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Abstract.5
Epigenetic cell memory, the inheritance of gene expression patterns across subsequent cell divisions, is6

a critical property of multi-cellular organisms. In recent work [10], a subset of the authors observed in a7
simulation study how the stochastic dynamics and time-scale differences between establishment and erasure8
processes in chromatin modifications (such as histone modifications and DNA methylation) can have a critical9
effect on epigenetic cell memory. In this paper, we provide a mathematical framework to rigorously validate and10
extend beyond these computational findings. Viewing our stochastic model of a chromatin modification circuit11
as a singularly perturbed, finite state, continuous time Markov chain, we extend beyond existing theory in12
order to characterize the leading coefficients in the series expansions of stationary distributions and mean first13
passage times. In particular, we characterize the limiting stationary distribution in terms of a reduced Markov14
chain, provide an algorithm to determine the orders of the poles of mean first passage times, and determine15
how changing erasure rates affects system behavior. The theoretical tools developed in this paper not only16
allow us to set a rigorous mathematical basis for the computational findings of our prior work, highlighting17
the effect of chromatin modification dynamics on epigenetic cell memory, but they can also be applied to other18
singularly perturbed Markov chains beyond the applications in this paper, especially those associated with19
chemical reaction networks.20
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1 Introduction24

1.1 Background Epigenetic cell memory, the inheritance of gene expression patterns25

across subsequent cell divisions [22], is a critical property of multi-cellular organisms of intense26

interest in the field of systems biology [30, 31]. It has previously been discovered that chro-27

matin modifications, such as DNA methylation and histone modifications, are key mediators28

of epigenetic cell memory [1,14,21,24] (see references in [10] for more biological background).29

More precisely, it was found via simulations of stochastic models that the time scale separation30

between establishment (fast) and erasure (slow) of these modifications extends the duration31

of cell memory, and that different asymmetries between erasure rates of chromatin modifica-32

tions can lead to different gene expression patterns [10–12]. Here, we provide a mathematical33

framework to rigorously validate these computational findings and to further explore models34
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of chromatin modification circuits. We do this in a way that the results obtained and the tools35

developed can be applied to other mathematical models beyond the applications in this paper,36

especially stochastic models of chemical reaction networks.37

1.2 Focus of our work In this paper, we consider different versions of the chromatin38

modification circuit proposed in [10]. In particular, we start with simpler circuits that include39

histone modifications only and then we consider more elaborate circuits that include also DNA40

methylation. All of these circuits can be viewed as examples of Stochastic Chemical Reaction41

Networks (SCRNs). A SCRN is a continuous time Markov chain living in the non-negative42

integer lattice in d-dimensions, where the components of the Markov chain track the number43

of molecules of each of d species in the network over time, and each jump of the Markov chain44

corresponds to the firing of a reaction in the network [2]. A more precise description is given45

in Section 3.2.46

In order to analyze these stochastic models, we first determine how the stationary distri-47

butions and mean first passage times between states vary when a small parameter ε (non-48

dimensional parameter that scales the speed of the basal erasure of all the chromatin modifi-49

cations) tends to zero. To this end, we show that the stationary distributions and the mean first50

passage times of these singularly perturbed Markov chains admit series expansions in ε and51

we develop theoretical tools to determine the coefficients in these expansions. Then, we focus52

on determining how the different erasure rates of chromatin modifications affect the behavior53

of the chromatin modification circuit models. This latter study is conducted by exploiting54

comparison theorems for Markov chains recently developed in [13].55

One of the key features of our work is that these tools and the associated mathematical56

results are not only applicable to the chromatin modification models, but they can also be57

used to analyze other models that respect the same set of assumptions.58

1.3 Related work As mentioned in the previous paragraph, the stochastic behavior of59

the chromatin modification circuit models can be described by singularly perturbed continuous60

time Markov chains. There is some literature on discrete and continuous time, singularly61

perturbed Markov chains, especially by Avrachenkov et al. [6], Hassin & Haviv [20], Beltrán62

and Landim [7,8], and Yin & Zhang [32]. Avrachenkov et al. [6] gave general characterizations63

of series expansions for the stationary distribution and mean first passage times of a singularly64

perturbed discrete time Markov chain with finite state space. While their theory can be in65

principle translated to continuous time Markov chains, our work mostly deals directly with the66

singularly perturbed continuous time Markov chains and provides more concrete theoretical67

results for the leading coefficients of the stationary distribution series expansion and the orders68

of the poles of the mean first passage times. For the leading coefficients in the series expansion69

for the mean first passage times, we use in part the results of Avrachenkov & Haviv [5] and70

Avrachenkov et al. [6] and adapt their work to the continuous time Markov chain setting. We71

treat in detail the case where the chain for ε = 0 has more than one absorbing state and at72

least one transient state. Furthermore, we also provide an interpretation of leading coefficients73

in the series expansion of the stationary distribution in terms of a certain restricted Markov74

chain. An algorithm we give to determine the order of the pole of the mean first passage time75

extends the work of Hassin & Haviv [20] from discrete time to continuous time. We also extend76

the original algorithm’s scope to treat mean first passage times to a subset of states, instead77
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of just a single state. Beltrán and Landim [7,8] study metastable and tunneling behavior for a78

sequence {¸N}∞N=1 of time-homogeneous continuous time Markov chains with countable state79

spaces. Under an acceleration of time by a factor ¹N , they give conditions under which the trace80

of the accelerated process on the metastates is asymptotically Markovian as N → ∞. For our81

case, this would correspond to accelerating time for ¸N = Xε by ¹N ≈ 1
ε . Beltrán and Landim82

identified the transition rates for the limiting Markov chain and proved that its stationary83

distribution can be obtained as a limit from the stationary distribution for ¸N . While this84

work is potentially related to what we did, it requires knowing the stationary distribution85

for ¸N a priori. Our approach does not need to know that stationary distribution explicitly86

and we also study mean first passage times, giving explicit asymptotics for both. Finally,87

Yin & Zhang [32] conducted an extensive study focused on determining matched asymptotic88

expansions for the marginal distributions at time t of singularly perturbed continuous time89

Markov chains. Their infinitesimal generators, generalizing those of Phillips & Kokotovic [29]90

and Pan & Basar [28], are of the form Q(ε) = 1
εQ

(0) +Q(1), and can be time dependent. For91

the time independent case, this would correspond to studying the marginal distributions of our92

Markov chain Xε in the "linear" case and at time t
ε as ε→ 0, i.e., limε→0X

ε( tε). Thus, while93

their work potentially might provide information about stationary distributions as ε → 0, we94

directly study the power series expansion (in ε) of the stationary distribution of Xε, and we95

also study series expansions of mean first passage times for Xε, and we develop more concrete96

analyses for both.97

1.4 Outline of the paper In Section 2 we introduce two simplified models for the chro-98

matin modification circuit that do not include DNA methylation. Through these examples,99

we introduce the mathematical setting and questions we address in this paper. We describe100

the basic setup and definitions needed for this paper in Section 3. We present our main results101

in Section 4. Some proofs are given there, whilst others are in the Supplementary Information102

(SI). Further applications of the theoretical tools developed in Section 4 for chromatin modifi-103

cation circuits that include DNA methylation are presented in Section 5. Concluding remarks104

are given in Section 6.105

1.5 Preliminaries and notation Denote the set of integers by Z. For an integer d g 2 we106

denote by Zd the set of d-dimensional vectors with entries in Z. Denote by Z+ = {0, 1, 2, . . .},107

the set of non-negative integers. For an integer d g 2 we denote by Zd
+ the set of d-dimensional108

vectors with entries in Z+. We denote by 1 a vector of any dimension where all entries are 1’s.109

The size of 1 will be understood from the context. The set of real numbers will be denoted110

by R, R+ = [0,∞), R>0 = (0,∞), and d-dimensional Euclidean space will be denoted by Rd111

for d g 2. For integers n,m g 1, the set of n ×m matrices with real-valued entries will be112

denoted by Rn×m. The set of complex numbers will be denoted by C.113

Let X be a finite set. If needed, we will enumerate the entries of X by {1, . . . , |X |}. For114

a matrix A = (Ax,y)x,y∈X with real-valued entries, we denote the kernel of A by ker(A) :=115

{x ∈ R|X | : Ax = 0} and the nullity of A by nullity(A) := dim(ker(A)). We denote the116

spectrum of A by sp(A) and the spectral radius by spr(A) = max{|¼| : ¼ ∈ sp(A)}. A117

matrix Q = (Qx,y)x,y∈X will be called a Q-matrix if Qx,y g 0 for every x ̸= y ∈ X and118

Q1 = 0. We denote the identity matrix, which has 1’s on the diagonal and zeros elsewhere,119

by I = (Ix,y)x,y∈X . For a vector v = (vx)x∈X we denote by diag((vx)x∈X ) the diagonal matrix120
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in X with entries given by v. Vectors are column vectors unless indicated otherwise and a121

superscript of T will denote the transpose of a vector or matrix. For integers n,m g 1 and122

a matrix A ∈ Rn×m, we denote by ∥A∥ = (
∑n

i=1

∑m
j=1 |Ai,j |

2)1/2 the Frobenius norm of A1.123

For a vector v ∈ Rn, we denote the Euclidean norm of v by ∥v∥ = (
∑n

i=1 |vi|
2)1/2.124

Definition 1.1. Given a matrix A(0) in Rn×m, a real-analytic perturbation of A(0) is a125

matrix-valued function A : [0, ε0) −→ Rn×m, where ε0 > 0, and126

(1.1) A(ε) =

∞
∑

k=0

εkA(k), 0 f ε < ε0,127

in which {A(k) : k g 0} is a sequence of matrices in Rn×m such that128

(1.2)
∞
∑

k=0

εk∥A(k)∥ <∞, for every 0 f ε < ε0.129

Such a perturbation is called linear if A(ε) = A(0) + εA(1) for 0 f ε < ε0.130

By (1.2), a real-analytic perturbation of A(0) can be extended to a function F (z) :=131
∑∞

k=0 z
kA(k) defined on B(0, ε0) = {z ∈ C : |z| < ε0}. The function F will be called an132

analytic perturbation or complex-analytic perturbation of A(0). This extension will133

allow us to invoke results in complex analysis in order to study real-analytic perturbations.134

An example of this is the following result.135

Proposition 1.2. Let A : [0, ε0) −→ Rn×n be a real-analytic perturbation of A(0) such that136

A−1(ε) exists for every 0 < ε < ε0. Then, there is ε1 ∈ (0, ε0) and p ∈ Z+ such that137

(1.3) A−1(ε) =

∞
∑

k=−p

εkB(k), 0 < ε < ε1,138

where
∑∞

k=−p ε
k∥B(k)∥ < ∞ for every 0 < ε < ε1, {B

(k) : k g −p} is a sequence of matrices139

in Rn×n, B(−p) is not the identically zero matrix and p is called the order of the pole at140

ε = 0.141

This result is given in the analytic setting as Theorem 2.4 in [6]. Proposition 1.2 follows by142

extending A(·) to a complex disk, then using Cramer’s rule as in the proof of Theorem 2.4143

in [6] and checking that the matrices {B(k) : k g −p} obtained are real-valued.144

2 Motivating Example: Chromatin Modification Circuit In order to understand how145

the interactions among known chromatin modifications influence epigenetic cell memory, we146

consider the chemical reaction model of the gene’s inner chromatin modification circuit intro-147

duced in [10]. This model has the nucleosome with DNA wrapped around it, D, as a basic unit148

that can be modified either with activating marks, such as H3K4 methylation (H3K4me3) or149

H3K4 acetylation (H3K4ac), or repressive marks, such as H3K9 methylation (H3K9me3) or150

DNA methylation. H3K4me3 and H3K4ac are two histone modifications that promote a less151

1Here, we chose to fix a particular norm on R
n×m, although other choices of norm will often work.
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compact DNA around the nucleosomes and they are then associated with gene activation (see152

Chapter 3 of [1] and [33]). In the model, it is assumed that H3K4me3 and H3K4ac co-exist153

and the nucleosome with either of these modifications is represented by DA. On the contrary,154

both the histone modification H3K9me3 and DNA methylation cause the DNA to be tightly155

wrapped around the nucleosome and therefore, they are associated with gene repression [22].156

A nucleosome with DNA methylation only, H3K9 methylation (H3K9me3) only or both is157

represented by DR
1 , DR

2 and DR
12, respectively.158

One of the key parameters of the system is ε > 0, a non-dimensional parameter that scales159

the speed of basal erasure of all chromatin modifications. We are interested in studying the160

behavior of the system in the limiting regime ε → 0, in which the chromatin modification161

system has a bimodal limiting stationary distribution [10]. One peak corresponds to the active162

chromatin state (most of the nucleosomes are modified with activating marks) and the other163

one is in the repressed chromatin state (most of the nucleosomes are modified with repressive164

marks). We aim to derive formulas that characterize, as ε goes to 0, the behavior of the165

stationary distribution and the “time to memory loss” of the active (repressed) state, defined166

as the mean first passage time to reach the repressed (active) state, starting from the active167

(repressed) state.168

Two other critical parameters of the system are µ and µ′: they capture the asymmetry169

between the erasure rates of repressive and activating chromatin modifications. More precisely,170

µ (µ′) quantifies the asymmetry between erasure rates of repressive histone modifications171

(DNA methylation) and activating histone modifications. Part of our study is to analytically172

determine how µ and µ′ affect the stationary distribution and the time to memory loss of the173

active and repressed states.174

In this section, we introduce two simplified models of the chromatin modification circuit in175

which, compared to the full model described above, DNA methylation is not included and the176

only chromatin marks are histone modifications. We will use these simpler models in Section177

4 to directly apply and then better understand the theory developed in this paper. Then, in178

Section 5 we deal with more elaborate models that also include DNA methylation. Note that,179

for consistency, we use the same notation for the species and the reaction rate constants as180

the one used in the paper where these models were introduced [10].181

2.1 1D model We first consider a simplified model in which a gene has a total of Dtot g 2182

nucleosomes, where each nucleosome either has an activating histone modification, DA, or a183

repressive histone modification, DR, and there are no unmodified nucleosomes in this sim-184

plified model. If the amounts of nucleosomes having repressive (DR) and activating (DA)185

modifications are denoted as nDR and nDA , respectively, then we have the conservation law186

nDR +nDA = Dtot. We call this the 1D model because it suffices to keep track of the amount of187

DR (for example), since the amount of DA can be deduced by the conservation law. Further-188

more, the basal and recruited erasure of DA (DR) coincide with the basal de-novo establishment189

and maintenance of DR (DA). The chemical reaction system for this 1D model is the following:190

191

(2.1)
1○ DA +DR kAE−−→ DR +DR, 2○ DA ¶ + k̄AE−−−−→ DR,

3○ DR +DA kRE−−→ DA +DA, 4○ DR ¶ + k̄RE−−−−→ DA,

192
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(a) (b) (c)
2

4

3

1

D
RD

A

nDRstate x =

nDRnDA Dtot=         
_        

Dtot = 3         

nDR
εQ x,x-1 (  )

εQ x,x+1(  )

x

Figure 1: 1D model. (a) Chemical reaction system. The numbers on the arrows correspond to
the chemical reactions associated with the arrows as described in (2.1) in the main text. (b) Markov
chain graph. Here, we consider Dtot = 3 and we use black dots to represent the states, red arrows to
represent transition rates that are O(1), and blue arrows to represent transition rates that are O(ε). (c)
Directions of the potential transitions of Xε starting from a state x, whose rates are given in equation
(2.2).

where ¶, kAE , k̄
A
E , k

R
E , k̄

R
E > 0. Here, the form of the reaction rate constants is due to the fact193

that reactions with the same reactants and products have been combined. We denote the194

reaction volume by V , and let ε :=
¶+k̄AE

kA
E
(Dtot/V )

= ¶A
kA
E
(Dtot/V )

, where ¶A := ¶ + k̄AE . We also195

consider the constant µ :=
kRE
kA
E

, which captures the asymmetry between the erasure rates of196

repressive and activating histone modifications.We introduce the constant b such that µb = ¶R
¶A

,197

with ¶R := ¶ + k̄RE . Then, ¶A = ε
kAEDtot

V and ¶R := ¶Aµb = ε
kAEDtot

V µb. So, as ε → 0, both ¶A198

and ¶R go to 0, with Dtot,
kAE
V , µ, and b fixed.199

Now, consider a continuous time Markov chain Xε, with state space X := {0, . . . ,Dtot},200

where Dtot g 2 is an integer, which keeps track of nDR through time. Given that we have201

the conservation law nDR + nDA = Dtot, nDA can be obtained as a function of nDR , that is202

nDA = Dtot − nDR . Assuming stochastic mass-action kinetics (including the usual volume203

scaling of rate constants [16]), the infinitesimal generator Q(ε) 2 for Xε is given by:204

(2.2) Qx,x+ℓ(ε) =















(

kAE
V x+ ε

kAE
V Dtot

)

(Dtot − x) if ℓ = 1

µ
(

kAE
V (Dtot − x) + bε

kAE
V Dtot

)

x if ℓ = −1

0 otherwise,

205

for x ∈ X , ℓ ∈ Z \ {0} and x + ℓ ∈ X , and Qx,x(ε) = −
∑

y∈X\{x}Qx,y(ε) for x ∈ X . We206

extend this definition to ε = 0 by defining Qx,y(0) := limε→0Qx,y(ε) for x, y ∈ X . We will207

follow a similar convention for other examples. We consider X0 to be the continuous time208

Markov chain with infinitesimal generator given by Q(0). The process X0 corresponds to a209

SCRN model associated with the autocatalytic reactions 1○ and 3○ in (2.1), alone. Note that210

Q(ε) = Q(0) + εQ(1), ε g 0,(2.3)211

for appropriate matrices Q(0) and Q(1) in R|X |×|X |. By (2.3), we can see that Q(·) is a real-212

analytic (and moreover linear) perturbation of Q(0) (see Section 1.5 for definitions). Note that213

2Note that Q(ε) is sometimes called an infinitesimal transition matrix. The entries Qx,y(ε) for x ̸= y are
the infinitesimal transition rates of going from x to y: P[Xε(t+h) = y|Xε(t) = x] = Qx,y(ε)h+ o(h) as h → 0.
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for every ε > 0, Xε is irreducible, while X0 has a transient communicating class {1, . . . ,Dtot−214

1} and two absorbing states (0 and Dtot) (see SI - Section S.8). Because of this discontinuity215

at ε = 0, we say that Q(·) is a singular perturbation of Q(0) (see Section 3.1 for a precise216

definition).217

We first want to determine the probability for the gene to be in the active state a (x = 0),218

repressed state r (x = Dtot) or one of the intermediate states (x ∈ {1, . . . ,Dtot − 1}) after219

a long time (life-time of the organism), as a function of ε. We are especially interested in220

the limit of the stationary distribution for the system, Ã(ε), as ε → 0 (i.e., the basal erasure221

rate of the chromatin modifications is much lower than their maintenance rate). Since Xε is222

irreducible for ε > 0 (and it has a finite state space), it has a unique stationary distribution223

Ã(ε). In Section 3.1 we show that Ã(0) := limε→0 Ã(ε) exists and the function Ã(·) admits a224

convergent power series expansion:225

(2.4) Ã(ε) =

∞
∑

k=0

εkÃ(k) for 0 f ε < ε1,226

for some ε1 > 0. In order to determine Ã(0), we can take limits and observe that Ã(0)Q(0) = 0227

and so Ã(0) is a stationary distribution for Q(0). Indeed, Ã(0) is a specific mixture of atoms228

on the two absorbing states (0 and Dtot) for X0.229

In Figure 2 we see how the function Ã(ε) changes as ε→ 0 for several values of µ with Dtot,230
kAE
V and b fixed. Furthermore, for this simpler chromatin modification circuit, because of the231

birth-death structure of Xε, we can obtain explicit formulas for Ã(ε) when ε > 0 (see SI -232

Section S.8). On letting ε→ 0, we obtain:233

(2.5) Ãx(0) =















bµDtot

1+bµDtot
if x = 0

0 if x ∈ {1, . . . ,Dtot − 1}
1

1+bµDtot
if x = Dtot.

234

Thus, Ãx(0) ̸= 0 only for x = 0 and x = Dtot and Ã0(0) increases as µ increases, while ÃDtot
(0)235

decreases as µ increases.236

For continuous time Markov chains beyond the one-dimensional birth-death processes seen237

here, determining Ã(0) will be a considerable task. In Section 4.1, we address the problem of238

determining Ã(0), together with the whole expansion (2.4), in a systematic way, for a class of239

singularly perturbed Markov chains that includes our models of chromatin modification cir-240

cuits. For the 1D model considered here, the derivation of the first two terms in the expansion241

is given in Section 4.1.2.242

Now, in order to evaluate the time to memory loss of the active and repressed states, let us243

define the first passage time as Ä εy = inf{t g 0 : Xε(t) = y} for a state y ∈ X . We will see in244

(3.4) that the mean first passage time (MFPT) for Xε starting from x ∈ X , hx,y(ε) = Ex[Ä
ε
y ],245

has a Laurent series expansion of the form:246

(2.6) hx,y(ε) =
c−p

εp
+ . . .+

c−1

ε
+ c0 + εc1 + . . . for 0 < ε < ε{y},247

for some ε{y} > 0, for some natural number p g 0 and where c−p ̸= 0. Then, considering the248

repressed state r = Dtot and the active state a = 0, we define the time to memory loss of the249
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Figure 2: Histograms for the stationary distribution Ã(ε) of the Markov chain Xε defined
by (2.2), for different values of ε and µ. The plot was generated by numerically solving
Ã(ε)Q(ε) = 0 using the Eigenvector function in Mathematica. The parameters used were
Dtot = 50, kAE/V = 1, and b = 1.

repressed state as hr,a(ε) and the time to memory loss of the active state as ha,r(ε). Now, we250

are interested in the derivation of analytical formulas for hr,a(ε) and ha,r(ε). This will allow251

us to understand how the time to memory loss changes as ε → 0, and how the asymmetry of252

the system, represented by µ, affects this limit. For this case study, exploiting its birth-death253

structure, we can directly derive relevant formulas (see SI - Section S.8, SI - Equations (S.65)-254

(S.66)). In particular, defining ¼εx = Qx,x+1(ε), µ
ε
x = Qx,x−1(ε), with Qx,x+1(ε) and Qx,x−1(ε)255

defined in (2.2), and rεj =
¼ε
1¼

ε
2...¼

ε
j

µε
1µ

ε
2 ...µ

ε
j
, for j = 1, 2, ...,Dtot − 1, the time to memory loss of the256

repressed state is given by257

(2.7) hr,a(ε) =
rεDtot−1

µεDtot

(

1 +

Dtot−1
∑

i=1

1

rεi

)

+

Dtot−1
∑

i=2





rεi−1

µεi



1 +
i−1
∑

j=1

1

rεj







+
1

µε1
.258

Similarly, defining r̃εj =
µε
Dtot−1

µε
Dtot−2

...µε
Dtot−j

¼ε
Dtot−1

¼ε
Dtot−2

...¼ε
Dtot−j

, for j = 1, 2, ...,Dtot − 1, the time to memory259

loss of the active state is given by260

(2.8) ha,r(ε) =
r̃εDtot−1

¼ε0



1 +

Dtot−1
∑

j=1

1

r̃εi



+

Dtot−1
∑

i=2





r̃εi−1

¼εDtot−i



1 +

i−1
∑

j=1

1

r̃εj







+
1

¼εDtot−1

.261

Since ¼ε0 and µεDtot
are the only transition rates that are O(ε) with the rest being O(1), the262

time to memory loss of both the active and repressed states are O(ε−1), that is, p = 1, and as263

ε→ 0, these mean times tend to infinity.264
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T
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Figure 3: 2D model. (a) Chemical reaction system. The numbers on the arrows correspond to
the reactions associated with the arrows as described in (2.9) in the main text. (b) Markov chain
graph. Here, we consider Dtot = 3 and we use black dots to represent the states, red arrows to
represent transition rates that are O(1), and blue arrows to represent transition rates that are O(ε).
(c) Directions of the possible one step transitions for Xε starting from a state x = (x1, x2)

T , whose
rates are given in equation (2.10).

Furthermore, µεx, with x ∈ {1, 2, ...,Dtot}, are the only rates that depend on µ (they are linear265

in µ). Examining (2.7) and (2.8) with this observation in mind, we see that, if µ is increased266

(that is, the erasure rate of the repressive histone modification is increased compared to that267

of the active histone modification), ha,r(ε) increases, while hr,a(ε) decreases. The opposite268

happens when µ is decreased.269

More complicated situations arise when we do not have a birth-death structure to work with,270

as in the model of the next example. To evaluate how critical system parameters affect the271

time to memory loss for such more elaborate systems, in Section 4, we develop an algorithm272

to determine p (see Section 4.2.1), we give an expression for the leading term in the series273

expansion of the mean first passage time, and we exploit theoretical results developed in our274

paper [13] for comparing continuous time Markov chains, to determine how the asymmetry of275

the system affects the time to memory loss (see Section 4.3).276

2.2 2D model Let us consider a model in which, compared to the previous one, we277

assume that a nucleosome can also be unmodified. More precisely, in this case we denote278

the number of nucleosomes unmodified (D), modified with repressive modifications (DR), and279

modified with activating modifications (DA) by nD, nDR and nDA , respectively, and we have280

that nD+nDR+nDA = Dtot, with Dtot representing the total number of nucleosomes within the281

gene. Furthermore, each histone modification autocatalyzes its own production and promotes282

the erasure of the other one [10, 17]. The chemical reaction system is the following:283

(2.9)

1○ D
kA

W0
+ kA

W−−−−−−−→ DA, 2○ D+DA kA

M−−→ DA +DA, 3○ DA δ + k̄A

E−−−−→ D, 4○ DA +DR kA

E−−→ D+DR,

5○ D
kR

W0
+ kR

W−−−−−−−→ DR, 6○ D+DR kR

M−−→ DR +DR, 7○ DR δ + k̄R

E−−−−→ D, 8○ DR +DA kR

E−−→ D+DA,

284

where kAW0, k
A
W , k

A
M , ¶, k̄

A
E , k

A
E , k

R
W0, k

R
W , k

R
M , k̄

R
E , k

R
E > 0. Here, the form of the reaction rate285

constants is due to the fact that reactions with the same reactants and products have been286
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combined. Now, similarly to what we did for the previous model, let us denote the reaction287

volume by V , and let ε :=
¶+k̄AE

kA
M

(Dtot/V )
= ¶A

kA
M

(Dtot/V )
, with ¶A := ¶ + k̄AE , and µ :=

kRE
kA
E

.288

Additionally, consider the constant b such that µb = ¶R
¶A

, with ¶R := ¶ + k̄RE . Then ¶R =289

¶Aµb = ε
kAMDtot

V µb. So, as ε→ 0, both ¶A and ¶R go to 0 with Dtot,
kAMDtot

V , µ and b fixed.290

We consider the continuous time Markov chain Xε = {(Xε
1(t), X

ε
2(t))

T , t g 0}, which keeps291

track of (nDR , nDA) through time. Since the total number of nucleosomes Dtot is constant, the292

state space is X = {x = (x1, x2)
T ∈ Z2

+ : x1 + x2 f Dtot}. The potential one step transitions293

for Xε from x ∈ X are shown in Figure 3(c), where the associated transition vectors are given294

by v1 = −v2 = (0, 1)T and v3 = −v4 = (1, 0)T and the infinitesimal transition rates (assuming295

mass-action kinetics with the usual volume scaling of rate constants) are given by296

(2.10)

Qx,x+v1
(ε) = fA(x) = (Dtot − (x1 + x2))

(

kAW0 + kAW +
kAM
V
x2

)

,

Qx,x+v3
(ε) = fR(x) = (Dtot − (x1 + x2))

(

kRW0 + kRW +
kRM
V
x1

)

,

Qx,x+v2
(ε) = gεA(x) = x2

(

ε
kAM
V

Dtot + x1
kAE
V

)

, Qx,x+v4
(ε) = gεR(x) = x1µ

(

ε
kAM
V

Dtotb+ x2
kAE
V

)

.

297

This is a more complicated model compared to the previous example and, in order to study298

its stationary distribution and mean first passage times, we will exploit the theory developed299

in this paper, as shown in Section 4.300

3 Basic Setup and Definitions In Section 3.1 we provide basic definitions for singularly301

perturbed continuous time Markov chains and describe some key properties for them. In302

particular, we describe the form of series expansions for their stationary distributions and303

mean first passage times. We will study these quantities and apply our results to a class of304

continuous time Markov chains called Stochastic Chemical Reaction Networks (SCRNs) which305

are defined in Section 3.2. Our models of chromatin modification circuits will be SCRNs. All306

of the models considered will have a finite state space.307

3.1 Singularly perturbed, finite state, continuous time Markov chains Suppose X is308

a finite set and |X | > 1. For a value ε0 > 0, consider a family {Xε : 0 f ε < ε0} of continuous309

time Markov chains with state space X and infinitesimal generators {Q(ε) : 0 f ε < ε0} where310

ε 7→ Q(ε) is a real-analytic perturbation of Q(0). Thus,311

(3.1) Q(ε) = Q(0) + εQ(1) + ε2Q(2) + · · · ,312

where {Q(k) : k g 0} is a family of |X |×|X | real-valued matrices such that
∑∞

k=0 ε
k∥Q(k)∥ <∞313

for every 0 f ε < ε0. Assume that the continuous time Markov chains Xε are irreducible for314

0 < ε < ε0. In this context, the perturbation is singular when X0 has more than one315

recurrent class. This notion of singular will be the focus of our attention although some of our316

work applies for the regular (non-singular) case too. All of our chromatin modification circuit317

models have associated singular continuous time Markov chains, where the perturbation is318

linear, i.e., Q(k) = 0 for every k g 2.319
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When 0 < ε < ε0, there is an equivalent characterization of Xε using holding times with ex-320

ponential parameters {qx(ε)}x∈X and a transition probability matrix P (ε) for the embedded321

discrete time Markov chain. Specifically, for each x ∈ X , qx(ε) = −Qx,x(ε) ̸= 0, since Xε322

is irreducible, and for all x, y ∈ X , Px,x(ε) = 0, Px,y(ε) =
Qx,y(ε)
qx(ε)

, for y ̸= x in X . Note that323

Q(ε) = diag(q(ε))(P (ε)−I). The matrix P (ε) has a power series expansion in ε for sufficiently324

small 0 f ε < εP for some εP > 0 (the justification is similar to that for (3.7) below).325

The first quantities we are interested in studying are mean first passage times. Consider a326

nonempty set B ¦ X such that B ̸= X and let327

Ä εB := inf{t g 0 : Xε(t) ∈ B}.328

We define the mean first passage time (MFPT) (for Xε) from x ∈ X to B as329

hx,B(ε) = E[Ä εB | Xε(0) = x].330

If B = {y} for some y ∈ X , we adopt the notation: hx,y(ε) := hx,{y}(ε). Using first step331

analysis (see (3.1) in [26]), for 0 < ε < ε0,332

(3.2) hx,B(ε) =

{

0 if x ∈ B
1

qx(ε)
+
∑

y∈X Px,y(ε)hy,B(ε) if x ∈ Bc.
333

Now, define PBc
(ε) and QBc

(ε) as the matrices obtained by removing the columns and rows of334

P (ε) and Q(ε), respectively, corresponding to states in B. Then, by noting that I − PBc
(ε) is335

invertible (see SI - Lemma S.3) and that QBc
(ε) = − diag((qx(ε))x∈Bc)(I−PBc

(ε)) is invertible,336

from (3.2), we obtain337

(3.3) hB(ε) = −(QBc

(ε))−1
1,338

where hB(ε) := (hx,B(ε))x∈Bc , I is the identity matrix of dimension |Bc|, and 1 is the vector339

of all 1’s, of size |Bc|. Proposition 1.2, yields that there is 0 < εB < ε0 such that −(QBc
(ε))−1340

can be expanded as a matrix-valued Laurent series as in (1.3) for 0 < ε < εB, and then for341

each x ∈ Bc,342

(3.4) Ex[Ä
ε
B] = hx,B(ε) =

∞
∑

k=−p(x)

Ä(k)x εk, 0 < ε < εB,343

where p(x) g 0 is an integer, Ä
(−p(x))
x > 0, Ä

(k)
x ∈ R for k > −p(x), and the convergence is344

absolute convergence for 0 < ε < εB. The quantity p(x) will be called the order of the pole345

of (3.4). In Section 4.2.1 we will show how to find p(x) by using an algorithm that uses the346

order, with respect to ε, of the transitions of the Markov chain Xε.347

A second quantity of interest is the stationary distribution forXε. For 0 < ε < ε0, sinceXε is348

assumed to be irreducible and has finite state space, there is a unique stationary distribution349

Ã(ε) = (Ãx(ε))x∈X , which is the unique probability row vector satisfying Ã(ε)Q(ε) = 0. We350

are interested in studying Ã(ε) as ε → 0. For this, first consider ¸εx = inf{t g 0 : Xε(t) ̸= x}351



12 S. BRUNO, F.A. CAMPOS, Y. FU, D. DEL VECCHIO, R.J. WILLIAMS

and ·εx = inf{t > ¸εx : Xε(t) = x}, x ∈ X . Note that Ey[·
ε
x] = hy,x(ε) for y ̸= x. For each352

x ∈ X , Ex[·
ε
x] is called the mean return time to the state x, and for 0 < ε < ε0 satisfies353

(3.5) Ex[·
ε
x] =

1

qx(ε)
+
∑

y ̸=x

Pxy(ε)Ey[·
ε
x] =

1

qx(ε)
+
∑

y ̸=x

Pxy(ε)hy,x(ε).354

It is well known (see Theorem 3.8.1 in [26]) that for 0 < ε < ε0,355

(3.6) Ãx(ε) =
1

Ex[·εx]
·

1

qx(ε)
, x ∈ X .356

From (3.4) and (3.5), we can see that ε 7→ qx(ε)Ex[·
ε
x] can be extended to an analytic357

function on a punctured disk about 0 in C, with a Laurent series expansion having at most358

a pole of finite order at 0. The radius of the punctured disk may be smaller than ε0. This,359

together with (3.6), implies that ε 7→ Ãx(ε) can be extended to an analytic function on a360

punctured disk about 0 in C, also with a Laurent series expansion. Since this function is361

bounded by one when restricted to sufficiently small positive values of ε, we can remove the362

singularity at 0 and obtain that Ã(0) := limε→0 Ã(ε) exists and furthermore ε 7→ Ã(ε) is a363

real-analytic perturbation of Ã(0). In other words,364

(3.7) Ã(ε) =

∞
∑

k=0

εkÃ(k), 0 f ε < ε1,365

for sufficiently small ε1 > 0 and where {Ã(k) : k g 0} is a sequence of real-valued |X |-366

dimensional vectors such that
∑∞

k=0 ε
k∥Ã(k)∥ <∞ for every 0 f ε < ε1.367

3.2 Stochastic Chemical Reaction Networks (SCRNs) In this section, we provide some368

background on Stochastic Chemical Reaction Networks. The reader is referred to Anderson &369

Kurtz [4] for a more in depth introduction to this subject.370

We assume there is a finite non-empty set S = {S1, . . . , Sd} of d species, and a finite non-371

empty set R ¦ Zd
+ × Zd

+ that represents chemical reactions. We assume that (w,w) /∈ R372

for every w ∈ Zd
+. The set S represents d different molecular species in a system subject to373

reactions R which change the number of molecules of some species. For each (v−, v+) ∈ R, the374

d-dimensional vector v− (the reactant vector) counts how many molecules of each species375

are consumed in the reaction, while v+ (the product vector) counts how many molecules of376

each species are produced. The reaction is usually written as377

(3.8)
d
∑

i=1

(v−)iSi −→
d
∑

i=1

(v+)iSi.378

To avoid the use of unnecessary species, we will assume that for each 1 f i f d, there exists379

a vector w = (w1, . . . , wd)
T ∈ Zd

+ with wi > 0 such that (w, v) or (v, w) is in R for some380

v ∈ Zd
+, i.e., each species is either a reactant or a product in some reaction.381

The net change in the quantity of molecules of each species due to a reaction (v−, v+) ∈ R382

is described by v+ − v− and it is called the associated reaction vector. We denote the set of383
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reaction vectors by V := {v ∈ Zd |v = v+−v− for some (v−, v+) ∈ R}, we let n := |V| the size384

of V and we enumerate the members of V as {v1, . . . , vn}. Note that V does not contain the zero385

vector because R has no elements of the form (w,w). Different reactions might have the same386

reaction vector. For each vj ∈ V we consider the set Rvj := {(v−, v+) ∈ R | vj = v+ − v−}.387

The matrix S ∈ Rd×|R| whose columns are the elements v+ − v− for (v−, v+) ∈ R will be388

called the stoichiometric matrix.389

Given (S ,R) we will consider an associated continuous time Markov chain X = (X1,390

. . . , Xd)
T , with a state space X contained in Zd

+, which tracks the number of molecules of391

each species over time. Roughly speaking, the dynamics of X will be given by the following:392

given a current state x = (x1, . . . , xd)
T ∈ X ¦ Zd

+, for each reaction (v−, v+) ∈ R, there393

is a clock which will ring at an exponentially distributed time (with rate Λ(v−,v+)(x)). The394

clocks for distinct reactions are independent of one another. If the clock corresponding to395

(v−, v+) ∈ R rings first, the system moves from x to x+ v+ − v− at that time, and then the396

process repeats. We now define the continuous time Markov chain in more detail.397

Consider sets of species S and reactions R, a non-empty set X ¦ Zd
+ and a collection of398

functions Λ = {Λ(v−,v+) : X −→ R+}(v−,v+)∈R such that for each x ∈ X and (v−, v+) ∈ R, if399

x+ v+ − v− /∈ X , then Λ(v−,v+)(x) = 0. Now, for 1 f j f n, define400

(3.9) Υj(x) :=
∑

(v−,v+)∈Rvj

Λ(v−,v+)(x).401

Note that for each x ∈ X and 1 f j f n, if x + vj /∈ X , then Υj(x) = 0. The functions402

{Λ(v−,v+) : X −→ R+}(v−,v+)∈R are called propensity or intensity functions. A common403

form for the propensity functions is the following, which is associated with mass action404

kinetics:405

(3.10) Λ(v−,v+)(x) = »(v−,v+)

d
∏

i=1

(xi)(v−)i ,406

where {»(v−,v+)}(v−,v+)∈R are non-negative constants and for m, ℓ ∈ Z+, the quantity (m)ℓ is407

the falling factorial, i.e., (m)0 := 1 and (m)ℓ := m(m− 1) . . . (m− ℓ+ 1).408

A stochastic chemical reaction network (SCRN) (associated with (S ,R,X ,Λ)) is a409

continuous time Markov chain X with state space X and infinitesimal generator Q given for410

x, y ∈ X by411

(3.11) Qx,y =











Υj(x) if y − x = vj for some 1 f j f n,

−
∑n

j=1Υj(x) if y = x,

0 otherwise.

412

A SCRN associated with (S ,R,X ,Λ) is said to satisfy a conservation law if there is a413

d-dimensional non-zero vector m such that mTS = 0, and hence mTX(t) = xtot for every414

t g 0, for some constant xtot. Consequently, we can reduce the dimension of the continuous415

time Markov chain describing the system by one. For example, if m = (1, . . . , 1)T , then the416

projected process (X1, . . . , Xd−1)
T is again a continuous time Markov chain with state space417

{(x1, . . . , xd−1)
T ∈ Z

d−1
+ | (x1, . . . , xd−1, xtot−

∑d−1
i=1 xi)

T ∈ X}. In our examples, we will often418

use this type of reduction.419
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4 Main Results In this section we describe the main theoretical results of this paper,420

under assumptions that go beyond those of our models of chromatin modification circuits.421

More precisely, we present results on stationary distributions and mean first passage times422

in Sections 4.1 and 4.2. Then, in Section 4.3 we exploit theoretical results developed in our423

companion work [13] to study monotonic dependence on parameters for a class of continuous424

time Markov chains related to chromatin modification circuits and other SCRNs.425

4.1 Stationary distributions This section focuses on characterizing the terms in the426

series expansion (3.7). In Section 4.1.1 we focus on determining the term Ã(0) = Ã(0), while427

in SI - Section S.2.1 we provide a result which enables computation of all of the higher order428

terms Ã(k), for k > 0, under additional assumptions. In Section 4.1.2 we apply these results429

to the examples introduced in Section 2. Additional characterizations of Ã(0) and Ã(1) are430

given in the SI - Sections S.2.3 and S.2.4. Further examples for higher dimensional models of431

the chromatin modification circuits will be given in Section 5. We remind the reader that to432

ease notation, we have adopted the convention that stationary distribution vectors will be row433

vectors, even though we do not use the transpose notation T to indicate this.434

4.1.1 The zeroth order term As in Section 3.1, consider a family {Xε : 0 f ε < ε0}435

of continuous time Markov chains on a finite state space X , with infinitesimal generators436

{Q(ε) : 0 f ε < ε0} where ε 7→ Q(ε) is a real-analytic perturbation of Q(0) with coefficients437

{Q(k) : k g 0} and additionally Q(ε) is irreducible for every 0 < ε < ε0. The matrix438

Q(0) = Q(0) is a Q-matrix for which X decomposes into recurrent (or ergodic) states A and439

transient states T . From now on, we assume the following.440

Assumption 4.1. The set A consists of |A| g 1 absorbing states for Q(0), while T consists of441

|T | g 1 transient states for Q(0).442

In other words, in the dynamics of Q(0) there is at least one transient state, at least one443

recurrent state and all the recurrent states are absorbing. Now, we label the state space444

starting with the states in A and followed by the ones in T . For every k g 0, we can write445

Q(k) as446

(4.1) Q(k) =

(

Ak Sk
Rk Tk

)

,447

where Ak ∈ R|A|×|A|, Sk ∈ R|A|×|T |, Rk ∈ R|T |×|A| and Tk ∈ R|T |×|T |. In a similar fashion, we448

can write449

(4.2) Q(ε) =

(

A(ε) S(ε)

R(ε) T (ε)

)

,450

for 0 f ε < ε0, where A(ε) ∈ R|A|×|A|, S(ε) ∈ R|A|×|T |, R(ε) ∈ R|T |×|A| and T (ε) ∈ R|T |×|T |.451

From Assumption 4.1, we obtain that452

(4.3) Q(0) = Q(0) =

(

0 0

R0 T0

)

,453

where T0 is an invertible matrix (see SI - Lemma S.5).454
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For each 0 < ε < ε0, we denote by Ã(ε) = (Ãx(ε))x∈X the stationary distribution for Q(ε).455

In Section 3.1, we showed that the limit Ã(0) := limε→0 Ã(ε) exists and that ε 7→ Ã(ε) is a real-456

analytic perturbation of Ã(0) with expansion given by (3.7) for 0 f ε < ε1. For convenience,457

decompose the row vector Ã(ε) as Ã(ε) = [³(ε), ´(ε)] for 0 f ε < ε1 where ³(ε) ∈ R|A| and458

´(ε) ∈ R|T |. From (3.7), letting Ã(k) = [³(k), ´(k)], we have459

³(ε) =
∞
∑

k=0

εk³(k) and ´(ε) =
∞
∑

k=0

εk´(k)460

for 0 f ε < ε1. Since Ã(ε) is a probability distribution for every 0 f ε < ε1, we have that461
∑∞

k=0 ε
k(Ã(k)1) = 1, which yields that Ã(0)1 = 1 and Ã(k)1 = 0 for every k g 1. Since462

Ã(0)Q(0) = 0, Ã(0) is a stationary distribution for X0 and so, by Assumption 4.1, it must be463

supported on A and so ´(0) = 0. In the next result we establish an equation that is satisfied464

by ³(0) = ³(0) and introduce a key matrix for our analysis. For convenience, let ³ := ³(0).465

Lemma 4.1. Under Assumption 4.1, Ã(0) = [³, 0], where 0 is the zero row vector of size |T |466

and ³ is an |A|-dimensional probability vector satisfying the equation:467

(4.4) ³(A1 + S1(−T0)
−1R0) = 0.468

In addition,469

(4.5) ´(1) = ³S1(−T0)
−1.470

See SI - Section S.2.2 for the proof of Lemma 4.1. For convenience, we adopt the notation:471

(4.6) QA := A1 + S1(−T0)
−1R0.472

In SI - Lemma S.15, we show that QA is a Q-matrix of size |A|× |A|. As a consequence, there473

exists a continuous time Markov chain with state space A and infinitesimal generator QA. In474

general, a probability vector satisfying (4.4) needs not be unique. The following condition will475

imply uniqueness.476

Assumption 4.2. The Markov chain associated with QA has a single recurrent class.477

By SI - Lemma S.1, Assumption 4.2 is equivalent to the condition dim(ker(QT
A)) = 1. The478

next result then follows from Lemma 4.1.479

Theorem 4.2. Suppose Assumptions 4.1 and 4.2 hold. Then, Ã(0) = [³, 0], where ³ is the480

unique probability vector on A such that ³QA = 0.481

As we will see, all of the chromatin modification circuit models presented in this work satisfy482

both Assumptions 4.1 and 4.2. Also note that Lemma 4.1 yields a characterization of ´(1) by483

means of (4.5).484

Theorem 4.2 is simple to state, yet less easy to use since simple formulas for QA can be485

seldom obtained, making Assumption 4.2 hard to verify directly using (4.6). In this regard, we486

now introduce an auxiliary continuous time Markov chain X̃ and use it to construct (via time-487

change) a realization X̂A of the continuous time Markov chain with infinitesimal generator488

QA. This will enable us to give assumptions on X̃ that will imply Assumption 4.2 and which489
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can sometimes be easier to verify. Also, this explicit realization for X̂A can lead to alternative490

ways to verify Assumption 4.2. Under Assumption 4.1, consider the matrix491

(4.7) Q̃ :=

(

A1 S1
R0 T0

)

.492

In SI - Lemma S.15 we prove that Q̃ is a Q-matrix. Let X̃ be a continuous time Markov493

chain with infinitesimal generator Q̃. For the purpose of illustration, if we assume that the494

perturbation is linear (as in (2.3)) and ε0 > 1, then the transitions of X̃ consist of the transi-495

tions of X0 augmented by the transitions of X1 that emanate from A. See Figure 4(a)-(b) for496

an illustration related to the 1D and 2D models, respectively, introduced in Section 2.497

(a)

(b)

nDA

nDR

nDA

nDR

nDA

nDR

nDR
nDR nDR

ε

X

ε

X X
~

X
~

X�

X�

Figure 4: Graphs for the one-step transitions of Xε, X̃ and X̂A for the (a) 1D model and
(b) 2D model. Here, we consider Dtot = 3 and we use gray dots to represent the states belonging
to A and black dots to represent all the other states, red arrows to represent transitions that are O(1)
for Xε, X̃ and X̂A, blue arrows to represent transitions that are O(ε) for Xε, and golden arrows to
represent the transitions for X̃ that were O(ε) for Xε and became O(1) for X̃.

Now, consider the occupation time of A by the Markov chain X̃ up to time t g 0, given498

by ÇA(t) :=
∫ t
0 1A(X̃(s))ds for t g 0. Denote by ÇA(∞) = limt→∞ ÇA(t) =

∫∞
0 1A(X̃(s))ds.499

Since T0 is invertible, SI - Lemmas S.5 and S.6 yield that Px[ÇA(∞) = ∞] = 1 for all x ∈ X .500

Additionally, consider the right-continuous inverse of ÇA, Ä(s) := inf{t g 0 : ÇA(t) > s},501

defined for s g 0. We define the restriction process X̂A as502

(4.8) X̂A(s) := X̃(Ä(s)), s g 0.503

By properties of the right-continuous inverse (see Problem 4.5 in [23], for example), the reader504

may verify that X̂A corresponds to observing X̃ only on the time intervals where X̃ is in505

A. Roughly speaking, we are erasing the times where X̃ is outside of A. In the language of506

Blumenthal & Getoor [9], ÇA is a continuous additive functional for X̃, and by Exercise V.2.11507

in [9], we obtain that X̂A is a continuous time Markov chain with state space A. In the next508
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result, we prove that X̂A is a realization of the continuous time Markov chain associated with509

QA. See Figure 4(a)-(b) for a representation of X̂A associated with the 1D and 2D models,510

respectively.511

Lemma 4.3. Suppose Assumption 4.1 holds. Then, X̂A has infinitesimal generator QA.512

The proof of Lemma 4.3 is given in SI - Section S.2.2. We now introduce some assumptions513

that imply that Assumption 4.2 holds. In addition, these assumptions will allow for some514

refinements (see SI - Section S.2).515

Assumption 4.3. For X̃, there exists a communicating class C such that A ¦ C.516

We note that, if such a class C exists, then it has to be recurrent. In fact, if it was transient517

then ÇA(∞) <∞ with positive probability under Px, x ∈ A, which is a contradiction.518

Assumption 4.4. The Markov chain X̃ is irreducible.519

We note that Assumption 4.4 implies Assumption 4.3. Moreover, they are both related to520

Assumption 4.2 in the following way.521

Lemma 4.4. Suppose Assumptions 4.1 and 4.3 hold. Then, the process X̂A is irreducible. As522

a consequence, either of Assumptions 4.4 or 4.3 implies that Assumption 4.2 holds.523

The proof of Lemma 4.4 is given in SI - Section S.2.2. The next result follows from Lemmas524

4.3, 4.4 and Theorem 4.2.525

Theorem 4.5. Suppose Assumptions 4.1 and 4.3 hold. Then, Ã(0) = [³, 0] where ³ is the526

unique stationary distribution for the process X̂A and all entries of ³ are strictly positive.527

Assumptions 4.3 and 4.4 can be understood graphically in some cases. For example, Figure528

4 illustrates that for the 1D-model, Assumption 4.4 is satisfied. For the 2D-model, we can see529

that while Assumption 4.4 is not satisfied (since the state (0, 0) forms its own (transient) class530

for X̃), Assumption 4.3 does indeed hold. In Section 5 we will see that neither Assumption 4.4531

nor 4.3 is satisfied by the 3D or 4D model. However, the weaker Assumption 4.2 does hold.532

In the SI, we give recursive formulae for the higher order terms Ã(k), k = 1, 2, . . . , under the533

following additional assumption (see SI - Theorem S.9).534

Assumption 4.5. The perturbation is linear, i.e., Q(ε) = Q(0) + εQ(1) for 0 f ε < ε0.535

4.1.2 Illustrative examples: 1D and 2D model 1D model. We use the tools developed536

in the preceding section to derive the terms Ã(0) and Ã(1) in the expansion (2.4) for the 1D537

model introduced in Section 2.1. Fix Dtot g 2 and let Xε with infinitesimal generator Q(ε) be538

as in Section 2.1, with the expression for Q(k) given in (4.1). By (2.3), Assumption 4.5 holds.539

Moreover, for each 0 < ε < ε0, with ε0 being a fixed, positive constant, Q(ε) is irreducible,540

while Q(0) has a non-empty set of transient states T = {1, . . . ,Dtot − 1} and a set of two541

absorbing states A = {a, r}, with a = 0 representing the fully active state (n
D

A = Dtot) and542

r = Dtot representing the fully repressed state (n
D

R = Dtot). Then, Assumption 4.1 holds (see543

SI - Section S.8). Furthermore, by defining f(x) := x(Dtot − x) for x ∈ X , we can write the544

matrices R0 and T0 in the matrix Q(0) as follows:545
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R0 =

















µ
kAE
V f(1) 0
0 0
...

...
0 0

0
kAE
V f(1)

















, T0 =





























−(¼01 + µ01) ¼01 0 . . . . . . . . . 0

0
. . .

. . .
...

...
...

...
...

. . .
. . .

. . . 0
...

...
. . . 0 µ0x −(¼0x + µ0x) ¼0x 0 . . .
... 0

...
. . .

. . .
. . .

...
...

...
...

...
. . .

. . . 0
0 . . . . . . . . . 0 µ0

Dtot−1 −(¼0
Dtot−1 + µ0

Dtot−1)





























546

where R0 is a (Dtot − 1)× 2 matrix and T0 is a (Dtot − 1)× (Dtot − 1) tridiagonal matrix, and547

µ0x = µ
kAE
V f(x), ¼0x =

kAE
V f(x), and f(Dtot − 1) = f(1) = (Dtot − 1). In addition, we can write548

A1 and S1 of Q(1) as follows:549

A1 =

(

−kA

E

V
D2

tot 0

0 −bµkA

E

V
D2

tot

)

, S1 =

(

kA

E

V
D2

tot 0 . . . . . . 0

0 . . . . . . 0 bµ
kA

E

V
D2

tot

)

.550

The process X̃, whose infinitesimal generator is defined in (4.7), is irreducible (see SI - Section551

S.8). This is illustrated in Figure 4(a). Thus, Assumption 4.4 holds. Then, Assumption 4.3552

is also satisfied and Theorem 4.5 can be applied. This yields that Ã(0) = Ã(0) = [³, 0] =553

[³a, ³r, 0 . . . , 0] where ³ is the unique stationary distribution for the restriction process X̂A554

(defined by (4.8)), whose infinitesimal generator is QA = A1 + S1(−T0)
−1R0 by Lemma 4.3555

and (4.6). Now,556

(4.9)

QA =

(

− 1−µ
1−µDtot

kA

E

V
D2

tot

1−µ
1−µDtot

kA

E

V
D2

tot

bµDtot
1−µ

1−µDtot

kA

E

V
D2

tot
−bµDtot

1−µ
1−µDtot

kA

E

V
D2

tot

)

=
1− µ

1− µDtot

kAE
V

D2
tot

(

−1 1
bµDtot −bµDtot

)

,557

and since ³ is the unique probability vector satisfying ³QA = 0, we have558

³a =
bµDtot

1 + bµDtot

, ³r =
1

1 + bµDtot

.559

These results are in agreement with (2.5) in Section 2.1, where we explicitly computed the560

stationary distribution Ã(ε) and let ε→ 0 (see SI - Section S.8).561

Now, since Assumptions 4.1, 4.3, and 4.5 hold, we can apply SI - Theorem S.9 to de-562

rive an expression for ´(1). For the transient states T = {1, ...,Dtot − 1}, we have ´(1) =563

[Ã
(1)
1 , ..., Ã

(1)
Dtot−1] = ³S1(−T0)

−1, and so for x ∈ T564

(4.10) ´(1)x =
bµDtot

1 + bµDtot

kAE
V

D2
tot(−T0)

−1
1,x +

1

1 + bµDtot

bµ
kAE
V

D2
tot(−T0)

−1
Dtot−1,x,565

in which (−T0)
−1
1,x and (−T0)

−1
Dtot−1,x, for x ∈ T , are the elements indexed by (1, x) and (Dtot−566

1, x) of the matrix (−T0)
−1, respectively. After some calculations, we obtain567
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(−T0)
−1
1,x =

(

kA

E

V

)Dtot−2 ∏Dtot−1

i=1
f(i)

f(x)

(

1 +
∏

Dtot−1−x
i=1 µi

)

(

kA

E

V

)Dtot−1
∏

Dtot−1
i=1 f(i)

(

1 +
∏

Dtot−1
i=1 µi

)

=

(

1 +
∏

Dtot−1−x
i=1 µi

)

kA

E

V
f(x)

(

1 +
∏

Dtot−1
i=1 µi

) ,

(−T0)
−1
Dtot−1,x =

(

kA

E

V

)Dtot−2 ∏Dtot−1

i=1
f(i)

f(x)

(

1 +
∏x−1

i=1 µ
i
)

µDtot−1−x

(

kA

E

V

)Dtot−1
∏

Dtot−1
i=1 f(i)

(

1 +
∏

Dtot−1
i=1 µi

)

=

(

1 +
∏x−1

i=1 µ
i
)

µDtot−1−x

kA

E

V
f(x)

(

1 +
∏

Dtot−1
i=1 µi

) ,

568

and then ´
(1)
x , x ∈ T , can be written as follows:569

(4.11) ´(1)x =
D2

tot

f(x)

bµDtot−x

1 + bµDtot
=

D2
tot

x(Dtot − x)

bµDtot−x

1 + bµDtot
.570

2D model. In this section we analyze the stationary distribution for the 2D model in-571

troduced in Section 2.2. Fix Dtot g 2 and let Xε with infinitesimal generator Q(ε) be as in572

Section 2.1, with the expression for the Q(k) given by (4.1). By (2.10), for this model Assump-573

tion 4.5 holds. Furthermore, Q(0) has a non-empty set of transient states T = {i1, . . . , im}574

where m = (Dtot+2)(Dtot+1)
2 − 2, i1 = (0,Dtot − 1)T , im = (Dtot − 1, 0)T , and absorbing states575

A = {a, r}, with a = (0,Dtot)
T corresponding to the fully active state (n

D
A = Dtot) and with576

r = (Dtot, 0)
T corresponding to the fully repressed state (n

D
R = Dtot), respectively. Then,577

Assumption 4.1 holds (see SI - Section S.9).578

From (2.10), we see that A0 = 0, S0 = 0 and579

A1 =

(

−
kAM
V D2

tot 0

0 −
kAM
V D2

totµb

)

, S1 =

(

kAM
V D2

tot 0 . . . . . . 0

0 . . . . . . 0
kAM
V D2

totµb

)

.580

Furthermore, R0 ∈ Rm×2 is given by581















fA(0,Dtot − 1) 0
0 0
...

...
0 0
0 fR(Dtot − 1, 0)















=

















kAW0 + kAW +
kAM
V (Dtot − 1) 0

0 0
...

...
0 0

0 kRW0 + kRW +
kRM
V (Dtot − 1)

















,582

and R1 = 0. The matrices T0 and T1 are more complex and examples of them, for Dtot = 2,583

are provided in SI - Section S.9. For X̃, C = X \ {(0, 0)} is a communicating class such that584

A ¦ C. This implies that Assumption 4.3 is satisfied. Given that Assumptions 4.1 and 4.3 are585

satisfied, Theorem 4.5 can be applied and we obtain that Ã(0) = Ã(0) = [³, 0] = [³a, ³r, 0 . . . , 0]586

where ³ is the unique stationary distribution for the process X̂A, whose infinitesimal generator587

is QA = A1 + S1(−T0)
−1R0. This means that ³ is the unique probability vector such that588

³(A1 +S1(−T0)
−1R0) = 0. Furthermore, given that Assumption 4.5 is satisfied, we can apply589

SI - Theorem S.9 to derive an expression for ´(1) = [Ã
(1)
i1
, ..., Ã

(1)
im

] = ³S1(−T0)
−1. For example,590

if Dtot = 2, the matrix QA is given by591
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(4.12) QA =
4

K

kAM
V

(

−(kRW0 + kRW )(kRW0 + kRW +
kR

M

V
) (kRW0 + kRW )(kRW0 + kRW +

kR

M

V
)

bµ2(kAW0 + kAW )(kAW0 + kAW +
kA

M

V
) −bµ2(kAW0 + kAW )(kAW0 + kAW +

kA

M

V
)

)

,592

with593

(4.13)

K = (kAW0+k
A
W +

kAM
V

+kRW0+k
R
W )(kRW0+k

R
W +

kRM
V

)+µ(kRW0+k
R
W +

kRM
V

+kAW0+k
A
W )(kAW0+k

A
W +

kAM
V

),594

and then Ã(0) is given by595

(4.14) Ã(0)x =































bµ2(kAW0
+kAW )(kAW0

+kAW+
kAM
V

)

bµ2(kA
W0

+kA
W

)(kA
W0

+kA
W

+
kA
M
V

)+(kR
W0

+kR
W

)(kR
W0

+kR
W

+
kR
M
V

)
if x = (0,Dtot)

T

0 if x ∈ T

(kRW0
+kRW )(kRW0

+kRW+
kRM
V

)

bµ2(kA
W0

+kA
W

)(kA
W0

+kA
W

+
kA
M
V

)+(kR
W0

+kR
W

)(kR
W0

+kR
W

+
kR
M
V

)
if x = (Dtot, 0)

T .

596

See SI - Section S.9 for the evaluation of Ã
(1)
x for the transient states x ∈ T when Dtot = 2. For597

this value of Dtot, we see from (4.14) that Ã
(0)
x depends monotonically on µ for each fixed x. As598

Dtot increases, the algebraic complexity of a full parameter representation of Ã
(0)
x increases very599

rapidly. Thus, to investigate monotonic dependence on parameters for biologically relevant600

values of Dtot (of the order of 50, considering an average gene length of 10,000 bp [15] and601

one nucleosome per 200 bp [18]), we shall use comparison theorems developed in [13], without602

calculating any explicit formula (Section 4.3).603

4.2 Mean first passage times (MFPTs) In this section we develop a theoretical frame-604

work to study mean first passage times for continuous time Markov chains. We first develop605

an algorithm to determine the order of the pole of MFPTs for singularly perturbed Markov606

chains (Section 4.2.1). In Section 4.2.2, we focus on determining the leading coefficient for607

MFPTs, under some assumptions introduced in Section 4.1. In Section 4.2.3, we apply these608

results to the examples introduced in Section 2.609

4.2.1 Algorithm to find the order of the poles for MFPTs Our algorithm is adapted610

from an algorithm developed by Hassin and Haviv [20] for discrete time Markov chains. The611

idea used in [20] was to consider transitions between subsets of states and to keep track of612

the sojourn times in the sets of states. This is used to define a coarser version of the process,613

which may not be a Markov process and which moves between groups of states of the original614

Markov chain. This idea can be adapted to the continuous time setting as well. For this, we615

introduce stopping times to more explicitly track the sojourn times than was done in [20]. In616

addition, we extend the original algorithm’s scope to consider the mean first passage time to617

a subset of states, instead of just a single state. The paper [20] uses r-cycles and notes that618

these could be replaced by more general r-components. Here, we focus on using the latter and619

call the set of vertices in such an r-component an r-connected set.620

In this section, we consider a singularly perturbed, finite-state, continuous time Markov621

chain Xε on X with infinitesimal generator Q(ε) as described in Section 3.1. We provide an622
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algorithm for finding the orders {p(v) : v ∈ Bc} of the poles for the mean first passage times623

to B ¢ X for Xε starting from states in Bc, where B ≠ ∅ is a strict subset of X . We begin624

with a few definitions and some notation and then present the algorithm.625

Definition 4.6. Given ε0 > 0 and a function f : (0, ε0) → R>0, we say f = Θ(εk) if there626

exist k ∈ Z and strictly positive m,M ∈ R>0 such that, for all 0 < ε < ε0,627

mεk f f(ε) fMεk.628

If f = Θ(εk) for some k ∈ Z, we say the order (at the origin) of f is k. If f = Θ(ε−k) where629

k ∈ Z+, we say that the order of the pole of f is k.630

Because the perturbation of Xε is real analytic, |X | > 1 and Xε is irreducible for ε > 0,631

there exists εmax > 0 such that for each x ̸= y ∈ X , either Qx,y(ε) ≡ 0 for all ε ∈ (0, εmax)632

or Qx,y(ε) > 0 for all ε ∈ (0, εmax). In the latter case, the order of Qx,y(ε) is a non-negative633

integer, which we denote by kxy. We let E0 = {(x, y) : Qx,y(ε) > 0 for all ε ∈ (0, εmax)}.634

As the algorithm progresses, states of X are gathered together to form composite nodes and635

the graph of the states of Xε progresses through a series of reduced graphs. If u is a node in636

one of the graphs, then S(u) ¢ X consists of the states in X that are collapsed to form the637

(reduced) node u. In Steps 2 and 3 of the algorithm, the function K and the initial values of638

p are inductively determined for all of these graphs. The final values of p for nodes in Bc are639

then determined in Step 4. With Kuv being defined, a directed edge (u, v) in one of the graphs640

is called an r-edge, where r is for regular, if Kuv = 0, and an r-path is a directed path in the641

graph consisting of r-edges only. A set C in one of the graphs is called an r-connected set if642

|C| > 1 and there exists an r-path from u to v for any u ̸= v ∈ C. The order of the pole of643

the expected sojourn time spent in an r-connected set C depends only on the set C and is644

denoted by p(c) where c is a node representing the set C. For any node w outside of C, Kcw645

and Kwc are the the order of the probabilities of a one-step transition from c to w and646

from w to c, respectively. In Step 4 of the algorithm, p(·) keeps being updated but will stay647

finite and eventually fixate. The algorithm statement and related proof can be found in the648

SI - Sections S.3 - S.5.649

4.2.2 Leading coefficient in MFPT series expansion In Section 3.1, we have shown650

that for each 0 < ε < ε0, the unique stationary distribution Ã(ε) for Xε admits a real-analytic651

expansion in powers of ε. By (3.5) and (3.6), for x ∈ X ,652

(4.15)
1

Ãx(ε)
= qx(ε)Ex[·

ε
x] = 1 +

∑

y ̸=x

Qx,y(ε)hy,x(ε).653

Recall that E0 = {(x, y) : Qx,y(ε) > 0 for all ε ∈ (0, εmax)} and kxy is the order of Qx,y(ε) for654

each (x, y) ∈ E0. Using the algorithm in Section 4.2.1, we can obtain the order of the pole,655

px(y), of the mean first passage time hy,x(ε) from y to x for all y ̸= x ∈ X . Therefore, for each656

x ∈ X , the order of Ãx(ε) is657

(4.16) kx = max{px(y)− kxy : (x, y) ∈ E0; 0} g 0,658
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and then659

Ãx(ε) =

∞
∑

k=kx

εkÃ(k)x .660

The following theorem is for continuous time and builds on discrete time results of661

Avrachenkov et al. [5, 6].662

Theorem 4.7. Suppose Assumptions 4.1, 4.2 and 4.5 hold. Let QA be given by (4.6), X̂A be663

as defined in (4.8), and ³ be the unique stationary distribution for X̂A defined in Theorem 4.2.664

Let D = (−QA + 1³)−1 − 1³. For y ∈ X , let ky be the order of the stationary distribution665

Ãy(ε) of Xε, defined by (4.16). Then, for x, y ∈ A, the mean first passage time from x to y666

for Xε is667

(4.17) hx,y(ε) =
Dy,y −Dx,y

Ã
(ky)
y

1

εky+1
+O

(

1

εky

)

.668

Moreover, if X̂A is an irreducible Markov chain, then the order of the pole of hx,y(ε) is one,669

i.e., ky = 0, and the coefficient of ε−1 in (4.17) is equal to the mean first passage time from x670

to y for the process X̂A.671

The proof of Theorem 4.7 is given in SI - Section S.7.1.672

Remark 4.8. It may be possible that Dy,y −Dx,y = 0. In this case,673

hx,y(ε) = 0 ·
1

εky+1
+O

(

1

εky

)

= O

(

1

εky

)

.674

However, if we find that the order of the pole of hx,y(ε) is ky+1, using the algorithm in Section675

4.2.1, then we can rule out the possibility of Dy,y −Dx,y being zero.676

4.2.3 Illustrative examples: 1D and 2D models We first apply the algorithm given677

in Section 4.2.1 to find the order of the pole of the time to memory loss in the 1D and 2D678

models introduced in Section 2. For the 1D model, we could also directly derive the analytical679

expression for the time to memory loss by exploiting first step analysis [26] and solve the680

system (3.2) introduced in Section 3.1 (see SI - Section S.8). Figure 5 illustrates the key steps681

of the algorithm for the 1D model, which lead to the conclusion that the time to memory682

loss for the active state is Θ(ε−1). Because of the symmetry in the input graph in Figure 5,683

the time to memory loss for the repressed state is also Θ(ε−1). These orders found by the684

algorithm are consistent with what can be directly derived by first step analysis. Similarly, SI685

- Figure S.1 illustrates the key steps of the algorithm for the 2D model, which leads to the686

conclusion that the time to memory loss of both the active and the repressed states is Θ(ε−1).687

Next, we find the leading coefficient for the time to memory loss in the 1D and 2D models,688

which is the coefficient of the ε−1 term in all cases. Recall from Section 4.1.2 that Assumptions689

4.1, 4.3 and 4.5 hold for both 1D and 2D models and hence by Lemma 4.4, so does Assumption690

4.2 and X̂A is irreducible. For the 1D model, QA is given by (4.9). Thus, by Theorem 4.7, the691

leading coefficient of the time to memory loss for the active state is the mean first passage time692
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Figure 5: Key steps of the algorithm for the 1D model. The algorithm is described in Section
4.2.1, and it finds the order of the pole of the mean first passage time to B ¢ X from each state in Bc.
In our 1D model, the input for the algorithm is the order of each of the non-zero off-diagonal entries
in Q(ε) and the set B = {Dtot}. The order of the non-zero entries in Q(ε) is represented by colored
arrows in the graph in the “Input” panel. Step 1 transforms the orders in the Q(ε)-matrix into the
orders in the P (ε)-matrix and the exponential parameters q(ε) to give an equivalent construction for
the continuous time Markov chain. The order of the non-zero entries in P (ε) is represented by colored
arrows in the graph, and the number in the circle at a state x ∈ Bc is the order of the pole p(x) of 1

qx(ε)

(the mean sojourn time at the state x). In Step 2, the set B is relabeled as the node a, and then all
transitions from a to Bc are removed. Step 3 for the 1D model involves only one iteration, where the
collection of all nodes except the node a (called an r-connected set C) is condensed to a single node
c, and the order of the pole at c is p(c) = maxu∈C p(u) + min{Kuv : u ∈ C, v /∈ C and (u, v) ∈ E} =
1 + 0 = 1, where E denotes the edge set of the graph in Step 3 before the 1st iteration. Moreover,
Kca = min{Kua : u ∈ C and (u, a) ∈ E} −min{Kuv : u ∈ C, v /∈ C and (u, v) ∈ E} = 0− 0 = 0. Step
4 involves one iteration. In this iteration, the node c is the only node other than a, so its value of p is
fixed, and then any edges leading to or from c are removed. When all of the nodes other than a have
been fixed, the order of the pole of the mean first passage time from each state in Bc to B is given by
the fixed value of the node to which the state belongs.

from the fully active state a to the fully repressed state r in X̂A, which has an exponential693

distribution with parameter (QA)a,r =
1−µ

1−µDtot

kAE
V D2

tot since X̂A has only two states. Thus,694

ha,r(ε) =
1− µDtot

1− µ

V

kAE

1

D2
tot

ε−1 +O(1),695
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and similarly, the time to memory loss for the repressed state is696

hr,a(ε) =
1− µDtot

1− µ

V

kAE

1

bµDtotD2
tot

ε−1 +O(1).697

Similarly, in the 2D model, by Theorem 4.7,698

ha,r(ε) =
1

(QA)a,r
ε−1 +O(1) and hr,a(ε) =

1

(QA)r,a
ε−1 +O(1).699

As an example, when Dtot = 2, QA is shown in (4.12) and we obtain that700

ha,r(ε) =
V

kAM

K

4(kRW0 + kRW )(kRW0 + kRW +
kR
M

V )
ε−1 +O(1) and

hr,a(ε) =
V

kAM

K

4bµ2(kAW0 + kAW )(kAW0 + kAW +
kA
M

V )
ε−1 +O(1),

701

with K defined in (4.13).702

4.3 Monotonic dependence on parameters An important aspect to consider in the703

study of the stochastic behavior of the chromatin modification circuit is that the erasure rate is704

different for each type of chromatin modification. These differences can introduce asymmetries705

in the system that can affect the stationary distribution and the time to memory loss of the706

active state and repressed state. These asymmetries are captured by the two parameters µ707

and µ′. In particular, µ quantifies the asymmetry between erasure rates of repressive and708

activating histone modifications and µ′ quantifies the asymmetry between erasure rates of709

DNA methylation and activating histone modifications. In order to determine how the different710

chromatin modification erasure rates affect the stochastic behavior of the system, we study711

how µ and µ′ affect the stationary distribution and the time to memory loss of the active and712

repressed gene states.713

For the 1D model of the chromatin modification circuit, that does not include DNA methyl-714

ation, we have an analytical expression for the stationary distribution and the time to memory715

loss ((2.5), (2.7), and (2.8)) and we can understand the effect of µ by directly studying the716

formulas. However, for the higher-than-1D models we do not have an explicit expression for717

the stationary distribution or time to memory loss. This is the reason why for these models we718

exploit the comparison theory developed in [13] that allows to determine how µ and µ′ affect719

the stochastic behavior of the system through the construction of a coupling between processes720

with different values for these parameters. In the next subsection, we briefly summarize the721

relevant theory from [13].722

4.3.1 Comparison theorems for continuous time Markov chains Denote by f the723

usual componentwise partial order on Rd, i.e., for x, y ∈ Rd, x f y whenever xi f yi for every724

1 f i f d. Let m, d g 1 be integers, consider a matrix A ∈ Rm×d, where no row of A is725

identically zero, and consider the following definition.726

Definition 4.9 (Definition 3.1 from [13]). For x, y ∈ Rd, we say that x ≼A y whenever A(y −727

x) g 0 and we say that x ∼A y whenever Ax = Ay.728



ANALYSIS OF SINGULARLY PERTURBED STOCHASTIC CHEMICAL REACTION NETWORKS 25

For the matrix A, consider the convex cone KA := {x ∈ Rd : Ax g 0}, and, for any x ∈ Rd,729

consider the set KA + x = {y ∈ Rd : A(y − x) g 0} = {y ∈ Rd : x ≼A y} and the sets730

∂i(KA + x) := {y ∈ KA + x : ïAi•, yð = ïAi•, xð}
3 for 1 f i f m. Then, the boundary of731

KA + x can be expressed as732

∂(KA + x) =

m
⋃

i=1

∂i(KA + x).733

Consider a non-empty set X ¦ Zd
+, we will say that a set Γ ¦ X is increasing with respect734

to ≼A if for every x ∈ Γ and y ∈ X , x ≼A y implies that y ∈ Γ. We observe that, for x ∈ X ,735

the set736

(4.18) (KA + x) ∩ X = {y ∈ X : x ≼A y}737

is increasing by the transitivity property of ≼A. On the other hand, we will say that a set738

Γ ¦ X is decreasing with respect to ≼A if for every x ∈ Γ and y ∈ X , y ≼A x implies that739

y ∈ Γ.740

Now, consider a non-empty set X ¦ Zd
+ and a finite set of distinct nonzero possible transition741

vectors for a pair of continuous time Markov chains on X . We denote the set of vectors by742

{v1, . . . , vn} ¦ Zd \ {0}, where 0 is the origin in Zd. Consider two collections of functions743

Υ = (Υ1, . . . ,Υn) and Ῠ = (Ῠ1, . . . , Ῠn) from X into R+ such that Υj(x) = Ῠj(x) = 0 if744

x + vj /∈ X . Assume that Q = (Qx,y)x,y∈X , given by (3.11), is the infinitesimal generator for745

a continuous time Markov chain X and Q̆, defined by (3.11) but with functions Ῠ1, . . . , Ῠn in746

place of Υ1, . . . ,Υn, is the infinitesimal generator for a continuous time Markov chain X̆. We747

call X and X̆ the continuous time Markov chains associated with Υ and Ῠ respectively.748

The following stochastic comparison result was proved in Campos et al. [13]. The condition749

(i) of the theorem and A ∈ Zn×d ensure that to go outside of KA + x, the Markov chains will750

necessarily hit the boundary of KA + x.751

Theorem 4.10 (Theorems 3.2, 3.4, 3.5 from [13]). With X , v1, . . . , vn, Υ and Ῠ as described752

above, assume that the continuous time Markov chains associated with Υ and Ῠ do not explode753

in finite time. Consider a matrix A ∈ Zm×d with nonzero rows and suppose that both of the754

following conditions hold:755

(i) For each 1 f j f n, the vector Avj has entries in {−1, 0, 1} only.756

(ii) For each x ∈ X , 1 f i f m and y ∈ ∂i(KA + x) ∩ X we have that757

(4.19) Ῠj(y) f Υj(x), for each 1 f j f n such that ïAi•, vjð < 0,758

and759

(4.20) Ῠj(y) g Υj(x), for each 1 f j f n such that ïAi•, vjð > 0.760

3Here, for convenience of notation, let Ai• denote the row vector corresponding to the i-th row of A, for
1 f i f m. In this article, we will adopt the convention of considering the inner product ï·, ·ð as a function
of a row vector in its first entry and as a function of a column vector in the second entry. In particular,
ïAi•, xð =

∑d

k=1 Aikxk.
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Then, for each pair x◦, x̆◦ ∈ X such that x◦ ≼A x̆◦, there exists a probability space (Ω,F ,P)761

with realizations of the two continuous time Markov chains X = {X(t) : t g 0} and X̆ =762

{X̆(t) : t g 0} defined there, each having state space X ¦ Zd
+, with infinitesimal generators763

given by Q and Q̆, associated with Υ and Ῠ, respectively, with initial conditions X(0) = x◦764

and X̆(0) = x̆◦, and such that:765

(4.21) P

[

X(t) ≼A X̆(t) for every t g 0
]

= 1.766

Furthermore, for a non-empty set Γ ¦ X , consider ÄΓ := inf{t g 0 : X(t) ∈ Γ} and Ä̆Γ :=767

inf{t g 0 : X̆(t) ∈ Γ}. If Γ is increasing with respect to the relation ≼A, then E[Ä̆Γ] f E[ÄΓ].768

If Γ is decreasing with respect to the relation ≼A, then E[ÄΓ] f E[Ä̆Γ]. Finally, suppose that the769

two continuous time Markov chains are irreducible and positive recurrent on X , and denote the770

associated stationary distributions by Ã and Ã̆, respectively. Then, if Γ ¦ X is a non-empty set771

that is increasing with respect to ≼A, we have
∑

x∈Γ Ãx f
∑

x∈Γ Ã̆x, or if Γ ¦ X is a non-empty772

set that is decreasing with respect to ≼A, we have
∑

x∈Γ Ã̆x f
∑

x∈Γ Ãx.773

4.3.2 Illustrative example: 2D model We are interested in determining how the asym-774

metry of the system, represented by the parameter µ = kRE/k
A
E affects the stationary distribu-775

tion Ã(ε) and the times to memory loss, ha,r(ε) and hr,a(ε), of the active (a = (0,Dtot)
T ) and776

repressed (r = (Dtot, 0)
T ) states, respectively, for the continuous time Markov chain Xε de-777

scribed in Section 2.2. For this, we use Theorem 4.10. For ε ∈ (0, ε0), let Xε be the continuous778

time Markov chain with779

(4.22) Υ1(x) = fA(x), Υ2(x) = gεA(x), Υ3(x) = fR(x), Υ4(x) = gεR(x), x ∈ X780

with X , v1, ..., v4, and fA(x), g
ε
A(x), fR(x), g

ε
R(x) as defined in Section 2.2, and introduce the781

continuous time Markov chain X̆ε defined on X , having the same transition vectors of Xε,782

and having infinitesimal transition rates Ῠ1(x), ..., Ῠ4(x) defined as for Υ1(x), ...,Υ4(x), with783

all the parameters having the same values except that µ is replaced by µ̆, where µ g µ̆. Let784

(4.23) A =

[

1 0
0 −1

]

785

and let us consider the partial order x ≼A y. A similar example was analyzed by Campos et786

al. [13] - Example 4.4, using the results of Theorem 4.10. The only differences are that, in [13],787

the matrix A is the negative of the matrix given in (4.23) and the inequality between µ and µ̆788

is the opposite compared to the one considered here. The relationship between the notation789

in [13] and our notation is »1a = kAW0 + kAW , »1b = (kAM/V ), »2a = kRW0 + kRW , »2b = (kRM/V ),790

»3a = ε(kAM/V ), »3b = (kAE/V ), c = b.791

From the analysis in [13], we can directly conclude that, if Ã(ε) is the stationary distribution792

for Xε and Ã̆(ε) the stationary distribution for X̆ε, then Ã̆a(ε) f Ãa(ε) and Ã̆r(ε) g Ãr(ε).793

This implies that increasing µ increases the probability of the system in steady-state being in794

the active state a to the detriment of the repressed state r (and vice versa for decreasing µ).795

We can also conclude, using natural notation for quantities associated with Xε and X̆ε, that,796

defining Ä εy = inf{t g 0 : Xε(t) = y} and Ä̆ εy = inf{t g 0 : X̆ε(t) = y}, hr,a(ε) = Er[Ä
ε
a ] f797
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Figure 6: 3D Model and associated Markov chain. (a) Original chemical reaction system. The
numbers on the arrows correspond to the reactions associated with the arrows as described in (5.1)
in the main text. (b) Directions of the possible transitions of the Markov chain Xε, starting from a
state x = (x1, x2, x3)

T and whose rates are given in equation (5.2). (c) Graph for Xε. Here, the red
(blue) arrows correspond to O(1) (O(ε)) transition rates. (d) Graph for the Markov chain X̃. Here,
the gold arrows correspond to transitions that were O(ε) in Xε and became O(1) in X̃. (e) Graph for
the Markov chain X̂A. For (c), (d), and (e) the state of the Markov chain is x = (nDR

12
, nDA , nDR

1
)T

and we consider Dtot = 2. In panels (c) - (e), we use gray dots to represent the states belonging to A
and black dots to represent all the other states.

Er[Ä̆
ε
a ] = h̆r,a(ε) and h̆a,r(ε) = Ea[Ä̆

ε
r ] f Ea[Ä

ε
r ] = ha,r(ε), implying that the time to memory798

loss of the repressed state decreases for higher values of µ, while the time to memory loss of799

the active state increases for higher values of µ.800

5 Further Examples In this section, compared to the models of the chromatin modifi-801

cation circuit introduced in Section 2, which do not include DNA methylation, we introduce802

more elaborate models that include DNA methylation and we study their stochastic behavior803

by exploiting the theory developed in this paper.804

5.1 3D chromatin modification circuit model We now introduce a model in which805

DNA methylation is also a possible chromatin mark. The species involved are D (unmodified806

nucleosome), DR
1 (nucleosome with CpGme only), DR

12 (nucleosome with both H3K9me3 and807

CpGme) and DA (nucleosome with an activating histone modification). In particular, we808

assume that, in order to be modified with both repressive modifications, D is first modified with809

DNA methylation, obtaining DR
1 , and then with a repressive histone modification, obtaining810
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DR
12. The opposite order of modifications is not allowed. This enables us to simplify the model811

and the related analysis. This assumption will be removed in the 4D model analyzed in Section812

5.2. The chemical reaction system for the 3D model, shown in Fig. 6(a), is the following:813

1○ D
kA

W0
+ kA

W−−−−−−−→ DA, 2○ D+DA kA

M−−→ DA +DA, 3○ DA δ + k̄A

E−−−−→ D,814

4○ DA +DR
1

kA

E−−→ D+DR
1 , 5○ DA +DR

12

2 kA

E−−−→ D+DR
12,815

6○ D
k1

W0
+ k1

W−−−−−−−→ DR
1 , 7○ D+DR

12

k
′

M−−→ DR
1 +DR

12, 8○ DR
1 +DR

12
kM + k̄M−−−−−−→ DR

12 +DR
12,(5.1)816

9○ DR
1

k2

W0−−−→ DR
12, 10○ DR

1 +DR
1

k̄M−−→ DR
12 +DR

1 , 11○, DR
1

δ
′

+ k
′

T−−−−−→ D,817

12○ DR
1 +DA k

′
∗

T−−→ D+DA, 13○ DR
12

δ + k̄R

E−−−−→ DR
1 , 14○ DR

12 +DA kR

E−−→ DR
1 +DA,818

where kAW0, k
A
W , k

A
M , ¶, k̄

A
E , k

A
E , k

1
W0, k

1
W , k

2
W0, k

2
W , k

′
M , k̄M , kM , ¶

′, k′T , k
′∗
T , k̄

R
E , k

R
E > 0 and the819

form of the reaction rate constants is due to the fact that reactions with the same reactants820

and products have been combined. As we did for the 2D model, define parameters ε =
¶+k̄AE

kA
M
V

Dtot

821

and µ =
kRE
kA
E

, with a constant b such that
¶+k̄RE
¶+k̄A

E

= bµ. Furthermore, since this model in-822

cludes DNA methylation, we also define µ′ =
k
′∗
T

kA
E

and a constant ´ such that
¶
′
+k

′

T

¶+k̄A
E

= ´µ′.823

The parameter µ′ quantifies the asymmetry between the erasure rates of DNA methylation824

and activating histone modifications. The Markov chain Xε associated with the system is a825

linearly perturbed finite state continuous time Markov chain with the state x tracking nDR
12

,826

nDA , nDR
1
, that is, the number of nucleosomes of types DR

12, DA, and DR
1 , respectively. If827

the total number of modifiable nucleosomes is Dtot, which is conserved, the state space is828

X = {(x1, x2, x3)
T ∈ Z3

+ : x1 + x2 + x3 f Dtot}. The transition vectors for Xε are given by829

v1 = −v2 = (0, 1, 0)T , v3 = −v4 = (0, 0, 1)T , and v5 = −v6 = (1, 0,−1)T . The infinitesimal830

transition rates are831

(5.2)

Qx,x+v1
(ε) = fA(x) = (Dtot − (x1 + x2 + x3))

(

kAW0 + kAW +
kAM
V
x2

)

,

Qx,x+v2
(ε) = gεA(x) = x2

(

ε
kAM
V

Dtot +
kAE
V

(x3 + 2x1)

)

,

Qx,x+v3(ε) = fR1(x) = (Dtot − (x1 + x2 + x3))

(

k1W0 + k1W +
k

′

M

V
x1

)

,

Qx,x+v4
(ε) = gεR1(x) = x3µ

′

(

ε
kAM
V

Dtot´ + x2
kAE
V

)

,

Qx,x+v5(ε) = fR12(x) = x3

(

k2W0 +
kM
V
x1 +

k̄M
V

(

x1 +
x3 − 1

2

))

,

Qx,x+v6
(ε) = gεR12(x) = x1µ

(

ε
kAM
V

Dtotb+ x2
kAE
V

)

.

832

A representation of the possible transitions, with associated rates, and the Markov chain graph833

for Dtot = 2 are given in Fig. 6(b) and (c), respectively. Each rate depends on the state x.834
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5.1.1 Stationary distribution We now focus on the expansion as a function of ε of the835

stationary distribution for the 3D model. In SI - Section S.10, we show that, when ε = 0,836

the continuous time Markov chain associated with the 3D model has transient states T =837

{i1, . . . , im} where m =
∑

Dtot

j=0

(

(j+2)(j+1)
2

)

− 2, i1 = (0,Dtot − 1, 0)T , im = (Dtot − 1, 0, 1)T ,838

and absorbing states A = {a, r}, with a = (0,Dtot, 0)
T corresponding to the fully active state839

(n
D

A = Dtot) and r = (Dtot, 0, 0)
T corresponding to the fully repressed state (nDR

12
= Dtot),840

respectively. Then, Assumption 4.1 holds (see SI - Section S.10). Furthermore, X = A∪T and841

from (5.2) we see that Q(ε) can be written in the form (4.2), where Q(ε) is a linear perturbation842

of Q(0). Hence, Assumption 4.5 holds. Assumption 4.2 also holds, where the recurrent class843

is {r} (see SI - Section S.10). Then, we can apply SI - Theorem S.9. We first obtain that844

Ã(0) = Ã(0) = [³, 0] = [³a, ³r, 0 . . . , 0] where ³ is the unique stationary distribution for the845

process X̂A with infinitesimal generator QA = A1 + S1(−T0)
−1R0. Since the recurrent class846

{r} is a singleton and ³ is supported on {r}, we must have ³a = 0 and ³r = 1.847

We now derive an expression for Ã(1). For the transient states T = {i1, . . . , im}, ´(1) =848

[Ã
(1)
i1
, ..., Ã

(1)
im

] = ³S1(−T0)
−1 = [0, ..., 0, Ã

(1)
im

], with849

Ã
(1)
im

=
µb

kAM
V D2

tot

k2W0 + (kMV + k̄M
V )(Dtot − 1)

.850

See SI - Section S.10 for the detailed mathematical derivation. Now, ³(1) = [Ã
(1)
a , Ã

(1)
r ] is the851

unique vector such that ³(1)QA = −´(1)[R1 + T1(−T0)
−1R0], ³

(1)1 = −´(1)1.852

As an illustration, suppose Dtot = 2. Then (see SI - Section S.10 for the detailed mathemat-853

ical derivation),854

(5.3) QA =
K1 + µK2

K3 + µK4 + µ′K5 + µµ′K6

(

−1 1
0 0

)

,855

856

(5.4) Ã(1)a =
µ2µ′2K7

K8(K9 +K10µ)
, Ã(1)r = −Ã(1)a − Ã

(1)
im

= −
µ2µ′2K7 + µK11(K9 +K10µ)

K8(K9 +K10µ)
,857

with m = 8 and Ki, i = 1, ..., 11, are non-negative constants independent of ε, µ and µ′ (see858

SI - Section S.10 for their precise definitions). Hence, the stationary distribution for Dtot = 2859

satisfies860

(5.5) Ãx(ε) =























ε (µµ′)2K7

K8(K9+K10µ)
+O(ε2) if x = a = (0, 2, 0)T

O(ε2) if x ∈ T \{im}

εK11
K8

µ+O(ε2) if x = im = (1, 0, 1)T

1− ε (µµ
′)2K7+µK11(K9+K10µ)

K8(K9+K10µ)
+O(ε2) if x = r = (2, 0, 0)T .

861

For small ε > 0, the stationary distribution is concentrated around the active and repressed862

states, although more mass is concentrated around the repressed state. However, higher values863

of µ′ increase the probability of being in the active state, while decreasing the probability of864

being in the repressed state.865
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5.1.2 Time to memory loss In this section, we determine how the leakage of the system866

(ε) and the asymmetry between activating histone modifications and DNA methylation (µ′)867

affect the time to memory loss of the active state ha,r(ε) and the time to memory loss of the868

repressed state hr,a(ε).869

Firstly, by the algorithm in Section 4.2.1, we have that ha,r(ε) is O(ε−1) and hr,a(ε) is O(ε−2)870

(see SI - Section S.6). This means that decreasing the leakage extends the memory of both the871

active and repressed chromatin states, but the effect is stronger for the repressed state. This872

difference is influenced by the co-existence and cooperation between DNA methylation and873

repressive histone marks that introduce a structural bias in the 3D chromatin modification874

circuit towards a repressed chromatin state.875

These results are consistent with the ones obtained by applying Theorem 4.7, which allows876

us not only to find the order of ha,r(ε) and hr,a(ε), but also to find an expression for their877

leading coefficients (see SI - Section S.10 for the detailed mathematical derivation). As an878

example, when Dtot = 2, QA and Ã
(1)
a are shown in (5.3) and (5.4), and we obtain from them879

that880

ha,r(ε) =
K3 + µK4 + µ′K5 + µµ′K6

K1 + µK2

1

ε
+O(1), and(5.6)881

hr,a(ε) =
K3 + µK4 + µ′K5 + µµ′K6

K1 + µK2

K8(K9 +K10µ)

µ2µ′2K7

1

ε2
+O

(

1

ε

)

,(5.7)882

where Ki, i = 1, ..., 11, are non-negative constants independent of ε, µ and µ′, defined in SI -883

Section S.10.884

Now, we focus on understanding how the asymmetry between chromatin modification erasure885

rates affects the time to memory loss. In particular, since experimental data suggest that the886

asymmetry between the erasure rates of DNA methylation and activating histone modifications887

is more pronounced than the asymmetry between erasure rates of opposite histone modifica-888

tions, in this analysis we focus only on studying the effect of µ′, but a similar procedure to the889

one presented in the next paragraph could be applied to study the effect of µ. To this end, we890

exploit the comparison Theorem 4.10 to determine directly how µ′ affects ha,r(ε) and hr,a(ε),891

without deriving an explicit expression for them. To this end, we first note that the transitions892

of the Markov chain Xε(t) are in six possible directions, that can be written as v1 = (0, 1, 0)T ,893

v2 = (0,−1, 0)T , v3 = (0, 0, 1)T , v4 = (0, 0,−1)T , v5 = (1, 0,−1)T , v6 = (−1, 0, 1)T , with the894

associated infinitesimal transition rates that can be written as Υ1(x) = fA(x), Υ2(x) = gAε (x),895

Υ3(x) = fR1(x), Υ4(x) = gεR1(x), Υ5(x) = fR12(x), Υ6(x) = gεR12(x). Define the matrix896

A =





1 0 0
0 −1 0
1 0 1



897

and, for x ∈ X , (KA + x) ∩ X = {w ∈ X : x ≼A w}. Let us also introduce infinitesimal898

transition rates Ῠi(x), i = 1, 2, ..., 6, defined as for Υi(x), i = 1, 2, ..., 6, with all the parameters899

having the same values except that µ′ is replaced by µ̆′, with µ′ g µ̆′. All of the conditions900

of Theorem 4.10 hold (see SI - Section S.10) and so we can apply the theorem. This allows901

us to establish that, since a = (0,Dtot, 0)
T ≼A r = (Dtot, 0, 0)

T , then h̆a,r(ε) f ha,r(ε) and902
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Figure 7: 4D Model and associated Markov chain. (a) Chemical reaction system. The numbers
on the arrows correspond to the reactions associated with the arrows as described in (5.8) in the main
text. (b) Directions of the possible transitions of the Markov chain Xε associated with the reduced
SCRN, starting from a state x = (x1, x2, x3, x4)

T and whose rates are given in equation (5.9). (c)
Graph for Xε. Here, the red (blue) arrows correspond to O(1) (O(ε)) transition rates. (d) Graph for
the Markov chain X̃. Here, the golden arrows correspond to the transitions that were O(ε) in Xε and
became O(1) in X̃. For (c) and (d) the state of the Markov chain is x = (nDR

12
, nDA , nDR

1
, nDR

2
)T , we

consider Dtot = 2, and we show three interconnected slices (nDR
12

= 0, 1, 2) of the Markov chain state

space. In panels (c) and (d), we use gray dots to represent the states belonging to A and black dots
to represent all the other states.

hr,a(ε) f h̆r,a(ε), where˘ indicates quantities associated with Ῠ. Thus, we can conclude that,903

given that the only difference between the two systems was that µ′ g µ̆′, the time to memory904

loss of the active state is monotonically increasing with µ′, while the time to memory loss of905

the repressed state is monotonically decreasing with µ′.906
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5.2 4D chromatin modification circuit model Now, we consider a complete model in907

which the species involved are D, DR
1 , DR

12, DA and DR
2 (nucleosome with H3K9me3 only).908

Compared to the 3D model, we assume that, in order to be modified with both repressive909

modifications, D can be also modified first with a repressive histone modification (H3K9me3),910

obtaining DR
2 , and then with DNA methylation (CpGme), obtaining DR

12. The chemical reac-911

tion system, shown in Fig. 7(a), is the following:912

1○ D
kA

W0
+ kA

W−−−−−−−→ DA, 2○ D+DA kA

M−−→ DA +DA, 3○ DA δ + k̄A

E−−−−→ D,913

4○ DA +DR
1

kA

E−−→ D+DR
1 , 5○ DA +DR

12

2 kA

E−−−→ D+DR
12, 6○ DA +DR

2

kA

E−−→ D+DR
2 ,914

7○ D
k1

W0
+ k1

W−−−−−−−→ DR
1 , 8○ D

k2

W0
+ k2

W−−−−−−−→ DR
2 , 9○ DR

2

k1

W0−−−→ DR
12, 10○ DR

1

k2

W0−−−→ DR
12,915

11○ D+DR
2

kM−−→ DR
2 +DR

2 , 12○ D+DR
12

kM + k̄M−−−−−−→ DR
2 +DR

12,916

13○ DR
1 +DR

2
kM−−→ DR

12 +DR
2 , 14○ DR

1 +DR
12

kM + k̄M−−−−−−→ DR
12 +DR

12,(5.8)917

15○ D+DR
2

k
′

M−−→ DR
1 +DR

2 , 16○ D+DR
12

k
′

M−−→ DR
1 +DR

12, 17○ D+DR
1

k̄M−−→ DR
2 +DR

1918

18○ DR
2 +DR

2

k
′

M−−→ DR
12 +DR

2 , 19○ DR
2 +DR

12

k
′

M−−→ DR
12 +DR

12,919

20○ DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 , 21○ DR

2

δ + k̄R

E−−−−→ D, 22○ DR
2 +DA kR

E−−→ D+DA,920

23○ DR
1

δ
′

+ k
′

T−−−−−→ D 27○ DR
1 +DA k

′
∗

T−−→ D+DA, 24○ DR
12

δ
′

+ k
′

T−−−−−→ DR
2 ,921

26○ DR
12 +DA k

′
∗

T−−→ DR
2 +DA, 27○ DR

12

δ + k̄R

E−−−−→ DR
1 , 28○ DR

12 +DA kR

E−−→ DR
1 +DA,922

in which the form of the reaction rate constants is due to the fact that reactions with the923

same reactants and products have been combined. As we did for the 3D model, let us define924

the parameter ε =
¶+k̄AE

kA
M

Dtot
V

, the parameter µ =
kRE
kA
E

, with a constant b such that
¶+k̄RE
¶+k̄A

E

= bµ,925

and the parameter µ′ =
k
′∗
T

kA
E

, with a constant ´ such that
¶
′
+k

′

T

¶+k̄A
E

= ´µ′. The Markov chain926

Xε associated with the system is a linearly perturbed finite state continuous time Markov927

chain with the state x representing the number of each type of modified nucleosome, i.e., x =928

(nDR
12
, nDA , nDR

1
, nDR

2
)T = (x1, x2, x3, x4)

T . If the total number of nucleosomes is Dtot, which is929

conserved, then the state space is X = {(x1, x2, x3, x4)
T ∈ Z4

+ : x1+x2+x3+x4 f Dtot}. The930

transition vectors for Xε are given by v1 = (0, 1, 0, 0)T , v2 = (0,−1, 0, 0)T , v3 = (0, 0, 1, 0)T ,931

v4 = (0, 0,−1, 0)T , v5 = (0, 0, 0, 1)T , v6 = (0, 0, 0,−1)T , v7 = (1, 0,−1, 0)T , v8 = (−1, 0, 1, 0)T ,932

v9 = (1, 0, 0,−1)T and v10 = (−1, 0, 0, 1)T . The infinitesimal transition rates are933

Qx,x+v1
(ε) = fA(x) = (Dtot − (x1 + x2 + x3 + x4))

(

kAW0 + kAW +
kAM
V
x2

)

,934

Qx,x+v2(ε) = gεA(x) = x2

(

ε
kAM
V

Dtot +
kAE
V

(x3 + x4 + 2x1)

)

,935

Qx,x+v3(ε) = fR1(x) = (Dtot − (x1 + x2 + x3 + x4))

(

k1W0 + k1W +
k

′

M

V
(x1 + x4)

)

,936
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Qx,x+v4(ε) = gεR1(x) = x3µ
′

(

ε
kAM
V

Dtot´ + x2
kAE
V

)

,937

Qx,x+v5(ε) = fR2(x) = (Dtot − (x1 + x2 + x3 + x4))

(

k2W0 + k2W +
kM
V

(x1 + x4) +
k̄M
V

(x1 + x3)

)

,938

Qx,x+v6(ε) = gεR2(x) = x4µ

(

ε
kAM
V

Dtotb+ x2
kAE
V

)

,

(5.9)

939

Qx,x+v7(ε) = fR121(x) = x3

(

k2W0 +
kM
V

(x1 + x4) +
k̄M
V

(

x1 +
x3 − 1

2

))

,940

Qx,x+v8(ε) = gεR121(x) = x1µ

(

ε
kAM
V

Dtotb+ x2
kAE
V

)

,941

Qx,x+v9(ε) = fR122(x) = x4

(

k1W0 +
k

′

M

V

(

x1 +
x4 − 1

2

)

)

,942

Qx,x+v10
(ε) = gεR122(x) = x1µ

′

(

ε
kAM
V

Dtot´ + x2
kAE
V

)

.943

A representation of the transition vectors and the Markov chain graph for Dtot = 2 are given in944

Fig. 7 (b) and (c), respectively. As before, each rate depends on the state x, but in the rest of945

the section we will not show this dependency to simplify the notation. Now, we determine the946

stochastic behavior of the full chromatin modification circuit model in terms of its stationary947

distribution and time to memory loss. For this study, we will consider kAW = k1W = k2W = 0948

(i.e., there are no external transcription factors enhancing the establishment of chromatin949

modifications). This assumption will not change the qualitative nature of the results focused950

on studying the effect of ε, µ, and µ′ on the stochastic behavior of the chromatin modification951

circuit model.952

5.2.1 Stationary distribution We now determine the zeroth and first order terms of the953

stationary distribution expansion for the 4D model. As shown in SI - Section S.11, when ε = 0,954

the continuous time Markov chain associated with the 4D model has transient states T =955

{i1, . . . , im} where m =
∑

Dtot

j=0

∑j
k=0

(

(k+2)(k+1)
2

)

− 2, i1 = (0,Dtot − 1, 0, 0)T , im−1 = (Dtot −956

1, 0, 0, 1)T , im = (Dtot − 1, 0, 1, 0)T , and absorbing states A = {a, r}, with a = (0,Dtot, 0, 0)
T957

corresponding to the fully active state (n
D

A = Dtot) and r = (Dtot, 0, 0, 0)
T corresponding to958

the fully repressed state (nDR
12

= Dtot), respectively. Then, Assumption 4.1 holds (see SI -959

Section S.11), so that X = A ∪ T , and we can rewrite the infinitesimal generator Q(ε) in the960

form of (4.2) (see SI - Section S.11), where the perturbation is linear and so Assumption 4.5961

holds. We can also verify Assumption 4.2 (see SI - Section S.11). Hence, we can apply SI -962

Theorem S.9, as was done for the 3D model.963

In particular, we obtain Ã(0) = Ã(0) = [³, 0] = [³a, ³r, 0 . . . , 0], with ³a = 0, ³r = 1, and964

´(1) = [Ã
(1)
i1
, ..., Ã

(1)
im

] = [0, ..., 0, Ã
(1)
im−1

, Ã
(1)
im

], with965

Ã
(1)
im−1

=
µ′´

kAM
V D2

tot

k1W0 +
k′
M

V (Dtot − 1)
, Ã

(1)
im

=
µb

kAM
V D2

tot

k2W0 + (kMV + k̄M
V )(Dtot − 1)

.966

See SI - Section S.11 for the detailed mathematical derivation. Now, ³(1) = [Ã
(1)
a , Ã

(1)
r ] is the967
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unique vector such that ³(1)QA = −´(1)[R1 + T1(−T0)
−1R0], ³

(1)1 = −´(1)1.968

As an example, suppose Dtot = 2 and assume ´ = b, k1W0 = k2W0 = kAW0 and k′M = k̄M =969

kM = kAM . These assumptions do not affect the final qualitative conclusions related to the970

effect of ε, µ and µ′ on the stationary distribution. Then (see SI - Section S.11 for the detailed971

mathematical derivation)972

(5.10) QA =
K̄1(µ, µ

′)

K̄2(µ, µ′)

(

−1 1
0 0

)

,973

974

(5.11) Ã(1)a =
K̄3(µ, µ

′)

K̄4(µ, µ′)
, Ã(1)r = −Ã(1)a − Ã

(1)
im−1

− Ã
(1)
im

= −
K̄3(µ, µ

′)

K̄4(µ, µ′)
− µ′K18 − µK19,975

with976

(5.12)

K̄1(µ, µ
′) = K1((µ

′)2K2 + (µ)2K3 + µµ′K4 + µ′K5 + µK6 +K7),

K̄2(µ, µ
′) = µ′µ(µ′ + µ)K8 + (µ′)2K9 + (µ)2K10 + µµ′K11 + µ′K12 + µK13 +K14,

K̄3(µ, µ
′) = (µµ′)2K15((µ+ µ′)K16 +K17),

K̄4(µ, µ
′) = K20((µ

′)2K2 + (µ)2K3 + µµ′K4 + µ′K5 + µK6 +K7),

977

in which m = 13 and Ki, i = 1, ..., 20, are non-negative functions independent of µ and µ′ (see978

SI - Section S.11 for their precise definitions). We then have979

Ãx(ε) =



































ε K̄3(µ,µ′)
K̄4(µ,µ′)

+O(ε2) if x = a = (0, 2, 0, 0)T

O(ε2) if x ∈ T \{im−1, im}

εµ′K18 +O(ε2) if x = im−1 = (1, 0, 0, 1)T

εµK19 +O(ε2) if x = im = (1, 0, 1, 0)T

1− ε
(

K̄3(µ,µ′)
K̄4(µ,µ′)

+ µ′K18 + µK19

)

+O(ε2) if x = r = (2, 0, 0, 0)T .

980

For small ε > 0, the stationary distribution is concentrated around the active and repressed981

states, and higher values of µ′ or µ shift the distribution towards the active state.982

5.2.2 Time to memory loss As was done for the 3D model, we determine for the 4D983

model how the parameters ε and µ′ affect the time to memory loss of the active state, ha,r(ε),984

and the time to memory loss of the repressed state, hr,a(ε). Firstly, by the algorithm in Section985

4.2.1, ha,r(ε) is O(ε−1) and hr,a(ε) is O(ε−2) (see SI - Section S.6). Then, by applying Theorem986

4.7 we can obtain expressions for the leading coefficients of ha,r(ε) and hr,a(ε) (See SI - Section987

S.11 for the detailed mathematical derivation). As an example, when Dtot = 2, QA and Ã
(1)
a988

are shown in (5.10) and (5.11), and we obtain that989

ha,r(ε) =
K̄2(µ, µ

′)

K̄1(µ, µ′)

1

ε
+O(1), and hr,a(ε) =

K̄2(µ, µ
′)K4(µ, µ

′)

K̄1(µ, µ′)K̄3(µ, µ′)

1

ε2
+O

(

1

ε

)

,990

where K̄i(µ, µ
′), i = 1, ..., 4, are defined in (5.12).991
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Now, we determine how µ′, the parameter encapsulating the asymmetry between the DNA992

methylation erasure rate and the activating histone modification erasure rate, affects the time993

to memory loss. To this end, we seek to determine directly how µ′ affects ha,r(ε) and hr,a(ε),994

without deriving an explicit expression for them. To this end, we would like to exploit two995

theorems from [13], namely, Theorem S.2 and Theorem 3.4 there. The transitions of the996

Markov chain Xε are in ten possible directions, v1 = −v2 = (1, 0,−1, 0)T , v3 = −v4 =997

(1, 0, 0,−1)T , v5 = −v6 = (0, 1, 0, 0)T , v7 = −v8 = (0, 0, 1, 0)T , and v9 = −v10 = (0, 0, 0, 1)T ,998

with the associated infinitesimal transition rates Υ1(x) = fR121(x), Υ2(x) = gεR121(x), Υ3(x) =999

fR122(x), Υ4(x) = gεR122(x), Υ5(x) = fA(x), Υ6(x) = gεA(x), Υ7(x) = fR1(x), Υ8(x) = gεR1(x),1000

Υ9(x) = fR2(x), Υ10(x) = gεR2(x). Consider infinitesimal transition rates Ῠi(x), i = 1, 2, ..., 10,1001

defined as for Υi(x), i = 1, 2, ..., 10, with all the parameters having the same values except1002

that µ′ is replaced by µ̆′, with µ′ g µ̆′. While we have not been able to see how to exploit1003

Theorems S.2 and 3.4 from [13] for these exact rates, we have been able to do this for closely1004

related rates. If we introduce a small approximation in the transition rates of Xε, namely,1005
x3−1
2 ≈ x3 and x4−1

2 ≈ x4 in fR121(x) and fR122(x), respectively, then Theorems S.2 and 3.41006

in [13] apply with1007

A =









0 −1 0 0
1 0 1 0
1 0 0 1
1 0 1 1









,1008

and (KA + x) ∩ X = {w ∈ X : x ≼A w} (see SI - Section S.11). This approximation can1009

be justified by introducing the reasonable assumption that each nucleosome characterized by1010

a repressive modification (DR
1 and DR

2 ) has the ability to catalyze the establishment of the1011

opposite repressive mark on itself. With this approximation, since a = (0,Dtot, 0, 0)
T ≼A r =1012

(Dtot, 0, 0, 0)
T , then h̆a,r(ε) f ha,r(ε) and hr,a(ε) f h̆r,a(ε). Thus, the time to memory loss1013

of the active state increases with higher values of µ′, while the time to memory loss of the1014

repressed state decreases with higher values of µ′.1015

6 Conclusion In this paper, we provided a mathematical formulation and rigorous proofs1016

to validate the computational findings in [10], showing how the time scale separation between1017

establishment and erasure processes of chromatin modifications affects epigenetic cell memory.1018

To this end, we developed and adapted theory for singularly perturbed continuous time Markov1019

chains and we analyzed the behavior of stationary distributions and mean first passage times1020

as functions of the singular perturbation parameter ε.1021

We first showed that Ã(ε) can be expressed as a series expansion (Section 3.1) for sufficiently1022

small ε. We then proved that the limit Ã(0) = limε→0 Ã(ε) is unique and we determined an1023

expression for it (Section 4.1.1). We also provided an iterative procedure for computing all of1024

the higher order terms in the expansion of Ã(ε) (SI -Section S.2.1). Similarly, for the mean1025

first passage time (MFPT) between states, we first showed there is a Laurent series expansion1026

for sufficiently small ε (Section 3.1, Eq. (3.4)). We then developed a graph based algorithm1027

to identify the order of the leading term in the series expansion (Section 4.2.1), and we also1028

determined the leading coefficient there (Section 4.2.2).1029

We then applied these tools to the chromatin modification circuit models proposed in [10],1030
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to provide a rigorous basis for the computational findings given there (Sections 2, 4, and 5).1031

Our rigorous derivations of the analytical expressions for the stationary distributions and1032

time to memory loss, and our results on monotonic dependence on parameters, lead to a mecha-1033

nistic understanding of how ε, µ and µ′ affect the stochastic behavior of chromatin modification1034

systems. As an example, our results suggest that higher values of µ and µ′ shift mass of the1035

stationary distribution more towards the active state (Sections 5.1.1 and 5.2.1). This finding is1036

consistent with recent experimental results demonstrating that transfection of the DNA meth-1037

ylation eraser enzyme TET1 (represented in our model by higher µ′ [10]) into Chinese hamster1038

ovary (CHO-K1) repressed cells causes them to shift towards the active state [27]. More gen-1039

erally, the mechanistic understanding of how ε, µ, and µ′ affect the stochastic behavior of1040

chromatin modification systems, as derived in our study, is crucial for determining experi-1041

mental interventions on molecular players, such as chromatin modifier enzymes, to modulate1042

cell memory. This mechanistic insight is expected to be extremely valuable for applications1043

such as cell fate reprogramming and engineering approaches to cell therapy. Furthermore, the1044

mathematical results and theoretical tools developed in this paper can be applied beyond the1045

scope of the epigenetic cell memory models analyzed in this research work. In fact, they can1046

be applied to all stochastic models that respect the assumptions considered. Future work will1047

investigate how to generalize these results by removing some of these assumptions, including1048

allowing the Markov chain to have countably many states and Q(0) to have ergodic classes1049

as well as absorbing states. While there is some theory for countably many states, such as1050

in [3], the continuous time Markov chains for further applications that we have in mind are1051

not uniformizable and have many transient states for Q(0), and the theory in [3] needs to be1052

generalized for them.1053

1054

Supplementary information (SI) file: file containing the proofs of the theoretical tools1055

developed in this paper, and detailed mathematical derivations for some of the chromatin1056

modification circuit models analyzed.1057
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S.1 Some results in probability Let X be a finite set. Recall the notation for matrices1138

introduced in Section 1.5.1139

Lemma S.1. Let X = {X(t) : t g 0} be a continuous time Markov chain with state space X1140

and infinitesimal generator Q = (Qx,y)x,y∈X . Then, the number of recurrent classes for X is1141

equal to nullity(QT ) = nullity(Q).1142

Proof. Since Q is a square matrix, the Rank plus Nullity Theorem yields that nullity(QT )1143

= nullity(Q). Now, consider ¼ > maxx∈X |Qx,x| and define P := I + Q/¼, where I is the1144

identity matrix of size |X | × |X |. The matrix P is stochastic and such that for every x ̸= y1145

in X , Px,y > 0 if and only if Qx,y > 0. As a consequence, the recurrent classes of X are1146

the same as the recurrent classes of P . By Theorem IV.2.4 in Isaacson and Madsen [11], the1147

number of recurrent classes of P is equal to the maximum number of linearly independent left1148

eigenvectors satisfying ÃP = Ã. By observing that ÃP = Ã if and only if ÃQ = 0, we see that1149

this latter quantity is equal to nullity(QT ).1150

The following is Proposition 6.3 in Asmussen [1].1151

Proposition S.2. Let (Px,y)x,y∈X be a nonnegative substochastic matrix (P1 f 1) such that for1152

each x ∈ X there are z1, . . . , zm, y ∈ X such that Px,z1Pz1,z2 . . . Pzm,y > 0 and
∑

z∈X Py,z < 1.1153

Then, spr(P ) < 1.1154

We use Proposition S.2 in order to obtain invertibility for some matrices, as in the next1155

result.1156

Lemma S.3. Let X = {X(t) : t g 0} be an irreducible continuous time Markov chain with1157

state space X and with an embedded discrete time Markov chain with transition matrix P .1158

Consider a nonempty set B ¦ X such that B ̸= X and consider PBc
to be the matrix obtained1159

by removing the columns and rows of P corresponding to states in B. Then, I−PBc
is invertible1160

and its inverse is given by the absolutely convergent series
∑∞

k=0(P
Bc
)k, where (PBc

)0 = I.1161

Proof. Observe that PBc
= (Px,y)x,y∈Bc is a nonnegative substochastic matrix. Since X1162

is an irreducible continuous time Markov chain, its embedded discrete time Markov chain is1163

also irreducible. Thus, for each x ∈ Bc, there exist z1, . . . , zm, y ∈ B
c and ỹ ∈ B such that1164

Px,z1Pz1,z2 . . . Pzm,yPy,ỹ > 0. Then, PBc

x,z1P
Bc

z1,z2 . . . P
Bc

zm,y > 0 and
∑

z∈Bc PBc

y,z =
∑

z∈Bc Py,z < 11165

since Py,ỹ > 0 and
∑

z∈X Py,z = 1. By Proposition S.2, spr(PBc
) < 1. This fact, together with1166

Theorem 5.6.15 in Horn & Johnson [10] yields the convergence of
∑∞

k=0(P
Bc
)k. Moreover,1167
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(I − PBc
)
∑∞

k=0(P
Bc
)k =

∑∞
k=0(P

Bc
)k(I − PBc

) = I, which yields the desired result.1168

We will use the following continuous time analogue of Proposition S.2.1169

Lemma S.4. Let (Qx,y)x,y∈X be a matrix such that Q1 f 0 and such that Qx,x f 0 for1170

each x ∈ X and Qx,y g 0 for each x ̸= y ∈ X . In addition, suppose that for each x ∈ X1171

there are distinct z1, . . . , zm, y ∈ X different from x such that Qx,z1Qz1,z2 . . . Qzm,y > 0 and1172
∑

z∈X Qy,z < 0. Then, for every Å ∈ sp(Q), the real part of Å is negative. In particular, Q is1173

invertible.1174

Proof. Consider ¼ > maxx∈X |Qx,x| and define P := I +Q/¼, where I is the identity matrix1175

of size |X | × |X |. The matrix P is nonnegative, substochastic and such that Px,y = 1
¼Qx,y1176

for every x ̸= y ∈ X . With these elements, we obtain that for each x ∈ X there are distinct1177

z1, . . . , zm, y ∈ X such that Px,z1Pz1,z2 . . . Pzm,y > 0 and where
∑

z∈X Py,z = 1+ 1
¼

∑

z∈X Qy,z <1178

1. Proposition S.2 yields that spr(P ) < 1. By observing that Å ∈ sp(Q) implies that 1 + Å
¼ ∈1179

sp(P ), we obtain that 1 > |1 + Å
¼ | g |1 + ℜ(Å)

¼ | where ℜ(Å) is the real part of Å. The latter1180

inequality implies that ℜ(Å) < 0.1181

Consider a nonempty set B ¦ X such that B ̸= X and a Q-matrix written as1182

(S.1) Q =

B Bc
( )

B QB S
Bc R QBc .1183

Consider a process X = {X(t) : t g 0} defined on a measurable space (Ω,F) and a collection1184

of probability measures {Px : x ∈ X} on (Ω,F) such that for every x ∈ X , X is a continuous1185

time Markov chain under Px with infinitesimal generator given by Q and such that Px[X(0) =1186

x] = 1. Consider the stopping time ÄB := inf{t g 0 : X(t) ∈ B}.1187

Lemma S.5. The following are equivalent:1188

(i) For every x ∈ Bc, there exists a z ∈ B such that x leads to z under Q, i.e., there are1189

distinct x1, ..., xm ∈ B
c, different from x, such that Qx,x1 , Qx1,x2 , ..., Qxm,z > 0.1190

(ii) QBc
is invertible.1191

(iii) Ex[ÄB] <∞ for every x ∈ Bc.1192

If any of (i)− (iii) hold, then1193

(S.2) Px [X(ÄB) = y] = (−(QBc

)−1R)x,y1194

for every x ∈ Bc and y ∈ B. Moreover, if Bc is a set of transient states for X, then (i)− (iii)1195

hold.1196

Part of the results in Lemma S.5 appear as Lemma 1 in Gaver et al. [8] for the case where1197

QB and S are the zero matrix. For completeness, we provide a self-contained proof here.1198

Proof. The implication (i) ⇒ (ii) is a consequence of Lemma S.4 with Bc, QBc
in place of1199

X , Q there.1200

In the following, recall that for every x ∈ X and function f : X −→ R, the process1201

(S.3) MB
f (t) := f(X(t ' ÄB))− f(X(0))−

∫ t'ÄB

0
Lf(X(s))ds, t g 0,1202
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is a martingale under Px (see Theorem 3.32 in [15]), where Lf(y) :=
∑

z∈X Qyzf(z) for y ∈ X .1203

For (ii) ⇒ (iii), consider the function f(y) := −[(QBc
)−11]y1Bc(y) for y ∈ X . The reader1204

may verify that Lf(y) = −1 for every y ∈ Bc. Therefore, for an x ∈ Bc, taking expectations1205

in (S.3) yields f(x) − Ex[f(X(t ' ÄB))] = Ex[t ' ÄB] for every t g 0. Hence, Ex[t ' ÄB] f1206

2 supx∈X |f(x)| for every t g 0 and we conclude the desired result by letting t→∞.1207

For (iii) ⇒ (i), we prove that not (i) implies not (iii). Suppose there exists x ∈ Bc such1208

that no point of B is accessible from x. Then, ÄB =∞ Px-a.s., so (iii) does not hold.1209

For (S.2), consider x ∈ Bc, y ∈ B and the martingale MB
f with f(z) = (−(QBc

)−1R)z,y1Bc(z)1210

+1{y}(z) for z ∈ X . The reader may verify that Lf(x) = 0 for x ∈ Bc, which yields that1211

Ex[f(X(t ' ÄB))] = f(x) for every t g 0. If any of (i) − (iii) hold, then ÄB < ∞, Px-a.s.,1212

and on letting t→∞ and using bounded convergence, we obtain Ex[f(X(ÄB))] = f(x), which1213

implies Px[X(ÄB) = y] = (−(QBc
)−1R)x,y.1214

Now, suppose that every x ∈ Bc is transient. Then, Px(ÄB < ∞) = 1 for each x ∈ Bc.1215

For a proof by contradiction, suppose that QBc
is not invertible, which implies the existence1216

of a nonzero vector v = (v(x))x∈Bc ̸= 0 such that QBc
v = 0. Then, consider the function1217

f(y) = v(y)1Bc(y), for which Lf(y) = 0 for y ∈ Bc. Consider an x ∈ Bc such that v(x) ̸= 0,1218

then MB
f (t) = f(X(t ' ÄB))− v(x) is a bounded martingale. On taking expectations we have1219

Ex[f(X(t ' ÄB))] = v(x). Since the states in Bc are transient, X(·) will Px-a.s. leave Bc.1220

Then letting t → ∞ and using bounded convergence yields 0 = v(x) which is the desired1221

contradiction. Hence (ii) (as well as (i), (iii)) must hold.1222

Lemma S.5 has a useful consequence in terms of occupations times. In the above context, con-1223

sider the occupation time of B by the Markov chainX up to time t g 0: ÇB(t) =
∫ t
0 1B(X(s))ds.1224

Denote by ÇB(∞) = limt→∞ ÇB(t) =
∫∞
0 1B(X(s))ds.1225

Lemma S.6. Suppose that1226

(S.4) Py[ÄB <∞] = 1 for all y ∈ Bc.1227

Then Px[ÇB(∞) =∞] = 1 for every x ∈ X .1228

Remark S.7. If any of the conditions (i)-(iii) in Lemma S.5 holds, then (S.4) holds.1229

Proof. Fix x ∈ X . Let Ã−1 = 0 and Ã0 = inf{t g Ã−1 : X(t) ∈ B}. Then, inductively define1230

for k = 0, 1, 2, . . . , Ã2k+1 = inf{t g Ã2k : X(t) ∈ Bc} and Ã2k+2 = inf{t g Ã2k+1 : X(t) ∈ B}.1231

Using (S.4) and the strong Markov property of X, we have1232

(S.5) Ã2k <∞ Px-a.s. on {Ã2k−1 <∞}1233

for k = 0, 1, 2, . . . , and1234

ÇB(∞) =

∞
∑

k=0

1{Ã2k<∞}(Ã2k+1 − Ã2k) = lim
N→∞

N
∑

k=0

1{Ã2k<∞}(Ã2k+1 − Ã2k),1235

where terms in the sum indexed by k : Ã2k =∞ are taken to be zero. Now, Px-a.s.,1236

N
∏

k=0

exp(−1{Ã2k<∞}(Ã2k+1 − Ã2k)) =
N
∏

k=0

1{Ã2k<∞} exp(−(Ã2k+1 − Ã2k)),1237
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where we used (S.5) and the fact that Ã−1 = 0, to conclude that the product is zero Px-a.s.,1238

if {Ã2k =∞} for any k ∈ {0, 1, . . . , N}. Hence,1239

Ex[exp(−ÇB(∞))]1240

= lim
N→∞

Ex

[

N
∏

k=0

1{σ2k<∞} exp(−(Ã2k+1 − Ã2k))

]

1241

= lim
N→∞

Ex

[

N−1
∏

k=0

1{σ2k<∞} exp(−(Ã2k+1 − Ã2k))1{σ2N<∞}Ex [exp(−(Ã2N+1 − Ã2N ))|X(Ã2N )]

]

.1242

On {Ã2N < ∞}, we have X(Ã2N ) ∈ B and X(t) ∈ B for Ã2N f t < Ã2N+1. Hence, for1243

a > maxy∈B |Qy,y|, using the strong Markov property, on {Ã2N <∞}, conditioned on X(Ã2N ),1244

Ã2N+1 − Ã2N stochastically dominates an exponential random variable with parameter a and1245

so1246

Ex [exp(−(Ã2N+1 − Ã2N ))|X(Ã2N )] f

∫ ∞

0
e−tae−atdt =

a

1 + a
.1247

Similarly, for k = N − 1, . . . , 0, on {Ã2k <∞},1248

(S.6) Ex [exp(−(Ã2k+1 − Ã2k))|X(Ã2k)] f
a

1 + a
.1249

Then,1250

Ex[exp(−ÇB(∞))] f lim sup
N→∞

Ex

[

N−1
∏

k=0

1{Ã2k<∞} exp(−(Ã2k+1 − Ã2k))1{Ã2N<∞}
a

1 + a

]

1251

f lim sup
N→∞

Ex

[

N−1
∏

k=0

1{Ã2k<∞} exp(−(Ã2k+1 − Ã2k))
a

1 + a

]

.1252

Repeatedly conditioning on {Ã2k <∞}, for k = N − 1, . . . , 0 and using (S.6), we obtain1253

Ex[exp(−ÇB(∞))] f lim sup
N→∞

(

a

1 + a

)N+1

= 0.1254

Hence, Px[ÇB(∞) =∞] = 1.1255

Lemma S.8. Let X = {X(t) : t g 0} be a continuous time Markov chain with state space X1256

and infinitesimal generator Q = (Qx,y)x,y∈X . Suppose there is an absorbing state y ∈ X . If1257

there are distinct states z1, . . . , zm ∈ X different from x and y such that Qx,z1Qz1,z2 . . . Qzm,y >1258

0, then x is a transient state for X.1259

Proof. Since Qx,z1Qz1,z2 . . . Qzm,y > 0, we have Px[X(t0) = y] > 0 for some t0 > 0 (see The-1260

orem 3.2.1 in [16]). Thus Px[X(t) ̸= x for all t g t0] g Px[X(t0) = y]P[X(t) = y for all t >1261

t0|X(t0) = y] = Px[X(t0) = y] > 0, which means that x is a transient state.1262

1263

1264
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S.2 Additional results for stationary distributions1265

S.2.1 Higher order terms for linear perturbations Under the assumption of the pertur-1266

bation being linear (which is the case for our chromatin modification circuit models), we now1267

provide an iterative procedure for computing all of the terms in the series expansion of Ã(·).1268

Additional results for characterizing some of these terms are given in SI - Sections S.2.3, S.2.4.1269

Theorem S.9. Suppose Assumptions 4.1, 4.2 and 4.5 hold. Then, the following hold for the1270

sequence {Ã(k) : k g 0} in (3.7):1271

(i) Ã(0) = [³(0), ´(0)] = [³, 0] where ³ is the unique probability vector on A such that1272

³QA = 0,1273

(ii) for every k g 1, Ã(k) = [³(k), ´(k)], where1274

(S.7) ´(k) = (³(k−1)S1 + ´(k−1)T1)(−T0)
−1

1275

and ³(k) is the unique vector such that1276

³(k)QA = −´(k)[R1 + T1(−T0)
−1R0],(S.8)1277

³(k)
1 = −´(k)1.(S.9)1278

Moreover, if |A| g 2, for every k g 1 we obtain1279

(S.10) ³(k) = ³̃(k) + (−´(k)1− ³̃(k)
1)³,1280

where ³̃(k) := −´(k)(R1 + T1(−T0)
−1R0)Q

 
A for k g 1 and Q 

A is a generalized inverse1281

of QA
4.1282

The proof of Theorem S.9 is given in SI - Section S.2.2.1283

S.2.2 Proofs of Lemmas 4.1, 4.3, and 4.4 and Theorem S.91284

Proof of Lemma 4.11285

Proof. It has already been established before Lemma 4.1 that Ã(0) = [³, 0]. By equating to1286

zero the coefficients of the terms εm for m = 0, 1, . . . in the series (
∑∞

k=0 ε
kÃ(k))(

∑∞
k=0 ε

kQ(k)),1287

we obtain that
∑m

k=0 Ã
(k)Q(m−k) = 0 for every m g 0. In particular, Ã(1)Q(0) + Ã(0)Q(1) = 0,1288

which yields,1289

[³(1), ´(1)]

(

0 0

R0 T0

)

+ [³, 0]

(

A1 S1
R1 T1

)

= 0.1290

From this, we obtain two equations:1291

(S.11) ´(1)R0 + ³A1 = 01292

4A generalized inverse Q
 
A of QA is such that QAQ

 
AQA = QA. The Moore-Penrose inverse is a generalized

inverse. The deviation matrix for X̂A is D = (−QA + 1α)−1
− 1α, and −D is also a generalized inverse of

QA. Meyer [4] suggested that −D is a better generalized inverse to use than the Moore-Penrose inverse since
it can be computed efficiently and embeds answers concerning the transitory behavior of the Markov chain.
Avrachenkov et al. [2], in the context of discrete time Markov chains, use a suitable deviation matrix when
they need a generalized inverse. Here, if we take Q

 
A = −D, then the term α̃(k)

1 in (S.10) is equal to zero since
D1 = 0 and then α(k) = β(k)((R1 + T1(−T0)

−1R0)D − 1α).
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and1293

(S.12) ´(1)T0 + ³S1 = 0.1294

Since T0 is invertible, from (S.12) we obtain (4.5). We conclude by substituting this formula1295

for ´(1) in (S.11).1296

Proof of Lemma 4.31297

Proof. By following the proof of Lemma 2 in Gaver, Jacobs & Latouche [8] and using formula1298

(S.2), we can prove that the transition rates between x ̸= y ∈ A for X̂A are given by (QA)x,y.1299

In essence, the argument is as follows. From the state x ∈ A, the Markov chain X̃ may move1300

to y ∈ A in two ways that lead to a one-step transition for X̂A. First, it could happen that X̃1301

jumps directly to y at a rate of (A1)x,y. Second, the chain X̃ may go to some state z ∈ T at1302

a rate (S1)x,z and from there, jump between states in T until getting back to A at the state1303

y ∈ A. By (S.2), this happens with probability ((−T0)
−1R0)z,y. Putting this all together, the1304

rate of transition for X̂A from x to y will be1305

(S.13) (A1)x,y +
∑

z∈T

(S1)x,z((−T0)
−1R0)z,y = (QA)x,y.1306

Proof of Lemma 4.41307

Proof. Consider x ̸= y ∈ A. Then, there exists a sequence of states x0 = x, x1, . . . , xm = y1308

in C such that Q̃x,x1Q̃x1,x2 . . . Q̃xm−1,y > 0. Roughly speaking, the proof follows by erasing the1309

times that X̃ is outside of A. We now give the details. Consider i ∈ {0, 1, . . . ,m−1} with xi ∈1310

A. If xi+1 ∈ A, then, by (S.13), (QA)xi,xi+1 g (A1)xi,xi+1 = Q̃xi,xi+1 > 0. If xi+1 ∈ T , consider1311

the path of states xi, xi+1, . . . , xk for 0 f i < k f m such that xi, xk ∈ A and xi+1, . . . , xk−1 ∈1312

T . Since xi+1 leads to xk for X̃, then Pxi+1 [X̃(ÄA) = xk] > 0 where ÄA := inf{t g 0 :1313

X̃(t) ∈ A}. By (S.2), this means that ((−T0)
−1R0)xi+1,xk

> 0 which yields (QA)xi,xk
g1314

(S1)xi,xi+1((−T0)
−1R0)xi+1,xk

= Q̃xi,xi+1((−T0)
−1R0)xi+1,xk

> 0. These observations yield a1315

sequence of states x0 = x, xi1 , . . . , xij = y in A such that (QA)x,xi1
(QA)xi1

,xi2
. . . (QA)xij−1

,y >1316

0.1317

Proof of Theorem S.91318

Proof. Point (i) was established in Theorem 4.2. For (ii), we equate to zero the coefficients1319

of the terms εm for m = 0, 1, 2, . . . in the terms of the series, (
∑∞

k=0 ε
kÃ(k))(Q(0) + εQ(1)) to1320

obtain that Ã(0)Q(0) = 0 and Ã(k)Q(0) + Ã(k−1)Q(1) = 0 for every k g 1. The latter requires1321

that for all k g 1,1322

[³(k), ´(k)]

(

0 0

R0 T0

)

+ [³(k−1), ´(k−1)]

(

A1 S1
R1 T1

)

= 0.1323

Now, this yields two equations:1324

(S.14) ´(k)R0 + ³(k−1)A1 + ´(k−1)R1 = 0,1325

1326

(S.15) ´(k)T0 + ³(k−1)S1 + ´(k−1)T1 = 0.1327
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For ´(k), we obtain the relation (S.7) directly from (S.15) for all k g 1. For ³(k), let’s see first1328

that it satisfies (S.8). From (S.7), for all k g 1, ´(k+1) = (³(k)S1 + ´(k)T1)(−T0)
−1 and using1329

this in (S.14) (with k replaced by k + 1) we obtain for all k g 11330

(S.16) (³(k)S1 + ´(k)T1)(−T0)
−1R0 + ³(k)A1 + ´(k)R1 = 0.1331

By rearranging (S.16) and using (4.6), we obtain (S.8) for all k g 1. On the other hand, since1332

ïÃ(k),1ð = 0 for every k g 1, we obtain (S.9).1333

For the uniqueness of ³(k), for all k g 1, if |A| = 1, then ³(k) has only one entry and it is1334

determined uniquely by (S.9). If |A| g 2, consider another solution µ(k) of (S.8) and (S.9),1335

where (µ(k))T ∈ R|A|. By Assumption 4.2 and Lemma S.1, dim(ker((QA)
T )) = 1 and therefore,1336

by (S.8), ³(k)− µ(k) = c³ for some c ∈ R. Using (S.9), then 0 = ³(k)1− µ(k)1 = c³1 = c, and1337

therefore c = 0, and ³(k) = µ(k).1338

For existence of a solution ³(k) of (S.8)-(S.9), using the properties1339

R01+ T01 = 0 and R11+ T11 = 0,1340

we have that1341

(R1 + T1(−T0)
−1R0)1 = R11+ T1(−T0)

−1R011342

= −T11+ T1(−T0)
−1R011343

= T1(−T0)
−1(T01+R01)1344

= 0.1345

Then, since dim(ker(QA)) = dim(ker((QA)
T )) = 1 and 1 ∈ ker(QA), we have1346

(−´(k)(R1 + T1(−T0)
−1R0))

T ∈ ker(QA)
§ = range((QA)

T ),1347

and so (S.8) has a solution and (S.9) will determine the multiple of ³ to add to any particular1348

solution to obtain the unique solution ³(k) of both equations.1349

Furthermore, if Q 
A is a generalized inverse of QA, then1350

(S.17) ³̃(k) := −´(k)(R1 + T1(−T0)
−1R0)Q

 
A1351

is a solution to (S.8) (see [12] for an exposition). Similar to the uniqueness argument, ³(k) −1352

³̃(k) = c³ for some c ∈ R. By (S.9), c = −´(k)1− ³̃(k)1 and we obtain (S.10).1353

S.2.3 Additional characterization of zeroth and first order terms for linear perturba-1354

tions via restricted processes In this section, assume that Assumptions 4.1 and 4.5 hold. We1355

will also sometimes assume Assumptions 4.3 or 4.4 hold. We will explore additional character-1356

izations of ³ and ´(1). Under Assumptions 4.1 and 4.5, A(ε) (defined in (4.2)) corresponds to1357

εA1 for every 0 f ε < ε0. Since Q(ε) is irreducible for every 0 < ε < ε0, from Lemma S.5 (with1358

Ac in place of B and Q(ε) in place of Q there), we obtain that εA1 is invertible for 0 < ε < ε0,1359

and therefore A1 is invertible. This will be an important fact for the coming results.1360

Consider the matrix Q̃ introduced in (4.7). For a continuous time Markov chain X̃ with1361

infinitesimal generator Q̃, denote by ÇT (t) the occupation time of T by the Markov chain X̃1362
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up to time t g 0, with its associated limit ÇT (∞) = limt→∞ ÇT (t) =
∫∞
0 1T (X(t))dt. Since1363

A1 is invertible, by Lemma S.5 (with B = T and Q = Q̃) and Lemma S.6 we have that1364

P[ÇT (∞) =∞] = 1.1365

Consider the process X̂T as in (4.8), but with A replaced by T , which corresponds to1366

observing X̃ only on the time intervals where X̃ is in T . The process X̂T is a continuous time1367

Markov chain on T . Consider the matrix1368

(S.18) QT := T0 +R0(−A1)
−1S1,1369

which by Lemma S.15 is a Q-matrix. Similarly to Lemma 4.3, we can show that QT is the1370

infinitesimal generator of X̂T . Our previous assumptions relate to X̂T in the following way.1371

Lemma S.10. Suppose Assumptions 4.1, 4.3 and 4.5 hold. Then X̂T has a single recurrent1372

class. Moreover, if Assumption 4.4 holds, the process X̂T is irreducible.1373

Proof. Let D ¦ T be a non-empty recurrent class for X̂T (there must be at least one), and1374

let C ¦ X be the communicating class under X̃ described in Assumption 4.3. We will prove1375

that D = C \ A, which yields the uniqueness of recurrent classes for X̂T . If Assumption 4.41376

holds, then C = X , which combined with the relation D = C \A, implies that D = X \A = T1377

and the conclusion follows.1378

In order to prove D = C \ A, we start by making some observations. First, we prove that1379

there exist states x̃ ∈ D and ỹ ∈ A such that Q̃x̃,ỹ > 0. In fact, if this was not the case, then1380

for every x ∈ D and z ∈ A we would have Q̃x,z = (R0)x,z = 0. This yields that for x ∈ D,1381

(S.19) (QT )x,y = (T0)x,y +
∑

z∈A

(R0)x,z[(−A1)
−1S1]z,y = (T0)x,y,1382

for all y ∈ T . Since D is a closed class under QT , (QT )x,y = 0 for y ∈ T \ D and so1383
∑

y∈D(QT )x,y =
∑

y∈T (QT )x,y = 0, since QT is a Q-matrix. Combining this with the previous1384

equation, we obtain that
∑

y∈D(T0)x,y = 0 for all x ∈ D, which implies that D is closed under1385

Q̃. This contradicts the fact that T0 is invertible by point (i) in Lemma S.5 (with Bc = T and1386

Q = Q̃).1387

Second, we observe that there exist a ŷ ∈ A and x̂ ∈ D such that Q̃ŷ,x̂ > 0. In fact, since1388

A1 is invertible, by Lemma S.5 (with Bc = A and Q = Q̃) there has to be a ŷ ∈ A and x̂ ∈ T1389

such that Q̃ŷ,x̂ > 0. To show that x̂ ∈ D, consider that ỹ ∈ A communicates with ŷ ∈ A under1390

Q̃, by Assumption 4.3, and therefore x̃ leads to x̂ under Q̃ and therefore under QT . Since D1391

is closed under QT , x̂ ∈ D.1392

We now prove that D ¦ C \ A. For x ∈ D, since T0 is invertible there exists a state y ∈ A1393

such that x leads to y under Q̃. By Assumption 4.3, y and ŷ are in A ¦ C and so they1394

communicate under Q̃. It follows that x leads to ŷ under Q̃. On the other hand, Q̃ŷ,x̂ > 0 and1395

since D is a communicating class under QT , x̂ leads to x under Q̃. Thus, x leads to ŷ and ŷ1396

leads to x under Q̃ and so x ∈ C. Thus, D ¦ C and D ¦ T = Ac, and so D ¦ C \ A.1397

To prove that C \ A ¦ D, let x ∈ C \ A. Since D ¦ C, then x communicates with the1398

element x̃ in D under Q̃. This implies that they communicate under QT and since D is a1399

communicating class under QT , then x ∈ D. Combining the above we see that D = C \ A.1400
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When the continuous time Markov chain X̂T has a single recurrent class D, there is a unique1401

probability vector ¿ in R|T | such that ¿QT = 0 and ¿ will be the stationary distribution for1402

X̂T with non-zero entries only for entries corresponding to states in D. We use the vector ¿1403

to characterize ³ and ´(1).1404

In the following theorem, we use the fact that A1 is invertible. This follows from Lemma1405

S.4 because A1 = QA(1), where Q(1) is positive recurrent and so the condition (i) of Lemma1406

S.4 holds with Bc = A.1407

Theorem S.11. Suppose Assumptions 4.1, 4.3 and 4.5 hold. Denote by ¿ the unique proba-1408

bility vector in R|T | such that ¿QT = 0. Then, Ã(0) = [³, 0] where ³ is given by1409

(S.20) ³ = c¿R0(−A1)
−1,1410

and where c is given by c = (¿R0(−A1)
−11)−1. Moreover, Ã(1) = [³(1), ´(1)] where1411

(S.21) ´(1) = c¿.1412

Proof. Following the proof of Theorem S.9, equations (S.14) and (S.15) yield that1413

(S.22) ´(1)R0 + ³A1 = 0,1414

and1415

(S.23) ´(1)T0 + ³S1 = 0.1416

From (S.22) we obtain that ³ = ´(1)R0(−A1)
−1. We substitute this expression in (S.23) to1417

obtain that ´(1)(T0 + R0(−A1)
−1S1) = 0, which is exactly ´(1)QT = 0. By Lemma S.101418

combined with Lemma S.1, we obtain that ´(1) = c̃¿ for some constant c̃ ∈ R and therefore1419

³ = c̃¿R0(−A1)
−1. To show that c̃ = c, we observe that since ³1 = 1, then c̃(¿R0(−A1)

−11) =1420

1 and the desired result follows.1421

Under the assumptions of Theorem S.11, ´
(1)
x > 0 for every x ∈ D, the single recurrent class1422

of X̂T , while ´
(1)
x = 0 for x ∈ T \(1). In fact, using first step analysis, one can show that the1423

entry (−A1)
−1
i,j is the expected time that the process X̃ spends at j when started at i, before1424

exiting A. Hence, these entries are non-negative and so does ¿R0(−A1)
−1. This implies that1425

the constant c is positive and the conclusion follows from (S.21) and the properties of ¿.1426

S.2.4 Additional characterization of zeroth and first order terms via partial balance1427

For the last part of this section, we consider an additional characterization for ´(1) based on1428

the idea of truncated processes and partial balance relations (see Section 9.4 in [13]).1429

Consider a continuous time Markov chain X = {X(t) : t g 0} with infinitesimal generator1430

Q on a finite state space X . Let Y a non-empty set in X . Define the matrix Q̄ = (Q̄x,y)x,y∈Y1431

by Q̄x,y = Qx,y for x ̸= y and Q̄x,x = Qx,x +
∑

y/∈Y Qx,y. A continuous time Markov chain1432

X̄ = {X̄(t) : t g 0} with state space Y and infinitesimal generator Q̄ will be called a1433

truncation of X to Y.1434
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Assumption S.1. For every 0 < ε < ε0, the truncation of Xε to T , denoted by X̄ε, is irre-1435

ducible. In addition, the following partial balance condition holds on T for every 0 < ε < ε0:1436

1437

(S.24) Ãx(ε)
∑

y∈A

Qx,y(ε) =
∑

y∈A

Ãy(ε)Qy,x(ε), for every x ∈ T .1438

Under Assumption S.1, the process X̄ε has a stationary distribution ¸(ε) for every 0 < ε < ε0,1439

given by1440

(S.25) ¸x(ε) =
Ãx(ε)

∑

y∈T Ãy(ε)
, x ∈ T1441

(see Theorem 9.5 in Kelly [13]). The following is our main theorem.1442

Theorem S.12. Suppose Assumptions 4.1, 4.5 and S.1 hold. Then, the following hold:1443

(i) the limit ¸ := limε→0 ¸(ε) exists and it is a probability vector on T such that1444

(S.26) ¸Q̄(0) = 0,1445

(ii) the vectors ³ and ´(1) can be characterized by1446

(S.27) ´(1) = c¸, ³ = c¸R0(−A1)
−1,1447

where c = (¸R0(−A1)
−11)−1, and1448

(iii) ¸QT = 0.1449

If, in addition, Assumption 4.3 or Assumption 4.4 holds, then ¸ = ¿ is the unique1450

stationary distribution for X̂T .1451

Remark S.13. Although we know that X̄0 is well defined, we do not know a priori whether1452

the process is irreducible or it has a single recurrent class. If the truncation process X̄0 has1453

a single recurrent class (or is irreducible), it will have a unique stationary distribution, which1454

we would call ¸(0). But we do not know if such a vector exists. This non existence is what led1455

us to express Theorem S.12 in terms of the limit ¸ which solves ¸Q̄(0) = 0. If the truncation1456

process X̄0 has a single recurrent class, as in the 1D and 2D models, the probability vector ¸1457

is characterized uniquely by solving ¸Q̄(0) = 0 and ¸ = ¸(0).1458

Proof. We will first show that ´(1)1 > 0. From (4.5) we know that ´(1) = ³S1(−T0)
−1, which1459

yields ´(1)1 = ³S1(−T0)
−11. Since all of the entries in ³, S1, and (−T0)

−1 are nonnegative, it1460

suffices to show ´(1)1 ̸= 0. For a proof by contradiction, suppose that ´(1)1 = 0. This means1461

that1462

(S.28)
∑

y∈T

∑

x∈A

³x(S1)x,y((−T0)
−1

1)y = 0.1463

All of the entries in the sum are nonnegative, so this means that ³x(S1)x,y((−T0)
−11)y = 0 for1464

every x ∈ A and y ∈ T . Now, ((−T0)
−11)y is the mean first passage time to A, for the Markov1465

chain that starts at y with infinitesimal generator Q(0), and so ((−T0)
−11)y g

1
|Q(0)y,y |

> 0.1466
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Hence, ³x(S1)x,y = 0 for every x ∈ A and y ∈ T . This yields that ³S1 = 0 and substituting1467

this in (4.4) yields that ³A1 = 0. Since A1 is invertible, this is a contradiction.1468

Since we know that ´(0) = ´(0) = 0, we obtain that1469

¸x(ε) =
Ãx(ε)

∑

y∈T Ãy(ε)
=

∑∞
k=1 ε

k´
(k)
x

∑

y∈T

∑∞
k=1 ε

k´
(k)
y

=

∑∞
k=1 ε

k´
(k)
x

∑∞
k=1 ε

k
∑

y∈T ´
(k)
y

=

∑∞
k=1 ε

k−1´
(k)
x

∑∞
k=1 ε

k−1
∑

y∈T ´
(k)
y

1470

→
´
(1)
x

∑

y∈T ´
(1)
y

=
´
(1)
x

´(1)1
.1471

We then obtain that ¸ exists and ¸x = ´
(1)
x

´(1)1
for every x ∈ T , which is a probability vector on1472

T . Or letting ε→ 0 in ¸(ε)Q̄(ε) = 0, we obtain that ¸Q̄ = 0. We already know that ´(1) = c¸.1473

To obtain a value for c that depends only on ¸, note that from (4.4) and (4.5), we have ³ =1474

´(1)R0(−A1)
−1 = c¸R0(−A1)

−1, where c¸R0(−A1)
−11 = 1 and so c = (¸R0(−A1)

−11)−1.1475

By following the proof of Theorem S.11, we obtain ´(1)QT = 0 and therefore ¸QT = 0. The1476

other conclusions follow readily.1477

The following criterion offers a practical way to establish (S.24).1478

Lemma S.14. Let A = {a1, . . . , an}. Suppose there exist distinct states x1, . . . , xn in T such1479

that for every 0 < ε < ε0 and for every k ∈ {1, . . . , n}.1480

1. Qakxk
(ε), Qxkak(ε) > 0,1481

2. Qaky(ε) = Qyak(ε) = 0 for every y /∈ {xk, ak}.1482

Then (S.24) holds.1483

Proof. Denote by N = {x1, . . . , xn}. Let 0 < ε < ε0. For x ∈ T \ N , we have that1484

Ãx(ε)
∑

y∈AQx,y(ε) = 0 and
∑

y∈A Ãy(ε)Qy,x(ε) = 0. Then, equation (S.24) holds for x ∈1485

T \ N .1486

For xk ∈ N , Ãxk
(ε)
∑

y∈AQxk,y(ε) = Ãxk
(ε)Qxkak(ε).1487

On the other hand,
∑

y∈A Ãy(ε)Qyxk
(ε) = Ãak(ε)Qakxk

(ε). Since Ã(ε)Q(ε) = 0, we have1488

0 = (Ã(ε)Q(ε))ak =
∑

x∈X

Ãx(ε)Qx,ak(ε)1489

= Ãxk
(ε)Qxk,ak(ε) + Ãak(ε)Qak,ak(ε) = Ãxk

(ε)Qxk,ak(ε)− Ãak(ε)Qak,xk
(ε).1490

Hence, Ãxk
(ε)Qxk,ak(ε) = Ãak(ε)Qak,xk

(ε) and (S.24) holds for x ∈ N as well.1491

S.2.5 Lemma S.151492

Lemma S.15. Under Assumption 4.1, the matrices QA and Q̃ are Q-matrices of sizes |A|×|A|1493

and |X |× |X | respectively. If in addition, Assumption 4.5 holds, then QT is a Q-matrix of size1494

|T | × |T |.1495

Proof. First, observe that limε→0
1
εQx,y(ε) = (A1)x,y if x, y ∈ A, while limε→0

1
εQx,y(ε) =1496

(S1)x,y if x ∈ A and y ∈ T . Then, since Q(ε) is a Q-matrix, S1 has nonnegative entries,1497

(A1)x,y g 0 for x ̸= y ∈ A, and1498

(S.29)
∑

y∈A

(A1)x,y +
∑

y∈T

(S1)x,y = 0 for every x ∈ A.1499
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For x ̸= y ∈ A, (QA)x,y = (A1)x,y+
∑

z∈T (S1)x,z((−T0)
−1R0)z,y is nonnegative since (A1)x,y g1500

0 and by (S.2), ((−T0)
−1R0)z,y = 0 for z ∈ T . For x ∈ A,

∑

y∈A(QA)x,y is equal to1501

∑

y∈A

(A1)x,y +
∑

y∈A

∑

z∈T

(S1)x,z((−T0)
−1R0)z,y =

∑

y∈A

(A1)x,y +
∑

z∈T

(S1)x,z
∑

y∈A

((−T0)
−1R0)z,y1502

=
∑

y∈A

(A1)x,y +
∑

z∈T

(S1)x,z = 0,1503

where we used (S.2) and (S.29). Hence QA is a Q-matrix.1504

For Q̃, for x ̸= y ∈ X , if x ∈ A, then Q̃x,y corresponds to an off diagonal term in A1 or a1505

term in S1, both of which are nonnegative. If x ∈ T , then Q̃x,y corresponds to an off diagonal1506

term in T0 or a term in R0, which are both nonegative since Q(0) is a Q-matrix. To check that1507

the row-sums of Q̃ are zero, first consider when x ∈ A. Then,
∑

y∈X Q̃x,y =
∑

y∈A(A1)x,y +1508
∑

y∈T (S1)x,y = 0 by (S.29). If x ∈ T , then
∑

y∈X Q̃x,y =
∑

y∈A(R0)x,y +
∑

y∈T (T0)x,y = 0,1509

since this corresponds to summing across a row of Q(0).1510

The case of QT follows similarly to that for QA.1511

S.3 Algorithm to find the order of the pole of the MFPT Input: B ¢ X , and kxy, the1512

order of Qx,y(ε) for each (x, y) ∈ E0.1513

Output: p(x), the order of the pole of the mean first passage from x ∈ Bc to B.1514

(p will also be defined for condensed nodes in the course of the algorithm)1515

Step 1 (Set up the initial graph (V,E))1516

Construct a directed graph G = (V,E) where V = X and E = E0.1517

Set, for each u ∈ V , p(u)← min{kuv : (u, v) ∈ E}.1518

Set, for each (u, v) ∈ E, Kuv ← kuv − p(u).1519

Step 2 (Condense B into a single node a)1520

Introduce a new node a.1521

Set, for each w ∈ Bc such that (w, v) ∈ E for some v ∈ B, Kwa ← min{Kwv : v ∈ B and (w, v) ∈ E}.1522

Update V ← Bc ∪ {a} and1523

E ← {(u, v) ∈ E : u ∈ Bc and v ∈ Bc} ∪ {(w, a) : (w, v) ∈ E for some w ∈ Bc and v ∈ B}.1524

Set, for each u ∈ V \ {a}, S(u)← {u}, and S(a)← B.1525

Step 3 (Condense r-connected sets)1526

Repeat the following until G contains no r-connected sets:1527

Let C ¢ V be an r-connected set and c be a new node representing the r-connected set C.1528

Set p(c)← maxu∈C p(u) + min{Kuv : u ∈ C, v /∈ C and (u, v) ∈ E}.1529

Set, for each w ∈ V \ C such that (u,w) ∈ E for some u ∈ C,1530

Kcw ← min{Kuw : u ∈ C and (u,w) ∈ E} −min{Kuv : u ∈ C, v /∈ C and (u, v) ∈ E}1531

Set, for each w ∈ V \ C such that (w, v) ∈ E for some v ∈ C,1532

Kwc ← min{Kwv : v ∈ C and (w, v) ∈ E}.1533

Update V ← (V \ C) ∪ {c} and1534

E ← {(u, v) ∈ E : u /∈ C and v /∈ C} ∪ {(c, w) : (u,w) ∈ E for some u ∈ C and w /∈ C}1535

∪{(w, c) : (w, v) ∈ E for some w /∈ C and v ∈ C}.1536

Set S(c)← ∪u∈CS(u).1537

Step 4 (Compute p(x) where x ∈ Bc)1538

Repeat the following until V = {a}:1539

Let v∗ ∈ V \ {a} be such that p(v∗) = maxu∈V \{a} p(u) and break the tie arbitrarily.1540



ANALYSIS OF SINGULARLY PERTURBED STOCHASTIC CHEMICAL REACTION NETWORKS 13

For each x ∈ S(v∗) ¢ Bc, the order of the pole of the mean first passage time from x to B is1541

p(x)← p(v∗).1542

Update, for each u ∈ V such that (u, v∗) ∈ E, p(u)← max{p(u), p(v∗)−Kuv∗}.1543

Update V ← V \ {v∗} and E ← {(u, v) ∈ E : u ̸= v∗ and v ̸= v∗}.1544

S.4 Graphs for the algorithm to find the order of the MFPT Here we elaborate on1545

the graphs that we use in the algorithm and the definitions that we gave in Section 4.2.1 and1546

Section S.3. While, in the algorithm statement, we used the same notation for the updated1547

graphs as in the original graph, it will be clearer for the justification given in Section S.5 if1548

we specify which copy of the graph we are looking at for each step. Accordingly, we provide a1549

more detailed version of the definitions of these graphs and associated notation in this section.1550

Step 1: Graph G1551

For each ε ∈ (0, εmax) and x ∈ X , the exponential parameter satisfies1552

qx(ε) = −Qx,x(ε) =
∑

y ̸=x∈X

Qx,y(ε) =
∑

(x,y)∈E0

Qx,y(ε) > 0.1553

Since the order of Qx,y(ε) is kxy for each y ∈ X such that (x, y) ∈ E0, the order of qx(ε) is1554

p0(x) = min{kxy : (x, y) ∈ E0}. For each (x, y) ∈ E0, the transition probability Px,y(ε) for the1555

embedded discrete time Markov chain is1556

Px,y(ε) =
Qx,y(ε)

qx(ε)
,1557

the order of which is1558

(S.30) Kxy = kxy −min{kxy : (x, y) ∈ E0} = kxy − p0(x).1559

We start with a weighed graph G = (V,E) where V = X and E = E0. For each u ∈ V , the1560

node weight of u is p0(u), which is the order of the pole of the expected sojourn time1561

at state x until escape from x for Xε. For each (u, v) ∈ E, the edge weight of (u, v) is Kuv,1562

which is the order of the transition probability from u to v.1563

Step 2: Graph G(0)1564

If x ∈ Bc is such that (x, y) ∈ E for some y ∈ B, then the transition probability from x to1565

B is positive and is given by1566

Px,B(ε) =
∑

y∈B:
(x,y)∈E

Px,y(ε).1567

For such x, the order of Px,B(ε) is1568

(S.31) Kxa = min{Kxy : y ∈ B, (x, y) ∈ E},1569

where Kxy is the order of Px,y(ε) for each (x, y) ∈ E.1570

Now, we are ready to specify the graph G(0) = (V (0), E(0)) which serves as the base case1571

for Step 3. We group the nodes in B into a single node, denoted by a, so the set of nodes1572
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becomes V (0) = (V \ B) ∪ {a} = Bc ∪ {a}. All of the edges starting from or going to a1573

node in B are then removed. If there was an edge from x ∈ Bc to a node in B, then we1574

add back an edge (x, a). We leave out all edges from a node in B to a node in Bc, since1575

we are interested in the mean first passage time to the set B. The resulting edge set is1576

E(0) = {(u, v) ∈ E : u ∈ Bc and v ∈ Bc} ∪ {(w, a) : (w, v) ∈ E for some w ∈ Bc and v ∈ B}.1577

Let S(u) = {u} for all u ∈ V (0)\{a} and S(a) = B. Note that {S(u) : u ∈ V (0)} is a partition1578

of the state space X , denoting the grouping of nodes in V (0). For each u ∈ V (0) \ {a} and1579

x ∈ S(u) = {u}, we define px0(u) to be the order of the pole of the expected sojourn time1580

in S(u) before exiting S(u) when starting the process at the state x. For each (u, v) ∈ E(0)1581

and x ∈ S(u) = {u}, we define Kx
uv to be the order of the probability of a transition1582

to S(v) upon exiting from S(u) when the process is started at the state x. For these terms,1583

px0(u) = p0(u) and Kx
uv = Kuv, which is the base case for Lemma S.20.1584

Step 3: Graphs {G(N)}MN=01585

In Step 3, we define a sequence of graphs {G(N) = (V (N), E(N))}MN=0 recursively, where the1586

exact value of M g 0 is not pre-determined and is only revealed when an exit condition for1587

the recursion is satisfied. We know this recursion will end after a finite number of iterations1588

because the number of nodes in V (N) is strictly decreasing with N . The weight p0 of each1589

node and the weight K of each edge are also defined iteratively, and each is defined only once.1590

We have already defined G(0) in Step 2. Fix N ∈ {1, 2, . . . ,M + 1}, where the value of1591

M <∞ is defined below. At the N th iteration, an edge (u, v) ∈ E(N−1) is called an r-edge if1592

its edge weight Kuv is 0; a directed path in G(N−1) is called an r-path if it consists of r-edges1593

only. A set C ¢ V (N−1) is called an r-connected set in G(N−1) if |C| > 1 and there exists1594

an r-path from u to v for any u ̸= v ∈ C. Here we use the qualifier “r” to indicate that these1595

edges, paths and cycles are “regular”. If there is no r-connected set in G(N−1), the iteration1596

stops. We set the value of M to the first value of N − 1 such that G(N−1) does not have1597

any r-connected set. At that time point, the iteration stops and we move to Step 4 where1598

G(M) will be the initial graph for Step 4. Otherwise, N ∈ {1, . . . ,M}, and we let CN be an1599

r-connected set in G(N−1), which is condensed to a new node cN in G(N). Then, we define1600

the graph G(N) = (V (N), E(N)), where V (N) = (V (N−1) \ CN ) ∪ {cN}, and E(N) = {(u, v) ∈1601

E(N−1) : u /∈ CN and v /∈ CN} ∪ {(cN , w) : (u,w) ∈ E(N−1) for some u ∈ CN and w /∈1602

CN} ∪ {(w, cN ) : (w, v) ∈ E(N−1) for some w /∈ CN and v ∈ CN}. Let S(cN ) = ∪u∈CN
S(u).1603

Note that {S(u) : u ∈ V (N)} is again a partition of the state space X , denoting the grouping1604

of nodes in V (N).1605

We define px0(cN ) to be the order of the pole of the expected sojourn time in S(cN )1606

until the first exit from S(cN ) when the process is started at the state x ∈ S(cN ). In Lemma1607

S.20, we will show that the value of px0(cN ) is independent of the state x ∈ S(cN ), and we1608

define p0(cN ) = px0(cN ). For each w ∈ V (N−1) \ CN such that (w, cN ) ∈ E(N), define Kx
wcN

to1609

be the order of the probability of a transition to S(cN ) upon exiting from S(w) when1610

the process is started at the state x ∈ S(w). In Lemma S.20, we will show that the value of1611

Kx
wcN

is independent of the state x ∈ S(w), and Kx
wcN

= KwcN where1612

(S.32) KwcN = min{Kwv : v ∈ CN and (w, v) ∈ E(N−1)}.1613

For each w ∈ V (N−1) \ CN such that (cN , w) ∈ E
(N), define Kx

cNw to be the order of the1614

probability of a transition to S(w) upon exiting from S(cN ) when the process is started1615
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at the state x ∈ S(cN ). In Lemma S.20, we will show that the value of Kx
cNw is independent1616

of the state x ∈ S(cN ), and Kx
cNw = KcNw where1617

KcNw = min{Kuw : u ∈ CN and (u,w) ∈ E(N−1)}1618

−min{Kuv : u ∈ CN , v /∈ CN and (u, v) ∈ E(N−1)}.(S.33)1619

We note that for each N ∈ {1, . . . ,M}, since there is no edge in E(N−1) that leads from a, the1620

node a is never part of any r-connected set, and so a ∈ V (N) and there is at least one other1621

node in V (N) besides a. Also, the irreducibility of Xε when 0 < ε < ε0 implies that there is a1622

path from x to y in G for each x ∈ X \B and y ∈ X . This implies that if uN ̸= vN ∈ V
(N) for1623

some N ∈ {0, 1, . . . ,M} such that x ∈ S(uN ) and y ∈ S(vN ), then there is a path from uN1624

to vN in G(N). Therefore, for each N ∈ {0, 1, . . . ,M}, there is always an outgoing edge from1625

some u′ ∈ CN (u′ cannot be a) to some v′ ∈ V (N−1) \ CN in G(N−1). In addition, as can be1626

seen from the definition of the K’s in (S.30), (S.31), (S.32) and (S.33), for each N = 0, 1, . . . ,M1627

and u′′ ∈ V (N) \ {a}, there exists an r-edge (u′′, v′′) ∈ E(N) for some v′′ ∈ V (N). For G(M),1628

|V (M)| g 2. Furthermorer, if we only look at r-edges (and ignore the other edges), G(M) is an1629

acyclic graph (as it contains no r-connected set). It follows that the node a is the only sink1630

because for each u ∈ V (M) \ {a}, there is an outgoing r-edge, and thus there is an r-path from1631

u to a for each u ∈ V (M) \ {a}.1632

Step 4: Graphs {G(M,N)}
|V (M)|−1
N=01633

In Step 4, we define a sequence of graphs {G(M,N) = (V (M,N), E(M,N))}
|V (M)|−1
N=0 recursively,1634

where G(M,0) = G(M). In each iteration, the weight of one of the nodes in V (M,N−1) ¢ V (M) is1635

finalized and determines the value of p there, and the weights pN−1 of other nodes in V (M,N)1636

are updated to pN .1637

Fix N ∈ {1, . . . , |V (M)| − 1}. At the N th iteration, let vN ∈ V
(M,N−1) \ {a} be such that1638

(S.34) pN−1(vN ) = max
u∈V (M,N−1)\{a}

pN−1(u) =: p(vN ),1639

where we break the tie arbitrarily.1640

Now, we define the graph G(M,N) = (V (M,N), E(M,N)) where V (M,N) = V (M,N−1) \{vN} and1641

E(M,N) = {(u, v) ∈ E(M,N−1) : u ̸= vN and v ̸= vN}. For each u ∈ V (M,N), let1642

(S.35) pN (u) =

{

max{pN−1(u), pN−1(vN )−KuvN }, for (u, vN ) ∈ E(M,N−1),

pN−1(u), for (u, vN ) /∈ E(M,N−1).
1643

In Theorem S.22, we will show that for each x ∈ S(vN ), the order of the pole of the mean1644

first passage time from x to the set B is p(x) = p(vN ).1645

S.5 Justification for the algorithm to find the order of the MFPT Recall that we1646

defined {G(N)}MN=0 = {(V (N), E(N))}MN=0 and G(M,0) = G(M) in Section S.4. Each G(N)1647

defines a partition {S(u) : u ∈ V (N)} of X , which will be used in our proofs. Since Xε is an1648

irreducible continuous time Markov chain for all ε ∈ (0, ε0), each G(N) is weakly connected1649

and has the property that any node in V (N) \ {a} has an out-going edge starting from the1650

node.1651
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In this section, we will provide the justification for the algorithm. Step 1 of the algorithm sets1652

up the original continuous time Markov chain using a skeleton chain. Step 2 of the algorithm1653

serves as the base case for Step 3, and Lemma S.20 justifies Steps 2 and 3. Theorem S.221654

shows that Step 4 works, which gives our main result for the order of the pole of the mean1655

first passage time from each state x ∈ Bc to B.1656

We will start with Sections S.5.1 and S.5.2, in which we describe in more detail the Big1657

Theta notation used in this section and define some useful stopping times that will be used in1658

our proof.1659

S.5.1 More on Big Theta notation In Section 4.2.1, we have defined orders for analytic1660

functions using Big Theta notation. Here we give a few more definitions and remarks for1661

inequalities involving the Big Theta notation, on how to compare the orders of analytic func-1662

tions and on arithmetic for orders. These conventions streamline the proofs in the following1663

subsections.1664

Definition S.16. Given ε0 > 0 and a function f : (0, ε0) → R>0, we say f f Θ(εk) if there1665

exist k ∈ Z and a strictly positive Mf ∈ R>0 such that, for all 0 < ε < ε0,1666

f(ε) fMfε
k.1667

We say f g Θ(εk) if there exist k ∈ Z and a strictly positive mf ∈ R>0 such that, for all1668

0 < ε < ε0,1669

f(ε) g mfε
k.1670

Remark S.17. Let k, k1, k2 ∈ Z and k1 f k f k2. If f = Θ(εk), then f f Θ(εk1) and1671

f g Θ(εk2).1672

Remark S.18. For functions f and g mapping (0, ε0) into R>0, we write f = g · Θ(εk) if1673
f
g = Θ(εk), f f g ·Θ(εk) if f

g f Θ(εk), f g g ·Θ(εk) if f
g g Θ(εk).1674

Lemma S.19. Let k1, k2 ∈ Z, ε0 > 0 and f, g : (0, ε0)→ R>0. If f = Θ(εk1) and g = Θ(εk2),1675

then1676

1

f
= Θ(ε−k1), f + g = Θ(εmin{k1,k2}), f · g = Θ(εk1+k2),1677

1678

max{f, g} = Θ(εmin{k1,k2}), min{f, g} = Θ(εmax{k1,k2}).1679

We leave the proof of Lemma S.19 to the reader.1680

S.5.2 Stopping times Ä ε,Nn For each graph G(N) = (V (N), E(N)), N ∈ {0, 1, . . . ,M},1681

recall that {S(u) : u ∈ V (N)} is a partition of the state space X . We define the series1682

of stopping times {Ä ε,Nn }∞n=0, which captures times of transitions of Xε between sets in the1683

partition {S(u) : u ∈ V (N)} of X . Formally, we let Ä ε,N0 = 0, and for n = 1, 2, . . ., we1684

successively define1685

Ä ε,Nn = inf
{

t g Ä ε,Nn−1 : X
ε(t) /∈ S(vn−1)

}

,1686
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where vn−1 is the element in V (N) such that Xε(Ä ε,Nn−1) ∈ S(vn−1).1687

S.5.3 Justification for Step 3 of the algorithm1688

Lemma S.20. (i) For N = 0 in Step 3,1689

(a) for each u ∈ V (0) \ {a} and x ∈ S(u), Ex[Ä
ε,0
1 ] = Θ(ε−p0(u)).1690

(b) for each (u, v) ∈ E(0) and x ∈ S(u), Px[X
ε(Ä ε,01 ) ∈ S(v)] = Θ(εKuv).1691

(ii) For N ∈ {1, 2, . . . ,M} in Step 3, let1692

k = min{Kuv : u ∈ CN , v /∈ CN and (u, v) ∈ E(N−1)}.1693

(We note that k depends on N although we will not indicate that in the notation.)1694

(a) For each x ∈ S(cN ), Ex[Ä
ε,N
1 ] = Θ(ε−px0 (cN )) where px0(cN ) = p0(cN ) and1695

p0(cN ) = max{p0(u) : u ∈ CN}+ k,1696

(b) For each x ∈ S(cN ) and w ∈ V (N−1) \ CN such that (u,w) ∈ E(N−1) for some1697

u ∈ CN , Px[X
ε(Ä ε,N1 ) ∈ S(w)] = Θ(εK

x
cNw) where Kx

cNw = KcNw and1698

KcNw = min{Kuw : u ∈ CN and (u,w) ∈ E(N−1)} − k,1699

(c) For each x ∈ S(w) where w ∈ V (N−1) \ CN is such that (w, v) ∈ E(N−1) for1700

some v ∈ CN , Px[X
ε(Ä ε,N1 ) ∈ S(cN )] = Θ(εK

x
wcN ) where Kx

wcN
= KwcN and1701

KwcN = min{Kwv : v ∈ CN and (w, v) ∈ E(N−1)}.1702

Proof. Our proof proceeds by induction. The base case (N = 0) is established in Section1703

S.4.1704

For fixed 1 f N f M , assume that (i) (a)-(b) and (ii) (a)-(c) hold with N replaced by1705

0, 1, . . . , N − 1. We abbreviate Ä ε,N−1
n as Ä εn for n = 0, 1, 2, . . .. Let1706

¶out(CN ) = {(u, v) ∈ E(N−1) : u ∈ CN and v /∈ CN}1707

denote all out-going boundary edges of CN so that1708

k = min{Kuv : (u, v) ∈ ¶out(CN )}.1709

First, consider the discrete time process {Xε(Ä εn)}
∞
n=0, which is not necessarily a Markov1710

process. We will derive a lower bound and an upper bound for1711

(S.36) Ex

[

∞
∑

n=0

1{Xε(Äεm)∈S(cN ) for 0fmfn}

]

,1712

which is the expected amount of time that {Y ε
n = Xε(Ä εn)}

∞
n=0 spends in S(cN ) before exiting1713

from there, when started from a fixed state x ∈ S(cN ).1714

For the lower bound, let1715

Ä1 = max
y∈S(cN )

Py[X
ε(Ä ε1 ) /∈ S(cN )],1716
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the maximum over y ∈ S(cN ) of the probability that for Xε started at y, when Xε exits S(uy),1717

where uy ∈ CN such that y ∈ S(uy), X
ε exits outside of S(cN ). By the induction hypothesis,1718

Py[X
ε(Ä ε1 ) ∈ S(v)] = Θ(εKuv) for each u, v such that (u, v) ∈ ¶out(CN ) and y ∈ S(u). Thus,1719

using Lemma S.19, we have1720

Ä1 = max
y∈S(cN )

∑

(u,v)∈¶out(CN ):
y∈S(u)

Py[X
ε(Ä ε1 ) ∈ S(v)] = Θ(εmin{Kuv :(u,v)∈¶out(CN )}) = Θ(εk).1721

For x ∈ S(cN ), let ϕn(x) = Px[X
ε(Ä εm) ∈ S(cN ) for 0 f m f n] for n = 0, 1, 2, . . . . Then,1722

ϕ0(x) = 1, ϕ1(x) = Px[X
ε(Ä ε1 ) ∈ S(cN )] g 1 − Ä1, and by the strong Markov property, for1723

n g 2,1724

ϕn(x) =
∑

y∈S(cN )

Px[X
ε(Ä εm) ∈ S(cN ) for 0 f m f n− 2;Xε(Ä εn−1) = y] Py[X

ε(Ä ε1 ) ∈ S(cN )]1725

g ϕn−1(x)(1− Ä1).1726

Hence, ϕn(x) g (1− Ä1)
n for n = 0, 1, 2, . . . . Then, for x ∈ S(cN ),1727

(S.37) Ex

[

∞
∑

n=0

1{Xε(Äεm)∈S(cN ) for 0fmfn}

]

=

∞
∑

n=0

ϕn(x) g
∞
∑

n=0

(1− Ä1)
n =

1

Ä1
= Θ(ε−k).1728

and so (S.36) is bounded below by Θ(ε−k).1729

For the upper bound, let w0 ∈ CN be such that1730

min{Kw0v : (w0, v) ∈ ¶out(CN )} = min{Kuv : (u, v) ∈ ¶out(CN )} = k.1731

Since the order of the probability Px[X
ε(Ä ε1 ) /∈ S(cN )] might equal k′ > k for some w ̸=1732

w0 ∈ CN and x ∈ S(w), such a smaller order probability of directly exiting S(cN ) from S(w)1733

makes it seem possible that (S.36) could be Θ(ε−k′) for some k′ > k. Indeed, using a similar1734

approach to the one we used for the lower bound, we can show that (S.36) is bounded above1735

by Θ(εmax{Kuv :(u,v)∈¶out(CN )}) g Θ(εk). However, we would like a more stringent upper bound.1736

To achieve this, we will show below that from S(w), Xε can exit S(cN ) at least as quickly1737

by means of a transition from S(w) to S(w0) via the r-connected set and then from S(w0) to1738

V (N−1) \ S(cN ).1739

Let ·ε0 = 0, and for n = 1, 2, . . ., we successively define1740

¸εn−1 = inf
{

t g ·εn−1 : X
ε(t) /∈ S(v) where v ∈ V (N−1) and Xε(·εn−1) ∈ S(v)

}

,1741

1742

·εn = inf
{

t g ¸εn−1 : X
ε(t) ∈ S(w0) or Xε(t) /∈ S(cN )

}

.1743

Note that {·εn}
∞
n=0 and {¸εn}

∞
n=0 depend on N . Let1744

Ä2 = min
y∈S(w0)

Py[X
ε(·ε1) /∈ S(w0)] = min

y∈S(w0)
Py[X

ε(·ε1) /∈ S(cN )],1745
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By the induction hypothesis, Py[X
ε(Ä ε1 ) ∈ S(v)] = Θ(εKw0v) for each v such that (w0, v) ∈1746

¶out(CN ) and y ∈ S(w0), and so1747

Ä2 g min
y∈S(w0)

Py[X
ε(Ä ε1 ) /∈ S(cN )] = Θ(εmin{Kw0v :(w0,v)∈¶out(CN )}) = Θ(εk),(S.38)1748

where the inequality holds since starting from any y ∈ S(w0), if Xε(Ä ε1 ) /∈ S(cN ), Xε exits1749

outside of S(cN ) after leaving S(w0) and so Xε(·ε1) /∈ S(w0).1750

For x ∈ S(cN ), Px-a.s., the sum1751

(S.39)
∞
∑

n=0

1{Xε(Äεm)∈S(cN ) for 0fm<n;Xε(Äεn)∈S(w0)}1752

counts the number of distinct visits to S(w0), including the initial start there if x ∈ S(w0),1753

before Xε escapes from S(cN ). By the definition of the {·εn}
∞
n=0, Px-a.s., the sum1754

1{Xε(0)∈S(w0)} +
∞
∑

n=1

1{Xε(·εm)∈S(w0) for 1fmfn}1755

counts the same quantity. Thus, for x ∈ S(w0), using the strong Markov property and (S.38),1756

È(x) := Ex

[

∞
∑

n=0

1{Xε(Äεm)∈S(cN ) for 0fm<n;Xε(Äεn)∈S(w0)}

]

1757

= 1 + Ex

[

∞
∑

n=1

1{Xε(·εm)∈S(w0) for 1fmfn}

]

1758

= 1 + Ex

[

1{Xε(·ε1)∈S(w0)}EXε(·ε1)

[

∞
∑

n=0

1{Xε(·εm)∈S(w0) for 0fmfn}

]]

1759

f 1 + (1− Ä2) max
y∈S(w0)

È(y).(S.40)1760

Note that maxy∈S(w0) È(y) <∞ because the state space is finite and Xε is positive recurrent.1761

Hence, by (S.40), maxy∈S(w0) È(y) f
1
Ä2

. Then, for x ∈ S(cN ) \ S(w0), by the strong Markov1762

property,1763

È(x) f Px[X
ε(·ε1) ∈ S(w0)}] max

y∈S(w0)
È(y) f

1

Ä2
.1764

Thus, for any x ∈ S(cN ),1765

(S.41) Ex

[

∞
∑

n=0

1{Xε(Äεm)∈S(cN ) for 0fm<n;Xε(Äεn)∈S(w0)}

]

f
1

Ä2
= Θ(ε−k).1766

Let w1, w2 ∈ CN be such that (w1, w2) ∈ E(N−1) and Kw1w2 = 0. By the induction1767

hypothesis, Py[X
ε(Ä ε1 ) ∈ S(w2)] = Θ(1) for all y ∈ S(w1). Then, for x ∈ S(cN ),1768

Ex

[

∞
∑

n=0

1{Xε(τε
m)∈S(cN ) for 0≤m<n;Xε(τε

n)∈S(w2)}

]

1769
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g
∞
∑

n=0

Px[X
ε(Ä εm) ∈ S(cN ) for 0 f m < n;Xε(Ä εn) ∈ S(w1), X

ε(Än+1) ∈ S(w2)]1770

=

∞
∑

n=0

∑

y∈S(w1)

Px[X
ε(Ä εm) ∈ S(cN ) for 0 f m < n;Xε(Ä εn) = y] · Py[X

ε(Ä ε1 ) ∈ S(w2)]1771

g
∞
∑

n=0

Px[X
ε(Ä εm) ∈ S(cN ) for 0 f m < n;Xε(Ä εn) ∈ S(w1)] · min

y∈S(w1)
Py[X

ε(Ä ε1 ) ∈ S(w2)]1772

= Ex

[

∞
∑

n=0

1{Xε(τε
m)∈S(cN ) for 0≤m<n;Xε(τε

n)∈S(w1)}

]

·Θ(1).(S.42)1773

where the first equality holds from the strong Markov property of Xε. Since CN is an r-1774

connected set, we can start from the node w1 and the order inequality (S.42) can be passed1775

from node to node in CN and back to the node w1 (w0 is included in the path) so that we will1776

actually have equality in (S.42) and for all v ∈ CN ,1777

Ex

[

∞
∑

n=0

1{Xε(Äεm)∈S(cN ) for 0fm<n;Xε(Äεn)∈S(v)}

]

1778

= Ex

[

∞
∑

n=0

1{Xε(Äεm)∈S(cN ) for 0fm<n;Xε(Äεn)∈S(w0)}

]

·Θ(1).(S.43)1779

Therefore, combining (S.41) and (S.43), and since there are only finitely many nodes in CN ,1780

we can obtain by summing over v ∈ CN that (S.36) is bounded above by Θ(ε−k). Combining1781

with (S.37), we have that, for x ∈ S(cN ), (S.36) is Θ(ε−k). Moreover, by (S.43), for each1782

x ∈ S(cN ) and each v ∈ CN ,1783

(S.44) Ex

[

∞
∑

n=0

1{Xε(Äεm)∈S(cN ) for 0fm<n;Xε(Äεn)∈S(v)}

]

= Θ(ε−k).1784

To prove (ii) (a), fix x ∈ S(cN ). By the induction hypothesis, Ey[Ä
ε
1 ] = Θ(ε−p0(u)) for each1785

y ∈ S(u) where u ∈ CN . Thus, the expected sojourn time in S(cN ) is1786

Ex[Ä
ε,N
1 ] = Ex

[

∞
∑

n=0

1{Xε(τε
m)∈S(cN ) for 0≤m≤n} · (Ä

ε
n+1 − Ä

ε
n)

]

1787

=

∞
∑

n=0

∑

u∈CN

∑

y∈S(u)

Ex[1{Xε(τε
m)∈S(cN ) for 0≤m<n;Xε(τε

n)=y}] · Ey[Ä
ε
1 − Ä

ε
0 ]1788

=
∑

u∈CN

Ex

[

∞
∑

n=0

1{Xε(τε
m)∈S(cN ) for 0≤m<n;Xε(τε

n)∈S(u)}

]

·Θ(ε−p0(u))1789

=
∑

u∈CN

Θ(ε−k−p0(u)) = Θ(ε−k−max{p0(u):u∈CN}) = Θ(ε−p0(cN )).1790

where the first equality holds from the strong Markov property of Xε, we used (S.44) for the1791

third equality, and we used Lemma S.19 for the fourth equality.1792
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To prove (ii) (b), fix x ∈ S(cN ) and w ∈ V (N−1) \ CN . By the induction hypothesis,1793

Py[X
ε(Ä ε1 ) ∈ S(w)] = Θ(εKuw) for each y ∈ S(u) where u ∈ CN . Thus, starting from x, the1794

probability of exiting S(cN ) by means of a transition from a state in S(cN ) to a state in S(w)1795

is given by1796

Px[X
ε(Ä ε,N1 ) ∈ S(w)] =

∞
∑

n=0

Px[X
ε(Ä εm) ∈ S(cN ) for 0 f m f n;Xε(Ä εn+1) ∈ S(w)]1797

=

∞
∑

n=0

∑

u∈CN

∑

y∈S(u)

Ex[1{Xε(τε
m)∈S(cN ) for 0≤m<n;Xε(τε

n)=y}] · Py[X
ε(Ä ε1 ) ∈ S(w)]1798

=
∑

u∈CN :

(u,w)∈E(N−1)

Ex

[

∞
∑

n=0

1{Xε(τε
m)∈S(cN ) for 0≤m<n;Xε(τε

n)∈S(u)}

]

·Θ(εKuw)1799

=
∑

u∈CN :

(u,w)∈E(N−1)

Θ(ε−k+Kuw) = Θ(ε−k+min{Kuw:u∈CN and (u,w)∈E(N−1)}) = Θ(εKcNw),1800

where we used (S.44) for the third equality, and for the second equality, we used the fact that1801

there must be an edge in E(N−1) between u and w if Py[X
ε(Ä ε1 ) ∈ S(w)] > 0 for some and1802

hence all y ∈ S(u).1803

To prove (ii) (c), fix x ∈ S(w) where w ∈ V (N−1) \ CN . By the induction hypothesis,1804

Px[X
ε(Ä ε1 ) ∈ S(v)] = Θ(εKwv) for each v ∈ CN . Thus, starting from x, the probability of1805

entering S(cN ) by means of a transition from a state in S(w) to a state in S(cN ) is1806

Px[X
ε(Ä ε,N1 ) ∈ S(cN )] =

∑

v∈CN

Px[X
ε(Ä ε1 ) ∈ S(v)]1807

=
∑

v∈CN :
(w,v)∈E(N−1)

Θ(εKwv) = Θ(εmin{Kwv :v∈CN and (w,v)∈E(N−1)}) = Θ(εKwcN ).1808

1809

S.5.4 Justification for Step 4 of the algorithm1810

Lemma S.21. Fix w ∈ V (M,0) \ {a}. Let Ä εn = Ä ε,Mn , for n = 0, 1, 2, . . ., as defined in Section1811

S.5.2. Then, starting from x ∈ S(w), the expected number of distinct visits to S(w), including1812

the initial start there, before Xε enters S(a) is1813

Ex

[

∞
∑

n=0

1{Xε(Äεm)/∈S(a) for 0fm<n;Xε(Äεn)∈S(w)}

]

= Θ(1).1814

Proof. Let ·ε0 = 0, and for n = 1, 2, . . ., successively define1815

¸εn−1 = inf
{

t g ·εn−1 : X
ε(t) /∈ S(v) where v ∈ V (M,0) and Xε(·εn−1) ∈ S(v)

}

,1816

1817

·εn = inf
{

t g ¸εn−1 : X
ε(t) ∈ S(w) ∪ S(a)

}

.1818
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Note that for x ∈ S(w), Px-a.s.,1819

(S.45)
∞
∑

n=0

1{Xε(Äεm)/∈S(a) for 0fm<n;Xε(Äεn)∈S(w)} =
∞
∑

n=0

1{Xε(·εm)∈S(w) for 0fmfn},1820

since they both count the number of distinct visits to S(w), including the initial start there,1821

before Xε enters S(a).1822

Recall from Section S.4 that for each u ∈ V (M,0) \ {a}, there is an r-path from u to a. Let1823

such an r-path from w to a be w → w1 . . . → wd → a where w,w1, . . . , wd, a are distinct. By1824

definition, an edge (u, v) ∈ V (M,0) is an r-edge implies that Pz[X
ε(Ä ε1 ) ∈ S(v)] = Θ(1) for all1825

z ∈ S(u). Thus, for any y ∈ S(w), using the strong Markov property of Xε, we have1826

Θ(1) = 1 g Py[X
ε(·ε1) /∈ S(w)] = Py[X

ε(·ε1) ∈ S(a)]1827

g Py[X
ε(Ä ε1 ) ∈ S(w1), . . . , X

ε(Ä εd ) ∈ S(wd), X
ε(Ä εd+1) ∈ S(a)]1828

=
∑

z∈S(wd)

Px[X
ε(Ä ε1 ) ∈ S(w1), . . . , X

ε(Ä εd ) ∈ S(wd), X
ε(Ä εd ) = z] · Pz[X

ε(Ä ε1 ) ∈ S(a)]1829

= Py[X
ε(Ä ε1 ) ∈ S(w1), . . . , X

ε(Ä εd ) ∈ S(wd)] ·Θ(1) = . . . = Θ(1) · . . . ·Θ(1) = Θ(1).1830

Using a similar approach to that used in Section S.5.3, we can show that for x ∈ S(w),1831

Ex

[

∞
∑

n=0

1{Xε(·εm)∈S(w) for 0fmfn}

]

g
1

maxy∈S(w)Py[Xε(·ε1) /∈ S(w)]
= Θ(1),1832

and1833

Ex

[

∞
∑

n=0

1{Xε(·εm)∈S(w) for 0fmfn}

]

f
1

miny∈S(w)Py[Xε(·ε1) /∈ S(w)]
= Θ(1).1834

Combining these inequalities with (S.45) yields the desired result.1835

Theorem S.22. Let Ä εB = inf{t g 0 : Xε(t) ∈ B} be the first passage time to B for Xε. For1836

each N = 1, . . . , |V (M)| − 1 and x ∈ S(vN ), we have1837

(S.46) Ex[Ä
ε
B] = Θ(ε−p(vN )).1838

Proof. It suffices by iteration to prove that for each fixed 1 f N f |V (M)| − 1, if1839

(S.47) Ey[Ä
ε
B] = Θ(ε−p(vk)) for all y ∈ S(vk) and 1 f k f N − 1,1840

then (S.46) holds for all x ∈ S(vN ). By convention, (S.47) holds automatically for N = 1.1841

For the iteration step, fix 1 f N f |V (M)| − 1, and assume that (S.47) holds. If N = 1, let1842

A = V (M,0) \ {a}, and if N > 1, let A = V (M,0) \ {v1, . . . , vN−1, a}. Recall that for w ∈ A and1843

1 f k f N − 1, we have w ∈ V (M,k), and so by (S.35),1844

(S.48) pk(w) =

{

max{pk−1(w), pk−1(vk)−Kwvk} for (w, vk) ∈ E
(M,k−1),

pk−1(w), for (w, vk) /∈ E
(M,k−1).

1845
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Note that (w, vk) ∈ E(M,k−1) if and only if (w, vk) ∈ E(M,0). Since pk−1(vk) =: p(vk) for1846

1 f k f N − 1, by iterating (S.48), we can obtain1847

(S.49) pN−1(w) = max{p0(w),max{p(vk)−Kwvk : 1 f k f N − 1 and (w, vk) ∈ E
(M,0)}},1848

where we make the convention that a maximum over an empty set is −∞. In particular, since1849

vN ∈ A, we have1850

(S.50)
p(vN ) := pN−1(vN ) = max{p0(vN ),max{p(vk)−KvNvk : 1 f k f N − 1 and (vN , vk) ∈ E

(M,0)}}.1851

Fix x ∈ S(vN ). We will derive a lower bound and an upper bound for Ex[Ä
ε
B]. For the lower1852

bound, let Ä ε = inf{t g 0 : Xε(t) /∈ S(vN )}. Recall that Px-a.s., Ä ε = Ä ε,M1 as defined in1853

Section S.5.2. By Lemma S.20, for each y ∈ S(w) where w ∈ V (M,0) = V (M) is such that1854

(vN , w) ∈ E
(M,0) = E(M), Px[X

ε(Ä ε) = y] = Θ(εKvNw) and Ex[Ä
ε] = Θ(ε−p0(vN )). By first1855

step analysis,1856

Ex[Ä
ε
B] = Ex[Ä

ε] +
∑

(vN ,w)∈E(M,0)

∑

y∈S(w)

Px[X
ε(Ä ε) = y] · Ey[Ä

ε
B]1857

g Ex[Ä
ε] +

∑

1fkfN−1:
(vN ,vk)∈E

(M,0)

∑

y∈S(vk)

Px[X
ε(Ä ε) = y] · Ey[Ä

ε
B]1858

= Θ(ε−p0(vN )) +
∑

1fkfN−1:
(vN ,vk)∈E

(M,0)

Θ(εKvNvk ) ·Θ(ε−p(vk)) = Θ(ε−pN−1(vN )).(S.51)1859

where we used (S.47) in the second last equality, and used Lemma S.19 and (S.50) for the last1860

equality.1861

For the upper bound, let ¸ε = inf{t g 0 : Xε(t) /∈
⋃

u∈A S(u)}. Let Ä εn = Ä ε,Mn , for1862

n = 0, 1, 2, . . ., as defined in Section S.5.2. Then, using Lemma S.21 and the strong Markov1863

property, for w ∈ A ¢ V (M,0) \ {a},1864

Ex

[

∞
∑

n=0

1{Xε(Äεm)∈
⋃

u∈A S(u) for 0fm<n;Xε(Äεn)∈S(w)}

]

1865

f Px[X
ε(·ε) ∈ S(w)] max

y∈S(w)
Ey

[

∞
∑

n=0

1{Xε(Äεm)/∈S(a) for 0fm<n;Xε(Äεn)∈S(w)}

]

f Θ(1).(S.52)1866

where ·ε = inf{t g 0 : Xε(t) ∈ S(w)}.1867

For 1 f k f N − 1 such that there exists w ∈ A where (w, vk) ∈ E
(M,0),1868

Px[X
ε(¸ε) ∈ S(vk)] =

∞
∑

n=0

Px[X
ε(Ä εm) ∈

⋃

u∈A

S(u) for 0 f m f n;Xε(Ä εn+1) ∈ S(vk)]1869

=

∞
∑

n=0

∑

w∈A

∑

y∈S(w)

Px[X
ε(Ä εm) ∈

⋃

u∈A

S(u) for 0 f m < n;Xε(Ä εn) = y] · Py[X
ε(Ä ε1 ) ∈ S(vk)]1870
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=
∑

w∈A:
(w,vk)∈E(M,0)

Ex

[

∞
∑

n=0

1{Xε(τε
m)∈

⋃
u∈A S(u) for 0≤m<n;Xε(τε

n)∈S(w)}

]

·Θ(εKwvk )1871

f
∑

w∈A:
(w,vk)∈E(M,0)

Θ(1) ·Θ(εKwvk ),(S.53)1872

where the second equality holds from strong Markov property of Xε, the third equality uses1873

Lemma S.20, and we used (S.52) for the last inequality. Using Lemma S.20 and (S.52),1874

Ex[¸
ε] = Ex

[

∞
∑

n=0

1{Xε(τε
m)∈

⋃
u∈A S(u) for 0≤m≤n} · (Ä

ε
n+1 − Ä

ε
n)

]

1875

=

∞
∑

n=0

∑

w∈A

∑

y∈S(w)

Px[X
ε(Ä εm) ∈

⋃

u∈A

S(u) for 0 f m < n;Xε(Ä εn) = y] · Ey[Ä
ε
1 − Ä

ε
0 ]1876

=
∑

w∈A

Ex

[

∞
∑

n=0

1{Xε(τε
m)∈

⋃
u∈A S(u) for 0≤m<n;Xε(τε

n)∈S(w)}

]

·Θ(ε−p0(w))1877

f
∑

w∈A

Θ(1) ·Θ(ε−p0(w)) f Θ(ε−pN−1(vN )),(S.54)1878

where we have used (S.49) and (S.34) to conclude that p0(w) f pN−1(w) f pN−1(vN ) for all1879

w ∈ A. Therefore, using first step analysis, we have1880

Ex[Ä
ε
B] = Ex[¸

ε] +
∑

1fkfN−1

∑

y∈S(vk)

Px[X
ε(¸ε) = y] · Ey[Ä

ε
B]1881

= Ex[¸
ε] +

∑

1fkfN−1

Px[X
ε(¸ε) ∈ S(vk)] ·Θ(ε−p(vk))1882

f Θ(ε−pN−1(vN )) +
∑

w∈A,
1fkfN−1:

(w,vk)∈E
(M,0)

Θ(εKwvk ) ·Θ(ε−p(vk))1883

f Θ(ε−pN−1(vN )) + Θ(ε−max{pN−1(w):w∈A}) = Θ(ε−pN−1(vN )),(S.55)1884

where we used (S.47) for the second equality, (S.53) and (S.54) for the first inequality, and1885

(S.49) and Lemma S.19 for the second inequality.1886

By (S.51) and (S.55), we conclude that Ex[Ä
ε
B] = Θ(ε−pN−1(vN )) = Θ(ε−p(vN )).1887

S.6 Application of the algorithm to the 2D, 3D and 4D models The algorithm is1888

described in Section 4.2.1, and it finds the order of the pole of the mean first passage time to1889

∅ ̸= B ¢ X from each state in Bc. In this section, we will apply the algorithm to the 2D,1890

3D and 4D models and find the order of the poles of the mean first passage times of interest1891

to the fully repressed state and the fully active state (Figure S.1 – S.5). For each figure, the1892

“Input” panel shows the order of each of the non-zero off-diagonal entries in Q(ε) and the set1893

B which contains a single state, which is either the fully repressed state or the fully active1894

state. The orders of these non-zero entries in Q(ε) are represented by colored arrows in the1895

graph (red for order 0 and blue for order 1). Step 1 transforms the orders in the infinitesimal1896
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generator Q(ε) into orders for the transition matrix P (ε) and the exponential parameters q(ε)1897

to give an equivalent construction for the continuous time Markov chain. The orders of the1898

non-zero entries in P (ε) are given by K and represented by colored arrows in the graph, and1899

the number in the circle at a state x ∈ Bc is the order of the pole p(x) of 1
qx(ε)

(the mean1900

sojourn time at the state x). In Step 2, the set B contains only one state and is just relabeled1901

as the node a. All transitions from a to Bc are then removed. While the Input, Step 1 and1902

Step 2 are universal across all the figures in this section, we explain the Step 3, Step 4 and1903

Output panels separately for each application below since they are more distinct.1904

2D model (from the fully active state to the fully repressed state): see Figure S.1.1905

The explanation of the panels for Input, Step 1 and Step 2 is given above with B = {(Dtot, 0)
T }.1906

Step 3 for the 2D model involves only one iteration, where the collection of all nodes except the1907

node a and the origin 0 (called an r-connected set C) is condensed to a single node c, and the1908

order of the pole at c is p(c) = maxu∈C p(u)+min{Kuv : u ∈ C, v /∈ C and (u, v) ∈ E} = 1+0 =1909

1, where E denotes the edge set of the graph in Step 3 before the first iteration. Moreover,1910

Kc0 = min{Ku0 : u ∈ C and (u, 0) ∈ E}−min{Kuv : u ∈ C, v /∈ C and (u, v) ∈ E} = 1−0 = 1,1911

Kca = min{Kua : u ∈ C and (u, a) ∈ E}−min{Kuv : u ∈ C, v /∈ C and (u, v) ∈ E} = 0−0 = 0,1912

and K0c = min{K0v : v ∈ C and (0, v) ∈ E} = 0. Step 4 involves two iterations. In the1913

first iteration, we fix the node with the largest value of p, which is c in our case. At any1914

node other than a that is connected to c (i.e., the origin 0), the value of p is updated to1915

p(0) = max{p(0), p(c) − K0c} = max{0, 1 − 0} = 1, and then any edges leading to or from c1916

are removed. In the second iteration, of the remaining nodes, we fix the node with the largest1917

value of p, which is the origin. When all of the nodes other than a have been fixed, the order1918

of the pole of the mean first passage time from each state in Bc to B is given by the fixed value1919

of the node to which the state belongs.1920

2D model (from the fully repressed state to the fully active state) Because of the1921

symmetry in the input graph in Figure S.1, the orders of the poles of the mean first passage1922

times to the fully repressed state can be obtained in the same way as above.1923

3D model (from the fully active state to the fully repressed state): see Figure S.2. The1924

explanation of the panels for Input, Step 1 and Step 2 is given above with B = {(Dtot, 0, 0)
T }.1925

A state represents (nDR
12
, nDA , nDR

1
)T . Step 3 involves only one iteration, where the collection of1926

all nodes except for (0, 0, 0)T , (0, 0,Dtot)
T , (1, 0,Dtot−1)T , (2, 0,Dtot−2)T ,. . ., (Dtot−2, 0, 2)T ,1927

and (Dtot−1, 0, 1)T (called an r-connected set C) is condensed to a single node c. The order of1928

the pole of the sojourn time at C is p(c) = maxu∈C p(u)+min{Kuv : u ∈ C, v /∈ C and (u, v) ∈1929

E} = 1+0 = 1, where E denotes the edge set of the graph in Step 3 before the first iteration.1930

Moreover, Kc,(0,0,0)T = min{Ku,(0,0,0)T : u ∈ C and (u, (0, 0, 0)T ) ∈ E} −min{Kuv : u ∈ C, v /∈1931

C and (u, v) ∈ E} = 1 − 0 = 1, K(0,0,0)T ,c = min{K(0,0,0)T ,v : v ∈ C and ((0, 0, 0)T , v) ∈1932

E} = 0, Kc,(0,0,Dtot)T = min{Ku,(0,0,Dtot)T : u ∈ C and (u, (0, 0,Dtot)
T ) ∈ E} − min{Kuv :1933

u ∈ C, v /∈ C and (u, v) ∈ E} = 0 − 0 = 0, K(0,0,Dtot)T ,c = min{K(0,0,Dtot)T ,v : v ∈1934

C and ((0, 0,Dtot)
T , v) ∈ E} = 1, . . ., and Kc,(Dtot−1,0,1)T = min{Ku,(Dtot−1,0,1)T : u ∈1935

C and (u, (Dtot − 1, 0, 1)T ) ∈ E} − min{Kuv : u ∈ C, v /∈ C and (u, v) ∈ E} = 0 − 0 = 0,1936

K(Dtot−1,0,1)T ,c = min{K(Dtot−1,0,1)T ,v : v ∈ C and ((Dtot − 1, 0, 1)T , v) ∈ E} = 1. Step 41937

involves (Dtot + 2) iterations. In the first iteration, we fix the node with the largest value of1938

p, which is c in our case. At any node u other than a that is connected to c, the value of p is1939
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updated according to the formula p(u) = max{p(u), p(c) − Kuc}, and then any edges leading1940

to or from c are removed. In the second iteration, the node (0, 0, 0)T has the largest value of p1941

among the remaining nodes, and thus is fixed. There is no other nodes connected to (0, 0, 0)T1942

at this point, so we move to the next iteration. In the third iteration, the node (0, 0,Dtot)
T is1943

fixed. The node (1, 0,Dtot − 1)T is connected to it, and thus the p((1, 0,Dtot − 1)T ) is updated1944

to be max{p((1, 0,Dtot − 1)T ), p((0, 0,Dtot)
T )−K(1,0,Dtot−1)T ,(0,0,Dtot)T } = 0. Then, any edges1945

leading to or from (0, 0,Dtot)
T are removed. The remaining iterations will be similar to the1946

third one. When all of the nodes other than a have been fixed, the order of the pole of the1947

mean first passage time from each state in Bc to B is given by the fixed value of the node to1948

which the state belongs.1949

3D model (from the fully repressed state to the fully active state): see Figure1950

S.3. The explanation of the panels for Input, Step 1 and Step 2 is given above with B =1951

{(0,Dtot, 0)
T }. Step 3 involves two iterations. In the first iteration, the collection of nodes1952

consisting of (Dtot − 1, 0, 1)T and (Dtot, 0, 0)
T (called an r-connected set C1) is condensed into1953

a single node c1. The order of the pole of the sojourn time in C1 is p(c1) = maxu∈C1 p(u) +1954

min{Kuv : u ∈ C1, v /∈ C1 and (u, v) ∈ E} = 1 + 1 = 2, where E denotes the edge set of the1955

graph in Step 3 before the first iteration. Moreover, Kc1,(Dtot−2,0,2)T = min{Ku,(Dtot−2,0,2)T :1956

u ∈ C1 and (u, (Dtot − 2, 0, 2)T ) ∈ E} − min{Kuv : u ∈ C1, v /∈ C1 and (u, v) ∈ E} =1957

1 − 1 = 0, K(Dtot−2,0,2)T ,c1 = min{K(Dtot−2,0,2)T ,v : v ∈ C1 and ((Dtot − 2, 0, 2)T , v) ∈ E} = 0,1958

Kc1,(Dtot−1,0,0)T = min{Ku,(Dtot−1,0,0)T : u ∈ C1 and (u, (Dtot − 1, 0, 0)T ) ∈ E} − min{Kuv :1959

u ∈ C1, v /∈ C1 and (u, v) ∈ E} = 1 − 1 = 0 and K(Dtot−1,0,0)T ,c1 = min{K(Dtot−1,0,0)T ,v : v ∈1960

C1 and ((Dtot − 1, 0, 0)T , v) ∈ E} = 0. In the second iteration of Step 3, the collection of all1961

nodes except for (0, 0, 0)T and a (called an r-connected set C2) is condensed to a single node c2.1962

The order of the pole of the sojourn time in C2 is p(c2) = maxu∈C2 p(u)+min{Kuv : u ∈ C2, v /∈1963

C2 and (u, v) ∈ E} = 2 + 0 = 2, where E denotes the edge set of the graph in Step 3 before1964

the second iteration. Moreover, Kc2,(0,0,0)T = min{Ku,(0,0,0)T : u ∈ C2 and (u, (0, 0, 0)T ) ∈1965

E} − min{Kuv : u ∈ C2, v /∈ C2 and (u, v) ∈ E} = 1 − 0 = 1, Kc2,a = min{Kua : u ∈1966

C2 and (u, a) ∈ E}−min{Kuv : u ∈ C2, v /∈ C2 and (u, v) ∈ E} = 0−0 = 0, and K(0,0,0)T ,c2 =1967

min{K(0,0,0)T ,v : v ∈ C2 and ((0, 0, 0)T , v) ∈ E} = 0. Step 4 involves two iterations. In the1968

first iteration, we fix the node with the largest value of p, which is c2 in our case. At any node1969

other than a that is connected to c2 (i.e., the origin (0, 0, 0)T ), the value of p is updated to1970

p((0, 0, 0)T ) = max{p((0, 0, 0)T ), p(c2)−K(0,0,0)T ,c2} = max{0, 2− 0} = 2, and then any edges1971

leading to or from c2 are removed. In the second iteration, among the remaining nodes, we fix1972

the node with the largest value of p, which is the origin. When all of the nodes other than a1973

have been fixed, the order of the pole of the mean first passage time from each state in Bc to1974

B is given by the fixed value of the node to which the state belongs.1975

4D model (from the fully active state to the fully repressed state): see Figure1976

S.4. We illustrate how to use the algorithm for the 4D model when Dtot = 2; for larger1977

Dtot, the methodology will be the same. A state represents (nDR
12
, nDA , nDR

1
, nDR

2
)T . The1978

explanation of the panels for Input, Step 1 and Step 2 is given above with B = {(2, 0, 0, 0)T }.1979

Step 3 involves only one iteration, where the collection of all nodes except for (0, 0, 0, 0)T ,1980

(0, 0, 2, 0)T , (0, 0, 1, 1)T , (0, 0, 0, 2)T , (1, 0, 1, 0)T and (1, 0, 0, 1)T (called an r-connected set C)1981

is condensed to a single node c. The order of the pole of the sojourn time in C is p(c) =1982
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maxu∈C p(u) + min{Kuv : u ∈ C, v /∈ C and (u, v) ∈ E} = 1 + 0 = 1, where E denotes1983

the edge set of the graph in Step 3 before the first iteration. Moreover, the value of K for1984

edges between c and an original node w that is not in C are defined according to the formula1985

Kc,w = min{Kuw : u ∈ C and (u,w) ∈ E} − min{Kuv : u ∈ C, v /∈ C and (u, v) ∈ E},1986

Kw,c = min{Kw,v : v ∈ C and (w, v) ∈ E}. Step 4 involves seven iterations. In the first1987

iteration, we fix the node with the largest value of p, which is c in our case. At any node1988

u other than a that is connected to c, the value of p is updated according to the formula1989

p(u) = max{p(u), p(c) − Kuc}, and then any edges leading to or from c are removed. In1990

the second iteration of Step 4, the node (0, 0, 0, 0)T has the largest value of p among the1991

remaining nodes, and then is fixed. There are no other nodes connected to (0, 0, 0, 0)T at1992

this point, so we move to the next iteration. In the third iteration, the node (0, 0, 2, 0)T1993

is fixed. The node (1, 0, 1, 0)T is connected to it, and thus p((1, 0, 1, 0)T ) is updated to be1994

max{p((1, 0, 1, 0)T ), p((0, 0, 2, 0)T ) − K(1,0,1,0)T ,(0,0,2,0)T } = 0. Then, any edges leading to or1995

from (0, 0, 2, 0)T are removed. The remaining iterations will be similar to the third one. When1996

all of the nodes other than a have been fixed, the order of the pole of the mean first passage1997

time from each state in Bc to B is given by the fixed value of the node to which the state1998

belongs.1999

4D model (from the fully repressed state to the fully active state): see Figure S.5.2000

We again illustrate how to use the algorithm for the 4D model when Dtot = 2; for larger Dtot,2001

the methodology will be the same. The explanation of the panels for Input, Step 1 and Step2002

2 is given above with B = {(0, 2, 0, 0)T }. Step 3 involves two iterations. In the first iteration,2003

the collection of the nodes (1, 0, 1, 0)T , (1, 0, 0, 1)T and (2, 0, 0, 0)T (called an r-connected set2004

C1) is condensed into a single node c1. The order of the pole of the sojourn time in C12005

is p(c1) = maxu∈C1 p(u) + min{Kuv : u ∈ C1, v /∈ C1 and (u, v) ∈ E} = 1 + 1 = 2, where E2006

denotes the edge set of the graph in Step 3 before the first iteration. Moreover, the value of K of2007

edges between c1 and an original node w that is not in C1 are defined if there is an edge between2008

some node u ∈ C1 and w and according to the formula Kc1,w = min{Kuw : u ∈ C1 and (u,w) ∈2009

E} −min{Kuv : u ∈ C1, v /∈ C1 and (u, v) ∈ E}, Kw,c1 = min{Kw,v : v ∈ C1 and (w, v) ∈ E}.2010

In the second iteration of Step 3, the collection of all nodes except for (0, 0, 0, 0)T and a (called2011

an r-connected set C2) is condensed to a single node c2. The order of the pole of the sojourn2012

time in C2 is p(c2) = maxu∈C2 p(u) + min{Kuv : u ∈ C2, v /∈ C2 and (u, v) ∈ E} = 2 + 0 = 2,2013

where E denotes the edge set of the graph in Step 3 before the second iteration. Moreover,2014

Kc2,(0,0,0,0)T = min{Ku,(0,0,0,0)T : u ∈ C and (u, (0, 0, 0, 0)T ) ∈ E} − min{Kuv : u ∈ C2, v /∈2015

C2 and (u, v) ∈ E} = 1 − 0 = 1, Kc2,a = min{Kua : u ∈ C2 and (u, a) ∈ E} − min{Kuv :2016

u ∈ C2, v /∈ C2 and (u, v) ∈ E} = 0 − 0 = 0, and K(0,0,0,0)T ,c2 = min{K(0,0,0,0)T ,v : v ∈2017

C2 and ((0, 0, 0, 0)T , v) ∈ E} = 0. Step 4 involves two iterations. In the first iteration,2018

we fix the node with the largest value of p, which is c2 in our case. At any node other2019

than a that is connected to c2 (i.e., the origin (0, 0, 0, 0)T ), the value of p is updated to2020

p((0, 0, 0, 0)T ) = max{p((0, 0, 0, 0)T ), p(c2)−K(0,0,0,0)T ,c2} = max{0, 2− 0} = 2, and then any2021

edges leading to or from c2 are removed. In the second iteration, of the remaining nodes, we2022

fix the node with the largest value of p, which is the origin. When all of the nodes other than2023

a have been fixed, the order of the pole of the mean first passage time from each state in Bc2024

to B is given by the fixed value of the node to which the state belongs.2025
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Input for the 2D model Step 1
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Figure S.1: Key steps of the algorithm for the 2D model.
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Input for the 3D model Step 1
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Figure S.2: Key steps of the algorithm for the 3D model (from the fully active state
to the fully repressed state).
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Figure S.3: Key steps of the algorithm for the 3D model (from the fully repressed
state to the fully active state).
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Input for the 4D model Step 1
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Figure S.4: Key steps of the algorithm for the 4D model (from the fully active state
to the fully repressed state).
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Figure S.5: Key steps of the algorithm for the 4D model (from the fully repressed
state to the fully active state).
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S.7 Leading coefficient for the MFPT2026

S.7.1 Proof of Theorem 4.72027

Proof. Fix λ = max{qx(ε) : x ∈ X , 0 f ε < ε0}. The λ here should not be confused2028

with other rates λ with subscripts and/or superscripts used elsewhere of this paper. In the2029

following, we use the breve symbol to denote notation associated with discrete time Markov2030

chains defined below.2031

Let Y ε = {Y ε(n) : n ∈ Z+} be a discrete time Markov chain with transition matrix P̆ (ε) =2032

I + 1
¼
Q(ε) for each 0 f ε < ε0

5. Note that Y ε is a singularly perturbed discrete time Markov2033

chain under the definition of Avrachenkov et al. [2]. Let Π̆(ε) be the ergodic projection of Y ε2034

and H̆(ε) be the deviation matrix of Y ε (see definitions in SI - Section S.7.2). The ergodic2035

projection of Y 0 is Π̆(0) = W̆M̆ , where I is the |A| × |A| identity matrix and2036

W̆ =

(

I

−T−1
0 R0

)

and M̆ =
(

I 0
)

.2037

Then,2038

M̆
( 1

λ
Q(1)

)

W̆ =
1

λ

(

I 0
)

(

A1 S1

R1 T1

)(

I

−T−1
0 R0

)

=
1

λ
(A1 + S1(−T0)

−1R0) =
1

λ
QA.2039

Assumptions 4.1, 4.2 and Lemma S.1 imply that the null space of this matrix is one dimen-2040

sional.2041

Using the computational algorithm in Section 6.3.1 of [2], the generator6 for an aggregated2042

discrete time Markov chain is M̆
(

1
¼
Q(1)

)

W̆ = 1
¼
QA, whose null space is one dimensional.2043

Then, by the computational algorithm on page 176-177 of [2] the deviation matrix H̆(ε) has a2044

Laurent series expansion with order of the pole equal to one:2045

H̆(ε) =
1

ε
H̆(−1) + H̆(0) + εH̆(1) + . . . .2046

Since the aggregated Markov chain has a single recurrent class by Assumption 4.2, the ergodic2047

projection of the aggregated Markov chain is 1α, where α is a row vector denoting the unique2048

stationary distribution of the aggregated discrete time Markov chain. The deviation matrix of2049

this aggregated Markov chain is D̆ = (− 1
¼
QA + 1α)−1 − 1α. By Theorem 6.7 in [2],2050

H̆(−1) = W̆ D̆M̆ =

(

I

−T−1
0 R0

)

D̆
(

I 0
)

=

(

D̆ 0

T−1
0 R0D̆ 0

)

.2051

For each 0 < ε < ε0, let h̆x,y(ε) be the mean first passage time from x to y in Y ε. Then, the2052

5In general, when 0 < ε < ε0, the discrete time Markov chain Y
ε is different from the embedded discrete

time Markov chain described in Section 3.1. In particular, the discrete time Markov chain used here can have
self loops, whereas the embedded discrete time Markov chain has no self loops.

6The transition matrix for a discrete time Markov chain with generator G is P = I + G.
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mean first passage time from x to y in Xε is2053

hx,y(ε) =
1

λ
h̆x,y(ε) =

1

λ

H̆y,y(ε)− H̆x,y(ε)

πy(ε)
2054

=
1

λ

(1
ε
D̆y,y +O(1))− (1

ε
D̆x,y +O(1))

π
(ky)
y ε

ky
y +O(εky+1)

2055

=
Dy,y −Dx,y

π
(ky)
y

1

εky+1
+O

(

1

εky

)

,2056

where we used (S.56) to show that D̆ = λD. The above equations use the properties of the2057

deviation matrix given in SI - Section S.7.2.2058

When X̂A is irreducible, then π(0) = α has all strictly positive entries. Again, by SI -2059

Section S.7.2, the mean first passage time from x to y in X̂A is finite and positive, and it is2060

1
¼

D̆y,y−D̆x,y

³y
=

Dy,y−Dx,y

Ã
(0)
y

. In this case, the order of the pole of hx,y(ε) is one and the leading2061

coefficient is the mean first passage time from x to y in X̂A.2062

S.7.2 Properties of the deviation matrix for a discrete time Markov chain In this2063

section, we will start with a few results stated in Section 6.1 of Avrachenkov et al. [2] about2064

discrete time Markov chains with finite state space. These include the definitions and properties2065

of the ergodic projection, the fundamental matrix and the deviation matrix. Then, we show2066

one more fact about the deviation matrix. Lastly, Theorem 4.4.7 of Kemeny and Snell [14] gave2067

a formula for mean first passage times for irreducible discrete time Markov chains in terms of2068

the fundamental matrix and the stationary distribution, which is also briefly mentioned in [2].2069

We will write this in terms of the deviation matrix and the stationary distribution with a2070

simple modification.2071

Suppose Y = {Y (n) : n ∈ Z+} is a discrete time Markov chain with a finite state space Y.2072

Suppose the state space Y is partitioned into m ergodic classes (possibly including absorbing2073

states) and a set of transient states, and accordingly, the transition matrix P̆ is2074

P̆ =











Ă1 . . . 0 0
...

. . .
...

...

0 . . . Ăm 0

R̆1 . . . R̆m T̆











.2075

The ergodic projection of Y is given by the Cesaro limit,2076

Π̆ = lim
N→∞

1

N + 1

N
∑

n=0

P̆n.2077

It follows that Π̆(I − P̆ ) = 0 and Π̆Π̆ = Π̆. The ergodic projection Π̆ is the eigenprojection2078

of the transition matrix P̆ corresponding to its maximal eigenvalue 1. That is, if π̆i is the2079

unique stationary distribution for the discrete time Markov chain with transition matrix Ăi2080
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for 1 f i f m, then Π̆ = W̆M̆ with2081

W̆ =











1 . . . 0
...

. . .
...

0 . . . 1

(I − T̆ )−1R̆11 . . . (I − T̆ )−1R̆m1











and M̆ =







π̆1 . . . 0 0
...

. . .
...

...
0 . . . π̆m 0






,2082

where W̆ and M̆ form bases for the right and left eigenspaces, respectively, which implies that2083

P̆ W̆ = W̆ and M̆P̆ = M̆ . One can see that v(I − P̆ + Π̆) = 0 implies that v = 0 and so2084

(I − P̆ + Π̆) is invertible. The fundamental matrix Z̆ and the deviation matrix H̆ of Y are2085

well-defined:2086

Z̆ = lim
N→∞

1

N + 1

N
∑

n=0

n
∑

ℓ=0

(P̆ − Π̆)ℓ = (I − P̆ + Π̆)−1,2087

2088

H̆ = Z̆ − Π̆ = (I − P̆ + Π̆)−1 − Π̆.2089

We also have that H̆Π̆ = (Z̆−Π̆)Π̆ = 0 since P̆ Π̆ = P̆ W̆ M̆ = W̆M̆ = Π̆, Π̆ = Z̆(I−P̆+Π̆)Π̆ =2090

Z̆(Π̆− Π̆ + Π̆) = Z̆Π̆, and Π2 = Π.2091

Now, we show a property of the deviation matrix that is not in [2] and is useful in Section2092

4.2.2. Suppose Q is an infinitesimal generator for a continuous time Markov chain on Y and2093

|Qy,y| f λ for all y ∈ Y . Then, P̆ = I + 1
¼
Q defines a transition matrix for a discrete time2094

Markov chain. The associated ergodic projection and deviation matrix Π̆ and H̆ for P̆ satisfy2095

Π̆Q = λ(Π̆P̆ − Π̆) = 0 and2096

H̆ =

(

I −

(

I +
1

λ
Q

)

+ Π̆

)−1

− Π̆ =

(

−
1

λ
Q+ Π̆

)−1

− Π̆,2097

and so2098

I = (H̆ + Π̆)

(

−
1

λ
Q+ Π̆

)

= −
1

λ
H̆Q+ H̆Π̆−

1

λ
Π̆Q+ Π̆Π̆2099

= −
1

λ
H̆Q+ Π̆ = −

1

λ
H̆Q+

1

λ
H̆Π̆− Π̆Q+ Π̆Π̆ =

(

1

λ
H̆ + Π̆

)

(−Q+ Π̆).2100

Thus,2101

(S.56)
1

λ
H̆ = ((−Q+ Π̆)−1 − Π̆),2102

where we have used the fact that −Q + Π̆ is invertible because Π̆ is the eigenprojection of Q2103

corresponding to the eigenvalue 0.2104

Lastly, assume that Y is irreducible. Then, Y has a unique stationary distribution π̆, which2105

is a row vector, and the ergodic projection of Y is 1π̆. By Theorem 4.4.7 in [14], the mean2106
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first passage time from x ∈ Y to y ∈ Y is
Z̆y,y−Z̆x,y

Ã̆y
. Since Z̆ = H̆ +1π̆, the mean first passage2107

time from x ∈ Y to y ∈ Y is2108

(H̆y,y + (1π̆)y,y)− (H̆x,y + (1π̆)x,y)

π̆y
=

(H̆y,y + π̆y)− (H̆x,y + π̆y)

π̆y
=

H̆y,y − H̆x,y

π̆y
.2109

S.8 1D Model: additional mathematical details2110

Verification of Assumption 4.1. In order to show that Assumption 4.1 holds, consider the2111

states a = 0 and r = Dtot and the set T = {1, . . . ,Dtot−1} defined in Section 2.1. Since Dtot g2112

2, T ≠ ∅. From (2.2), we can see that Qa,a+1(0) = Qa,a−1(0) = Qr,r+1(0) = Qr,r−1(0) = 0.2113

As a consequence, both a and r are absorbing states under Q(0). To see that the states in T2114

are transient under Q(0), consider a state x ∈ T . Since Qz,z+1(0) =
kAE
V
(Dtot − z)z > 0 for all2115

z ∈ {1, . . . ,Dtot − 1}, we have Qx,x+1(0) . . . QDtot−1,Dtot
(0) > 0. By Lemma S.8 and the fact2116

that r is an absorbing state, we have that x is a transient state for X0.2117

Verification of Assumptions 4.4 and 4.2. By Lemma 4.4, it suffices to show Assumption2118

4.4 holds. From (2.2), we can see that Q̃a,a+1 > 0. From the analysis made to prove Assump-2119

tion 4.1, we know that there is a positive probability for X̃ to transition from x ∈ X \ {a, r}2120

to r. It follows that any state x ∈ X \ {r} leads to r under X̃. Now, we would like to show2121

that there is a positive probability for transition from r to x ̸= r ∈ X for the process X̃.2122

This is because Q̃r,r−1 = b
kAE
V

D2
tot > 0 and Q̃z,z−1 = Qz,z−1(0) = µ

kAE
V
(Dtot − z)z > 0 for all2123

z ∈ {1, . . . ,Dtot − 1}. Thus, r leads to any state in X \ {r} under X̃. Combining the above,2124

we see that X̃ is irreducible and Assumption 4.4 holds.2125

Stationary distribution. Let us consider a one-dimensional finite state continuous time2126

Markov chain in which the state space X = {0, 1, . . . ,K} and the off-diagonal entries of the2127

infinitesimal generator Q are all zero except for the following positive rates:2128

(S.57)
Qx,x+1 = λx if x ∈ {0, . . . ,K − 1},

Qx,x−1 = γx if x ∈ {1, . . . ,K}.
2129

Thus, the continuous time Markov chain is a birth-and-death process, it satisfies detailed2130

balance (see [7]) and so the stationary distribution π = (πx)x∈{0,1,...,K} satisfies2131

πx =
λx−1

γx
πx−1, for x ∈ {1, . . . ,K}.2132

Applying this equality recursively, we can express πx, x ∈ {1, . . . ,K}, as a function of π0,2133

obtaining2134

(S.58) πx = π0

x
∏

i=1

λi−1

γi
.2135

Using the fact that
∑K

j=0 πj = 1, we obtain2136

(S.59) π0 =
1

1 +
∑K

j=1

(

∏j
i=1

¼i−1

µi

) .2137
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Substituting (S.59) in (S.58), we obtain2138

(S.60) πx =

∏x
i=1

¼i−1

µi

1 +
∑K

j=1

(

∏j
i=1

¼i−1

µi

) for x ∈ {1, . . . ,K}.2139

Now, consider the one-dimensional continuous time Markov chain introduced in Section 2.12140

with state space X = {0, 1, . . . ,Dtot} and infinitesimal generator as defined in (2.2), which has2141

nonzero off-diagonal entries given, for ε > 0, by2142

(S.61)

λε
x := Qx,x+1(ε) =

(

kAE
V

x+ ε
kAE
V

Dtot

)

(Dtot − x) if x ∈ {0, . . . ,Dtot − 1},

γεx := Qx,x−1(ε) = µ

(

kAE
V

(Dtot − x) + bε
kAE
V

Dtot

)

x if x ∈ {1, . . . ,Dtot}.

2143

By substituting the expressions for the rates in (S.61) into (S.59)-(S.60), and suitably rear-2144

ranging the terms, we obtain that2145

πx(0) = lim
ε→0

πx(ε) =















bµDtot

1+bµDtot
if x = 0

0 if x ∈ {1, . . . ,Dtot − 1}
1

1+bµDtot
if x = Dtot.

2146

Mean first passage time. Consider the one-dimensional, finite state, continuous time2147

Markov chain introduced in (S.57). We will determine an analytical expression for the MFPT2148

from x = K to x = 0 and from x = 0 to x = K for this chain. We first focus on the former. For2149

this, we exploit first step analysis (see Equation 3.1 of [16]), proceeding in a similar manner2150

to that for (3.2), to obtain2151

(S.62)











h0,0 = 0,

hx,0 =
1

¼x+µx
+ ¼x

¼x+µx
hx+1,0 +

µx
¼x+µx

hx−1,0 if x ∈ {1, . . . ,K − 1},

hK,0 =
1
µK

+ hK−1,0,

2152

where for x, y ∈ X , hx,y = Ex[τy], τy = inf{t g 0 : X(t) = y}, X is the continuous time Markov2153

chain with infinitesimal generator given by (S.57). Now, defining ∆hx,x−1 = hx,0 − hx−1,0 for2154

x ∈ {1, ...,K}, we can rewrite (S.62) in the following way:2155

(S.63)











h0,0 = 0,

∆hx,x−1 =
1
µx

+ ¼x

µx
∆hx+1,x if x ∈ {1, . . . ,K − 1},

∆hK,K−1 =
1
µK

.

2156

From (S.63), we have an explicit formula for ∆hK,K−1 and any ∆hx,x−1 can be expressed as2157

a function of ∆hx+1,x. Furthermore, if we sum the ∆hx,x−1 for x = 1, . . . ,K, we obtain2158

(S.64)

hK,0 = hK,0 − h0,0 =

K
∑

x=1

(∆hx,x−1) = ∆h1,0 +∆h2,1 + ...+∆hK−1,K−2 +∆hK,K−1.2159
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Thus, to evaluate the MFPT from x = K to x = 0, we can calculate ∆hx,x−1 for x =2160

K,K − 1, ..., 1 and then sum all of the terms. Defining rj =
¼1¼2...¼j

µ1µ2...µj
, for j = 1, ...,K, we2161

obtain2162

(S.65)

hK,0 =
1

γK

(

1 +
λK−1

γK−1
+

λK−1λK−2

γK−1γK−2
+ ...+ rK−1

)

+
1

γK−1

(

1 +
λK−2

γK−2
+

λK−2λK−3

γK−2γK−3
+ ...+ rK−2

)

+ ...+
1

γ1

=
rK−1

γK

(

1 +
K−1
∑

i=1

1

ri

)

+
K−1
∑

i=2





ri−1

γi



1 +
i−1
∑

j=1

1

rj







+
1

γ1
.

2163

With a similar procedure, we can obtain the MFPT from x = 0 to x = K. More precisely,2164

defining r̃j =
µK−1µK−2...µK−j

¼K−1¼K−2...¼K−j
, we have2165

h0,K =
1

λ0

(

1 +
γ1
λ1

+
γ1γ2
λ1λ2

+ ...+ r̃K−1

)

2166

+
1

λ1

(

1 +
γ2
λ2

+
γ2γ3
λ2λ3

+ ...+ r̃K−2

)

+ ...+
1

λK−1
(S.66)2167

=
r̃K−1

λ0



1 +

K−1
∑

j=1

1

r̃i



+

K−1
∑

i=2





r̃i−1

λK−i



1 +

i−1
∑

j=1

1

r̃j







+
1

λK−1
.2168

A more detailed derivation of the h0,K and hK,0 is given in [3].2169

Let us consider the one-dimensional continuous time Markov chain introduced in Section 2.1,2170

with state space X = {0, 1, . . . ,Dtot} and infinitesimal transition rates that can be written as2171

in (S.61). Since all of the transition rates are O(1), except for λε
0 and γεDtot

which are O(ε),2172

then both hDtot,0(ε) and h0,Dtot(ε) are O(1/ε). This means that in the limit as ε → 0, hDtot,0(ε)2173

and h0,Dtot(ε), which correspond to the time to memory loss of the repressed and active states,2174

respectively, tend to infinity. Substituting parameters in (S.65) and (S.66) yields (2.7) and2175

(2.8), respectively.2176

S.9 2D Model: additional mathematical details2177

Verification of Assumption 4.1. In order to show that Assumption 4.1 holds, consider2178

the states a = (0,Dtot)
T and r = (Dtot, 0)

T and the set T = {i1, . . . , im} defined in Section2179

4.1.2. From (2.10), we can see that Qa,a+vj (0) = Qr,r+vj (0) = 0 for every 1 f j f 4. As a2180

consequence, both a and r are absorbing states under Q(0). To see that the states in T are2181

transient under Q(0), consider a state x = (x1, x2)
T ∈ T . First, suppose x1 ̸= 0. By having2182

the one-step transition along v2 = (0,−1)T occurring x2 times where Qz,z+v2(0) =
kAE
V
z2x1 > 02183

for all z = (x1, z2)
T and 1 f z2 f x2, and having one-step transition along v3 = (1, 0)T2184

occurring Dtot − x1 times where Qz,z+v3(0) = (Dtot − z1)
(

kRW0 + kRW +
kRM
V
z1

)

> 0 for all2185

z = (z1, 0)
T and x1 f z1 f Dtot − 1, we have a positive probability of transition from x to2186

r under Q(0). By Lemma S.8 and the fact that r is an absorbing state, we have that x is2187

a transient state for X0. On the other hand, suppose x1 = 0. Since x = (0, x2) ∈ T , we2188
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have 0 f x2 f Dtot − 1. We can first have a one-step transition along v3 = (1, 0)T , where2189

Qx,x+v3(0) = (Dtot − x2)
(

kRW0 + kRW
)

> 0, to reach the state (1, x2)
T and then take the steps2190

for the x1 ̸= 0 case to reach r. In this way, there is a positive probability of transition from x2191

to the absorbing state r under Q(0), and thus x is transient by Lemma S.8.2192

Verification of Assumptions 4.3 and 4.2. By Lemma 4.4, it suffices to show Assumption2193

4.3 holds. From (2.10), we can see that Q̃a,a+v2 > 0. From the analysis made to prove2194

Assumption 4.1, we know that there is a positive probability to transition from all x ∈ X \{a, r}2195

to r. Now, we would like to show that there is a positive probability to transition from r to2196

x = (x1, x2)
T ∈ X \ {(0, 0)T } for the process X̃. We first can have a one-step transition2197

along v4 = (−1, 0)T where Q
(1)
r,r+v4

= µb
kAM
V

D2
tot > 0, then have a one-step transition along2198

v1 = (0, 1)T where Q
(0)
r+v4,r+v4+v1

= kAW0 + kAW > 0, then have one-step transitions along2199

v4 = (−1, 0)T occurring Dtot − x1 − 1 times where Q
(0)
z,z+v4

= µ
kAE
V
z1 > 0 for all z = (z1, 1)

T2200

and x1 + 1 f z1 f Dtot − 1. If x2 ̸= 0, we finally have one-step transitions along v1 = (0, 1)T2201

occurring x2 − 1 times where Q
(0)
z,z+v1

= (Dtot − (x1 + z2))
(

kAW0 + kAW +
kAM
V
z2

)

> 0 for all2202

z = (x1, z2)
T and 1 f z2 f x2−1; if x2 = 0 and x1 ̸= 0, we will make a one-step transition along2203

v2 = (0,−1)T to (x1, 0)
T where Q

(0)
z,z+v2

=
kAE
V
x1 > 0 with z = (x1, 1)

T and x1 g 1. Therefore,2204

we have that there is a positive probability of transition from r to each x ∈ X \ {(0, 0)T }.2205

Since Q
(0)

−vj ,(0,0)T
= 0 for j ∈ {1, 2, 3, 4} such that −vj ∈ X , we conclude that C = X \{(0, 0)T }2206

is a closed communicating class under Q̃ and since it contains A, Assumption 4.3 holds. Note2207

that Assumption 4.4 does not hold.2208

Stationary distribution. Here, we derive the expression for π
(1)
x , x ∈ T = {i1, . . . , im}, for2209

the case Dtot = 2. In this case T (ε) = T0 + εT1, with2210

T0 =











−q3 kRW0 + kRW 0 0

µ
kAE
V

−
kAE
V
(1 + µ) 0

kAE
V

2(kAW0 + kAW ) 0 −q5 2(kRW0 + kRW )
0 kAW0 + kAW 0 −q6











,2211

T1 =













−2
kAM
V

0 2
kAM
V

0

2
kAM
V
µb −2

kAM
V
(1 + µb) 0 2

kAM
V

0 0 0 0

0 0 2
kAM
V
µb −2

kAM
V













,2212

in which q3 = (kAW0 + kAW +
kAM
V

+ kRW0 + kRW ), q5 = 2(kAW0 + kAW + kRW0 + kRW ) and q6 =2213

(kAW0+kAW+kRW0+kRW+
kRM
V
). Then, by (4.5), β(1) = π

(1)
x , x ∈ T , is given by β(1) = αS1(−T0)

−1,2214

where α = (π
(0)
(0,2), π

(0)
(2,0)) was derived in Section 4.1.2 (Eq. (4.14)). After some calculations,2215
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π
(1)
x can be written for Dtot = 2 as2216

π
(1)
i1

=
4bε2

(

kAM
V

)2
k̄AWµ2

(

k̄RW (k̄RW +
kRM
V
) + (k̄AW +

kAM
V
)
(

(1 + µ)(k̄RW +
kRM
V
) + µ

kAM
V

))

d1d2
,2217

π
(1)
i2

=
4bε2

(

kAM
V

)2
k̄AW k̄RWµ

(

(k̄RW +
kRM
V
)(k̄RW + k̄AW + kAM ) + µ(k̄AW +

kAM
V
)(k̄RW + k̄AW + kRM )

)

kA
E

V
d1d2

,2218

π
(1)
i3

= 0,2219

π
(1)
i4

=
4bε2

(

kAM
V

)2
k̄RWµ

(

(k̄RW +
kRM
V
)
(

(1 + µ)(k̄AW +
kAM
V
) + µk̄RW

)

+ µk̄AW (k̄AW +
kAM
V
)
)

d1d2
,2220

in which k̄AW = kAW0+kAW , k̄RW = kRW0+kRW , d1 = ε
kAM
V
(k̄RW (k̄RW +

kRM
V
)+ bk̄AWµ2(k̄AW +

kAM
V
)), and2221

d2 = ((k̄AW +
kAM
V
)((1 + µ)(k̄RW +

kRM
V
) + µk̄AW ) + k̄RW (k̄RW +

kRM
V
)) and in which i1 = (0, 1)T , i2 =2222

(1, 1)T , i3 = (0, 0)T , and i4 = (0, 2)T .2223

S.10 3D Model: additional mathematical details Verification of Assumption 4.1.2224

In order to show that Assumption 4.1 holds, consider the states a = (0,Dtot, 0)
T and r =2225

(Dtot, 0, 0)
T and the set T = {i1, . . . , im} defined in Section 5.1.1. From (5.2), we can see that2226

Qa,a+vj (0) = Qr,r+vj (0) = 0 for every 1 f j f 6. As a consequence, both a and r are absorbing2227

states under Q(0). To see that the states in T are transient under Q(0), consider a state x =2228

(x1, x2, x3)
T ∈ T . First, suppose x1 + x3 ̸= 0. By having the one-step transitions along v2 =2229

(0,−1, 0)T occurring x2 times where Qz,z+v2(0) =
kAE
V
(x3 + 2x1)z2 > 0 for all z = (x1, z2, x3)

T2230

and 1 f z2 f x2, then having one-step transitions along v3 = (0, 0, 1)T occurring Dtot−x1−x32231

times where Qz,z+v3(0) = (Dtot − (x1 + z3))

(

k1W0 + k1W +
k
′

M

V
x1

)

> 0 for all z = (x1, 0, z3)
T2232

and x3 f z3 f Dtot − x1 − 1 and finally having one-step transitions along v5 = (1, 0,−1)T2233

occurring Dtot − x1 times where Qz,z+v5(0) = (Dtot − z1)
(

k2W0 +
kM
V
z1 +

k̄M
V

Dtot+z1−1
2

)

> 02234

for all z = (z1, 0,Dtot − z1)
T and x1 f z1 f Dtot − 1, we have a positive probability of2235

transition from x to r under Q(0). By Lemma S.8 and the fact that r is an absorbing state,2236

we have that x is a transient state for X0. On the other hand, suppose x1 + x3 = 0. Since2237

x = (0, x2, 0)
T ∈ T , we have 0 f x2 f Dtot − 1. We can first have a one-step transition along2238

v3 = (0, 0, 1)T , where Qx,x+v3(0) = (Dtot − x2)
(

k1W0 + k1W
)

> 0, to reach the state (0, x2, 1)
T2239

and then take the steps in the x1 + x3 ̸= 0 case. In this way, there is a positive probability of2240

transition from x to the absorbing state r, and thus x is transient by Lemma S.8.2241

Verification of Assumption 4.2. To show that Assumption 4.2 holds, consider the con-2242

tinuous time Markov chain X̃ with infinitesimal generator Q̃ as described in (4.7) and shown2243

in Fig. 6(d). We will first see that {im, r} forms a closed class under Q̃. For this, we see2244

that Qr,r+vj (ε) vanishes for every 1 f j f 5 and ε g 0, while Qr,r+v6(ε) = εµb
kAM
V

D2
tot.2245

Therefore, the only transition from r under Q̃ is given by Q̃r,r+v6 = µb
kAM
V

D2
tot > 0, where2246

r + v6 = im. From (5.2), we can see that Qim,im+vj (0) = 0 for every j ∈ {1, 2, 3, 4, 6} and2247

Qim,im+v5(0) = k2W0 + kM
V
(Dtot − 1) + k̄M

V
(Dtot − 1) > 0. Since im + v5 = r we see that2248
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Q̃im,r > 0. Therefore, {im, r} forms a closed class under Q̃. The fact that X̂A, shown in Fig.2249

6(e) consists of erasing the times from X̃ in which the process is in T , together with Lemma2250

4.3, yields that r is an absorbing state under QA. From (5.2), we can see that Q̃a,i1 > 0. From2251

the analysis made to prove Assumption 4.1 we obtain that i1 leads to r under Q̃ which is part2252

of a closed class. By interpreting X̂A again as a time-change of X̃, by Lemma 4.3 we obtain2253

that a is transient under QA. As a consequence, QA has a single recurrent class consisting2254

of the state r, and so Assumption 4.2 holds, and furthermore, α = [αa, αr] with αa = 0 and2255

αr = 1. In addition, the previous arguments show that neither Assumption 4.3 nor 4.4 holds2256

for this model.2257

Stationary distribution. Here, we derive an expression for π
(1)
x , x ∈ T = {i1, . . . , im}.2258

Matrices A1, S1, and R0 can be written as2259

A1 =

(

−s1 0
0 −s2

)

, S1 =

(

s1 0 . . . . . . 0
0 . . . . . . 0 s2

)

, R0 =















r1 0
0 0
...

...
0 0
0 r2















,2260

with s1 =
kAM
V
D2

tot, s2 = µb
kAM
V
D2

tot, r1 = (kAW0 + kAW +
kAM
V
(Dtot − 1)), and r2 = (k2W0 + (kM

V
+2261

k̄M
V
)(Dtot − 1)). From (4.5), β(1) = [π

(1)
i1

, ..., π
(1)
im

] = αS1(−T0)
−1, and so, given that the last2262

row of T0 is made of all zeros except for the last element, that is (T0)im,im and given that2263

(T0)im,im = k2W0 + (kM
V

+ k̄M
V
)(Dtot − 1), β(1) = [0, ..., 0, π

(1)
im

], with2264

π
(1)
im

=
µb

kAM
V

D2
tot

k2W0 + (kM
V

+ k̄M
V
)(Dtot − 1)

.2265

Now, α(1) = [π
(1)
a , π

(1)
r ] is the unique vector such that2266

α(1)QA = −β(1)[R1 + T1(−T0)
−1R0], α(1)

1 = −β(1)
1.(S.67)2267

For an illustration, suppose Dtot = 2. Then A0 = 0, S0 = 0 and matrices A1 ∈ R
2×2 and2268

S1 ∈ R
2×8 are given by2269

A1 =

(

−4
kAM
V

0

0 −4
kAM
V
µb

)

, S1 =

(

4
kAM
V

0 . . . . . . 0

0 . . . . . . 0 4
kAM
V
µb

)

.2270

Furthermore, R1 = 0 and R0 ∈ R
8×2 can be written as2271

R0 =

















k̄AW +
kAM
V

0
0 0
...

...
0 0

0 k2W0 +
kM
V

+ k̄M
V

















.2272
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Finally, matrices T0 and T1 can be written as2273

T0 =































−k̄AW −
kAM
V

− k̄1W 0 0 0 k̄1W 0 0 0

0 −
kAE
V
(2 + µ) 0 2

kAE
V

µ
kAE
V

0 0 0
2k̄AW 0 −2(k̄AW + k̄1W ) 0 0 2k̄1W 0 0

0 k̄AW 0 −(k̄AW + k̄1W +
k
′

M

V
) 0 0 0 k̄1W +

k
′

M

V

µ′ k
A
E

V
k2W0 0 0 −(

kAE
V
(1 + µ′) + k2W0)

kAE
V

0 0
0 0 0 k2W0 k̄AW −(k2W0 + k̄AW + k̄1W ) k̄1W 0

0 0 0 0 0 0 −2(k2W0 +
k̄M
V
) 2(k2W0 +

k̄M
2V )

0 0 0 0 0 0 0 −2(k2W0 +
kM
V

+ k̄M
V
)































,

T1 =

































−2
kAM
V

0 2
kAM
V

0 0 0 0 0

0 −2
kAM
V
(1 + bµ) 0 2

kAM
V

2bµ
kAM
V

0 0 0
0 0 0 0 0 0 0 0

0 0 0 −2bµ
kAM
V

0 2bµ
kAM
V

0 0

2µ′β
kAM
V

0 0 0 −2
kAM
V
(1 + βµ′) 2

kAM
V

0 0

0 0 2µ′β
kAM
V

0 0 −2µ′β
kAM
V

0 0

0 0 0 0 0 4µ′β
kAM
V

−4µ′β
kAM
V

0

0 0 0 2µ′β
kAM
V

0 0 2µb
kAM
V

−2(µ′β
kAM
V

+ µb
kAM
V
)

































,

2274

in which k̄AW = kAW0 + kAW , k̄RW = kRW0 + kRW . Now, by applying Theorem S.9, we first obtain2275

that π(0) = π(0) = [α, 0] = [αa, αr, 0 . . . , 0] where α is the unique probability vector such that2276

αQA = 0. In this case,2277

(S.68) QA =
K1 + µK2

K3 + µK4 + µ′K5 + µµ′K6

(

−1 1
0 0

)

,2278

with2279

K1 = 8k̄1W
kAM
V

(k̄1W +
k

′

M

V
)((k̄1W + k2W0)(

kAE
V

+ k2W0) + k̄AWk2W0),2280

K2 = 4k̄1W
kAM
V

kAE
V

((k̄1W +
k

′

M

V
)(k̄1W + k2W0) + k̄1W k̄AW ),2281

K3 =
kAE
V

(2(k̄1W + k̄AW + k2W0 +
k

′

M

V
+

kAM
V

))(k̄1W )22282

+ 2k̄1W (k̄1W (k̄1W + k2W0(k
2
W0 +

k
′

M

V
)) +

k
′

M

V
(k2W0)

2)2283

+ 2
kAM
V

k2W0(
k

′

M

V
(k2W0 + k̄AW ) + k̄1W + (2k̄1W + k̄AW + k2W0))2284

+ 2
kAM
V

k
′

M

V
k2W0(k̄

1
W + k̄AW ) + 2k̄1Wk2W0(

kAE
V

k
′

M

V
+ k̄AW

kAM
V

+ 2k̄AW
k

′

M

V
),2285

K4 =
kAE
V

((k̄1W +
k

′

M

V
)(k̄AW +

kAM
V

)(k̄1W + k2W0) + (k̄1W + k2W0)k̄
1
W

k
′

M

V
)2286

+
kAE
V

k̄1W (k̄1W (k̄AW + k2W0 + 1) + k̄AW (k̄AW +
kAM
V

)),(S.69)2287

K5 = 2
kAE
V

(k̄1W + k2W0 + k̄AW )(k̄AW +
kAM
V

)(k̄1W +
k

′

M

V
),2288

K6 =
kAE
V

(k̄1W + k2W0 + k̄AW )(k̄AW +
kAM
V

)(k̄AW + k̄1W +
k

′

M

V
),2289
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and then αa = 0 and αr = 1. Let us now derive an expression for β(1). Starting from the2290

transient states T = {i1, . . . , i8}, we obtain that β(1) = [π
(1)
i1

, ..., π
(1)
i8

] can be determine by2291

β(1) = αS1(−T0)
−1, obtaining β(1) = [0, ..., 0, π

(1)
i8

], with2292

π
(1)
i8

=
4µb

kAM
V

k2W0 + (kM
V

+ k̄M
V
)
.2293

Finally, α(1) = [π
(1)
a , π

(1)
r ] is the unique vector such that α(1)QA = −β(1)[R1 + T1(−T0)

−1R0]2294

and α(1)
1 = −β(1)

1. After some calculations, we obtain2295

(S.70) π(1)
a =

µ2µ′2K7

K8(K9 +K10µ)
, π(1)

r = −π(1)
a − π

(1)
i8

= −
µ2µ′2K7 + µK11(K9 +K10µ)

K8(K9 +K10µ)
,2296

with2297

k̄1W = k1W0 + k1W , k̄AW = kAW0 + kAW ,

K7 = 2βb
kAM
V

k̄AW (k̄AW +
kAM
V

)(k̄AW + k̄1W + k2W0),

K8 = k̄1W (k2W0 +
kM
V

+
k̄M
V

), K10 =
kAE
V

(

(k̄1W + k2W0)(k̄
1
W +

k
′

M

V
) + k̄AW k̄1W

)

K9 = 2(k̄1W +
k

′

M

V
)(
kAE
V

(k̄1W + k2W0) + k2W0(k
2
W0 + k̄1W + k̄AW )), K11 = 4bk̄1W

kAM
V

.

2298

Time to memory loss. As a reminder, we define the time to memory loss of the active state2299

as ha,r(ε) and the time to memory loss of repressed state as hr,a(ε). Let us start by deriving2300

the order and the leading coefficient of ha,r(ε) and hr,a(ε). By (4.16), we know the order of the2301

stationary distribution at a and r are ka = −min{1 − 2, 0} = 1 and kr = −min{1 − 1, 0} =2302

0, respectively. This is consistent with the results in Section 5.1.1. Moreover, the leading2303

coefficient in the stationary distribution for the fully repressed and fully active states are2304

π
(0)
r = 1 and π

(1)
a > 0, respectively. Now, X̂A has the infinitesimal generator in the form of2305

QA =

(

−(QA)a,r (QA)a,r
0 0

)

,2306

and X̂A has a unique stationary distribution α = [0, 1]. By Theorem 4.7,2307

D =

(

1
(QA)a,r

− 1
(QA)a,r

0 0

)

,2308

2309

ha,r(ε) =
Dr,r −Da,r

π
(kr)
r

1

εkr+1
+O

(

1

εkr

)

=
Dr,r −Da,r

αr

1

ε
+O(1) =

1

(QA)a,r

1

ε
+O(1),2310

and2311
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hr,a(ε) =
Da,a −Dr,a

π
(ka)
a

1

εka+1
+O

(

1

εka

)

=
Da,a −Dr,a

π
(1)
a

1

ε2
+O

(

1

ε

)

=
1

(QA)a,r · π
(1)
a

1

ε2
+O

(

1

ε

)

.2312

As an example, when Dtot = 2, QA and π
(1)
a are shown in (5.3) and (5.4), and we obtain that2313

ha,r(ε) =
K3 + µK4 + µ′K5 + µµ′K6

K1 + µK2

1

ε
+O(1),2314

and2315

hr,a(ε) =
K3 + µK4 + µ′K5 + µµ′K6

K1 + µK2

K8(K9 +K10µ)

µ2µ′2K7

1

ε2
+O

(

1

ε

)

,2316

where Ki, i = 1, ..., 11, are non-negative functions independent of µ and µ′ as defined in (S.69).2317

Now, let us verify that both conditions (i) and (ii) of Theorem 4.10 hold. To this end,2318

let us first write the directions of the six possible transitions of the continuous time Markov2319

chain Xε(t), which are v1 = (0, 1, 0)T , v2 = (0,−1, 0)T , v3 = (0, 0, 1)T , v4 = (0, 0,−1)T ,2320

v5 = (1, 0,−1)T , v6 = (−1, 0, 1)T , with the associated infinitesimal transition rates that can be2321

written as Υ1(x) = fA(x), Υ2(x) = gAε (x), Υ3(x) = fR1(x), Υ4(x) = gεR1(x), Υ5(x) = fR12(x),2322

Υ6(x) = gεR12(x). Define the matrix2323

A =





1 0 0
0 −1 0
1 0 1



2324

and, for x ∈ X , (KA+x)∩X = {w ∈ X : x ≼A w}. Let us also introduce infinitesimal transition2325

rates Ῠi(x), i = 1, 2, ..., 6, defined as for Υi(x), i = 1, 2, ..., 6, with all the parameters having2326

the same values except that µ′ is replaced by µ̆′, with µ′ g µ̆′. Given that Av1 = (0,−1, 0)T ,2327

Av2 = (0, 1, 0)T , Av3 = (0, 0, 1)T , Av4 = (0, 0,−1)T , Av5 = (1, 0, 0)T , Av6 = (−1, 0, 0)T ,2328

condition (i) of Theorem 4.10 holds.2329

To verify condition (ii) of Theorem 4.10, consider x ∈ X and y ∈ ∂1(KA + x) ∩ X = {w ∈2330

X : x1 = w1, x2 g w2, x1 + x3 f w1 + w3} = {w ∈ R
3 : x1 = w1, x2 g w2, x3 f w3}. Given2331

that ïA1•, v5ð = 1 and ïA1•, v6ð = −1, we need to verify that Υ5(x) f Ῠ5(y) and Υ6(x) g2332

Ῠ6(y). Since x1 = y1, x2 g y2, x3 f y3, then Υ5(x) = x3

(

k2W0 +
kM
V
x1 +

k̄M
V
(x1 +

x3−1
2 )

)

f2333

y3

(

k2W0 +
kM
V
x1 +

k̄M
V
(y1 +

y3−1
2 )
)

= Ῠ5(y) and Υ6(x) = x1µ
(

ε
kAM
V

Dtotb+ x2
kAE
V

)

2334

g y1µ
(

ε
kAM
V

Dtotb+ y2
kAE
V

)

= Ῠ6(y). Let us now consider x ∈ X and y ∈ ∂2(KA + x) ∩2335

X = {w ∈ X : x1 f w1, x2 = w2, x1 + x3 f w1 + w3}. Given that ïA2•, v1ð = −1 and2336

ïA2•, v2ð = 1, we need to verify that Υ1(x) g Ῠ1(y) and Υ2(x) f Ῠ2(y). Since x1 f y1, x2 =2337

y2, x1 + x3 f y1 + y3, then Υ1(x) = (Dtot − (x1 + x2 + x3))
(

kAW0 + kAW +
kAM
V
x2

)

g (Dtot −2338

(y1 + y2 + y3))
(

kAW0 + kAW +
kAM
V
y2

)

= Ῠ1(y) and Υ2(x) = x2

(

ε
kAM
V

Dtot +
kAE
V
(x3 + 2x1)

)

f2339

y2

(

ε
kAM
V

Dtot +
kAE
V
(y3 + 2y1)

)

= Ῠ2(y). Finally, consider x ∈ X and y ∈ ∂3(KA+x)∩X = {w ∈2340
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X | x1 f w1, x2 g w2, x1 + x3 = w1 +w3} = {w ∈ X | x1 f w1, x2 g w2, x3 g w3}. Given that2341

ïA3•, v3ð = 1 and ïA3•, v4ð = −1, we need to check that Υ3(x) f Ῠ3(y) and Υ4(x) g Ῠ4(y).2342

Since x1 f y1, x2 g y2, x3 g y3, then Υ3(x) = (Dtot − (x1 + x2 + x3))

(

k1W0 + k1W +
k
′

M

V
x1

)

f2343

(Dtot− (y1+y2+y3))

(

k1W0 + k1W +
k
′

M

V
y1

)

= Ῠ3(y) and Υ4(x) = x3µ
′
(

ε
kAM
V

Dtotβ + x2
kAE
V

)

g2344

y3µ̆
′
(

ε
kAM
V

Dtotβ + y2
kAE
V

)

= Ῠ4(y).2345

We can then conclude that all of the conditions of Theorem 4.10 hold.2346

S.11 4D Model: additional mathematical details2347

Verification of Assumption 4.1. In order to show that Assumption 4.1 holds, consider2348

the states a = (0,Dtot, 0, 0)
T and r = (Dtot, 0, 0, 0)

T and the set T = {i1, . . . , im} defined in2349

Section 5.2.1. From (5.9), we can see that Qa,a+vj (0) = Qr,r+vj (0) = 0 for every 1 f j f 10.2350

As a consequence, both a and r are absorbing states under Q(0). To see that the states2351

in T are transient under Q(0), consider a state x = (x1, x2, x3, x4)
T ∈ T . First, suppose2352

x1 + x3 + x4 ̸= 0. By having the one-step transitions along v2 = (0,−1, 0, 0)T occurring x22353

times where Qz,z+v2(0) =
kAE
V
(x3+x4+2x1)z2 > 0 for all z = (x1, z2, x3, x4)

T and 1 f z2 f x2,2354

then having one-step transitions along v3 = (0, 0, 1, 0)T occurring Dtot−x1−x3−x4 times where2355

Qz,z+v3(0) = (Dtot−(x1+z3+x4))

(

k1W0 + k1W +
k
′

M

V
(x1 + x4)

)

> 0 for all z = (x1, 0, z3, x4)
T2356

and x3 f z3 f Dtot − x1 − x4 − 1, then having one-step transitions along v9 = (1, 0, 0,−1)T2357

occurring x4 times where Qz,z+v9(0) = (x1 + x4 − z1)

(

k1W0 +
k
′

M

V
x1+x4+z1−1

2

)

> 0 for all2358

z = (z1, 0,Dtot − x1 − x4, x1 + x4 − z1)
T and x1 f z1 f x1 + x4 − 1, and finally having one-2359

step transitions along v7 = (1, 0,−1, 0)T occurring Dtot − x1 − x4 times where Qz,z+v7(0) =2360

(Dtot − z1)
(

k2W0 +
kM
V
z1 +

k̄M
V

Dtot+z1−1
2

)

> 0 for all z = (z1, 0,Dtot − z1, 0)
T and x1 + x4 f2361

z1 f Dtot − 1, we have a positive probability of transition from x to r under Q(0). By2362

Lemma S.8 and the fact that r is an absorbing state, we have that x is a transient state for2363

X0. On the other hand, suppose x1 + x3 + x4 = 0. Since x = (0, x2, 0, 0)
T ∈ T , we have2364

0 f x2 f Dtot − 1. We can first have a one-step transition along v3 = (0, 0, 1, 0)T , where2365

Qx,x+v3(0) = (Dtot − x2)(k
1
W0 + k1W ) > 0, to reach the state (0, x2, 1, 0)

T and then take the2366

steps in the x1 + x3 + x4 ̸= 0 case. In this way, there is a positive probability of transition2367

from x to the absorbing state r, and thus x is transient by Lemma S.8.2368

Verification of Assumption 4.2. To show that Assumption 4.2 holds, consider the continu-2369

ous time Markov chain X̃ with infinitesimal generator Q̃ as described in (4.7) and shown in Fig.2370

7(d). We will first see that {im−1, im, r}, with im−1 = r+ v10 and im = r+ v8, forms a closed2371

class under Q̃. For this, we see that Qr,r+vj (ε) vanishes for every j = {1, 2, 3, 4, 5, 6, 7, 9}2372

and ε g 0, while Qr,r+v8(ε) = εµb
kAM
V

D2
tot and Qr,r+v10(ε) = εµ′β

kAM
V

D2
tot. Therefore, the2373

only transitions from r under Q̃ are to im−1 with rate Q̃r,im−1 = µ′β
kAM
V

D2
tot > 0 and to im2374

with rate Q̃r,im = µb
kAM
V

D2
tot > 0. From (5.9), we can see that Qim−1,im−1+vj (0) = 0 for2375

j ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10}, Qim,im+vj (0) = 0 for j ∈ {1, 2, 3, 4, 5, 6, 8, 9, 10}, Qim−1,r(0) =2376

Qim−1,im−1+v9(0) = k1W0 +
k′M
V
(Dtot − 1) > 0 and Qim,r(0) = Qim,im+v7(0) = k2W0 +

kM
V
(Dtot −2377
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1) + k̄M
V
(Dtot − 1) > 0. Therefore, {im−1, im, r} forms a closed class under Q̃. The fact that2378

X̂A consists of erasing the times from X̃ in which the process is in T , together with Lemma2379

4.3, yields that r is an absorbing state under QA. From (5.9), we can see that Q̃a,i1 > 0 where2380

i1 = (0,Dtot − 1, 0, 0)T . From the analysis made to prove Assumption 4.1, we obtain that i12381

leads to r under Q̃, which is part of the closed class {im−1, im, r}. By interpreting X̂A again as2382

a time-change of X̃, by Lemma 4.3 we obtain that a is transient under QA. As a consequence,2383

QA has a single recurrent class consisting of the state r. Thus, Assumption 4.2 holds, and2384

furthermore, α = [αa, αr] with αa = 0 and αr = 1. In addition, the previous arguments show2385

that neither Assumption 4.3 nor 4.4 holds for this model.2386

Stationary distribution. Here, we derive an expression for π
(1)
x , x ∈ T = {i1, . . . , im}.2387

Matrices A1, S1, and R0 can be written as2388

A1 =

(

−s1 0
0 −(s2 + s3)

)

, S1 =

(

s1 0 . . . . . . 0 0
0 . . . . . . 0 s2 s3

)

, R0 =



















r1 0
0 0
...

...
0 0
0 r2
0 r3



















,2389

with s1 =
kAM
V
D2

tot, s2 = µ′βε
kAM
V
D2

tot, s3 = µbε
kAM
V
D2

tot, r1 = (kAW0 + kAW +
kAM
V
(Dtot − 1)),2390

r2 = (k1W0 +
k
′

M

V
(Dtot − 1)) and r3 = (k2W0 + (kM

V
+ k̄M

V
)(Dtot − 1)). Now, we determine2391

β(1) = [π
(1)
i1

, ..., π
(1)
im

] = αS1(−T0)
−1. Given that the only two elements different from zero in2392

the last two rows of T0 are (T0)im−1,im−1 = (k1W0+
k
′

M

V
(Dtot−1) and (T0)im,im = (k2W0+(kM

V
+2393

k̄M
V
(Dtot − 1)), we obtain β(1) = [0, ..., 0, π

(1)
im−1

, π
(1)
im

], with2394

π
(1)
im−1

=
µ′β

kAM
V

D2
tot

k1W0 +
k′
M

V
(Dtot − 1)

, π
(1)
im

=
µb

kAM
V

D2
tot

k2W0 + (kM
V

+ k̄M
V
)(Dtot − 1)

.2395

Now, α(1) = [π
(1)
a , π

(1)
r ] is the unique vector such that α(1)QA = −β(1)[R1 + T1(−T0)

−1R0],2396

α(1)
1 = −β(1)

1.2397

As an example, suppose Dtot = 2, β = b, k1W = k2W = kAW = 0, k1W0 = k2W0 = kAW0 = kW02398

and k′M = k̄M = kAM = kM . Then, we have that A0 = 0, S0 = 0 and matrices A1 ∈ R
2×2 and2399

S1 ∈ R
2×13 are equal to2400

A1 =

(

−4kM
V

0

0 −4kM
V
(µb+ µ′β)

)

, S1 =

(

4kM
V

0 . . . . . . 0 0

0 . . . . . . 0 4kM
V
µ′b 4kM

V
µb

)

.2401
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Furthermore, R1 = 0 and R0 ∈ R
13×2 can be written as2402

R0 =



















kW0 +
kM
V

0
0 0
...

...
0 0

0 kW0 +
kM
V

0 kW0 + 2kM
V



















.2403

Finally, matrices T0 and T1 can be written as2404

T0 =

(

T 1
0 T 2

0

T 3
0 T 4

0

)

, T1 =

(

T 1
1 T 2

1

T 3
1 T 4

1

)

,2405

with T 2
1 = 07×6 and2406

T 1
0 =

























−3kW0 −
kM
V

kW0 0 0 0 kW0 0

µ
kAE
V

−(1 + µ)
kAE
V

− kW0 0
kAE
V

0 0 0
2kW0 0 −6kW0 2kW0 0 0 2kW0

0 kW0 0 −(4kW0 + 2kM
V
) kW0 +

kM
V

0 0

0 0 0 0 −(kW0 +
kM
V
) 0 0

µ′ k
A
E

V
0 0 0 0 −(1 + µ′)

kAE
V

− kW0
kAE
V

0 0 0 0 0 kW0 −(4kW0 +
kM
V
)

























,

T 2
0 =























0 0 0 0 0 0
0 0 kW0 0 0 0
0 0 0 0 0 0

kW0 +
kM
V

0 0 kW0 0 0

0 0 0 0 kW0 +
kM
V

0
0 0 kW0 0 0 0

kW0 +
kM
V

kW0 0 kW0 0 0























, T 3
1 =



















0 0 0 2µ′bkM
V

0 0 2µbkM
V

0 0 0 0 0 0 2µ′bkM
V

0 2µ′bkM
V

0 0 0 2µbkM
V

0

0 0 0 2µ′bkM
V

0 0 2µbkM
V

0 0 0 0 2µ′bkM
V

0 0
0 0 0 0 0 0 0



















,

T 1
1 =



















−2kM
V

0 2kM
V

0 0 0 0

2µbkM
V

−2(µb+ 1)kM
V

0 2kM
V

0 0 0
0 0 0 0 0 0 0

0 0 2µbkM
V

−2µbkM
V

0 0 0

2µ′bkM
V

0 0 0 0 −2(µ′b+ 1)kM
V

2kM
V

0 0 2µ′bkM
V

0 0 0 −2µ′bkM
V



















, T 3
0 =



















0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 µ′ k
A
E

V
0 0 0 µ

kAE
V

0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



















,

T 4
0 =



















−(2kW0 +
kM
V
) 0 0 0 kW0 +

kM
V

kW0

0 −(kW0 +
kM
V
) 0 0 0 kW0 +

kM
V

0 0 −(µ+ µ′ + 2)
kAE
V

2
kAE
V

0 0

0 0 kW0 −3(kW0 +
kM
V
) kW0 + 2kM

V
kW0 +

kM
V

0 0 0 0 −(kW0 +
kM
V
) 0

0 0 0 0 0 −(kW0 + 2kM
V
)



















,

T 4
1 =



















−2(µ+ µ′)bkM
V

0 0 0 0 0

0 −2µ′bkM
V

0 0 0 0

0 0 −2(µb+ µ′b+ 1)kM
V

2kM
V

0 0

0 0 0 −2(µ+ µ′)bkM
V

0 0

2µbkM
V

0 0 2µbkM
V

−2(2µ+ µ′)bkM
V

0

2µ′bkM
V

2µbkM
V

0 2µ′bkM
V

0 −2(µ+ 2µ′)bkM
V



















,

2407

Now, by applying Theorem S.9, we first obtain that π(0) = π(0) = [α, 0] = [αa, αr, 0 . . . , 0]2408
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where α can be obtained by solving αQA = 0. In this case, we obtain that2409

QA =
K1((µ

′)2K2 + (µ)2K3 + µµ′K4 + µ′K5 + µK6 +K7)

µ′µ(µ′ + µ)K8 + (µ′)2K9 + (µ)2K10 + µµ′K11 + µ′K12 + µK13 +K14

(

−1 1
0 0

)

,2410

with2411

K1 = 4kW0
kM

V
,2412

K2 =

(

kAE
V

)2(

6

(

kM

V

)3

+ 39kW0

(

kM

V

)2

+ 68
kM

V
(kW0)

2 + 32(kW0)
3

)

,2413

K3 =

(

kAE
V

)2(

6

(

kM

V

)3

+ 36kW0

(

kM

V

)2

+ 64
kM

V
(kW0)

2 + 32(kW0)
3

)

,2414

K4 =

(

kAE
V

)2(

12

(

kM

V

)3

+ 75kW0

(

kM

V

)2

+ 132
kM

V
(kW0)

2 + 64(kW0)
3

)

,2415

K5 =

(

kAE
V

)2(

24

(

kM

V

)3

+ 140kW0

(

kM

V

)2

+ 222
kM

V
(kW0)

2 + 96(kW0)
3

)

2416

+
kAE
V

kW0

(

24

(

kM

V

)3

+ 158kW0

(

kM

V

)2

+ 280
kM

V
(kW0)

2 + 128(kW0)
3

)

,2417

K6 =

(

kAE
V

)2(

24

(

kM

V

)3

+ 134kW0

(

kM

V

)2

+ 216
kM

V
(kW0)

2 + 96(kW0)
3

)

2418

+
kAE
V

kW0

(

24

(

kM

V

)3

+ 152kW0

(

kM

V

)2

+ 272
kM

V
(kW0)

2 + 128(kW0)
3

)

,2419

K7 =

(

kAE
V

)2(

24

(

kM

V

)3

+ 124kW0

(

kM

V

)2

+ 180
kM

V
(kW0)

2 + 72(kW0)
3

)

2420

+
kAE
V

kW0

(

48

(

kM

V

)3

+ 284kW0

(

kM

V

)2

+ 456
kM

V
(kW0)

2 + 192(kW0)
3

)

2421

+ (kW0)
2

(

24

(

kM

V

)3

+ 160kW0

(

kM

V

)2

+ 288
kM

V
(kW0)

2 + 128(kW0)
3

)

,2422

K8 =

(

kAE
V

)2(

6

(

kM

V

)4

+ 48kW0

(

kM

V

)3

+ 126(kW0)
2

(

kM

V

)2

+ 132
kM

V
(kW0)

3 + 72(kW0)
4

)

,2423

K9 =

(

kAE
V

)2(

6

(

kM

V

)4

+ 51kW0

(

kM

V

)3

+ 146(kW0)
2

(

kM

V

)2

+ 168
kM

V
(kW0)

3 + 64(kW0)
4

)

,2424

K10 =

(

kAE
V

)2(

6

(

kM

V

)4

+ 48kW0

(

kM

V

)3

+ 136(kW0)
2

(

kM

V

)2

+ 160
kM

V
(kW0)

3 + 64(kW0)
4

)

,2425

K11 =

(

kAE
V

)2(

24

(

kM

V

)4

+ 191kW0

(

kM

V

)3

+ 509(kW0)
2

(

kM

V

)2

+ 547
kM

V
(kW0)

3 + 200(kW0)
4

)

,2426

+
kAE
V

kW0

(

12

(

kM

V

)4

+ 96kW0

(

kM

V

)3

+ 252(kW0)
2

(

kM

V

)2

+ 264
kM

V
(kW0)

3 + 96(kW0)
4

)

,2427

K12 =

(

kAE
V

)2(

19

(

kM

V

)4

+ 149kW0

(

kM

V

)3

+ 416(kW0)
2

(

kM

V

)2

+ 463
kM

V
(kW0)

3 + 168(kW0)
4

)

,2428

+
kAE
V

kW0

(

18

(

kM

V

)4

+ 161kW0

(

kM

V

)3

+ 489(kW0)
2

(

kM

V

)2

+ 588
kM

V
(kW0)

3 + 224(kW0)
4

)

,2429
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K13 =

(

kAE
V

)2(

18

(

kM

V

)4

+ 143kW0

(

kM

V

)3

+ 399(kW0)
2

(

kM

V

)2

+ 452
kM

V
(kW0)

3 + 168(kW0)
4

)

,2430

+
kAE
V

kW0

(

18

(

kM

V

)4

+ 158kW0

(

kM

V

)3

+ 476(kW0)
2

(

kM

V

)2

+ 576
kM

V
(kW0)

3 + 224(kW0)
4

)

,2431

K14 =

(

kAE
V

)2(

12

(

kM

V

)4

+ 98kW0

(

kM

V

)3

+ 276(kW0)
2

(

kM

V

)2

+ 306
kM

V
(kW0)

3 + 108(kW0)
4

)

,2432

+
kAE
V

kW0

(

24

(

kM

V

)4

+ 214kW0

(

kM

V

)3

+ 654(kW0)
2

(

kM

V

)2

+ 780
kM

V
(kW0)

3 + 288(kW0)
4

)

,2433

+ (kW0)
2

(

12

(

kM

V

)4

+ 116kW0

(

kM

V

)3

+ 384(kW0)
2

(

kM

V

)2

+ 496
kM

V
(kW0)

3 + 192(kW0)
4

)

.2434

Let us now derive an expression for π(1). Starting with the transient states T = {i1, . . . , i15},2435

we obtain that β(1) = [π
(1)
i1

, ..., π
(1)
i15

] = αS1(−T0)
−1, and so β(1) = [0, ..., 0, π

(1)
i14

, π
(1)
i15

], with2436

π
(1)
i12

=
4µ′β

kAM
V

k1W0 +
k′
M

V

, π
(1)
i13

=
4µb

kAM
V

k2W0 + (kM
V

+ k̄M
V
)
.2437

Finally, α(1) = [π
(1)
a , π

(1)
r ] is the unique vector such that α(1)QA = −β(1)[R1 + T1(−T0)

−1R0]2438

and α(1)
1 = −β(1)

1. After some calculations, we obtain2439

π(1)
a =

(µµ′)2K15((µ+ µ′)K16 +K17)

K20((µ′)2K2 + (µ)2K3 + (µ′ + µ)K4 + µ′K5 + µK6 +K7)
,

π(1)
r = −π(1)

a − π
(1)
i14

− π
(1)
i15

= −
(µµ′)2K15((µ+ µ′)K16 +K17)

K20((µ′)2K2 + (µ)2K3 + (µ′ + µ)K4 + µ′K5 + µK6 +K7)
− µ′K18 − µK19,

2440

with2441

K15 = 2
kAE
V

kM
V

(

3
kM
V

+ 2kW0

)

b2, K16 =
kAE
V

(

2

(

kM
V

)2

+ 16(kW0)
2 + 12

kM
V

kW0

)

,2442

K17 =
kAE
V

(

21
kM
V

kW0 + 4

(

kM
V

)2

+ 24(kW0)
2

)

+ kW0

(

24
kM
V

kW0 + 4

(

kM
V

)2

+ 32(kW0)
2

)

,2443

K18 =
4bkM

V

kW + kM

V

, K19 =
4bkM

V

kW + 2kM

V

,K20 =

(

2
kM
V

+ kW0

)

.2444

Time to memory loss. As a reminder, we define the time to memory loss of the active2445

state as ha,r(ε) and the time to memory loss of the repressed state as hr,a(ε). Let us start by2446

deriving the order and the leading coefficients of ha,r(ε) and hr,a(ε). By (4.16), the order of the2447

stationary distribution at a and r are ka = −min{1− 2, 0} = 1 and kr = −min{1− 1, 0} = 0,2448

respectively. This is consistent with the results obtained in Section 5.2.1. As obtained for the2449

3D model, here we obtain π
(0)
r = 1 and π

(1)
a > 0, and thus2450

ha,r(ε) =
1

(QA)a,r

1

ε
+O(1), and hr,a(ε) =

1

(QA)a,r · π
(1)
a

1

ε2
+O

(

1

ε

)

.2451
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Now, in order to exploit Theorems S.2 and 3.4 from [13] and determine how µ′ affects2452

ha,r(ε) and hr,a(ε), we introduce a small approximation in the transition rates of Xε, namely,2453
x3−1
2 ≈ x3 and x4−1

2 ≈ x4 in fR121(x) and fR122(x), respectively. This approximation can2454

be justified by introducing the reasonable assumption that each nucleosome characterized by2455

a repressive modification (DR
1 and DR

2 ) has the ability to catalyze the establishment of the2456

opposite repressive mark on itself. Now, let us verify that both conditions (i) and (ii) of2457

Theorem S.2 in [5] hold. These conditions can be written as follows:2458

(i) For each 1 f j f n, the vector Avj has entries in {−1, 0, 1} only.2459

(ii) For each x ∈ X , 1 f i f m and y ∈ ∂i(KA + x) ∩ X we have that for each 1 f k f s,2460

∑

j∈Gk,−
i

Ῠj(y) f
∑

j∈Gk,−
i

Υj(x), where Gk,−
i = {j ∈ Gk | ïAi•, vjð = −1},2461

and2462

∑

j∈Gk,+
i

Ῠj(y) g
∑

j∈Gk,+
i

Υj(x), where Gk,+
i = {j ∈ Gk | ïAi•, vjð = 1}.2463

To verify that these conditions hold, let us first note the ten possible transitions vectors for2464

the continuous time Markov chain Xε(t): v1 = −v2 = (1, 0,−1, 0)T , v3 = −v4 = (1, 0, 0,−1)T ,2465

v5 = −v6 = (0, 1, 0, 0)T , v7 = −v8 = (0, 0, 1, 0)T , v9 = −v10 = (0, 0, 01)T , with the associated2466

infinitesimal transition rates Υ1(x) = fR121(x), Υ2(x) = gεR121(x), Υ3(x) = fR122(x), Υ4(x) =2467

gεR122(x), Υ5(x) = fA(x), Υ6(x) = gεA(x), Υ7(x) = fR1(x), Υ8(x) = gεR1(x), Υ9(x) = fR2(x),2468

Υ10(x) = gεR2(x). Let2469

A =









0 −1 0 0
1 0 1 0
1 0 0 1
1 0 1 1









.2470

Then, (KA + x) ∩ X = {w ∈ X : x ≼A w}. Consider infinitesimal transition rates Ῠi(x),2471

i = 1, 2, ..., 10, defined as for Υi(x), i = 1, 2, ..., 10, with all the parameters having the same2472

values except that µ′ is replaced by µ̆′, with µ′ g µ̆′. Now, condition (i) of Theorem S.22473

in [5] holds since Av1 = −Av2 = (0, 0, 1, 0)T , Av3 = −Av4 = (0, 1, 0, 0)T , Av5 = −Av6 =2474

(−1, 0, 0, 0)T , Av7 = −Av8 = (0, 1, 0, 1)T and Av9 = −Av10 = (0, 0, 1, 1)T . Assumption S.12475

in [5] holds with G1 = {9, 1}, G2 = {10, 2}, G3 = {7, 3}, G4 = {8, 4}, G5 = {5}, G6 = {6}2476

and σ(1) = 9, σ(2) = 1, σ(3) = 10, σ(4) = 2, σ(5) = 7, σ(6) = 3, σ(7) = 8, σ(8) = 4,2477

σ(9) = 5, σ(10) = 6. To verify that also condition (ii) of Theorem S.2 in [5] holds, let us2478

start with considering x ∈ X and y ∈ ∂1(KA + x) ∩ X = {w ∈ X : x2 = w2, x1 + x3 f2479

w1 + w3, x1 + x4 f w1 + w4, x1 + x3 + x4 f w1 + w3 + w4}. Given that ïA1•, v5ð = −1 and2480

ïA1•, v6ð = 1, we must verify that Υ5(x) g Ῠ5(y) and Υ6(x) f Ῠ6(y). Since x2 = y2, x1+x3 f2481

y1 + y3, x1 + x4 f y1 + y4, x1 + x3 + x4 f y1 + y3 + y4, then Υ5(x) = (Dtot − (x1 + x2 + x3 +2482

x4))
(

kAW0 + kAW +
kAM
V
x2

)

g (Dtot − (y1 + y2 + y3 + y4))
(

kAW0 + kAW +
kAM
V
y2

)

= Ῠ5(y) and2483

Υ6(x) = x2

(

ε
kAM
V

Dtot +
kAE
V
(x3 + x4 + 2x1)

)

f y2

(

ε
kAM
V

Dtot +
kAE
V
(y3 + y4 + 2y1)

)

= Ῠ6(y).2484
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Let us now consider x ∈ X and y ∈ ∂2(KA + x) ∩ X = {w ∈ X : x2 g w2, x1 + x3 =2485

w1+w3, x1+x4 f w1+w4, x1+x3+x4 f w1+w3+w4}. Given that ïA2•, v3ð = ïA2•, v7ð = 12486

and ïA2•, v4ð = ïA2•, v8ð = −1, we need to verify that Υ3(x) + Υ7(x) f Ῠ3(y) + Ῠ7(y) and2487

Υ4(x)+Υ8(x) g Ῠ4(y)+ Ῠ8(y) hold. Since x2 g y2, x1 +x3 = y1+ y3, x1+x4 f y1+ y4, x1+2488

x3+x4 f y1+ y3+ y4, then Υ3(x)+Υ7(x) = (Dtot − (x1+x2+x3))

(

k1W0 +
k
′

M

V
(x1 + x4)

)

f2489

(Dtot − (y1 + y2 + y3))

(

k1W0 +
k
′

M

V
(y1 + y4)

)

= Ῠ3(y) + Ῠ7(y) and Υ4(x) + Υ8(x) = (x3 +2490

x1)µ
′
(

ε
kAM
V

Dtotβ + x2
kAE
V

)

g (y3 + y1)µ̆
′
(

ε
kAM
V

Dtotβ + y2
kAE
V

)

= Ῠ4(y) + Ῠ8(y). Let us now2491

consider x ∈ X and y ∈ ∂3(KA + x) ∩ X = {w ∈ X : x2 g w2, x1 + x3 f w1 + w3, x1 + x4 =2492

w1 + w4, x1 + x3 + x4 f w1 + w3 + w4}. Given that ïA3•, v1ð = ïA3•, v9ð = 1 and ïA3•, v2ð =2493

ïA3•, v10ð = 1, we need to verify that Υ1(x) + Υ9(x) f Ῠ1(y) + Ῠ9(y) and Υ2(x) + Υ10(x) g2494

Ῠ2(y)+Ῠ10(y) hold. Since x2 g y2, x1+x3 f y1+y3, x1+x4 = y1+y4, x1+x3+x4 f y1+y3+y4,2495

then Υ1(x) +Υ9(x) = (Dtot − (x1 + x2 + x4))
(

k2W0 +
kM
V
(x1 + x4) +

k̄M
V
(x1 + x3)

)

f (Dtot −2496

(y1 + y2 + y4))
(

k2W0 +
kM
V
(y1 + y4) +

k̄M
V
(y1 + y3)

)

= Ῠ1(y) + Ῠ9(y) and Υ2(x) + Υ10(x) =2497

(x1+x4)µ
(

ε
kAM
V

Dtotb+ x2
kAE
V

)

g (y1+y4)µ
(

ε
kAM
V

Dtotb+ y2
kAE
V

)

= Ῠ2(y)+Ῠ10(y). Finally, let2498

us consider x ∈ X and y ∈ ∂3(KA + x)∩X = {w ∈ X : x2 g w2, x1 + x3 f w1 +w3, x1 + x4 f2499

w1 + w4, x1 + x3 + x4 = w1 + w3 + w4}. Given that ïA4•, v7ð = ïA4•, v9ð = 1 and ïA4•, v8ð =2500

ïA4•, v10ð = −1, we need to verify that Υ7(x) f Ῠ7(y), Υ9(x) f Ῠ9(y), Υ8(x) g Ῠ8(y) and2501

Υ10(x) g Ῠ10(y) hold. Since x2 g y2, x1 + x3 f y1 + y3, x1 + x4 f y1 + y4, x1 + x3 + x4 =2502

y1 + y3 + y4, that also imply x1 f y1, x3 g y3, x4 g y4, then Υ7(x) = (Dtot − (x1 + x2 +2503

x3+x4))

(

k1W0 +
k
′

M

V
(x1 + x4)

)

f (Dtot − (y1+ y2+ y3+ y4))

(

k1W0 +
k
′

M

V
(y1 + y4)

)

= Ῠ7(y),2504

Υ9(x) = (Dtot− (x1+x2+x3+x4))
(

k2W0 +
kM
V
(x1 + x4) +

k̄M
V
(x1 + x3)

)

f (Dtot− (y1+y2+2505

y3 + y4))
(

k2W0 +
kM
V
(y1 + y4) +

k̄M
V
(y1 + y3)

)

= Ῠ9(y), Υ8(x) = x3µ
′
(

ε
kAM
V

Dtotβ + x2
kAE
V

)

g2506

y3µ̆
′
(

ε
kAM
V

Dtotβ + y2
kAE
V

)

= Ῠ8(y) and Υ10(x) = x4µ
(

ε
kAM
V

Dtotb+ x2
kAE
V

)

2507

g y4µ
(

ε
kAM
V

Dtotb+ y2
kAE
V

)

= Ῠ10(y). Then, condition (ii) of Theorem S.2 in [5] also holds.2508

We can then conclude that all of the conditions of Theorem S.2 in [5] hold and so do the2509

conclusions of Theorem 3.4 in [5], as per the remarks in SI - Section S.3 in [5].2510
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