. Here, the form of the reaction rate
constants is due to the fact that reactions with the same reactants and products have been
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combined. Now, similarly to what we did for the previous model, let us denote the reaction

volume by V, and let ¢ := Ok = 04 with 64 = 0 + k4, and p := ke
Y T M Dw/V) | kR (Deer/V) A = E o=

Additionally, consider the constant b such that ub = g—i, with égp == 0 + k:g. Then dr =
A A

dapb = 5@ub. So, as € — 0, both d4 and dr go to 0 with Dy, Far Dt , i and b fixed.

We consider the continuous time Markov chain X¢ = {(X%(t), X5(¢))7, ¢ > 0}, which keeps
track of (npr,npa) through time. Since the total number of nucleosomes Dy is constant, the
state space is X = {x = (z1,12)T € Zi : 21 + 2 < Diot }. The potential one step transitions
for X¢ from x € X’ are shown in Figure 3(c), where the associated transition vectors are given
by v1 = —vg = (0,1)” and v3 = —vy = (1,0)” and the infinitesimal transition rates (assuming
mass-action kinetics with the usual volume scaling of rate constants) are given by

(2.10)
A a ki
, 1 = = ot — ET3 )
Qurin (&) = Fa(e) = Duas — o1+ 22) (Ko + iy + ik
kR
Qurin &) = Fi(e) = (Duas = o1+ 22)) (Il + Ky + Tk ).
. ki ki i ki ki
Qz 210, (€) = g5 (x) = 22 57Dtot + xlv s Quatos(€) = gp(x) =210 57Dtotb + 11727 .

This is a more complicated model compared to the previous example and, in order to study
its stationary distribution and mean first passage times, we will exploit the theory developed
in this paper, as shown in Section 4.

3 Basic Setup and Definitions In Section 3.1 we provide basic definitions for singularly
perturbed continuous time Markov chains and describe some key properties for them. In
particular, we describe the form of series expansions for their stationary distributions and
mean first passage times. We will study these quantities and apply our results to a class of
continuous time Markov chains called Stochastic Chemical Reaction Networks (SCRNs) which
are defined in Section 3.2. Our models of chromatin modification circuits will be SCRNs. All
of the models considered will have a finite state space.

3.1 Singularly perturbed, finite state, continuous time Markov chains Suppose X is
a finite set and |X’| > 1. For a value g9 > 0, consider a family {X¢: 0 <& < gy} of continuous
time Markov chains with state space X’ and infinitesimal generators {Q(e) : 0 < & < g} where
e — Q(e) is a real-analytic perturbation of (0). Thus,

(3.1) Q(e) = QO +2QW + 2D 1 ...

where {Q™*) : k > 0} is a family of | X'| x |X| real-valued matrices such that 3>, £¥||Q®)|| < oo
for every 0 < € < g9. Assume that the continuous time Markov chains X¢ are irreducible for
0 < € < g. In this context, the perturbation is singular when X° has more than one
recurrent class. This notion of singular will be the focus of our attention although some of our
work applies for the regular (non-singular) case too. All of our chromatin modification circuit
models have associated singular continuous time Markov chains, where the perturbation is
linear, i.e., Q%) = 0 for every k > 2.
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When 0 < € < gq, there is an equivalent characterization of X¢ using holding times with ex-
ponential parameters {¢;(¢)}zex and a transition probability matrix P(e) for the embedded
discrete time Markov chain. Specifically, for each x € X, ¢,(¢) = —Qg () # 0, since X*

is irreducible, and for all z,y € X, P, () =0, Ppy(e) = Qq”:-’(’;)s), for y # x in X. Note that
Q(e) = diag(q(e))(P(e) —I). The matrix P(e) has a power series expansion in ¢ for sufficiently
small 0 < e < ep for some ep > 0 (the justification is similar to that for (3.7) below).

The first quantities we are interested in studying are mean first passage times. Consider a

nonempty set B C X such that B # X and let

T = inf{t > 0: X°(t) € B}.
We define the mean first passage time (MFPT) (for X¢) from z € X to B as
hyp(e) = Elrg | X°(0) = z].

If B = {y} for some y € X, we adopt the notation: hy,(c) := hy (1 (e). Using first step
analysis (see (3.1) in [26]), for 0 < e < &,

(3.2) b () 0 ifxeB
: B(e) = : .
* q%(a) + > yex Poy(e)hyp(e) if x € Be.

Now, define P5°(¢) and Q®°(¢) as the matrices obtained by removing the columns and rows of
P(e) and Q(¢), respectively, corresponding to states in B. Then, by noting that I — PB5°(¢) is
invertible (see SI - Lemma S.3) and that Q%" (¢) = — diag((qz(¢))zese)(I—P5°(¢)) is invertible,
from (3.2), we obtain

(3.3) hs(e) = —(Q% (e))7'1,

where hg(e) := (hgB(€))zeBe, I is the identity matrix of dimension |B¢|, and 1 is the vector
of all 1’s, of size |B|. Proposition 1.2, yields that there is 0 < e5 < £ such that —(Q5"(¢))~"
can be expanded as a matrix-valued Laurent series as in (1.3) for 0 < ¢ < eg, and then for
each x € B¢,

(3.4) Eolrg] = hap(e) = Y pPek, 0<e<ep,
k=—p(z)
where p(z) > 0 is an integer, p(w_p(x)) > 0, pg;k) € R for k > —p(x), and the convergence is

absolute convergence for 0 < ¢ < eg. The quantity p(z) will be called the order of the pole
of (3.4). In Section 4.2.1 we will show how to find p(z) by using an algorithm that uses the
order, with respect to €, of the transitions of the Markov chain X¢.

A second quantity of interest is the stationary distribution for X¢. For 0 < ¢ < gy, since X¢ is
assumed to be irreducible and has finite state space, there is a unique stationary distribution
m(e) = (7x(€))zex, which is the unique probability row vector satistying 7(¢)Q(g) = 0. We
are interested in studying m(¢) as € — 0. For this, first consider n5 = inf{t > 0 : X¢(¢) # =}
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and ¢ = inf{t > n} : X°(t) = =}, v € X. Note that IE,[(]] = hy(e) for y # 2. For each
x € X, E;[(Z] is called the mean return time to the state x, and for 0 < e < g¢ satisfies

(3.5) B¢ = ——+ 3 PR, [¢) = —— + 3 Py(e)hyale).
qm(a) y#T qm(a) y#T

It is well known (see Theorem 3.8.1 in [26]) that for 0 < e < &g,

1 1

(€5l qu(e)

From (3.4) and (3.5), we can see that ¢ — ¢z(e)E;[(S] can be extended to an analytic
function on a punctured disk about 0 in C, with a Laurent series expansion having at most
a pole of finite order at 0. The radius of the punctured disk may be smaller than 3. This,
together with (3.6), implies that € — m;(¢) can be extended to an analytic function on a
punctured disk about 0 in C, also with a Laurent series expansion. Since this function is
bounded by one when restricted to sufficiently small positive values of €, we can remove the
singularity at 0 and obtain that 7(0) := lim._,o7(e) exists and furthermore ¢ — (¢) is a
real-analytic perturbation of 7(0). In other words,

(3.6) T (e) = B , reX.

(3.7) m(e) = Zskw(k), 0<e<ey,
k=0

for sufficiently small £ > 0 and where {7(®¥) : Ek > 0} is a sequence of real-valued |X|-
dimensional vectors such that 332 &¥||7(®)|| < 0o for every 0 < & < e;.

3.2 Stochastic Chemical Reaction Networks (SCRNs) In this section, we provide some
background on Stochastic Chemical Reaction Networks. The reader is referred to Anderson &
Kurtz [4] for a more in depth introduction to this subject.

We assume there is a finite non-empty set . = {S1,...,S4} of d species, and a finite non-
empty set Z C Z4 x Z% that represents chemical reactions. We assume that (w,w) ¢ 2
for every w € Zi. The set . represents d different molecular species in a system subject to
reactions Z which change the number of molecules of some species. For each (v™,v") € Z, the
d-dimensional vector v~ (the reactant vector) counts how many molecules of each species
are consumed in the reaction, while v* (the product vector) counts how many molecules of
each species are produced. The reaction is usually written as

To avoid the use of unnecessary species, we will assume that for each 1 < ¢ < d, there exists
a vector w = (wy,...,wg)! € Zi with w; > 0 such that (w,v) or (v,w) is in Z for some
v € Z4 , i.e., each species is either a reactant or a product in some reaction.

The net change in the quantity of molecules of each species due to a reaction (v—,v") € #Z
is described by v — v~ and it is called the associated reaction vector. We denote the set of
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reaction vectors by V := {v € Z¢|v = v+ —v~ for some (v™,v") € Z}, we let n := |V the size
of V and we enumerate the members of V as {v1,...,v,}. Note that V does not contain the zero
vector because Z has no elements of the form (w, w). Different reactions might have the same
reaction vector. For each v; € V we consider the set %,, := {(v",v") € Z|v; = vt —v~}.
The matrix S € R¥¥| whose columns are the elements v — v~ for (v=,vt) € Z will be
called the stoichiometric matrix.

Given (., %) we will consider an associated continuous time Markov chain X = (X,
..., Xq)T, with a state space X’ contained in Zi, which tracks the number of molecules of
each species over time. Roughly speaking, the dynamics of X will be given by the following:
given a current state z = (z1,...,24)7 € X C Z4, for each reaction (v™,v") € £, there
is a clock which will ring at an exponentially distributed time (with rate A¢,~ ,+)(7)). The
clocks for distinct reactions are independent of one another. If the clock corresponding to
(v™,vT) € Z rings first, the system moves from x to # + v — v~ at that time, and then the
process repeats. We now define the continuous time Markov chain in more detail.

Consider sets of species . and reactions &, a non-empty set X' C Zi and a collection of
functions A = {A(~ ) : & — Ry} t)en such that for each z € X and (v—,v") € Z, if
z+vT =07 ¢ X, then Ay, ,+y(z) = 0. Now, for 1 < j < n, define

(39) T](.I‘) = Z A(v_,v+)(x)'

(U7 7”+)€=%1)j

Note that for each x € X and 1 < j < n, if v +v; ¢ X, then T;(x) = 0. The functions
{Aw-vt) + & — Ry} ot)en are called propensity or intensity functions. A common
form for the propensity functions is the following, which is associated with mass action
kinetics:

d
(3.10) Aoty (@) = B oty [ @) o),

i=1
where {K(,~ »+)} (- vt)ez are non-negative constants and for m, £ € Z, the quantity (m) is
the falling factorial, i.e., (m)p:=1 and (m)y:=m(m—1)...(m—£¢+1).

A stochastic chemical reaction network (SCRN) (associated with (., %, X,A)) is a

continuous time Markov chain X with state space X and infinitesimal generator () given for
z,y € X by

Tj(x) if y — 2 =wv; for some 1 < j < n,
(3'11) Qm,y =94 — Z?:l T](x) if Yy =x,
0 otherwise.

A SCRN associated with (&, %, X,A) is said to satisfy a conservation law if there is a
d-dimensional non-zero vector m such that m”S = 0, and hence m” X (t) = w0t for every
t > 0, for some constant xi.t. Consequently, we can reduce the dimension of the continuous

time Markov chain describing the system by one. For example, if m = (1,...,1)”, then the
projected process (X1,..., X4 1)7 is again a continuous time Markov chain with state space
T d—1 _ N\d—=1 _N\T :
AR — PR — 1 = * )
{(z1 x4—1)" € LY | (my Td—1,Teot — )y Ti)' € X'}. In our examples, we will often

use this type of reduction.
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4 Main Results In this section we describe the main theoretical results of this paper,
under assumptions that go beyond those of our models of chromatin modification circuits.
More precisely, we present results on stationary distributions and mean first passage times
in Sections 4.1 and 4.2. Then, in Section 4.3 we exploit theoretical results developed in our
companion work [13] to study monotonic dependence on parameters for a class of continuous
time Markov chains related to chromatin modification circuits and other SCRNs.

4.1 Stationary distributions This section focuses on characterizing the terms in the
series expansion (3.7). In Section 4.1.1 we focus on determining the term 7(®) = 7(0), while
in SI - Section S.2.1 we provide a result which enables computation of all of the higher order
terms 7%, for k > 0, under additional assumptions. In Section 4.1.2 we apply these results
to the examples introduced in Section 2. Additional characterizations of 7(0) and 7 are
given in the SI - Sections S.2.3 and S.2.4. Further examples for higher dimensional models of
the chromatin modification circuits will be given in Section 5. We remind the reader that to
ease notation, we have adopted the convention that stationary distribution vectors will be row
vectors, even though we do not use the transpose notation 7T to indicate this.

4.1.1 The zeroth order term As in Section 3.1, consider a family {X®: 0 < e < gg}
of continuous time Markov chains on a finite state space X, with infinitesimal generators
{Q(e) : 0 <e <ep} where e — Q(e) is a real-analytic perturbation of Q(0) with coefficients
{Q™ : k > 0} and additionally Q(e) is irreducible for every 0 < ¢ < 9. The matrix
Q(0) = QWO is a Q-matrix for which X decomposes into recurrent (or ergodic) states A and
transient states 7. From now on, we assume the following.

Assumption 4.1. The set A consists of |A| > 1 absorbing states for Q(0), while T consists of
|T| > 1 transient states for Q(0).

In other words, in the dynamics of Q(0) there is at least one transient state, at least one
recurrent state and all the recurrent states are absorbing. Now, we label the state space
starting with the states in A and followed by the ones in 7. For every k > 0, we can write

QW) as

&) _ [ Ak | Sk
(4.) o = ().

where Ay € RAXMAIL g, e RMIXITI R, e RITIXMI and T, € RI7IXIT1 In a similar fashion, we
can write

_ (A S6)
2 0= (FETrE)

for 0 < € < gg, where A(e) € RMXIAI S(e) € RMXITI R(e) € RITXMI and T(e) € RITIXITI,
From Assumption 4.1, we obtain that

(1) 2% =0 = (gt )

where Tp is an invertible matrix (see SI - Lemma S.5).
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For each 0 < € < gp, we denote by 7(e) = (7z(€))zex the stationary distribution for @Q(e).
In Section 3.1, we showed that the limit 7 (0) := lim._,o 7(¢) exists and that ¢ — 7(e) is a real-
analytic perturbation of 7w (0) with expansion given by (3.7) for 0 < & < 1. For convenience,
decompose the row vector m(e) as w(e) = [a(e), B(€)] for 0 < £ < £; where a(e) € Rl and
B(e) € RI7TI. From (3.7), letting 7(F) = [a(®), 3], we have

a(e) = Zska(k) and f((e) = Zekﬁ(k)
k=0 k=0

for 0 < e < 7. Since m(e) is a probability distribution for every 0 < ¢ < £, we have that
S oef(r®™1) = 1, which yields that 7(0)1 = 1 and 7¥1 = 0 for every k& > 1. Since
7(0)Q(0) = 0, w(0) is a stationary distribution for X° and so, by Assumption 4.1, it must be
supported on A and so 89 = 0. In the next result we establish an equation that is satisfied
by a® = a(0) and introduce a key matrix for our analysis. For convenience, let o := «(0).

Lemma 4.1. Under Assumption 4.1, 7(0) = [«, 0], where 0 is the zero row vector of size |T]|
and « is an |A|-dimensional probability vector satisfying the equation:

(4.4) a(Ay + S1(=To) ' Ry) = 0.

In addition,

(4.5) BY = a8 (~Tp) "

See SI - Section S.2.2 for the proof of Lemma 4.1. For convenience, we adopt the notation:
(4.6) Q4= A1+ S1(—Tp) ' Ro.

In ST - Lemma S.15, we show that @ 4 is a Q-matrix of size |A| x | A|. As a consequence, there
exists a continuous time Markov chain with state space A and infinitesimal generator @ 4. In
general, a probability vector satisfying (4.4) needs not be unique. The following condition will
imply uniqueness.

Assumption 4.2. The Markov chain associated with Q 4 has a single recurrent class.

By SI - Lemma S.1, Assumption 4.2 is equivalent to the condition dim(ker(Q%)) = 1. The
next result then follows from Lemma 4.1.

Theorem 4.2. Suppose Assumptions 4.1 and 4.2 hold. Then, 7(0) = [«,0], where « is the
unique probability vector on A such that aQ 4 = 0.

As we will see, all of the chromatin modification circuit models presented in this work satisfy
both Assumptions 4.1 and 4.2. Also note that Lemma 4.1 yields a characterization of 5(!) by
means of (4.5).

Theorem 4.2 is simple to state, yet less easy to use since simple formulas for Q) 4 can be
seldom obtained, making Assumption 4.2 hard to verify directly using (4.6). In this regard, we
now introduce an auxiliary continuous time Markov chain X and use it to construct (via time-
change) a realization X A of the continuous time Markov chain with infinitesimal generator
Q4. This will enable us to give assumptions on X that will imply Assumption 4.2 and which
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can sometimes be easier to verify. Also, this explicit realization for X A can lead to alternative
ways to verify Assumption 4.2. Under Assumption 4.1, consider the matrix

(4.7) Q:= < ;21; % ) ‘

In SI - Lemma S.15 we prove that Q is a Q-matrix. Let X be a continuous time Markov
chain with infinitesimal generator Q For the purpose of illustration, if we assume that the
perturbation is linear (as in (2.3)) and ey > 1, then the transitions of X consist of the transi-
tions of X? augmented by the transitions of X! that emanate from A. See Figure 4(a)-(b) for
an illustration related to the 1D and 2D models, respectively, introduced in Section 2.

@ X X X
O+—0—20—0—» O=—0—"0—0— OF——==0
Npr A Apr npr
(b)
npa npa R
Xa
npr

Figure 4: Graphs for the one-step transitions of X¢, X and X 4 for the (a) 1D model and
(b) 2D model. Here, we consider Dy = 3 and we use gray dots to represent the states belonging
to A and black dots to represent all the other states, red arrows to represent transitions that are O(1)
for X¢, X and X4, blue arrows to represent transitions that are O(e) for X, and golden arrows to
represent the transitions for X that were O(e) for X¢ and became O(1) for X.

Now, consider the occupation time of A by the Markov chain X up to time ¢ > 0, given
by xa(t fo 14(X(s))ds for t > 0. Denote by x.4(00) = Lm0 x4(t) = [5° La( X(s))ds.
Since TO is 1nvert1ble SI - Lemmas S.5 and S.6 yield that P,[xa(c0) = oco] =1 for all z € X.
Additionally, consider the right-continuous inverse of x4, 7(s) := inf{t > 0 : xa(t) > s},
defined for s > 0. We define the restriction process X 4 as

(4.8) X4(s) = X(7(s)), s>0.

By properties of the right-continuous inverse (see Problem 4.5 in [23], for example), the reader
may verify that X A corresponds to observing X only on the time intervals where X is in
A. Roughly speaking, we are erasing the times where X is outside of A. In the language of
Blumenthal & Getoor [9], x.4 is a continuous additive functional for X, and by Exercise V.2.11
in 9], we obtain that X A 18 a continuous time Markov chain with state space A. In the next



509
510

ot
)
-~J

N DN
©

ot ot Ut ot Ut gt Ot

ot
w
ot

536
537
538
539
540
541
542
543
544

545

ANALYSIS OF SINGULARLY PERTURBED STOCHASTIC CHEMICAL REACTION NETWORKS 17

result, we prove that X A 1Is a realization of the continuous time Markov chain associated with
Q4. See Figure 4(a)-(b) for a representation of X 4 associated with the 1D and 2D models,
respectively.

Lemma 4.3. Suppose Assumption 4.1 holds. Then, XA has infinitesimal generator Q4.

The proof of Lemma 4.3 is given in SI - Section S.2.2. We now introduce some assumptions
that imply that Assumption 4.2 holds. In addition, these assumptions will allow for some
refinements (see SI - Section S.2).

Assumption 4.3. For )?, there exists a communicating class C such that A C C.

We note that, if such a class C exists, then it has to be recurrent. In fact, if it was transient
then y_4(00) < oo with positive probability under P, = € A, which is a contradiction.

Assumption 4.4. The Markov chain X is irreducible.

We note that Assumption 4.4 implies Assumption 4.3. Moreover, they are both related to
Assumption 4.2 in the following way.

Lemma 4.4. Suppose Assumptions 4.1 and 4.3 hold. Then, the process X 4 is irreducible. As
a consequence, either of Assumptions 4.4 or 4.3 implies that Assumption 4.2 holds.

The proof of Lemma 4.4 is given in SI - Section S.2.2. The next result follows from Lemmas
4.3, 4.4 and Theorem 4.2.

Theorem 4.5. Suppose Assumptions 4.1 and 4.3 hold. Then, m(0) = [a,0] where « is the
unique stationary distribution for the process X 4 and all entries of a are strictly positive.

Assumptions 4.3 and 4.4 can be understood graphically in some cases. For example, Figure
4 illustrates that for the 1D-model, Assumption 4.4 is satisfied. For the 2D-model, we can see
that while Assumption 4.4 is not satisfied (since the state (0,0) forms its own (transient) class
for X ), Assumption 4.3 does indeed hold. In Section 5 we will see that neither Assumption 4.4
nor 4.3 is satisfied by the 3D or 4D model. However, the weaker Assumption 4.2 does hold.

In the SI, we give recursive formulae for the higher order terms 7(®), k =1,2,..., under the
following additional assumption (see SI - Theorem S.9).

Assumption 4.5. The perturbation is linear, i.e., Q(g) = Q) + QW for 0 < e < &.

4.1.2 [lllustrative examples: 1D and 2D model 1D model. We use the tools developed
in the preceding section to derive the terms 7(®) and 7(1) in the expansion (2.4) for the 1D
model introduced in Section 2.1. Fix Diot > 2 and let X© with infinitesimal generator Q(g) be
as in Section 2.1, with the expression for Q) given in (4.1). By (2.3), Assumption 4.5 holds.
Moreover, for each 0 < & < g, with €9 being a fixed, positive constant, Q(¢) is irreducible,
while Q(0) has a non-empty set of transient states 7 = {1,...,D¢ot — 1} and a set of two
absorbing states A = {a,r}, with a = 0 representing the fully active state (npa = Do) and
r = Dyot representing the fully repressed state (npr = Dior). Then, Assumption 4.1 holds (see
ST - Section S.8). Furthermore, by defining f(z) := 2(Diot — x) for € X', we can write the
matrices Ry and T in the matrix Q(© as follows:
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—(\2+49) A0 0 0
kA . . . . .
pEf(L) 0 0 :
0 : AR . 0 :
Ry = : : LTy = 0 7 -0+ A2 0
0 0 : 0 ST :
k3
0 A : Do : 0
0 0 Woo1 —A,_1+7.,-1)

where Ry is a (Diot — 1) X 2 matrix and Tp is a (Dot — 1) X (Dot — 1) tridiagonal matrix, and
ki

79 = u@f(z), M) =T f(z), and f(Dgot — 1) = f(1) = (Diot — 1). In addition, we can write
A; and S; of QW) as follows:

A A
s —Eep2 0 g _ Mepz, 0 ..ol 0
1 — kg 2 ) 1 — kg 2 .
0 —bu~EDio, 0 cor oo 0 bpsEDE

The process X, whose infinitesimal generator is defined in (4.7), is irreducible (see SI - Section
S.8). This is illustrated in Figure 4(a). Thus, Assumption 4.4 holds. Then, Assumption 4.3
is also satisfied and Theorem 4.5 can be applied. This yields that 7(0) = 7(9 = [, 0] =
[, ar,0...,0] where « is the unique stationary distribution for the restriction process X A
(defined by (4.8)), whose infinitesimal generator is Q4 = Ay + S1(—Tp) 'Ry by Lemma 4.3
and (4.6). Now,

(4.9)
1-p kA2 1—p ka2 A
O = ( — 1D Vlztot 1= Dot VDtZt _ 1= p kg —Dl 1D
D 1—pu k 2 D 1—p k 2 _ ;Dtot tot buProt  _pyPtot ?
b/J, tot 17qut 7E]:)tot _bu tot 17#Dwt 7EDtot 1 pte V 1% 2

and since « is the unique probability vector satisfying aQ) 4 = 0, we have

bthot 1
= ANy = ———————.
1+ blthot ’ r 1+ blthot

Qq

These results are in agreement with (2.5) in Section 2.1, where we explicitly computed the
stationary distribution 7(g) and let € — 0 (see SI - Section S.8).

Now, since Assumptions 4.1, 4.3, and 4.5 hold, we can apply SI - Theorem S.9 to de-
rive an expression for S(1). For the transient states 7 = {1,..., Dyt — 1}, we have () =

[ﬂ§1)7 "'77(-1()1t)0t*1] = aSl(_TO)ila and so for z € T

~1 1 kg2 —1
(—TO)M + bM*Dtot(_TO)DwﬁLw

AW bt ki
v 1+ bpProt 7V

(4.10) 14 by Drot 7Dtot
in which (—To)l_,; and (—T())]Stlot_1 . for x € T, are the elements indexed by (1, ) and (Dot —
1,2) of the matrix (—7p)~!, respectively. After some calculations, we obtain
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()i = (%) T2t (1 TRy ) e )(1+HD‘°‘ )

Vv
(E)DWC_Q Dtot 1 (1 + H ) Diot—1—x (1 + H ) Diot—1—z
1% (x) i= 1 K i= 1 H

EA Dot —2 Dtot Ly Diot—1—z 4 Dtot 1-z 4
(#) " B () (i+0 ")
f

-1
(_TO)Dtot—17$ =

AN i B Diot—1 5 ’
(58)™ Ty e (T ) @ (1 IR )
and then 8Y", z € T, can be written as follows:
(4.11) ) _ Dl P DR, P

~ f(x) 14+ bpPrer  2(Dyoy — x) 1 4 bpProt”

2D model. In this section we analyze the stationary distribution for the 2D model in-
troduced in Section 2.2. Fix Dyt > 2 and let X¢ with infinitesimal generator Q(e) be as in
Section 2.1, with the expression for the Q*) given by (4.1). By (2.10), for this model Assump-
tion 4.5 holds. Furthermore, Q(0) has a non-empty set of transient states 7 = {i1,...,im}
where m = WM — 2,41 = (0,Dgor — )T, ipp = (Dot — 1,0)7, and absorbing states
A= {a,r}, with a = (0, Dtot)? corresponding to the fully active state (npa = Dyot) and with
7 = (Diot,0) corresponding to the fully repressed state (npr = Dyot), respectively. Then,
Assumption 4.1 holds (see SI - Section S.9).

From (2.10), we see that Ay =0, Sp = 0 and

A A
—Mupz, 0 Mepz,o0 L 0
Ay = A ; 51 = A :
0 — 4 DZ pb 0 o . 0 SMDZ b

Furthermore, Ry € R™*? is given by

A
f4(0,Dgot — 1) 0 kf?vo + kljj‘v + k%(DtOt -1 0
0 0 0 0
0 0 0 0
R
0 fR(Dtot — 1,0) 0 ko + k5 + k%(Dtot -1

and Rq = 0. The matrices Ty and 77 are more complex and examples of them, for Do = 2,
are provided in SI - Section S.9. For X, C = &'\ {(0,0)} is a communicating class such that
A C C. This implies that Assumption 4.3 is satisfied. Given that Assumptions 4.1 and 4.3 are
satisfied, Theorem 4.5 can be applied and we obtain that 7(0) = 7(9) = [, 0] = [, @, 0. . ., 0]
where « is the unique stationary distribution for the process X A, whose infinitesimal generator
is Qq = Ay + S1(—=To) ' Rg. This means that « is the unique probability vector such that

a(Ay + S1(—=Ty) "' Rg) = 0. Furthermore, given that Assumption 4.5 is satisfied, we can apply
SI - Theorem S.9 to derive an expression for f(1) = [ 1(11), - fi)] = aS1(—Tp)~!. For example,
if Dioy = 2, the matrix @ 4 is given by
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(112) Qa— i ( (ko + K (ol + Y + 55 (il + k)l + R+ 51) )
KV bu? (k{;‘vo—kk{f‘v)(ké‘m—&—k{;‘v k%) —bp? (k1§VO+kA)(kévo+kA kV)
with
(4.13)
k4, kE K K
K = (kivo +kiy + 5 1% +kWOJrkW)(kWOJFkWJF7)+M(kwo+kw+ v +kWO+kW)(kW0+kW+7)

and then 7(9) is given by
4 kA
bu? (kiyo+kiy )(k otk +4)

R

b2 (kiyo ki) (kih 0+k§V+?M)+( W0+k{},)(k@0+k@+kTM)

(414) 79 =<0 ifxeT

R M
(ki iy )(k o thiy %) oE if x = (Dtot,O)T.
bp? (iy o+ ki) (Kiy o+ + M)+( okl ) (kR o +kf+—4)
See SI - Section S.9 for the evaluation of 7T§; ) for the transient states x € 7 when Dio = 2. For
this value of Dy, we see from (4.14) that Wg(g ) depends monotonically on p for each fixed . As

(0) .

D;ot increases, the algebraic complexity of a full parameter representation of 7y, increases very
rapidly. Thus, to investigate monotonic dependence on parameters for biologically relevant
values of Dy (of the order of 50, considering an average gene length of 10,000 bp [15] and
one nucleosome per 200 bp [18]), we shall use comparison theorems developed in [13], without
calculating any explicit formula (Section 4.3).

lf xr = (O, Dtot)T

4.2 Mean first passage times (MFPTs) In this section we develop a theoretical frame-
work to study mean first passage times for continuous time Markov chains. We first develop
an algorithm to determine the order of the pole of MFPTs for singularly perturbed Markov
chains (Section 4.2.1). In Section 4.2.2, we focus on determining the leading coefficient for
MFPTs, under some assumptions introduced in Section 4.1. In Section 4.2.3, we apply these
results to the examples introduced in Section 2.

4.2.1 Algorithm to find the order of the poles for MFPTs Our algorithm is adapted
from an algorithm developed by Hassin and Haviv [20] for discrete time Markov chains. The
idea used in [20] was to consider transitions between subsets of states and to keep track of
the sojourn times in the sets of states. This is used to define a coarser version of the process,
which may not be a Markov process and which moves between groups of states of the original
Markov chain. This idea can be adapted to the continuous time setting as well. For this, we
introduce stopping times to more explicitly track the sojourn times than was done in [20]. In
addition, we extend the original algorithm’s scope to consider the mean first passage time to
a subset of states, instead of just a single state. The paper [20] uses r-cycles and notes that
these could be replaced by more general r-components. Here, we focus on using the latter and
call the set of vertices in such an r-component an r-connected set.

In this section, we consider a singularly perturbed, finite-state, continuous time Markov
chain X¢ on X with infinitesimal generator Q)(¢) as described in Section 3.1. We provide an
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algorithm for finding the orders {p(v) : v € B¢} of the poles for the mean first passage times
to B C X for X¢ starting from states in B¢, where B # () is a strict subset of X. We begin
with a few definitions and some notation and then present the algorithm.

Definition 4.6. Given g9 > 0 and a function f : (0,e9) — Rsq, we say f = O(e*) if there
exist k € 7. and strictly positive m, M € R~q such that, for all 0 < & < &g,

me* < f(e) < Me*.

If f = ©(£") for some k € Z, we say the order (at the origin) of f is k. If f = ©(c™F) where
k € Z, we say that the order of the pole of f is k.

Because the perturbation of X¢ is real analytic, |X| > 1 and X¢ is irreducible for ¢ > 0,
there exists emax > 0 such that for each x # y € X, either Q. () = 0 for all € € (0, emax)
or Qgzy(e) > 0 for all € € (0,emax). In the latter case, the order of @, ,(¢) is a non-negative
integer, which we denote by ky,. We let Ey = {(z,y) : Qzy(e) > 0foralle € (0,emax)}
As the algorithm progresses, states of X are gathered together to form composite nodes and
the graph of the states of X¢ progresses through a series of reduced graphs. If u is a node in
one of the graphs, then S(u) C X consists of the states in X' that are collapsed to form the
(reduced) node u. In Steps 2 and 3 of the algorithm, the function K and the initial values of
p are inductively determined for all of these graphs. The final values of p for nodes in B¢ are
then determined in Step 4. With Iy, being defined, a directed edge (u,v) in one of the graphs
is called an r-edge, where r is for regular, if IC,,, = 0, and an r-path is a directed path in the
graph consisting of r-edges only. A set C in one of the graphs is called an r-connected set if
|C| > 1 and there exists an r-path from u to v for any u # v € C. The order of the pole of
the expected sojourn time spent in an r-connected set C' depends only on the set C' and is
denoted by p(c) where ¢ is a node representing the set C. For any node w outside of C, Ky
and ICyc are the the order of the probabilities of a one-step transition from c to w and
from w to ¢, respectively. In Step 4 of the algorithm, p(-) keeps being updated but will stay
finite and eventually fixate. The algorithm statement and related proof can be found in the
SI - Sections S.3 - S.5.

4.2.2 Leading coefficient in MFPT series expansion In Section 3.1, we have shown
that for each 0 < € < €9, the unique stationary distribution 7(e) for X¢ admits a real-analytic
expansion in powers of . By (3.5) and (3.6), for x € X,

(4.15)

= (@B ] = 1+ ) Quy(e)hya(e).

T (6) y#£T

Recall that Ey = {(z,y) : Qzy(e) > 0 for all € € (0,emax)} and kyy is the order of Qg 4 (¢) for
each (z,y) € Ep. Using the algorithm in Section 4.2.1, we can obtain the order of the pole,
Pz(y), of the mean first passage time hy ;(¢) from y to « for all y # x € X'. Therefore, for each
x € X, the order of 7,(e) is

(4.16) ky = max{p;(y) — kzy : (z,y) € Ey;0} >0,
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and then

() = Z ebr (k).

k=ks

The following theorem is for continuous time and builds on discrete time results of
Avrachenkov et al. [5,6].

Theorem 4.7. Suppose Assumptions 4.1, 4.2 and 4.5 hold. Let Q4 be given by (4.6), X 4 be
as defined in (4.8), and « be the unique stationary distribution for X'A defined in Theorem 4.2.
Let D = (—Q4 + 1a)™' —1a. Fory € X, let ky be the order of the stationary distribution
my(e) of X¢, defined by (4.16). Then, for x,y € A, the mean first passage time from x to y
for X¢ is

_ Dyy— Dy 1 1
(4.17) hay(e) = T +0 <€k> .

Moreover, if X'A is an irreducible Markov chain, then the order of the pole of hyy(e) is one,
i.e., ky =0, and the coefficient of e~ in (4.17) is equal to the mean first passage time from x
to y for the process X 4.

The proof of Theorem 4.7 is given in SI - Section S.7.1.
Remark 4.8. It may be possible that D, , — D, , = 0. In this case,

1 1 1

However, if we find that the order of the pole of hy 4 (¢) is ky+1, using the algorithm in Section
4.2.1, then we can rule out the possibility of D, , — D, , being zero.

4.2.3 [lllustrative examples: 1D and 2D models We first apply the algorithm given
in Section 4.2.1 to find the order of the pole of the time to memory loss in the 1D and 2D
models introduced in Section 2. For the 1D model, we could also directly derive the analytical
expression for the time to memory loss by exploiting first step analysis [26] and solve the
system (3.2) introduced in Section 3.1 (see SI - Section S.8). Figure 5 illustrates the key steps
of the algorithm for the 1D model, which lead to the conclusion that the time to memory
loss for the active state is ©(¢~!). Because of the symmetry in the input graph in Figure 5,
the time to memory loss for the repressed state is also ©(¢~!). These orders found by the
algorithm are consistent with what can be directly derived by first step analysis. Similarly, SI
- Figure S.1 illustrates the key steps of the algorithm for the 2D model, which leads to the
conclusion that the time to memory loss of both the active and the repressed states is ©(e71).

Next, we find the leading coefficient for the time to memory loss in the 1D and 2D models,
which is the coefficient of the e~! term in all cases. Recall from Section 4.1.2 that Assumptions
4.1, 4.3 and 4.5 hold for both 1D and 2D models and hence by Lemma 4.4, so does Assumption
4.2 and XA is irreducible. For the 1D model, @ 4 is given by (4.9). Thus, by Theorem 4.7, the
leading coefficient of the time to memory loss for the active state is the mean first passage time
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Input for the 1D model Stepl o (6) = 0(£%) = 6(1) Step 2 Ko =0
-_— Qxy(g) = @(gkxy) = 9(1)
© ax(e) = 0(eP™) = 0(1) © px)=0
@D 4x(e) = 0(P™) = 8(¢) @ r@=1
B B node a
0—0=9-0=0—"0 - D=0=0-0=0=0)-
NDR| Npr
Step 3 — %, -0 |Step 4 —_— Ky =0
= - @ Etpgl=0E™,
@ p(x) =0 @ p(x) =0 for e{aDch; # Dyot
(before 1% iteration) @ p(x) =1 @ p() =1
r-connected set C (1% iteration)
Q200 @200 O—0—0-0—0 O

Nnpr
(after 1%t iteration) O

node ¢ @ . O B = {Dtot}

Figure 5: Key steps of the algorithm for the 1D model. The algorithm is described in Section
4.2.1, and it finds the order of the pole of the mean first passage time to B C X from each state in 5°.
In our 1D model, the input for the algorithm is the order of each of the non-zero off-diagonal entries
in Q(e) and the set B = {Diot}. The order of the non-zero entries in Q(e) is represented by colored
arrows in the graph in the “Input” panel. Step 1 transforms the orders in the @Q(g)-matrix into the
orders in the P(g)-matrix and the exponential parameters ¢(€) to give an equivalent construction for
the continuous time Markov chain. The order of the non-zero entries in P(e) is represented by colored
arrows in the graph, and the number in the circle at a state x € B¢ is the order of the pole p(z) of ql%(a)
(the mean sojourn time at the state x). In Step 2, the set B is relabeled as the node a, and then all
transitions from a to B¢ are removed. Step 3 for the 1D model involves only one iteration, where the
collection of all nodes except the node a (called an r-connected set ') is condensed to a single node
¢, and the order of the pole at ¢ is p(c) = maxyec p(u) + min{,, : u € C,v ¢ C and (u,v) € E} =
1+ 0 = 1, where E denotes the edge set of the graph in Step 3 before the 1%t iteration. Moreover,
Keo = min{,, : v € C and (u,a) € E} —min{Ky, : v € C,v ¢ C and (u,v) € E} =0—0=0. Step
4 involves one iteration. In this iteration, the node c is the only node other than a, so its value of p is
fixed, and then any edges leading to or from ¢ are removed. When all of the nodes other than a have
been fixed, the order of the pole of the mean first passage time from each state in B¢ to B is given by
the fixed value of the node to which the state belongs.

from the fully active state a to the fully repressed state r in X A, which has an exponential

A A
distribution with parameter (Q4)qr = 1_1/:D"tot kvEDfot since X 4 has only two states. Thus,
L—pPet Vo1
har(e) = —1 el 4+ 0(1),

1- H ké‘ D%ot
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and similarly, the time to memory loss for the repressed state is
1 — pPret v 1

L—p ké bNDmtD%ot
Similarly, in the 2D model, by Theorem 4.7,

hra(e) = e +0().

hor () = @Al)me—l +0(1) and  ha(s) = @j)me_l +0(1).

As an example, when Diot = 2, @ 4 is shown in (4.12) and we obtain that

v K

har(€) = o R e ' +0(1) and
M Akl + ki) (kg + ki + 35)
\% K

hra(€) = el +0(),

A A
AT by (ki + Ky (ki + K+ 59)
with K defined in (4.13).

4.3 Monotonic dependence on parameters An important aspect to consider in the
study of the stochastic behavior of the chromatin modification circuit is that the erasure rate is
different for each type of chromatin modification. These differences can introduce asymmetries
in the system that can affect the stationary distribution and the time to memory loss of the
active state and repressed state. These asymmetries are captured by the two parameters u
and /. In particular, p quantifies the asymmetry between erasure rates of repressive and
activating histone modifications and g/ quantifies the asymmetry between erasure rates of
DNA methylation and activating histone modifications. In order to determine how the different
chromatin modification erasure rates affect the stochastic behavior of the system, we study
how p and p' affect the stationary distribution and the time to memory loss of the active and
repressed gene states.

For the 1D model of the chromatin modification circuit, that does not include DNA methyl-
ation, we have an analytical expression for the stationary distribution and the time to memory
loss ((2.5), (2.7), and (2.8)) and we can understand the effect of p by directly studying the
formulas. However, for the higher-than-1D models we do not have an explicit expression for
the stationary distribution or time to memory loss. This is the reason why for these models we
exploit the comparison theory developed in [13] that allows to determine how p and u" affect
the stochastic behavior of the system through the construction of a coupling between processes
with different values for these parameters. In the next subsection, we briefly summarize the
relevant theory from [13].

4.3.1 Comparison theorems for continuous time Markov chains Denote by < the
usual componentwise partial order on R?, i.e., for 2,y € R%, 2 < y whenever x; < y; for every
1 < i <d. Letm,d > 1 be integers, consider a matrix A € R™*? where no row of A is
identically zero, and consider the following definition.

Definition 4.9 (Definition 3.1 from [13]). For x,y € R?, we say that x <4 y whenever A(y —
x) > 0 and we say that x ~4 y whenever Az = Ay.
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For the matrix A, consider the convex cone K4 := {z € R?: Az > 0}, and, for any z € R?,
consider the set K4 +2 = {y € R?: A(y—x) >0} = {y € R : x <4 y} and the sets
Oi(Kg+z):={y € Ka+x: (Aje,y) = (Aje,z)} 2 for 1 < i < m. Then, the boundary of
KA + x can be expressed as

NKa+m)=]0i(Ka+2)
=1

Consider a non-empty set X C Zi, we will say that a set [' C X is increasing with respect
to x4 if for every x € I" and y € X, x <4 y implies that y € I'. We observe that, for z € X,
the set

(4.18) (Ka+x)NnX={yeX: z<ay}

is increasing by the transitivity property of <4. On the other hand, we will say that a set
I' C X is decreasing with respect to <4 if for every x € I' and y € &', y <4 « implies that
yel.

Now, consider a non-empty set X C Z‘i and a finite set of distinct nonzero possible transition
vectors for a pair of continuous time Markov chains on X. We denote the set of vectors by
{v1,...,v,} C Z?\ {0}, where 0 is the origin in Z?. Consider two collections of functions
T =(Yq,...,T,) and T = (Tq,...,T,) from X into Ry such that T(x) = Tj(x) = 0 if
x+v; ¢ X. Assume that Q = (Quy)zyex, given by (3.11), is the infinitesimal generator for
a continuous time Markov chain X and @, defined by (3.11) but with functions T,...,T, in
place of Y1,...,T,, is the infinitesimal generator for a continuous time Markov chain X. We
call X and X the continuous time Markov chains associated with Y and YT respectively.

The following stochastic comparison result was proved in Campos et al. [13]. The condition
(i) of the theorem and A € Z"*? ensure that to go outside of K4 + x, the Markov chains will
necessarily hit the boundary of K4 + x.

Theorem 4.10 (Theorems 3.2, 3.4, 3.5 from [13]). With X, vy,...,vn, T and T as described
above, assume that the continuous time Markov chains associated with T and Y do not explode
in finite time. Consider a matriz A € Z™*% with nonzero rows and suppose that both of the
following conditions hold:

(i) For each 1 < j < n, the vector Av; has entries in {—1,0,1} only.
(ii) For eachxz € X, 1<i<m andy € 0;(Ka+ x)NX we have that

9

4.19 Ti(y) <Y;(x), foreachl<j<n such that (Ase,v;) <O,
J J j]

and

4.20 T, y) > Yi(x), foreach 1l <j<n such that (Aje,v;) > 0.
J J i)

3Here, for convenience of notation, let A;o denote the row vector corresponding to the i-th row of A, for
1 <4 < m. In this article, we will adopt the convention of considering the inner product (-,-) as a function
of a row vector in its first entry and as a function of a column vector in the second entry. In particular,
(Aio, @) = 325, Ainre.
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Then, for each pair x°,2° € X such that ©° <4 I°, there exists a probability space (2, F,P)
with realizations of the two continuous time Markov chains X = {X(t) : ¢t > 0} and X =
{X(t) .t > 0} defined there, each having state space X C Z<, with infinitesimal generators
given by Q and Q, associated with ¥ and T, respectively, with initial conditions X (0) = x°
and X (0) = #°, and such that:

(4.21) P | X (t) <4 X(t) for every t > O] =1

Furthermore, for a non-empty set I' C X, consider 7o := inf{t > 0: X(t) € T'} and 7r =
inf{t > 0: X(¢t) e T}. IfT is increasing with respect to the relation <4, then B[] < E[m].
If T is decreasing with respect to the relation < 4, then E[mp] < E[fr]. Finally, suppose that the
two continuous time Markov chains are irreducible and positive recurrent on X, and denote the
associated stationary distributions by w and 7, respectively. Then, if ' C X is a non-empty set
that is increasing with respect to <4, we have Y .+ Tp < ) p e, or if [ C X is a non-empty
set that is decreasing with respect to <4, we have Y pTe < D0 Tg.

4.3.2 [lllustrative example: 2D model We are interested in determining how the asym-
metry of the system, represented by the parameter u = kg / kJAE affects the stationary distribu-
tion () and the times to memory loss, hq () and hy.4(€), of the active (a = (0, Dgot)?) and
repressed (r = (Dtot,O)T) states, respectively, for the continuous time Markov chain X¢ de-
scribed in Section 2.2. For this, we use Theorem 4.10. For ¢ € (0, £¢), let X¢ be the continuous
time Markov chain with

(4.22) Ti(x) = fa(z), To(z) =ga(r), Ts3(z)=fr(zx), Ta(z)=gr(z), ze€di

with X, v, ..., v, and fa(x), ¢5(x), fr(z), gx(z) as defined in Section 2.2, and introduce the
continuous time Markov chain X¢ defined on X , having the same transition vectors of X¢,
and having infinitesimal transition rates Ty (z), ..., T4(z) defined as for Y1 (z), ..., Y4(z), with
all the parameters having the same values except that pu is replaced by i, where p > fi. Let

(4.23) A= [(1) _01]

and let us consider the partial order x <4 y. A similar example was analyzed by Campos et
al. [13] - Example 4.4, using the results of Theorem 4.10. The only differences are that, in [13],
the matrix A is the negative of the matrix given in (4.23) and the inequality between p and f
is the opposite compared to the one considered here. The relationship between the notation
in [13] and our notation is K14 = kiyg + kiv, k10 = (kar/ V), k2o = ko + ki, koy = (K5 /V),
k3o = (k3 /V), kap = (kp/V), c = b.

From the analysis in [13], we can directly conclude that, if 7(¢) is the stationary distribution
for X¢ and #() the stationary distribution for X<, then #4(e) < m,(e) and #,(g) > m,(e).
This implies that increasing p increases the probability of the system in steady-state being in
the active state a to the detriment of the repressed state r (and vice versa for decreasing p).
We can also conclude, using natural notation for quantities associated with X¢ and Xe , that,
defining 7; = inf{t > 0: X°(t) = y} and 7; = inf{t > 0 : Xe(t) =y}, hrale) = B [15] <

a
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(a) (b) Np = Dot —Npy —Npr —7pa

state x = (xi,%,%3) = (Mpr , Hpa, Mpr) "

S (%1,%,%)
g%l (xl ax29x3)

@ lév Sr12(X1,%,%3)

812 (%1,20,%) 7 l(xl,xz,x3)

Sri (x1,%,%)

7
N\

g5 (%1,%,%)

Npa

X

Figure 6: 3D Model and associated Markov chain. (a) Original chemical reaction system. The
numbers on the arrows correspond to the reactions associated with the arrows as described in (5.1)
in the main text. (b) Directions of the possible transitions of the Markov chain X¢, starting from a
state © = (71,22, 73)7 and whose rates are given in equation (5.2). (c) Graph for X¢. Here, the red
(blue) arrows correspond to O(1) (O(g)) transition rates. (d) Graph for the Markov chain X. Here,
the gold arrows correspond to transitions that were O(e) in X¢ and became O(1) in X. (e) Graph for
the Markov chain X 4. For (c), (d), and (e) the state of the Markov chain is 2 = (nD%,nDA,nD?)T
and we consider Dyo; = 2. In panels (c) - (e), we use gray dots to represent the states belonging to A
and black dots to represent all the other states.

E,[75] = hyg(e) and hg,(€) = Bo[72] < Ey[7E] = hqr(€), implying that the time to memory
loss of the repressed state decreases for higher values of p, while the time to memory loss of

the active state increases for higher values of p.

5 Further Examples In this section, compared to the models of the chromatin modifi-
cation circuit introduced in Section 2, which do not include DNA methylation, we introduce
more elaborate models that include DNA methylation and we study their stochastic behavior
by exploiting the theory developed in this paper.

5.1 3D chromatin modification circuit model We now introduce a model in which
DNA methylation is also a possible chromatin mark. The species involved are D (unmodified
nucleosome), D} (nucleosome with CpGme only), DY, (nucleosome with both H3K9me3 and
CpGme) and D? (nucleosome with an activating histone modification). In particular, we
assume that, in order to be modified with both repressive modifications, D is first modified with
DNA methylation, obtaining DlR, and then with a repressive histone modification, obtaining



811

812

813

814

815

816

817

818

819

820
821

832

833
834

28 S. BRUNO, F.A. CAMPQOS, Y. FU, D. DEL VECCHIO, R.J. WILLIAMS

DR,. The opposite order of modifications is not allowed. This enables us to simplify the model
and the related analysis. This assumption will be removed in the 4D model analyzed in Section
5.2. The chemical reaction system for the 3D model, shown in Fig. 6(a), is the following:

@D et pa - @) ppA HrpapA @pr L p,
@DA+DR—E>D+D @DA+D12~—+D+D12,

(1) (6D HretMe pR (@ p o pR L pR DR () DR 4R Atk pR o bR
@ DF Y, DR, @ DR + DI *, DR | DR @), pR 2 tkr
@Dr DA DDA @D Dk @b+ pA Dby,

where kilo, kit k3, 0, k3, ks, Ko, Kty Ko, Koy Koy Ears kar, 8 Ky ki KR kR > 0 and the
form of the reaction rate constants is due to the fact that reactions with the same reactants

and products have been combined. As we did for the 2D model, define parameters ¢ = kT—kE
U Deot
kR S+kE . .
and p = e with a constant b such that p bu. Furthermore, since this model in-
E E

cludes DNA methylation, we also define p/ = i—T,: and a constant S8 such that i:}f} = B
E E

The parameter y’ quantifies the asymmetry between the erasure rates of DNA methylation
and activating histone modifications. The Markov chain X¢ associated with the system is a
linearly perturbed finite state continuous time Markov chain with the state z tracking NpR

npa, NMpk, that is, the number of nucleosomes of types D127 DA, and D , respectively. If
the total number of modifiable nucleosomes is Dyqt, which is conserved, the state space is
X = {(x1,29,23)T € Zi : 1 + o2 + 23 < Dot }. The transition vectors for X¢ are given by
v = —ve = (0,1,0)7, v3 = —vy = (0,0,1)T, and v5 = —vg = (1,0, —1)7. The infinitesimal
transition rates are

A
Quton (&) = Fa() = (Dioy — (21 + 72 + 13)) (k: C R+ kvx2>

k:A kA
Qz,m+v2 (5) = 9,54(53) = T2 ( Vv Dtot + = Vv ($3 + 2501)) s

k/
Qua4vs(€) = fr1(2) = (Drot — (21 + z2 + 23)) (k'évo +kyy + ym) 7

(5.2)

k4 k4
Qurin(&) = giale) = zan’ (5D +225E ).

ks ks r3—1
Qz,z4vs(€) = frR12(2) = 23 (kwo + v —21 + v <£U1 + 32 >> )

i ki
Qurion(6) = ghun(o) =1 (Db + 2, E ).

A representation of the possible transitions, with associated rates, and the Markov chain graph
for Dot = 2 are given in Fig. 6(b) and (c), respectively. Each rate depends on the state x.
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5.1.1 Stationary distribution We now focus on the expansion as a function of ¢ of the
stationary distribution for the 3D model. In SI - Section S.10, we show that, when ¢ = 0,
the continuous time Markov chain associated with the 3D model has transient states 7 =
{i1, ... im} where m = YDt (%) — 92,41 = (0, Dyor — 1,007, iy = (Dyog — 1,0,1)7,
and absorbing states A = {a,r}, with a = (0, Dyot,0)” corresponding to the fully active state
(npa = Dyot) and r = (Dyet, 0, 0)” corresponding to the fully repressed state (TLDIIKZ = Dyot),
respectively. Then, Assumption 4.1 holds (see SI - Section S.10). Furthermore, X = AUT and
from (5.2) we see that Q(g) can be written in the form (4.2), where Q(¢) is a linear perturbation
of Q(0). Hence, Assumption 4.5 holds. Assumption 4.2 also holds, where the recurrent class
is {r} (see SI - Section S.10). Then, we can apply SI - Theorem S.9. We first obtain that
7(0) = 70 = [, 0] = [ag, y,0...,0] where a is the unique stationary distribution for the
process X 4 with infinitesimal generator Q4 = Ay + S1(—To) ' Rp. Since the recurrent class
{r} is a singleton and « is supported on {r}, we must have o, = 0 and o, = 1.

We now derive an expression for 7). For the transient states 7 = {i1,. . yim}, gL =
e mt] = @81 (~Tp) ™ = [0,..., 0,7 )], with
kA
) _ pbLD

TR+ (B By (D — 1)

See SI - Section S.10 for the detailed mathematical derivation. Now, a(l) = [m(ll),m(al)} is the
unique vector such that aMQ 4 = —gM) [R1 + T1(=Ty) " Ro), a1 = -1,

As an illustration, suppose Dyoy = 2. Then (see SI - Section S.10 for the detailed mathemat-
ical derivation),

_ K1+ uKs -1 1
(5-3) Qa = ,
Ks+ puKy+ ' Ks + pup' Kg 0 0
2,12 2,12
(5.4) ah— __H 1=Ky 2 = ) _ 7%%) _ WK A G (K + Kaop)

Kg(Kg + Kiop)’ Ky (Kg + Kiop) ’

with m = 8 and K;, i = 1,..., 11, are non-negative constants independent of ¢, p and u’ (see
SI - Section S.10 for their precise definitions). Hence, the stationary distribution for Do = 2
satisfies

\2 X
5% +0(e?) if r =a=1(0,2,0)7
O(e? if x € T\{im
(5:5) ma(e) = Ku) 2 . . \{_ } T
e n+0(e) if x =14, = (1,0,1)
2
1o el ﬁ?ﬁfﬁﬁiiﬁm“) +0(e?) ifx=r=(200)7.

For small € > 0, the stationary distribution is concentrated around the active and repressed
states, although more mass is concentrated around the repressed state. However, higher values
of i/ increase the probability of being in the active state, while decreasing the probability of
being in the repressed state.
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5.1.2 Time to memory loss In this section, we determine how the leakage of the system
(¢) and the asymmetry between activating histone modifications and DNA methylation (u)
affect the time to memory loss of the active state hg,(¢) and the time to memory loss of the
repressed state hy q(€).

Firstly, by the algorithm in Section 4.2.1, we have that h () is O(e™1) and hy.4(¢) is O(e72)
(see SI - Section S.6). This means that decreasing the leakage extends the memory of both the
active and repressed chromatin states, but the effect is stronger for the repressed state. This
difference is influenced by the co-existence and cooperation between DNA methylation and
repressive histone marks that introduce a structural bias in the 3D chromatin modification
circuit towards a repressed chromatin state.

These results are consistent with the ones obtained by applying Theorem 4.7, which allows
us not only to find the order of hy,(¢) and h,4(g), but also to find an expression for their
leading coefficients (see SI - Section S.10 for the detailed mathematical derivation). As an
example, when Do = 2, Q4 and 7 are shown in (5.3) and (5.4), and we obtain from them
that

K+ uKy+ W K5+ pp' Kg 1

5.6 Bar ~+0(1), and
(56) (&) e o), an
K K 'K, 'Ke Kg(Kg + K 1 1
(5.7) hal€) = 3+ Ky + W K5 + pp' Ko K (Ko + IOM)—+O 2,
’ Ky + pkKs piuKy o €?

where K;, i = 1,...,11, are non-negative constants independent of ¢, u and p/, defined in SI -
Section S.10.

Now, we focus on understanding how the asymmetry between chromatin modification erasure
rates affects the time to memory loss. In particular, since experimental data suggest that the
asymmetry between the erasure rates of DNA methylation and activating histone modifications
is more pronounced than the asymmetry between erasure rates of opposite histone modifica-
tions, in this analysis we focus only on studying the effect of i/, but a similar procedure to the
one presented in the next paragraph could be applied to study the effect of u. To this end, we
exploit the comparison Theorem 4.10 to determine directly how p’ affects hq,(¢) and hy 4(e),
without deriving an explicit expression for them. To this end, we first note that the transitions
of the Markov chain X¢(¢) are in six possible directions, that can be written as v; = (0,1,0)7,
vg = (0,—1,0)7, v3 = (0,0, )T, vy = (0,0,-1)7, v5 = (1,0, —1)T, vg = (—1,0,1)T, with the
associated infinitesimal transition rates that can be written as T1(z) = fa(z), Ta(z) = g2 (z),
Y3(z) = fri(x), Ta(x) = g5 (2), Ts(x) = friz(z), Te(z) = ghyp(x). Define the matrix

1 0 0
A=|0 -1 0
1 0 1

and, for v € X, (Kgq+2)NAX ={w € X : x <4 w}. Let us also introduce infinitesimal
transition rates T;(x), i = 1,2, ..., 6, defined as for Y;(z), i = 1,2, ..., 6, with all the parameters
having the same values except that u is replaced by ji/, with p’ > /. All of the conditions
of Theorem 4.10 hold (see SI - Section S.10) and so we can apply the theorem. This allows

us to establish that, since a = (0, Diot, 0)7 <4 7 = (Diot,0,0)7, then B(M(g) < hgr(e) and
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(a) (b) np = Dtot — }’lDllaz— }’ZD{( — }’ZD%{ — Npa
state x = (X1,%,X3,X3) = (Mpr, Aipa, Mpk, Mp)”
8r122(x)
gri2i(x) fa(x)
gri ()
8R (%) /. 7> /w2 )
1 Jri (%)
©) o g5(x) Sri21(X)
©®
Sri22(%)
¢ d
() - Ye (d)

) )
- q =

Npa
pA=Dtot O
AT

Figure 7: 4D Model and associated Markov chain. (a) Chemical reaction system. The numbers
on the arrows correspond to the reactions associated with the arrows as described in (5.8) in the main
text. (b) Directions of the possible transitions of the Markov chain X¢ associated with the reduced
SCRN, starting from a state * = (21,72, 73,24)7 and whose rates are given in equation (5.9). (c)
Graph for X¢. Here, the red (blue) arrows correspond to O(1) (O(g)) transition rates. (d) Graph for
the Markov chain X. Here, the golden arrows correspond to the transitions that were O(e) in X¢ and
became O(1) in X. For (c) and (d) the state of the Markov chain is z = (nD%,nDA,nD{{,an)T, we
consider Doy = 2, and we show three interconnected slices (nD?z =0,1,2) of the Markov chain state
space. In panels (¢) and (d), we use gray dots to represent the states belonging to A and black dots
to represent all the other states.

hra(e) < FLM(E), where ”indicates quantities associated with T. Thus, we can conclude that,
given that the only difference between the two systems was that p/ > i/, the time to memory
loss of the active state is monotonically increasing with x4/, while the time to memory loss of
the repressed state is monotonically decreasing with p'.
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5.2 4D chromatin modification circuit model Now, we consider a complete model in
which the species involved are D, D D12, DA and D2R (nucleosome with H3K9me3 only).
Compared to the 3D model, we assume that, in order to be modified with both repressive
modifications, D can be also modified first with a repressive histone modification (H3K9me3),
obtaining DY, and then with DNA methylation (CpGme), obtaining DY,. The chemical reac-
tion system, shown in Fig. 7(a), is the following:

@D St pA - @) ppA H, pA L pA @A T p,
@ DA +DE *5, D4 DY, DA +DY 2%, D DY, (B DA +DE M5 D4 DY,
@Dttt pr o @) p Mtk pr o @) pR Fvo, pR @y DR A, pR
@ D+DE 2, DR 4 DE, @ D+ DR, £tk piy pR

(58)  (@DR4+DF £, DR DR (@ DR 4 DR, Atk pR | pR
@ D+ DE Loy Ko DR+D @D+DI§2%DR+DH, @ D+ DI £, DR 4+ DR
.DR+DR L DY, + DY, .DR+D12—>D§‘2+D12,
€0 DI + DF M, pR DR @) DE L7FE @9 DE 4+ DA P2, p g DA,
@DE L,y @D pA ML paph, @R Lt pr
@ DY, + DA A7, D 1 pA @) DY, L R @8 DR, 1 pA A, pR 4 pA,

in which the form of the reaction rate constants is due to the fact that reactions with the

same reactants and products have been combined. As we did for the 3D model, let us define
Stk S+RE
kA Dtot ? 5+kA = bu,

\4
’

and the parameter p’ = Z—{“

R
the parameter ¢ = the parameter p = :7, with a constant b such that

with a constant S such that 5:55 T = Bu’. The Markov chain

X¢ associated with the system is a linearly perturbed finite state continuous time Markov
chain with the state x representing the number of each type of modified nucleosome, i.e., x =
(nDllaz, npa, NpR, nDQR)T = (w1, 29,73, 24)". If the total number of nucleosomes is Dyot, which is

conserved, then the state space is X = {(x1, z2, 23, 24)7 € Zi : 1+ xot23+x4 < Dior}. The
transition vectors for X¢ are given by v; = (0,1,0,0)T, vy = (0,—1,0,0)T, v3 = (0,0,1,0)7
vy = (0,0,—1,0)T, v5 = (0,0,0,1)T, v = (0,0,0, -1)T, v; = (1,0, -1,0)T, vg = (—1,0,1,0)
vg = (1,0,0,—1)T and v19 = (—1,0,0,1)”. The infinitesimal transition rates are

kA
Quuaton (€) = Fa(e) = (Duos — (01 + w2 + 23 + 22)) (ké‘v T+ ng) ,

v
ki k3
— A€ i
3 2 - - o 9
Quatv,(€) = g5(x) = 29 <5 v Diot + % (x5 + x4 +2x1)>

k/
Qza+vs(€) = fr1(2) = (Dior — (21 + 22 + 3 + 4)) (k%/vo + ki + 7M(9C1 + 964)) ,
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k4 k4
Qz,04v, (6) = gm () = fCSl/ (E‘Z}JDtotﬂ + X2 ;) )

k k
Quatvs (8) = fr2(7) = (Dot — (21 + 22 + 23 + 24)) (l‘?%/vo + Ky + = (01 4 0) + 7M($1 + $3)> ;

v
(5.9)

k4 k4
Quetos (2) = () = 24 (synmb n xQVE) |

k k z3 —1
Qz,z24v:(€) = frR121(2) = 23 (kxz/vo + 7M(1‘1 +x4) + 7M <$1 + 32 )) )

ki ki
Qu w10 (€) = Gr121(T) = 21 <€VDtotb + $2V) )

k zy—1
Q040 (€) = frR122(T) = 24 <k‘évo + 7M (xl * 42 )) ’

k4 kA
Qz,2+v10 (€) = gr122(7) = xyp <€[J/\'/1Dt°t6 + xz{f) :

A representation of the transition vectors and the Markov chain graph for Doy = 2 are given in
Fig. 7 (b) and (c), respectively. As before, each rate depends on the state z, but in the rest of
the section we will not show this dependency to simplify the notation. Now, we determine the
stochastic behavior of the full chromatin modification circuit model in terms of its stationary
distribution and time to memory loss. For this study, we will consider k‘év = kzll/v = k%v =
(i.e., there are no external transcription factors enhancing the establishment of chromatin
modifications). This assumption will not change the qualitative nature of the results focused
on studying the effect of €, u, and ' on the stochastic behavior of the chromatin modification
circuit model.

5.2.1 Stationary distribution We now determine the zeroth and first order terms of the
stationary distribution expansion for the 4D model. As shown in SI - Section S.11, when € = 0,
the continuous time Markov chain associated with the 4D model has transient states 7 =
(i1, im} where m = YD s~ (%) — 2,41 = (0, Dyog — 1,0,0)T, 4y = (Dyot —
1,0,0,1)7, i, = (Dot — 1,0,1,0)”, and absorbing states A = {a,r}, with a = (0, Do, 0,0)”
corresponding to the fully active state (npa = Diot) and r = (Dyot, 0, 0, 0)” corresponding to
the fully repressed state (nD11?{2 = Dyot), respectively. Then, Assumption 4.1 holds (see SI -
Section S.11), so that X = AU T, and we can rewrite the infinitesimal generator Q(e) in the
form of (4.2) (see SI - Section S.11), where the perturbation is linear and so Assumption 4.5
holds. We can also verify Assumption 4.2 (see SI - Section S.11). Hence, we can apply SI -
Theorem S.9, as was done for the 3D model.

In particular, we obtain 7(0) = 7% = [a,0] = [ag, a;,0...,0], with ag = 0, a, = 1, and
B0 =[x aD = 10,..,0,78 7] with
kg kg
7_‘_(1) . M/ﬁvMD%ot 71-(1) o /’LbTMDgot
im—1 k' ’ im k :
T Kl + S (Dyor — 1) T ke + (B 4+ B (Do — 1)

See ST - Section S.11 for the detailed mathematical derivation. Now, a(t) = [m(bl),m(nl) ] is the
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unique vector such that oMV Q 4 = —W[Ry 4+ T1(=Tp) ' Ry], a1 = -1, B

As an example, suppose Dot = 2 and assume 5 = b, k:Il/VO = kI%VO = k'{f‘VO and k), = ky =
ky = k:]’?/[. These assumptions do not affect the final qualitative conclusions related to the
effect of &, u and 1/ on the stationary distribution. Then (see SI - Section S.11 for the detailed
mathematical derivation)

K (p, ) < -1 1 )
5.10 _ malw ) ’
% / 7% /
(5.11)  all) = I—{S(N’M/)7 ) =) - ﬂ—i(l) T 7%(1) = _M — 1K1 — pkK,
Ka(p, i) " " Ky(p, i)
with
Ki(p, ') = Ki((W)* Ko + (1)* K3 + pp Ko + ¢/ Ks + Ko + Kr),
(5.12) Ko(p, 1) = o'y + ) Ks + (1) Ko + (1)* K10 + ' K1y + p' Kig + pkis + Kua,
' Ks(p, i) = (u! ) K5 (0 + 1) Kis + Kiz),
Kap, 1) = Koo((1')* Ko + () K3 + ' Ka + p' K5 + pks + Kr),

in which m = 13 and K;, i = 1, ..., 20, are non-negative functions independent of p and p’ (see
SI - Section S.11 for their precise definitions). We then have

eI 1 O(e?) if 2 =a=(0,20,0)7

O(£?) if € T\{im-1,im}
me(e) = { el Kig + O(g?) if 2 =4dp,_1 = (1,0,0,1)7

eukig + O(e%) if v =i, = (1,0,1,0)7

1 e (JED 4 /Ko + pKag ) + O(%) i o =1 = (2,0,0,0)7.

For small € > 0, the stationary distribution is concentrated around the active and repressed
states, and higher values of 1/ or u shift the distribution towards the active state.

5.2.2 Time to memory loss As was done for the 3D model, we determine for the 4D
model how the parameters ¢ and p’ affect the time to memory loss of the active state, hqr(€),
and the time to memory loss of the repressed state, h,4(¢). Firstly, by the algorithm in Section
4.2.1, har(g)is O(e™t) and hy. 4(¢) is O(e72) (see SI - Section S.6). Then, by applying Theorem
4.7 we can obtain expressions for the leading coefficients of h, (¢) and h,4(g) (See SI - Section
S.11 for the detailed mathematical derivation). As an example, when Dy = 2, Q4 and Wél)
are shown in (5.10) and (5.11), and we obtain that

where K;(p, 1), i =1,...,4, are defined in (5.12).
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Now, we determine how p’, the parameter encapsulating the asymmetry between the DNA
methylation erasure rate and the activating histone modification erasure rate, affects the time
to memory loss. To this end, we seek to determine directly how p' affects hq () and hy 4(e),
without deriving an explicit expression for them. To this end, we would like to exploit two
theorems from [13], namely, Theorem S.2 and Theorem 3.4 there. The transitions of the
Markov chain X¢ are in ten possible directions, v; = —vy = (1,0,—1,0)T, v3 = —vy =
(1,0,0,—1)T, v5 = —vg = (0,1,0,0)T, v; = —vg = (0,0,1,0)T, and vy = —vjg = (
with the associated infinitesimal transition rates Y1(z) = fri21(x), To(x) = 9519 (T
frm22(@), Ta(2) = gR195(2), Ts(2) = fa(z), Te(x) = g3 (2), T7(x) = fr1(z), Ts(z) = gk (@),
Yo(x) = fra(x), Tio(x) = gho(x). Consider infinitesimal transition rates Y;(x), i = 1,2,...,10,
defined as for Y;(x), i = 1,2,...,10, with all the parameters having the same values except
that ' is replaced by fi’, with p/ > ji’. While we have not been able to see how to exploit
Theorems S.2 and 3.4 from [13] for these exact rates, we have been able to do this for closely
related rates. If we introduce a small approximation in the transition rates of X¢, namely,
23—l ~ 25 and “;1 ~ x4 in friei(x) and frioa(z), respectively, then Theorems S.2 and 3.4
in [13] apply with

—1

i e =)
O O O

O = O
= =0 O

and (Kg+2)NX ={w € X : x <4 w} (see SI - Section S.11). This approximation can
be justified by introducing the reasonable assumption that each nucleosome characterized by
a repressive modification (DY and D) has the ability to catalyze the establishment of the
opposite repressive mark on itself. With this approximation, since a = (0, Diot,0,0)7 <4 7 =
(Dtot,0,0,0)”, then ;Lw(s) < har(e) and hyq(e) < luzm(e). Thus, the time to memory loss
of the active state increases with higher values of p/, while the time to memory loss of the
repressed state decreases with higher values of p'.

6 Conclusion In this paper, we provided a mathematical formulation and rigorous proofs
to validate the computational findings in [10], showing how the time scale separation between
establishment and erasure processes of chromatin modifications affects epigenetic cell memory.
To this end, we developed and adapted theory for singularly perturbed continuous time Markov
chains and we analyzed the behavior of stationary distributions and mean first passage times
as functions of the singular perturbation parameter e.

We first showed that () can be expressed as a series expansion (Section 3.1) for sufficiently
small . We then proved that the limit 7(0) = lim._,o7(¢) is unique and we determined an
expression for it (Section 4.1.1). We also provided an iterative procedure for computing all of
the higher order terms in the expansion of 7(e) (SI -Section S.2.1). Similarly, for the mean
first passage time (MFPT) between states, we first showed there is a Laurent series expansion
for sufficiently small ¢ (Section 3.1, Eq. (3.4)). We then developed a graph based algorithm
to identify the order of the leading term in the series expansion (Section 4.2.1), and we also
determined the leading coefficient there (Section 4.2.2).

We then applied these tools to the chromatin modification circuit models proposed in [10],
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to provide a rigorous basis for the computational findings given there (Sections 2, 4, and 5).

Our rigorous derivations of the analytical expressions for the stationary distributions and
time to memory loss, and our results on monotonic dependence on parameters, lead to a mecha-
nistic understanding of how €, p and p’ affect the stochastic behavior of chromatin modification
systems. As an example, our results suggest that higher values of y and y' shift mass of the
stationary distribution more towards the active state (Sections 5.1.1 and 5.2.1). This finding is
consistent with recent experimental results demonstrating that transfection of the DNA meth-
ylation eraser enzyme TET1 (represented in our model by higher x' [10]) into Chinese hamster
ovary (CHO-K1) repressed cells causes them to shift towards the active state [27]. More gen-
erally, the mechanistic understanding of how ¢, u, and p’ affect the stochastic behavior of
chromatin modification systems, as derived in our study, is crucial for determining experi-
mental interventions on molecular players, such as chromatin modifier enzymes, to modulate
cell memory. This mechanistic insight is expected to be extremely valuable for applications
such as cell fate reprogramming and engineering approaches to cell therapy. Furthermore, the
mathematical results and theoretical tools developed in this paper can be applied beyond the
scope of the epigenetic cell memory models analyzed in this research work. In fact, they can
be applied to all stochastic models that respect the assumptions considered. Future work will
investigate how to generalize these results by removing some of these assumptions, including
allowing the Markov chain to have countably many states and Q(0) to have ergodic classes
as well as absorbing states. While there is some theory for countably many states, such as
in [3], the continuous time Markov chains for further applications that we have in mind are
not uniformizable and have many transient states for Q(0), and the theory in [3| needs to be
generalized for them.

Supplementary information (SI) file: file containing the proofs of the theoretical tools
developed in this paper, and detailed mathematical derivations for some of the chromatin
modification circuit models analyzed.
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Supplementary Information (SI)

S.1 Some results in probability Let X be a finite set. Recall the notation for matrices
introduced in Section 1.5.

Lemma S.1. Let X = {X(t): t > 0} be a continuous time Markov chain with state space X
and infinitesimal generator Q = (Qu,y)zyex- Then, the number of recurrent classes for X is
equal to nullity (Q7) = nullity(Q).

Proof. Since @ is a square matrix, the Rank plus Nullity Theorem yields that nullity(Q7)
= nullity(@Q). Now, consider A > maxgcx |Qqz | and define P := I + /X, where [ is the
identity matrix of size |X| x |X|. The matrix P is stochastic and such that for every =z # y
in X, P,y > 0if and only if Q,, > 0. As a consequence, the recurrent classes of X are
the same as the recurrent classes of P. By Theorem IV.2.4 in Isaacson and Madsen [11], the
number of recurrent classes of P is equal to the maximum number of linearly independent left
eigenvectors satisfying mP = w. By observing that 7P = 7 if and only if 7Q) = 0, we see that
this latter quantity is equal to nullity(Q7). [ |

The following is Proposition 6.3 in Asmussen [1].

Proposition S.2. Let (Py y)zycx be a nonnegative substochastic matriz (P1 < 1) such that for
each x € X there are z1,...,2m,y € X such that P, .\ P,, ., ... P, , >0 and Zze)( P, <1.
Then, spr(P) < 1.

We use Proposition S.2 in order to obtain invertibility for some matrices, as in the next
result.

Lemma S.3. Let X = {X(t) : t > 0} be an irreducible continuous time Markov chain with
state space X and with an embedded discrete time Markov chain with transition matriz P.
Consider a nonempty set B C X such that B # X and consider PB° to be the matriz obtained
by removing the columns and rows of P corresponding to states in B. Then, I—PB° is invertible
and its inverse is given by the absolutely convergent series S poo(PB)*, where (PE°)? = I.

Proof. Observe that PB° = (Pry)zyese is a nonnegative substochastic matrix. Since X
is an irreducible continuous time Markov chain, its embedded discrete time Markov chain is
also irreducible. Thus, for each z € B¢, there exist z1,...,2m,y € B¢ and §j € B such that

B¢ pB° Be Be __
ProyPiy gy oo PopyPyg > 0. Then, PP, P7 .. .P;  >0and . g PP, =) cpePy. <1

since P, 5 > 0and ) ., P,. = 1. By Proposition S.2, spr(PB%) < 1. This fact, together with
Theorem 5.6.15 in Horn & Johnson [10] yields the convergence of Y 3o ,(P5")*. Moreover,
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(I — PBY) Y02 ((PBY, = 3702 (PP°)*(I — PB") = I, which yields the desired result. [ |
We will use the following continuous time analogue of Proposition S.2.

Lemma S.4. Let (Quy)zycx be a matriz such that Q1 < 0 and such that Qo < 0 for
each v € X and Qg > 0 for each x # y € X. In addition, suppose that for each x € X
there are distinct z1,...,2m,y € X different from x such that Qg . Q2 2 - .- Qzny > 0 and
Y osex Qyz < 0. Then, for every v € sp(Q), the real part of v is negative. In particular, Q is
invertible.

Proof. Consider A > maxycy |Qz,»| and define P := I + Q/\, where I is the identity matrix
of size |X| x |X|. The matrix P is nonnegative, substochastic and such that P, = $Qq,
for every x # y € X. With these elements, we obtain that for each z € X there are distinct
21,0, %m,y € X suchthat Py, P, ., ... P, ,>0and where) . P, . = 1—1—% Yorenx Quz <
1. Proposition S.2 yields that spr(P) < 1. By observing that v € sp(Q) implies that 1+ ¥ €
sp(P), we obtain that 1 > |1+ 5| > [1 + %| where R(v) is the real part of v. The latter
inequality implies that R(v) < 0. u

Consider a nonempty set B C X such that B # X and a Q)-matrix written as
B B

_ B (@] S
(S.1) Q- BC%‘—QB‘)'

Consider a process X = {X(t) : t > 0} defined on a measurable space (2, F) and a collection
of probability measures {P, : z € X'} on (2, F) such that for every z € X', X is a continuous
time Markov chain under P, with infinitesimal generator given by @ and such that P,[X (0) =
z] = 1. Consider the stopping time 75 := inf{t > 0: X(¢) € B}.
Lemma S.5. The following are equivalent:
(i) For every x € B¢, there exists a z € B such that x leads to z under Q, i.e., there are
distinct x1, ..., Ty, € B¢, different from x, such that Qg z,, Qzi zos s Qzm,z > 0.
(ii) QB° is invertible.
(111) Ez[mB] < oo for every x € BC.
If any of (i) — (i13) hold, then

(5.2) Py [X(m8) = y] = (=(Q%) 'Ry
for every x € B¢ and y € B. Moreover, if B¢ is a set of transient states for X, then (i) — (iii)
hold.

Part of the results in Lemma S.5 appear as Lemma 1 in Gaver et al. [8] for the case where
QB and S are the zero matrix. For completeness, we provide a self-contained proof here.

Proof. The implication (i) = (4i) is a consequence of Lemma S.4 with B¢, Q" in place of
X, Q there.
In the following, recall that for every x € X and function f : X — R, the process

(3.3) ME(®) = F(X (¢ A ) — FCXO) ~ [ T Lpx s, t20,
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is a martingale under PP, (see Theorem 3.32 in [15]), where Lf(y) := >y Qy-f(2) fory € X.
For (ii) = (i4i), consider the function f(y) := —[(Q®")~'1],15¢(y) for y € X. The reader
may verify that Lf(y) = —1 for every y € B¢. Therefore, for an x € B¢, taking expectations
in (S.3) yields f(x) — E.[f(X(t A71B))] = Egz[t A 78] for every t > 0. Hence, E,[t A 78] <
2sup,cy | f(x)] for every t > 0 and we conclude the desired result by letting ¢ — oc.

For (iii) = (i), we prove that not (i) implies not (i7i). Suppose there exists z € B¢ such
that no point of B is accessible from x. Then, 73 = 0o P -a.s., so (¢i7) does not hold.

For (S.2), consider x € B¢, y € B and the martingale MJ? with f(2) = (—(Q5 ) R), ,15:(2)
+1y(2) for z € X. The reader may verify that Lf(z) = 0 for z € B¢, which yields that
E;[f(X(t A1) = f(x) for every t > 0. If any of (i) — (iii) hold, then 78 < oo, Py-a.s.,
and on letting ¢ — oo and using bounded convergence, we obtain E,[f(X (73))] = f(z), which
implies P, [X (158) = y] = (—(Q% ) "' R) 4.

Now, suppose that every z € B¢ is transient. Then, P, (73 < oo) = 1 for each = € B°.
For a proof by contradiction, suppose that Q5 is not invertible, which implies the existence
of a nonzero vector v = (v(z))zese # 0 such that Q5°v = 0. Then, consider the function
f(y) = v(y)1Be(y), for which Lf(y) = 0 for y € B°. Consider an = € B¢ such that v(x) # 0,
then MF(t) = f(X(t A7) —v(x) is a bounded martingale. On taking expectations we have
E;[f(X(t A 7B))] = v(z). Since the states in B¢ are transient, X () will P,-a.s. leave BC.
Then letting ¢ — oo and using bounded convergence yields 0 = v(z) which is the desired
contradiction. Hence (i7) (as well as (), (¢i7)) must hold. [ ]

Lemma S.5 has a useful consequence in terms of occupations times. In the above context, con-
sider the occupation time of B by the Markov chain X up to time ¢ > 0: xp(t) = fg 15(X(s))ds.
Denote by xp(00) = limy o0 x5(t) = [~ 15(X(s))ds.

Lemma S.6. Suppose that
(S.4) Pyl < o0] =1 for all y € B°.
Then P, [xB(00) = 00| =1 for every z € X.

Remark S.7. If any of the conditions (i)-(iii) in Lemma S.5 holds, then (S.4) holds.

Proof. Fix x € X. Let 0_1 = 0 and 0¢g = inf{t > 0_; : X(t) € B}. Then, inductively define
for k =0,1,2,..., o9kq1 = inf{t > o9; : X(t) € B} and o9i42 = inf{t > o941 : X(t) € B}.
Using (S.4) and the strong Markov property of X, we have

(S.5) o9 < 00 Py-a.s. on {og,_1 < oo}
for k=0,1,2,..., and

N

00
XB(OO) = kz_o 1{U2k<00} (02k+1 - O'Zk) = ]\;gnoo kz_o 1{02k<00}(0-2k+1 — O‘Qk),

where terms in the sum indexed by k : o9, = 0o are taken to be zero. Now, P -a.s.,

N

N
T ex0(—1osp <0 (02041 = 02k)) = [ [ Loap<oo) eXP(— (0211 — 021)),
k=0 k=0
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where we used (S.5) and the fact that o_1 = 0, to conclude that the product is zero P-a.s.,
if {09, = 0o} for any k € {0,1,..., N}. Hence,

E;[exp(—x5(0))]

N
= Jim B, kljoﬂ{mm} exp(— (02441 — 02k))
N—1
= Jim T, kl:[g 110y <00} XD(—(02k+1 = 02k)) L {osn <00} Ba [exp(—(0an 11 — 02N )| X (02n)]

On {oan < oo}, we have X(oan) € B and X(t) € B for ooy < t < oan4+1. Hence, for
a > maxyep |Qy.yl, using the strong Markov property, on {o2n < oo}, conditioned on X (oax),
oaN+1 — 02N stochastically dominates an exponential random variable with parameter a and
SO

oo Y a
E, [exp(—(oan+1 — 02n))| X (02n)] < / e tae %dt = T .
0 +a
Similarly, for k = N — 1,...,0, on {09 < oo},
a
(S.6) E; [exp(—(o2k+1 — 021)) | X (026)] < 5o
Then,
N-1 "
Eq[exp(—x5(00))] < lmsupEy | [] 1{op <o} exp(— (02541 — 921:)) L{oan<oo} 77
N—oo k=0 +a
N-1 "
< i E, | TT 1, . .
= Hmsup ££ {oan<oc} EXP(—(02k11 0%»1+ﬂ

Repeatedly conditioning on {09, < oo}, for k=N —1,...,0 and using (S.6), we obtain

a N+1
I, [exp(—x5(00))] < limsup (1 ¢ ) 0.

N—ro0
Hence, P, [xp(00) = oo] = 1. [ |

Lemma S.8. Let X = {X(t) : t > 0} be a continuous time Markov chain with state space X
and infinitesimal generator Q = (Qzy)zycx- Suppose there is an absorbing state y € X. If
there are distinct states z1, ..., 2y, € X different from x and y such that Qz 2, Q2 2 - - Q2 y >
0, then x is a transient state for X.

Proof. Since Qg2 Q2 2 - - - Qz,,,y > 0, we have P, [ X (to) =
orem 3.2.1 in [16]). Thus P,[X(t) # x for all ¢ > to] > P,
to| X (to) = y] = P,[X (o) = y] > 0, which means that z is

= y|] > 0 for some ¢y > 0 (see The-
[X(to) = y|P[X(t) = y for all t >
a transient state. |
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S.2 Additional results for stationary distributions

S.2.1 Higher order terms for linear perturbations Under the assumption of the pertur-
bation being linear (which is the case for our chromatin modification circuit models), we now
provide an iterative procedure for computing all of the terms in the series expansion of 7(-).
Additional results for characterizing some of these terms are given in SI - Sections S.2.3, S.2.4.

Theorem S.9. Suppose Assumptions 4.1, 4.2 and 4.5 hold. Then, the following hold for the
sequence {m®) : k& >0} in (3.7):
(i) 70 = [a® BO)] = [a,0] where a is the unique probability vector on A such that
a4 =0,
(ii) for every k> 1, 70) = [a®) 3] where

(S.7) B = (oD gy + =Dy (~Tp)~!
and a®) is the unique vector such that

(8:8) oM Q= —pW[R +T1(~Ty) " Rol,
(S.9) ok =gk,

Moreover, if |A| > 2, for every k > 1 we obtain
(S.10) o®) = a®) 4 (—p®1 — a0)1)a,

where a\F) == —p*R) (R + Tl(—To)_lRo)Q; fork>1 and Qi‘ s a generalized inverse
of Qa ™.
The proof of Theorem S.9 is given in SI - Section S.2.2.

S.2.2 Proofs of Lemmas 4.1, 4.3, and 4.4 and Theorem S.9
Proof of Lemma 4.1

Proof. Tt has already been established before Lemma 4.1 that 7(0) = [a, 0]. By equating to
zero the coefficients of the terms €™ for m = 0,1, ... in the series (372, e*n(®)) (3272, F Q")
we obtain that y ;" 7B Qm=k) = 0 for every m > 0. In particular, 70 Q©® + 70 QM) = 0,

which yields,
W g (0 0 A5\ _
] (gt ) + 0] (R3] =0,

From this, we obtain two equations:

(S.11) BYRy+aA; =0

4A generalized inverse Q; of @4 is such that @ AQ;Q A = Q4. The Moore-Penrose inverse is a generalized
inverse. The deviation matrix for X4 is D = (—Qa +1a)™ — 1a, and —D is also a generalized inverse of
Q4. Meyer [4] suggested that —D is a better generalized inverse to use than the Moore-Penrose inverse since
it can be computed efficiently and embeds answers concerning the transitory behavior of the Markov chain.
Avrachenkov et al. [2], in the context of discrete time Markov chains, use a suitable deviation matrix when
they need a generalized inverse. Here, if we take QL\ = —D, then the term &®1 in (S.10) is equal to zero since
D1 =0 and then o®) = 8 (Ry + T1(=To) "' Ro)D — 10).
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and
(S.12) BTy + a8 = 0.

Since Tp is invertible, from (S.12) we obtain (4.5). We conclude by substituting this formula
for B(1) in (S.11). ]

Proof of Lemma 4.3

Proof. By following the proof of Lemma 2 in Gaver, Jacobs & Latouche [8] and using formula
(S.2), we can prove that the transition rates between = # y € A for X 4 are given by (QA)zy-
In essence, the argument is as follows. From the state € A, the Markov chain X may move
to y € A in two ways that lead to a one-step transition for X 4. First, it could happen that X
jumps directly to y at a rate of (A;),,. Second, the chain X may go to some state z € T at
a rate (S1)z,. and from there, jump between states in 7 until getting back to A at the state
y € A. By (S.2), this happens with probability ((—Tp) !Rp),,,. Putting this all together, the
rate of transition for X 4 from z to y will be

(S.13) (A1)ay + Z(Sl)m,z((_TO)_lRO)z,y = (QA)zy- u
2€T

Proof of Lemma 4.4

Proof. Consider x # y € A. Then, there exists a sequence of states g = z,21,...,Tm =¥y
in C such that Qu s, Quy .2y - - - Qmmq,y > 0. Roughly speaking, the proof follows by erasing the
times that X is outside of .A. We now give the details. Consider i € {0,1,...,m—1} with z; €
A. If ;41 € A, then, by (S.13), (Qa)z;zi01 > (A)zszss1 = Quiziyy > 0. I 241 € T, consider
the path of states x;, x;11,..., 2k for 0 <i < k < m such that z;,zp € Aand z;11,..., 0,1 €
T. Since @41 leads to xy for X, then Py, [X(74) = z;] > 0 where 74 := inf{t > 0 :
X(t) € A}. By (S.2), this means that ((=Tp) " Ro)ui,s.0, > 0 which yields (Qa)z 0 >
(S1)zs,2001 (=T0) " R0) sy 1,20 = Qxi,wiﬂ((—Tg)*lRo)miH,mk > 0. These observations yield a
sequence of states o = ¥, z;,, ..., 7;; =y in A such that (QA)x,:cil (QA)fcz'l,xiz e (QA)xij,lay >
0.

Proof of Theorem S.9

Proof. Point (i) was established in Theorem 4.2. For (i7), we equate to zero the coefficients
of the terms €™ for m = 0,1,2,... in the terms of the series, (3> 7, ek (Q© + QM) to
obtain that 7(@Q© = 0 and 7" QO + z*:=DQM) = 0 for every k > 1. The latter requires
that for all £ > 1,

®) gk (0 |0 (h=1) ate-1)y (AL S _
[\, 5 ]<R0 Tﬂ)—k[a B ](Rl T 0.

Now, this yields two equations:

(8.14) ,B(k)Ro + Oé(k_l)Al + B(k_l)Rl =0,

(S.15) BRTy + a1 s, + gDy = 0.
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For B%), we obtain the relation (S.7) directly from (S.15) for all k£ > 1. For (¥, let’s see first
that it satisfies (S.8). From (S.7), for all k > 1, B+1) = (k) S + BFT))(—Tp)~" and using
this in (S.14) (with %k replaced by k + 1) we obtain for all £k > 1

(S.16) (a®8; + BB (=To) ' Ro + a® A, + BF R, = 0.

By rearranging (S.16) and using (4.6), we obtain (S.8) for all £ > 1. On the other hand, since
(r*) 1) = 0 for every k > 1, we obtain (S.9).

For the uniqueness of ), for all k > 1, if |A| = 1, then a*) has only one entry and it is
determined uniquely by (S.9). If |A| > 2, consider another solution v of (S.8) and (S.9),
where (y*)T € RMI. By Assumption 4.2 and Lemma S.1, dim(ker((Q4)")) = 1 and therefore,
by (S.8), al®) —~(F) = ca for some ¢ € R. Using (S.9), then 0 = a®1 — 41 = cal = ¢, and
therefore ¢ = 0, and aF) = (k)

For existence of a solution a!¥) of (S.8)-(S.9), using the properties

Ryl +Tp1 =0 and Ri1+7T71=0,
we have that

(Ry + Ty (=To) "' Ro)1l = Ryl + T2 (~Tp) ' Rol
= N1+ Ty (~Ty) 'Ryl
—0.

Then, since dim(ker(Q4)) = dim(ker((Q4)”)) = 1 and 1 € ker(Q4), we have

(—=B™(R1 + T1(~To) "' Ro))" € ker(Q)" = range((Qa)"),

and so (S.8) has a solution and (S.9) will determine the multiple of « to add to any particular
solution to obtain the unique solution a®) of both equations.
Furthermore, if Ql is a generalized inverse of @) 4, then

(S.17) a® = " (R, + T1(~Tp) "' Ro)QY,

is a solution to (S.8) (see [12| for an exposition). Similar to the uniqueness argument, a(*) —

a®) = ca for some ¢ € R. By (S.9), ¢ = =1 — a1 and we obtain (S.10). [ ]

S.2.3 Additional characterization of zeroth and first order terms for linear perturba-
tions via restricted processes In this section, assume that Assumptions 4.1 and 4.5 hold. We
will also sometimes assume Assumptions 4.3 or 4.4 hold. We will explore additional character-
izations of o and (). Under Assumptions 4.1 and 4.5, A(e) (defined in (4.2)) corresponds to
eA; for every 0 < € < gp. Since Q(¢) is irreducible for every 0 < € < €¢, from Lemma S.5 (with
A€ in place of B and Q(¢) in place of @ there), we obtain that £A; is invertible for 0 < & < e,
and therefore A; is invertible. This will be an important fact for the coming results.

Consider the matrix Q introduced in (4.7). For a continuous time Markov chain X with
infinitesimal generator @, denote by x7(t) the occupation time of 7 by the Markov chain X
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up to time ¢ > 0, with its associated limit x7(00) = limy_eo x7(t) = [5° L7 (X(£))dt. Since
A is invertible, by Lemma S.5 (with B = 7 and Q = Q) and Lemma S.6 we have that
Plx7(o0) =o0] =1.

Consider the process X7 as in (4.8), but with A replaced by 7, which corresponds to
observing X only on the time intervals where X isin 7. The process XT is a continuous time
Markov chain on 7. Consider the matrix

(818) QT = TO + Ro(—Al)_lsl,

which by Lemma S.15 is a @-matrix. Similarly to Lemma 4.3, we can show that Q)7 is the
infinitesimal generator of X5. Our previous assumptions relate to X in the following way.

Lemma S.10. Suppose Assumptions 4.1, 4.3 and 4.5 hold. Then XT has a single recurrent
class. Moreover, if Assumption 4.4 holds, the process X1 is irreducible.

Proof. Let D C T be a non-empty recurrent class for XT (there must be at least one), and
let C C X be the communicating class under X described in Assumption 4.3. We will prove
that D = C \ A, which yields the uniqueness of recurrent classes for X7. If Assumption 4.4
holds, then C = X', which combined with the relation D = C \ A, implies that D =X\ A =T
and the conclusion follows.

In order to prove D = C \ A, we start by making some observations. First, we prove that
there exist states & € D and § € A such that Q:;;g > 0. In fact, if this was not the case, then
for every x € D and z € A we would have Qw,z = (Ry)z,» = 0. This yields that for z € D,

(5.19) (Q7)ay = (10)ay + Z(RO):E,Z[(_AI)_lsl]Z,y = (T0)ay;
z€A

for all y € 7. Since D is a closed class under Q7, (Q7)zy = 0 for y € 7 \ D and so
Zye’D(QT):U,y = ZyET(QT)x,y = 0, since Q7 is a Q-matrix. Combining this with the previous
equation, we obtain that »_ 5 (Tp)s,y = 0 for all z € D, which implies that D is closed under
Q. This contradicts the fact that Tp is invertible by point (7) in Lemma S.5 (with B¢ =T and
Q=2Q). )

Second, we observe that there exist a § € A and & € D such that Q;; > 0. In fact, since
A; is invertible, by Lemma S.5 (with B¢ = A4 and Q = Q) there hastobeag e Aand z €T
such that Qg@ > 0. To show that & € D, consider that § € A communicates with §j € A under
Q, by Assumption 4.3, and therefore Z leads to Z under @ and therefore under Q. Since D
is closed under Q7, & € D.

We now prove that D C C \ A. For x € D, since T is invertible there exists a state y € A
such that z leads to y under Q. By Assumption 4.3, y and § are in A C C and so they
communicate under Q. It follows that z leads to 9 under Q. On the other hand, Qy #>0and
since D is a communicating class under Q7, # leads to z under Q. Thus, z leads to § and §
leads to z under Q and so z € C. Thus, D C C and D C T = A°, and so D C C \ A.

To prove that C\ A C D, let z € C\ A. Since D C C, then z communicates with the
element Z in D under Q This implies that they communicate under (7 and since D is a
communicating class under @7, then € D. Combining the above we see that D=C\ A. &
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When the continuous time Markov chain X'T has a single recurrent class D, there is a unique
probability vector v in RI7! such that »Q7 = 0 and v will be the stationary distribution for
XT with non-zero entries only for entries corresponding to states in D. We use the vector v
to characterize a and W),

In the following theorem, we use the fact that A is invertible. This follows from Lemma
S.4 because A1 = QA(1), where Q(1) is positive recurrent and so the condition (i) of Lemma
S.4 holds with B, = A.

Theorem S.11. Suppose Assumptions 4.1, 4.8 and 4.5 hold. Denote by v the unique proba-
bility vector in R\7T! such that vQ+ = 0. Then, 7(0) = [a,0] where a is given by

(S.20) a=cvRo(—A))7Y,
and where ¢ is given by ¢ = (vRo(—A1)"M1)~L. Moreover, 7V = [, 3] where
(S.21) BY = e,

Proof. Following the proof of Theorem S.9, equations (S.14) and (S.15) yield that

(8.22) B(I)Ro + ad =0,
and
(S.23) BTy + Sy = 0.

From (S.22) we obtain that o = S Ry(—A;)~'. We substitute this expression in (S.23) to
obtain that S (Ty + Ro(—A;)~'S1) = 0, which is exactly S)Q7 = 0. By Lemma S.10
combined with Lemma S.1, we obtain that 31 = & for some constant ¢ € R and therefore
a = &vRy(—A;)~L. To show that ¢ = ¢, we observe that since al = 1, then ¢(vRo(—A;) 1) =
1 and the desired result follows. ]
(1)

of XT, while Bg(cl) =0 for z € T'\U). In fact, using first step analysis, one can show that the

entry (—Al);; is the expected time that the process X spends at j when started at ¢, before

Under the assumptions of Theorem S.11, ;' > 0 for every x € D, the single recurrent class

exiting A. Hence, these entries are non-negative and so does vRo(—A;)~!. This implies that
the constant c is positive and the conclusion follows from (S.21) and the properties of v.

S.2.4 Additional characterization of zeroth and first order terms via partial balance
For the last part of this section, we consider an additional characterization for (1) based on
the idea of truncated processes and partial balance relations (see Section 9.4 in [13]).

Consider a continuous time Markov chain X = {X(¢) : ¢t > 0} with infinitesimal generator
Q on a finite state space X. Let ) a non-empty set in X'. Define the matrix Q = (Qx,y):c,yey
by Quy = Quy for z # y and Qrz = Qua + Zygy Qz,y- A continuous time Markov chain
X = {X(t) : t > 0} with state space ) and infinitesimal generator @) will be called a
truncation of X to ).
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Assumption S.1. For every 0 < € < €, the truncation of X¢ to T, denoted by X¢, is irre-
ducible. In addition, the following partial balance condition holds on T for every 0 < € < €qp:

(S.24) m2(8) Y Quyle) = > my()Qyale), for every z € T.

yeA yeA

Under Assumption S.1, the process X¢ has a stationary distribution 7(¢) for every 0 < & < o,
given by

72 (€)

yeT y(€)

(S.25) ne(e) = 5 , €T

(see Theorem 9.5 in Kelly [13]). The following is our main theorem.

Theorem S.12. Suppose Assumptions 4.1, 4.5 and S.1 hold. Then, the following hold:
(i) the limit n = lim._on(e) exists and it is a probability vector on T such that

(5.26) nQ(0) =0,
(ii) the vectors o and B can be characterized by
(S.27) B = e, a = cnRo(—A;) 7,

where ¢ = (nRo(—A1)" 1)L, and

(iii) nQ7 = 0.
If, in addition, Assumption 4.3 or Assumption 4.4 holds, then n = v is the unique
stationary distribution for X .

Remark S.13. Although we know that XY is well defined, we do not know a priori whether
the process is irreducible or it has a single recurrent class. If the truncation process X° has
a single recurrent class (or is irreducible), it will have a unique stationary distribution, which
we would call 7(0). But we do not know if such a vector exists. This non existence is what led
us to express Theorem S.12 in terms of the limit 7 which solves nQ(0) = 0. If the truncation
process XY has a single recurrent class, as in the 1D and 2D models, the probability vector n
is characterized uniquely by solving nQ(0) = 0 and 1 = 7(0).

Proof. We will first show that 301 > 0. From (4.5) we know that 3(Y) = a.S1(—Ty) ™", which
yields S 1 = @Sy (—Tp)~'1. Since all of the entries in a, Sy, and (—Tp)~! are nonnegative, it
suffices to show (N1 £ 0. For a proof by contradiction, suppose that S()1 = 0. This means
that

(S.28) Z Z am(Sl)x,y((_TO)ilﬂ)y =0.

yeT z€A

All of the entries in the sum are nonnegative, so this means that o (S1)z,,((=70)"'1), = 0 for
every v € Aand y € T. Now, ((—Tp) 1), is the mean first passage time to A, for the Markov
chain that starts at y with infinitesimal generator Q(0), and so ((—Tp)~'1), > m > 0.
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1467 Hence, oz (S1)e,y = 0 for every z € A and y € T. This yields that aS; = 0 and substituting
1468 this in (4.4) yields that aA; = 0. Since A; is invertible, this is a contradiction.
1469 Since we know that 8(0) = (%) = 0, we obtain that

00 k 0o k 00 _ k
R D v/ Y. LD v -1y LD W s
z - - 00 k) 00 k) 00 _ k
Yyer () S e kg e b Y R ety B
ﬂ(l) (1)
1471 Z -

— = )
1 1
SR

1472 We then obtain that n exists and 7, = 56((51))1 for every x € T, which is a probability vector on
1473 T. Or letting e — 0 in 5(¢)Q(e) = 0, we obtain that 7Q = 0. We already know that (1) = ¢n.
1474 To obtain a value for ¢ that depends only on 7, note that from (4.4) and (4.5), we have o =
1475 B Ry(—=A1)~ = enRo(—A1) Y, where enRo(—A1)~'1 =1 and so ¢ = (nRo(—A;)~'1)~L.

1476 By following the proof of Theorem S.11, we obtain SVQ7 = 0 and therefore nQ7 = 0. The
1477 other conclusions follow readily. |

1478 The following criterion offers a practical way to establish (S.24).

1479 Lemma S.14. Let A ={a1,...,a,}. Suppose there exist distinct states x1,...,2, in T such
1480 that for every 0 < e < g¢ and for every k € {1,...,n}.

1481 L. Qaya, (€), Quyay (€) > 0,

1482 2. Qauy(e) = Qua,(€) =0 for every y ¢ {xy, ar}.

1483 Then (S.24) holds.

1484 Proof. Denote by N' = {x1,...,2,}. Let 0 < &€ < g9. For z € T \ N, we have that
1485 mp(e) Doyen Qay(e) = 0 and 35 4 my(e)Qyw(e) = 0. Then, equation (S.24) holds for z €
1486 T\ N.

1487 For g, € N, my, () 2o en Qupy(€) = Tay, (6)Qaay (€)-

1485 On the other hand, >_ 4 Ty(€)Qyay (€) = Ta, (€)Qayay (€). Since m()Q(g) = 0, we have

1480 0= (7(e)Q(€))a, = Z 72 ()Qz 0y, (€)

zeX
1490 = Moy, (€)Quyar, (€) + Tay (€)Qayar (€) = Ty (€)Quy sy (€) — Tay, (€)Qayzy, (€)-
1491 Hence, 7z, (€)Quy.a, (€) = Tay (6)Qay i, (€) and (S.24) holds for x € N as well. [ ]

1492 S.2.5 Lemma S.15

1493 Lemma S.15. Under Assumption 4.1, the matrices Q4 and Q are Q-matrices of sizes | A| x| Al
1494 and |X| x |X| respectively. If in addition, Assumption 4.5 holds, then QT is a Q-matriz of size
1495 |T| x |T|.

1196 Proof. First, observe that lim. 0 2Qyy(e) = (A1)ay if 2,y € A, while lim._,0 1Qq(e) =
1497 (S1)ay if © € A and y € T. Then, since Q(¢) is a @-matrix, S; has nonnegative entries,
1498 (A1)zy > 0 for z #y € A, and

1199 (S.29) Z(z‘h)z,y + Z(&)m = 0 for every z € A.

yeA yeT
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Fore #ye A (Qa)zy = (Al)x,y—l—zzef,-(sl)xyz((—To)_1R0)27y is nonnegative since (A1)z,y >
0 and by (S.2), ((—=Tp) ' Rp)s,y =0 for z € T. For z € A, > yea(Qa)z,y is equal to

Z(Al)x,y + Z Z(Sl)w,z((_TO)_lRO)z,y = Z(Al)fc,y + Z(Sl)w,z Z((_TO)_lRO)z,y

yeA yeA zeT yeA z€T yeA
= Z(Al)m,y + Z(Sl)x,z = 0,
yeA z€T

where we used (S.2) and (S.29). Hence Q 4 is a Q-matrix.

For Q, for x #y € X, if x € A, then Q. , corresponds to an off diagonal term in A; or a
term in 51, both of which are nonnegative. If x € T, then @, corresponds to an off diagonal
term in Ty or a term in Ry, which are both nonegative since Q(0) is a Q-matrix. To check that
the row-sums of @ are zero, first consider when x € A. Then, Zy€X Quy = ZyeA(Al)x,y +

ZyeT(Sl)r,y =0 by (S.29). If z € T, then EyeX Qw,y = ZyeA(RO)z,y + ZyeT(Tﬂ)w,y =0,
since this corresponds to summing across a row of Q(0).
The case of Q7 follows similarly to that for Q 4. |

S.3 Algorithm to find the order of the pole of the MFPT Input: B C X, and k,, the
order of @ () for each (x,y) € Ep.
Output: p(z), the order of the pole of the mean first passage from = € B° to B.
(p will also be defined for condensed nodes in the course of the algorithm)
Step 1 (Set up the initial graph (V, E))
Construct a directed graph G = (V, E) where V = X and E = FEj.
Set, for each u € V, p(u) < min{k,, : (u,v) € E}.
Set, for each (u,v) € E, Kyy < kyp — p(u).
Step 2 (Condense B into a single node a)
Introduce a new node a.
Set, for each w € B¢ such that (w,v) € E for some v € B, Kyq < min{K,, : v € B and (w,v) € E}.
Update V < B°U {a} and
E <+ {(u,v) € E: ueBandv e B} U{(w,a): (w,v) € E for some w € B¢ and v € B}.
Set, for each u € V'\ {a}, S(u) < {u}, and S(a) + B.
Step 3 (Condense r-connected sets)
Repeat the following until G contains no r-connected sets:
Let C' C V be an r-connected set and ¢ be a new node representing the r-connected set C'.
Set p(c¢) + maxyec p(u) + min{ly, : v € C,v ¢ C and (u,v) € E}.
Set, for each w € V'\ C such that (u,w) € E for some u € C,
Kew + min{y, : v € C and (u,w) € E} — min{Ky, : v € C,v ¢ C and (u,v) € E}
Set, for each w € V'\ C such that (w,v) € E for some v € C,
Kwe ¢ min{fCpy, : v € C and (w,v) € E}.
Update V < (V' \ C) U {c} and
E+{(u,v)eE: u¢ Candv ¢ CrU{(c,w): (u,w) € E for some u € C and w ¢ C}
U{(w,c) : (w,v) € E for some w ¢ C and v € C}.
Set S(c) «+ UyecS(u).
Step 4 (Compute p(r) where z € B°)
Repeat the following until V' = {a}:
Let v* € V'\ {a} be such that p(v*) = max,cy\ 4} p(u) and break the tie arbitrarily.
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For each x € S(v*) C B¢ the order of the pole of the mean first passage time from x to B is
p()  p(v*).

Update, for each u € V such that (u,v*) € E, p(u) + max{p(u), p(v*) — Kyp~ }.

Update V <+~ V' \ {v*} and F + {(u,v) € E: u # v* and v # v*}.

S.4 Graphs for the algorithm to find the order of the MFPT Here we elaborate on
the graphs that we use in the algorithm and the definitions that we gave in Section 4.2.1 and
Section S.3. While, in the algorithm statement, we used the same notation for the updated
graphs as in the original graph, it will be clearer for the justification given in Section S.5 if
we specify which copy of the graph we are looking at for each step. Accordingly, we provide a
more detailed version of the definitions of these graphs and associated notation in this section.
Step 1: Graph G

For each € € (0,emax) and x € X, the exponential parameter satisfies

G(E) = —Quale) = D Quyle)= D Quyle) >0

yFreX (z,y)EEy

Since the order of Qg y(€) is kyy for each y € X such that (z,y) € Ep, the order of ¢,(e) is
po(x) = min{kyy : (z,y) € Ep}. For each (z,y) € Ep, the transition probability P, , () for the
embedded discrete time Markov chain is

Qu y(’f)
Py y(e) = : )
,y( ) Qx(g)
the order of which is
(S.30) Koy = kgy —min{kyy : (z,y) € Eo} = kzy — po(x).

We start with a weighed graph G = (V, E) where V = X and E = Ey. For each u € V, the
node weight of u is po(u), which is the order of the pole of the expected sojourn time
at state z until escape from x for X¢. For each (u,v) € E, the edge weight of (u,v) is Ky,
which is the order of the transition probability from u to v.
Step 2: Graph G

If z € B¢ is such that (z,y) € E for some y € B, then the transition probability from z to
B is positive and is given by

Pople)= Y Puyle)

yeB:
(z,y)eE
For such z, the order of P, g(¢) is
(S.31) Ko = min{lCyy : y € B, (z,y) € E},

where Ky, is the order of P, ,(¢) for each (x,y) € E.
Now, we are ready to specify the graph GO = (V(O),E(O)) which serves as the base case
for Step 3. We group the nodes in B into a single node, denoted by a, so the set of nodes
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becomes VO = (V' \ B) U {a} = B°U {a}. All of the edges starting from or going to a
node in B are then removed. If there was an edge from x € B¢ to a node in B, then we
add back an edge (x,a). We leave out all edges from a node in B to a node in B¢, since
we are interested in the mean first passage time to the set B. The resulting edge set is
EO = {(u,v) € E:u € B°and v € B} U{(w,a): (w,v) € E for some w € B¢ and v € B}.

Let S(u) = {u} for all u € VO\{a} and S(a) = B. Note that {S(u) : u € V(©} is a partition
of the state space X, denoting the grouping of nodes in V(). For each u € V(O \ {a} and
x € S(u) = {u}, we define p{j(u) to be the order of the pole of the expected sojourn time
in S(u) before exiting S(u) when starting the process at the state 2. For each (u,v) € E(©
and x € S(u) = {u}, we define K7, to be the order of the probability of a transition
to S(v) upon exiting from S(u) when the process is started at the state x. For these terms,
p§(u) = po(u) and K7, = Ky, which is the base case for Lemma S.20.

Step 3: Graphs {GMV)}V_

In Step 3, we define a sequence of graphs {GW) = (V) E(N))}AN/[:O recursively, where the
exact value of M > 0 is not pre-determined and is only revealed when an exit condition for
the recursion is satisfied. We know this recursion will end after a finite number of iterations
because the number of nodes in V) is strictly decreasing with N. The weight pg of each
node and the weight IC of each edge are also defined iteratively, and each is defined only once.

We have already defined G in Step 2. Fix N € {1,2,...,M + 1}, where the value of
M < oo is defined below. At the N** iteration, an edge (u,v) € EV=1) is called an r-edge if
its edge weight K, is 0; a directed path in GV=1 is called an r-path if it consists of r-edges
only. A set C ¢ V(W=D is called an r-connected set in GN=1 if |C| > 1 and there exists
an r-path from u to v for any u # v € C. Here we use the qualifier “r” to indicate that these
edges, paths and cycles are “regular”. If there is no r-connected set in GV=1), the iteration
stops. We set the value of M to the first value of N — 1 such that GV=1) does not have
any r-connected set. At that time point, the iteration stops and we move to Step 4 where
GM) will be the initial graph for Step 4. Otherwise, N € {1,..., M}, and we let Cy be an
r-connected set in GWV=1 which is condensed to a new node ¢y in GW). Then, we define
the graph GV = (VN EMV) where VIV) = (VIV=-D\ Cy) U {en}, and EM) = {(u,v) €
EWN-1 .y ¢ Cyandv ¢ Oy} U {(en,w) : (u,w) € EN=D for some u € Cy and w ¢
Cn} U {(w,ey) : (w,v) € EN=D for some w ¢ Cy and v € Cy}. Let S(cn) = Uyecy S(u).
Note that {S(u) : u € VI¥)} is again a partition of the state space X, denoting the grouping
of nodes in V().

We define p(cn) to be the order of the pole of the expected sojourn time in S(cy)
until the first exit from S(cy) when the process is started at the state € S(cy). In Lemma
S.20, we will show that the value of pf(cy) is independent of the state € S(cn), and we
define po(cn) = pE(cy). For each w € VN1 \ Cy such that (w,cy) € EX), define Koy to
be the order of the probability of a transition to S(cy) upon exiting from S(w) when
the process is started at the state x € S(w). In Lemma S.20, we will show that the value of

Kty is independent of the state z € S(w), and K7, = Kyey where
(S.32) Kuwey = min{Ky, : v € Cy and (w,v) € EN=DY,

For each w € VN1 \ Cy such that (cy,w) € EWN), define K¢ to be the order of the
probability of a transition to S(w) upon exiting from S(cy) when the process is started
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at the state x € S(cy). In Lemma S.20, we will show that the value of Kf, ,, is independent
of the state x € S(cn), and KF ,, = Keyw Where

’Cch = min{lCuw U € CN and (u, w) c E(N_l)}
(S.33) —min{/Cyy : u € Cn,v ¢ Cn and (u,v) € E(N—l)}.

We note that for each N € {1,..., M}, since there is no edge in EW=1 that leads from a, the
node a is never part of any r-connected set, and so a € VN) and there is at least one other
node in V) besides a. Also, the irreducibility of X€ when 0 < e < g¢ implies that there is a
path from  to y in G for each z € X'\ B and y € X. This implies that if uy # vy € VIV for
some N € {0,1,..., M} such that € S(uy) and y € S(vn), then there is a path from uy
to vy in GN). Therefore, for each N € {0,1,..., M}, there is always an outgoing edge from
some v/ € Cy (v cannot be a) to some v/ € VN1 \ Cy in GN=D . In addition, as can be
seen from the definition of the K’s in (S.30), (S.31), (S.32) and (S.33), foreach N =0,1,..., M
and v’ € VIN)\ {a}, there exists an r-edge (u”,v") € EW) for some v € VM), For G(M),
|[VM)| > 2. Furthermorer, if we only look at r-edges (and ignore the other edges), G™) is an
acyclic graph (as it contains no r-connected set). It follows that the node a is the only sink
because for each v € VM) \ {a}, there is an outgoing r-edge, and thus there is an r-path from
u to a for each u € VM) \ {a}.

Step 4: Graphs {G(M’N)}‘Jg:g”_l
VD |—1

In Step 4, we define a sequence of graphs {GMN) = (V(MN) E(M7N))}N70 recursively,
where GM:0) = G(M) In each iteration, the weight of one of the nodes in VAN=1) « /(M) jg
finalized and determines the value of p there, and the weights py_; of other nodes in V(M:N)
are updated to py.

Fix N € {1,...,|[VI™M| —1}. At the N iteration, let vy € VIMN=1\ {4} be such that

(S.34) pN—1(vN) = uev(f‘%?i)\{a}p]v_l(u) =:p(vn),

where we break the tie arbitrarily.
Now, we define the graph GMN) = (V(MN) p(MN)Y where VIMN) — Y (MN=1)\ £33 and
EWLN) — {(y,v) € EMN=1) ;4 = yy and v # vy}, For each u € VLN et
- ) - - ]Cuv ) fi ) € E(M’Nil)a
(S.35) () = max{py_1(u),pn—1(vN) Nt or (u,vN) o
pN-1(u), for (u,vy) ¢ BV )

In Theorem S.22, we will show that for each x € S(vy), the order of the pole of the mean
first passage time from z to the set B is p(z) = p(vn).

S.5 Justification for the algorithm to find the order of the MFPT Recall that we
defined {GWIN_ = {((VIN) BN " and GMO) = GM) in Section S.4. Each G
defines a partition {S(u) : u € VIM} of X, which will be used in our proofs. Since X¢ is an
irreducible continuous time Markov chain for all € € (0,¢p), each GV is weakly connected
and has the property that any node in V) \ {a} has an out-going edge starting from the
node.
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In this section, we will provide the justification for the algorithm. Step 1 of the algorithm sets
up the original continuous time Markov chain using a skeleton chain. Step 2 of the algorithm
serves as the base case for Step 3, and Lemma S.20 justifies Steps 2 and 3. Theorem S.22
shows that Step 4 works, which gives our main result for the order of the pole of the mean
first passage time from each state z € B¢ to B.

We will start with Sections S.5.1 and S.5.2, in which we describe in more detail the Big
Theta notation used in this section and define some useful stopping times that will be used in
our proof.

S.5.1 More on Big Theta notation In Section 4.2.1, we have defined orders for analytic
functions using Big Theta notation. Here we give a few more definitions and remarks for
inequalities involving the Big Theta notation, on how to compare the orders of analytic func-
tions and on arithmetic for orders. These conventions streamline the proofs in the following
subsections.

Definition S.16. Given g9 > 0 and a function f : (0,e0) — Rso, we say f < O(e¥) if there
exist k € Z and a strictly positive My € R~ such that, for all 0 < e < g,

f(S) < Mfsk.

We say f > O(c¥) if there exist k € Z and a strictly positive my € Rso such that, for all
0 <e<eg,

Remark S.17. Let k, ki, ks € Z and ky < k < ko. If f = O(c¥), then f < ©(cF1) and
f > 06(k).

Remark S.18. For functions f and g mapping (0,0) into Rsq, we write f = g - ©(e¥) if
L=0(), f<g 0N i § <O(F), f2g-0(F) if § > O(h).

Lemma S.19. Let ki, ko € Z, g9 > 0 and f,g: (0,60) = Rsq. If f = O(eM) and g = ©("?),
then

1 .
? = @(6_k1), f +g= @(smln{khkﬂ), f g = @(5k1+k2),

max{f, g} = Q(emntkrkz}), min{f, g} = Q(em>{kuka}y,
We leave the proof of Lemma S.19 to the reader.

S.5.2 Stopping times 75 For each graph G®) = (VN ENY N € {0,1,..., M},
recall that {S(u) : u € VIM} is a partition of the state space X. We define the series
of stopping times {Tf;’N o o, Which captures times of transitions of X between sets in the
partition {S(u) : u € VIM} of X. Formally, we let Tg’N =0, and for n = 1,2,..., we
successively define

reN =inf {£ > 72N X5(1) ¢ S(on)}



ANALYSIS OF SINGULARLY PERTURBED STOCHASTIC CHEMICAL REACTION NETWORKS 17

1687 where v,,_1 is the element in V(™) such that XE(TZ’_AQ) € S(vp—1).

1688 S.5.3 Justification for Step 3 of the algorithm

1689  Lemma S.20. (i) For N =0 in Step 3,

1690 (a) for each u € VO \ {a} and z € S(u), B, [Tf’o] = O(e o),

1691 (b) for each (u,v) € E© and x € S(u), P,[X({°) € S(v)] = O (k).

1692 (ii) For N € {1,2,...,M} in Step 3, let

1693 k=min{K,, : ue€ Cx,v ¢ Cx and (u,v) € BNV},

1694 (We note that k depends on N although we will not indicate that in the notation.)
1695 (a) For each x € S(cn), Ex[rf’N] = O(¢7P5(eN)) where pE(cn) = po(en) and

1696 po(en) = max{po(u) : u € On} + k,

1697 (b) For each z € S(cy) and w € VIN=D\ Cy such that (u,w) € EXN=Y for some
1698 u € Ch, IPZ[XE(Tf’N) € S(w)] = O(e~envv) where K, = Keyw and

1699 Keyw = min{Kyy : u € Cy and (u,w) € BNV} —

1700 (c) For each x € S(w) where w € VIN=U\ Cy is such that (w,v) € EXN=Y for
1701 some v € Cn, IPI[XE(Tf’N) € S(en)] = O ven) where Kien = Kwey and
1702 Kuwey = min{yy : v € Cn and (w,v) € E(Nfl)}.

1703 Proof. Our proof proceeds by induction. The base case (N = 0) is established in Section
1704 S.4.

1705 For fixed 1 < N < M, assume that (i) (a)-(b) and (ii) (a)-(c) hold with N replaced by
1706 0,1,..., N — 1. We abbreviate o1 s 7r forn=20,1,2,.... Let

1707 Sout(CN) = {(u,v) € BNV 1y € Cy and v ¢ Oy}

1708 denote all out-going boundary edges of Cy so that

1709 kE=min{/Cyy : (u,v) € Jout(Cn)}.
1710 First, consider the discrete time process {X°¢(75)}5°,, which is not necessarily a Markov

1711 process. We will derive a lower bound and an upper bound for

[e.e]
1712 (S.36) E; ZH{XE(T;)ES(CN) for 0<m<n} |
n=0
1713 which is the expected amount of time that {Y,7 = X°(75)}°2, spends in S(cy) before exiting
1714 from there, when started from a fixed state x € S(cn).
1715 For the lower bound, let

1716 p1 = max P,[X°(17) ¢ S(cn)],
yeS(en)
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the maximum over y € S(cy) of the probability that for X© started at y, when X*¢ exits S(u,),
where u, € Cy such that y € S(uy), X¢ exits outside of S(cy). By the induction hypothesis,
P,[XE(75) € S(v)] = O(e™w) for each u,v such that (u,v) € 6put(Cn) and y € S(u). Thus,
using Lemma S.19, we have

p1 = max D Py [X(r) € S(v)] = O(emniFui ) €ooun (@) — @ (h),

YES(EN) (4 0)Edomt (C):
y€S(u)
For z € S(en), let ¢n(x) = Py[X4(75,) € S(en) for 0 < m < n] for n = 0,1,2,.... Then,
do(x) = 1, ¢1(x) = Py [Xe(7f) € S(en)] > 1 — p1, and by the strong Markov property, for

n > 2,

On(x) = Z P,[X®(;,) € S(en) for 0 <m <n—2; X°(7;,_,) = y] Py[X(77) € S(cn)]
y€S(en)
2 ¢n-1(z)(1 — p1).

Hence, ¢p(z) > (1 — p1)" for n =0,1,2,.... Then, for x € S(cn),

00 0o 00 . 1 B
(837) Ea: Z ]I{XE(T,,E,L)ES(CN) for 0<m<n}| — Z (bn(x) > Z(l - Pl) = E = 9(8 k)
n=0 n=0

n=0

and so (S.36) is bounded below by ©(s7%).
For the upper bound, let wg € C be such that

min{pqv : (Wo,v) € dout(Cn)} = min{yy : (1, v) € dout(Cn)} = k.

Since the order of the probability P,[X(75) ¢ S(cn)] might equal &/ > k for some w #
wp € Cy and x € S(w), such a smaller order probability of directly exiting S(cy) from S(w)
makes it seem possible that (S.36) could be ©(¢~¥) for some &’ > k. Indeed, using a similar
approach to the one we used for the lower bound, we can show that (S.36) is bounded above
by O (em@x{Kuv:(u)€00u(CN)}) > @(ek). However, we would like a more stringent upper bound.
To achieve this, we will show below that from S(w), X¢ can exit S(cy) at least as quickly
by means of a transition from S(w) to S(wp) via the r-connected set and then from S(wyp) to
yN=1) \ S(en).
Let (§ =0, and for n = 1,2, ..., we successively define

ne_, = inf {t > ¢ X5(t) ¢ S(v) where v e VYD and X5(¢5_)) e S(U)} ,

G =inf{t >n_; : X°(t) € S(wp) or X°(t) ¢ S(cn)} .

Note that {¢;}72, and {75}, depend on N. Let

pr= min PyX°(G]) ¢ S(wo)l = min Py[X7(G]) ¢ S(ew))
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By the induction hypothesis, P,[X¢(7{) € S(v)] = O(eXw0v) for each v such that (wg,v) €
dout(Cn) and y € S(wp), and so

(S.38) p2 > %lén )Py[Xa(Tf) ¢ S(en)] = @(5min{leou:(wo,fu)eéout(CN)}) — @(gk)’
yeo(wo

where the inequality holds since starting from any y € S(wo), if X°(77) ¢ S(cn), X© exits
outside of S(cy) after leaving S(wp) and so X°(¢5) ¢ S(wo).
For x € S(cn), Pg-a.s., the sum
(5.39) D L{xe(rs,)e8(en) for 0<m<ni X< (r5)ES(wo)}
n=0
counts the number of distinct visits to S(wy), including the initial start there if x € S(wyp),
before X¢ escapes from S(cy). By the definition of the {(S}7° ), P;-a.s., the sum

n=0’

T x=(0)eswo)y + Z Lixe(cz)es(wo) for 1<m<n}

n=1

counts the same quantity. Thus, for x € S(wyp), using the strong Markov property and (S.38),

P(x) =,

Z ]I{XE(T,%)ES(CN) for 0<m<n;X5(Tﬁ)€S(w0)}]
n=0

=1+E,

Z ]I{XS(C%)GS(’UJ()) for 1Sm§n}]
n=1

= 1+ By | Txecs)eswo) Bxe () [Zﬂ{xs(wesmo) for OSmSH}”
n=0
(S.40) < 1+ (1—p2) max 9(y).
y€S(wo)

Note that max,cg(wy) ¥ (y) < 0o because the state space is finite and X* is positive recurrent.
Hence, by (S.40), max,cg(wy) ¥ (y) < p%. Then, for z € S(en) \ S(wp), by the strong Markov
property,
1
P(x) < Po[X°((7) € S(wo)}] max 4(y) < —.
y€eS(wo) P2

Thus, for any z € S(cn),

(S.41) E,

00 1 -
Z ]l{XE(T{%)GS(CN) for 0<m<n;X5(Tﬁ)€S(w0)}] < E = 9(8 k)

n=0

Let wy,we € Cpn be such that (wy,ws) € EW-1 and Kuw,w, = 0. By the induction
hypothesis, P,[X¢(7) € S(w2)] = ©(1) for all y € S(w1). Then, for z € S(cn),

I,

Z ]]-{XE(Tfn)GS(cN) for O§m<n;XE(T7§)€S(w2)}‘|

n=0
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>ZIP [Xe(r:,) € S(en) for 0 <m < n; X°(77) € S(w1), X (Tny1) € S(w2)]

*Z Z =) € S(en) for 0 <m < n; X(77) = y] - Py [X°(77) € S(w2)]

n=0yeS(wy)

> ZIP [X¢(ry,) € S(en) for 0 <m < n; X°(7y) € S(w1)]- min P, [X*(77) € S(w2)]
yeS(wi)

(5.42) =E, Z Tx=(rz,)eS(en) for 0<m<nixe(rs)eS(wn)} | - O(1).

n=0

where the first equality holds from the strong Markov property of X¢. Since Cy is an r-
connected set, we can start from the node w; and the order inequality (S.42) can be passed
from node to node in Cx and back to the node wy (wp is included in the path) so that we will
actually have equality in (S.42) and for all v € Cl,

Z ]l{XE £)€S(cy) for 0<m<n; Xe(1E)eS(v )}]

(S.43) L O(1).

Z ]l{X5 £.)ES(en) for 0<m<n; Xe(75)eS(wo)}

Therefore, combining (S.41) and (S.43), and since there are only finitely many nodes in Cl,
we can obtain by summing over v € Cy that (S.36) is bounded above by ©(¢7*). Combining
with (S.37), we have that, for z € S(cy), (S.36) is ©(¢~*). Moreover, by (S.43), for each
x € S(cn) and each v € Cy;,

(844) Z ]I{XE(T,%)GS(CN) for 0<m<n;Xe(7g)eS(v)}| — e(gik)'

n=0

To prove (ii) (a), fix x € S(cy). By the induction hypothesis, |, [7{] = (7)) for each
y € S(u) where u € Cy. Thus, the expected sojourn time in S(cy) is

E.[r;"] = E

Z ]]‘{XE(T,,ER)ES(CN) for 0<m<n} * (T’IEL-‘,-l - T;)]
n=0

= Z S > Ballixe(rs)es(en) for 0<menix=(r)=y}) - Eylri — 7]

n=0ueCn yeS(u)

= Z Ex Z]I{XE(T,E,L)ES(CN) for 0<m<n; X (rg)eS(u)} | -~ @(57}70(“))
ueCn n=0

— Z @(6—k—po(u)) — @(g—k—max{po(u):uec‘zv}) — @(g—po(m)).
ueCn

where the first equality holds from the strong Markov property of X¢, we used (S.44) for the
third equality, and we used Lemma S.19 for the fourth equality.
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1793 To prove (ii) (b), fix x € S(cy) and w € VW=D \ Cy. By the induction hypothesis,
1794 Py [XE(75) € S(w)] = ©(elww) for each y € S(u) where u € Cy. Thus, starting from =, the
1795  probability of exiting S(cy) by means of a transition from a state in S(cy) to a state in S(w)
1796 is given by

1797 Po[X(rp™) € S(w)] = > PL[X*(75,) € Slew) for 0 <m < n; X°(754,) € S(w)]
n=0
1798 =3 ) > Eallixe(rs)es(en) for 0menix(rs)=y}) - Py[X°(7§) € S(w)]
n=0ueCn yeS(u)
1799 = Z E, Z Lixe(re)eS(en) for 0<m<n;Xe(re)eS(u)} | - @(EK’“”)
ueCn: n=0
(u,w)GE(Nfl)
1800 _ Z @(e—k—‘r}Cuw) — ®(€—k+min{lCuw:u€CN and (u,w)GE(Nfl)}) _ @(5’CCN“’)’
ueCn:
(u,’w)eE(N’l)

1801 where we used (S.44) for the third equality, and for the second equality, we used the fact that
1802 there must be an edge in BN~V between u and w if P,[X*(r§) € S(w)] > 0 for some and
1803 hence all y € S(u).

1804 To prove (i) (c), fix z € S(w) where w € VIN-1\ Cy. By the induction hypothesis,
1805 PL[X5(15) € S(v)] = O(eXw) for each v € Cy. Thus, starting from z, the probability of
1806 entering S(cn) by means of a transition from a state in S(w) to a state in S(cy) is

1807 Po[X(r7Y) € S(en)] = D P[X(7f) € S(v)]
veCyn
1808 = > O(r) = g(eminthunely and (w)eBND}) — g(hwen),
veCy:
(ww)eEN -1
1809 [ |
1810 S.5.4 Justification for Step 4 of the algorithm
1811 Lemma S.21. Fiz w € VMO {a}. Let 75 = oM forn =0,1,2,..., as defined in Section

1812 8.5.2. Then, starting from x € S(w), the expected number of distinct visits to S(w), including
1813 the initial start there, before X¢ enters S(a) is

o
1814 Eu | Lixe(r5)¢5(a) for 0<men:X=(r5)esw)} | = O(1).
n=0
1815 Proof. Let (5§ =0, and for n = 1,2, ..., successively define
1816 n°_, = inf {t > (5, X5(t) ¢ S(v) where v € VMO and X5(¢5_ ) € S(U)} ,
1817

1818 ¢S =inf{t>n_,: X°(t) € S(w) U S(a)}.
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Note that for x € S(w), Py -a.s.,

[e.9] o0
(S.45) Z L xe(re)¢5(a) for 0<m<n; Xe(r5)eS(w)} = Z L xe(¢s,)eS(w) for 0<m<n}s
n=0 n=0
since they both count the number of distinct visits to S(w), including the initial start there,

before X¢ enters S(a).

Recall from Section S.4 that for each u € VMO \ {4}, there is an r-path from u to a. Let
such an r-path from w to a be w — wy ... — wqg — a where w, w1, ..., wq, a are distinct. By
definition, an edge (u,v) € VM9 is an r-edge implies that P,[X*(75) € S(v)] = ©(1) for all
z € S(u). Thus, for any y € S(w), using the strong Markov property of X¢, we have

O(1) =1 > Py[X°((7) ¢ S(w)] =Py [X*(¢7) € S(a)]
> P, [X*(r7) € S(wy), ..., X(13) € S(wa), X°(73,1) € S(a)]

= > Po[X(rf) € S(wr), ..., X(7]) € S(wa), X°(7§) = 2] - P[X*(7f) € S(a)]
2€8(wq)

=P, [X(r5) € S(wy),..., X(5) € S(wg)] - O(1) =... = O(1)-...-O(1) = O(1).

Using a similar approach to that used in Section S.5.3, we can show that for xz € S(w),

e |2 o s o °<’”<”}] 2 S B ]~ O
and
E. i]l{XS(Cfm)GS(w) for ogmgn}] < — P ! = = 0(1).
n=0 minge () Py[X*(C7) ¢ S(w)]
Combining these inequalities with (S.45) yields the desired result. [ |

Theorem S.22. Let 75 = inf{t > 0 : X*(t) € B} be the first passage time to B for X*. For
ecach N=1,...,[VM| _1 and z € S(vy), we have

(S.46) E,[rg] = O(e7P(V)),
Proof. Tt suffices by iteration to prove that for each fixed 1 < N < |[V(M)| — 1, if
(S.47) E,[75] = O(cP%)) for all y € S(vg) and 1 <k < N — 1,

then (S.46) holds for all x € S(vy). By convention, (S.47) holds automatically for N = 1.

For the iteration step, fix 1 < N < [VIM)| — 1, and assume that (S.47) holds. If N = 1, let
A=VMON\ g} and if N > 1, let A= VMO {v,... vy_1,a}. Recall that for w € A and
1<k <N—1, we have w € VM) and so by (S.35),

max{pg_1(w), pr—1(vk) — Kuwo for (w,v;) € EMA=1)
(S.48) pp(w) = {Pr—1(w), pr—1(vr) . (w,vg) B
pr—1(w), for (w,vy) ¢ EVWHEH,
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Note that (w,vy) € EMFE=D if and only if (w,v;) € EMO. Since pp_1(vy) =: p(vg) for
1 <k < N —1, by iterating (S.48), we can obtain

(5.49) pn-1(w) = max{po(w), max{p(vg) — Kyn, : 1 <k <N —1and (w,vx) € E(M’O)}},

where we make the convention that a maximum over an empty set is —oco. In particular, since
vy € A, we have
(S.50)

plon) = pn_1(vn) = max{po(vx), max{p(vy) — Koyu, : 1 <k <N —1and (vy,v;) € EM0O1Y

Fix x € S(vy). We will derive a lower bound and an upper bound for IE;[75]. For the lower

bound, let 7¢ = inf{t > 0 : X°(t) ¢ S(vn)}. Recall that Pg-as., 7° = 7; =M as defined in
Section S.5.2. By Lemma S.20, for each y € S(w) where w € VM0 = V(M) j5 such that
(vy,w) € EMO) = pM) P _[Xe(75) = y] = O(eXvwvw) and E,[r5] = ©(¢P0(™N)). By first

step analysis,

Flrg) = Eulr]+ > P =y] - Ey[rp]
(v ,w)eEAM,0) yeS(w)
> B[] + Z Z P, [X*(m%) = y] - E, 73]

1<k<N-1: yeS(vy)
(v o) B0
(©.51) _ g(emlow)y 4 Z O(Konvn) - ©(e7Pk)) = @(e PN-1(vN))y,

1<k<N—1:
(v ,vg ) EEM0)

where we used (S.47) in the second last equality, and used Lemma S.19 and (S.50) for the last
equality.

For the upper bound, let #° = inf{t > 0 : X°(t) ¢ U,caS(w)}. Let 7; = oM for
n=20,1,2,..., as defined in Section S.5.2. Then, using Lemma S.21 and the strong Markov
property, for w € A ¢ VM0 \ {q},

Z ]l{XE(T,%)GUueA S(u) for 0<m<n;X¢ (T,Z)ES(U})}]

n=0
(5.52) < P,[X°(C7) € S(w)] nax E, gﬂ{xs(@)gsm) for 0<m<n;X*(r2)es(w)} | < O(1).
where ¢° = inf{t > 0: X*(t) € S(w)}.
For 1 < k < N — 1 such that there exists w € A where (w,v;,) € EM0),
P.[X5(n°) € S(vi)] = iIPI[XE(Tfn) e | S(u) for 0 <m < n; X5(75,,) € S(ug)]
n=0 u€eA
- Z S PufX(r,) € | Su) for 0 <m < ny X°(r5) = y] - Py [X°(r5) € S(up)]

n=0wecA yecS(w) ucA
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oo

Z ]l{XS(Tfn)EUuGA S(u) for 0<m<n; X (75)eS(w)}
n=0

L O

weA:
(w,vk)EE(M’O)
(853) < Y O(1)- 6 ),

weEA:
(w,vg)€EALO)

where the second equality holds from strong Markov property of X¢, the third equality uses
Lemma S.20, and we used (S.52) for the last inequality. Using Lemma S.20 and (S.52),

Eo[n®) = Ea | D Lixe(re)eU, e s SCu) for 0<men} * (Tig1 — sz)]
n=0

(oo}

= Z Z Z P.[X5(7) € U S(u) for 0 <m < n; X°(r) = y] - Ey[rf — 75]
n=0wecA yES(w) u€EA

= Z Ew Z ]l{XE(‘rfn)EuueA S(u) for 0<m<n;Xe(rg)eS(w)} | ° @(E—Po(w))
weA n=0

(S.54) < Z o(1) - @(g—po(w)) < @(E_pN—l(’UN))7

wEA

where we have used (S.49) and (S.34) to conclude that pp(w) < py—1(w) < py—1(vy) for all
w € A. Therefore, using first step analysis, we have

Eolrg) = Eull+ >, > P =yl - By[rg]
1<k<N-— lyES Ulc)
=Efl+ ) P ) € S(v)] - ©(e7PM)
1<k<N-1
< O(e7Py-1lon)) 4 Z Ol ) . @)

wEA,
1<k<N-1:
(w,vp,)€EM0)

(S.55) < @(5—171\171(7)1\1)) + 0@~ maX{PNfl(w)inA}) — @(g—pNA(UN))’

where we used (S.47) for the second equality, (S.53) and (S.54) for the first inequality, and
(S.49) and Lemma S.19 for the second inequality.
By (S.51) and (S.55), we conclude that |, [r5] = O(e7PN-1(tN)) = @(¢7P(vN)), [ ]

S.6 Application of the algorithm to the 2D, 3D and 4D models The algorithm is
described in Section 4.2.1, and it finds the order of the pole of the mean first passage time to
) # B C X from each state in B¢. In this section, we will apply the algorithm to the 2D,
3D and 4D models and find the order of the poles of the mean first passage times of interest
to the fully repressed state and the fully active state (Figure S.1 — S.5). For each figure, the
“Input” panel shows the order of each of the non-zero off-diagonal entries in Q(¢) and the set
B which contains a single state, which is either the fully repressed state or the fully active
state. The orders of these non-zero entries in @(¢) are represented by colored arrows in the
graph (red for order 0 and blue for order 1). Step 1 transforms the orders in the infinitesimal
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generator ()(¢) into orders for the transition matrix P(e) and the exponential parameters g(e)
to give an equivalent construction for the continuous time Markov chain. The orders of the
non-zero entries in P(g) are given by K and represented by colored arrows in the graph, and
the number in the circle at a state @ € B¢ is the order of the pole p(z) of qzl(s) (the mean
sojourn time at the state ). In Step 2, the set B contains only one state and is just relabeled
as the node a. All transitions from a to B¢ are then removed. While the Input, Step 1 and
Step 2 are universal across all the figures in this section, we explain the Step 3, Step 4 and
Output panels separately for each application below since they are more distinct.

2D model (from the fully active state to the fully repressed state): see Figure S.1.
The explanation of the panels for Input, Step 1 and Step 2 is given above with B = {(Diot,0)”'}.
Step 3 for the 2D model involves only one iteration, where the collection of all nodes except the
node a and the origin 0 (called an r-connected set C) is condensed to a single node ¢, and the
order of the pole at cis p(c) = maxyec p(u)+min{y, : v € C,v ¢ C and (u,v) € B} =140 =
1, where F denotes the edge set of the graph in Step 3 before the first iteration. Moreover,
Keo = min{/Cyp : u € C and (u,0) € E}—min{Cy, : v € C,v ¢ C and (u,v) € E} =1-0=1,
Keo = min{y, : u € C and (u,a) € E}—min{y, : v € C,v ¢ C and (u,v) € E} =0-0=0,
and Koo = min{Ky, : v € C and (0,v) € E} = 0. Step 4 involves two iterations. In the
first iteration, we fix the node with the largest value of p, which is ¢ in our case. At any
node other than a that is connected to ¢ (i.e., the origin 0), the value of p is updated to
p(0) = max{p(0), p(c) — Ko} = max{0,1 —0} = 1, and then any edges leading to or from ¢
are removed. In the second iteration, of the remaining nodes, we fix the node with the largest
value of p, which is the origin. When all of the nodes other than a have been fixed, the order
of the pole of the mean first passage time from each state in B¢ to B is given by the fixed value
of the node to which the state belongs.

2D model (from the fully repressed state to the fully active state) Because of the
symmetry in the input graph in Figure S.1, the orders of the poles of the mean first passage
times to the fully repressed state can be obtained in the same way as above.

3D model (from the fully active state to the fully repressed state): see Figure S.2. The
explanation of the panels for Input, Step 1 and Step 2 is given above with B = {(Diet,0,0)7}.
A state represents (nD§2 , DA, nDEz,)T. Step 3 involves only one iteration, where the collection of
all nodes except for (0,0,0)7, (0,0, Diot)?, (1,0, Diot—1)7, (2,0, Dot —2)7 . . ., (Diot —2,0,2)7,
and (Dot —1,0,1)T (called an r-connected set C) is condensed to a single node c. The order of
the pole of the sojourn time at C'is p(c) = maxyec p(u) +min{fCyy : v € Cyv ¢ C and (u,v) €
E} =1+0 =1, where E denotes the edge set of the graph in Step 3 before the first iteration.
Moreover, K, ¢ 0,0yr = min{k, g0 : v € C and (u, (0,0,0)7) € E} —min{Ky, : u € C,v ¢
C and (u,v) € E} =1-0 =1, ]C(07070)T7c = min{lC(O,070)T,U :v € Cand ((0,0,0)7,v) €
E} = 0, ,Cc,(O,O,Dtot)T = min{lCuKO’O,Dmt)T :u € C and (u, (O,O,Dtot)T) S E} — min{lCm, :
u € Cov ¢ Cand (u,0) € E} = 0-0 =0, Kgope)r,e = min{Kqop,)re @ v €
C and ((0,0,Dg)",v) € E} = 1, ..., and Ke,(Dwi—1,007 = min{, p, 1017 @ u €
C and (u, (Diot — 1,0,1)7) € E} —min{Ky, : u € C,v ¢ C and (u,v) € E} =0-0 =0,
KDioe—1,01)7,c = min{Kp,,_1,01)7, : v € C and ((Dior — 1,0, T v) € E} = 1. Step 4
involves (Dyot + 2) iterations. In the first iteration, we fix the node with the largest value of
p, which is ¢ in our case. At any node u other than a that is connected to ¢, the value of p is
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updated according to the formula p(u) = max{p(u),p(c) — Kyc}, and then any edges leading
to or from c are removed. In the second iteration, the node (0,0, O)T has the largest value of p
among the remaining nodes, and thus is fixed. There is no other nodes connected to (0,0, 0)7
at this point, so we move to the next iteration. In the third iteration, the node (0,0, Dtot)T is
fixed. The node (1,0, Dyoy — 1)7 is connected to it, and thus the p((1,0, Dyor — 1)7) is updated
to be max{p((1,0, Dior — 1)T), p((0,0, Diot)T) — K 1,0,Di0t—1)7 ,(0,0,D100) } = 0. Then, any edges
leading to or from (0,0, D¢t)? are removed. The remaining iterations will be similar to the
third one. When all of the nodes other than a have been fixed, the order of the pole of the
mean first passage time from each state in B¢ to B is given by the fixed value of the node to
which the state belongs.

3D model (from the fully repressed state to the fully active state): see Figure
S.3. The explanation of the panels for Input, Step 1 and Step 2 is given above with B =
{(0,Dtot,0)7}. Step 3 involves two iterations. In the first iteration, the collection of nodes
consisting of (Dot — 1,0, 1)7 and (Dyot, 0,0)7 (called an r-connected set C1) is condensed into
a single node ¢;. The order of the pole of the sojourn time in C; is p(c1) = max,ec, p(u) +
min{/Cy, : u € C1,v ¢ Cy and (u,v) € E} =1+ 1 = 2, where E denotes the edge set of the
graph in Step 3 before the first iteration. Moreover, K., p, —20.2)7 = min{K, i, 2027 :
u € Cy and (u, Dyt — 2,0,2)T) € E} — min{y, : u € C1,v ¢ C; and (u,v) € E} =
1—1=0, Kp,,-2027e =min{Kp,, 2027, : v € Crand (Dot —2,0,2)",0) € E} =0,
Ke (Dwoe—1,007 = min{y p,,—1,007 : © € C1 and (u, (Dyor — 1,0,0)1) € E} — min{Ky, :
u€ Crv¢Crand (u,v) € B} =1-1=0and Kip,, 1007, = min{Kp, 10070 E
Cy and ((Dgor — 1,0,0)T,v) € E} = 0. In the second iteration of Step 3, the collection of all
nodes except for (0,0,0)7 and a (called an r-connected set C3) is condensed to a single node cz.
The order of the pole of the sojourn time in Cs is p(c2) = maxyec, p(u)+min{fCy, : u € Ca,v ¢
Cy and (u,v) € E} = 2+ 0 = 2, where E denotes the edge set of the graph in Step 3 before
the second iteration. Moreover, K., o0 = min{K, oonr : v € Cz and (u, (0,0,0)7) €
E} —min{y, : u € Cy,v ¢ Cyand (u,v) € E} =1-0=1, K¢ = min{yq : u €
Cz and (u,a) € B} —min{Ky, : u € C2,v ¢ Cy and (u,v) € E} =0-0=0, and K o)1 ¢, =
min{gor, : v € Cz and ((0,0,0)7,v) € E} = 0. Step 4 involves two iterations. In the
first iteration, we fix the node with the largest value of p, which is ¢s in our case. At any node
other than a that is connected to cy (i.e., the origin (0,0,0)T), the value of p is updated to
p((0,0,0)T) = max{p((0,0,0)T), p(c2) — K0,0,0)7 ¢, = max{0,2 — 0} = 2, and then any edges
leading to or from cy are removed. In the second iteration, among the remaining nodes, we fix
the node with the largest value of p, which is the origin. When all of the nodes other than «a
have been fixed, the order of the pole of the mean first passage time from each state in B¢ to
B is given by the fixed value of the node to which the state belongs.

4D model (from the fully active state to the fully repressed state): see Figure
S.4. We illustrate how to use the algorithm for the 4D model when Doy = 2; for larger
Dyot, the methodology will be the same. A state represents (nD%,nDA,nD{{,an)T. The
explanation of the panels for Input, Step 1 and Step 2 is given above with B = {(2,0,0,0)7}.
Step 3 involves only one iteration, where the collection of all nodes except for (0,0,0,0)7,
(0,0,2,0)7, (0,0,1,1)7, (0,0,0,2), (1,0,1,0)” and (1,0,0,1)” (called an r-connected set C)
is condensed to a single node ¢. The order of the pole of the sojourn time in C' is p(c) =
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maxyec p(u) + min{Cy : v € C,v ¢ C and (u,v) € E} = 1+ 0 = 1, where E denotes
the edge set of the graph in Step 3 before the first iteration. Moreover, the value of K for
edges between ¢ and an original node w that is not in C' are defined according to the formula
Kew = min{Kyy : u € C and (u,w) € E} —min{l,, : v € C,v ¢ C and (u,v) € E},
Kwe = min{y, : v € C and (w,v) € E}. Step 4 involves seven iterations. In the first
iteration, we fix the node with the largest value of p, which is ¢ in our case. At any node
u other than a that is connected to ¢, the value of p is updated according to the formula
p(u) = max{p(u),p(c) — Ky}, and then any edges leading to or from c are removed. In
the second iteration of Step 4, the node (0,0,0,0)7 has the largest value of p among the
remaining nodes, and then is fixed. There are no other nodes connected to (0,0,0,0)” at
this point, so we move to the next iteration. In the third iteration, the node (0,0,2,0)T
is fixed. The node (1,0,1,0)” is connected to it, and thus p((1,0,1,0)7) is updated to be
max{p((1,0,1,0)7), p((0,0,2,0)T) — K1,0,1,07,00207} = 0. Then, any edges leading to or
from (0,0,2,0)7 are removed. The remaining iterations will be similar to the third one. When
all of the nodes other than a have been fixed, the order of the pole of the mean first passage
time from each state in B¢ to B is given by the fixed value of the node to which the state
belongs.

4D model (from the fully repressed state to the fully active state): sece Figure S.5.
We again illustrate how to use the algorithm for the 4D model when Dy = 2; for larger Dygg,
the methodology will be the same. The explanation of the panels for Input, Step 1 and Step
2 is given above with B = {(0,2,0,0)7}. Step 3 involves two iterations. In the first iteration,
the collection of the nodes (1,0,1,0)%, (1,0,0,1)T and (2,0,0,0)7 (called an r-connected set
(1) is condensed into a single node ¢;. The order of the pole of the sojourn time in Cy
is p(c1) = maxyec, p(u) + min{y, : u € Cy,v ¢ C; and (u,v) € E} =1+ 1 = 2, where E
denotes the edge set of the graph in Step 3 before the first iteration. Moreover, the value of IC of
edges between ¢ and an original node w that is not in C are defined if there is an edge between
some node u € C7 and w and according to the formula K., , = min{/Cy,, : v € C1 and (u,w) €
E} —min{y, : u € C1,v ¢ Cy and (u,v) € E}, Ky, = min{y, : v € Cy and (w,v) € E}.
In the second iteration of Step 3, the collection of all nodes except for (0,0,0,0)7 and a (called
an r-connected set Cy) is condensed to a single node co. The order of the pole of the sojourn
time in Cy is p(c2) = maxyec, p(u) + min{lCyy : u € Co,v ¢ Cy and (u,v) € E} =240 = 2,
where E denotes the edge set of the graph in Step 3 before the second iteration. Moreover,
Key (0,000 = min{kC, o007 : v € Cand (u,(0,0,0,0)") € E} —min{Ky, : u € Cy,v ¢
Cy and (u,v) € B} =1-0=1, K¢, = min{y, : v € Cy and (u,a) € E} — min{/Cy, :
u € Cy,v ¢ Crand (u,v) € B} = 0—0 =0, and K 00)7,, = min{Koo0r, 1 v €
Cs and ((0,0,0,0)7,v) € E} = 0. Step 4 involves two iterations. In the first iteration,
we fix the node with the largest value of p, which is ¢y in our case. At any node other
than a that is connected to co (i.e., the origin (0,0,0,0)7), the value of p is updated to
p((0,0,0,0)") = max{p((0,0,0,0)"), p(c2) — K(0,0,0,0)7 ¢, } = max{0,2 — 0} = 2, and then any
edges leading to or from co are removed. In the second iteration, of the remaining nodes, we
fix the node with the largest value of p, which is the origin. When all of the nodes other than
a have been fixed, the order of the pole of the mean first passage time from each state in B¢
to B is given by the fixed value of the node to which the state belongs.
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Input for the 2D model Step 1 Step 2
npA Py (e) = 0(e"w) = 0(1) Ky =0
— Quy(e) = 0(kw) = 0(1) Py () = 0(e"%) = 0(¢) Koy =1
Qxy(e) = 0(e"v) = 0(e) 4x(e) = O(eP®) = 9(1) p(x) =0
gx(€) = O(eP™) = O(e) p(x) =1
) B B ﬁ B node a
o—0 00 - R C=—O . -
Step 3 — Xy =0 |Step 4 — Ky =0
(before 1% iteration) Ky =1 Ky =1
@ p(x)=0 @ p(x) =0 n @ EX[T&Dtot.O)}] =0(e™,
DA
@ p=1 (1% iteration] @ P =1 for each x # (Do, 0)

-connected set C

@*@*@

max(0,1-0)=1

(2" iteration)

node ¢
/@\ ©

® ® ® O

B = {(Dtot' 0)}

Figure S.1: Key steps of the algorithm for the 2D model.
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Input for the 3D model

— Quy(e) = 0(") = (1)
Qxy(e) = 0(v) = 0(e)

Stepl — Py(s)_e(s“xy) o(1)
Pey(e) = 0(e%) = 0(e)

© 4x(e) = 8(P™) = B(1)

@ (e =0(eP®) = 0(e)

Step 2

Step 3 — Ky =0
(before 1% iteration) Ky =1
@ px)=0
@® r=1

r-connected

set C

(after 1%t iteration)

node ¢

o=
@/'

/'

Step 4

(1% iteration)

max(0,1-0)=1

@%@
/® %(0,1-1#0

max(0,1-1)=0

/O

max(0,1-1)=0

=0

Ky = 1
© px)=0
® rx=1

@@*O

©

— Ky

((Dyor+2)th iteration)

(2" jteration)

Output

@ Ex[tfpy00m] = 0™
EX[T{S(Dtoch.U)}] =0(1)

B = {(Dtot! Olo)}

Figure S.2: Key steps of the algorithm for the 3D model (from the fully active state
to the fully repressed state).
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Input for the 3D model

Quy(e) = 0(e") = 0(1)
Qxy(e) = @(s‘/"\\') =0(e)

Stepl —. p )=0(">) =01)
Pyy(e) = 0(e") = 0(e)

© x(e) = 0(PM) = 0(1)

@ 4xle) = 0(PD) = 0(e)

Step 2 —— Ky =0
Ky =1

© px)=0

® r@=1

npr
Step 3 — %% =01 Qutput
(before 1% iteration) (after 2" jteration) Koy = 1
® ® p@=0
O @ r=1 @ Exltfiopion] = 0™
: \ @ rx=2
R @»@
node ¢,
©

r-connected
set Cq

(after 1% iteration / before 2" iteration)

Step 4 —— Ky =0
Ky =1

(1% iteration) @ p(x) =0
O @ px) =2

max(0,2-0)=2

(2" iteration)

O

o (2

Figure S.3: Key steps of the algorithm for the 3D model (from the fully repressed
state to the fully active state).
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Input for the 4D model

— Q&) =0(e") = 0()
Quy(e) = 0(e") = 0(e)

Step 1

— Py(e) = 0(e") = o(1)
Py (&) = 0(e™v) = 0(¢e)

© (e =0(P™) =0(1)
@ ax(e) = 0(P™) = 0(e)

npa

npr, =0

Npk

Step 2

— Ky =0

Step 3 — x,=0 | Step 4
Ky =1 . .
t : Y 1st jteration
(before 1t iteration) ® p@=0 ( )
TpA @ r@=1
r-connected
npr, =1
TID!;
npa DR, = 2 ©
()~ "Dy ® @‘x
npr \\t ©

(after 1%t iteration)

node ¢

@©‘//g®/@‘ @
©\\\\:\\§© © @»@D\\&
@\\A,o Nké@)@\-\‘o

— Ky =0
. Ky 1
(7th iteration) © px=0
@ prx)=1
@
©
©
©
o OX
Output @ Eultfiprooon] = 0™

© Eu[tf,pp000n] = 0D

B = {(Dtot, 0,0,0)}

Figure S.4: Key steps of the algorithm for the 4D model (from the fully active state

to the fully repressed state).
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Input for the 4D model

— Qu(e) =0(") = (1)
0(eker)

npa
B *D O

0(¢e) B 4 ©

Pey(e) = 0(e") = 0(1)
Py (&) = 0(e™v) = 0(¢e)
4x(e) = 0(ePM) = B(1)
4x(e) = 0(eP™) = B(e)

step 2 —— Ky =0
Koy = 1
node a A © pe)=0

Step 3

(after 1%t iteration / before 2" iteration)

(before 1t iteration)

(after 2" jteration)

O

N\
o~

Koy = 1
© r@®=0
® px=1
@ r@=2

r-connected
set Cy

node ¢,

Step 4 — Ky =0
(1t iteration) (2" iteration) ® /‘(‘"):1
p(x)=0
O% O @ r=2
@*@ ® @
max(0,2-0)=2
Output @ Eutfonipooml =0
npA

B ={(0,Dtor, 0,00}

Figure S.5: Key steps of the algorithm for the 4D model (from the fully repressed

state to the fully active state).
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S.7 Leading coefficient for the MFPT

S.7.1 Proof of Theorem 4.7

Proof. Fix A = max{qg,(¢) : v € X,0 < ¢ < eg9}. The X here should not be confused
with other rates A\ with subscripts and/or superscripts used elsewhere of this paper. In the
following, we use the breve symbol to denote notation associated with discrete time Markov
chains defined below.

Let Y = {Y¢(n) : n € Z,} be a discrete time Markov chain with transition matrix P(e) =
I+ %Q(e) for each 0 < € < €¢°. Note that Y¢ is a singularly perturbed discrete time Markov
chain under the definition of Avrachenkov et al. [2]. Let II(¢) be the ergodic projection of Y
and H(¢) be the deviation matrix of Y (see definitions in SI - Section S.7.2). The ergodic
projection of Y0 is I1(0) = WM, where I is the |A] x |A| identity matrix and

y I .

Then,

1 v 1 A ‘S I 1 _ 1
M(= (1) _ 1 1 _ . 1 _ 1+
<)\Q )” Z(110) ( R [Ty ) ( —T, 'Ry > y A+ S1(=T0) T o) = 304

Assumptions 4.1, 4.2 and Lemma S.1 imply that the null space of this matrix is one dimen-
sional.

Using the computational algorithm in Section 6.3.1 of [2], the generator® for an aggregated

discrete time Markov chain is M <%Q(1))W = %Q A, whose null space is one dimensional.

Then, by the computational algorithm on page 176-177 of [2] the deviation matrix H () has a
Laurent series expansion with order of the pole equal to one:

o 1. o o

HeE)==-HY + HO 4 A0

€

Since the aggregated Markov chain has a single recurrent class by Assumption 4.2, the ergodic
projection of the aggregated Markov chain is 1a, where « is a row vector denoting the unique
stationary distribution of the aggregated discrete time Markov chain. The deviation matrix of
this aggregated Markov chain is D = (—%QA +1a)~! — 1a. By Theorem 6.7 in [2],

1) A I - _ D o
H WDM <ﬂ)p(lo) <m5—%>.

For each 0 < € < &g, let 7zx7y(5) be the mean first passage time from x to y in Y¢. Then, the

5In general, when 0 < € < g9, the discrete time Markov chain Y¢ is different from the embedded discrete
time Markov chain described in Section 3.1. In particular, the discrete time Markov chain used here can have
self loops, whereas the embedded discrete time Markov chain has no self loops.

5The transition matrix for a discrete time Markov chain with generator Gis P =1+ G.
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mean first passage time from x to y in X°¢ is

hoy(£) = Sy () = + Hal® iy(;x,y@
_ 1(EDyy +0(1)) = D4y +0(1))
A (ky) By | O(ekot)
_Dyy—D

1 1
x’y
ﬂ_(k:y) i1 7O <€ky> )
Y

where we used (S.56) to show that D = AD. The above equations use the properties of the
deviation matrix given in SI - Section S.7.2.

When X 4 is irreducible, then 7(®© = « has all strictly positive entries. Again, by SI -
Section S.7.2, the mean first passage time from z to y in X A is finite and positive, and it is

1Dy, yayDW — Du. y(mD“ Y. In this case, the order of the pole of hy,(c) is one and the leading
Ty
coeflicient is the mean first passage time from z to y in X 4. |

S.7.2 Properties of the deviation matrix for a discrete time Markov chain In this
section, we will start with a few results stated in Section 6.1 of Avrachenkov et al. 2| about
discrete time Markov chains with finite state space. These include the definitions and properties
of the ergodic projection, the fundamental matrix and the deviation matrix. Then, we show
one more fact about the deviation matrix. Lastly, Theorem 4.4.7 of Kemeny and Snell [14] gave
a formula for mean first passage times for irreducible discrete time Markov chains in terms of
the fundamental matrix and the stationary distribution, which is also briefly mentioned in [2].
We will write this in terms of the deviation matrix and the stationary distribution with a
simple modification.

Suppose Y = {Y(n) : n € Z,} is a discrete time Markov chain with a finite state space .
Suppose the state space ) is partitioned into m ergodic classes (possibly including absorbing
states) and a set of transient states, and accordingly, the transition matrix Pis

A ... 0o
]5: . T vZ .

0 ... A,|0

R ... Rn

The ergodic projection of Y is given by the Cesaro limit,

It follows that fI(I — 15) = 0 and IIII = II. The ergodic projection II is the eigenprojection
of the transition matrix P corresponding to its maximal eigenvalue 1. That is, if 7; is the
unique stationary distribution for the discrete time Markov chain with transition matrix A;
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for 1 <i < m, then I = WM with

1 0

(I-T)'Ril ... (I-T)'Ry1

where W and M form bases for the right and left eigenspaces, respectively, which implies that
PW = W and MP = M. One can see that v(I — P + II) = 0 implies that v = 0 and so
(I - P+ f[) is invertible. The fundamental matrix Z and the deviation matrix H of Y are
well-defined:

n

N

o 1 o o o o
Z= lim —— P =U—-P+11)!
NLH;ONHRZ:M_D( J = =P+IDT,

H—Z-Ti=(— P+ —if
We also have that HIT = (Z—II)II = 0 since PIl = PWM = WM =11, 1 = Z(I— P+II)Il =
Z(II — I +1I) = ZII, and 11% = II.

Now, we show a property of the deviation matrix that is not in [2| and is useful in Section
4.2.2. Suppose @ is an infinitesimal generator for a continuous time Markov chain on )’ and
|Qyyl < Aforall y € Y. Then, P=1+ %Q defines a transition matrix for a discrete time
Markov chain. The associated ergodic projection and deviation matrix I and H for P satisfy
11Q = A(ITP — IT) = 0 and

. 1 AL 1 A
i (i (1 2a) +n) = (oen) ' n

and so
[ = (i +10) <—1Q+ﬁ) _ Yhg .y am - Lo + it
1. o 1. 1o o oo 1. o o
=~ HQ+ 1= —1HQ+ L HII - 11Q + T1iT = <>\H—|—H> (—Q +10)
Thus,
1 ~ > —1 ~
(S.56) T = ((Q+ 1)~ ~1I),

where we have used the fact that —Q + II is invertible because II is the eigenprojection of @)
corresponding to the eigenvalue 0.

Lastly, assume that Y is irreducible. Then, Y has a unique stationary distribution 7, which
is a row vector, and the ergodic projection of Y is 17. By Theorem 4.4.7 in [14], the mean



2107
2108

2109

2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128

2129

2130
2131

2132

2133
2134

2136

2137

36 S. BRUNO, F.A. CAMPOS, Y. FU, D. DEL VECCHIO, R.J. WILLIAMS

first passage time from z € Y toy € )V is @ Since Z = H + 17, the mean first passage

time from z € Y toy € YV is
(Hyy + A7)y y) — (Hoy + (17)ay) _ (Hyy +7y) — (Hay + 7y) _ Hy, — Hg,y

Ty Ty Ty

S.8 1D Model: additional mathematical details
Verification of Assumption 4.1. In order to show that Assumption 4.1 holds, consider the
states a = 0 and r = Do and the set 7 = {1,..., Diot — 1} defined in Section 2.1. Since Do, >
2, T # 0. From (2.2), we can see that Qg,q+1(0) = Qqa,a—1(0) = Qrr+1(0) = Qrr—1(0) = 0.
As a consequence, both a and r are absorbing states under Q(0). To see that the states in T
are transient under )(0), consider a state € 7. Since @, ,41(0) = %(Dmt — z)z > 0 for all
z €{1,..., Dot — 1}, we have Qp2+41(0) ... Qpyoy—1,D:0: (0) > 0. By Lemma S.8 and the fact
that 7 is an absorbing state, we have that z is a transient state for X.
Verification of Assumptions 4.4 and 4.2. By Lemma 4.4, it suffices to show Assumption
4.4 holds. From (2.2), we can see that Qa,aﬂ > 0. From the analysis made to prove Assump-
tion 4.1, we know that there is a positive probability for X to transition from z € X \ {a,r}
to 7. It follows that any state z € X' \ {r} leads to r under X. Now, we would like to show
that there is a positive probability for transition from r to x # r € X for the process X.
This is because Qm,l = b%Dfot > 0 and Qz,z,l =Q..-1(0) = u%(Dmt —z)z > 0 for all
z€{1,...,D — 1}. Thus, r leads to any state in X \ {r} under X. Combining the above,
we see that X is irreducible and Assumption 4.4 holds.
Stationary distribution. Let us consider a one-dimensional finite state continuous time
Markov chain in which the state space X = {0,1,..., K} and the off-diagonal entries of the
infinitesimal generator () are all zero except for the following positive rates:

Q:E,:E—l-l:)\:r if.’BE{O,...,K—l},

Thus, the continuous time Markov chain is a birth-and-death process, it satisfies detailed
balance (see [7]) and so the stationary distribution m = (74)e0,1,... k) satisfies

(S.57)

Ao
Ty = — 1771—1, forz e {1,...,K}.
Y
Applying this equality recursively, we can express m,, z € {1,..., K}, as a function of o,
obtaining
A
i—1
(S.58) e = T0 —
’ }:Il Yi

Using the fact thathK:O mj = 1, we obtain

_ 1

- K P A1)
1+ Zj:l ( g:l ’yil)

(S.59) 0
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Substituting (S.59) in (S.58), we obtain
Ai—
_ Hiz=1 %1
K i Ni—
1+ >0 ( -1 Tl>

Now, consider the one-dimensional continuous time Markov chain introduced in Section 2.1
with state space X = {0, 1, ..., Dot} and infinitesimal generator as defined in (2.2), which has
nonzero off-diagonal entries given, for € > 0, by

(5.60) T forz e {1,...,K}.

kA k4
)\i = Qz’$+1(€) = (‘fl‘ + E‘thot> (Dtot — .ZU) lf xT € {0, e 7Dt0t — 1},
(S.61)
k4 k4
’)/g = Qz@_l(E) =U <‘5(Dt0t — l’) + b(‘:‘EDtot> x if < {1, ey Dtot}-

By substituting the expressions for the rates in (S.61) into (S.59)-(S.60), and suitably rear-
ranging the terms, we obtain that

buPtot

T+ bpDiot ite=0
mz(0) = lim 74() = { 0 1 %fa:e{l,...,Dtot—l}
71+b“Dtot lf xTr = Dtot-

Mean first passage time. Consider the one-dimensional, finite state, continuous time
Markov chain introduced in (S.57). We will determine an analytical expression for the MFPT
from x = K to x = 0 and from = = 0 to = K for this chain. We first focus on the former. For
this, we exploit first step analysis (see Equation 3.1 of [16]), proceeding in a similar manner
to that for (3.2), to obtain

ho,o =0,
(S.62) heo = ﬁ + Ajﬁhmp + i heoo ifze{l,.. K -1},
hio = ,%K +hk_1,0,
where for z,y € X, hyy = Eg[7], 7, = inf{t > 0: X (¢) = y}, X is the continuous time Markov

chain with infinitesimal generator given by (S.57). Now, defining Ahg 51 = hg o — hg—1, for
x € {1,..., K}, we can rewrite (S.62) in the following way:

hoo =0,
(S.63) Ahgg1 == 4 22 Qb1 ifze{l,... K -1},

_ 1
Ahgr-1= 5

From (S.63), we have an explicit formula for Ahg 1 and any Ahg ;1 can be expressed as
a function of Ahyy1 . Furthermore, if we sum the Ah, ,_; for x =1,..., K, we obtain

(S.64)
K

hxo = hio—hoo = Z (Ahgp—1) = Ahi1o+ Aho1 + ...+ Ahg_1 k-2 + Ahg k1.

r=1
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Thus, to evaluate the MFPT from z = K to x = 0, we can calculate Ah,, 1 for x =

K,K —1,...,1 and then sum all of the terms. Defining r; = %f‘;;\;, for j =1,...,K, we
obtain
Ak AK—1A\K—
th:(l_i_ K1 K1K2+W+TK_1)
YK YK-1  YK-17K-2
1 Ak — AK—2A\K— 1
+ <1+ K2 K2K3+...+7~K_2>+...+
(5.65) TK-1 YK-2  VYK-27K-3 m
. K-1 K1l i1 1
K—1 i—1
= 1+> — |+ 1+ = ||+
YK < ; Ti) ; Vi ; ] 4!

With a similar procedure, we can obtain the MFPT from z = 0 to x = K. More precisely,

defining 7; = —:&j;’;:il’;ﬁj, we have
71 Y172 -
h = — 14+ — _
0,K )\0< +>\1+)\1>\2+ +rg 1)
1 Y2 V23 _ 1
S.66 — |14+ = _
(5.66) +)\1< +)\2+>\2)\3+ +rr—2 | + +)\K_1
; K-1 K1 - i-1 4 1
K—1 i—1
= 1 — 1 — .
Ao * ; Rt Zz; vl ; T T

A more detailed derivation of the hg  and hg o is given in [3].

Let us consider the one-dimensional continuous time Markov chain introduced in Section 2.1,
with state space X = {0,1,..., Dot} and infinitesimal transition rates that can be written as
in (5.61). Since all of the transition rates are O(1), except for \j and ~p,_, which are O(e),
then both hp,,, 0(¢) and hg p,,, (€) are O(1/¢). This means that in the limit as € — 0, hp,,, 0(¢)
and hg p,,, (€), which correspond to the time to memory loss of the repressed and active states,
respectively, tend to infinity. Substituting parameters in (S.65) and (S.66) yields (2.7) and
(2.8), respectively.

S.9 2D Model: additional mathematical details
Verification of Assumption 4.1. In order to show that Assumption 4.1 holds, consider
the states a = (0, Diot)” and 7 = (Diot,0)” and the set T = {i1,...,4,,} defined in Section
4.1.2. From (2.10), we can see that Quatv;(0) = Qrri0,;(0) = 0 for every 1 < j < 4. Asa
consequence, both a and r are absorbing states under Q(0). To see that the states in T are
transient under @Q(0), consider a state x = (x1,22)7 € T. First, suppose z; # 0. By having
A
the one-step transition along vo = (0, —1)7 occurring x5 times where Q2,240 (0) = kVEZQJ,'l >0
for all z = (21,22)7 and 1 < 2z < 29, and having one-step transition along vz = (1,0)7
R
occurring Dyt — 21 times where @, ,4v,(0) = (Diot — 21) (k{},o + k{}, + kVle) > 0 for all
z = (21,0)T and z1 < 21 < Dyt — 1, we have a positive probability of transition from x to

r under Q(0). By Lemma S.8 and the fact that r is an absorbing state, we have that x is
a transient state for XY. On the other hand, suppose z1 = 0. Since z = (0,23) € T, we
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2189 have 0 < z9 < Diot — 1. We can first have a one-step transition along vz = (1,0)T, where
2190 Qz.z4v5(0) = (Dot — x2) (kﬁ,o + k{},) > 0, to reach the state (1,22)7 and then take the steps
2191 for the x1 # 0 case to reach r. In this way, there is a positive probability of transition from x
2192 to the absorbing state r under Q(0), and thus z is transient by Lemma S.8.

2193 Verification of Assumptions 4.3 and 4.2. By Lemma 4.4, it suffices to show Assumption
2194 4.3 holds. From (2.10), we can see that Qa,aﬂz > 0. From the analysis made to prove
2195 Assumption 4.1, we know that there is a positive probability to transition from all x € X\{a,r}
2196 to r. Now, we would like to show that there is a positive probability to transition from r to
2197 x = (ml,xz)T e X\ {(0, O)T} for the process X. We first can have a one-step transition

2198 along vy = (—1,0)” where Q = ubTMDfot > 0, then have a one-step transition along

r,r+v4

2199 v1 = (0,1)7 where QT+U47T+1}4+”1 = kito + kiy, > 0, then have one-step transitions along

2200 wy = (—1,0)7 occurring Dioy — 21 — 1 times where QZ v = ,u v zl > 0 for all z = (z1,1)T

2201 and 1 +1 < 27 < Dyor — 1. If xg 7é 0, we finally have one-step transitions along v; = (0, I)T
A

2202 occurring s — 1 times where Qz ot = (Diot — (1 + 22)) (k:A o+ k:A Mz2> > 0 for all

2203z = (21,29)T and 1 < 29 < 29 —1; if :c2 = 0 and z1 # 0, we will make a one-step transition along
A
2204 vy = (0,—1)T to (x1,0)T where Qz Gty = kVEml > 0 with z = (z1,1)” and 1 > 1. Therefore,

2205 we have that there is a positive probability of transition from r to each x € X\ {(0,0)}.
2206 Since Q( : ,(0,0)T =0forje{l1,2,3,4} ?uch that —v; € X, we conclude that C = X'\ {(0,0)T}
2207 is a closed communicating class under @) and since it contains A, Assumption 4.3 holds. Note
2208 that Assumption 4.4 does not hold.

2209 Stationary distribution. Here, we derive the expression for Wg(cl), x €T ={i1,...,in}, for
2210 the case Doy = 2. In this case T'(¢) = Ty + €717, with

—q3 kRo+kE 0 0
kg kg (1 0 ki
2211 To = Hvo —v(+p 2V e |
ok 0 okt g
b M (1 4 b ov ok
2212 T = VHL 7( + pb) v o,
0 0 0 0
k4, kg
0 0 2k —2ku

A
2013 in which g3 = (kibo + kb + M + kB + k), g5 = 2(kibg + ki + kg + ki) and g6 =

2214 (kiy +ki —l—k‘R —l—k:R —}—@ . Then, by (4.5), (V) = Wg(cl), z € T,is given by V) = oSy (=Ty) 1,
wo w wo

(0) (0)

2215 where a = (’/T( 2) (2, 0)) was derived in Section 4.1.2 (Eq. (4.14)). After some calculations,
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(1)

7,/ can be written for Dot = 2 as

g A (@)Q%M (k:R (Rf% + 50y + (B, + k) ((1+u)(’5‘§‘}+@)+u@))

Tr. = s

it dyds
]CA 2 _ — — k’R — — — k‘A — —
o 4be? (5 ) R Rl (R + S0 (R + Rty + kfy) + Rt + 5 (REG + Rty + k8
Ty = A 9
’ M didy
= 0,

A — — kR — kA — _ — k}A
o e ( y) Rl (G +580) (0 + i) (Rl + 50 + ukl3 ) + il (Rl + 5

U dids

TM)—i-bk 2(kit + )) and
24)) and in which i; = (0, 1)T 9 =

— _ A _
in which kf}; = kibo + ki, Kb = ko + ki, dy = 53 (R (R +

7A ki LR kY LAY L LR (LR 4k
dy = ((kiy + ) (L + p) (kffy + 1) + pkiy) + ki (ki +
(1,1)T,i3 = (0,0)T, and iy = (0,2)7.

S.10 3D Model: additional mathematical details Verification of Assumption 4.1.
In order to show that Assumption 4.1 holds, consider the states a = (0, Diot,0)7 and r =
(Dtot, 0,0)T and the set T = {i1,...,im} defined in Section 5.1.1. From (5.2), we can see that
Qa7a+7)]- (0) = Qwﬂj (0) =0 for every 1 < j < 6. As a consequence, both a and r are absorbing
states under Q(0). To see that the states in 7 are transient under Q(0), consider a state z =
(21, xa, acg)T € T. First, suppose x1 + z3 # 0. By having the one-step transitions along vy =

A
(0,—1,0)T occurring 2 times where Q. ,44,(0) = kVE(ZL'g +221)29 > 0 for all z = (w1, 20, 23)7
and 1 < z9 < x9, then having one-step transitions along vg = (O 0, 1)T occurring Doy — 1 — 3

times where Q) »44,(0) = (Dot — (1 + 23)) <k‘1 wo + k‘l Fy 931) > 0 for all z = (21,0, 23)7

and z3 < z3 < Dyt — 21 — 1 and finally having one-step transitions along vs = (1,0, —1)T
occurring Doy — 21 times where Q) .445(0) = (Dot — 21) (k%/[/o + kMz + ky M) >0

for all z = (21,0, Dot — 21)T and x1 < 21 < Diot — 1, we have a positive probability of
transition from z to r under Q(0). By Lemma S.8 and the fact that r is an absorbing state,
we have that x is a transient state for X°. On the other hand, suppose z1 + x3 = 0. Since
x = (0, xa, O)T € T, we have 0 < x5 < Dioy — 1. We can first have a one-step transition along
vz = (0,0,1), where Qzp4v5(0) = (Dsot — @2) (kfyo + kiyy) > 0, to reach the state (0,z2,1)"
and then take the steps in the x1 + x3 # 0 case. In this way, there is a positive probability of
transition from z to the absorbing state r, and thus «x is transient by Lemma S.8.

Verification of Assumption 4.2. To show that Assumption 4.2 holds, consider the con-
tinuous time Markov chain X with infinitesimal generator @ as described in (4.7) and shown

in Fig. 6(d). We will first see that {i,,,r} forms a closed class under (. For this, we see
that Q. r4v;(¢) vanishes for every 1 < j < 5 and ¢ > 0, while Q,y14(e) = 5ub@Dfot.
Therefore, the only transition from 7 under Q is given by Qwﬂ,ﬁ = ub@D%ot > 0, where
7+ V6 = ip. From (5.2), we can see that Q;,, i, +v,(0) = 0 for every j € {1,2,3,4,6} and
Qi im—+vs(0) = k%vo + kVM(DtOt - 1)+ ETM(DtOt —1) > 0. Since i, +v5 = r we see that



2249
2250
2251
2252
2253

NN
[S2 BTSN

VI \)
o)
(@)

[\
[0'd]

[\]

[\]
ot Ot Ot Ot Ot Ot
: 3 = z

[\)
()

2260

2261
2262
2263
2264

2265

2266

2267

2268

2269

2270

2271

2272

ANALYSIS OF SINGULARLY PERTURBED STOCHASTIC CHEMICAL REACTION NETWORKS 41

Qim’r > 0. Therefore, {i,,,r} forms a closed class under Q. The fact that X 4, shown in Fig.
6(e) consists of erasing the times from X in which the process is in T, together with Lemma
4.3, yields that r is an absorbing state under @ 4. From (5.2), we can see that Qa 41 > 0. From
the analysis made to prove Assumptlon 4.1 we obtain that 1 leads to r under @ which is part
of a closed class. By interpreting X4 again as a time-change of X, by Lemma 4.3 we obtain
that a is transient under Q4. As a consequence, Q4 has a single recurrent class consisting
of the state r, and so Assumption 4.2 holds, and furthermore, o = [, ;] With o = 0 and
a, = 1. In addition, the previous arguments show that neither Assumption 4.3 nor 4.4 holds
for this model.

Stationary distribution. Here, we derive an expression for Wg(gl), x €T ={i1,...,im}
Matrices A1, S1, and Ry can be written as
T 0
0 0 0 00
. —381 o S1 . e N _ . .
Al_(o —32>’51_<0 e e 0 52>7R°_ b
0 O
0 79

ith s, = S pra 2 kfbo + k{b + 5 (Dyoy — 1)), and 1y = (k3 + (52

with s1 = /Do, s2 = tot> 71 = (Kiyo + iy + P (Drot ), and ro = (ko + (F£ +
kTM)(DtOt —1)). From (4.5), B =[x 1(11), “"Wz(}n)] = aS1(—~Tp)~', and so, given that the last
row of Tj is made of all zeros except for the last element, that is (7p); and given that

(ToYim i = g + (54 + B (Dyoq — 1), O = [0,....,0, 7], with
kA
772‘1) _ :U’bTMDgot

ko + (R4 + 34) (Dias = 1)
Now, all) = [wél),wp)] is the unique vector such that
(5.67) aWQu=-BY[Ry + Ty (-To) 'Ry], M1 =-p01.

For an illustration, suppose Diot = 2. Then Ag = 0, Sy = 0 and matrices 4; € R**? and
S1 € R?*® are given by

A1=< v KA >,51=< v O e )
0 —4%p 0 oo oo 0 4%pb

Furthermore, Ry = 0 and Ry € R8*? can be written as

— A
ki + 0
0 0
Ry =
0 0
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2273  Finally, matrices Ty and T} can be written as

S 0 0 kY 0 0 0
0 DR 0 pL L 0 0 0
2k}, 0 —2(kift + ki) 0 ) 0 2k, 0 0
- 0 s 0 —(kth + Rl + Ban) 0 0 0 B+ B
I ﬁ/p Kfiro 0 0 *(%é(l + ') + Kfig) % 0 0
0 0 0 ko ki (k2o + kit + k) Ky 0
0 0 0 0 0 0 =2k + Bar) 2("%&'0*271),
2974 0 0 0 0 0 0 —2(kiyo + ’% + I%)
L 0 2k 0 0 0 0 0
0o 2w o Lo by 0 0 0
0 0 0 0 0 0 0 0
0 0 0 72b/1k‘4‘j’ 0 21)/1,%—?’ 0 0
=1 gt 0 o0 DL TS ) B L4 0 0
0 0 gk o 0 —oupt o 0
0 0 0 0 0 ke _aepte 0
0 0 0 2upt 0 0 DY R YOI L L ) ]
2275 in which E{}/ = k{j‘vo + k{j‘v, l?:{}, = k%o + kﬁ,. Now, by applying Theorem S.9, we first obtain
2276 that 7(0) = 79 = [a,0] = [, @, 0. .., 0] where « is the unique probability vector such that
2277 a@Q 4 = 0. In this case,
Ky + pKo < -1 1 >
2278 (S.68 =
s (568) Q4 K3+ pKy+ (/' Ks +pp/'Ke \ 0 0
2279 with
A A
O 1 ku kM 7.1 2 (ke 2 T.A 1.2
2280 Ky = 8kyy~ - % M (K, + % ) ((kw =+ Kiyo)( v kivo) + kwkivo),
ki e Ky -
2281 = Akl M ZE (Bl 4 ZMy(EL 4k kiy ki
WV V(( wt+ V)( w + Kivo) + kkiy),
2282 K3 = ki (2(kdy + k& + Ko + Y M 4 iy My (kf)?
3= V w wo V V w
K K
2283 + 2Ky (ki (B + Kfio (ko + ‘]}4)) + VM(kI%VO)Z)
k4 k, . . -
2284 +20 M2 ( ‘ﬂ/ (ko + ki) + kly + Ckly + ki + ko))
k4 Ky kK, kS Lk
99285 2 k2o (kb + k et ko (SE My A ZM | opA PM Y
> +VVW0(W+W)+ WWO(VV+WV+ WV)
A /
99QR kA k kM k L ]_6‘1 k‘2 ]_'Cl k‘2 El ka
2286 Ky = E((kiy + 2L) (kfy + 2L (ki + Kivo) + (ki + kivo) iy =)
1% 1% 1% 1%
- CRERL B GA 4 g2 Ak
2287 (S.69) + kiy (kiy (kiy + ko + 1) + kiy (ki + % ),
2288 K5 = ké(k‘ + k2o + ki) (ki + iy MY (ki + Ky M),
00 - V w wo w w V w V

k‘A A !

. R v
2289 K¢ = 7E(k%,v + ko + ki) (ki + 7M)(1<:§‘V + iy + 7M),
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and then a, = 0 and o, = 1. Let us now derive an expression for 3(1). Starting from the
transient states 7 = {i1,...,ig}, we obtain that f(1) = [ﬂ'i(ll), 7r(1)] can be determine by

ey T
Y = @Sy (~Tp) ™', obtaining M) = [0, ...,0,77(1)], with

8

kar

1 _ 4pb~ _
ivo + (9 + 1)

Finally, 1) = [776(11),#,(,1)] is the unique vector such that aMQ 4 = —W[R; + T1(~To) ' Ro]

and oW1 = —W1. After some calculations, we obtain

sr0) Ao BT a0 RO ek - Kuop)
“ Kg(Kog+ Kiop) " ¢ s Ks(Ky + Kiop) 7

with

E%/:: k%V0'+'k%V¢ Ea7:: k§%0'+'k§%7
kbpza ma ka1 L g2
Kz =2Bb= " kiy (ki + 7 ) (ki + kw + Kio),

- kv ok kA [ _ k' -
Ks = kiy (Ko + 3 +57), Kio =37 | (v + kivo) (Riy + ) + ki ki
_ o7l @ @ 71 2 2 1.2 71, TA gl @
K9 = 2(ky, + % ) v (kw + Ewo) + Ewo(kwo + kw + ki), K1 = 4bky, v

Time to memory loss. As a reminder, we define the time to memory loss of the active state
as hg () and the time to memory loss of repressed state as hyq(¢). Let us start by deriving
the order and the leading coefficient of h, ,(€) and h;.4(¢). By (4.16), we know the order of the
stationary distribution at a and r are k, = —min{l1 — 2,0} = 1 and k, = —min{l — 1,0} =
0, respectively. This is consistent with the results in Section 5.1.1. Moreover, the leading
coefficient in the stationary distribution for the fully repressed and fully active states are

7750) =1 and 7TC(L1) > 0, respectively. Now, X A has the infinitesimal generator in the form of
_ ‘_(ngi)a,r (C2¢4)a,r

and X 4 has a unique stationary distribution a = [0, 1]. By Theorem 4.7,

D,,—D 1 1 D,,—D,,1 1 1
g r(e) = r,r a,r + 0 () _Znr ar - +01)=———>-410(1 7
- (€) ST ke - PO (1) (Q)or = (1)

and
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- Da,a - Dr,a 1 1 - Da,a — D7"7CL 1 1 _ 1 1 1
hra(e) = =T g + 0 <gk> == m +o <5) = e O <g> '

a,r Ta

As an example, when Do = 2, Q4 and 7 are shown in (5.3) and (5.4), and we obtain that

Kg + /LK4 + ,UIK5 + MMIKG 1
h = -+0(1
ar(€) K+ pks 5 +0(),

and

K3 + pKy + ' K + pp' Ko Ks(Kg + Kiop) 1 1

hna(&) = 2. 12 *2+O — ],
Ky + pKs piu2K, e €

where K;, i = 1, ..., 11, are non-negative functions independent of 1 and ' as defined in (S.69).

Now, let us verify that both conditions (i) and (i7) of Theorem 4.10 hold. To this end,
let us first write the directions of the six possible transitions of the continuous time Markov
chain X¢(t), which are v; = (0,1,0)7, vy = (0,—1,0)T, v3 = (0,0,1)”, v4 = (0,0,—1)7,
vs = (1,0, —1)T vg = (—1,0,1)T, with the associated infinitesimal transition rates that can be
written as T1(z) = fa(x), T2(2) = g(2), To(@) = fr1 (@), Talx) = g5, (@), Ts(@) = fraz(a),
T6(x) = gpyo(x). Define the matrix

1 0 0
A=10 -1 0
1 0 1

and, forz € X, (Ka+z)NX = {w € X : x <4 w}. Let us also introduce infinitesimal transition
rates Ti(x), i = 1,2, ...,6, defined as for Y;(z), i = 1,2, ...,6, with all the parameters having
the same values except that p/ is replaced by ji/, with y/ > . Given that Av; = (0,—1,0)7,
Avy = (0,1,0)7, Avg = (0,0,1)T, Avy = (0,0, -1)7, Avs = (1,0,0), Avg = (-1,0,0)7,
condition (i) of Theorem 4.10 holds.

To verify condition (ii) of Theorem 4.10, consider x € X and y € 01(Ka +2)NAX ={w €
X xp=wp, x> w1 +r3 < wp +wsy={weR3: 21 = wy, 1y > wo, w3 < w3}. Given
that (Aje,v5) = 1 and (Ajs,v6) = —1, we need to verify that Ys(z) < T5(y) and Yg(z) >

x3—1

Tg(y). Since 1 = y1,T2 > y2,x3 < y3, then Ts(x) = x3 (k‘%vo + kTMazl + E7M($1 + 35 )) <
I _ o kA kA
Y3 (k%,vo + kVMxl + kTM(yl + ¥ 1)) =T5(y) and Y¢(x) = 211 (57MDtotb + Q:QVE)

A A o
> yip (sk%Dtotb—i—yngE) = T¢(y). Let us now consider z € X and y € 92(K4 + x) N

X ={we X: x; <w,ry = we,z1 + 23 < wy +ws}. Given that (Age,v;) = —1 and
(Age,v2) = 1, we need to verify that Ti(x) > T1(y) and Yo(x) < Tao(y). Since z1 < y1,29 =

A
y2, 21 + 23 < y1 + y3, then Ti(z) = (Dot — (1 + 22 + 23)) (k{/qvo + kiy + kvMﬂﬁz) > (Dot —
k‘A o k‘A kJA
(Y1 + y2 +v3)) (kff‘vo + ki + VMyQ) = T1i(y) and To(x) = xo <€7MDtot + F (23 + 2361))
A A o
Yo (€L{yDtot + kVE(?JB + 2y1)> = T9(y). Finally, consider z € X and y € J5(K4+x)NX = {w €

IN



2341
2342

2343

2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372

ANALYSIS OF SINGULARLY PERTURBED STOCHASTIC CHEMICAL REACTION NETWORKS 45

Xz <wy,ze > wo,xp +23 =w) +wst ={w e X |21 <wy,zo > wo,x3 > ws}. Given that
(Ase,v3) = 1 and (Asze,v4) = —1, we need to check that Ts(z) < T3(y) and YTy4(z) > Ty4(y).

Since x1 < y1, T2 > Y2, 23 > y3, then Ts(z) = (Diot — (1 + 22 + 23)) (kll/vo + k:Il,V + k{y:ﬂl) <

4 o A A
(Dot — (11 +y2+y3)) <k11/[/0 + kL + R y1> = T3(y) and Yy(x) = w3/ (6k7MDtot6 + m’%) >

o k4 kA -
voit' (5D + 15 ) = Taly).
We can then conclude that all of the conditions of Theorem 4.10 hold.

S.11 4D Model: additional mathematical details
Verification of Assumption 4.1. In order to show that Assumption 4.1 holds, consider
the states a = (0, Diot,0,0)” and r = (Dyot,0,0,0)” and the set T = {i1,...,in} defined in
Section 5.2.1. From (5.9), we can see that Qg q+v,(0) = Qrr+v;(0) = 0 for every 1 < j < 10.
As a consequence, both a and r are absorbing states under Q(0). To see that the states
in 7 are transient under Q(0), consider a state * = (21,72, 23,24)7 € T. First, suppose
r1 + 23+ 24 # 0. By having the one-step transitions along v = (0, —1,0,0)” occurring o
A
times where Q) »4.,(0) = kVE(x3+x4+2x1)22 > 0 for all z = (21,22, 23,74)7 and 1 < 23 < x9,
then having one-step transitions along vs = (0,0, 1, O)T occurring Dot —x1 —x3—x4 times where
Q2,403 (0) = (Dyot — (21 +23+24)) <k%v0 + ki + k%(:vl + x4)) > 0 for all z = (21,0, 23, 74)7
and 23 < 23 < Diot — 21 — 24 — 1, then having one-step transitions along vg = (1,0,0, —1)7

’
: . k _
occurring x4 times where Q. .1v(0) = (21 4+ 24 — 21) | ki + 2= ) > 0 for all

2 = (21,0,Diot — 1 — 24,01 + 24 — 21)7 and 1 < 21 < o1 + 24 — 1, and finally having one-
step transitions along v; = (1,0, —1,0)7 occurring Diot — 21 — 24 times where Qz,240,(0) =
(Dtot — 21) (kI%VO + k7M21 + %%) > 0 for all z = (21,0, Dot — 21,0)7 and x1 + 24 <
21 < Dyiot — 1, we have a positive probability of transition from z to r under Q(0). By
Lemma S.8 and the fact that r is an absorbing state, we have that x is a transient state for
X0 On the other hand, suppose 1 + 23 + x4 = 0. Since x = (0,22,0,0)" € T, we have
0 < x9 < Dtot — 1. We can first have a one-step transition along vz = (0,0, 1,O)T7 where
Qz,24v3(0) = (Drot — 22) (kg + ki) > 0, to reach the state (0,72,1,0)7 and then take the
steps in the 1 + x3 + x4 # 0 case. In this way, there is a positive probability of transition
from x to the absorbing state r, and thus z is transient by Lemma S.8.

Verification of Assumption 4.2. To show that Assumption 4.2 holds, consider the continu-
ous time Markov chain X with infinitesimal generator Q as described in (4.7) and shown in Fig.
7(d). We will first see that {iy,—1,im, 7}, with i,,—1 = r 4+ v19 and 4,, = r + vs, forms a closed
class under Q. For this, we see that Qrr+v; (¢) vanishes for every j = {1,2,3,4,5,6,7,9}

A A
and ¢ > 0, while Q,,1(e) = E,ukaMDfot and Qrrivi,(€) = E/L/ﬂkTMD%Ot. Therefore, the
~ ~ A
only transitions from r under @ are to iy,—; with rate Qr;, , = '8 kVMDfOt > 0 and to i,

~ A
with rate @i, = ,ukaMDfOt > 0. From (5.9), we can see that Q;,_,i,,_;+v;(0) = 0 for
j € {1727374757677)8) 10}7 Qim,im'i‘vj(o) =0 for ] € {1)2)3)4757658595 10}) Qim_LT(O) -

k/
Qi tim—1405(0) = kg + 2 (Dior — 1) > 0 and Qi +(0) = Qs iy tor (0) = g + F2 (Dyoy —
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2378 1) + V M (Dyot — 1) > 0. Therefore, {i,,— 1,im,r} forms a closed class under Q. The fact that

2379 X A consists of erasing the times from X in which the process is in 7T, together with Lemma
2380 4.3, yields that r is an absorbing state under @ 4. From (5.9), we can see that Qa,Zl > 0 where
2381 i1 = (0,Dgor — 1,0,0)7. From the analysis made to prove Assumption 4.1, we obtain that 4;
2382 leads to r under Q, which is part of the closed class {iy,—1, im,7}. By interpreting X A again as
2383 a time-change of X, by Lemma 4.3 we obtain that a is transient under Q 4. As a consequence,
2384 Q4 has a single recurrent class consisting of the state r. Thus, Assumption 4.2 holds, and
2385 furthermore, o = [, o] with a, = 0 and a,, = 1. In addition, the previous arguments show
2386 that neither Assumption 4.3 nor 4.4 holds for this model.

2387 Stationary distribution. Here, we derive an expression for TrQ(UI), x €T ={i1,...,im}
2388  Matrices A1, S7, and Ry can be written as

T O
0 O
_ [ —s1 0 (s 0 ... ... 0 O B Do
2959 Al_( 0 —(32—1-33))’51_(0 cee . 0 89 33>’R0_ o o |’
0 T9
0 T3
2300 with s, = D2 = WBRID2 sy = pbeMD2 = (kg + k() + S (Dyoy — 1
2390  with s1 iot) 52 = p BeEDiy, s3 = pbe B ™1 = (kipg + ki + £ (Diot ),

2391 1o = (ki + V M(Dyoy — 1)) and r3 = (ki + (k‘l}” + VM)(Dtot —1)). Now, we determine

2392 BN =[x 1(11), ,W&)] = aS1(=Tp)~!. Given that the only two elements different from zero in

2393 the last two rows of T are (Tp)i,, 1,im_1 = (Kiyo + M (Dot — 1) and (Tp)ipn i = (ko + (kVM +
2394 kTM(DtOt — 1)), we obtain 1) = [0, ...,0,77&)7 W(Tln)], with

1771
k:A
9305 7_‘_(1) o B MDgot 71_(1) . :U'bTMDgot
o m—1 ’ im k k :
bkl Doy — 1) k20 + (B4 + 4)(Dior — 1)

2396 Now, o) = [m(ll),m(n )] is the unique vector such that aMQ 4 = —BMW[Ry + T1(~Ty) Ry,
2397 D1 =—-pMm

2398 As an example suppose Diot = 2, 5 = b, kW =k, = /<;A =0, kWO = kWO = kWO = kwo
2399 and kK, = =ky = k:A = kps. Then, we have that Ag = 0, SO = 0 and matrices 4; € R?>*? and
2400 Sy € R2X13 are equal to

—4ku 0 gk o 0 0
2401 A = v S| = v
L < 0 —4’“{}4(ub+u'5)>’ ! ( 0 ... ... 0 4k 4’“Mub>
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Furthermore, R; = 0 and Ry € R™*? can be written as

kwo + kTM 0
0 0
RO — . .
0 0
0 kwo + LT3
0 kwo + 27M

Finally, matrices Ty and 7T} can be written as

T T2 T T2
TO:< 0 0>,T1:< 1 1 >’
5 Ty TP T

with T = 07%¢ and

—3kyo — ku Ewo 0 0 0 Ewo 0
A
e ~(L+ w5 —kwo 0 ke 0 0 0
2kwwo 0 —6kwo 2kwo 0 0 2kwo
T = 0 Ewo 0 —(dkwo +25)  kyo + B 0 0
0 0 0 0 — (ko + k) 0 0
kg N k3
WE 0 0 0 0 —(1+ )3 = kwo +
0 0 0 0 0 Ewo —(4kwo + Ba1)
0 o0 0 0 0 0 0 0 2ubku 0 0 2ubky
0 0 kwo O 0 0 o
0 o o0 0 0 0 0 0 0 0 0 0 2 bar
phEM EyMm
T2=| kwo+® 0 0 kwo 0 o |, 7p=| 0 20W 0 0 0 2ub 0
kot 0 0 0 btw 0 0 2ubky
0 0 00 hwot iy 0 0 0 0 0 oukw o 0
0 0 fwo O 0 0 0 0 0 0 8 o o 0
kwo + ’“—&f kwo 0 kwo 0 0
—oky 0 pLo 0o 0 0 0 0 0 000
bt —2(ub+ 1)k 0 2k g 0 0 0 0 000
1 0 0 0 0 0 0 0 3 0 u"LE 00 0
Ty = k k , Iy = v
0 0 bk —oubka 0 0 0 0 000
20/ bk 0 0 0 0 —2(wb+1)kw  2ku 0 0 000
0 0 /0B 00 0 —2/bky 0 0 000
—(2kwo + B1) 0 0 0 kwo + B kwo
0 —(kw[) + kvﬁ) 0 0 0 kwo + %
A A
T4~ 0 0 —(p+ o +2)5E 2k 0 0
0 0 0 kwo —3(kwo + %) kwo + 2’%}" kwo + ’“—(}’ '
0 0 0 0 —(kwo + =) 0
0 0 0 0 0 —(kwo + 251)
—2(p + )k 0 0 0 0 0
0 —2/bka 0 0 0 0
T 0 0 —2(ub + p'b + 1)kar pLS 0 0
re 0 0 0 —20L+;twkw 0 0 ’
2ubrar 0 0 2ty —2(2 + p')bFa 0
20/ bR 2ubk 0 2u%%¥ 0 —2(p + 2" bR

Sk

OOOﬂkOO

oo oo OO

Now, by applying Theorem S.9, we first obtain that 7(0) = 7(9 = [, 0] = [0, s, 0 . .

0]
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where o can be obtained by solving a@) 4 = 0. In this case, we obtain that

QA

with

Ky (1) Ka + (1) K3 + pp' Ky + ' K5 + pKe + Kr)

-1 1

w4 p) K + (/)2 Ko + (1)? K10 + pp' Kiy + @' Ko 4+ pKi3 + Ky

%
kg
£ B -
Ty hwo v %
ks
kwo)? (24 ([ =22 jacles
+ (kwo) < ( v ) %
koo (Y o (B) "+ asto (B2)’
8 % % WOV
2
kA Ear\ 4 ka3
Ko=|[-£ 6 —= 51k ==
9 < V’) < ( V‘) +5lkwo ( V')
2
kA Ear\ 4 Ear\®
Kip= [ =£ 6 —= 48k ==
10 < V’) < ( V‘) + wo ( V‘)
k:A
Ky = < L <
kg Ear\? M
“E 12 ( 222 96k ==
T fwo < ( v ) + 96kwo ( v )

A\ 2 3 2
kg 900 (FM)" L yoage (FM) 4 180k—M(kWO + 72(kwo)
% v %

kar\ 2 ka2 ks )
48( +284kwo( ) +4567(kwo) +192(kywo)

4*2 m@ﬂf+mm (@Q{mww f@ﬁf
Vv Vv WO Vv wWo Vv
k

3 2
k k
+252(kwo)” (7“4) + 264 (o) +96(kwo)4> ,

4 kM 3
) +161kwo( ) +489(kw0)2(

(

0 0

)
)

3 2
+ 160kwo (kM) + 288k7M(kWO)2 T 128(kwo)3> ,

kar\2 k
+126(kwo)? (*i%g) +—132*i%£(kvvo)3 +—72(kvv0)4>

kar\2 k
+ 146(kwo)2 (VM) + 1687M(kwo)3 —+ 64(k‘w0)4> s
2 (kar\? kn 3 4
+ 136(kwo) (VJ +1@77%WM +64(kwo)” | ,
k
+ 547 (kwo)® + 200(kw0)4> :

+ 416 (kwo)? <7M) +4637(kwo)3 + 168(kwo) ) ,

> +588—(kwo) +224(kwo)4) ;

<‘§

)
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2
k4 2
Km(j) <18 (k—) + 143kyo (%M) +399(kwo)> (%M) +452'W(kwo)3+168(kwo)4>,

kf Ear\? kar\ 2 o (ks kar
+ Lo [ 18 a + 158k e +476(kwo) T +576—(kw0 + 224(kwo)

V )
2
k4 kar \ 4 kar\2 kar\2 ks

Kig=|-£ 12 ( =4 98k =2 276(kwo)> 306 = (k 108(k

14 <V) ( (V)Jr WO( )+ (Wo)(v>+ V(WO + wo)

kp ka\* M 5 (ks ks

“Ep 24 (24 214k = 654(k 780—= (k 288(k
+VW0< (V)+ Wo(v)+ (Wo)(v>+ V(W0+ wo)

kar\* k kar\2 k
+ (kwo)? <12 (71”) + 116kwo (7]”) + 384 (ko) (71”) +4967M(kwo Y3+ 192(kwo)?

Let us now derlve an expression for (). Startlng with the transwnt states T = {i1,...,015},
we obtain that S = [x (1), ,7rz(115)] = aS(~Tp)~ !, and so M) = [0,...,0 7T2(14)77Tz(115)] with
kg k4
OB s (1) _ byt
Finally, a(t) = [w(gl),w,(ﬂl)] is the unique vector such that aMQ 4 = —B(l)[Rl + Ty (=To) " Ro]
and a(M1 = —gMW1. After some calculations, we obtain
20 — (i )* Kais (1 + 1) Kag + Kar)
a

- Koo((1/)? Kz + (u)?Ks + (1 + p) Ky + W Ks + nKe + Kr)'
A0 = ) ) ()

T a 114 115

_ (i )* K15 (1 + 1) K16 + Ki7) ,
= - NS 3 ; , — p Kig — pko,
Koo((W)* Kz + (1)* K3 + (1 + p)Ka + p'Ks + pKe + Kr)

kA ks (ks kA o\ kn
K5 =222 (322 4 o B2 Kaip— £ [ (M 16(kwo)? + 12-2 &
15 VV(V+ WO) , 16 % (V + 16(kwo)” + v owo |

K= R (grFarg oy (B 2+24(k 12 )+ ko (2458 kyy 44 (2 2+32(k )’
7= y oo v wo o v e 14 A

4k 4bkam ks
Kg=—Y— Kg¢g=—Y__ K _<2+k >
" kw + L‘J/V’ e kw + 2—’“‘1}1 20 Vv o

Time to memory loss. As a reminder, we define the time to memory loss of the active
state as hq () and the time to memory loss of the repressed state as hy.4(g). Let us start by
deriving the order and the leading coefficients of h, () and h,.4(¢). By (4.16), the order of the
stationary distribution at a and r are k, = —min{l — 2,0} =1 and k, = —min{1 —1,0} =0,
respectively. This is consistent with the results obtained in Section 5.2.1. As obtained for the

3D model, here we obtain 777(«0) =1 and m(ll) > 0, and thus

1 1 1 1 1
ha,r(s) = mg + O(l), and h/r’a,(g) - mg + 0 <g> .
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Now, in order to exploit Theorems S.2 and 3.4 from [13] and determine how p’ affects
har(€) and hy.4(€), we introduce a small approximation in the transition rates of X¢, namely,
“T32_1 ~ r3 and = L'~ 24 in frin (x) and fgrioo(x), respectively. This approximation can
be justified by 1ntr0ducing the reasonable assumption that each nucleosome characterized by
a repressive modification (DY and D) has the ability to catalyze the establishment of the
opposite repressive mark on itself. Now, let us verify that both conditions (i) and (ii) of
Theorem S.2 in [5] hold. These conditions can be written as follows:

(i) For each 1 < j < n, the vector Av; has entries in {—1,0,1} only.
(ii) Foreach x € X, 1 <i<m and y € 0;(Ka + x) N X we have that for each 1 <k <,

Z Tj(y) < Z T;(xz), where Gf’_ = {j € G*| (Ao, vj) = —1},

. k,— . k,—
JeG; JEG,;

and

> Tiy) > Y Ti(x), where GPF = {j € G | (i, v;) =1}

okt .~k
JEG; JEG;

To verify that these conditions hold, let us first note the ten possible transitions vectors for
the continuous time Markov chain X¢(t): vy = —vg = (1,0, —1,0)7, v3 = —vy = (1,0,0, —1)7,
vy = —vg = (0,1,0,0)7, v7 = —vg = (0,0,1,0)T, vg = —v19 = (0,0,01)7, with the associated
infinitesimal transition rates Y (z) = legl( )s Yo(z) = g0y (x), Ta(z) = friza(x), Ta(z) =
Gons(@)s Ts(2) = fa(x), To(z) = g4(x), T1(x) = fra(@), Ts() = gou (2), To(x) = fra(a),
T1o(%) = gho(). Let

0 -1 00

1 0 10

A= 1 0 01

1 0 11
Then, (Ko +z)NX = {w € X : = <4 w}. Consider infinitesimal transition rates T;(z),
i=1,2,...,10, defined as for T;(z), i = 1,2,...,10, with all the parameters having the same

values except that p' is replaced by ji/, 1th w' > ji'. Now, condition (z) of Theorem S.2
in [5] holds since Av; = —Avy = (0,0,1,0)T, Avs = —Avy = (0,1,0,0)T, Avs = —Avg =
(=1,0,0,0)7, Av; = —Avg = (0,1,0,1)" and Avg = —Avip = (0,0,1,1)7. Assumption S.1
in [5] holds with G = {9,1}, G2 = {10,2}, G° = {7,3}, G* = {8,4}, G° = {5}, G® = {6}
and (1) =9, 0(2) =1, 0(3) = 10, 0(4) = 2, o(5) = 7, 0(6) = 3, o(7) = 8, 0(8) = 4,
o(9) = 5, 0(10) = 6. To verify that also condition (i7) of Theorem S.2 in [5] holds, let us
start with considering z € X and y € O1(Kq+x2)NAX = {w € X : x93 = wo,x1 + x3 <
w1 + w3, 1 + x4 < wy + wy, x1 + 3 + x4 < w1+ wg + wy}. Given that (A, v5) = —1 and
(Ale, v6) = 1, we must verify that T5(x) > Ts(y) and Te(x) < Te(y). Since zo = y2, 21 +13 <

y1 +ys,x1+ x4 <Y1+ ys,x1 + 23 + x4 < Y1 + y3 + ya, then Ts(z) = (Dtot — (1 +x2+ 23+

A
x4)) (k‘{;‘yo + k‘A kvﬂlé) (Dtot — (y1 + y2 + y3 + y4)) <k‘ wo + kiA + 3 y2> = T5( ) and

Te(z) = 22 ( By Dy + 22 (563 + x4+ 2x1)) < o ( By Dot + 22 (y3 +ys + 21/1)) = Ts(y).
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Let us now consider z € X and y € O2(Kg+2)NAX ={w € X : x9 > wo,x1 + 23 =
w1 +ws, x1+x4 < wypHwy, v +x3+x4 < wyp+ws+wy}. Given that (Age, v3) = (Age,v7) =1
and (Age, v4) = (Age,v8) = —1, we need to verify that Ts(z) + T7(z) < Ts(y) + T7(y) and
Ty(z)+ YTg(x) > 'h(y) + Tg(y) hold. Since z9 > yo,x1 + 23 =y1 +ys3, 1 + T4 < Y1 + Y4, 1 +

k
x3+ x4 < y1 +y3+ya, then T3(x) + Y7(z) = (Diot — (1 + 2 +x3)) (k:%m + Bz + 934)) <

(Dtot — (y1 + y2 + y3)) (kyl/vo + L\J}I(le + y4)> = T:’)(y) + T7(y) and Ty(x) + Tg(v) = (z3 +

x1) (g@Dtotﬂ + IL’Q%) > (ys + )i/ (5@Dtotﬁ + yg%) = T4(y) + Ts(y). Let us now
consider x € X and y € 03(Ka+2)NX ={w € X : x93 > wa,x1 + 23 < w1 + w3, x1 + x4 =
w1 + wg, x1 + x3 + x4 < Wy + w3 + wy}. Given that <A3:, V1) = <vA3.,’U9> =1 and (Ase,v2) =
(Ase, v10) = 1, we need to verify that Yi(z) + YTo(z) < YTi(y) + Yo(y) and Ya(z) + YLip(z) >
T2(y)+T10(y) hold. Since xo > yo, x1+23 < y1+ys, T1+74 = Y1+y4, T1+T3+04 < Y1+Y3+y4,
then YT1(x) + Yo(z) = (Diot — (21 + z2 + 24)) (k%vo + kvM(xl +x4) + kTM(xl + x3)> < (Dot —

(1 + w2+ 90)) (Ko + 5 +90) + 521 + ) = Tily) + Toly) and T(@) + Taola) =

k4 k4 k4 ki v v .
(x1+z4)p0 (57MDtotb + Z’QVE) > (y1+ya) 1 (57MDtotb + yng) = Ta(y)+ T10(y). Finally, let
us consider z € X and y € 3(Ka+2)NX ={w € X : 9 > wy,x1 +x3 < w1+ w3,z + 24 <
w1 + wg, X1 + 23 + x4 = w1 + w3 +wa}. Given that (Age, v7) = (Ase,v9) = 1 and (Aye, vg) =
(Age,v10) = —1, we need to verify that T7(z) < Tr(y), Yo(z) < To(y), YTs(z) > Tg(y) and
YTio(z) > Yio(y) hold. Since xp > yo,x1 + 3 < Y1 +y3, 21 + 24 < Y1 + ya, 1 + 23+ 24 =
y1 + y3 + vy, that also imply 1 < yi,23 > y3,24 > ya, then T7(x) = (Dioy — (21 + 22 +
K K, <
r3+74)) (k&n)+-‘¥(x1—%au)> < (Dyot — (1 +y2+y3+va) | kipo + (w1 + 1) ) = T7(y),
< (Dot — (y1 +y2 +

7 o k‘A k‘A
va + 1) (Ko + 541 + va) + 51 +90)) = Tolw), Ts(@) = aaps’ (54D + 22 ) =

K kA v ki ki
Y3 f (57Dt0t5 + yzv) = Ts(y) and Y1o(z) = zapt <57Dtotb + x27>

A A o
> Yap (5]6%Dtotb + 99 k7E> = T10(y). Then, condition (i7) of Theorem S.2 in [5] also holds.

We can then conclude that all of the conditions of Theorem S.2 in [5] hold and so do the
conclusions of Theorem 3.4 in [5], as per the remarks in SI - Section S.3 in [5].

Yo(x) = (Diot — (21 + 22+ 23+ 24)) <k‘124/0 + kvM(xl +x4) + EvM(l‘l + x3)

N—
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