

1 **Analysis of singularly perturbed stochastic chemical reaction networks**
2 **motivated by applications to epigenetic cell memory***

3 Simone Bruno^{†‡}, Felipe A. Campos^{†§}, Yi Fu[§], Domitilla Del Vecchio[‡], Ruth J. Williams[§]

5 **Abstract.**

6 Epigenetic cell memory, the inheritance of gene expression patterns across subsequent cell divisions, is
7 a critical property of multi-cellular organisms. In recent work [10], a subset of the authors observed in a
8 simulation study how the stochastic dynamics and time-scale differences between establishment and erasure
9 processes in chromatin modifications (such as histone modifications and DNA methylation) can have a critical
10 effect on epigenetic cell memory. In this paper, we provide a mathematical framework to rigorously validate and
11 extend beyond these computational findings. Viewing our stochastic model of a chromatin modification circuit
12 as a singularly perturbed, finite state, continuous time Markov chain, we extend beyond existing theory in
13 order to characterize the leading coefficients in the series expansions of stationary distributions and mean first
14 passage times. In particular, we characterize the limiting stationary distribution in terms of a reduced Markov
15 chain, provide an algorithm to determine the orders of the poles of mean first passage times, and determine
16 how changing erasure rates affects system behavior. The theoretical tools developed in this paper not only
17 allow us to set a rigorous mathematical basis for the computational findings of our prior work, highlighting
18 the effect of chromatin modification dynamics on epigenetic cell memory, but they can also be applied to other
19 singularly perturbed Markov chains beyond the applications in this paper, especially those associated with
20 chemical reaction networks.

21 **Key words.** singular perturbation, continuous time Markov chain, multimodal stationary distribution, mean
22 first passage times, epigenetic cell memory, chromatin modification circuits

23 **MSC codes.** 92C40, 92C42, 60J28

24 **1 Introduction**

25 **1.1 Background**

Epigenetic cell memory, the inheritance of gene expression patterns across subsequent cell divisions [22], is a critical property of multi-cellular organisms of intense interest in the field of systems biology [30, 31]. It has previously been discovered that chromatin modifications, such as DNA methylation and histone modifications, are key mediators of epigenetic cell memory [1, 14, 21, 24] (see references in [10] for more biological background). More precisely, it was found via simulations of stochastic models that the time scale separation between establishment (fast) and erasure (slow) of these modifications extends the duration of cell memory, and that different asymmetries between erasure rates of chromatin modifications can lead to different gene expression patterns [10–12]. Here, we provide a mathematical framework to rigorously validate these computational findings and to further explore models

[†]These authors contributed equally: S. Bruno and F. A. Campos.

[‡]Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (sbruno@mit.edu, ddv@mit.edu).

[§]Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0112 (fcamposv@ucsd.edu, yif064@ucsd.edu, rjwilliams@ucsd.edu).

***Funding.** S.B. was supported by NSF Collaborative Research grant MCB-2027949 (PI: D.D.V.). R.J.W., F.C and Y.F. were supported in part by NSF Collaborative Research grant MCB-2027947 (PI: R.J.W.) and by the Charles Lee Powell Foundation (PI: R.J.W.).

35 of chromatin modification circuits. We do this in a way that the results obtained and the tools
 36 developed can be applied to other mathematical models beyond the applications in this paper,
 37 especially stochastic models of chemical reaction networks.

38 **1.2 Focus of our work** In this paper, we consider different versions of the chromatin
 39 modification circuit proposed in [10]. In particular, we start with simpler circuits that include
 40 histone modifications only and then we consider more elaborate circuits that include also DNA
 41 methylation. All of these circuits can be viewed as examples of Stochastic Chemical Reaction
 42 Networks (SCRNs). A SCRN is a continuous time Markov chain living in the non-negative
 43 integer lattice in d -dimensions, where the components of the Markov chain track the number
 44 of molecules of each of d species in the network over time, and each jump of the Markov chain
 45 corresponds to the firing of a reaction in the network [2]. A more precise description is given
 46 in Section 3.2.

47 In order to analyze these stochastic models, we first determine how the stationary distri-
 48 butions and mean first passage times between states vary when a small parameter ε (non-
 49 dimensional parameter that scales the speed of the basal erasure of all the chromatin modifi-
 50 cations) tends to zero. To this end, we show that the stationary distributions and the mean first
 51 passage times of these singularly perturbed Markov chains admit series expansions in ε and
 52 we develop theoretical tools to determine the coefficients in these expansions. Then, we focus
 53 on determining how the different erasure rates of chromatin modifications affect the behavior
 54 of the chromatin modification circuit models. This latter study is conducted by exploiting
 55 comparison theorems for Markov chains recently developed in [13].

56 One of the key features of our work is that these tools and the associated mathematical
 57 results are not only applicable to the chromatin modification models, but they can also be
 58 used to analyze other models that respect the same set of assumptions.

59 **1.3 Related work** As mentioned in the previous paragraph, the stochastic behavior of
 60 the chromatin modification circuit models can be described by singularly perturbed continuous
 61 time Markov chains. There is some literature on discrete and continuous time, singularly
 62 perturbed Markov chains, especially by Avrachenkov et al. [6], Hassin & Haviv [20], Beltrán
 63 and Landim [7,8], and Yin & Zhang [32]. Avrachenkov et al. [6] gave general characterizations
 64 of series expansions for the stationary distribution and mean first passage times of a singularly
 65 perturbed *discrete time* Markov chain with finite state space. While their theory can be in
 66 principle translated to continuous time Markov chains, our work mostly deals directly with the
 67 singularly perturbed continuous time Markov chains and provides more concrete theoretical
 68 results for the leading coefficients of the stationary distribution series expansion and the orders
 69 of the poles of the mean first passage times. For the leading coefficients in the series expansion
 70 for the mean first passage times, we use in part the results of Avrachenkov & Haviv [5] and
 71 Avrachenkov et al. [6] and adapt their work to the continuous time Markov chain setting. We
 72 treat in detail the case where the chain for $\varepsilon = 0$ has more than one absorbing state and at
 73 least one transient state. Furthermore, we also provide an interpretation of leading coefficients
 74 in the series expansion of the stationary distribution in terms of a certain restricted Markov
 75 chain. An algorithm we give to determine the order of the pole of the mean first passage time
 76 extends the work of Hassin & Haviv [20] from discrete time to continuous time. We also extend
 77 the original algorithm's scope to treat mean first passage times to a subset of states, instead

of just a single state. Beltrán and Landim [7,8] study metastable and tunneling behavior for a sequence $\{\eta^N\}_{N=1}^\infty$ of time-homogeneous continuous time Markov chains with countable state spaces. Under an acceleration of time by a factor θ_N , they give conditions under which the trace of the accelerated process on the metastates is asymptotically Markovian as $N \rightarrow \infty$. For our case, this would correspond to accelerating time for $\eta^N = X^\varepsilon$ by $\theta_N \approx \frac{1}{\varepsilon}$. Beltrán and Landim identified the transition rates for the limiting Markov chain and proved that its stationary distribution can be obtained as a limit from the stationary distribution for η^N . While this work is potentially related to what we did, it requires knowing the stationary distribution explicitly and we also study mean first passage times, giving explicit asymptotics for both. Finally, Yin & Zhang [32] conducted an extensive study focused on determining matched asymptotic expansions for the marginal distributions at time t of singularly perturbed continuous time Markov chains. Their infinitesimal generators, generalizing those of Phillips & Kokotovic [29] and Pan & Basar [28], are of the form $Q(\varepsilon) = \frac{1}{\varepsilon}Q^{(0)} + Q^{(1)}$, and can be time dependent. For the time independent case, this would correspond to studying the marginal distributions of our Markov chain X^ε in the "linear" case and at time $\frac{t}{\varepsilon}$ as $\varepsilon \rightarrow 0$, i.e., $\lim_{\varepsilon \rightarrow 0} X^\varepsilon(\frac{t}{\varepsilon})$. Thus, while their work potentially might provide information about stationary distributions as $\varepsilon \rightarrow 0$, we directly study the power series expansion (in ε) of the stationary distribution of X^ε , and we also study series expansions of mean first passage times for X^ε , and we develop more concrete analyses for both.

1.4 Outline of the paper In Section 2 we introduce two simplified models for the chromatin modification circuit that do not include DNA methylation. Through these examples, we introduce the mathematical setting and questions we address in this paper. We describe the basic setup and definitions needed for this paper in Section 3. We present our main results in Section 4. Some proofs are given there, whilst others are in the Supplementary Information (SI). Further applications of the theoretical tools developed in Section 4 for chromatin modification circuits that include DNA methylation are presented in Section 5. Concluding remarks are given in Section 6.

1.5 Preliminaries and notation Denote the set of integers by \mathbb{Z} . For an integer $d \geq 2$ we denote by \mathbb{Z}^d the set of d -dimensional vectors with entries in \mathbb{Z} . Denote by $\mathbb{Z}_+ = \{0, 1, 2, \dots\}$, the set of non-negative integers. For an integer $d \geq 2$ we denote by \mathbb{Z}_+^d the set of d -dimensional vectors with entries in \mathbb{Z}_+ . We denote by $\mathbf{1}$ a vector of any dimension where all entries are 1's. The size of $\mathbf{1}$ will be understood from the context. The set of real numbers will be denoted by \mathbb{R} , $\mathbb{R}_+ = [0, \infty)$, $\mathbb{R}_{>0} = (0, \infty)$, and d -dimensional Euclidean space will be denoted by \mathbb{R}^d for $d \geq 2$. For integers $n, m \geq 1$, the set of $n \times m$ matrices with real-valued entries will be denoted by $\mathbb{R}^{n \times m}$. The set of complex numbers will be denoted by \mathbb{C} .

Let \mathcal{X} be a finite set. If needed, we will enumerate the entries of \mathcal{X} by $\{1, \dots, |\mathcal{X}|\}$. For a matrix $A = (A_{x,y})_{x,y \in \mathcal{X}}$ with real-valued entries, we denote the kernel of A by $\ker(A) := \{x \in \mathbb{R}^{|\mathcal{X}|} : Ax = 0\}$ and the nullity of A by $\text{nullity}(A) := \dim(\ker(A))$. We denote the spectrum of A by $\text{sp}(A)$ and the spectral radius by $\text{spr}(A) = \max\{|\lambda| : \lambda \in \text{sp}(A)\}$. A matrix $Q = (Q_{x,y})_{x,y \in \mathcal{X}}$ will be called a Q -matrix if $Q_{x,y} \geq 0$ for every $x \neq y \in \mathcal{X}$ and $Q\mathbf{1} = 0$. We denote the identity matrix, which has 1's on the diagonal and zeros elsewhere, by $I = (I_{x,y})_{x,y \in \mathcal{X}}$. For a vector $v = (v_x)_{x \in \mathcal{X}}$ we denote by $\text{diag}((v_x)_{x \in \mathcal{X}})$ the diagonal matrix

121 in \mathcal{X} with entries given by v . Vectors are column vectors unless indicated otherwise and a
 122 superscript of T will denote the transpose of a vector or matrix. For integers $n, m \geq 1$ and
 123 a matrix $A \in \mathbb{R}^{n \times m}$, we denote by $\|A\| = (\sum_{i=1}^n \sum_{j=1}^m |A_{i,j}|^2)^{1/2}$ the Frobenius norm of A .
 124 For a vector $v \in \mathbb{R}^n$, we denote the Euclidean norm of v by $\|v\| = (\sum_{i=1}^n |v_i|^2)^{1/2}$.

125 **Definition 1.1.** *Given a matrix $A^{(0)}$ in $\mathbb{R}^{n \times m}$, a **real-analytic perturbation** of $A^{(0)}$ is a
 126 matrix-valued function $A : [0, \varepsilon_0) \rightarrow \mathbb{R}^{n \times m}$, where $\varepsilon_0 > 0$, and*

127 (1.1)
$$A(\varepsilon) = \sum_{k=0}^{\infty} \varepsilon^k A^{(k)}, \quad 0 \leq \varepsilon < \varepsilon_0,$$

128 in which $\{A^{(k)} : k \geq 0\}$ is a sequence of matrices in $\mathbb{R}^{n \times m}$ such that

129 (1.2)
$$\sum_{k=0}^{\infty} \varepsilon^k \|A^{(k)}\| < \infty, \quad \text{for every } 0 \leq \varepsilon < \varepsilon_0.$$

130 Such a perturbation is called **linear** if $A(\varepsilon) = A^{(0)} + \varepsilon A^{(1)}$ for $0 \leq \varepsilon < \varepsilon_0$.

131 By (1.2), a real-analytic perturbation of $A^{(0)}$ can be extended to a function $F(z) :=$
 132 $\sum_{k=0}^{\infty} z^k A^{(k)}$ defined on $B(0, \varepsilon_0) = \{z \in \mathbb{C} : |z| < \varepsilon_0\}$. The function F will be called an
 133 **analytic perturbation** or **complex-analytic perturbation** of $A^{(0)}$. This extension will
 134 allow us to invoke results in complex analysis in order to study real-analytic perturbations.
 135 An example of this is the following result.

136 **Proposition 1.2.** *Let $A : [0, \varepsilon_0) \rightarrow \mathbb{R}^{n \times n}$ be a real-analytic perturbation of $A^{(0)}$ such that
 137 $A^{-1}(\varepsilon)$ exists for every $0 < \varepsilon < \varepsilon_0$. Then, there is $\varepsilon_1 \in (0, \varepsilon_0)$ and $p \in \mathbb{Z}_+$ such that*

138 (1.3)
$$A^{-1}(\varepsilon) = \sum_{k=-p}^{\infty} \varepsilon^k B^{(k)}, \quad 0 < \varepsilon < \varepsilon_1,$$

139 where $\sum_{k=-p}^{\infty} \varepsilon^k \|B^{(k)}\| < \infty$ for every $0 < \varepsilon < \varepsilon_1$, $\{B^{(k)} : k \geq -p\}$ is a sequence of matrices
 140 in $\mathbb{R}^{n \times n}$, $B^{(-p)}$ is not the identically zero matrix and p is called the **order of the pole** at
 141 $\varepsilon = 0$.

142 This result is given in the analytic setting as Theorem 2.4 in [6]. Proposition 1.2 follows by
 143 extending $A(\cdot)$ to a complex disk, then using Cramer's rule as in the proof of Theorem 2.4
 144 in [6] and checking that the matrices $\{B^{(k)} : k \geq -p\}$ obtained are real-valued.

145 **2 Motivating Example: Chromatin Modification Circuit** In order to understand how
 146 the interactions among known chromatin modifications influence epigenetic cell memory, we
 147 consider the chemical reaction model of the gene's inner chromatin modification circuit intro-
 148 duced in [10]. This model has the nucleosome with DNA wrapped around it, D, as a basic unit
 149 that can be modified either with activating marks, such as H3K4 methylation (H3K4me3) or
 150 H3K4 acetylation (H3K4ac), or repressive marks, such as H3K9 methylation (H3K9me3) or
 151 DNA methylation. H3K4me3 and H3K4ac are two histone modifications that promote a less

¹Here, we chose to fix a particular norm on $\mathbb{R}^{n \times m}$, although other choices of norm will often work.

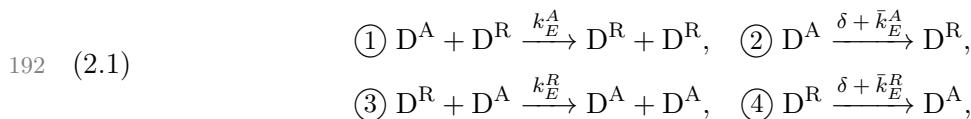
152 compact DNA around the nucleosomes and they are then associated with gene activation (see
 153 Chapter 3 of [1] and [33]). In the model, it is assumed that H3K4me3 and H3K4ac co-exist
 154 and the nucleosome with either of these modifications is represented by D^A . On the contrary,
 155 both the histone modification H3K9me3 and DNA methylation cause the DNA to be tightly
 156 wrapped around the nucleosome and therefore, they are associated with gene repression [22].
 157 A nucleosome with DNA methylation only, H3K9 methylation (H3K9me3) only or both is
 158 represented by D_1^R , D_2^R and D_{12}^R , respectively.

159 One of the key parameters of the system is $\varepsilon > 0$, a non-dimensional parameter that scales
 160 the speed of basal erasure of all chromatin modifications. We are interested in studying the
 161 behavior of the system in the limiting regime $\varepsilon \rightarrow 0$, in which the chromatin modification
 162 system has a bimodal limiting stationary distribution [10]. One peak corresponds to the active
 163 chromatin state (most of the nucleosomes are modified with activating marks) and the other
 164 one is in the repressed chromatin state (most of the nucleosomes are modified with repressive
 165 marks). We aim to derive formulas that characterize, as ε goes to 0, the behavior of the
 166 stationary distribution and the “time to memory loss” of the active (repressed) state, defined
 167 as the mean first passage time to reach the repressed (active) state, starting from the active
 168 (repressed) state.

169 Two other critical parameters of the system are μ and μ' : they capture the asymmetry
 170 between the erasure rates of repressive and activating chromatin modifications. More precisely,
 171 μ (μ') quantifies the asymmetry between erasure rates of repressive histone modifications
 172 (DNA methylation) and activating histone modifications. Part of our study is to analytically
 173 determine how μ and μ' affect the stationary distribution and the time to memory loss of the
 174 active and repressed states.

175 In this section, we introduce two simplified models of the chromatin modification circuit in
 176 which, compared to the full model described above, DNA methylation is not included and the
 177 only chromatin marks are histone modifications. We will use these simpler models in Section
 178 4 to directly apply and then better understand the theory developed in this paper. Then, in
 179 Section 5 we deal with more elaborate models that also include DNA methylation. Note that,
 180 for consistency, we use the same notation for the species and the reaction rate constants as
 181 the one used in the paper where these models were introduced [10].

182 **2.1 1D model** We first consider a simplified model in which a gene has a total of $D_{\text{tot}} \geq 2$
 183 nucleosomes, where each nucleosome either has an activating histone modification, D^A , or a
 184 repressive histone modification, D^R , and there are no unmodified nucleosomes in this sim-
 185 plified model. If the amounts of nucleosomes having repressive (D^R) and activating (D^A)
 186 modifications are denoted as n_{DR} and n_{DA} , respectively, then we have the conservation law
 187 $n_{DR} + n_{DA} = D_{\text{tot}}$. We call this the 1D model because it suffices to keep track of the amount of
 188 D^R (for example), since the amount of D^A can be deduced by the conservation law. Further-
 189 more, the basal and recruited erasure of D^A (D^R) coincide with the basal *de-novo* establishment
 190 and maintenance of D^R (D^A). The chemical reaction system for this 1D model is the following:
 191



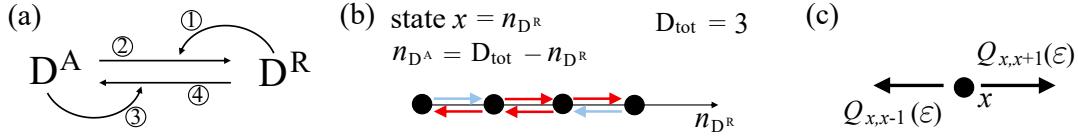


Figure 1: **1D model.** (a) Chemical reaction system. The numbers on the arrows correspond to the chemical reactions associated with the arrows as described in (2.1) in the main text. (b) Markov chain graph. Here, we consider $D_{\text{tot}} = 3$ and we use black dots to represent the states, red arrows to represent transition rates that are $O(1)$, and blue arrows to represent transition rates that are $O(\varepsilon)$. (c) Directions of the potential transitions of X^ε starting from a state x , whose rates are given in equation (2.2).

193 where $\delta, k_E^A, \bar{k}_E^A, k_E^R, \bar{k}_E^R > 0$. Here, the form of the reaction rate constants is due to the fact
 194 that reactions with the same reactants and products have been combined. We denote the
 195 reaction volume by V , and let $\varepsilon := \frac{\delta + \bar{k}_E^A}{k_E^A(D_{\text{tot}}/V)} = \frac{\delta_A}{k_E^A(D_{\text{tot}}/V)}$, where $\delta_A := \delta + \bar{k}_E^A$. We also
 196 consider the constant $\mu := \frac{k_E^R}{k_E^A}$, which captures the asymmetry between the erasure rates of
 197 repressive and activating histone modifications. We introduce the constant b such that $\mu b = \frac{\delta_R}{\delta_A}$,
 198 with $\delta_R := \delta + \bar{k}_E^R$. Then, $\delta_A = \varepsilon \frac{k_E^A D_{\text{tot}}}{V}$ and $\delta_R := \delta_A \mu b = \varepsilon \frac{k_E^A D_{\text{tot}}}{V} \mu b$. So, as $\varepsilon \rightarrow 0$, both δ_A
 199 and δ_R go to 0, with $D_{\text{tot}}, \frac{k_E^A}{V}, \mu$, and b fixed.

200 Now, consider a continuous time Markov chain X^ε , with state space $\mathcal{X} := \{0, \dots, D_{\text{tot}}\}$,
 201 where $D_{\text{tot}} \geq 2$ is an integer, which keeps track of n_{D^R} through time. Given that we have
 202 the conservation law $n_{D^R} + n_{D^A} = D_{\text{tot}}$, n_{D^A} can be obtained as a function of n_{D^R} , that is
 203 $n_{D^A} = D_{\text{tot}} - n_{D^R}$. Assuming stochastic mass-action kinetics (including the usual volume
 204 scaling of rate constants [16]), the infinitesimal generator $Q(\varepsilon)$ ² for X^ε is given by:

$$205 \quad (2.2) \quad Q_{x,x+\ell}(\varepsilon) = \begin{cases} \left(\frac{k_E^A}{V} x + \varepsilon \frac{k_E^A}{V} D_{\text{tot}} \right) (D_{\text{tot}} - x) & \text{if } \ell = 1 \\ \mu \left(\frac{k_E^A}{V} (D_{\text{tot}} - x) + b \varepsilon \frac{k_E^A}{V} D_{\text{tot}} \right) x & \text{if } \ell = -1 \\ 0 & \text{otherwise,} \end{cases}$$

206 for $x \in \mathcal{X}$, $\ell \in \mathbb{Z} \setminus \{0\}$ and $x + \ell \in \mathcal{X}$, and $Q_{x,x}(\varepsilon) = -\sum_{y \in \mathcal{X} \setminus \{x\}} Q_{x,y}(\varepsilon)$ for $x \in \mathcal{X}$. We
 207 extend this definition to $\varepsilon = 0$ by defining $Q_{x,y}(0) := \lim_{\varepsilon \rightarrow 0} Q_{x,y}(\varepsilon)$ for $x, y \in \mathcal{X}$. We will
 208 follow a similar convention for other examples. We consider X^0 to be the continuous time
 209 Markov chain with infinitesimal generator given by $Q(0)$. The process X^0 corresponds to a
 210 SCRN model associated with the autocatalytic reactions ① and ③ in (2.1), alone. Note that

$$211 \quad (2.3) \quad Q(\varepsilon) = Q^{(0)} + \varepsilon Q^{(1)}, \quad \varepsilon \geq 0,$$

212 for appropriate matrices $Q^{(0)}$ and $Q^{(1)}$ in $\mathbb{R}^{|\mathcal{X}| \times |\mathcal{X}|}$. By (2.3), we can see that $Q(\cdot)$ is a *real-analytic* (and moreover *linear*) perturbation of $Q^{(0)}$ (see Section 1.5 for definitions). Note that

²Note that $Q(\varepsilon)$ is sometimes called an infinitesimal transition matrix. The entries $Q_{x,y}(\varepsilon)$ for $x \neq y$ are the infinitesimal transition rates of going from x to y : $\mathbb{P}[X^\varepsilon(t+h) = y | X^\varepsilon(t) = x] = Q_{x,y}(\varepsilon)h + o(h)$ as $h \rightarrow 0$.

214 for every $\varepsilon > 0$, X^ε is irreducible, while X^0 has a transient communicating class $\{1, \dots, D_{\text{tot}} - 1\}$ and two absorbing states (0 and D_{tot}) (see SI - Section S.8). Because of this discontinuity
 215 at $\varepsilon = 0$, we say that $Q(\cdot)$ is a *singular perturbation* of $Q^{(0)}$ (see Section 3.1 for a precise
 216 definition).
 217

218 We first want to determine the probability for the gene to be in the active state a ($x = 0$),
 219 repressed state r ($x = D_{\text{tot}}$) or one of the intermediate states ($x \in \{1, \dots, D_{\text{tot}} - 1\}$) after
 220 a long time (life-time of the organism), as a function of ε . We are especially interested in
 221 the limit of the stationary distribution for the system, $\pi(\varepsilon)$, as $\varepsilon \rightarrow 0$ (i.e., the basal erasure
 222 rate of the chromatin modifications is much lower than their maintenance rate). Since X^ε is
 223 irreducible for $\varepsilon > 0$ (and it has a finite state space), it has a unique stationary distribution
 224 $\pi(\varepsilon)$. In Section 3.1 we show that $\pi(0) := \lim_{\varepsilon \rightarrow 0} \pi(\varepsilon)$ exists and the function $\pi(\cdot)$ admits a
 225 convergent power series expansion:

$$226 \quad (2.4) \quad \pi(\varepsilon) = \sum_{k=0}^{\infty} \varepsilon^k \pi^{(k)} \quad \text{for } 0 \leq \varepsilon < \varepsilon_1,$$

227 for some $\varepsilon_1 > 0$. In order to determine $\pi(0)$, we can take limits and observe that $\pi(0)Q(0) = 0$
 228 and so $\pi(0)$ is a stationary distribution for $Q(0)$. Indeed, $\pi(0)$ is a specific mixture of atoms
 229 on the two absorbing states (0 and D_{tot}) for X^0 .

230 In Figure 2 we see how the function $\pi(\varepsilon)$ changes as $\varepsilon \rightarrow 0$ for several values of μ with D_{tot} ,
 231 $\frac{k_E^A}{V}$ and b fixed. Furthermore, for this simpler chromatin modification circuit, because of the
 232 birth-death structure of X^ε , we can obtain explicit formulas for $\pi(\varepsilon)$ when $\varepsilon > 0$ (see SI -
 233 Section S.8). On letting $\varepsilon \rightarrow 0$, we obtain:

$$234 \quad (2.5) \quad \pi_x(0) = \begin{cases} \frac{b\mu^{D_{\text{tot}}}}{1+b\mu^{D_{\text{tot}}}} & \text{if } x = 0 \\ 0 & \text{if } x \in \{1, \dots, D_{\text{tot}} - 1\} \\ \frac{1}{1+b\mu^{D_{\text{tot}}}} & \text{if } x = D_{\text{tot}}. \end{cases}$$

235 Thus, $\pi_x(0) \neq 0$ only for $x = 0$ and $x = D_{\text{tot}}$ and $\pi_0(0)$ increases as μ increases, while $\pi_{D_{\text{tot}}}(0)$
 236 decreases as μ increases.

237 For continuous time Markov chains beyond the one-dimensional birth-death processes seen
 238 here, determining $\pi(0)$ will be a considerable task. In Section 4.1, we address the problem of
 239 determining $\pi(0)$, together with the whole expansion (2.4), in a systematic way, for a class of
 240 singularly perturbed Markov chains that includes our models of chromatin modification
 241 circuits. For the 1D model considered here, the derivation of the first two terms in the expansion
 242 is given in Section 4.1.2.

243 Now, in order to evaluate the time to memory loss of the active and repressed states, let us
 244 define the first passage time as $\tau_y^\varepsilon = \inf\{t \geq 0 : X^\varepsilon(t) = y\}$ for a state $y \in \mathcal{X}$. We will see in
 245 (3.4) that the mean first passage time (MFPT) for X^ε starting from $x \in \mathcal{X}$, $h_{x,y}(\varepsilon) = \mathbb{E}_x[\tau_y^\varepsilon]$,
 246 has a Laurent series expansion of the form:

$$247 \quad (2.6) \quad h_{x,y}(\varepsilon) = \frac{c_{-p}}{\varepsilon^p} + \dots + \frac{c_{-1}}{\varepsilon} + c_0 + \varepsilon c_1 + \dots \quad \text{for } 0 < \varepsilon < \varepsilon_{\{y\}},$$

248 for some $\varepsilon_{\{y\}} > 0$, for some natural number $p \geq 0$ and where $c_{-p} \neq 0$. Then, considering the
 249 repressed state $r = D_{\text{tot}}$ and the active state $a = 0$, we define the time to memory loss of the

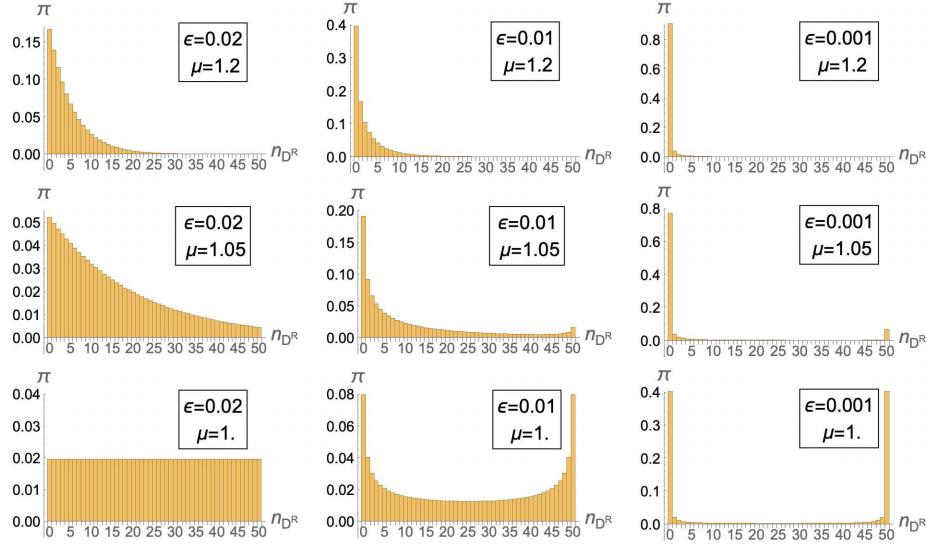


Figure 2: Histograms for the stationary distribution $\pi(\epsilon)$ of the Markov chain X^ϵ defined by (2.2), for different values of ϵ and μ . The plot was generated by numerically solving $\pi(\epsilon)Q(\epsilon) = 0$ using the *Eigenvector* function in Mathematica. The parameters used were $D_{\text{tot}} = 50$, $k_E^A/V = 1$, and $b = 1$.

250 repressed state as $h_{r,a}(\epsilon)$ and the time to memory loss of the active state as $h_{a,r}(\epsilon)$. Now, we
 251 are interested in the derivation of analytical formulas for $h_{r,a}(\epsilon)$ and $h_{a,r}(\epsilon)$. This will allow
 252 us to understand how the time to memory loss changes as $\epsilon \rightarrow 0$, and how the asymmetry of
 253 the system, represented by μ , affects this limit. For this case study, exploiting its birth-death
 254 structure, we can directly derive relevant formulas (see SI - Section S.8, SI - Equations (S.65)-
 255 (S.66)). In particular, defining $\lambda_x^\epsilon = Q_{x,x+1}(\epsilon)$, $\gamma_x^\epsilon = Q_{x,x-1}(\epsilon)$, with $Q_{x,x+1}(\epsilon)$ and $Q_{x,x-1}(\epsilon)$
 256 defined in (2.2), and $r_j^\epsilon = \frac{\lambda_1^\epsilon \lambda_2^\epsilon \dots \lambda_j^\epsilon}{\gamma_1^\epsilon \gamma_2^\epsilon \dots \gamma_j^\epsilon}$, for $j = 1, 2, \dots, D_{\text{tot}} - 1$, the time to memory loss of the
 257 repressed state is given by

$$258 \quad (2.7) \quad h_{r,a}(\epsilon) = \frac{r_{D_{\text{tot}}-1}^\epsilon}{\gamma_{D_{\text{tot}}}^\epsilon} \left(1 + \sum_{i=1}^{D_{\text{tot}}-1} \frac{1}{r_i^\epsilon} \right) + \sum_{i=2}^{D_{\text{tot}}-1} \left[\frac{r_{i-1}^\epsilon}{\gamma_i^\epsilon} \left(1 + \sum_{j=1}^{i-1} \frac{1}{r_j^\epsilon} \right) \right] + \frac{1}{\gamma_1^\epsilon}.$$

259 Similarly, defining $\tilde{r}_j^\epsilon = \frac{\gamma_{D_{\text{tot}}-1}^\epsilon \gamma_{D_{\text{tot}}-2}^\epsilon \dots \gamma_{D_{\text{tot}}-j}^\epsilon}{\lambda_{D_{\text{tot}}-1}^\epsilon \lambda_{D_{\text{tot}}-2}^\epsilon \dots \lambda_{D_{\text{tot}}-j}^\epsilon}$, for $j = 1, 2, \dots, D_{\text{tot}} - 1$, the time to memory
 260 loss of the active state is given by

$$261 \quad (2.8) \quad h_{a,r}(\epsilon) = \frac{\tilde{r}_{D_{\text{tot}}-1}^\epsilon}{\lambda_0^\epsilon} \left(1 + \sum_{j=1}^{D_{\text{tot}}-1} \frac{1}{\tilde{r}_i^\epsilon} \right) + \sum_{i=2}^{D_{\text{tot}}-1} \left[\frac{\tilde{r}_{i-1}^\epsilon}{\lambda_{D_{\text{tot}}-i}^\epsilon} \left(1 + \sum_{j=1}^{i-1} \frac{1}{\tilde{r}_j^\epsilon} \right) \right] + \frac{1}{\lambda_{D_{\text{tot}}-1}^\epsilon}.$$

262 Since λ_0^ϵ and $\gamma_{D_{\text{tot}}}^\epsilon$ are the only transition rates that are $O(\epsilon)$ with the rest being $O(1)$, the
 263 time to memory loss of both the active and repressed states are $O(\epsilon^{-1})$, that is, $p = 1$, and as
 264 $\epsilon \rightarrow 0$, these mean times tend to infinity.

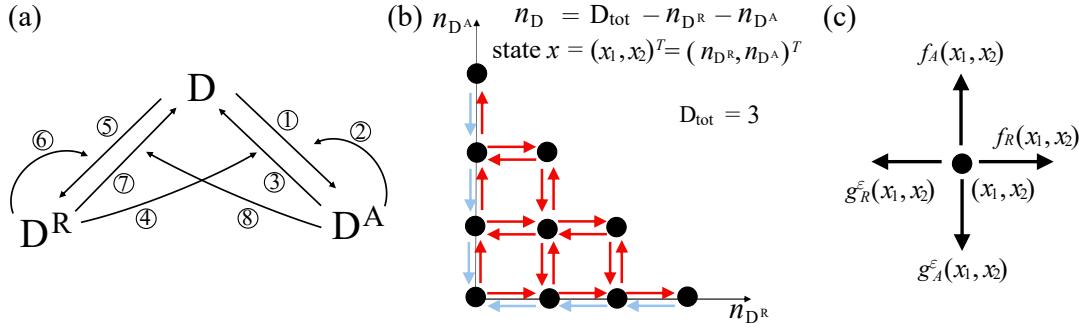


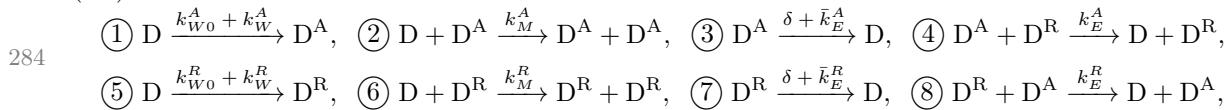
Figure 3: **2D model.** (a) Chemical reaction system. The numbers on the arrows correspond to the reactions associated with the arrows as described in (2.9) in the main text. (b) Markov chain graph. Here, we consider $D_{\text{tot}} = 3$ and we use black dots to represent the states, red arrows to represent transition rates that are $O(1)$, and blue arrows to represent transition rates that are $O(\epsilon)$. (c) Directions of the possible one step transitions for X^ϵ starting from a state $x = (x_1, x_2)^T$, whose rates are given in equation (2.10).

265 Furthermore, γ_x^ϵ , with $x \in \{1, 2, \dots, D_{\text{tot}}\}$, are the only rates that depend on μ (they are linear
266 in μ). Examining (2.7) and (2.8) with this observation in mind, we see that, if μ is increased
267 (that is, the erasure rate of the repressive histone modification is increased compared to that
268 of the active histone modification), $h_{a,r}(\epsilon)$ increases, while $h_{r,a}(\epsilon)$ decreases. The opposite
269 happens when μ is decreased.

270 More complicated situations arise when we do not have a birth-death structure to work with,
271 as in the model of the next example. To evaluate how critical system parameters affect the
272 time to memory loss for such more elaborate systems, in Section 4, we develop an algorithm
273 to determine p (see Section 4.2.1), we give an expression for the leading term in the series
274 expansion of the mean first passage time, and we exploit theoretical results developed in our
275 paper [13] for comparing continuous time Markov chains, to determine how the asymmetry of
276 the system affects the time to memory loss (see Section 4.3).

277 **2.2 2D model** Let us consider a model in which, compared to the previous one, we
278 assume that a nucleosome can also be unmodified. More precisely, in this case we denote
279 the number of nucleosomes unmodified (D), modified with repressive modifications (D^R), and
280 modified with activating modifications (D^A) by n_D , n_{D^R} and n_{D^A} , respectively, and we have
281 that $n_D + n_{D^R} + n_{D^A} = D_{\text{tot}}$, with D_{tot} representing the total number of nucleosomes within the
282 gene. Furthermore, each histone modification autocatalyzes its own production and promotes
283 the erasure of the other one [10, 17]. The chemical reaction system is the following:

(2.9)



284 where $k_{W0}^A, k_W^A, k_M^A, \delta, \bar{k}_E^A, k_E^A, k_{W0}^R, k_W^R, k_M^R, \bar{k}_E^R, k_E^R > 0$. Here, the form of the reaction rate
285 constants is due to the fact that reactions with the same reactants and products have been

combined. Now, similarly to what we did for the previous model, let us denote the reaction volume by V , and let $\varepsilon := \frac{\delta + \bar{k}_E^A}{k_M^A(D_{\text{tot}}/V)} = \frac{\delta_A}{k_M^A(D_{\text{tot}}/V)}$, with $\delta_A := \delta + \bar{k}_E^A$, and $\mu := \frac{k_E^R}{k_E^A}$. Additionally, consider the constant b such that $\mu b = \frac{\delta_R}{\delta_A}$, with $\delta_R := \delta + \bar{k}_E^R$. Then $\delta_R = \delta_A \mu b = \varepsilon \frac{k_M^A D_{\text{tot}}}{V} \mu b$. So, as $\varepsilon \rightarrow 0$, both δ_A and δ_R go to 0 with $D_{\text{tot}}, \frac{k_M^A D_{\text{tot}}}{V}, \mu$ and b fixed.

We consider the continuous time Markov chain $X^\varepsilon = \{(X_1^\varepsilon(t), X_2^\varepsilon(t))^T, t \geq 0\}$, which keeps track of $(n_{\text{DR}}, n_{\text{DA}})$ through time. Since the total number of nucleosomes D_{tot} is constant, the state space is $\mathcal{X} = \{x = (x_1, x_2)^T \in \mathbb{Z}_+^2 : x_1 + x_2 \leq D_{\text{tot}}\}$. The potential one step transitions for X^ε from $x \in \mathcal{X}$ are shown in Figure 3(c), where the associated transition vectors are given by $v_1 = -v_2 = (0, 1)^T$ and $v_3 = -v_4 = (1, 0)^T$ and the infinitesimal transition rates (assuming mass-action kinetics with the usual volume scaling of rate constants) are given by

(2.10)

$$\begin{aligned} Q_{x,x+v_1}(\varepsilon) &= f_A(x) = (D_{\text{tot}} - (x_1 + x_2)) \left(k_{W0}^A + k_W^A + \frac{k_M^A}{V} x_2 \right), \\ Q_{x,x+v_3}(\varepsilon) &= f_R(x) = (D_{\text{tot}} - (x_1 + x_2)) \left(k_{W0}^R + k_W^R + \frac{k_M^R}{V} x_1 \right), \\ Q_{x,x+v_2}(\varepsilon) &= g_A^\varepsilon(x) = x_2 \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} + x_1 \frac{k_E^A}{V} \right), \quad Q_{x,x+v_4}(\varepsilon) = g_R^\varepsilon(x) = x_1 \mu \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} b + x_2 \frac{k_E^A}{V} \right). \end{aligned}$$

This is a more complicated model compared to the previous example and, in order to study its stationary distribution and mean first passage times, we will exploit the theory developed in this paper, as shown in Section 4.

3 Basic Setup and Definitions In Section 3.1 we provide basic definitions for singularly perturbed continuous time Markov chains and describe some key properties for them. In particular, we describe the form of series expansions for their stationary distributions and mean first passage times. We will study these quantities and apply our results to a class of continuous time Markov chains called Stochastic Chemical Reaction Networks (SCRNs) which are defined in Section 3.2. Our models of chromatin modification circuits will be SCRNs. All of the models considered will have a finite state space.

3.1 Singularly perturbed, finite state, continuous time Markov chains Suppose \mathcal{X} is a finite set and $|\mathcal{X}| > 1$. For a value $\varepsilon_0 > 0$, consider a family $\{X^\varepsilon : 0 \leq \varepsilon < \varepsilon_0\}$ of continuous time Markov chains with state space \mathcal{X} and infinitesimal generators $\{Q(\varepsilon) : 0 \leq \varepsilon < \varepsilon_0\}$ where $\varepsilon \mapsto Q(\varepsilon)$ is a real-analytic perturbation of $Q(0)$. Thus,

$$Q(\varepsilon) = Q^{(0)} + \varepsilon Q^{(1)} + \varepsilon^2 Q^{(2)} + \dots,$$

where $\{Q^{(k)} : k \geq 0\}$ is a family of $|\mathcal{X}| \times |\mathcal{X}|$ real-valued matrices such that $\sum_{k=0}^{\infty} \varepsilon^k \|Q^{(k)}\| < \infty$ for every $0 \leq \varepsilon < \varepsilon_0$. Assume that the continuous time Markov chains X^ε are irreducible for $0 < \varepsilon < \varepsilon_0$. In this context, the perturbation is **singular** when X^0 has more than one recurrent class. This notion of singular will be the focus of our attention although some of our work applies for the regular (non-singular) case too. All of our chromatin modification circuit models have associated singular continuous time Markov chains, where the perturbation is **linear**, i.e., $Q^{(k)} = 0$ for every $k \geq 2$.

320 When $0 < \varepsilon < \varepsilon_0$, there is an equivalent characterization of X^ε using holding times with ex-
 321 ponential parameters $\{q_x(\varepsilon)\}_{x \in \mathcal{X}}$ and a transition probability matrix $P(\varepsilon)$ for the **embedded**
 322 **discrete time Markov chain**. Specifically, for each $x \in \mathcal{X}$, $q_x(\varepsilon) = -Q_{x,x}(\varepsilon) \neq 0$, since X^ε
 323 is irreducible, and for all $x, y \in \mathcal{X}$, $P_{x,x}(\varepsilon) = 0$, $P_{x,y}(\varepsilon) = \frac{Q_{x,y}(\varepsilon)}{q_x(\varepsilon)}$, for $y \neq x$ in \mathcal{X} . Note that
 324 $Q(\varepsilon) = \text{diag}(q(\varepsilon))(P(\varepsilon) - I)$. The matrix $P(\varepsilon)$ has a power series expansion in ε for sufficiently
 325 small $0 \leq \varepsilon < \varepsilon_P$ for some $\varepsilon_P > 0$ (the justification is similar to that for (3.7) below).

326 The first quantities we are interested in studying are mean first passage times. Consider a
 327 nonempty set $\mathcal{B} \subseteq \mathcal{X}$ such that $\mathcal{B} \neq \mathcal{X}$ and let

$$328 \quad \tau_{\mathcal{B}}^\varepsilon := \inf\{t \geq 0 : X^\varepsilon(t) \in \mathcal{B}\}.$$

329 We define the **mean first passage time (MFPT)** (for X^ε) from $x \in \mathcal{X}$ to \mathcal{B} as

$$330 \quad h_{x,\mathcal{B}}(\varepsilon) = \mathbb{E}[\tau_{\mathcal{B}}^\varepsilon \mid X^\varepsilon(0) = x].$$

331 If $\mathcal{B} = \{y\}$ for some $y \in \mathcal{X}$, we adopt the notation: $h_{x,y}(\varepsilon) := h_{x,\{y\}}(\varepsilon)$. Using first step
 332 analysis (see (3.1) in [26]), for $0 < \varepsilon < \varepsilon_0$,

$$333 \quad (3.2) \quad h_{x,\mathcal{B}}(\varepsilon) = \begin{cases} 0 & \text{if } x \in \mathcal{B} \\ \frac{1}{q_x(\varepsilon)} + \sum_{y \in \mathcal{X}} P_{x,y}(\varepsilon) h_{y,\mathcal{B}}(\varepsilon) & \text{if } x \in \mathcal{B}^c. \end{cases}$$

334 Now, define $P^{\mathcal{B}^c}(\varepsilon)$ and $Q^{\mathcal{B}^c}(\varepsilon)$ as the matrices obtained by removing the columns and rows of
 335 $P(\varepsilon)$ and $Q(\varepsilon)$, respectively, corresponding to states in \mathcal{B} . Then, by noting that $I - P^{\mathcal{B}^c}(\varepsilon)$ is
 336 invertible (see SI - Lemma S.3) and that $Q^{\mathcal{B}^c}(\varepsilon) = -\text{diag}((q_x(\varepsilon))_{x \in \mathcal{B}^c})(I - P^{\mathcal{B}^c}(\varepsilon))$ is invertible,
 337 from (3.2), we obtain

$$338 \quad (3.3) \quad h_{\mathcal{B}}(\varepsilon) = -(Q^{\mathcal{B}^c}(\varepsilon))^{-1} \mathbb{1},$$

339 where $h_{\mathcal{B}}(\varepsilon) := (h_{x,\mathcal{B}}(\varepsilon))_{x \in \mathcal{B}^c}$, I is the identity matrix of dimension $|\mathcal{B}^c|$, and $\mathbb{1}$ is the vector
 340 of all 1's, of size $|\mathcal{B}^c|$. Proposition 1.2, yields that there is $0 < \varepsilon_{\mathcal{B}} < \varepsilon_0$ such that $-(Q^{\mathcal{B}^c}(\varepsilon))^{-1}$
 341 can be expanded as a matrix-valued Laurent series as in (1.3) for $0 < \varepsilon < \varepsilon_{\mathcal{B}}$, and then for
 342 each $x \in \mathcal{B}^c$,

$$343 \quad (3.4) \quad \mathbb{E}_x[\tau_{\mathcal{B}}^\varepsilon] = h_{x,\mathcal{B}}(\varepsilon) = \sum_{k=-p(x)}^{\infty} \rho_x^{(k)} \varepsilon^k, \quad 0 < \varepsilon < \varepsilon_{\mathcal{B}},$$

344 where $p(x) \geq 0$ is an integer, $\rho_x^{(-p(x))} > 0$, $\rho_x^{(k)} \in \mathbb{R}$ for $k > -p(x)$, and the convergence is
 345 absolute convergence for $0 < \varepsilon < \varepsilon_{\mathcal{B}}$. The quantity $p(x)$ will be called the **order of the pole**
 346 of (3.4). In Section 4.2.1 we will show how to find $p(x)$ by using an algorithm that uses the
 347 order, with respect to ε , of the transitions of the Markov chain X^ε .

348 A second quantity of interest is the stationary distribution for X^ε . For $0 < \varepsilon < \varepsilon_0$, since X^ε is
 349 assumed to be irreducible and has finite state space, there is a unique **stationary distribution**
 350 $\pi(\varepsilon) = (\pi_x(\varepsilon))_{x \in \mathcal{X}}$, which is the unique probability row vector satisfying $\pi(\varepsilon)Q(\varepsilon) = 0$. We
 351 are interested in studying $\pi(\varepsilon)$ as $\varepsilon \rightarrow 0$. For this, first consider $\eta_x^\varepsilon = \inf\{t \geq 0 : X^\varepsilon(t) \neq x\}$

352 and $\zeta_x^\varepsilon = \inf\{t > \eta_x^\varepsilon : X^\varepsilon(t) = x\}$, $x \in \mathcal{X}$. Note that $\mathbb{E}_y[\zeta_x^\varepsilon] = h_{y,x}(\varepsilon)$ for $y \neq x$. For each
 353 $x \in \mathcal{X}$, $\mathbb{E}_x[\zeta_x^\varepsilon]$ is called the **mean return time** to the state x , and for $0 < \varepsilon < \varepsilon_0$ satisfies

354 (3.5)
$$\mathbb{E}_x[\zeta_x^\varepsilon] = \frac{1}{q_x(\varepsilon)} + \sum_{y \neq x} P_{xy}(\varepsilon) \mathbb{E}_y[\zeta_x^\varepsilon] = \frac{1}{q_x(\varepsilon)} + \sum_{y \neq x} P_{xy}(\varepsilon) h_{y,x}(\varepsilon).$$

355 It is well known (see Theorem 3.8.1 in [26]) that for $0 < \varepsilon < \varepsilon_0$,

356 (3.6)
$$\pi_x(\varepsilon) = \frac{1}{\mathbb{E}_x[\zeta_x^\varepsilon]} \cdot \frac{1}{q_x(\varepsilon)}, \quad x \in \mathcal{X}.$$

357 From (3.4) and (3.5), we can see that $\varepsilon \mapsto q_x(\varepsilon) \mathbb{E}_x[\zeta_x^\varepsilon]$ can be extended to an analytic
 358 function on a punctured disk about 0 in \mathbb{C} , with a Laurent series expansion having at most
 359 a pole of finite order at 0. The radius of the punctured disk may be smaller than ε_0 . This,
 360 together with (3.6), implies that $\varepsilon \mapsto \pi_x(\varepsilon)$ can be extended to an analytic function on a
 361 punctured disk about 0 in \mathbb{C} , also with a Laurent series expansion. Since this function is
 362 bounded by one when restricted to sufficiently small positive values of ε , we can remove the
 363 singularity at 0 and obtain that $\pi(0) := \lim_{\varepsilon \rightarrow 0} \pi(\varepsilon)$ exists and furthermore $\varepsilon \mapsto \pi(\varepsilon)$ is a
 364 real-analytic perturbation of $\pi(0)$. In other words,

365 (3.7)
$$\pi(\varepsilon) = \sum_{k=0}^{\infty} \varepsilon^k \pi^{(k)}, \quad 0 \leq \varepsilon < \varepsilon_1,$$

366 for sufficiently small $\varepsilon_1 > 0$ and where $\{\pi^{(k)} : k \geq 0\}$ is a sequence of real-valued $|\mathcal{X}|$ -
 367 dimensional vectors such that $\sum_{k=0}^{\infty} \varepsilon^k \|\pi^{(k)}\| < \infty$ for every $0 \leq \varepsilon < \varepsilon_1$.

368 **3.2 Stochastic Chemical Reaction Networks (SCRNs)** In this section, we provide some
 369 background on Stochastic Chemical Reaction Networks. The reader is referred to Anderson &
 370 Kurtz [4] for a more in depth introduction to this subject.

371 We assume there is a finite non-empty set $\mathcal{S} = \{S_1, \dots, S_d\}$ of d **species**, and a finite non-
 372 empty set $\mathcal{R} \subseteq \mathbb{Z}_+^d \times \mathbb{Z}_+^d$ that represents chemical **reactions**. We assume that $(w, w) \notin \mathcal{R}$
 373 for every $w \in \mathbb{Z}_+^d$. The set \mathcal{S} represents d different molecular species in a system subject to
 374 reactions \mathcal{R} which change the number of molecules of some species. For each $(v^-, v^+) \in \mathcal{R}$, the
 375 d -dimensional vector v^- (the **reactant vector**) counts how many molecules of each species
 376 are consumed in the reaction, while v^+ (the **product vector**) counts how many molecules of
 377 each species are produced. The reaction is usually written as

378 (3.8)
$$\sum_{i=1}^d (v^-)_i S_i \longrightarrow \sum_{i=1}^d (v^+)_i S_i.$$

379 To avoid the use of unnecessary species, we will assume that for each $1 \leq i \leq d$, there exists
 380 a vector $w = (w_1, \dots, w_d)^T \in \mathbb{Z}_+^d$ with $w_i > 0$ such that (w, v) or (v, w) is in \mathcal{R} for some
 381 $v \in \mathbb{Z}_+^d$, i.e., each species is either a reactant or a product in some reaction.

382 The net change in the quantity of molecules of each species due to a reaction $(v^-, v^+) \in \mathcal{R}$
 383 is described by $v^+ - v^-$ and it is called the associated **reaction vector**. We denote the set of

384 reaction vectors by $\mathcal{V} := \{v \in \mathbb{Z}^d \mid v = v^+ - v^- \text{ for some } (v^-, v^+) \in \mathcal{R}\}$, we let $n := |\mathcal{V}|$ the size
 385 of \mathcal{V} and we enumerate the members of \mathcal{V} as $\{v_1, \dots, v_n\}$. Note that \mathcal{V} does not contain the zero
 386 vector because \mathcal{R} has no elements of the form (w, w) . Different reactions might have the same
 387 reaction vector. For each $v_j \in \mathcal{V}$ we consider the set $\mathcal{R}_{v_j} := \{(v^-, v^+) \in \mathcal{R} \mid v_j = v^+ - v^-\}$.
 388 The matrix $S \in \mathbb{R}^{d \times |\mathcal{R}|}$ whose columns are the elements $v^+ - v^-$ for $(v^-, v^+) \in \mathcal{R}$ will be
 389 called the **stoichiometric matrix**.

390 Given $(\mathcal{S}, \mathcal{R})$ we will consider an associated continuous time Markov chain $X = (X_1, \dots, X_d)^T$, with a state space \mathcal{X} contained in \mathbb{Z}_+^d , which tracks the number of molecules of
 391 each species over time. Roughly speaking, the dynamics of X will be given by the following:
 392 given a current state $x = (x_1, \dots, x_d)^T \in \mathcal{X} \subseteq \mathbb{Z}_+^d$, for each reaction $(v^-, v^+) \in \mathcal{R}$, there
 393 is a clock which will ring at an exponentially distributed time (with rate $\Lambda_{(v^-, v^+)}(x)$). The
 394 clocks for distinct reactions are independent of one another. If the clock corresponding to
 395 $(v^-, v^+) \in \mathcal{R}$ rings first, the system moves from x to $x + v^+ - v^-$ at that time, and then the
 396 process repeats. We now define the continuous time Markov chain in more detail.

397 Consider sets of species \mathcal{S} and reactions \mathcal{R} , a non-empty set $\mathcal{X} \subseteq \mathbb{Z}_+^d$ and a collection of
 398 functions $\Lambda = \{\Lambda_{(v^-, v^+)} : \mathcal{X} \rightarrow \mathbb{R}_+\}_{(v^-, v^+) \in \mathcal{R}}$ such that for each $x \in \mathcal{X}$ and $(v^-, v^+) \in \mathcal{R}$, if
 399 $x + v^+ - v^- \notin \mathcal{X}$, then $\Lambda_{(v^-, v^+)}(x) = 0$. Now, for $1 \leq j \leq n$, define

401 (3.9)
$$\Upsilon_j(x) := \sum_{(v^-, v^+) \in \mathcal{R}_{v_j}} \Lambda_{(v^-, v^+)}(x).$$

402 Note that for each $x \in \mathcal{X}$ and $1 \leq j \leq n$, if $x + v_j \notin \mathcal{X}$, then $\Upsilon_j(x) = 0$. The functions
 403 $\{\Lambda_{(v^-, v^+)} : \mathcal{X} \rightarrow \mathbb{R}_+\}_{(v^-, v^+) \in \mathcal{R}}$ are called **propensity** or **intensity** functions. A common
 404 form for the propensity functions is the following, which is associated with **mass action**
 405 **kinetics**:

406 (3.10)
$$\Lambda_{(v^-, v^+)}(x) = \kappa_{(v^-, v^+)} \prod_{i=1}^d (x_i)_{(v^-)_i},$$

407 where $\{\kappa_{(v^-, v^+)}\}_{(v^-, v^+) \in \mathcal{R}}$ are non-negative constants and for $m, \ell \in \mathbb{Z}_+$, the quantity $(m)_\ell$ is
 408 the falling factorial, i.e., $(m)_0 := 1$ and $(m)_\ell := m(m-1)\dots(m-\ell+1)$.

409 A **stochastic chemical reaction network (SCRN)** (associated with $(\mathcal{S}, \mathcal{R}, \mathcal{X}, \Lambda)$) is a
 410 continuous time Markov chain X with state space \mathcal{X} and infinitesimal generator Q given for
 411 $x, y \in \mathcal{X}$ by

412 (3.11)
$$Q_{x,y} = \begin{cases} \Upsilon_j(x) & \text{if } y - x = v_j \text{ for some } 1 \leq j \leq n, \\ -\sum_{j=1}^n \Upsilon_j(x) & \text{if } y = x, \\ 0 & \text{otherwise.} \end{cases}$$

413 A SCRN associated with $(\mathcal{S}, \mathcal{R}, \mathcal{X}, \Lambda)$ is said to satisfy a **conservation law** if there is a
 414 d -dimensional non-zero vector m such that $m^T S = 0$, and hence $m^T X(t) = x_{\text{tot}}$ for every
 415 $t \geq 0$, for some constant x_{tot} . Consequently, we can reduce the dimension of the continuous
 416 time Markov chain describing the system by one. For example, if $m = (1, \dots, 1)^T$, then the
 417 projected process $(X_1, \dots, X_{d-1})^T$ is again a continuous time Markov chain with state space
 418 $\{(x_1, \dots, x_{d-1})^T \in \mathbb{Z}_+^{d-1} \mid (x_1, \dots, x_{d-1}, x_{\text{tot}} - \sum_{i=1}^{d-1} x_i)^T \in \mathcal{X}\}$. In our examples, we will often
 419 use this type of reduction.

420 **4 Main Results** In this section we describe the main theoretical results of this paper,
 421 under assumptions that go beyond those of our models of chromatin modification circuits.
 422 More precisely, we present results on stationary distributions and mean first passage times
 423 in Sections 4.1 and 4.2. Then, in Section 4.3 we exploit theoretical results developed in our
 424 companion work [13] to study monotonic dependence on parameters for a class of continuous
 425 time Markov chains related to chromatin modification circuits and other SCRNs.

426 **4.1 Stationary distributions** This section focuses on characterizing the terms in the
 427 series expansion (3.7). In Section 4.1.1 we focus on determining the term $\pi^{(0)} = \pi(0)$, while
 428 in SI - Section S.2.1 we provide a result which enables computation of all of the higher order
 429 terms $\pi^{(k)}$, for $k > 0$, under additional assumptions. In Section 4.1.2 we apply these results
 430 to the examples introduced in Section 2. Additional characterizations of $\pi(0)$ and $\pi^{(1)}$ are
 431 given in the SI - Sections S.2.3 and S.2.4. Further examples for higher dimensional models of
 432 the chromatin modification circuits will be given in Section 5. We remind the reader that to
 433 ease notation, we have adopted the convention that stationary distribution vectors will be row
 434 vectors, even though we do not use the transpose notation T to indicate this.

435 **4.1.1 The zeroth order term** As in Section 3.1, consider a family $\{X^\varepsilon : 0 \leq \varepsilon < \varepsilon_0\}$
 436 of continuous time Markov chains on a finite state space \mathcal{X} , with infinitesimal generators
 437 $\{Q(\varepsilon) : 0 \leq \varepsilon < \varepsilon_0\}$ where $\varepsilon \mapsto Q(\varepsilon)$ is a real-analytic perturbation of $Q(0)$ with coefficients
 438 $\{Q^{(k)} : k \geq 0\}$ and additionally $Q(\varepsilon)$ is irreducible for every $0 < \varepsilon < \varepsilon_0$. The matrix
 439 $Q(0) = Q^{(0)}$ is a Q -matrix for which \mathcal{X} decomposes into recurrent (or ergodic) states \mathcal{A} and
 440 transient states \mathcal{T} . From now on, we assume the following.

441 **Assumption 4.1.** *The set \mathcal{A} consists of $|\mathcal{A}| \geq 1$ absorbing states for $Q(0)$, while \mathcal{T} consists of
 442 $|\mathcal{T}| \geq 1$ transient states for $Q(0)$.*

443 In other words, in the dynamics of $Q(0)$ there is at least one transient state, at least one
 444 recurrent state and all the recurrent states are absorbing. Now, we label the state space
 445 starting with the states in \mathcal{A} and followed by the ones in \mathcal{T} . For every $k \geq 0$, we can write
 446 $Q^{(k)}$ as

$$447 \quad (4.1) \quad Q^{(k)} = \left(\begin{array}{c|c} A_k & S_k \\ \hline R_k & T_k \end{array} \right),$$

448 where $A_k \in \mathbb{R}^{|\mathcal{A}| \times |\mathcal{A}|}$, $S_k \in \mathbb{R}^{|\mathcal{A}| \times |\mathcal{T}|}$, $R_k \in \mathbb{R}^{|\mathcal{T}| \times |\mathcal{A}|}$ and $T_k \in \mathbb{R}^{|\mathcal{T}| \times |\mathcal{T}|}$. In a similar fashion, we
 449 can write

$$450 \quad (4.2) \quad Q(\varepsilon) = \left(\begin{array}{c|c} A(\varepsilon) & S(\varepsilon) \\ \hline R(\varepsilon) & T(\varepsilon) \end{array} \right),$$

451 for $0 \leq \varepsilon < \varepsilon_0$, where $A(\varepsilon) \in \mathbb{R}^{|\mathcal{A}| \times |\mathcal{A}|}$, $S(\varepsilon) \in \mathbb{R}^{|\mathcal{A}| \times |\mathcal{T}|}$, $R(\varepsilon) \in \mathbb{R}^{|\mathcal{T}| \times |\mathcal{A}|}$ and $T(\varepsilon) \in \mathbb{R}^{|\mathcal{T}| \times |\mathcal{T}|}$.
 452 From Assumption 4.1, we obtain that

$$453 \quad (4.3) \quad Q^{(0)} = Q(0) = \left(\begin{array}{c|c} 0 & 0 \\ \hline R_0 & T_0 \end{array} \right),$$

454 where T_0 is an invertible matrix (see SI - Lemma S.5).

455 For each $0 < \varepsilon < \varepsilon_0$, we denote by $\pi(\varepsilon) = (\pi_x(\varepsilon))_{x \in \mathcal{X}}$ the stationary distribution for $Q(\varepsilon)$.
 456 In Section 3.1, we showed that the limit $\pi(0) := \lim_{\varepsilon \rightarrow 0} \pi(\varepsilon)$ exists and that $\varepsilon \mapsto \pi(\varepsilon)$ is a real-
 457 analytic perturbation of $\pi(0)$ with expansion given by (3.7) for $0 \leq \varepsilon < \varepsilon_1$. For convenience,
 458 decompose the row vector $\pi(\varepsilon)$ as $\pi(\varepsilon) = [\alpha(\varepsilon), \beta(\varepsilon)]$ for $0 \leq \varepsilon < \varepsilon_1$ where $\alpha(\varepsilon) \in \mathbb{R}^{|\mathcal{A}|}$ and
 459 $\beta(\varepsilon) \in \mathbb{R}^{|\mathcal{T}|}$. From (3.7), letting $\pi^{(k)} = [\alpha^{(k)}, \beta^{(k)}]$, we have

$$460 \quad \alpha(\varepsilon) = \sum_{k=0}^{\infty} \varepsilon^k \alpha^{(k)} \quad \text{and} \quad \beta(\varepsilon) = \sum_{k=0}^{\infty} \varepsilon^k \beta^{(k)}$$

461 for $0 \leq \varepsilon < \varepsilon_1$. Since $\pi(\varepsilon)$ is a probability distribution for every $0 \leq \varepsilon < \varepsilon_1$, we have that
 462 $\sum_{k=0}^{\infty} \varepsilon^k (\pi^{(k)} \mathbf{1}) = 1$, which yields that $\pi(0) \mathbf{1} = 1$ and $\pi^{(k)} \mathbf{1} = 0$ for every $k \geq 1$. Since
 463 $\pi(0)Q(0) = 0$, $\pi(0)$ is a stationary distribution for X^0 and so, by Assumption 4.1, it must be
 464 supported on \mathcal{A} and so $\beta^{(0)} = 0$. In the next result we establish an equation that is satisfied
 465 by $\alpha^{(0)} = \alpha(0)$ and introduce a key matrix for our analysis. For convenience, let $\alpha := \alpha(0)$.

466 **Lemma 4.1.** *Under Assumption 4.1, $\pi(0) = [\alpha, 0]$, where 0 is the zero row vector of size $|\mathcal{T}|$
 467 and α is an $|\mathcal{A}|$ -dimensional probability vector satisfying the equation:*

$$468 \quad (4.4) \quad \alpha(A_1 + S_1(-T_0)^{-1}R_0) = 0.$$

469 *In addition,*

$$470 \quad (4.5) \quad \beta^{(1)} = \alpha S_1(-T_0)^{-1}.$$

471 See SI - Section S.2.2 for the proof of Lemma 4.1. For convenience, we adopt the notation:

$$472 \quad (4.6) \quad Q_{\mathcal{A}} := A_1 + S_1(-T_0)^{-1}R_0.$$

473 In SI - Lemma S.15, we show that $Q_{\mathcal{A}}$ is a Q -matrix of size $|\mathcal{A}| \times |\mathcal{A}|$. As a consequence, there
 474 exists a continuous time Markov chain with state space \mathcal{A} and infinitesimal generator $Q_{\mathcal{A}}$. In
 475 general, a probability vector satisfying (4.4) needs not be unique. The following condition will
 476 imply uniqueness.

477 **Assumption 4.2.** *The Markov chain associated with $Q_{\mathcal{A}}$ has a single recurrent class.*

478 By SI - Lemma S.1, Assumption 4.2 is equivalent to the condition $\dim(\ker(Q_{\mathcal{A}}^T)) = 1$. The
 479 next result then follows from Lemma 4.1.

480 **Theorem 4.2.** *Suppose Assumptions 4.1 and 4.2 hold. Then, $\pi(0) = [\alpha, 0]$, where α is the
 481 unique probability vector on \mathcal{A} such that $\alpha Q_{\mathcal{A}} = 0$.*

482 As we will see, all of the chromatin modification circuit models presented in this work satisfy
 483 both Assumptions 4.1 and 4.2. Also note that Lemma 4.1 yields a characterization of $\beta^{(1)}$ by
 484 means of (4.5).

485 Theorem 4.2 is simple to state, yet less easy to use since simple formulas for $Q_{\mathcal{A}}$ can be
 486 seldom obtained, making Assumption 4.2 hard to verify directly using (4.6). In this regard, we
 487 now introduce an auxiliary continuous time Markov chain \tilde{X} and use it to construct (via time-
 488 change) a realization $\hat{X}_{\mathcal{A}}$ of the continuous time Markov chain with infinitesimal generator
 489 $Q_{\mathcal{A}}$. This will enable us to give assumptions on \tilde{X} that will imply Assumption 4.2 and which

490 can sometimes be easier to verify. Also, this explicit realization for $\hat{X}_{\mathcal{A}}$ can lead to alternative
 491 ways to verify Assumption 4.2. Under Assumption 4.1, consider the matrix

492 (4.7)
$$\tilde{Q} := \left(\begin{array}{c|c} A_1 & S_1 \\ \hline R_0 & T_0 \end{array} \right).$$

493 In SI - Lemma S.15 we prove that \tilde{Q} is a Q -matrix. Let \tilde{X} be a continuous time Markov
 494 chain with infinitesimal generator \tilde{Q} . For the purpose of illustration, if we assume that the
 495 perturbation is linear (as in (2.3)) and $\varepsilon_0 > 1$, then the transitions of \tilde{X} consist of the transi-
 496 tions of X^0 augmented by the transitions of X^1 that emanate from \mathcal{A} . See Figure 4(a)-(b) for
 497 an illustration related to the 1D and 2D models, respectively, introduced in Section 2.

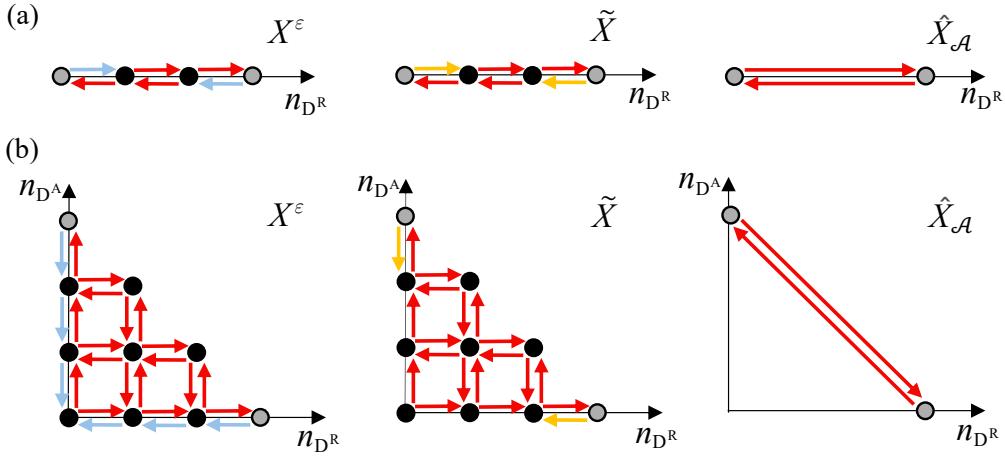


Figure 4: **Graphs for the one-step transitions of X^ε , \tilde{X} and $\hat{X}_{\mathcal{A}}$ for the (a) 1D model and (b) 2D model.** Here, we consider $D_{\text{tot}} = 3$ and we use gray dots to represent the states belonging to \mathcal{A} and black dots to represent all the other states, red arrows to represent transitions that are $O(1)$ for X^ε , \tilde{X} and $\hat{X}_{\mathcal{A}}$, blue arrows to represent transitions that are $O(\varepsilon)$ for X^ε , and golden arrows to represent the transitions for \tilde{X} that were $O(\varepsilon)$ for X^ε and became $O(1)$ for \tilde{X} .

498 Now, consider the **occupation time** of \mathcal{A} by the Markov chain \tilde{X} up to time $t \geq 0$, given
 499 by $\chi_{\mathcal{A}}(t) := \int_0^t \mathbb{1}_{\mathcal{A}}(\tilde{X}(s)) ds$ for $t \geq 0$. Denote by $\chi_{\mathcal{A}}(\infty) = \lim_{t \rightarrow \infty} \chi_{\mathcal{A}}(t) = \int_0^\infty \mathbb{1}_{\mathcal{A}}(\tilde{X}(s)) ds$.
 500 Since T_0 is invertible, SI - Lemmas S.5 and S.6 yield that $\mathbb{P}_x[\chi_{\mathcal{A}}(\infty) = \infty] = 1$ for all $x \in \mathcal{X}$.
 501 Additionally, consider the right-continuous inverse of $\chi_{\mathcal{A}}$, $\tau(s) := \inf\{t \geq 0 : \chi_{\mathcal{A}}(t) > s\}$,
 502 defined for $s \geq 0$. We define the **restriction** process $\hat{X}_{\mathcal{A}}$ as

503 (4.8)
$$\hat{X}_{\mathcal{A}}(s) := \tilde{X}(\tau(s)), \quad s \geq 0.$$

504 By properties of the right-continuous inverse (see Problem 4.5 in [23], for example), the reader
 505 may verify that $\hat{X}_{\mathcal{A}}$ corresponds to observing \tilde{X} only on the time intervals where \tilde{X} is in
 506 \mathcal{A} . Roughly speaking, we are *erasing* the times where \tilde{X} is outside of \mathcal{A} . In the language of
 507 Blumenthal & Getoor [9], $\chi_{\mathcal{A}}$ is a continuous additive functional for \tilde{X} , and by Exercise V.2.11
 508 in [9], we obtain that $\hat{X}_{\mathcal{A}}$ is a continuous time Markov chain with state space \mathcal{A} . In the next

509 result, we prove that $\hat{X}_{\mathcal{A}}$ is a realization of the continuous time Markov chain associated with
 510 $Q_{\mathcal{A}}$. See Figure 4(a)-(b) for a representation of $\hat{X}_{\mathcal{A}}$ associated with the 1D and 2D models,
 511 respectively.

512 **Lemma 4.3.** *Suppose Assumption 4.1 holds. Then, $\hat{X}_{\mathcal{A}}$ has infinitesimal generator $Q_{\mathcal{A}}$.*

513 The proof of Lemma 4.3 is given in SI - Section S.2.2. We now introduce some assumptions
 514 that imply that Assumption 4.2 holds. In addition, these assumptions will allow for some
 515 refinements (see SI - Section S.2).

516 **Assumption 4.3.** *For \tilde{X} , there exists a communicating class \mathcal{C} such that $\mathcal{A} \subseteq \mathcal{C}$.*

517 We note that, if such a class \mathcal{C} exists, then it has to be recurrent. In fact, if it was transient
 518 then $\chi_{\mathcal{A}}(\infty) < \infty$ with positive probability under \mathbb{P}_x , $x \in \mathcal{A}$, which is a contradiction.

519 **Assumption 4.4.** *The Markov chain \tilde{X} is irreducible.*

520 We note that Assumption 4.4 implies Assumption 4.3. Moreover, they are both related to
 521 Assumption 4.2 in the following way.

522 **Lemma 4.4.** *Suppose Assumptions 4.1 and 4.3 hold. Then, the process $\hat{X}_{\mathcal{A}}$ is irreducible. As
 523 a consequence, either of Assumptions 4.4 or 4.3 implies that Assumption 4.2 holds.*

524 The proof of Lemma 4.4 is given in SI - Section S.2.2. The next result follows from Lemmas
 525 4.3, 4.4 and Theorem 4.2.

526 **Theorem 4.5.** *Suppose Assumptions 4.1 and 4.3 hold. Then, $\pi(0) = [\alpha, 0]$ where α is the
 527 unique stationary distribution for the process $\hat{X}_{\mathcal{A}}$ and all entries of α are strictly positive.*

528 Assumptions 4.3 and 4.4 can be understood graphically in some cases. For example, Figure
 529 4 illustrates that for the 1D-model, Assumption 4.4 is satisfied. For the 2D-model, we can see
 530 that while Assumption 4.4 is not satisfied (since the state $(0, 0)$ forms its own (transient) class
 531 for \tilde{X}), Assumption 4.3 does indeed hold. In Section 5 we will see that neither Assumption 4.4
 532 nor 4.3 is satisfied by the 3D or 4D model. However, the weaker Assumption 4.2 does hold.

533 In the SI, we give recursive formulae for the higher order terms $\pi^{(k)}$, $k = 1, 2, \dots$, under the
 534 following additional assumption (see SI - Theorem S.9).

535 **Assumption 4.5.** *The perturbation is linear, i.e., $Q(\varepsilon) = Q^{(0)} + \varepsilon Q^{(1)}$ for $0 \leq \varepsilon < \varepsilon_0$.*

536 **4.1.2 Illustrative examples: 1D and 2D model 1D model.** We use the tools developed
 537 in the preceding section to derive the terms $\pi^{(0)}$ and $\pi^{(1)}$ in the expansion (2.4) for the 1D
 538 model introduced in Section 2.1. Fix $D_{\text{tot}} \geq 2$ and let X^{ε} with infinitesimal generator $Q(\varepsilon)$ be
 539 as in Section 2.1, with the expression for $Q^{(k)}$ given in (4.1). By (2.3), Assumption 4.5 holds.
 540 Moreover, for each $0 < \varepsilon < \varepsilon_0$, with ε_0 being a fixed, positive constant, $Q(\varepsilon)$ is irreducible,
 541 while $Q(0)$ has a non-empty set of transient states $\mathcal{T} = \{1, \dots, D_{\text{tot}} - 1\}$ and a set of two
 542 absorbing states $\mathcal{A} = \{a, r\}$, with $a = 0$ representing the fully active state ($n_{D^A} = D_{\text{tot}}$) and
 543 $r = D_{\text{tot}}$ representing the fully repressed state ($n_{D^R} = D_{\text{tot}}$). Then, Assumption 4.1 holds (see
 544 SI - Section S.8). Furthermore, by defining $f(x) := x(D_{\text{tot}} - x)$ for $x \in \mathcal{X}$, we can write the
 545 matrices R_0 and T_0 in the matrix $Q^{(0)}$ as follows:

$$546 \quad R_0 = \begin{pmatrix} \mu \frac{k_E^A}{V} f(1) & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & \frac{k_E^A}{V} f(1) \end{pmatrix}, \quad T_0 = \begin{pmatrix} -(\lambda_1^0 + \gamma_1^0) & \lambda_1^0 & 0 & \dots & \dots & \dots & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 & \vdots & \vdots \\ \dots & 0 & \gamma_x^0 & -(\lambda_x^0 + \gamma_x^0) & \lambda_x^0 & 0 & \dots \\ \vdots & 0 & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & \dots & 0 & \gamma_{D_{tot}-1}^0 & -(\lambda_{D_{tot}-1}^0 + \gamma_{D_{tot}-1}^0) \end{pmatrix}$$

547 where R_0 is a $(D_{tot} - 1) \times 2$ matrix and T_0 is a $(D_{tot} - 1) \times (D_{tot} - 1)$ tridiagonal matrix, and
 548 $\gamma_x^0 = \mu \frac{k_E^A}{V} f(x)$, $\lambda_x^0 = \frac{k_E^A}{V} f(x)$, and $f(D_{tot} - 1) = f(1) = (D_{tot} - 1)$. In addition, we can write
 549 A_1 and S_1 of $Q^{(1)}$ as follows:

$$550 \quad A_1 = \begin{pmatrix} -\frac{k_E^A}{V} D_{tot}^2 & 0 \\ 0 & -b\mu \frac{k_E^A}{V} D_{tot}^2 \end{pmatrix}, \quad S_1 = \begin{pmatrix} \frac{k_E^A}{V} D_{tot}^2 & 0 & \dots & \dots & 0 \\ 0 & \dots & \dots & 0 & b\mu \frac{k_E^A}{V} D_{tot}^2 \end{pmatrix}.$$

551 The process \tilde{X} , whose infinitesimal generator is defined in (4.7), is irreducible (see SI - Section
 552 S.8). This is illustrated in Figure 4(a). Thus, Assumption 4.4 holds. Then, Assumption 4.3
 553 is also satisfied and Theorem 4.5 can be applied. This yields that $\pi(0) = \pi^{(0)} = [\alpha, 0] =$
 554 $[\alpha_a, \alpha_r, 0, \dots, 0]$ where α is the unique stationary distribution for the restriction process $\hat{X}_{\mathcal{A}}$
 555 (defined by (4.8)), whose infinitesimal generator is $Q_{\mathcal{A}} = A_1 + S_1(-T_0)^{-1}R_0$ by Lemma 4.3
 556 and (4.6). Now,

$$557 \quad Q_{\mathcal{A}} = \begin{pmatrix} -\frac{1-\mu}{1-\mu^{D_{tot}}} \frac{k_E^A}{V} D_{tot}^2 & \frac{1-\mu}{1-\mu^{D_{tot}}} \frac{k_E^A}{V} D_{tot}^2 \\ b\mu^{D_{tot}} \frac{1-\mu}{1-\mu^{D_{tot}}} \frac{k_E^A}{V} D_{tot}^2 & -b\mu^{D_{tot}} \frac{1-\mu}{1-\mu^{D_{tot}}} \frac{k_E^A}{V} D_{tot}^2 \end{pmatrix} = \frac{1-\mu}{1-\mu^{D_{tot}}} \frac{k_E^A}{V} D_{tot}^2 \begin{pmatrix} -1 & 1 \\ b\mu^{D_{tot}} & -b\mu^{D_{tot}} \end{pmatrix},$$

558 and since α is the unique probability vector satisfying $\alpha Q_{\mathcal{A}} = 0$, we have

$$559 \quad \alpha_a = \frac{b\mu^{D_{tot}}}{1 + b\mu^{D_{tot}}}, \quad \alpha_r = \frac{1}{1 + b\mu^{D_{tot}}}.$$

560 These results are in agreement with (2.5) in Section 2.1, where we explicitly computed the
 561 stationary distribution $\pi(\varepsilon)$ and let $\varepsilon \rightarrow 0$ (see SI - Section S.8).

562 Now, since Assumptions 4.1, 4.3, and 4.5 hold, we can apply SI - Theorem S.9 to de-
 563 rive an expression for $\beta^{(1)}$. For the transient states $\mathcal{T} = \{1, \dots, D_{tot} - 1\}$, we have $\beta^{(1)} =$
 564 $[\pi_1^{(1)}, \dots, \pi_{D_{tot}-1}^{(1)}] = \alpha S_1(-T_0)^{-1}$, and so for $x \in \mathcal{T}$

$$565 \quad (4.10) \quad \beta_x^{(1)} = \frac{b\mu^{D_{tot}}}{1 + b\mu^{D_{tot}}} \frac{k_E^A}{V} D_{tot}^2 (-T_0)_{1,x}^{-1} + \frac{1}{1 + b\mu^{D_{tot}}} b\mu \frac{k_E^A}{V} D_{tot}^2 (-T_0)_{D_{tot}-1,x}^{-1},$$

566 in which $(-T_0)_{1,x}^{-1}$ and $(-T_0)_{D_{tot}-1,x}^{-1}$, for $x \in \mathcal{T}$, are the elements indexed by $(1, x)$ and $(D_{tot} -$
 567 $1, x)$ of the matrix $(-T_0)^{-1}$, respectively. After some calculations, we obtain

$$\begin{aligned}
568 \quad (-T_0)_{1,x}^{-1} &= \frac{\left(\frac{k_E^A}{V}\right)^{D_{\text{tot}}-2} \frac{\prod_{i=1}^{D_{\text{tot}}-1} f(i)}{f(x)} \left(1 + \prod_{i=1}^{D_{\text{tot}}-1-x} \mu^i\right)}{\left(\frac{k_E^A}{V}\right)^{D_{\text{tot}}-1} \prod_{i=1}^{D_{\text{tot}}-1} f(i) \left(1 + \prod_{i=1}^{D_{\text{tot}}-1} \mu^i\right)} = \frac{\left(1 + \prod_{i=1}^{D_{\text{tot}}-1-x} \mu^i\right)}{\frac{k_E^A}{V} f(x) \left(1 + \prod_{i=1}^{D_{\text{tot}}-1} \mu^i\right)}, \\
(-T_0)_{D_{\text{tot}}-1,x}^{-1} &= \frac{\left(\frac{k_E^A}{V}\right)^{D_{\text{tot}}-2} \frac{\prod_{i=1}^{D_{\text{tot}}-1} f(i)}{f(x)} \left(1 + \prod_{i=1}^{x-1} \mu^i\right) \mu^{D_{\text{tot}}-1-x}}{\left(\frac{k_E^A}{V}\right)^{D_{\text{tot}}-1} \prod_{i=1}^{D_{\text{tot}}-1} f(i) \left(1 + \prod_{i=1}^{D_{\text{tot}}-1} \mu^i\right)} = \frac{\left(1 + \prod_{i=1}^{x-1} \mu^i\right) \mu^{D_{\text{tot}}-1-x}}{\frac{k_E^A}{V} f(x) \left(1 + \prod_{i=1}^{D_{\text{tot}}-1} \mu^i\right)},
\end{aligned}$$

569 and then $\beta_x^{(1)}$, $x \in \mathcal{T}$, can be written as follows:

$$570 \quad (4.11) \quad \beta_x^{(1)} = \frac{D_{\text{tot}}^2}{f(x)} \frac{b\mu^{D_{\text{tot}}-x}}{1 + b\mu^{D_{\text{tot}}}} = \frac{D_{\text{tot}}^2}{x(D_{\text{tot}} - x)} \frac{b\mu^{D_{\text{tot}}-x}}{1 + b\mu^{D_{\text{tot}}}}.$$

571 **2D model.** In this section we analyze the stationary distribution for the 2D model introduced in Section 2.2. Fix $D_{\text{tot}} \geq 2$ and let X^ε with infinitesimal generator $Q(\varepsilon)$ be as in Section 2.1, with the expression for the $Q^{(k)}$ given by (4.1). By (2.10), for this model Assumption 4.5 holds. Furthermore, $Q(0)$ has a non-empty set of transient states $\mathcal{T} = \{i_1, \dots, i_m\}$ where $m = \frac{(D_{\text{tot}}+2)(D_{\text{tot}}+1)}{2} - 2$, $i_1 = (0, D_{\text{tot}} - 1)^T$, $i_m = (D_{\text{tot}} - 1, 0)^T$, and absorbing states $\mathcal{A} = \{a, r\}$, with $a = (0, D_{\text{tot}})^T$ corresponding to the fully active state ($n_{D^A} = D_{\text{tot}}$) and with $r = (D_{\text{tot}}, 0)^T$ corresponding to the fully repressed state ($n_{D^R} = D_{\text{tot}}$), respectively. Then, Assumption 4.1 holds (see SI - Section S.9).

572 From (2.10), we see that $A_0 = 0$, $S_0 = 0$ and

$$580 \quad A_1 = \begin{pmatrix} -\frac{k_M^A}{V} D_{\text{tot}}^2 & 0 \\ 0 & -\frac{k_M^A}{V} D_{\text{tot}}^2 \mu b \end{pmatrix}, \quad S_1 = \begin{pmatrix} \frac{k_M^A}{V} D_{\text{tot}}^2 & 0 & \dots & \dots & 0 \\ 0 & \dots & \dots & 0 & \frac{k_M^A}{V} D_{\text{tot}}^2 \mu b \end{pmatrix}.$$

581 Furthermore, $R_0 \in \mathbb{R}^{m \times 2}$ is given by

$$582 \quad \begin{pmatrix} f_A(0, D_{\text{tot}} - 1) & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & f_R(D_{\text{tot}} - 1, 0) \end{pmatrix} = \begin{pmatrix} k_{W0}^A + k_W^A + \frac{k_M^A}{V} (D_{\text{tot}} - 1) & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & k_{W0}^R + k_W^R + \frac{k_M^R}{V} (D_{\text{tot}} - 1) \end{pmatrix},$$

583 and $R_1 = 0$. The matrices T_0 and T_1 are more complex and examples of them, for $D_{\text{tot}} = 2$, are provided in SI - Section S.9. For \tilde{X} , $\mathcal{C} = \mathcal{X} \setminus \{(0, 0)\}$ is a communicating class such that $\mathcal{A} \subseteq \mathcal{C}$. This implies that Assumption 4.3 is satisfied. Given that Assumptions 4.1 and 4.3 are satisfied, Theorem 4.5 can be applied and we obtain that $\pi(0) = \pi^{(0)} = [\alpha, 0] = [\alpha_a, \alpha_r, 0, \dots, 0]$ where α is the unique stationary distribution for the process $\hat{X}_{\mathcal{A}}$, whose infinitesimal generator is $Q_{\mathcal{A}} = A_1 + S_1(-T_0)^{-1}R_0$. This means that α is the unique probability vector such that $\alpha(A_1 + S_1(-T_0)^{-1}R_0) = 0$. Furthermore, given that Assumption 4.5 is satisfied, we can apply SI - Theorem S.9 to derive an expression for $\beta^{(1)} = [\pi_{i_1}^{(1)}, \dots, \pi_{i_m}^{(1)}] = \alpha S_1(-T_0)^{-1}$. For example, if $D_{\text{tot}} = 2$, the matrix $Q_{\mathcal{A}}$ is given by

592 (4.12)
$$Q_A = \frac{4}{K} \frac{k_M^A}{V} \begin{pmatrix} -(k_{W0}^R + k_W^R)(k_{W0}^R + k_W^R + \frac{k_M^R}{V}) & (k_{W0}^R + k_W^R)(k_{W0}^R + k_W^R + \frac{k_M^R}{V}) \\ b\mu^2(k_{W0}^A + k_W^A)(k_{W0}^A + k_W^A + \frac{k_M^A}{V}) & -b\mu^2(k_{W0}^A + k_W^A)(k_{W0}^A + k_W^A + \frac{k_M^A}{V}) \end{pmatrix},$$

593 with

(4.13)

594
$$K = (k_{W0}^A + k_W^A + \frac{k_M^A}{V} + k_{W0}^R + k_W^R)(k_{W0}^R + k_W^R + \frac{k_M^R}{V}) + \mu(k_{W0}^R + k_W^R + \frac{k_M^R}{V} + k_{W0}^A + k_W^A)(k_{W0}^A + k_W^A + \frac{k_M^A}{V}),$$

595 and then $\pi^{(0)}$ is given by

596 (4.14)
$$\pi_x^{(0)} = \begin{cases} \frac{b\mu^2(k_{W0}^A + k_W^A)(k_{W0}^A + k_W^A + \frac{k_M^A}{V})}{b\mu^2(k_{W0}^A + k_W^A)(k_{W0}^A + k_W^A + \frac{k_M^A}{V}) + (k_{W0}^R + k_W^R)(k_{W0}^R + k_W^R + \frac{k_M^R}{V})} & \text{if } x = (0, D_{\text{tot}})^T \\ 0 & \text{if } x \in \mathcal{T} \\ \frac{(k_{W0}^R + k_W^R)(k_{W0}^R + k_W^R + \frac{k_M^R}{V})}{b\mu^2(k_{W0}^A + k_W^A)(k_{W0}^A + k_W^A + \frac{k_M^A}{V}) + (k_{W0}^R + k_W^R)(k_{W0}^R + k_W^R + \frac{k_M^R}{V})} & \text{if } x = (D_{\text{tot}}, 0)^T. \end{cases}$$

597 See SI - Section S.9 for the evaluation of $\pi_x^{(1)}$ for the transient states $x \in \mathcal{T}$ when $D_{\text{tot}} = 2$. For
 598 this value of D_{tot} , we see from (4.14) that $\pi_x^{(0)}$ depends monotonically on μ for each fixed x . As
 599 D_{tot} increases, the algebraic complexity of a full parameter representation of $\pi_x^{(0)}$ increases very
 600 rapidly. Thus, to investigate monotonic dependence on parameters for biologically relevant
 601 values of D_{tot} (of the order of 50, considering an average gene length of 10,000 bp [15] and
 602 one nucleosome per 200 bp [18]), we shall use comparison theorems developed in [13], without
 603 calculating any explicit formula (Section 4.3).

604 **4.2 Mean first passage times (MFPTs)** In this section we develop a theoretical frame-
 605 work to study mean first passage times for continuous time Markov chains. We first develop
 606 an algorithm to determine the order of the pole of MFPTs for singularly perturbed Markov
 607 chains (Section 4.2.1). In Section 4.2.2, we focus on determining the leading coefficient for
 608 MFPTs, under some assumptions introduced in Section 4.1. In Section 4.2.3, we apply these
 609 results to the examples introduced in Section 2.

610 **4.2.1 Algorithm to find the order of the poles for MFPTs** Our algorithm is adapted
 611 from an algorithm developed by Hassin and Haviv [20] for discrete time Markov chains. The
 612 idea used in [20] was to consider transitions between subsets of states and to keep track of
 613 the sojourn times in the sets of states. This is used to define a coarser version of the process,
 614 which may not be a Markov process and which moves between groups of states of the original
 615 Markov chain. This idea can be adapted to the continuous time setting as well. For this, we
 616 introduce stopping times to more explicitly track the sojourn times than was done in [20]. In
 617 addition, we extend the original algorithm's scope to consider the mean first passage time to
 618 a subset of states, instead of just a single state. The paper [20] uses r-cycles and notes that
 619 these could be replaced by more general r-components. Here, we focus on using the latter and
 620 call the set of vertices in such an r-component an r-connected set.

621 In this section, we consider a singularly perturbed, finite-state, continuous time Markov
 622 chain X^ε on \mathcal{X} with infinitesimal generator $Q(\varepsilon)$ as described in Section 3.1. We provide an

623 algorithm for finding the orders $\{p(v) : v \in \mathcal{B}^c\}$ of the poles for the mean first passage times
 624 to $\mathcal{B} \subset \mathcal{X}$ for X^ε starting from states in \mathcal{B}^c , where $\mathcal{B} \neq \emptyset$ is a strict subset of \mathcal{X} . We begin
 625 with a few definitions and some notation and then present the algorithm.

626 **Definition 4.6.** *Given $\varepsilon_0 > 0$ and a function $f : (0, \varepsilon_0) \rightarrow \mathbb{R}_{>0}$, we say $f = \Theta(\varepsilon^k)$ if there
 627 exist $k \in \mathbb{Z}$ and strictly positive $m, M \in \mathbb{R}_{>0}$ such that, for all $0 < \varepsilon < \varepsilon_0$,*

$$628 \quad m\varepsilon^k \leq f(\varepsilon) \leq M\varepsilon^k.$$

629 *If $f = \Theta(\varepsilon^k)$ for some $k \in \mathbb{Z}$, we say the **order** (at the origin) of f is k . If $f = \Theta(\varepsilon^{-k})$ where
 630 $k \in \mathbb{Z}_+$, we say that the **order of the pole** of f is k .*

631 Because the perturbation of X^ε is real analytic, $|\mathcal{X}| > 1$ and X^ε is irreducible for $\varepsilon > 0$,
 632 there exists $\varepsilon_{\max} > 0$ such that for each $x \neq y \in \mathcal{X}$, either $Q_{x,y}(\varepsilon) \equiv 0$ for all $\varepsilon \in (0, \varepsilon_{\max})$
 633 or $Q_{x,y}(\varepsilon) > 0$ for all $\varepsilon \in (0, \varepsilon_{\max})$. In the latter case, the order of $Q_{x,y}(\varepsilon)$ is a non-negative
 634 integer, which we denote by k_{xy} . We let $E_0 = \{(x, y) : Q_{x,y}(\varepsilon) > 0 \text{ for all } \varepsilon \in (0, \varepsilon_{\max})\}$.
 635 As the algorithm progresses, states of \mathcal{X} are gathered together to form composite nodes and
 636 the graph of the states of X^ε progresses through a series of reduced graphs. If u is a node in
 637 one of the graphs, then $S(u) \subset \mathcal{X}$ consists of the states in \mathcal{X} that are collapsed to form the
 638 (reduced) node u . In Steps 2 and 3 of the algorithm, the function \mathcal{K} and the initial values of
 639 p are inductively determined for all of these graphs. The final values of p for nodes in \mathcal{B}^c are
 640 then determined in Step 4. With \mathcal{K}_{uv} being defined, a directed edge (u, v) in one of the graphs
 641 is called an **r-edge**, where r is for regular, if $\mathcal{K}_{uv} = 0$, and an **r-path** is a directed path in the
 642 graph consisting of r-edges only. A set C in one of the graphs is called an **r-connected set** if
 643 $|C| > 1$ and there exists an r-path from u to v for any $u \neq v \in C$. The **order of the pole of**
 644 **the expected sojourn time** spent in an r-connected set C depends only on the set C and is
 645 denoted by $p(c)$ where c is a node representing the set C . For any node w outside of C , \mathcal{K}_{cw}
 646 and \mathcal{K}_{wc} are the **order of the probabilities of a one-step transition** from c to w and
 647 from w to c , respectively. In Step 4 of the algorithm, $p(\cdot)$ keeps being updated but will stay
 648 finite and eventually fixate. The algorithm statement and related proof can be found in the
 649 SI - Sections S.3 - S.5.

650 **4.2.2 Leading coefficient in MFPT series expansion** In Section 3.1, we have shown
 651 that for each $0 < \varepsilon < \varepsilon_0$, the unique stationary distribution $\pi(\varepsilon)$ for X^ε admits a real-analytic
 652 expansion in powers of ε . By (3.5) and (3.6), for $x \in \mathcal{X}$,

$$653 \quad (4.15) \quad \frac{1}{\pi_x(\varepsilon)} = q_x(\varepsilon) \mathbb{E}_x[\zeta_x^\varepsilon] = 1 + \sum_{y \neq x} Q_{x,y}(\varepsilon) h_{y,x}(\varepsilon).$$

654 Recall that $E_0 = \{(x, y) : Q_{x,y}(\varepsilon) > 0 \text{ for all } \varepsilon \in (0, \varepsilon_{\max})\}$ and k_{xy} is the order of $Q_{x,y}(\varepsilon)$ for
 655 each $(x, y) \in E_0$. Using the algorithm in Section 4.2.1, we can obtain the order of the pole,
 656 $p_x(y)$, of the mean first passage time $h_{y,x}(\varepsilon)$ from y to x for all $y \neq x \in \mathcal{X}$. Therefore, for each
 657 $x \in \mathcal{X}$, the order of $\pi_x(\varepsilon)$ is

$$658 \quad (4.16) \quad k_x = \max\{p_x(y) - k_{xy} : (x, y) \in E_0; 0\} \geq 0,$$

659 and then

660

$$\pi_x(\varepsilon) = \sum_{k=k_x}^{\infty} \varepsilon^k \pi_x^{(k)}.$$

661 The following theorem is for continuous time and builds on discrete time results of
 662 Avrachenkov et al. [5, 6].

663 **Theorem 4.7.** *Suppose Assumptions 4.1, 4.2 and 4.5 hold. Let $Q_{\mathcal{A}}$ be given by (4.6), $\hat{X}_{\mathcal{A}}$ be
 664 as defined in (4.8), and α be the unique stationary distribution for $\hat{X}_{\mathcal{A}}$ defined in Theorem 4.2.
 665 Let $D = (-Q_{\mathcal{A}} + \mathbf{1}\alpha)^{-1} - \mathbf{1}\alpha$. For $y \in \mathcal{X}$, let k_y be the order of the stationary distribution
 666 $\pi_y(\varepsilon)$ of X^ε , defined by (4.16). Then, for $x, y \in \mathcal{A}$, the mean first passage time from x to y
 667 for X^ε is*

668 (4.17)

$$h_{x,y}(\varepsilon) = \frac{D_{y,y} - D_{x,y}}{\pi_y^{(k_y)}} \frac{1}{\varepsilon^{k_y+1}} + O\left(\frac{1}{\varepsilon^{k_y}}\right).$$

669 Moreover, if $\hat{X}_{\mathcal{A}}$ is an irreducible Markov chain, then the order of the pole of $h_{x,y}(\varepsilon)$ is one,
 670 i.e., $k_y = 0$, and the coefficient of ε^{-1} in (4.17) is equal to the mean first passage time from x
 671 to y for the process $\hat{X}_{\mathcal{A}}$.

672 The proof of Theorem 4.7 is given in SI - Section S.7.1.

673 **Remark 4.8.** It may be possible that $D_{y,y} - D_{x,y} = 0$. In this case,

674

$$h_{x,y}(\varepsilon) = 0 \cdot \frac{1}{\varepsilon^{k_y+1}} + O\left(\frac{1}{\varepsilon^{k_y}}\right) = O\left(\frac{1}{\varepsilon^{k_y}}\right).$$

675 However, if we find that the order of the pole of $h_{x,y}(\varepsilon)$ is $k_y + 1$, using the algorithm in Section
 676 4.2.1, then we can rule out the possibility of $D_{y,y} - D_{x,y}$ being zero.

677 **4.2.3 Illustrative examples: 1D and 2D models** We first apply the algorithm given
 678 in Section 4.2.1 to find the order of the pole of the time to memory loss in the 1D and 2D
 679 models introduced in Section 2. For the 1D model, we could also directly derive the analytical
 680 expression for the time to memory loss by exploiting first step analysis [26] and solve the
 681 system (3.2) introduced in Section 3.1 (see SI - Section S.8). Figure 5 illustrates the key steps
 682 of the algorithm for the 1D model, which lead to the conclusion that the time to memory
 683 loss for the active state is $\Theta(\varepsilon^{-1})$. Because of the symmetry in the input graph in Figure 5,
 684 the time to memory loss for the repressed state is also $\Theta(\varepsilon^{-1})$. These orders found by the
 685 algorithm are consistent with what can be directly derived by first step analysis. Similarly, SI
 686 - Figure S.1 illustrates the key steps of the algorithm for the 2D model, which leads to the
 687 conclusion that the time to memory loss of both the active and the repressed states is $\Theta(\varepsilon^{-1})$.

688 Next, we find the leading coefficient for the time to memory loss in the 1D and 2D models,
 689 which is the coefficient of the ε^{-1} term in all cases. Recall from Section 4.1.2 that Assumptions
 690 4.1, 4.3 and 4.5 hold for both 1D and 2D models and hence by Lemma 4.4, so does Assumption
 691 4.2 and $\hat{X}_{\mathcal{A}}$ is irreducible. For the 1D model, $Q_{\mathcal{A}}$ is given by (4.9). Thus, by Theorem 4.7, the
 692 leading coefficient of the time to memory loss for the active state is the mean first passage time

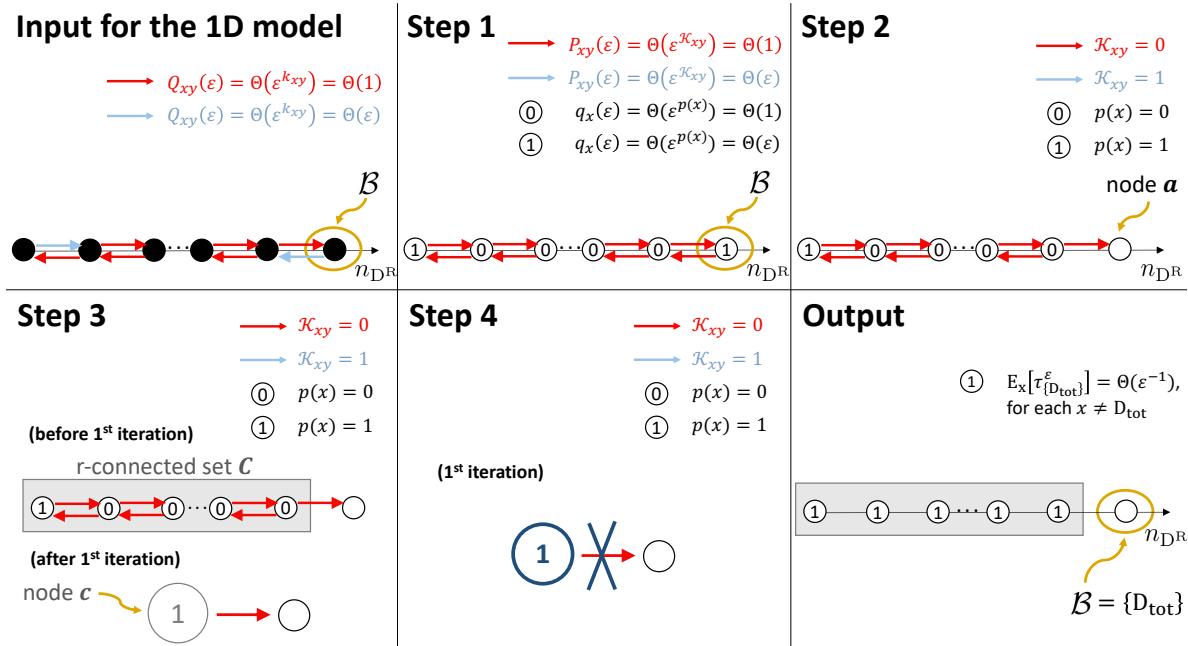


Figure 5: **Key steps of the algorithm for the 1D model.** The algorithm is described in Section 4.2.1, and it finds the order of the pole of the mean first passage time to $\mathcal{B} \subset \mathcal{X}$ from each state in \mathcal{B}^c . In our 1D model, the input for the algorithm is the order of each of the non-zero off-diagonal entries in $Q(\varepsilon)$ and the set $\mathcal{B} = \{D_{\text{tot}}\}$. The order of the non-zero entries in $Q(\varepsilon)$ is represented by colored arrows in the graph in the “Input” panel. Step 1 transforms the orders in the $Q(\varepsilon)$ -matrix into the orders in the $P(\varepsilon)$ -matrix and the exponential parameters $q(\varepsilon)$ to give an equivalent construction for the continuous time Markov chain. The order of the non-zero entries in $P(\varepsilon)$ is represented by colored arrows in the graph, and the number in the circle at a state $x \in \mathcal{B}^c$ is the order of the pole $p(x)$ of $\frac{1}{q_x(\varepsilon)}$ (the mean sojourn time at the state x). In Step 2, the set \mathcal{B} is relabeled as the node a , and then all transitions from a to \mathcal{B}^c are removed. Step 3 for the 1D model involves only one iteration, where the collection of all nodes except the node a (called an r-connected set C) is condensed to a single node c , and the order of the pole at c is $p(c) = \max_{u \in C} p(u) + \min\{\mathcal{K}_{uv} : u \in C, v \notin C \text{ and } (u, v) \in E\} = 1 + 0 = 1$, where E denotes the edge set of the graph in Step 3 before the 1st iteration. Moreover, $\mathcal{K}_{ca} = \min\{\mathcal{K}_{ua} : u \in C \text{ and } (u, a) \in E\} - \min\{\mathcal{K}_{uv} : u \in C, v \notin C \text{ and } (u, v) \in E\} = 0 - 0 = 0$. Step 4 involves one iteration. In this iteration, the node c is the only node other than a , so its value of p is fixed, and then any edges leading to or from c are removed. When all of the nodes other than a have been fixed, the order of the pole of the mean first passage time from each state in \mathcal{B}^c to \mathcal{B} is given by the fixed value of the node to which the state belongs.

693 from the fully active state a to the fully repressed state r in $\hat{X}_{\mathcal{A}}$, which has an exponential
 694 distribution with parameter $(Q_{\mathcal{A}})_{a,r} = \frac{1-\mu}{1-\mu^{D_{\text{tot}}}} \frac{k_E^A}{V} D_{\text{tot}}^2$ since $\hat{X}_{\mathcal{A}}$ has only two states. Thus,

$$695 \quad h_{a,r}(\varepsilon) = \frac{1-\mu^{D_{\text{tot}}}}{1-\mu} \frac{V}{k_E^A} \frac{1}{D_{\text{tot}}^2} \varepsilon^{-1} + O(1),$$

696 and similarly, the time to memory loss for the repressed state is

$$697 \quad h_{r,a}(\varepsilon) = \frac{1 - \mu^{D_{\text{tot}}}}{1 - \mu} \frac{V}{k_E^A} \frac{1}{b\mu^{D_{\text{tot}}} D_{\text{tot}}^2} \varepsilon^{-1} + O(1).$$

698 Similarly, in the 2D model, by Theorem 4.7,

$$699 \quad h_{a,r}(\varepsilon) = \frac{1}{(Q_{\mathcal{A}})_{a,r}} \varepsilon^{-1} + O(1) \quad \text{and} \quad h_{r,a}(\varepsilon) = \frac{1}{(Q_{\mathcal{A}})_{r,a}} \varepsilon^{-1} + O(1).$$

700 As an example, when $D_{\text{tot}} = 2$, $Q_{\mathcal{A}}$ is shown in (4.12) and we obtain that

$$701 \quad h_{a,r}(\varepsilon) = \frac{V}{k_M^A} \frac{K}{4(k_{W0}^R + k_W^R)(k_{W0}^R + k_W^R + \frac{k_M^R}{V})} \varepsilon^{-1} + O(1) \quad \text{and}$$

$$h_{r,a}(\varepsilon) = \frac{V}{k_M^A} \frac{K}{4b\mu^2(k_{W0}^A + k_W^A)(k_{W0}^A + k_W^A + \frac{k_M^A}{V})} \varepsilon^{-1} + O(1),$$

702 with K defined in (4.13).

703 **4.3 Monotonic dependence on parameters** An important aspect to consider in the
704 study of the stochastic behavior of the chromatin modification circuit is that the erasure rate is
705 different for each type of chromatin modification. These differences can introduce asymmetries
706 in the system that can affect the stationary distribution and the time to memory loss of the
707 active state and repressed state. These asymmetries are captured by the two parameters μ
708 and μ' . In particular, μ quantifies the asymmetry between erasure rates of repressive and
709 activating histone modifications and μ' quantifies the asymmetry between erasure rates of
710 DNA methylation and activating histone modifications. In order to determine how the different
711 chromatin modification erasure rates affect the stochastic behavior of the system, we study
712 how μ and μ' affect the stationary distribution and the time to memory loss of the active and
713 repressed gene states.

714 For the 1D model of the chromatin modification circuit, that does not include DNA methylation,
715 we have an analytical expression for the stationary distribution and the time to memory
716 loss ((2.5), (2.7), and (2.8)) and we can understand the effect of μ by directly studying the
717 formulas. However, for the higher-than-1D models we do not have an explicit expression for
718 the stationary distribution or time to memory loss. This is the reason why for these models we
719 exploit the comparison theory developed in [13] that allows to determine how μ and μ' affect
720 the stochastic behavior of the system through the construction of a coupling between processes
721 with different values for these parameters. In the next subsection, we briefly summarize the
722 relevant theory from [13].

723 **4.3.1 Comparison theorems for continuous time Markov chains** Denote by \leq the
724 usual componentwise partial order on \mathbb{R}^d , i.e., for $x, y \in \mathbb{R}^d$, $x \leq y$ whenever $x_i \leq y_i$ for every
725 $1 \leq i \leq d$. Let $m, d \geq 1$ be integers, consider a matrix $A \in \mathbb{R}^{m \times d}$, where no row of A is
726 identically zero, and consider the following definition.

727 **Definition 4.9 (Definition 3.1 from [13]).** For $x, y \in \mathbb{R}^d$, we say that $x \preceq_A y$ whenever $A(y -$
728 $x) \geq 0$ and we say that $x \sim_A y$ whenever $Ax = Ay$.

729 For the matrix A , consider the convex cone $K_A := \{x \in \mathbb{R}^d : Ax \geq 0\}$, and, for any $x \in \mathbb{R}^d$,
 730 consider the set $K_A + x = \{y \in \mathbb{R}^d : A(y - x) \geq 0\} = \{y \in \mathbb{R}^d : x \preceq_A y\}$ and the sets
 731 $\partial_i(K_A + x) := \{y \in K_A + x : \langle A_{i\bullet}, y \rangle = \langle A_{i\bullet}, x \rangle\}$ ³ for $1 \leq i \leq m$. Then, the boundary of
 732 $K_A + x$ can be expressed as

$$733 \quad \partial(K_A + x) = \bigcup_{i=1}^m \partial_i(K_A + x).$$

734 Consider a non-empty set $\mathcal{X} \subseteq \mathbb{Z}_+^d$, we will say that a set $\Gamma \subseteq \mathcal{X}$ is **increasing** with respect
 735 to \preceq_A if for every $x \in \Gamma$ and $y \in \mathcal{X}$, $x \preceq_A y$ implies that $y \in \Gamma$. We observe that, for $x \in \mathcal{X}$,
 736 the set

$$737 \quad (4.18) \quad (K_A + x) \cap \mathcal{X} = \{y \in \mathcal{X} : x \preceq_A y\}$$

738 is increasing by the transitivity property of \preceq_A . On the other hand, we will say that a set
 739 $\Gamma \subseteq \mathcal{X}$ is **decreasing** with respect to \preceq_A if for every $x \in \Gamma$ and $y \in \mathcal{X}$, $y \preceq_A x$ implies that
 740 $y \in \Gamma$.

741 Now, consider a non-empty set $\mathcal{X} \subseteq \mathbb{Z}_+^d$ and a finite set of distinct nonzero possible transition
 742 vectors for a pair of continuous time Markov chains on \mathcal{X} . We denote the set of vectors by
 743 $\{v_1, \dots, v_n\} \subseteq \mathbb{Z}^d \setminus \{0\}$, where 0 is the origin in \mathbb{Z}^d . Consider two collections of functions
 744 $\Upsilon = (\Upsilon_1, \dots, \Upsilon_n)$ and $\breve{\Upsilon} = (\breve{\Upsilon}_1, \dots, \breve{\Upsilon}_n)$ from \mathcal{X} into \mathbb{R}_+ such that $\Upsilon_j(x) = \breve{\Upsilon}_j(x) = 0$ if
 745 $x + v_j \notin \mathcal{X}$. Assume that $Q = (Q_{x,y})_{x,y \in \mathcal{X}}$, given by (3.11), is the infinitesimal generator for
 746 a continuous time Markov chain X and \breve{Q} , defined by (3.11) but with functions $\breve{\Upsilon}_1, \dots, \breve{\Upsilon}_n$ in
 747 place of $\Upsilon_1, \dots, \Upsilon_n$, is the infinitesimal generator for a continuous time Markov chain \breve{X} . We
 748 call X and \breve{X} the continuous time Markov chains associated with Υ and $\breve{\Upsilon}$ respectively.

749 The following stochastic comparison result was proved in Campos et al. [13]. The condition
 750 (i) of the theorem and $A \in \mathbb{Z}^{n \times d}$ ensure that to go outside of $K_A + x$, the Markov chains will
 751 necessarily hit the boundary of $K_A + x$.

752 **Theorem 4.10 (Theorems 3.2, 3.4, 3.5 from [13]).** *With \mathcal{X} , v_1, \dots, v_n , Υ and $\breve{\Upsilon}$ as described
 753 above, assume that the continuous time Markov chains associated with Υ and $\breve{\Upsilon}$ do not explode
 754 in finite time. Consider a matrix $A \in \mathbb{Z}^{m \times d}$ with nonzero rows and suppose that both of the
 755 following conditions hold:*

756 (i) *For each $1 \leq j \leq n$, the vector Av_j has entries in $\{-1, 0, 1\}$ only.*
 757 (ii) *For each $x \in \mathcal{X}$, $1 \leq i \leq m$ and $y \in \partial_i(K_A + x) \cap \mathcal{X}$ we have that*

$$758 \quad (4.19) \quad \breve{\Upsilon}_j(y) \leq \Upsilon_j(x), \quad \text{for each } 1 \leq j \leq n \text{ such that } \langle A_{i\bullet}, v_j \rangle < 0,$$

759 *and*

$$760 \quad (4.20) \quad \breve{\Upsilon}_j(y) \geq \Upsilon_j(x), \quad \text{for each } 1 \leq j \leq n \text{ such that } \langle A_{i\bullet}, v_j \rangle > 0.$$

³Here, for convenience of notation, let $A_{i\bullet}$ denote the row vector corresponding to the i -th row of A , for $1 \leq i \leq m$. In this article, we will adopt the convention of considering the inner product $\langle \cdot, \cdot \rangle$ as a function of a row vector in its first entry and as a function of a column vector in the second entry. In particular, $\langle A_{i\bullet}, x \rangle = \sum_{k=1}^d A_{ik} x_k$.

761 Then, for each pair $x^\circ, \check{x}^\circ \in \mathcal{X}$ such that $x^\circ \preceq_A \check{x}^\circ$, there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
 762 with realizations of the two continuous time Markov chains $X = \{X(t) : t \geq 0\}$ and $\check{X} =$
 763 $\{\check{X}(t) : t \geq 0\}$ defined there, each having state space $\mathcal{X} \subseteq \mathbb{Z}_+^d$, with infinitesimal generators
 764 given by Q and \check{Q} , associated with Υ and $\check{\Upsilon}$, respectively, with initial conditions $X(0) = x^\circ$
 765 and $\check{X}(0) = \check{x}^\circ$, and such that:

766 (4.21)
$$\mathbb{P} \left[X(t) \preceq_A \check{X}(t) \text{ for every } t \geq 0 \right] = 1.$$

767 Furthermore, for a non-empty set $\Gamma \subseteq \mathcal{X}$, consider $\tau_\Gamma := \inf\{t \geq 0 : X(t) \in \Gamma\}$ and $\check{\tau}_\Gamma :=$
 768 $\inf\{t \geq 0 : \check{X}(t) \in \Gamma\}$. If Γ is increasing with respect to the relation \preceq_A , then $\mathbb{E}[\check{\tau}_\Gamma] \leq \mathbb{E}[\tau_\Gamma]$.
 769 If Γ is decreasing with respect to the relation \preceq_A , then $\mathbb{E}[\tau_\Gamma] \leq \mathbb{E}[\check{\tau}_\Gamma]$. Finally, suppose that the
 770 two continuous time Markov chains are irreducible and positive recurrent on \mathcal{X} , and denote the
 771 associated stationary distributions by π and $\check{\pi}$, respectively. Then, if $\Gamma \subseteq \mathcal{X}$ is a non-empty set
 772 that is increasing with respect to \preceq_A , we have $\sum_{x \in \Gamma} \pi_x \leq \sum_{x \in \Gamma} \check{\pi}_x$, or if $\Gamma \subseteq \mathcal{X}$ is a non-empty
 773 set that is decreasing with respect to \preceq_A , we have $\sum_{x \in \Gamma} \check{\pi}_x \leq \sum_{x \in \Gamma} \pi_x$.

774 **4.3.2 Illustrative example: 2D model** We are interested in determining how the asym-
 775 metry of the system, represented by the parameter $\mu = k_E^R/k_E^A$ affects the stationary distribu-
 776 tion $\pi(\varepsilon)$ and the times to memory loss, $h_{a,r}(\varepsilon)$ and $h_{r,a}(\varepsilon)$, of the active ($a = (0, D_{\text{tot}})^T$) and
 777 repressed ($r = (D_{\text{tot}}, 0)^T$) states, respectively, for the continuous time Markov chain X^ε de-
 778 scribed in Section 2.2. For this, we use Theorem 4.10. For $\varepsilon \in (0, \varepsilon_0)$, let X^ε be the continuous
 779 time Markov chain with

780 (4.22)
$$\Upsilon_1(x) = f_A(x), \quad \Upsilon_2(x) = g_A^\varepsilon(x), \quad \Upsilon_3(x) = f_R(x), \quad \Upsilon_4(x) = g_R^\varepsilon(x), \quad x \in \mathcal{X}$$

781 with \mathcal{X} , v_1, \dots, v_4 , and $f_A(x)$, $g_A^\varepsilon(x)$, $f_R(x)$, $g_R^\varepsilon(x)$ as defined in Section 2.2, and introduce the
 782 continuous time Markov chain \check{X}^ε defined on \mathcal{X} , having the same transition vectors of X^ε ,
 783 and having infinitesimal transition rates $\check{\Upsilon}_1(x), \dots, \check{\Upsilon}_4(x)$ defined as for $\Upsilon_1(x), \dots, \Upsilon_4(x)$, with
 784 all the parameters having the same values except that μ is replaced by $\check{\mu}$, where $\mu \geq \check{\mu}$. Let

785 (4.23)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

786 and let us consider the partial order $x \preceq_A y$. A similar example was analyzed by Campos et
 787 al. [13] - Example 4.4, using the results of Theorem 4.10. The only differences are that, in [13],
 788 the matrix A is the negative of the matrix given in (4.23) and the inequality between μ and $\check{\mu}$
 789 is the opposite compared to the one considered here. The relationship between the notation
 790 in [13] and our notation is $\kappa_{1a} = k_{W0}^A + k_W^A$, $\kappa_{1b} = (k_M^A/V)$, $\kappa_{2a} = k_{W0}^R + k_W^R$, $\kappa_{2b} = (k_M^R/V)$,
 791 $\kappa_{3a} = \varepsilon(k_M^A/V)$, $\kappa_{3b} = (k_E^A/V)$, $c = b$.

792 From the analysis in [13], we can directly conclude that, if $\pi(\varepsilon)$ is the stationary distribution
 793 for X^ε and $\check{\pi}(\varepsilon)$ the stationary distribution for \check{X}^ε , then $\check{\pi}_a(\varepsilon) \leq \pi_a(\varepsilon)$ and $\check{\pi}_r(\varepsilon) \geq \pi_r(\varepsilon)$.
 794 This implies that increasing μ increases the probability of the system in steady-state being in
 795 the active state a to the detriment of the repressed state r (and vice versa for decreasing μ).
 796 We can also conclude, using natural notation for quantities associated with X^ε and \check{X}^ε , that,
 797 defining $\tau_y^\varepsilon = \inf\{t \geq 0 : X^\varepsilon(t) = y\}$ and $\check{\tau}_y^\varepsilon = \inf\{t \geq 0 : \check{X}^\varepsilon(t) = y\}$, $h_{r,a}(\varepsilon) = \mathbb{E}_r[\tau_a^\varepsilon] \leq$

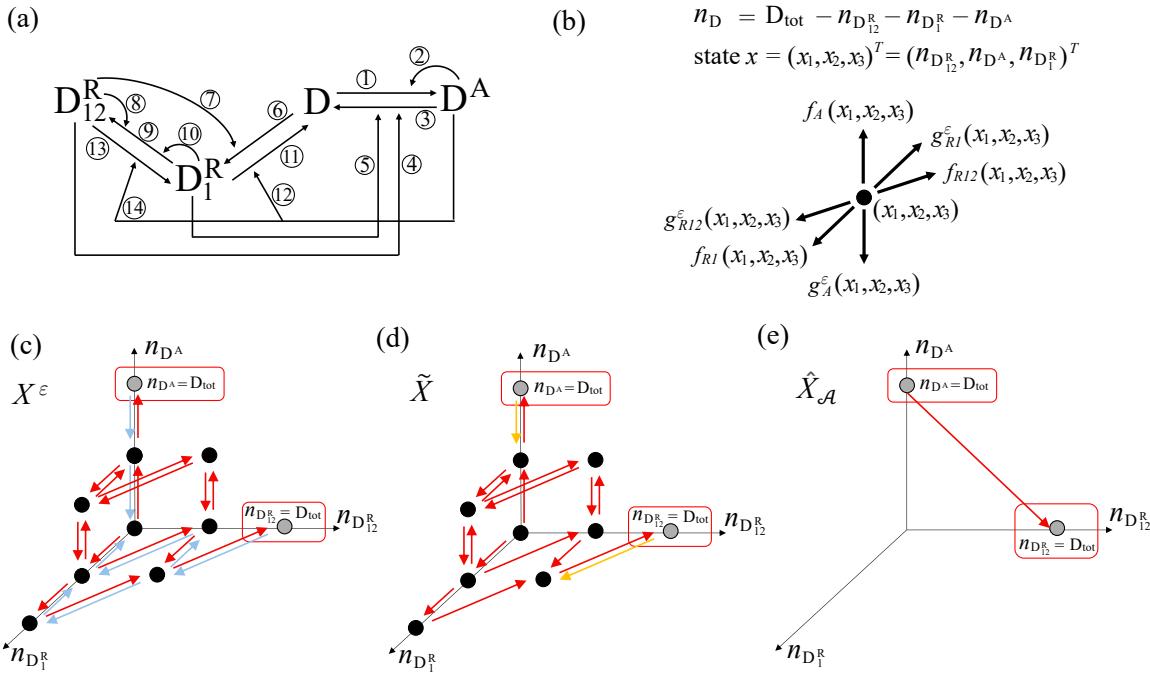


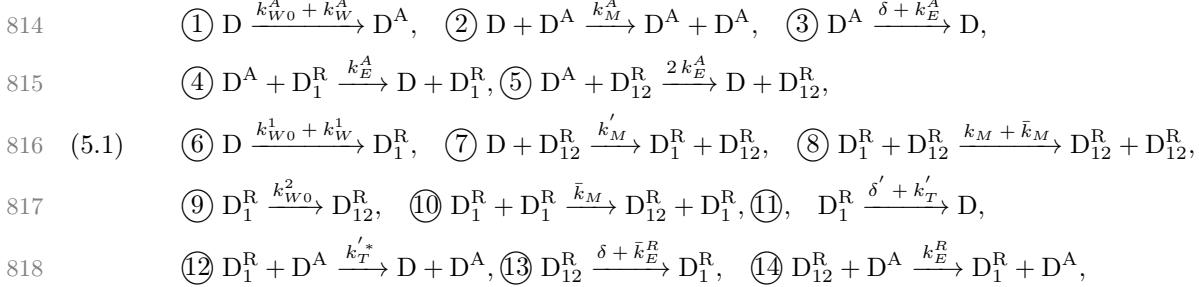
Figure 6: **3D Model and associated Markov chain.** (a) Original chemical reaction system. The numbers on the arrows correspond to the reactions associated with the arrows as described in (5.1) in the main text. (b) Directions of the possible transitions of the Markov chain X^ϵ , starting from a state $x = (x_1, x_2, x_3)^T$ and whose rates are given in equation (5.2). (c) Graph for X^ϵ . Here, the red (blue) arrows correspond to $O(1)$ ($O(\epsilon)$) transition rates. (d) Graph for the Markov chain \tilde{X} . Here, the gold arrows correspond to transitions that were $O(\epsilon)$ in X^ϵ and became $O(1)$ in \tilde{X} . (e) Graph for the Markov chain \hat{X}_A . For (c), (d), and (e) the state of the Markov chain is $x = (n_{D_{12}^R}, n_{D^A}, n_{D_1^R})^T$ and we consider $D_{\text{tot}} = 2$. In panels (c) - (e), we use gray dots to represent the states belonging to \mathcal{A} and black dots to represent all the other states.

798 $\mathbb{E}_r[\check{\tau}_a^\epsilon] = \check{h}_{r,a}(\epsilon)$ and $\check{h}_{a,r}(\epsilon) = \mathbb{E}_a[\check{\tau}_r^\epsilon] \leq \mathbb{E}_a[\tau_r^\epsilon] = h_{a,r}(\epsilon)$, implying that the time to memory
799 loss of the repressed state decreases for higher values of μ , while the time to memory loss of
800 the active state increases for higher values of μ .

801 **5 Further Examples** In this section, compared to the models of the chromatin modification
802 circuit introduced in Section 2, which do not include DNA methylation, we introduce more elaborate models that include DNA methylation and we study their stochastic behavior
803 by exploiting the theory developed in this paper.

805 **5.1 3D chromatin modification circuit model** We now introduce a model in which
806 DNA methylation is also a possible chromatin mark. The species involved are D (unmodified
807 nucleosome), D₁^R (nucleosome with CpGme only), D₁₂^R (nucleosome with both H3K9me3 and
808 CpGme) and D^A (nucleosome with an activating histone modification). In particular, we
809 assume that, in order to be modified with both repressive modifications, D is first modified with
810 DNA methylation, obtaining D₁^R, and then with a repressive histone modification, obtaining

811 D_{12}^R . The opposite order of modifications is not allowed. This enables us to simplify the model
 812 and the related analysis. This assumption will be removed in the 4D model analyzed in Section
 813 5.2. The chemical reaction system for the 3D model, shown in Fig. 6(a), is the following:



819 where $k_{W0}^A, k_W^A, k_M^A, \delta, \bar{k}_E^A, k_E^A, k_{W0}^1, k_W^1, k_{W0}^2, k_M^1, \bar{k}_M, k_M, \delta', k_T', k_T'^*, \bar{k}_E^R, k_E^R > 0$ and the
 820 form of the reaction rate constants is due to the fact that reactions with the same reactants
 821 and products have been combined. As we did for the 2D model, define parameters $\varepsilon = \frac{\delta + \bar{k}_E^A}{\frac{k_M^A}{V} D_{\text{tot}}}$

822 and $\mu = \frac{k_E^R}{k_M^A}$, with a constant b such that $\frac{\delta + \bar{k}_E^R}{\delta + \bar{k}_E^A} = b\mu$. Furthermore, since this model in-
 823 cludes DNA methylation, we also define $\mu' = \frac{k_T'^*}{k_E^A}$ and a constant β such that $\frac{\delta' + k_T'}{\delta + \bar{k}_E^A} = \beta\mu'$.
 824 The parameter μ' quantifies the asymmetry between the erasure rates of DNA methylation
 825 and activating histone modifications. The Markov chain X^ε associated with the system is a
 826 linearly perturbed finite state continuous time Markov chain with the state x tracking $n_{D_{12}^R}$,
 827 n_{D^A} , $n_{D_1^R}$, that is, the number of nucleosomes of types D_{12}^R , D^A , and D_1^R , respectively. If
 828 the total number of modifiable nucleosomes is D_{tot} , which is conserved, the state space is
 829 $\mathcal{X} = \{(x_1, x_2, x_3)^T \in \mathbb{Z}_+^3 : x_1 + x_2 + x_3 \leq D_{\text{tot}}\}$. The transition vectors for X^ε are given by
 830 $v_1 = -v_2 = (0, 1, 0)^T$, $v_3 = -v_4 = (0, 0, 1)^T$, and $v_5 = -v_6 = (1, 0, -1)^T$. The infinitesimal
 831 transition rates are

$$\begin{aligned}
 832 \quad (5.2) \quad & Q_{x,x+v_1}(\varepsilon) = f_A(x) = (D_{\text{tot}} - (x_1 + x_2 + x_3)) \left(k_{W0}^A + k_W^A + \frac{k_M^A}{V} x_2 \right), \\
 & Q_{x,x+v_2}(\varepsilon) = g_A^\varepsilon(x) = x_2 \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} + \frac{k_E^A}{V} (x_3 + 2x_1) \right), \\
 & Q_{x,x+v_3}(\varepsilon) = f_{R1}(x) = (D_{\text{tot}} - (x_1 + x_2 + x_3)) \left(k_{W0}^1 + k_W^1 + \frac{k_M'}{V} x_1 \right), \\
 & Q_{x,x+v_4}(\varepsilon) = g_{R1}^\varepsilon(x) = x_3 \mu' \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} \beta + x_2 \frac{k_E^A}{V} \right), \\
 & Q_{x,x+v_5}(\varepsilon) = f_{R12}(x) = x_3 \left(k_{W0}^2 + \frac{k_M}{V} x_1 + \frac{\bar{k}_M}{V} \left(x_1 + \frac{x_3 - 1}{2} \right) \right), \\
 & Q_{x,x+v_6}(\varepsilon) = g_{R12}^\varepsilon(x) = x_1 \mu \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} b + x_2 \frac{k_E^R}{V} \right).
 \end{aligned}$$

833 A representation of the possible transitions, with associated rates, and the Markov chain graph
 834 for $D_{\text{tot}} = 2$ are given in Fig. 6(b) and (c), respectively. Each rate depends on the state x .

835 **5.1.1 Stationary distribution** We now focus on the expansion as a function of ε of the
 836 stationary distribution for the 3D model. In SI - Section S.10, we show that, when $\varepsilon = 0$,
 837 the continuous time Markov chain associated with the 3D model has transient states $\mathcal{T} =$
 838 $\{i_1, \dots, i_m\}$ where $m = \sum_{j=0}^{D_{\text{tot}}} \binom{(j+2)(j+1)}{2} - 2$, $i_1 = (0, D_{\text{tot}} - 1, 0)^T$, $i_m = (D_{\text{tot}} - 1, 0, 1)^T$,
 839 and absorbing states $\mathcal{A} = \{a, r\}$, with $a = (0, D_{\text{tot}}, 0)^T$ corresponding to the fully active state
 840 ($n_{D^A} = D_{\text{tot}}$) and $r = (D_{\text{tot}}, 0, 0)^T$ corresponding to the fully repressed state ($n_{D^R} = D_{\text{tot}}$),
 841 respectively. Then, Assumption 4.1 holds (see SI - Section S.10). Furthermore, $\mathcal{X} = \mathcal{A} \cup \mathcal{T}$ and
 842 from (5.2) we see that $Q(\varepsilon)$ can be written in the form (4.2), where $Q(\varepsilon)$ is a linear perturbation
 843 of $Q(0)$. Hence, Assumption 4.5 holds. Assumption 4.2 also holds, where the recurrent class
 844 is $\{r\}$ (see SI - Section S.10). Then, we can apply SI - Theorem S.9. We first obtain that
 845 $\pi(0) = \pi^{(0)} = [\alpha, 0] = [\alpha_a, \alpha_r, 0, \dots, 0]$ where α is the unique stationary distribution for the
 846 process $\hat{X}_{\mathcal{A}}$ with infinitesimal generator $Q_{\mathcal{A}} = A_1 + S_1(-T_0)^{-1}R_0$. Since the recurrent class
 847 $\{r\}$ is a singleton and α is supported on $\{r\}$, we must have $\alpha_a = 0$ and $\alpha_r = 1$.

848 We now derive an expression for $\pi^{(1)}$. For the transient states $\mathcal{T} = \{i_1, \dots, i_m\}$, $\beta^{(1)} =$
 849 $[\pi_{i_1}^{(1)}, \dots, \pi_{i_m}^{(1)}] = \alpha S_1(-T_0)^{-1} = [0, \dots, 0, \pi_{i_m}^{(1)}]$, with

$$850 \quad \pi_{i_m}^{(1)} = \frac{\mu b \frac{k_M^A}{V} D_{\text{tot}}^2}{k_{W0}^2 + (\frac{k_M}{V} + \frac{\bar{k}_M}{V})(D_{\text{tot}} - 1)}.$$

851 See SI - Section S.10 for the detailed mathematical derivation. Now, $\alpha^{(1)} = [\pi_a^{(1)}, \pi_r^{(1)}]$ is the
 852 unique vector such that $\alpha^{(1)} Q_{\mathcal{A}} = -\beta^{(1)} [R_1 + T_1(-T_0)^{-1} R_0]$, $\alpha^{(1)} \mathbf{1} = -\beta^{(1)} \mathbf{1}$.

853 As an illustration, suppose $D_{\text{tot}} = 2$. Then (see SI - Section S.10 for the detailed mathematical
 854 derivation),

$$855 \quad (5.3) \quad Q_{\mathcal{A}} = \frac{K_1 + \mu K_2}{K_3 + \mu K_4 + \mu' K_5 + \mu \mu' K_6} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix},$$

856

$$857 \quad (5.4) \quad \pi_a^{(1)} = \frac{\mu^2 \mu'^2 K_7}{K_8(K_9 + K_{10}\mu)}, \quad \pi_r^{(1)} = -\pi_a^{(1)} - \pi_{i_m}^{(1)} = -\frac{\mu^2 \mu'^2 K_7 + \mu K_{11}(K_9 + K_{10}\mu)}{K_8(K_9 + K_{10}\mu)},$$

858 with $m = 8$ and K_i , $i = 1, \dots, 11$, are non-negative constants independent of ε , μ and μ' (see
 859 SI - Section S.10 for their precise definitions). Hence, the stationary distribution for $D_{\text{tot}} = 2$
 860 satisfies

$$861 \quad (5.5) \quad \pi_x(\varepsilon) = \begin{cases} \varepsilon \frac{(\mu\mu')^2 K_7}{K_8(K_9 + K_{10}\mu)} + O(\varepsilon^2) & \text{if } x = a = (0, 2, 0)^T \\ O(\varepsilon^2) & \text{if } x \in \mathcal{T} \setminus \{i_m\} \\ \varepsilon \frac{K_{11}}{K_8} \mu + O(\varepsilon^2) & \text{if } x = i_m = (1, 0, 1)^T \\ 1 - \varepsilon \frac{(\mu\mu')^2 K_7 + \mu K_{11}(K_9 + K_{10}\mu)}{K_8(K_9 + K_{10}\mu)} + O(\varepsilon^2) & \text{if } x = r = (2, 0, 0)^T. \end{cases}$$

862 For small $\varepsilon > 0$, the stationary distribution is concentrated around the active and repressed
 863 states, although more mass is concentrated around the repressed state. However, higher values
 864 of μ' increase the probability of being in the active state, while decreasing the probability of
 865 being in the repressed state.

866 **5.1.2 Time to memory loss** In this section, we determine how the leakage of the system
 867 (ε) and the asymmetry between activating histone modifications and DNA methylation (μ')
 868 affect the time to memory loss of the active state $h_{a,r}(\varepsilon)$ and the time to memory loss of the
 869 repressed state $h_{r,a}(\varepsilon)$.

870 Firstly, by the algorithm in Section 4.2.1, we have that $h_{a,r}(\varepsilon)$ is $O(\varepsilon^{-1})$ and $h_{r,a}(\varepsilon)$ is $O(\varepsilon^{-2})$
 871 (see SI - Section S.6). This means that decreasing the leakage extends the memory of both the
 872 active and repressed chromatin states, but the effect is stronger for the repressed state. This
 873 difference is influenced by the co-existence and cooperation between DNA methylation and
 874 repressive histone marks that introduce a structural bias in the 3D chromatin modification
 875 circuit towards a repressed chromatin state.

876 These results are consistent with the ones obtained by applying Theorem 4.7, which allows
 877 us not only to find the order of $h_{a,r}(\varepsilon)$ and $h_{r,a}(\varepsilon)$, but also to find an expression for their
 878 leading coefficients (see SI - Section S.10 for the detailed mathematical derivation). As an
 879 example, when $D_{\text{tot}} = 2$, Q_A and $\pi_a^{(1)}$ are shown in (5.3) and (5.4), and we obtain from them
 880 that

881 (5.6)
$$h_{a,r}(\varepsilon) = \frac{K_3 + \mu K_4 + \mu' K_5 + \mu \mu' K_6}{K_1 + \mu K_2} \frac{1}{\varepsilon} + O(1), \quad \text{and}$$

882 (5.7)
$$h_{r,a}(\varepsilon) = \frac{K_3 + \mu K_4 + \mu' K_5 + \mu \mu' K_6}{K_1 + \mu K_2} \frac{K_8(K_9 + K_{10}\mu)}{\mu^2 \mu'^2 K_7} \frac{1}{\varepsilon^2} + O\left(\frac{1}{\varepsilon}\right),$$

883 where K_i , $i = 1, \dots, 11$, are non-negative constants independent of ε , μ and μ' , defined in SI -
 884 Section S.10.

885 Now, we focus on understanding how the asymmetry between chromatin modification erasure
 886 rates affects the time to memory loss. In particular, since experimental data suggest that the
 887 asymmetry between the erasure rates of DNA methylation and activating histone modifications
 888 is more pronounced than the asymmetry between erasure rates of opposite histone modifi-
 889 cations, in this analysis we focus only on studying the effect of μ' , but a similar procedure to the
 890 one presented in the next paragraph could be applied to study the effect of μ . To this end, we
 891 exploit the comparison Theorem 4.10 to determine directly how μ' affects $h_{a,r}(\varepsilon)$ and $h_{r,a}(\varepsilon)$,
 892 without deriving an explicit expression for them. To this end, we first note that the transitions
 893 of the Markov chain $X^\varepsilon(t)$ are in six possible directions, that can be written as $v_1 = (0, 1, 0)^T$,
 894 $v_2 = (0, -1, 0)^T$, $v_3 = (0, 0, 1)^T$, $v_4 = (0, 0, -1)^T$, $v_5 = (1, 0, -1)^T$, $v_6 = (-1, 0, 1)^T$, with the
 895 associated infinitesimal transition rates that can be written as $\Upsilon_1(x) = f_A(x)$, $\Upsilon_2(x) = g_\varepsilon^A(x)$,
 896 $\Upsilon_3(x) = f_{R1}(x)$, $\Upsilon_4(x) = g_{R1}^\varepsilon(x)$, $\Upsilon_5(x) = f_{R12}(x)$, $\Upsilon_6(x) = g_{R12}^\varepsilon(x)$. Define the matrix

897
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

898 and, for $x \in \mathcal{X}$, $(K_A + x) \cap \mathcal{X} = \{w \in \mathcal{X} : x \preceq_A w\}$. Let us also introduce infinitesimal
 899 transition rates $\check{\Upsilon}_i(x)$, $i = 1, 2, \dots, 6$, defined as for $\Upsilon_i(x)$, $i = 1, 2, \dots, 6$, with all the parameters
 900 having the same values except that μ' is replaced by $\check{\mu}'$, with $\mu' \geq \check{\mu}'$. All of the conditions
 901 of Theorem 4.10 hold (see SI - Section S.10) and so we can apply the theorem. This allows
 902 us to establish that, since $a = (0, D_{\text{tot}}, 0)^T \preceq_A r = (D_{\text{tot}}, 0, 0)^T$, then $\check{h}_{a,r}(\varepsilon) \leq h_{a,r}(\varepsilon)$ and

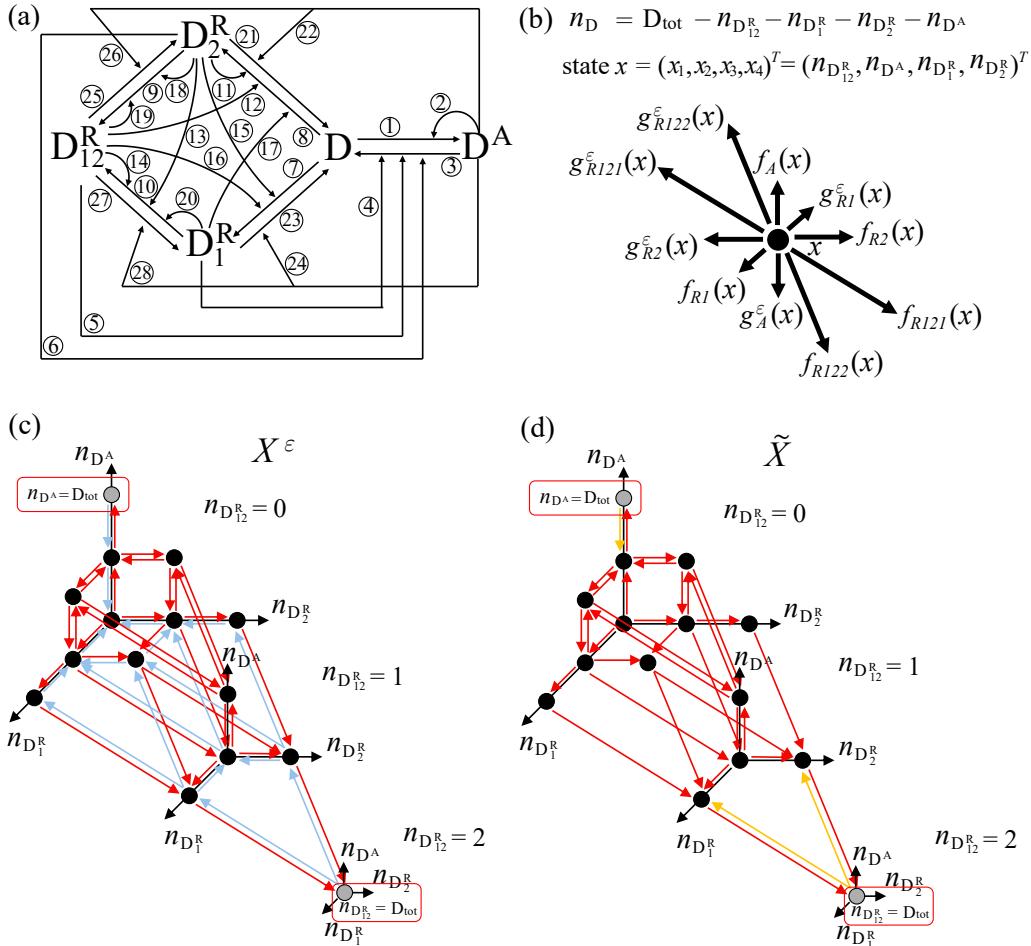
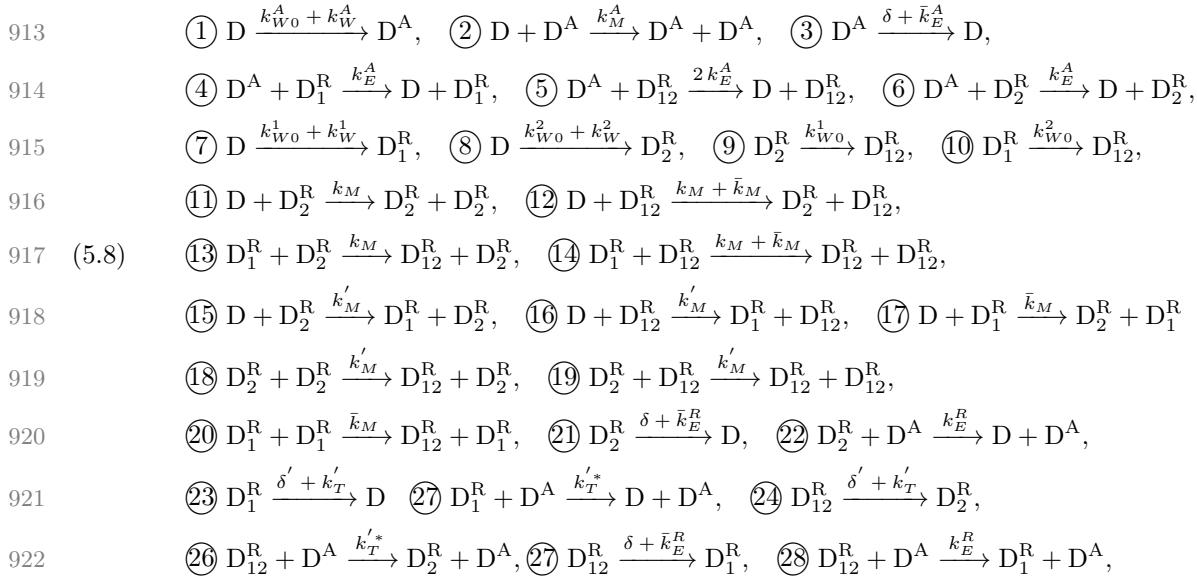


Figure 7: **4D Model and associated Markov chain.** (a) Chemical reaction system. The numbers on the arrows correspond to the reactions associated with the arrows as described in (5.8) in the main text. (b) Directions of the possible transitions of the Markov chain X^ε associated with the reduced SCRNs, starting from a state $x = (x_1, x_2, x_3, x_4)^T$ and whose rates are given in equation (5.9). (c) Graph for X^ε . Here, the red (blue) arrows correspond to $O(1)$ ($O(\varepsilon)$) transition rates. (d) Graph for the Markov chain \tilde{X} . Here, the golden arrows correspond to the transitions that were $O(\varepsilon)$ in X^ε and became $O(1)$ in \tilde{X} . For (c) and (d) the state of the Markov chain is $x = (n_{D_{12}^R}, n_{D^A}, n_{D_1^R}, n_{D_2^R})^T$, we consider $D_{\text{tot}} = 2$, and we show three interconnected slices ($n_{D_{12}^R} = 0, 1, 2$) of the Markov chain state space. In panels (c) and (d), we use gray dots to represent the states belonging to \mathcal{A} and black dots to represent all the other states.

903 $h_{r,a}(\varepsilon) \leq \check{h}_{r,a}(\varepsilon)$, where $\check{\cdot}$ indicates quantities associated with $\check{\Upsilon}$. Thus, we can conclude that,
904 given that the only difference between the two systems was that $\mu' \geq \check{\mu}'$, the time to memory
905 loss of the active state is monotonically increasing with μ' , while the time to memory loss of
906 the repressed state is monotonically decreasing with μ' .

907 **5.2 4D chromatin modification circuit model** Now, we consider a complete model in
 908 which the species involved are D , D_1^R , D_{12}^R , D^A and D_2^R (nucleosome with H3K9me3 only).
 909 Compared to the 3D model, we assume that, in order to be modified with both repressive
 910 modifications, D can be also modified first with a repressive histone modification (H3K9me3),
 911 obtaining D_2^R , and then with DNA methylation (CpGme), obtaining D_{12}^R . The chemical reac-
 912 tion system, shown in Fig. 7(a), is the following:



923 in which the form of the reaction rate constants is due to the fact that reactions with the
 924 same reactants and products have been combined. As we did for the 3D model, let us define
 925 the parameter $\varepsilon = \frac{\delta + \bar{k}_E^A}{k_M^A \frac{D_{\text{tot}}}{V}}$, the parameter $\mu = \frac{k_E^R}{k_E^A}$, with a constant b such that $\frac{\delta + \bar{k}_E^R}{\delta + \bar{k}_E^A} = b\mu$,
 926 and the parameter $\mu' = \frac{k_T^*}{k_E^A}$, with a constant β such that $\frac{\delta' + k_T^*}{\delta + \bar{k}_E^A} = \beta\mu'$. The Markov chain
 927 X^ε associated with the system is a linearly perturbed finite state continuous time Markov
 928 chain with the state x representing the number of each type of modified nucleosome, i.e., $x =$
 929 $(n_{D_{12}^R}, n_{D^A}, n_{D_1^R}, n_{D_2^R})^T = (x_1, x_2, x_3, x_4)^T$. If the total number of nucleosomes is D_{tot} , which is
 930 conserved, then the state space is $\mathcal{X} = \{(x_1, x_2, x_3, x_4)^T \in \mathbb{Z}_+^4 : x_1 + x_2 + x_3 + x_4 \leq D_{\text{tot}}\}$. The
 931 transition vectors for X^ε are given by $v_1 = (0, 1, 0, 0)^T$, $v_2 = (0, -1, 0, 0)^T$, $v_3 = (0, 0, 1, 0)^T$,
 932 $v_4 = (0, 0, -1, 0)^T$, $v_5 = (0, 0, 0, 1)^T$, $v_6 = (0, 0, 0, -1)^T$, $v_7 = (1, 0, -1, 0)^T$, $v_8 = (-1, 0, 1, 0)^T$,
 933 $v_9 = (1, 0, 0, -1)^T$ and $v_{10} = (-1, 0, 0, 1)^T$. The infinitesimal transition rates are

$$934 \quad Q_{x,x+v_1}(\varepsilon) = f_A(x) = (D_{\text{tot}} - (x_1 + x_2 + x_3 + x_4)) \left(k_{W0}^A + k_W^A + \frac{k_M^A}{V} x_2 \right),$$

$$935 \quad Q_{x,x+v_2}(\varepsilon) = g_A^\varepsilon(x) = x_2 \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} + \frac{k_E^A}{V} (x_3 + x_4 + 2x_1) \right),$$

$$936 \quad Q_{x,x+v_3}(\varepsilon) = f_{R1}(x) = (D_{\text{tot}} - (x_1 + x_2 + x_3 + x_4)) \left(k_{W0}^1 + k_W^1 + \frac{k'_M}{V} (x_1 + x_4) \right),$$

$$\begin{aligned}
937 \quad Q_{x,x+v_4}(\varepsilon) &= g_{R1}^\varepsilon(x) = x_3\mu' \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} \beta + x_2 \frac{k_E^A}{V} \right), \\
938 \quad Q_{x,x+v_5}(\varepsilon) &= f_{R2}(x) = (D_{\text{tot}} - (x_1 + x_2 + x_3 + x_4)) \left(k_{W0}^2 + k_W^2 + \frac{k_M}{V} (x_1 + x_4) + \frac{\bar{k}_M}{V} (x_1 + x_3) \right), \\
(5.9) \\
939 \quad Q_{x,x+v_6}(\varepsilon) &= g_{R2}^\varepsilon(x) = x_4\mu \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} b + x_2 \frac{k_E^A}{V} \right), \\
940 \quad Q_{x,x+v_7}(\varepsilon) &= f_{R121}(x) = x_3 \left(k_{W0}^2 + \frac{k_M}{V} (x_1 + x_4) + \frac{\bar{k}_M}{V} \left(x_1 + \frac{x_3 - 1}{2} \right) \right), \\
941 \quad Q_{x,x+v_8}(\varepsilon) &= g_{R121}^\varepsilon(x) = x_1\mu \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} b + x_2 \frac{k_E^A}{V} \right), \\
942 \quad Q_{x,x+v_9}(\varepsilon) &= f_{R122}(x) = x_4 \left(k_{W0}^1 + \frac{k_M'}{V} \left(x_1 + \frac{x_4 - 1}{2} \right) \right), \\
943 \quad Q_{x,x+v_{10}}(\varepsilon) &= g_{R122}^\varepsilon(x) = x_1\mu' \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} \beta + x_2 \frac{k_E^A}{V} \right).
\end{aligned}$$

944 A representation of the transition vectors and the Markov chain graph for $D_{\text{tot}} = 2$ are given in
945 Fig. 7 (b) and (c), respectively. As before, each rate depends on the state x , but in the rest of
946 the section we will not show this dependency to simplify the notation. Now, we determine the
947 stochastic behavior of the full chromatin modification circuit model in terms of its stationary
948 distribution and time to memory loss. For this study, we will consider $k_W^A = k_W^1 = k_W^2 = 0$
949 (i.e., there are no external transcription factors enhancing the establishment of chromatin
950 modifications). This assumption will not change the qualitative nature of the results focused
951 on studying the effect of ε , μ , and μ' on the stochastic behavior of the chromatin modification
952 circuit model.

953 **5.2.1 Stationary distribution** We now determine the zeroth and first order terms of the
954 stationary distribution expansion for the 4D model. As shown in SI - Section S.11, when $\varepsilon = 0$,
955 the continuous time Markov chain associated with the 4D model has transient states $\mathcal{T} =$
956 $\{i_1, \dots, i_m\}$ where $m = \sum_{j=0}^{D_{\text{tot}}} \sum_{k=0}^j \binom{(k+2)(k+1)}{2} - 2$, $i_1 = (0, D_{\text{tot}} - 1, 0, 0)^T$, $i_{m-1} = (D_{\text{tot}} -$
957 $1, 0, 0, 1)^T$, $i_m = (D_{\text{tot}} - 1, 0, 1, 0)^T$, and absorbing states $\mathcal{A} = \{a, r\}$, with $a = (0, D_{\text{tot}}, 0, 0)^T$
958 corresponding to the fully active state ($n_{D^A} = D_{\text{tot}}$) and $r = (D_{\text{tot}}, 0, 0, 0)^T$ corresponding to
959 the fully repressed state ($n_{D^R} = D_{\text{tot}}$), respectively. Then, Assumption 4.1 holds (see SI -
960 Section S.11), so that $\mathcal{X} = \mathcal{A} \cup \mathcal{T}$, and we can rewrite the infinitesimal generator $Q(\varepsilon)$ in the
961 form of (4.2) (see SI - Section S.11), where the perturbation is linear and so Assumption 4.5
962 holds. We can also verify Assumption 4.2 (see SI - Section S.11). Hence, we can apply SI -
963 Theorem S.9, as was done for the 3D model.

964 In particular, we obtain $\pi(0) = \pi^{(0)} = [\alpha, 0] = [\alpha_a, \alpha_r, 0 \dots, 0]$, with $\alpha_a = 0$, $\alpha_r = 1$, and
965 $\beta^{(1)} = [\pi_{i_1}^{(1)}, \dots, \pi_{i_m}^{(1)}] = [0, \dots, 0, \pi_{i_{m-1}}^{(1)}, \pi_{i_m}^{(1)}]$, with

$$966 \quad \pi_{i_{m-1}}^{(1)} = \frac{\mu' \beta \frac{k_M^A}{V} D_{\text{tot}}^2}{k_{W0}^1 + \frac{k_M'}{V} (D_{\text{tot}} - 1)}, \quad \pi_{i_m}^{(1)} = \frac{\mu b \frac{k_M^A}{V} D_{\text{tot}}^2}{k_{W0}^2 + (\frac{k_M}{V} + \frac{\bar{k}_M}{V})(D_{\text{tot}} - 1)}.$$

967 See SI - Section S.11 for the detailed mathematical derivation. Now, $\alpha^{(1)} = [\pi_a^{(1)}, \pi_r^{(1)}]$ is the

968 unique vector such that $\alpha^{(1)}Q_{\mathcal{A}} = -\beta^{(1)}[R_1 + T_1(-T_0)^{-1}R_0]$, $\alpha^{(1)}\mathbf{1} = -\beta^{(1)}\mathbf{1}$.

969 As an example, suppose $D_{\text{tot}} = 2$ and assume $\beta = b$, $k_{W0}^1 = k_{W0}^2 = k_{W0}^A$ and $k_M' = \bar{k}_M =$
970 $k_M = k_M^A$. These assumptions do not affect the final qualitative conclusions related to the
971 effect of ε, μ and μ' on the stationary distribution. Then (see SI - Section S.11 for the detailed
972 mathematical derivation)

973 (5.10)
$$Q_{\mathcal{A}} = \frac{\bar{K}_1(\mu, \mu')}{\bar{K}_2(\mu, \mu')} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix},$$

974

975 (5.11)
$$\pi_a^{(1)} = \frac{\bar{K}_3(\mu, \mu')}{\bar{K}_4(\mu, \mu')}, \quad \pi_r^{(1)} = -\pi_a^{(1)} - \pi_{i_{m-1}}^{(1)} - \pi_{i_m}^{(1)} = -\frac{\bar{K}_3(\mu, \mu')}{\bar{K}_4(\mu, \mu')} - \mu' K_{18} - \mu K_{19},$$

976 with

977 (5.12)
$$\begin{aligned} \bar{K}_1(\mu, \mu') &= K_1((\mu')^2 K_2 + (\mu)^2 K_3 + \mu \mu' K_4 + \mu' K_5 + \mu K_6 + K_7), \\ \bar{K}_2(\mu, \mu') &= \mu' \mu (\mu' + \mu) K_8 + (\mu')^2 K_9 + (\mu)^2 K_{10} + \mu \mu' K_{11} + \mu' K_{12} + \mu K_{13} + K_{14}, \\ \bar{K}_3(\mu, \mu') &= (\mu \mu')^2 K_{15} ((\mu + \mu') K_{16} + K_{17}), \\ \bar{K}_4(\mu, \mu') &= K_{20} ((\mu')^2 K_2 + (\mu)^2 K_3 + \mu \mu' K_4 + \mu' K_5 + \mu K_6 + K_7), \end{aligned}$$

978 in which $m = 13$ and $K_i, i = 1, \dots, 20$, are non-negative functions independent of μ and μ' (see
979 SI - Section S.11 for their precise definitions). We then have

980
$$\pi_x(\varepsilon) = \begin{cases} \varepsilon \frac{\bar{K}_3(\mu, \mu')}{\bar{K}_4(\mu, \mu')} + O(\varepsilon^2) & \text{if } x = a = (0, 2, 0, 0)^T \\ O(\varepsilon^2) & \text{if } x \in \mathcal{T} \setminus \{i_{m-1}, i_m\} \\ \varepsilon \mu' K_{18} + O(\varepsilon^2) & \text{if } x = i_{m-1} = (1, 0, 0, 1)^T \\ \varepsilon \mu K_{19} + O(\varepsilon^2) & \text{if } x = i_m = (1, 0, 1, 0)^T \\ 1 - \varepsilon \left(\frac{\bar{K}_3(\mu, \mu')}{\bar{K}_4(\mu, \mu')} + \mu' K_{18} + \mu K_{19} \right) + O(\varepsilon^2) & \text{if } x = r = (2, 0, 0, 0)^T. \end{cases}$$

981 For small $\varepsilon > 0$, the stationary distribution is concentrated around the active and repressed
982 states, and higher values of μ' or μ shift the distribution towards the active state.

983 **5.2.2 Time to memory loss** As was done for the 3D model, we determine for the 4D
984 model how the parameters ε and μ' affect the time to memory loss of the active state, $h_{a,r}(\varepsilon)$,
985 and the time to memory loss of the repressed state, $h_{r,a}(\varepsilon)$. Firstly, by the algorithm in Section
986 4.2.1, $h_{a,r}(\varepsilon)$ is $O(\varepsilon^{-1})$ and $h_{r,a}(\varepsilon)$ is $O(\varepsilon^{-2})$ (see SI - Section S.6). Then, by applying Theorem
987 4.7 we can obtain expressions for the leading coefficients of $h_{a,r}(\varepsilon)$ and $h_{r,a}(\varepsilon)$ (See SI - Section
988 S.11 for the detailed mathematical derivation). As an example, when $D_{\text{tot}} = 2$, $Q_{\mathcal{A}}$ and $\pi_a^{(1)}$
989 are shown in (5.10) and (5.11), and we obtain that

990
$$h_{a,r}(\varepsilon) = \frac{\bar{K}_2(\mu, \mu')}{\bar{K}_1(\mu, \mu')} \frac{1}{\varepsilon} + O(1), \quad \text{and} \quad h_{r,a}(\varepsilon) = \frac{\bar{K}_2(\mu, \mu') K_4(\mu, \mu')}{\bar{K}_1(\mu, \mu') \bar{K}_3(\mu, \mu')} \frac{1}{\varepsilon^2} + O\left(\frac{1}{\varepsilon}\right),$$

991 where $\bar{K}_i(\mu, \mu')$, $i = 1, \dots, 4$, are defined in (5.12).

992 Now, we determine how μ' , the parameter encapsulating the asymmetry between the DNA
 993 methylation erasure rate and the activating histone modification erasure rate, affects the time
 994 to memory loss. To this end, we seek to determine directly how μ' affects $h_{a,r}(\varepsilon)$ and $h_{r,a}(\varepsilon)$,
 995 without deriving an explicit expression for them. To this end, we would like to exploit two
 996 theorems from [13], namely, Theorem S.2 and Theorem 3.4 there. The transitions of the
 997 Markov chain X^ε are in ten possible directions, $v_1 = -v_2 = (1, 0, -1, 0)^T$, $v_3 = -v_4 =$
 998 $(1, 0, 0, -1)^T$, $v_5 = -v_6 = (0, 1, 0, 0)^T$, $v_7 = -v_8 = (0, 0, 1, 0)^T$, and $v_9 = -v_{10} = (0, 0, 0, 1)^T$,
 999 with the associated infinitesimal transition rates $\Upsilon_1(x) = f_{R121}(x)$, $\Upsilon_2(x) = g_{R121}^\varepsilon(x)$, $\Upsilon_3(x) =$
 1000 $f_{R122}(x)$, $\Upsilon_4(x) = g_{R122}^\varepsilon(x)$, $\Upsilon_5(x) = f_A(x)$, $\Upsilon_6(x) = g_A^\varepsilon(x)$, $\Upsilon_7(x) = f_{R1}(x)$, $\Upsilon_8(x) = g_{R1}^\varepsilon(x)$,
 1001 $\Upsilon_9(x) = f_{R2}(x)$, $\Upsilon_{10}(x) = g_{R2}^\varepsilon(x)$. Consider infinitesimal transition rates $\check{\Upsilon}_i(x)$, $i = 1, 2, \dots, 10$,
 1002 defined as for $\Upsilon_i(x)$, $i = 1, 2, \dots, 10$, with all the parameters having the same values except
 1003 that μ' is replaced by $\check{\mu}'$, with $\mu' \geq \check{\mu}'$. While we have not been able to see how to exploit
 1004 Theorems S.2 and 3.4 from [13] for these exact rates, we have been able to do this for closely
 1005 related rates. If we introduce a small approximation in the transition rates of X^ε , namely,
 1006 $\frac{x_3-1}{2} \approx x_3$ and $\frac{x_4-1}{2} \approx x_4$ in $f_{R121}(x)$ and $f_{R122}(x)$, respectively, then Theorems S.2 and 3.4
 1007 in [13] apply with

$$1008 \quad A = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix},$$

1009 and $(K_A + x) \cap \mathcal{X} = \{w \in \mathcal{X} : x \preceq_A w\}$ (see SI - Section S.11). This approximation can
 1010 be justified by introducing the reasonable assumption that each nucleosome characterized by
 1011 a repressive modification (D_1^R and D_2^R) has the ability to catalyze the establishment of the
 1012 opposite repressive mark on itself. With this approximation, since $a = (0, D_{\text{tot}}, 0, 0)^T \preceq_A r =$
 1013 $(D_{\text{tot}}, 0, 0, 0)^T$, then $\check{h}_{a,r}(\varepsilon) \leq h_{a,r}(\varepsilon)$ and $h_{r,a}(\varepsilon) \leq \check{h}_{r,a}(\varepsilon)$. Thus, the time to memory loss
 1014 of the active state increases with higher values of μ' , while the time to memory loss of the
 1015 repressed state decreases with higher values of μ' .

1016 **6 Conclusion** In this paper, we provided a mathematical formulation and rigorous proofs
 1017 to validate the computational findings in [10], showing how the time scale separation between
 1018 establishment and erasure processes of chromatin modifications affects epigenetic cell memory.
 1019 To this end, we developed and adapted theory for singularly perturbed continuous time Markov
 1020 chains and we analyzed the behavior of stationary distributions and mean first passage times
 1021 as functions of the singular perturbation parameter ε .

1022 We first showed that $\pi(\varepsilon)$ can be expressed as a series expansion (Section 3.1) for sufficiently
 1023 small ε . We then proved that the limit $\pi(0) = \lim_{\varepsilon \rightarrow 0} \pi(\varepsilon)$ is unique and we determined an
 1024 expression for it (Section 4.1.1). We also provided an iterative procedure for computing all of
 1025 the higher order terms in the expansion of $\pi(\varepsilon)$ (SI -Section S.2.1). Similarly, for the mean
 1026 first passage time (MFPT) between states, we first showed there is a Laurent series expansion
 1027 for sufficiently small ε (Section 3.1, Eq. (3.4)). We then developed a graph based algorithm
 1028 to identify the order of the leading term in the series expansion (Section 4.2.1), and we also
 1029 determined the leading coefficient there (Section 4.2.2).

1030 We then applied these tools to the chromatin modification circuit models proposed in [10],

1031 to provide a rigorous basis for the computational findings given there (Sections 2, 4, and 5).
 1032 Our rigorous derivations of the analytical expressions for the stationary distributions and
 1033 time to memory loss, and our results on monotonic dependence on parameters, lead to a mechan-
 1034 istic understanding of how ε , μ and μ' affect the stochastic behavior of chromatin modification
 1035 systems. As an example, our results suggest that higher values of μ and μ' shift mass of the
 1036 stationary distribution more towards the active state (Sections 5.1.1 and 5.2.1). This finding is
 1037 consistent with recent experimental results demonstrating that transfection of the DNA meth-
 1038 ylation eraser enzyme TET1 (represented in our model by higher μ' [10]) into Chinese hamster
 1039 ovary (CHO-K1) repressed cells causes them to shift towards the active state [27]. More gen-
 1040 erally, the mechanistic understanding of how ε , μ , and μ' affect the stochastic behavior of
 1041 chromatin modification systems, as derived in our study, is crucial for determining experi-
 1042 mental interventions on molecular players, such as chromatin modifier enzymes, to modulate
 1043 cell memory. This mechanistic insight is expected to be extremely valuable for applications
 1044 such as cell fate reprogramming and engineering approaches to cell therapy. Furthermore, the
 1045 mathematical results and theoretical tools developed in this paper can be applied beyond the
 1046 scope of the epigenetic cell memory models analyzed in this research work. In fact, they can
 1047 be applied to all stochastic models that respect the assumptions considered. Future work will
 1048 investigate how to generalize these results by removing some of these assumptions, including
 1049 allowing the Markov chain to have countably many states and $Q(0)$ to have ergodic classes
 1050 as well as absorbing states. While there is some theory for countably many states, such as
 1051 in [3], the continuous time Markov chains for further applications that we have in mind are
 1052 not uniformizable and have many transient states for $Q(0)$, and the theory in [3] needs to be
 1053 generalized for them.

1054
 1055 **Supplementary information (SI) file:** file containing the proofs of the theoretical tools
 1056 developed in this paper, and detailed mathematical derivations for some of the chromatin
 1057 modification circuit models analyzed.

1058 **Ethics declarations:** The authors declare that they have no conflicts of interest.

1059 **Data availability:** Data sharing not applicable to this article as no datasets were generated
 1060 or analysed during the current study.

1061

REFERENCES

1062 [1] ALLIS, C. D., CAPARROS, M.-L., JENUWEIN, T. AND REINBERG, D. (2015). *Epigenetics, 2nd Edition*.
 1063 Cold Spring Harbor Laboratory Press.

1064 [2] ANDERSON, D.F. AND KURTZ, T.G. (2011). *Continuous Time Markov Chain Models for Chemical Reac-
 1065 tion Networks*. Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and
 1066 Synthetic Biology, pp. 3-42.

1067 [3] ALTMAN, E. AND AVRACHENKOV, K.E. AND NÚÑEZ-QUEIJA, R. (2004). *Perturbation analysis for de-
 1068 numerable markov chains with application to queueing models* Advances in Applied Probability, vol.
 1069 36(3): 839–853.

1070 [4] ANDERSON, D.F. AND KURTZ, T.G. (2015). *Stochastic Analysis of Biochemical Systems*. Springer Inter-
 1071 national Publishing.

1072 [5] AVRACHENKOV K.E. AND HAVIV, M. (2004). *The first laurent series coefficients for singularly perturbed
 1073 stochastic matrices*. Linear Algebra and Its Applications, vol. 386, pp. 243–259.

1074 [6] AVRACHENKOV, K.E., FILAR, J.A. AND HOWLETT, P.G. (2013). *Analytic Perturbation Theory and Its*

1075 *Applications*. SIAM, Philadelphia.

1076 [7] BELTRÁN J., LANDIM C. (2010). *Tunneling and Metastability of Continuous Time Markov Chains* Journal
1077 of Statistical Physics, vol. 140(6): 1065–1114.

1078 [8] BELTRÁN J., LANDIM C. (2012). *Tunneling and metastability of continuous time Markov Chains II, the*
1079 *nonreversible case* Journal of Statistical Physics, vol. 149(4): 598–618.

1080 [9] BLUMENTHAL, R.M. AND GETOOR, R.K. (1968). *Markov Processes and Potential Theory, 2nd edition*.
1081 Academic Press, New York and London.

1082 [10] BRUNO, S., WILLIAMS, R.J. AND DEL VECCHIO, D. (2022). Epigenetic cell memory: The gene's inner
1083 chromatin modification circuit. *PLOS Comp Biol*, Public Library of Science, vol. 18(4): 1 - 27.

1084 [11] BRUNO, S., WILLIAMS, R.J. AND DEL VECCHIO, D. (2022). Model reduction and stochastic analysis of
1085 the histone modification circuit. *2022 European Control Conference (ECC)*, 264-271.

1086 [12] BRUNO, S., WILLIAMS, R.J. AND DEL VECCHIO, D. (2022). MAnalytical and computational study of
1087 the stochastic behavior of a chromatin modification circuit. *2022 IEEE 61st Conference on Decision*
1088 *and Control (CDC)*, 3871-3877.

1089 [13] CAMPOS, F.A., BRUNO, S., FU, Y., DEL VECCHIO, D. AND WILLIAMS, R.J. (2023). Comparison
1090 theorems for stochastic chemical reaction networks. *Bull Math Biol*, vol. 85(39).

1091 [14] CAREY, N. (2013). *The epigenetic revolution*. Columbia University Press.

1092 [15] COOPER, G.M. (2000). *The Cell: A Molecular Approach*. Sunderland (MA): Sinauer Associates.

1093 [16] DEL VECCHIO, D. AND MURRAY, R.M. (2014). *Biomolecular Feedback Systems*. Princeton University
1094 Press.

1095 [17] DODD, I.B. AND MICHEELSEN, M.A. AND SNEPPEN, K. AND THON, G. (2007). Theoretical Analysis of
1096 Epigenetic Cell Memory by Nucleosome Modification. *Cell*, vol. 129.

1097 [18] FELSENFELD, G. AND GROUDINE, M. (2003). Controlling the double helix. *Nature*, vol. 421.

1098 [19] HANNA, J. AND SAHA, K. AND PANDO, B. AND VAN ZON, J. AND LENGNER, C.J. AND CREYGHTON,
1099 M.P. AND VAN OUDENAARDEN, A. AND JAENISCH, R. (2009). Direct cell reprogramming is a stochastic
1100 process amenable to acceleration. *Nature*. 462.

1101 [20] HASSIN, R. AND HAVIV, M. (1992). Mean passage times and nearly uncoupled Markov chains. *SIAM*
1102 *Journal on Discrete Mathematics*. 5 (3), 386-397.

1103 [21] HEARD, E. AND MARTIENSSEN, R.A. (2014). Transgenerational Epigenetic Inheritance: Myths and Mech-
1104 anisms. *Cell*, vol. 157.

1105 [22] HUANG, S. AND LITT, M. AND BLAKELY, C. A. (2015). *Epigenetic Gene Expression and Regulation*.
1106 Academic Press.

1107 [23] KARATZAS, I. AND SHREVE, S. (1991). *Brownian Motion and Stochastic Calculus*. New York, Springer-
1108 Verlag. Graduate Texts in Mathematics 113.

1109 [24] KIM, M. AND COSTELLO, J. (2017). DNA methylation: an epigenetic mark of cellular memory. *Exp Mol*
1110 *Med*, vol. 49, no. e322.

1111 [25] MEYER, JR. AND CARL, D. (1975). The role of the group generalized inverse in the theory of finite Markov
1112 chains. *SIAM Review*, vol. 17, no. 3, pp. 443–464.

1113 [26] NORRIS, J.R. (1997). *Markov Chains*. Cambridge University Press.

1114 [27] PALACIOS, S. AND BRUNO, S. AND WEISS, R. AND SALIBI, E. AND KANE, A. AND ILIA, K. AND
1115 DEL VECCHIO, D. (2024). Analog epigenetic cell memory by graded DNA methylation. *bioRxiv*:
1116 <https://doi.org/10.1101/2024.02.13.580200> .

1117 [28] PAN, Z.G. AND BASAR, T. (1999). H infinity control of large-scale jump linear systems via averaging
1118 and aggregation. *International Journal of Control*, vol. 72, no. 10, pp. 866–881.

1119 [29] PHILLIPS, R.G. AND KOKOTOVIC, P.V (1981). A singular perturbation approach to modelling and control
1120 of Markov chains. *IEEE Trans. Automat. Control*, vol. 26, pp. 1087–1094.

1121 [30] PTASHNE, M. (2013). Epigenetics: Core misconception. *Proc. Natl. Acad. Sci*, vol. 110.

1122 [31] XIONG, W. AND FERRELL JR, J.E. (2003). A positive-feedback-based bistable ‘memory module’ that
1123 governs a cell fate decision. *Nature*, vol. 426.

1124 [32] YIN, G.G. AND ZHANG, Q. (2013). *Continuous-Time Markov Chains and Applications. A Two-Time-
1125 Scale Approach, Second Edition*. Springer, New York, NY.

1126 [33] ZHANG, T. AND COOPER, S. AND BROCKDORFF, N. (2015). The interplay of histone modifications –
1127 writers that read. *EMBO Reports*, vol. 16.

1128 Analysis of singularly perturbed stochastic chemical reaction
 1129 networks motivated by applications to epigenetic cell memory
 1130 Simone Bruno^{1,*}, Felipe A. Campos^{2,*}, Yi Fu², Domitilla Del Vecchio¹, and Ruth J.
 1131 Williams²

1132 ¹Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
 1133 Avenue, Cambridge, MA 02139. Emails: (sbruno,ddv)@mit.edu

1134 ²Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla CA
 1135 92093-0112. Email: (fcamposv,yif064,rjwilliams)@ucsd.edu

1136 *These authors contributed equally: S. Bruno and F. A. Campos

1137 Supplementary Information (SI)

1138 S.1 Some results in probability

Let \mathcal{X} be a finite set. Recall the notation for matrices
 1139 introduced in Section 1.5.

1140 **Lemma S.1.** *Let $X = \{X(t) : t \geq 0\}$ be a continuous time Markov chain with state space \mathcal{X}
 1141 and infinitesimal generator $Q = (Q_{x,y})_{x,y \in \mathcal{X}}$. Then, the number of recurrent classes for X is
 1142 equal to $\text{nullity}(Q^T) = \text{nullity}(Q)$.*

1143 **Proof.** Since Q is a square matrix, the Rank plus Nullity Theorem yields that $\text{nullity}(Q^T) = \text{nullity}(Q)$. Now, consider $\lambda > \max_{x \in \mathcal{X}} |Q_{x,x}|$ and define $P := I + Q/\lambda$, where I is the
 1144 identity matrix of size $|\mathcal{X}| \times |\mathcal{X}|$. The matrix P is stochastic and such that for every $x \neq y$ in \mathcal{X} , $P_{x,y} > 0$ if and only if $Q_{x,y} > 0$. As a consequence, the recurrent classes of X are
 1145 the same as the recurrent classes of P . By Theorem IV.2.4 in Isaacson and Madsen [11], the
 1146 number of recurrent classes of P is equal to the maximum number of linearly independent left
 1147 eigenvectors satisfying $\pi P = \pi$. By observing that $\pi P = \pi$ if and only if $\pi Q = 0$, we see that
 1148 this latter quantity is equal to $\text{nullity}(Q^T)$. ■

1151 The following is Proposition 6.3 in Asmussen [1].

1152 **Proposition S.2.** *Let $(P_{x,y})_{x,y \in \mathcal{X}}$ be a nonnegative substochastic matrix ($P\mathbf{1} \leq \mathbf{1}$) such that for
 1153 each $x \in \mathcal{X}$ there are $z_1, \dots, z_m, y \in \mathcal{X}$ such that $P_{x,z_1}P_{z_1,z_2} \dots P_{z_m,y} > 0$ and $\sum_{z \in \mathcal{X}} P_{y,z} < 1$.
 1154 Then, $\text{spr}(P) < 1$.*

1155 We use Proposition S.2 in order to obtain invertibility for some matrices, as in the next
 1156 result.

1157 **Lemma S.3.** *Let $X = \{X(t) : t \geq 0\}$ be an irreducible continuous time Markov chain with
 1158 state space \mathcal{X} and with an embedded discrete time Markov chain with transition matrix P .
 1159 Consider a nonempty set $\mathcal{B} \subseteq \mathcal{X}$ such that $\mathcal{B} \neq \mathcal{X}$ and consider $P^{\mathcal{B}^c}$ to be the matrix obtained
 1160 by removing the columns and rows of P corresponding to states in \mathcal{B} . Then, $I - P^{\mathcal{B}^c}$ is invertible
 1161 and its inverse is given by the absolutely convergent series $\sum_{k=0}^{\infty} (P^{\mathcal{B}^c})^k$, where $(P^{\mathcal{B}^c})^0 = I$.*

1162 **Proof.** Observe that $P^{\mathcal{B}^c} = (P_{x,y})_{x,y \in \mathcal{B}^c}$ is a nonnegative substochastic matrix. Since X
 1163 is an irreducible continuous time Markov chain, its embedded discrete time Markov chain is
 1164 also irreducible. Thus, for each $x \in \mathcal{B}^c$, there exist $z_1, \dots, z_m, y \in \mathcal{B}^c$ and $\tilde{y} \in \mathcal{B}$ such that
 1165 $P_{x,z_1}P_{z_1,z_2} \dots P_{z_m,y}P_{y,\tilde{y}} > 0$. Then, $P_{x,z_1}^{\mathcal{B}^c}P_{z_1,z_2}^{\mathcal{B}^c} \dots P_{z_m,y}^{\mathcal{B}^c} > 0$ and $\sum_{z \in \mathcal{B}^c} P_{y,z}^{\mathcal{B}^c} = \sum_{z \in \mathcal{B}^c} P_{y,z} < 1$
 1166 since $P_{y,\tilde{y}} > 0$ and $\sum_{z \in \mathcal{X}} P_{y,z} = 1$. By Proposition S.2, $\text{spr}(P^{\mathcal{B}^c}) < 1$. This fact, together with
 1167 Theorem 5.6.15 in Horn & Johnson [10] yields the convergence of $\sum_{k=0}^{\infty} (P^{\mathcal{B}^c})^k$. Moreover,

1168 $(I - P^{\mathcal{B}^c}) \sum_{k=0}^{\infty} (P^{\mathcal{B}^c})^k = \sum_{k=0}^{\infty} (P^{\mathcal{B}^c})^k (I - P^{\mathcal{B}^c}) = I$, which yields the desired result. \blacksquare

1169 We will use the following continuous time analogue of Proposition S.2.

1170 **Lemma S.4.** *Let $(Q_{x,y})_{x,y \in \mathcal{X}}$ be a matrix such that $Q\mathbf{1} \leq 0$ and such that $Q_{x,x} \leq 0$ for each $x \in \mathcal{X}$ and $Q_{x,y} \geq 0$ for each $x \neq y \in \mathcal{X}$. In addition, suppose that for each $x \in \mathcal{X}$ there are distinct $z_1, \dots, z_m, y \in \mathcal{X}$ different from x such that $Q_{x,z_1} Q_{z_1,z_2} \dots Q_{z_m,y} > 0$ and $\sum_{z \in \mathcal{X}} Q_{y,z} < 0$. Then, for every $v \in \text{sp}(Q)$, the real part of v is negative. In particular, Q is invertible.*

1175 **Proof.** Consider $\lambda > \max_{x \in \mathcal{X}} |Q_{x,x}|$ and define $P := I + Q/\lambda$, where I is the identity matrix
1176 of size $|\mathcal{X}| \times |\mathcal{X}|$. The matrix P is nonnegative, substochastic and such that $P_{x,y} = \frac{1}{\lambda} Q_{x,y}$
1177 for every $x \neq y \in \mathcal{X}$. With these elements, we obtain that for each $x \in \mathcal{X}$ there are distinct
1178 $z_1, \dots, z_m, y \in \mathcal{X}$ such that $P_{x,z_1} P_{z_1,z_2} \dots P_{z_m,y} > 0$ and where $\sum_{z \in \mathcal{X}} P_{y,z} = 1 + \frac{1}{\lambda} \sum_{z \in \mathcal{X}} Q_{y,z} <$
1179 1. Proposition S.2 yields that $\text{spr}(P) < 1$. By observing that $v \in \text{sp}(Q)$ implies that $1 + \frac{v}{\lambda} \in$
1180 $\text{sp}(P)$, we obtain that $1 > |1 + \frac{v}{\lambda}| \geq |1 + \frac{\Re(v)}{\lambda}|$ where $\Re(v)$ is the real part of v . The latter
1181 inequality implies that $\Re(v) < 0$. \blacksquare

1182 Consider a nonempty set $\mathcal{B} \subseteq \mathcal{X}$ such that $\mathcal{B} \neq \mathcal{X}$ and a Q -matrix written as

1183 (S.1)
$$Q = \begin{array}{c|c} \mathcal{B} & \mathcal{B}^c \\ \hline \mathcal{B} & \left(\begin{array}{c|c} Q^{\mathcal{B}} & S \\ \hline R & Q^{\mathcal{B}^c} \end{array} \right) \\ \mathcal{B}^c & \end{array}.$$

1184 Consider a process $X = \{X(t) : t \geq 0\}$ defined on a measurable space (Ω, \mathcal{F}) and a collection
1185 of probability measures $\{\mathbb{P}_x : x \in \mathcal{X}\}$ on (Ω, \mathcal{F}) such that for every $x \in \mathcal{X}$, X is a continuous
1186 time Markov chain under \mathbb{P}_x with infinitesimal generator given by Q and such that $\mathbb{P}_x[X(0) =$
1187 $x] = 1$. Consider the stopping time $\tau_{\mathcal{B}} := \inf\{t \geq 0 : X(t) \in \mathcal{B}\}$.

1188 **Lemma S.5.** *The following are equivalent:*

1189 (i) *For every $x \in \mathcal{B}^c$, there exists a $z \in \mathcal{B}$ such that x leads to z under Q , i.e., there are
1190 distinct $x_1, \dots, x_m \in \mathcal{B}^c$, different from x , such that $Q_{x,x_1}, Q_{x_1,x_2}, \dots, Q_{x_m,z} > 0$.*
1191 (ii) *$Q^{\mathcal{B}^c}$ is invertible.*
1192 (iii) *$\mathbb{E}_x[\tau_{\mathcal{B}}] < \infty$ for every $x \in \mathcal{B}^c$.*
1193 *If any of (i) – (iii) hold, then*

1194 (S.2)
$$\mathbb{P}_x[X(\tau_{\mathcal{B}}) = y] = (-Q^{\mathcal{B}^c})^{-1} R)_{x,y}$$

1195 *for every $x \in \mathcal{B}^c$ and $y \in \mathcal{B}$. Moreover, if \mathcal{B}^c is a set of transient states for X , then (i) – (iii) hold.*

1197 Part of the results in Lemma S.5 appear as Lemma 1 in Gaver et al. [8] for the case where
1198 $Q^{\mathcal{B}}$ and S are the zero matrix. For completeness, we provide a self-contained proof here.

1199 **Proof.** The implication $(i) \Rightarrow (ii)$ is a consequence of Lemma S.4 with $\mathcal{B}^c, Q^{\mathcal{B}^c}$ in place of
1200 \mathcal{X}, Q there.

1201 In the following, recall that for every $x \in \mathcal{X}$ and function $f : \mathcal{X} \rightarrow \mathbb{R}$, the process

1202 (S.3)
$$M_f^{\mathcal{B}}(t) := f(X(t \wedge \tau_{\mathcal{B}})) - f(X(0)) - \int_0^{t \wedge \tau_{\mathcal{B}}} \mathcal{L}f(X(s))ds, \quad t \geq 0,$$

1203 is a martingale under \mathbb{P}_x (see Theorem 3.32 in [15]), where $\mathcal{L}f(y) := \sum_{z \in \mathcal{X}} Q_{yz}f(z)$ for $y \in \mathcal{X}$.

1204 For (ii) \Rightarrow (iii), consider the function $f(y) := -[(Q^{\mathcal{B}^c})^{-1}\mathbb{1}]_y\mathbb{1}_{\mathcal{B}^c}(y)$ for $y \in \mathcal{X}$. The reader
1205 may verify that $\mathcal{L}f(y) = -1$ for every $y \in \mathcal{B}^c$. Therefore, for an $x \in \mathcal{B}^c$, taking expectations
1206 in (S.3) yields $f(x) - \mathbb{E}_x[f(X(t \wedge \tau_{\mathcal{B}}))] = \mathbb{E}_x[t \wedge \tau_{\mathcal{B}}]$ for every $t \geq 0$. Hence, $\mathbb{E}_x[t \wedge \tau_{\mathcal{B}}] \leq$
1207 $2 \sup_{x \in \mathcal{X}} |f(x)|$ for every $t \geq 0$ and we conclude the desired result by letting $t \rightarrow \infty$.

1208 For (iii) \Rightarrow (i), we prove that not (i) implies not (iii). Suppose there exists $x \in \mathcal{B}^c$ such
1209 that no point of \mathcal{B} is accessible from x . Then, $\tau_{\mathcal{B}} = \infty$ \mathbb{P}_x -a.s., so (iii) does not hold.

1210 For (S.2), consider $x \in \mathcal{B}^c$, $y \in \mathcal{B}$ and the martingale $M_f^{\mathcal{B}}$ with $f(z) = (-(Q^{\mathcal{B}^c})^{-1}R)_{z,y}\mathbb{1}_{\mathcal{B}^c}(z)$
1211 $+ \mathbb{1}_{\{y\}}(z)$ for $z \in \mathcal{X}$. The reader may verify that $\mathcal{L}f(x) = 0$ for $x \in \mathcal{B}^c$, which yields that
1212 $\mathbb{E}_x[f(X(t \wedge \tau_{\mathcal{B}}))] = f(x)$ for every $t \geq 0$. If any of (i) – (iii) hold, then $\tau_{\mathcal{B}} < \infty$, \mathbb{P}_x -a.s.,
1213 and on letting $t \rightarrow \infty$ and using bounded convergence, we obtain $\mathbb{E}_x[f(X(\tau_{\mathcal{B}}))] = f(x)$, which
1214 implies $\mathbb{P}_x[X(\tau_{\mathcal{B}}) = y] = (-(Q^{\mathcal{B}^c})^{-1}R)_{x,y}$.

1215 Now, suppose that every $x \in \mathcal{B}^c$ is transient. Then, $\mathbb{P}_x(\tau_{\mathcal{B}} < \infty) = 1$ for each $x \in \mathcal{B}^c$.
1216 For a proof by contradiction, suppose that $Q^{\mathcal{B}^c}$ is not invertible, which implies the existence
1217 of a nonzero vector $v = (v(x))_{x \in \mathcal{B}^c} \neq 0$ such that $Q^{\mathcal{B}^c}v = 0$. Then, consider the function
1218 $f(y) = v(y)\mathbb{1}_{\mathcal{B}^c}(y)$, for which $\mathcal{L}f(y) = 0$ for $y \in \mathcal{B}^c$. Consider an $x \in \mathcal{B}^c$ such that $v(x) \neq 0$,
1219 then $M_f^{\mathcal{B}}(t) = f(X(t \wedge \tau_{\mathcal{B}})) - v(x)$ is a bounded martingale. On taking expectations we have
1220 $\mathbb{E}_x[f(X(t \wedge \tau_{\mathcal{B}}))] = v(x)$. Since the states in \mathcal{B}^c are transient, $X(\cdot)$ will \mathbb{P}_x -a.s. leave \mathcal{B}^c .
1221 Then letting $t \rightarrow \infty$ and using bounded convergence yields $0 = v(x)$ which is the desired
1222 contradiction. Hence (ii) (as well as (i), (iii)) must hold. ■

1223 Lemma S.5 has a useful consequence in terms of occupations times. In the above context, consider
1224 the occupation time of \mathcal{B} by the Markov chain X up to time $t \geq 0$: $\chi_{\mathcal{B}}(t) = \int_0^t \mathbb{1}_{\mathcal{B}}(X(s))ds$.
1225 Denote by $\chi_{\mathcal{B}}(\infty) = \lim_{t \rightarrow \infty} \chi_{\mathcal{B}}(t) = \int_0^\infty \mathbb{1}_{\mathcal{B}}(X(s))ds$.

1226 **Lemma S.6.** *Suppose that*

1227 (S.4)
$$\mathbb{P}_y[\tau_{\mathcal{B}} < \infty] = 1 \text{ for all } y \in \mathcal{B}^c.$$

1228 Then $\mathbb{P}_x[\chi_{\mathcal{B}}(\infty) = \infty] = 1$ for every $x \in \mathcal{X}$.

1229 **Remark S.7.** If any of the conditions (i)-(iii) in Lemma S.5 holds, then (S.4) holds.

1230 **Proof.** Fix $x \in \mathcal{X}$. Let $\sigma_{-1} = 0$ and $\sigma_0 = \inf\{t \geq \sigma_{-1} : X(t) \in \mathcal{B}\}$. Then, inductively define
1231 for $k = 0, 1, 2, \dots$, $\sigma_{2k+1} = \inf\{t \geq \sigma_{2k} : X(t) \in \mathcal{B}^c\}$ and $\sigma_{2k+2} = \inf\{t \geq \sigma_{2k+1} : X(t) \in \mathcal{B}\}$.
1232 Using (S.4) and the strong Markov property of X , we have

1233 (S.5)
$$\sigma_{2k} < \infty \text{ } \mathbb{P}_x\text{-a.s. on } \{\sigma_{2k-1} < \infty\}$$

1234 for $k = 0, 1, 2, \dots$, and

1235
$$\chi_{\mathcal{B}}(\infty) = \sum_{k=0}^{\infty} \mathbb{1}_{\{\sigma_{2k} < \infty\}}(\sigma_{2k+1} - \sigma_{2k}) = \lim_{N \rightarrow \infty} \sum_{k=0}^N \mathbb{1}_{\{\sigma_{2k} < \infty\}}(\sigma_{2k+1} - \sigma_{2k}),$$

1236 where terms in the sum indexed by $k : \sigma_{2k} = \infty$ are taken to be zero. Now, \mathbb{P}_x -a.s.,

1237
$$\prod_{k=0}^N \exp(-\mathbb{1}_{\{\sigma_{2k} < \infty\}}(\sigma_{2k+1} - \sigma_{2k})) = \prod_{k=0}^N \mathbb{1}_{\{\sigma_{2k} < \infty\}} \exp(-(\sigma_{2k+1} - \sigma_{2k})),$$

1238 where we used (S.5) and the fact that $\sigma_{-1} = 0$, to conclude that the product is zero \mathbb{P}_x -a.s.,
 1239 if $\{\sigma_{2k} = \infty\}$ for any $k \in \{0, 1, \dots, N\}$. Hence,

$$\begin{aligned} 1240 \quad & \mathbb{E}_x[\exp(-\chi_{\mathcal{B}}(\infty))] \\ 1241 \quad &= \lim_{N \rightarrow \infty} \mathbb{E}_x \left[\prod_{k=0}^N \mathbb{1}_{\{\sigma_{2k} < \infty\}} \exp(-(\sigma_{2k+1} - \sigma_{2k})) \right] \\ 1242 \quad &= \lim_{N \rightarrow \infty} \mathbb{E}_x \left[\prod_{k=0}^{N-1} \mathbb{1}_{\{\sigma_{2k} < \infty\}} \exp(-(\sigma_{2k+1} - \sigma_{2k})) \mathbb{1}_{\{\sigma_{2N} < \infty\}} \mathbb{E}_x[\exp(-(\sigma_{2N+1} - \sigma_{2N})) | X(\sigma_{2N})] \right]. \end{aligned}$$

1243 On $\{\sigma_{2N} < \infty\}$, we have $X(\sigma_{2N}) \in \mathcal{B}$ and $X(t) \in \mathcal{B}$ for $\sigma_{2N} \leq t < \sigma_{2N+1}$. Hence, for
 1244 $a > \max_{y \in \mathcal{B}} |Q_{y,y}|$, using the strong Markov property, on $\{\sigma_{2N} < \infty\}$, conditioned on $X(\sigma_{2N})$,
 1245 $\sigma_{2N+1} - \sigma_{2N}$ stochastically dominates an exponential random variable with parameter a and
 1246 so

$$1247 \quad \mathbb{E}_x[\exp(-(\sigma_{2N+1} - \sigma_{2N})) | X(\sigma_{2N})] \leq \int_0^\infty e^{-t} a e^{-at} dt = \frac{a}{1+a}.$$

1248 Similarly, for $k = N-1, \dots, 0$, on $\{\sigma_{2k} < \infty\}$,

$$1249 \quad (\text{S.6}) \quad \mathbb{E}_x[\exp(-(\sigma_{2k+1} - \sigma_{2k})) | X(\sigma_{2k})] \leq \frac{a}{1+a}.$$

1250 Then,

$$\begin{aligned} 1251 \quad & \mathbb{E}_x[\exp(-\chi_{\mathcal{B}}(\infty))] \leq \limsup_{N \rightarrow \infty} \mathbb{E}_x \left[\prod_{k=0}^{N-1} \mathbb{1}_{\{\sigma_{2k} < \infty\}} \exp(-(\sigma_{2k+1} - \sigma_{2k})) \mathbb{1}_{\{\sigma_{2N} < \infty\}} \frac{a}{1+a} \right] \\ 1252 \quad & \leq \limsup_{N \rightarrow \infty} \mathbb{E}_x \left[\prod_{k=0}^{N-1} \mathbb{1}_{\{\sigma_{2k} < \infty\}} \exp(-(\sigma_{2k+1} - \sigma_{2k})) \frac{a}{1+a} \right]. \end{aligned}$$

1253 Repeatedly conditioning on $\{\sigma_{2k} < \infty\}$, for $k = N-1, \dots, 0$ and using (S.6), we obtain

$$1254 \quad \mathbb{E}_x[\exp(-\chi_{\mathcal{B}}(\infty))] \leq \limsup_{N \rightarrow \infty} \left(\frac{a}{1+a} \right)^{N+1} = 0.$$

1255 Hence, $\mathbb{P}_x[\chi_{\mathcal{B}}(\infty) = \infty] = 1$. ■

1256 **Lemma S.8.** *Let $X = \{X(t) : t \geq 0\}$ be a continuous time Markov chain with state space \mathcal{X}
 1257 and infinitesimal generator $Q = (Q_{x,y})_{x,y \in \mathcal{X}}$. Suppose there is an absorbing state $y \in \mathcal{X}$. If
 1258 there are distinct states $z_1, \dots, z_m \in \mathcal{X}$ different from x and y such that $Q_{x,z_1} Q_{z_1,z_2} \dots Q_{z_m,y} >$
 1259 0 , then x is a transient state for X .*

1260 **Proof.** Since $Q_{x,z_1} Q_{z_1,z_2} \dots Q_{z_m,y} > 0$, we have $\mathbb{P}_x[X(t_0) = y] > 0$ for some $t_0 > 0$ (see Theorem 3.2.1 in [16]). Thus $\mathbb{P}_x[X(t) \neq x \text{ for all } t \geq t_0] \geq \mathbb{P}_x[X(t_0) = y] \mathbb{P}[X(t) = y \text{ for all } t > t_0 | X(t_0) = y] = \mathbb{P}_x[X(t_0) = y] > 0$, which means that x is a transient state. ■

1263
 1264

1265 **S.2 Additional results for stationary distributions**

1266 **S.2.1 Higher order terms for linear perturbations** Under the assumption of the perturbation being linear (which is the case for our chromatin modification circuit models), we now provide an iterative procedure for computing all of the terms in the series expansion of $\pi(\cdot)$. Additional results for characterizing some of these terms are given in SI - Sections S.2.3, S.2.4.

1270 **Theorem S.9.** *Suppose Assumptions 4.1, 4.2 and 4.5 hold. Then, the following hold for the sequence $\{\pi^{(k)} : k \geq 0\}$ in (3.7):*

1272 (i) $\pi^{(0)} = [\alpha^{(0)}, \beta^{(0)}] = [\alpha, 0]$ where α is the unique probability vector on \mathcal{A} such that
1273 $\alpha Q_{\mathcal{A}} = 0$,

1274 (ii) for every $k \geq 1$, $\pi^{(k)} = [\alpha^{(k)}, \beta^{(k)}]$, where

$$1275 \quad (S.7) \quad \beta^{(k)} = (\alpha^{(k-1)} S_1 + \beta^{(k-1)} T_1)(-T_0)^{-1}$$

1276 and $\alpha^{(k)}$ is the unique vector such that

$$1277 \quad (S.8) \quad \alpha^{(k)} Q_{\mathcal{A}} = -\beta^{(k)} [R_1 + T_1(-T_0)^{-1} R_0],$$

$$1278 \quad (S.9) \quad \alpha^{(k)} \mathbb{1} = -\beta^{(k)} \mathbb{1}.$$

1279 Moreover, if $|\mathcal{A}| \geq 2$, for every $k \geq 1$ we obtain

$$1280 \quad (S.10) \quad \alpha^{(k)} = \tilde{\alpha}^{(k)} + (-\beta^{(k)} \mathbb{1} - \tilde{\alpha}^{(k)} \mathbb{1}) \alpha,$$

1281 where $\tilde{\alpha}^{(k)} := -\beta^{(k)} (R_1 + T_1(-T_0)^{-1} R_0) Q_{\mathcal{A}}^{\dagger}$ for $k \geq 1$ and $Q_{\mathcal{A}}^{\dagger}$ is a generalized inverse
1282 of $Q_{\mathcal{A}}$ ⁴.

1283 The proof of Theorem S.9 is given in SI - Section S.2.2.

1284 **S.2.2 Proofs of Lemmas 4.1, 4.3, and 4.4 and Theorem S.9**1285 **Proof of Lemma 4.1**

1286 **Proof.** It has already been established before Lemma 4.1 that $\pi(0) = [\alpha, 0]$. By equating to
1287 zero the coefficients of the terms ε^m for $m = 0, 1, \dots$ in the series $(\sum_{k=0}^{\infty} \varepsilon^k \pi^{(k)})(\sum_{k=0}^{\infty} \varepsilon^k Q^{(k)})$,
1288 we obtain that $\sum_{k=0}^m \pi^{(k)} Q^{(m-k)} = 0$ for every $m \geq 0$. In particular, $\pi^{(1)} Q^{(0)} + \pi^{(0)} Q^{(1)} = 0$,
1289 which yields,

$$1290 \quad [\alpha^{(1)}, \beta^{(1)}] \left(\begin{array}{c|c} 0 & 0 \\ \hline R_0 & T_0 \end{array} \right) + [\alpha, 0] \left(\begin{array}{c|c} A_1 & S_1 \\ \hline R_1 & T_1 \end{array} \right) = 0.$$

1291 From this, we obtain two equations:

$$1292 \quad (S.11) \quad \beta^{(1)} R_0 + \alpha A_1 = 0$$

⁴A generalized inverse $Q_{\mathcal{A}}^{\dagger}$ of $Q_{\mathcal{A}}$ is such that $Q_{\mathcal{A}} Q_{\mathcal{A}}^{\dagger} Q_{\mathcal{A}} = Q_{\mathcal{A}}$. The Moore-Penrose inverse is a generalized inverse. The deviation matrix for $\hat{X}_{\mathcal{A}}$ is $D = (-Q_{\mathcal{A}} + \mathbb{1}\alpha)^{-1} - \mathbb{1}\alpha$, and $-D$ is also a generalized inverse of $Q_{\mathcal{A}}$. Meyer [4] suggested that $-D$ is a better generalized inverse to use than the Moore-Penrose inverse since it can be computed efficiently and embeds answers concerning the transitory behavior of the Markov chain. Avrachenkov et al. [2], in the context of discrete time Markov chains, use a suitable deviation matrix when they need a generalized inverse. Here, if we take $Q_{\mathcal{A}}^{\dagger} = -D$, then the term $\tilde{\alpha}^{(k)} \mathbb{1}$ in (S.10) is equal to zero since $D \mathbb{1} = 0$ and then $\alpha^{(k)} = \beta^{(k)} ((R_1 + T_1(-T_0)^{-1} R_0) D - \mathbb{1}\alpha)$.

1293 and

1294 (S.12)
$$\beta^{(1)}T_0 + \alpha S_1 = 0.$$

1295 Since T_0 is invertible, from (S.12) we obtain (4.5). We conclude by substituting this formula
1296 for $\beta^{(1)}$ in (S.11). \blacksquare

1297 **Proof of Lemma 4.3**

1298 *Proof.* By following the proof of Lemma 2 in Gaver, Jacobs & Latouche [8] and using formula
1299 (S.2), we can prove that the transition rates between $x \neq y \in \mathcal{A}$ for $\hat{X}_{\mathcal{A}}$ are given by $(Q_{\mathcal{A}})_{x,y}$.
1300 In essence, the argument is as follows. From the state $x \in \mathcal{A}$, the Markov chain \tilde{X} may move
1301 to $y \in \mathcal{A}$ in two ways that lead to a one-step transition for $\hat{X}_{\mathcal{A}}$. First, it could happen that \tilde{X}
1302 jumps directly to y at a rate of $(A_1)_{x,y}$. Second, the chain \tilde{X} may go to some state $z \in \mathcal{T}$ at
1303 a rate $(S_1)_{x,z}$ and from there, jump between states in \mathcal{T} until getting back to \mathcal{A} at the state
1304 $y \in \mathcal{A}$. By (S.2), this happens with probability $((-T_0)^{-1}R_0)_{z,y}$. Putting this all together, the
1305 rate of transition for $\hat{X}_{\mathcal{A}}$ from x to y will be

1306 (S.13)
$$(A_1)_{x,y} + \sum_{z \in \mathcal{T}} (S_1)_{x,z} ((-T_0)^{-1}R_0)_{z,y} = (Q_{\mathcal{A}})_{x,y}. \blacksquare$$

1307 **Proof of Lemma 4.4**

1308 *Proof.* Consider $x \neq y \in \mathcal{A}$. Then, there exists a sequence of states $x_0 = x, x_1, \dots, x_m = y$
1309 in \mathcal{C} such that $\tilde{Q}_{x,x_1}\tilde{Q}_{x_1,x_2}\dots\tilde{Q}_{x_{m-1},y} > 0$. Roughly speaking, the proof follows by erasing the
1310 times that \tilde{X} is outside of \mathcal{A} . We now give the details. Consider $i \in \{0, 1, \dots, m-1\}$ with $x_i \in$
1311 \mathcal{A} . If $x_{i+1} \in \mathcal{A}$, then, by (S.13), $(Q_{\mathcal{A}})_{x_i,x_{i+1}} \geq (A_1)_{x_i,x_{i+1}} = \tilde{Q}_{x_i,x_{i+1}} > 0$. If $x_{i+1} \in \mathcal{T}$, consider
1312 the path of states x_i, x_{i+1}, \dots, x_k for $0 \leq i < k \leq m$ such that $x_i, x_k \in \mathcal{A}$ and $x_{i+1}, \dots, x_{k-1} \in$
1313 \mathcal{T} . Since x_{i+1} leads to x_k for \tilde{X} , then $\mathbb{P}_{x_{i+1}}[\tilde{X}(\tau_{\mathcal{A}}) = x_k] > 0$ where $\tau_{\mathcal{A}} := \inf\{t \geq 0 : \mathcal{A}$
1314 $\tilde{X}(t) \in \mathcal{A}\}$. By (S.2), this means that $((-T_0)^{-1}R_0)_{x_{i+1},x_k} > 0$ which yields $(Q_{\mathcal{A}})_{x_i,x_k} \geq$
1315 $(S_1)_{x_i,x_{i+1}}(((-T_0)^{-1}R_0)_{x_{i+1},x_k} = \tilde{Q}_{x_i,x_{i+1}}(((-T_0)^{-1}R_0)_{x_{i+1},x_k} > 0$. These observations yield a
1316 sequence of states $x_0 = x, x_1, \dots, x_j = y$ in \mathcal{A} such that $(Q_{\mathcal{A}})_{x,x_1}(Q_{\mathcal{A}})_{x_1,x_2} \dots (Q_{\mathcal{A}})_{x_{j-1},y} >$
1317 0 . \blacksquare

1318 **Proof of Theorem S.9**

1319 *Proof.* Point (i) was established in Theorem 4.2. For (ii), we equate to zero the coefficients
1320 of the terms ε^m for $m = 0, 1, 2, \dots$ in the terms of the series, $(\sum_{k=0}^{\infty} \varepsilon^k \pi^{(k)})(Q^{(0)} + \varepsilon Q^{(1)})$ to
1321 obtain that $\pi^{(0)}Q^{(0)} = 0$ and $\pi^{(k)}Q^{(0)} + \pi^{(k-1)}Q^{(1)} = 0$ for every $k \geq 1$. The latter requires
1322 that for all $k \geq 1$,

1323
$$[\alpha^{(k)}, \beta^{(k)}] \left(\begin{array}{c|c} 0 & 0 \\ \hline R_0 & T_0 \end{array} \right) + [\alpha^{(k-1)}, \beta^{(k-1)}] \left(\begin{array}{c|c} A_1 & S_1 \\ \hline R_1 & T_1 \end{array} \right) = 0.$$

1324 Now, this yields two equations:

1325 (S.14)
$$\beta^{(k)}R_0 + \alpha^{(k-1)}A_1 + \beta^{(k-1)}R_1 = 0,$$

1326

1327 (S.15)
$$\beta^{(k)}T_0 + \alpha^{(k-1)}S_1 + \beta^{(k-1)}T_1 = 0.$$

1328 For $\beta^{(k)}$, we obtain the relation (S.7) directly from (S.15) for all $k \geq 1$. For $\alpha^{(k)}$, let's see first
 1329 that it satisfies (S.8). From (S.7), for all $k \geq 1$, $\beta^{(k+1)} = (\alpha^{(k)}S_1 + \beta^{(k)}T_1)(-T_0)^{-1}$ and using
 1330 this in (S.14) (with k replaced by $k+1$) we obtain for all $k \geq 1$

1331 (S.16)
$$(\alpha^{(k)}S_1 + \beta^{(k)}T_1)(-T_0)^{-1}R_0 + \alpha^{(k)}A_1 + \beta^{(k)}R_1 = 0.$$

1332 By rearranging (S.16) and using (4.6), we obtain (S.8) for all $k \geq 1$. On the other hand, since
 1333 $\langle \pi^{(k)}, \mathbf{1} \rangle = 0$ for every $k \geq 1$, we obtain (S.9).

1334 For the uniqueness of $\alpha^{(k)}$, for all $k \geq 1$, if $|\mathcal{A}| = 1$, then $\alpha^{(k)}$ has only one entry and it is
 1335 determined uniquely by (S.9). If $|\mathcal{A}| \geq 2$, consider another solution $\gamma^{(k)}$ of (S.8) and (S.9),
 1336 where $(\gamma^{(k)})^T \in \mathbb{R}^{|\mathcal{A}|}$. By Assumption 4.2 and Lemma S.1, $\dim(\ker((Q_{\mathcal{A}})^T)) = 1$ and therefore,
 1337 by (S.8), $\alpha^{(k)} - \gamma^{(k)} = c\alpha$ for some $c \in \mathbb{R}$. Using (S.9), then $0 = \alpha^{(k)}\mathbf{1} - \gamma^{(k)}\mathbf{1} = c\alpha\mathbf{1} = c$, and
 1338 therefore $c = 0$, and $\alpha^{(k)} = \gamma^{(k)}$.

1339 For existence of a solution $\alpha^{(k)}$ of (S.8)-(S.9), using the properties

1340
$$R_0\mathbf{1} + T_0\mathbf{1} = 0 \quad \text{and} \quad R_1\mathbf{1} + T_1\mathbf{1} = 0,$$

1341 we have that

$$\begin{aligned} (R_1 + T_1(-T_0)^{-1}R_0)\mathbf{1} &= R_1\mathbf{1} + T_1(-T_0)^{-1}R_0\mathbf{1} \\ &= -T_1\mathbf{1} + T_1(-T_0)^{-1}R_0\mathbf{1} \\ &= T_1(-T_0)^{-1}(T_0\mathbf{1} + R_0\mathbf{1}) \\ &= 0. \end{aligned}$$

1346 Then, since $\dim(\ker(Q_{\mathcal{A}})) = \dim(\ker((Q_{\mathcal{A}})^T)) = 1$ and $\mathbf{1} \in \ker(Q_{\mathcal{A}})$, we have

1347
$$(-\beta^{(k)}(R_1 + T_1(-T_0)^{-1}R_0))^T \in \ker(Q_{\mathcal{A}})^{\perp} = \text{range}((Q_{\mathcal{A}})^T),$$

1348 and so (S.8) has a solution and (S.9) will determine the multiple of α to add to any particular
 1349 solution to obtain the unique solution $\alpha^{(k)}$ of both equations.

1350 Furthermore, if $Q_{\mathcal{A}}^{\dagger}$ is a generalized inverse of $Q_{\mathcal{A}}$, then

1351 (S.17)
$$\tilde{\alpha}^{(k)} := -\beta^{(k)}(R_1 + T_1(-T_0)^{-1}R_0)Q_{\mathcal{A}}^{\dagger}$$

1352 is a solution to (S.8) (see [12] for an exposition). Similar to the uniqueness argument, $\alpha^{(k)} -$
 1353 $\tilde{\alpha}^{(k)} = c\alpha$ for some $c \in \mathbb{R}$. By (S.9), $c = -\beta^{(k)}\mathbf{1} - \tilde{\alpha}^{(k)}\mathbf{1}$ and we obtain (S.10). ■

1354 **S.2.3 Additional characterization of zeroth and first order terms for linear perturba-**
 1355 **tions via restricted processes** In this section, assume that Assumptions 4.1 and 4.5 hold. We
 1356 will also sometimes assume Assumptions 4.3 or 4.4 hold. We will explore additional character-
 1357 izations of α and $\beta^{(1)}$. Under Assumptions 4.1 and 4.5, $A(\varepsilon)$ (defined in (4.2)) corresponds to
 1358 εA_1 for every $0 \leq \varepsilon < \varepsilon_0$. Since $Q(\varepsilon)$ is irreducible for every $0 < \varepsilon < \varepsilon_0$, from Lemma S.5 (with
 1359 \mathcal{A}^c in place of \mathcal{B} and $Q(\varepsilon)$ in place of Q there), we obtain that εA_1 is invertible for $0 < \varepsilon < \varepsilon_0$,
 1360 and therefore A_1 is invertible. This will be an important fact for the coming results.

1361 Consider the matrix \tilde{Q} introduced in (4.7). For a continuous time Markov chain \tilde{X} with
 1362 infinitesimal generator \tilde{Q} , denote by $\chi_{\mathcal{T}}(t)$ the occupation time of \mathcal{T} by the Markov chain \tilde{X}

1363 up to time $t \geq 0$, with its associated limit $\chi_{\mathcal{T}}(\infty) = \lim_{t \rightarrow \infty} \chi_{\mathcal{T}}(t) = \int_0^\infty \mathbf{1}_{\mathcal{T}}(X(t)) dt$. Since
 1364 A_1 is invertible, by Lemma S.5 (with $\mathcal{B} = \mathcal{T}$ and $Q = \tilde{Q}$) and Lemma S.6 we have that
 1365 $\mathbb{P}[\chi_{\mathcal{T}}(\infty) = \infty] = 1$.

1366 Consider the process $\hat{X}_{\mathcal{T}}$ as in (4.8), but with \mathcal{A} replaced by \mathcal{T} , which corresponds to
 1367 observing \tilde{X} only on the time intervals where \tilde{X} is in \mathcal{T} . The process $\hat{X}_{\mathcal{T}}$ is a continuous time
 1368 Markov chain on \mathcal{T} . Consider the matrix

1369 (S.18)
$$Q_{\mathcal{T}} := T_0 + R_0(-A_1)^{-1}S_1,$$

1370 which by Lemma S.15 is a Q -matrix. Similarly to Lemma 4.3, we can show that $Q_{\mathcal{T}}$ is the
 1371 infinitesimal generator of $\hat{X}_{\mathcal{T}}$. Our previous assumptions relate to $\hat{X}_{\mathcal{T}}$ in the following way.

1372 **Lemma S.10.** *Suppose Assumptions 4.1, 4.3 and 4.5 hold. Then $\hat{X}_{\mathcal{T}}$ has a single recurrent
 1373 class. Moreover, if Assumption 4.4 holds, the process $\hat{X}_{\mathcal{T}}$ is irreducible.*

1374 *Proof.* Let $\mathcal{D} \subseteq \mathcal{T}$ be a non-empty recurrent class for $\hat{X}_{\mathcal{T}}$ (there must be at least one), and
 1375 let $\mathcal{C} \subseteq \mathcal{X}$ be the communicating class under \tilde{X} described in Assumption 4.3. We will prove
 1376 that $\mathcal{D} = \mathcal{C} \setminus \mathcal{A}$, which yields the uniqueness of recurrent classes for $\hat{X}_{\mathcal{T}}$. If Assumption 4.4
 1377 holds, then $\mathcal{C} = \mathcal{X}$, which combined with the relation $\mathcal{D} = \mathcal{C} \setminus \mathcal{A}$, implies that $\mathcal{D} = \mathcal{X} \setminus \mathcal{A} = \mathcal{T}$
 1378 and the conclusion follows.

1379 In order to prove $\mathcal{D} = \mathcal{C} \setminus \mathcal{A}$, we start by making some observations. First, we prove that
 1380 there exist states $\tilde{x} \in \mathcal{D}$ and $\tilde{y} \in \mathcal{A}$ such that $\tilde{Q}_{\tilde{x}, \tilde{y}} > 0$. In fact, if this was not the case, then
 1381 for every $x \in \mathcal{D}$ and $z \in \mathcal{A}$ we would have $\tilde{Q}_{x, z} = (R_0)_{x, z} = 0$. This yields that for $x \in \mathcal{D}$,

1382 (S.19)
$$(Q_{\mathcal{T}})_{x, y} = (T_0)_{x, y} + \sum_{z \in \mathcal{A}} (R_0)_{x, z} [(-A_1)^{-1} S_1]_{z, y} = (T_0)_{x, y},$$

1383 for all $y \in \mathcal{T}$. Since \mathcal{D} is a closed class under $Q_{\mathcal{T}}$, $(Q_{\mathcal{T}})_{x, y} = 0$ for $y \in \mathcal{T} \setminus \mathcal{D}$ and so
 1384 $\sum_{y \in \mathcal{D}} (Q_{\mathcal{T}})_{x, y} = \sum_{y \in \mathcal{T}} (Q_{\mathcal{T}})_{x, y} = 0$, since $Q_{\mathcal{T}}$ is a Q -matrix. Combining this with the previous
 1385 equation, we obtain that $\sum_{y \in \mathcal{D}} (T_0)_{x, y} = 0$ for all $x \in \mathcal{D}$, which implies that \mathcal{D} is closed under
 1386 \tilde{Q} . This contradicts the fact that T_0 is invertible by point (i) in Lemma S.5 (with $\mathcal{B}^c = \mathcal{T}$ and
 1387 $Q = \tilde{Q}$).

1388 Second, we observe that there exist a $\hat{y} \in \mathcal{A}$ and $\hat{x} \in \mathcal{D}$ such that $\tilde{Q}_{\hat{y}, \hat{x}} > 0$. In fact, since
 1389 A_1 is invertible, by Lemma S.5 (with $\mathcal{B}^c = \mathcal{A}$ and $Q = \tilde{Q}$) there has to be a $\hat{y} \in \mathcal{A}$ and $\hat{x} \in \mathcal{T}$
 1390 such that $\tilde{Q}_{\hat{y}, \hat{x}} > 0$. To show that $\hat{x} \in \mathcal{D}$, consider that $\tilde{y} \in \mathcal{A}$ communicates with $\hat{y} \in \mathcal{A}$ under
 1391 \tilde{Q} , by Assumption 4.3, and therefore \tilde{x} leads to \hat{x} under \tilde{Q} and therefore under $Q_{\mathcal{T}}$. Since \mathcal{D}
 1392 is closed under $Q_{\mathcal{T}}$, $\hat{x} \in \mathcal{D}$.

1393 We now prove that $\mathcal{D} \subseteq \mathcal{C} \setminus \mathcal{A}$. For $x \in \mathcal{D}$, since T_0 is invertible there exists a state $y \in \mathcal{A}$
 1394 such that x leads to y under \tilde{Q} . By Assumption 4.3, y and \hat{y} are in $\mathcal{A} \subseteq \mathcal{C}$ and so they
 1395 communicate under \tilde{Q} . It follows that x leads to \hat{y} under \tilde{Q} . On the other hand, $\tilde{Q}_{\hat{y}, \hat{x}} > 0$ and
 1396 since \mathcal{D} is a communicating class under $Q_{\mathcal{T}}$, \hat{x} leads to x under \tilde{Q} . Thus, x leads to \hat{y} and \hat{y}
 1397 leads to x under \tilde{Q} and so $x \in \mathcal{C}$. Thus, $\mathcal{D} \subseteq \mathcal{C}$ and $\mathcal{D} \subseteq \mathcal{T} = \mathcal{A}^c$, and so $\mathcal{D} \subseteq \mathcal{C} \setminus \mathcal{A}$.

1398 To prove that $\mathcal{C} \setminus \mathcal{A} \subseteq \mathcal{D}$, let $x \in \mathcal{C} \setminus \mathcal{A}$. Since $\mathcal{D} \subseteq \mathcal{C}$, then x communicates with the
 1399 element \tilde{x} in \mathcal{D} under \tilde{Q} . This implies that they communicate under $Q_{\mathcal{T}}$ and since \mathcal{D} is a
 1400 communicating class under $Q_{\mathcal{T}}$, then $x \in \mathcal{D}$. Combining the above we see that $\mathcal{D} = \mathcal{C} \setminus \mathcal{A}$. ■

When the continuous time Markov chain $\hat{X}_{\mathcal{T}}$ has a single recurrent class \mathcal{D} , there is a unique probability vector ν in $\mathbb{R}^{|\mathcal{T}|}$ such that $\nu Q_{\mathcal{T}} = 0$ and ν will be the stationary distribution for $\hat{X}_{\mathcal{T}}$ with non-zero entries only for entries corresponding to states in \mathcal{D} . We use the vector ν to characterize α and $\beta^{(1)}$.

In the following theorem, we use the fact that A_1 is invertible. This follows from Lemma S.4 because $A_1 = Q^{\mathcal{A}}(1)$, where $Q(1)$ is positive recurrent and so the condition (i) of Lemma S.4 holds with $B_c = \mathcal{A}$.

Theorem S.11. *Suppose Assumptions 4.1, 4.3 and 4.5 hold. Denote by ν the unique probability vector in $\mathbb{R}^{|\mathcal{T}|}$ such that $\nu Q_{\mathcal{T}} = 0$. Then, $\pi(0) = [\alpha, 0]$ where α is given by*

$$(S.20) \quad \alpha = c\nu R_0(-A_1)^{-1},$$

and where c is given by $c = (\nu R_0(-A_1)^{-1}\mathbf{1})^{-1}$. Moreover, $\pi^{(1)} = [\alpha^{(1)}, \beta^{(1)}]$ where

$$(S.21) \quad \beta^{(1)} = c\nu.$$

Proof. Following the proof of Theorem S.9, equations (S.14) and (S.15) yield that

$$(S.22) \quad \beta^{(1)} R_0 + \alpha A_1 = 0,$$

and

$$(S.23) \quad \beta^{(1)} T_0 + \alpha S_1 = 0.$$

From (S.22) we obtain that $\alpha = \beta^{(1)} R_0(-A_1)^{-1}$. We substitute this expression in (S.23) to obtain that $\beta^{(1)}(T_0 + R_0(-A_1)^{-1}S_1) = 0$, which is exactly $\beta^{(1)} Q_{\mathcal{T}} = 0$. By Lemma S.10 combined with Lemma S.1, we obtain that $\beta^{(1)} = \tilde{c}\nu$ for some constant $\tilde{c} \in \mathbb{R}$ and therefore $\alpha = \tilde{c}\nu R_0(-A_1)^{-1}$. To show that $\tilde{c} = c$, we observe that since $\alpha \mathbf{1} = 1$, then $\tilde{c}(\nu R_0(-A_1)^{-1}\mathbf{1}) = 1$ and the desired result follows. ■

Under the assumptions of Theorem S.11, $\beta_x^{(1)} > 0$ for every $x \in \mathcal{D}$, the single recurrent class of $\hat{X}_{\mathcal{T}}$, while $\beta_x^{(1)} = 0$ for $x \in \mathcal{T} \setminus \mathcal{D}$. In fact, using first step analysis, one can show that the entry $(-A_1)_{i,j}^{-1}$ is the expected time that the process \hat{X} spends at j when started at i , before exiting \mathcal{A} . Hence, these entries are non-negative and so does $\nu R_0(-A_1)^{-1}$. This implies that the constant c is positive and the conclusion follows from (S.21) and the properties of ν .

S.2.4 Additional characterization of zeroth and first order terms via partial balance

For the last part of this section, we consider an additional characterization for $\beta^{(1)}$ based on the idea of truncated processes and partial balance relations (see Section 9.4 in [13]).

Consider a continuous time Markov chain $X = \{X(t) : t \geq 0\}$ with infinitesimal generator Q on a finite state space \mathcal{X} . Let \mathcal{Y} a non-empty set in \mathcal{X} . Define the matrix $\bar{Q} = (\bar{Q}_{x,y})_{x,y \in \mathcal{Y}}$ by $\bar{Q}_{x,y} = Q_{x,y}$ for $x \neq y$ and $\bar{Q}_{x,x} = Q_{x,x} + \sum_{y \notin \mathcal{Y}} Q_{x,y}$. A continuous time Markov chain $\bar{X} = \{\bar{X}(t) : t \geq 0\}$ with state space \mathcal{Y} and infinitesimal generator \bar{Q} will be called a **truncation** of X to \mathcal{Y} .

1435 **Assumption S.1.** For every $0 < \varepsilon < \varepsilon_0$, the truncation of X^ε to \mathcal{T} , denoted by \bar{X}^ε , is irreducible. In addition, the following partial balance condition holds on \mathcal{T} for every $0 < \varepsilon < \varepsilon_0$:

1436

1437

1438 (S.24)
$$\pi_x(\varepsilon) \sum_{y \in \mathcal{A}} Q_{x,y}(\varepsilon) = \sum_{y \in \mathcal{A}} \pi_y(\varepsilon) Q_{y,x}(\varepsilon), \quad \text{for every } x \in \mathcal{T}.$$

1439 Under Assumption S.1, the process \bar{X}^ε has a stationary distribution $\eta(\varepsilon)$ for every $0 < \varepsilon < \varepsilon_0$,
1440 given by

1441 (S.25)
$$\eta_x(\varepsilon) = \frac{\pi_x(\varepsilon)}{\sum_{y \in \mathcal{T}} \pi_y(\varepsilon)}, \quad x \in \mathcal{T}$$

1442 (see Theorem 9.5 in Kelly [13]). The following is our main theorem.

1443 **Theorem S.12.** Suppose Assumptions 4.1, 4.5 and S.1 hold. Then, the following hold:

1444 (i) the limit $\eta := \lim_{\varepsilon \rightarrow 0} \eta(\varepsilon)$ exists and it is a probability vector on \mathcal{T} such that

1445 (S.26)
$$\eta \bar{Q}(0) = 0,$$

1446 (ii) the vectors α and $\beta^{(1)}$ can be characterized by

1447 (S.27)
$$\beta^{(1)} = c\eta, \quad \alpha = c\eta R_0(-A_1)^{-1},$$

1448 where $c = (\eta R_0(-A_1)^{-1} \mathbf{1})^{-1}$, and

1449 (iii) $\eta Q_{\mathcal{T}} = 0$.

1450 If, in addition, Assumption 4.3 or Assumption 4.4 holds, then $\eta = \nu$ is the unique
1451 stationary distribution for $\hat{X}_{\mathcal{T}}$.

1452 **Remark S.13.** Although we know that \bar{X}^0 is well defined, we do not know a priori whether
1453 the process is irreducible or it has a single recurrent class. If the truncation process \bar{X}^0 has
1454 a single recurrent class (or is irreducible), it will have a unique stationary distribution, which
1455 we would call $\eta(0)$. But we do not know if such a vector exists. This non existence is what led
1456 us to express Theorem S.12 in terms of the limit η which solves $\eta \bar{Q}(0) = 0$. If the truncation
1457 process \bar{X}^0 has a single recurrent class, as in the 1D and 2D models, the probability vector η
1458 is characterized uniquely by solving $\eta \bar{Q}(0) = 0$ and $\eta = \eta(0)$.

1459 **Proof.** We will first show that $\beta^{(1)} \mathbf{1} > 0$. From (4.5) we know that $\beta^{(1)} = \alpha S_1(-T_0)^{-1}$, which
1460 yields $\beta^{(1)} \mathbf{1} = \alpha S_1(-T_0)^{-1} \mathbf{1}$. Since all of the entries in α , S_1 , and $(-T_0)^{-1}$ are nonnegative, it
1461 suffices to show $\beta^{(1)} \mathbf{1} \neq 0$. For a proof by contradiction, suppose that $\beta^{(1)} \mathbf{1} = 0$. This means
1462 that

1463 (S.28)
$$\sum_{y \in \mathcal{T}} \sum_{x \in \mathcal{A}} \alpha_x (S_1)_{x,y} ((-T_0)^{-1} \mathbf{1})_y = 0.$$

1464 All of the entries in the sum are nonnegative, so this means that $\alpha_x (S_1)_{x,y} ((-T_0)^{-1} \mathbf{1})_y = 0$ for
1465 every $x \in \mathcal{A}$ and $y \in \mathcal{T}$. Now, $((-T_0)^{-1} \mathbf{1})_y$ is the mean first passage time to \mathcal{A} , for the Markov
1466 chain that starts at y with infinitesimal generator $Q(0)$, and so $((-T_0)^{-1} \mathbf{1})_y \geq \frac{1}{|Q(0)_{y,y}|} > 0$.

1467 Hence, $\alpha_x(S_1)_{x,y} = 0$ for every $x \in \mathcal{A}$ and $y \in \mathcal{T}$. This yields that $\alpha S_1 = 0$ and substituting
 1468 this in (4.4) yields that $\alpha A_1 = 0$. Since A_1 is invertible, this is a contradiction.

1469 Since we know that $\beta(0) = \beta^{(0)} = 0$, we obtain that

$$1470 \quad \eta_x(\varepsilon) = \frac{\pi_x(\varepsilon)}{\sum_{y \in \mathcal{T}} \pi_y(\varepsilon)} = \frac{\sum_{k=1}^{\infty} \varepsilon^k \beta_x^{(k)}}{\sum_{y \in \mathcal{T}} \sum_{k=1}^{\infty} \varepsilon^k \beta_y^{(k)}} = \frac{\sum_{k=1}^{\infty} \varepsilon^k \beta_x^{(k)}}{\sum_{k=1}^{\infty} \varepsilon^k \sum_{y \in \mathcal{T}} \beta_y^{(k)}} = \frac{\sum_{k=1}^{\infty} \varepsilon^{k-1} \beta_x^{(k)}}{\sum_{k=1}^{\infty} \varepsilon^{k-1} \sum_{y \in \mathcal{T}} \beta_y^{(k)}} \\ 1471 \quad \rightarrow \frac{\beta_x^{(1)}}{\sum_{y \in \mathcal{T}} \beta_y^{(1)}} = \frac{\beta_x^{(1)}}{\beta^{(1)} \mathbf{1}}.$$

1472 We then obtain that η exists and $\eta_x = \frac{\beta_x^{(1)}}{\beta^{(1)} \mathbf{1}}$ for every $x \in \mathcal{T}$, which is a probability vector on
 1473 \mathcal{T} . Or letting $\varepsilon \rightarrow 0$ in $\eta(\varepsilon) \bar{Q}(\varepsilon) = 0$, we obtain that $\eta \bar{Q} = 0$. We already know that $\beta^{(1)} = c\eta$.
 1474 To obtain a value for c that depends only on η , note that from (4.4) and (4.5), we have $\alpha =$
 1475 $\beta^{(1)} R_0(-A_1)^{-1} = c\eta R_0(-A_1)^{-1}$, where $c\eta R_0(-A_1)^{-1} \mathbf{1} = 1$ and so $c = (\eta R_0(-A_1)^{-1} \mathbf{1})^{-1}$.

1476 By following the proof of Theorem S.11, we obtain $\beta^{(1)} Q_{\mathcal{T}} = 0$ and therefore $\eta Q_{\mathcal{T}} = 0$. The
 1477 other conclusions follow readily. \blacksquare

1478 The following criterion offers a practical way to establish (S.24).

1479 **Lemma S.14.** *Let $\mathcal{A} = \{a_1, \dots, a_n\}$. Suppose there exist distinct states x_1, \dots, x_n in \mathcal{T} such
 1480 that for every $0 < \varepsilon < \varepsilon_0$ and for every $k \in \{1, \dots, n\}$.*

1. $Q_{a_k x_k}(\varepsilon), Q_{x_k a_k}(\varepsilon) > 0$,
2. $Q_{a_k y}(\varepsilon) = Q_{y a_k}(\varepsilon) = 0$ for every $y \notin \{x_k, a_k\}$.

1483 Then (S.24) holds.

1484 *Proof.* Denote by $\mathcal{N} = \{x_1, \dots, x_n\}$. Let $0 < \varepsilon < \varepsilon_0$. For $x \in \mathcal{T} \setminus \mathcal{N}$, we have that
 1485 $\pi_x(\varepsilon) \sum_{y \in \mathcal{A}} Q_{x,y}(\varepsilon) = 0$ and $\sum_{y \in \mathcal{A}} \pi_y(\varepsilon) Q_{y,x}(\varepsilon) = 0$. Then, equation (S.24) holds for $x \in$
 1486 $\mathcal{T} \setminus \mathcal{N}$.

1487 For $x_k \in \mathcal{N}$, $\pi_{x_k}(\varepsilon) \sum_{y \in \mathcal{A}} Q_{x_k,y}(\varepsilon) = \pi_{x_k}(\varepsilon) Q_{x_k a_k}(\varepsilon)$.

1488 On the other hand, $\sum_{y \in \mathcal{A}} \pi_y(\varepsilon) Q_{y x_k}(\varepsilon) = \pi_{a_k}(\varepsilon) Q_{a_k x_k}(\varepsilon)$. Since $\pi(\varepsilon) Q(\varepsilon) = 0$, we have

$$1489 \quad 0 = (\pi(\varepsilon) Q(\varepsilon))_{a_k} = \sum_{x \in \mathcal{X}} \pi_x(\varepsilon) Q_{x,a_k}(\varepsilon) \\ 1490 \quad = \pi_{x_k}(\varepsilon) Q_{x_k,a_k}(\varepsilon) + \pi_{a_k}(\varepsilon) Q_{a_k,a_k}(\varepsilon) = \pi_{x_k}(\varepsilon) Q_{x_k,a_k}(\varepsilon) - \pi_{a_k}(\varepsilon) Q_{a_k,x_k}(\varepsilon).$$

1491 Hence, $\pi_{x_k}(\varepsilon) Q_{x_k,a_k}(\varepsilon) = \pi_{a_k}(\varepsilon) Q_{a_k,x_k}(\varepsilon)$ and (S.24) holds for $x \in \mathcal{N}$ as well. \blacksquare

1492 S.2.5 Lemma S.15

1493 **Lemma S.15.** *Under Assumption 4.1, the matrices $Q_{\mathcal{A}}$ and \tilde{Q} are Q -matrices of sizes $|\mathcal{A}| \times |\mathcal{A}|$
 1494 and $|\mathcal{X}| \times |\mathcal{X}|$ respectively. If in addition, Assumption 4.5 holds, then $Q_{\mathcal{T}}$ is a Q -matrix of size
 1495 $|\mathcal{T}| \times |\mathcal{T}|$.*

1496 *Proof.* First, observe that $\lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} Q_{x,y}(\varepsilon) = (A_1)_{x,y}$ if $x, y \in \mathcal{A}$, while $\lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} Q_{x,y}(\varepsilon) =$
 1497 $(S_1)_{x,y}$ if $x \in \mathcal{A}$ and $y \in \mathcal{T}$. Then, since $Q(\varepsilon)$ is a Q -matrix, S_1 has nonnegative entries,
 1498 $(A_1)_{x,y} \geq 0$ for $x \neq y \in \mathcal{A}$, and

$$1499 \quad (S.29) \quad \sum_{y \in \mathcal{A}} (A_1)_{x,y} + \sum_{y \in \mathcal{T}} (S_1)_{x,y} = 0 \text{ for every } x \in \mathcal{A}.$$

1500 For $x \neq y \in \mathcal{A}$, $(Q_{\mathcal{A}})_{x,y} = (A_1)_{x,y} + \sum_{z \in \mathcal{T}} (S_1)_{x,z} ((-T_0)^{-1} R_0)_{z,y}$ is nonnegative since $(A_1)_{x,y} \geq 0$ and by (S.2), $((-T_0)^{-1} R_0)_{z,y} = 0$ for $z \in \mathcal{T}$. For $x \in \mathcal{A}$, $\sum_{y \in \mathcal{A}} (Q_{\mathcal{A}})_{x,y}$ is equal to

$$\begin{aligned} 1502 \quad & \sum_{y \in \mathcal{A}} (A_1)_{x,y} + \sum_{y \in \mathcal{A}} \sum_{z \in \mathcal{T}} (S_1)_{x,z} ((-T_0)^{-1} R_0)_{z,y} = \sum_{y \in \mathcal{A}} (A_1)_{x,y} + \sum_{z \in \mathcal{T}} (S_1)_{x,z} \sum_{y \in \mathcal{A}} ((-T_0)^{-1} R_0)_{z,y} \\ 1503 \quad & = \sum_{y \in \mathcal{A}} (A_1)_{x,y} + \sum_{z \in \mathcal{T}} (S_1)_{x,z} = 0, \end{aligned}$$

1504 where we used (S.2) and (S.29). Hence $Q_{\mathcal{A}}$ is a Q -matrix.

1505 For \tilde{Q} , for $x \neq y \in \mathcal{X}$, if $x \in \mathcal{A}$, then $\tilde{Q}_{x,y}$ corresponds to an off diagonal term in A_1 or a term in S_1 , both of which are nonnegative. If $x \in \mathcal{T}$, then $\tilde{Q}_{x,y}$ corresponds to an off diagonal term in T_0 or a term in R_0 , which are both nonnegative since $Q(0)$ is a Q -matrix. To check that the row-sums of \tilde{Q} are zero, first consider when $x \in \mathcal{A}$. Then, $\sum_{y \in \mathcal{X}} \tilde{Q}_{x,y} = \sum_{y \in \mathcal{A}} (A_1)_{x,y} + \sum_{y \in \mathcal{T}} (S_1)_{x,y} = 0$ by (S.29). If $x \in \mathcal{T}$, then $\sum_{y \in \mathcal{X}} \tilde{Q}_{x,y} = \sum_{y \in \mathcal{A}} (R_0)_{x,y} + \sum_{y \in \mathcal{T}} (T_0)_{x,y} = 0$, since this corresponds to summing across a row of $Q(0)$.

1511 The case of $Q_{\mathcal{T}}$ follows similarly to that for $Q_{\mathcal{A}}$. ■

1512 **S.3 Algorithm to find the order of the pole of the MFPT** **Input:** $\mathcal{B} \subset \mathcal{X}$, and k_{xy} , the order of $Q_{x,y}(\varepsilon)$ for each $(x, y) \in E_0$.

1514 **Output:** $p(x)$, the order of the pole of the mean first passage from $x \in \mathcal{B}^c$ to \mathcal{B} .

1515 (p will also be defined for condensed nodes in the course of the algorithm)

1516 **Step 1 (Set up the initial graph (V, E))**

1517 Construct a directed graph $G = (V, E)$ where $V = \mathcal{X}$ and $E = E_0$.

1518 Set, for each $u \in V$, $p(u) \leftarrow \min\{k_{uv} : (u, v) \in E\}$.

1519 Set, for each $(u, v) \in E$, $\mathcal{K}_{uv} \leftarrow k_{uv} - p(u)$.

1520 **Step 2 (Condense \mathcal{B} into a single node a)**

1521 Introduce a new node a .

1522 Set, for each $w \in \mathcal{B}^c$ such that $(w, v) \in E$ for some $v \in \mathcal{B}$, $\mathcal{K}_{wa} \leftarrow \min\{\mathcal{K}_{wv} : v \in \mathcal{B} \text{ and } (w, v) \in E\}$.

1523 Update $V \leftarrow \mathcal{B}^c \cup \{a\}$ and

$$1524 \quad E \leftarrow \{(u, v) \in E : u \in \mathcal{B}^c \text{ and } v \in \mathcal{B}^c\} \cup \{(w, a) : (w, v) \in E \text{ for some } w \in \mathcal{B}^c \text{ and } v \in \mathcal{B}\}.$$

1525 Set, for each $u \in V \setminus \{a\}$, $S(u) \leftarrow \{u\}$, and $S(a) \leftarrow \mathcal{B}$.

1526 **Step 3 (Condense r-connected sets)**

1527 Repeat the following until G contains no r-connected sets:

1528 Let $C \subset V$ be an r-connected set and c be a new node representing the r-connected set C .

1529 Set $p(c) \leftarrow \max_{u \in C} p(u) + \min\{\mathcal{K}_{uv} : u \in C, v \notin C \text{ and } (u, v) \in E\}$.

1530 Set, for each $w \in V \setminus C$ such that $(u, w) \in E$ for some $u \in C$,

$$1531 \quad \mathcal{K}_{cw} \leftarrow \min\{\mathcal{K}_{uw} : u \in C \text{ and } (u, w) \in E\} - \min\{\mathcal{K}_{uv} : u \in C, v \notin C \text{ and } (u, v) \in E\}$$

1532 Set, for each $w \in V \setminus C$ such that $(w, v) \in E$ for some $v \in C$,

$$1533 \quad \mathcal{K}_{wc} \leftarrow \min\{\mathcal{K}_{wv} : v \in C \text{ and } (w, v) \in E\}.$$

1534 Update $V \leftarrow (V \setminus C) \cup \{c\}$ and

$$1535 \quad E \leftarrow \{(u, v) \in E : u \notin C \text{ and } v \notin C\} \cup \{(c, w) : (u, w) \in E \text{ for some } u \in C \text{ and } w \notin C\}$$

$$1536 \quad \cup \{(w, c) : (w, v) \in E \text{ for some } w \notin C \text{ and } v \in C\}.$$

1537 Set $S(c) \leftarrow \cup_{u \in C} S(u)$.

1538 **Step 4 (Compute $p(x)$ where $x \in \mathcal{B}^c$)**

1539 Repeat the following until $V = \{a\}$:

1540 Let $v^* \in V \setminus \{a\}$ be such that $p(v^*) = \max_{u \in V \setminus \{a\}} p(u)$ and break the tie arbitrarily.

1541 For each $x \in S(v^*) \subset \mathcal{B}^c$, the order of the pole of the mean first passage time from x to \mathcal{B} is
 1542 $p(x) \leftarrow p(v^*)$.
 1543 Update, for each $u \in V$ such that $(u, v^*) \in E$, $p(u) \leftarrow \max\{p(u), p(v^*) - \mathcal{K}_{uv^*}\}$.
 1544 Update $V \leftarrow V \setminus \{v^*\}$ and $E \leftarrow \{(u, v) \in E : u \neq v^* \text{ and } v \neq v^*\}$.

1545 **S.4 Graphs for the algorithm to find the order of the MFPT** Here we elaborate on
 1546 the graphs that we use in the algorithm and the definitions that we gave in Section 4.2.1 and
 1547 Section S.3. While, in the algorithm statement, we used the same notation for the updated
 1548 graphs as in the original graph, it will be clearer for the justification given in Section S.5 if
 1549 we specify which copy of the graph we are looking at for each step. Accordingly, we provide a
 1550 more detailed version of the definitions of these graphs and associated notation in this section.
 1551

Step 1: Graph G

1552 For each $\varepsilon \in (0, \varepsilon_{\max})$ and $x \in \mathcal{X}$, the exponential parameter satisfies

$$1553 \quad q_x(\varepsilon) = -Q_{x,x}(\varepsilon) = \sum_{y \neq x \in \mathcal{X}} Q_{x,y}(\varepsilon) = \sum_{(x,y) \in E_0} Q_{x,y}(\varepsilon) > 0.$$

1554 Since the order of $Q_{x,y}(\varepsilon)$ is k_{xy} for each $y \in \mathcal{X}$ such that $(x, y) \in E_0$, the order of $q_x(\varepsilon)$ is
 1555 $p_0(x) = \min\{k_{xy} : (x, y) \in E_0\}$. For each $(x, y) \in E_0$, the transition probability $P_{x,y}(\varepsilon)$ for the
 1556 embedded discrete time Markov chain is

$$1557 \quad P_{x,y}(\varepsilon) = \frac{Q_{x,y}(\varepsilon)}{q_x(\varepsilon)},$$

1558 the order of which is

$$1559 \quad (\text{S.30}) \quad \mathcal{K}_{xy} = k_{xy} - \min\{k_{xy} : (x, y) \in E_0\} = k_{xy} - p_0(x).$$

1560 We start with a weighed graph $G = (V, E)$ where $V = \mathcal{X}$ and $E = E_0$. For each $u \in V$, the
 1561 node weight of u is $p_0(u)$, which is the **order of the pole of the expected sojourn time**
 1562 at state x until escape from x for X^ε . For each $(u, v) \in E$, the edge weight of (u, v) is \mathcal{K}_{uv} ,
 1563 which is the **order of the transition probability** from u to v .

Step 2: Graph $G^{(0)}$

1564 If $x \in \mathcal{B}^c$ is such that $(x, y) \in E$ for some $y \in \mathcal{B}$, then the transition probability from x to
 1565 \mathcal{B} is positive and is given by

$$1567 \quad P_{x,\mathcal{B}}(\varepsilon) = \sum_{\substack{y \in \mathcal{B}: \\ (x,y) \in E}} P_{x,y}(\varepsilon).$$

1568 For such x , the order of $P_{x,\mathcal{B}}(\varepsilon)$ is

$$1569 \quad (\text{S.31}) \quad \mathcal{K}_{xa} = \min\{\mathcal{K}_{xy} : y \in \mathcal{B}, (x, y) \in E\},$$

1570 where \mathcal{K}_{xy} is the order of $P_{x,y}(\varepsilon)$ for each $(x, y) \in E$.

1571 Now, we are ready to specify the graph $G^{(0)} = (V^{(0)}, E^{(0)})$ which serves as the base case
 1572 for Step 3. We group the nodes in \mathcal{B} into a single node, denoted by a , so the set of nodes

1573 becomes $V^{(0)} = (V \setminus \mathcal{B}) \cup \{a\} = \mathcal{B}^c \cup \{a\}$. All of the edges starting from or going to a
 1574 node in \mathcal{B} are then removed. If there was an edge from $x \in \mathcal{B}^c$ to a node in \mathcal{B} , then we
 1575 add back an edge (x, a) . We leave out all edges from a node in \mathcal{B} to a node in \mathcal{B}^c , since
 1576 we are interested in the mean first passage time to the set \mathcal{B} . The resulting edge set is
 1577 $E^{(0)} = \{(u, v) \in E : u \in \mathcal{B}^c \text{ and } v \in \mathcal{B}^c\} \cup \{(w, a) : (w, v) \in E \text{ for some } w \in \mathcal{B}^c \text{ and } v \in \mathcal{B}\}$.

1578 Let $S(u) = \{u\}$ for all $u \in V^{(0)} \setminus \{a\}$ and $S(a) = \mathcal{B}$. Note that $\{S(u) : u \in V^{(0)}\}$ is a partition
 1579 of the state space \mathcal{X} , denoting the grouping of nodes in $V^{(0)}$. For each $u \in V^{(0)} \setminus \{a\}$ and
 1580 $x \in S(u) = \{u\}$, we define $p_0^x(u)$ to be the **order of the pole of the expected sojourn time**
 1581 in $S(u)$ before exiting $S(u)$ when starting the process at the state x . For each $(u, v) \in E^{(0)}$
 1582 and $x \in S(u) = \{u\}$, we define \mathcal{K}_{uv}^x to be the **order of the probability of a transition**
 1583 to $S(v)$ upon exiting from $S(u)$ when the process is started at the state x . For these terms,
 1584 $p_0^x(u) = p_0(u)$ and $\mathcal{K}_{uv}^x = \mathcal{K}_{uv}$, which is the base case for Lemma S.20.

1585 **Step 3: Graphs $\{G^{(N)}\}_{N=0}^M$**

1586 In Step 3, we define a sequence of graphs $\{G^{(N)} = (V^{(N)}, E^{(N)})\}_{N=0}^M$ recursively, where the
 1587 exact value of $M \geq 0$ is not pre-determined and is only revealed when an exit condition for
 1588 the recursion is satisfied. We know this recursion will end after a finite number of iterations
 1589 because the number of nodes in $V^{(N)}$ is strictly decreasing with N . The weight p_0 of each
 1590 node and the weight \mathcal{K} of each edge are also defined iteratively, and each is defined only once.

1591 We have already defined $G^{(0)}$ in Step 2. Fix $N \in \{1, 2, \dots, M+1\}$, where the value of
 1592 $M < \infty$ is defined below. At the N^{th} iteration, an edge $(u, v) \in E^{(N-1)}$ is called an **r-edge** if
 1593 its edge weight \mathcal{K}_{uv} is 0; a directed path in $G^{(N-1)}$ is called an **r-path** if it consists of r-edges
 1594 only. A set $C \subset V^{(N-1)}$ is called an **r-connected set** in $G^{(N-1)}$ if $|C| > 1$ and there exists
 1595 an r-path from u to v for any $u \neq v \in C$. Here we use the qualifier “r” to indicate that these
 1596 edges, paths and cycles are “regular”. If there is no r-connected set in $G^{(N-1)}$, the iteration
 1597 stops. We set the value of M to the first value of $N-1$ such that $G^{(N-1)}$ does not have
 1598 any r-connected set. At that time point, the iteration stops and we move to Step 4 where
 1599 $G^{(M)}$ will be the initial graph for Step 4. Otherwise, $N \in \{1, \dots, M\}$, and we let C_N be an
 1600 r-connected set in $G^{(N-1)}$, which is condensed to a new node c_N in $G^{(N)}$. Then, we define
 1601 the graph $G^{(N)} = (V^{(N)}, E^{(N)})$, where $V^{(N)} = (V^{(N-1)} \setminus C_N) \cup \{c_N\}$, and $E^{(N)} = \{(u, v) \in$
 1602 $E^{(N-1)} : u \notin C_N \text{ and } v \notin C_N\} \cup \{(c_N, w) : (u, w) \in E^{(N-1)} \text{ for some } u \in C_N \text{ and } w \notin$
 1603 $C_N\} \cup \{(w, c_N) : (w, v) \in E^{(N-1)} \text{ for some } w \notin C_N \text{ and } v \in C_N\}$. Let $S(c_N) = \cup_{u \in C_N} S(u)$.
 1604 Note that $\{S(u) : u \in V^{(N)}\}$ is again a partition of the state space \mathcal{X} , denoting the grouping
 1605 of nodes in $V^{(N)}$.

1606 We define $p_0^x(c_N)$ to be the **order of the pole of the expected sojourn time** in $S(c_N)$
 1607 until the first exit from $S(c_N)$ when the process is started at the state $x \in S(c_N)$. In Lemma
 1608 S.20, we will show that the value of $p_0^x(c_N)$ is independent of the state $x \in S(c_N)$, and we
 1609 define $p_0(c_N) = p_0^x(c_N)$. For each $w \in V^{(N-1)} \setminus C_N$ such that $(w, c_N) \in E^{(N)}$, define $\mathcal{K}_{wc_N}^x$ to
 1610 be the **order of the probability of a transition** to $S(c_N)$ upon exiting from $S(w)$ when
 1611 the process is started at the state $x \in S(w)$. In Lemma S.20, we will show that the value of
 1612 $\mathcal{K}_{wc_N}^x$ is independent of the state $x \in S(w)$, and $\mathcal{K}_{wc_N}^x = \mathcal{K}_{wc_N}$ where

1613 (S.32)
$$\mathcal{K}_{wc_N} = \min\{\mathcal{K}_{vv} : v \in C_N \text{ and } (w, v) \in E^{(N-1)}\}.$$

1614 For each $w \in V^{(N-1)} \setminus C_N$ such that $(c_N, w) \in E^{(N)}$, define $\mathcal{K}_{c_Nw}^x$ to be the **order of the**
 1615 **probability of a transition** to $S(w)$ upon exiting from $S(c_N)$ when the process is started

1616 at the state $x \in S(c_N)$. In Lemma S.20, we will show that the value of $\mathcal{K}_{c_N w}^x$ is independent
 1617 of the state $x \in S(c_N)$, and $\mathcal{K}_{c_N w}^x = \mathcal{K}_{c_N w}$ where

$$1618 \quad \mathcal{K}_{c_N w} = \min\{\mathcal{K}_{uw} : u \in C_N \text{ and } (u, w) \in E^{(N-1)}\} \\ 1619 \quad (S.33) \quad - \min\{\mathcal{K}_{uv} : u \in C_N, v \notin C_N \text{ and } (u, v) \in E^{(N-1)}\}.$$

1620 We note that for each $N \in \{1, \dots, M\}$, since there is no edge in $E^{(N-1)}$ that leads from a , the
 1621 node a is never part of any r-connected set, and so $a \in V^{(N)}$ and there is at least one other
 1622 node in $V^{(N)}$ besides a . Also, the irreducibility of X^ε when $0 < \varepsilon < \varepsilon_0$ implies that there is a
 1623 path from x to y in G for each $x \in \mathcal{X} \setminus \mathcal{B}$ and $y \in \mathcal{X}$. This implies that if $u_N \neq v_N \in V^{(N)}$ for
 1624 some $N \in \{0, 1, \dots, M\}$ such that $x \in S(u_N)$ and $y \in S(v_N)$, then there is a path from u_N
 1625 to v_N in $G^{(N)}$. Therefore, for each $N \in \{0, 1, \dots, M\}$, there is always an outgoing edge from
 1626 some $u' \in C_N$ (u' cannot be a) to some $v' \in V^{(N-1)} \setminus C_N$ in $G^{(N-1)}$. In addition, as can be
 1627 seen from the definition of the \mathcal{K} 's in (S.30), (S.31), (S.32) and (S.33), for each $N = 0, 1, \dots, M$
 1628 and $u'' \in V^{(N)} \setminus \{a\}$, there exists an r-edge $(u'', v'') \in E^{(N)}$ for some $v'' \in V^{(N)}$. For $G^{(M)}$,
 1629 $|V^{(M)}| \geq 2$. Furthermore, if we only look at r-edges (and ignore the other edges), $G^{(M)}$ is an
 1630 acyclic graph (as it contains no r-connected set). It follows that the node a is the only sink
 1631 because for each $u \in V^{(M)} \setminus \{a\}$, there is an outgoing r-edge, and thus there is an r-path from
 1632 u to a for each $u \in V^{(M)} \setminus \{a\}$.

1633 **Step 4: Graphs $\{G^{(M,N)}\}_{N=0}^{|V^{(M)}|-1}$**

1634 In Step 4, we define a sequence of graphs $\{G^{(M,N)} = (V^{(M,N)}, E^{(M,N)})\}_{N=0}^{|V^{(M)}|-1}$ recursively,
 1635 where $G^{(M,0)} = G^{(M)}$. In each iteration, the weight of one of the nodes in $V^{(M,N-1)} \subset V^{(M)}$ is
 1636 finalized and determines the value of p there, and the weights p_{N-1} of other nodes in $V^{(M,N)}$
 1637 are updated to p_N .

1638 Fix $N \in \{1, \dots, |V^{(M)}| - 1\}$. At the N^{th} iteration, let $v_N \in V^{(M,N-1)} \setminus \{a\}$ be such that

$$1639 \quad (S.34) \quad p_{N-1}(v_N) = \max_{u \in V^{(M,N-1)} \setminus \{a\}} p_{N-1}(u) =: p(v_N),$$

1640 where we break the tie arbitrarily.

1641 Now, we define the graph $G^{(M,N)} = (V^{(M,N)}, E^{(M,N)})$ where $V^{(M,N)} = V^{(M,N-1)} \setminus \{v_N\}$ and
 1642 $E^{(M,N)} = \{(u, v) \in E^{(M,N-1)} : u \neq v_N \text{ and } v \neq v_N\}$. For each $u \in V^{(M,N)}$, let

$$1643 \quad (S.35) \quad p_N(u) = \begin{cases} \max\{p_{N-1}(u), p_{N-1}(v_N) - \mathcal{K}_{uv_N}\}, & \text{for } (u, v_N) \in E^{(M,N-1)}, \\ p_{N-1}(u), & \text{for } (u, v_N) \notin E^{(M,N-1)}. \end{cases}$$

1644 In Theorem S.22, we will show that for each $x \in S(v_N)$, the order of the pole of the mean
 1645 first passage time from x to the set \mathcal{B} is $p(x) = p(v_N)$.

1646 **S.5 Justification for the algorithm to find the order of the MFPT** Recall that we
 1647 defined $\{G^{(N)}\}_{N=0}^M = \{(V^{(N)}, E^{(N)})\}_{N=0}^M$ and $G^{(M,0)} = G^{(M)}$ in Section S.4. Each $G^{(N)}$
 1648 defines a partition $\{S(u) : u \in V^{(N)}\}$ of \mathcal{X} , which will be used in our proofs. Since X^ε is an
 1649 irreducible continuous time Markov chain for all $\varepsilon \in (0, \varepsilon_0)$, each $G^{(N)}$ is weakly connected
 1650 and has the property that any node in $V^{(N)} \setminus \{a\}$ has an out-going edge starting from the
 1651 node.

1652 In this section, we will provide the justification for the algorithm. Step 1 of the algorithm sets
 1653 up the original continuous time Markov chain using a skeleton chain. Step 2 of the algorithm
 1654 serves as the base case for Step 3, and Lemma S.20 justifies Steps 2 and 3. Theorem S.22
 1655 shows that Step 4 works, which gives our main result for the order of the pole of the mean
 1656 first passage time from each state $x \in \mathcal{B}^c$ to \mathcal{B} .

1657 We will start with Sections S.5.1 and S.5.2, in which we describe in more detail the Big
 1658 Theta notation used in this section and define some useful stopping times that will be used in
 1659 our proof.

1660 **S.5.1 More on Big Theta notation** In Section 4.2.1, we have defined orders for analytic
 1661 functions using Big Theta notation. Here we give a few more definitions and remarks for
 1662 inequalities involving the Big Theta notation, on how to compare the orders of analytic func-
 1663 tions and on arithmetic for orders. These conventions streamline the proofs in the following
 1664 subsections.

1665 **Definition S.16.** *Given $\varepsilon_0 > 0$ and a function $f : (0, \varepsilon_0) \rightarrow \mathbb{R}_{>0}$, we say $f \leq \Theta(\varepsilon^k)$ if there
 1666 exist $k \in \mathbb{Z}$ and a strictly positive $M_f \in \mathbb{R}_{>0}$ such that, for all $0 < \varepsilon < \varepsilon_0$,*

$$1667 \quad f(\varepsilon) \leq M_f \varepsilon^k.$$

1668 *We say $f \geq \Theta(\varepsilon^k)$ if there exist $k \in \mathbb{Z}$ and a strictly positive $m_f \in \mathbb{R}_{>0}$ such that, for all
 1669 $0 < \varepsilon < \varepsilon_0$,*

$$1670 \quad f(\varepsilon) \geq m_f \varepsilon^k.$$

1671 **Remark S.17.** Let $k, k_1, k_2 \in \mathbb{Z}$ and $k_1 \leq k \leq k_2$. If $f = \Theta(\varepsilon^k)$, then $f \leq \Theta(\varepsilon^{k_1})$ and
 1672 $f \geq \Theta(\varepsilon^{k_2})$.

1673 **Remark S.18.** For functions f and g mapping $(0, \varepsilon_0)$ into $\mathbb{R}_{>0}$, we write $f = g \cdot \Theta(\varepsilon^k)$ if
 1674 $\frac{f}{g} = \Theta(\varepsilon^k)$, $f \leq g \cdot \Theta(\varepsilon^k)$ if $\frac{f}{g} \leq \Theta(\varepsilon^k)$, $f \geq g \cdot \Theta(\varepsilon^k)$ if $\frac{f}{g} \geq \Theta(\varepsilon^k)$.

1675 **Lemma S.19.** *Let $k_1, k_2 \in \mathbb{Z}$, $\varepsilon_0 > 0$ and $f, g : (0, \varepsilon_0) \rightarrow \mathbb{R}_{>0}$. If $f = \Theta(\varepsilon^{k_1})$ and $g = \Theta(\varepsilon^{k_2})$,
 1676 then*

$$1677 \quad \frac{1}{f} = \Theta(\varepsilon^{-k_1}), \quad f + g = \Theta(\varepsilon^{\min\{k_1, k_2\}}), \quad f \cdot g = \Theta(\varepsilon^{k_1+k_2}),$$

$$1679 \quad \max\{f, g\} = \Theta(\varepsilon^{\min\{k_1, k_2\}}), \quad \min\{f, g\} = \Theta(\varepsilon^{\max\{k_1, k_2\}}).$$

1680 We leave the proof of Lemma S.19 to the reader.

1681 **S.5.2 Stopping times $\tau_n^{\varepsilon, N}$** For each graph $G^{(N)} = (V^{(N)}, E^{(N)})$, $N \in \{0, 1, \dots, M\}$,
 1682 recall that $\{S(u) : u \in V^{(N)}\}$ is a partition of the state space \mathcal{X} . We define the series
 1683 of stopping times $\{\tau_n^{\varepsilon, N}\}_{n=0}^{\infty}$, which captures times of transitions of X^{ε} between sets in the
 1684 partition $\{S(u) : u \in V^{(N)}\}$ of \mathcal{X} . Formally, we let $\tau_0^{\varepsilon, N} = 0$, and for $n = 1, 2, \dots$, we
 1685 successively define

$$1686 \quad \tau_n^{\varepsilon, N} = \inf \left\{ t \geq \tau_{n-1}^{\varepsilon, N} : X^{\varepsilon}(t) \notin S(v_{n-1}) \right\},$$

1687 where v_{n-1} is the element in $V^{(N)}$ such that $X^\varepsilon(\tau_{n-1}^{\varepsilon, N}) \in S(v_{n-1})$.

1688 S.5.3 Justification for Step 3 of the algorithm

1689 **Lemma S.20.** (i) For $N = 0$ in Step 3,

1690 (a) for each $u \in V^{(0)} \setminus \{a\}$ and $x \in S(u)$, $\mathbb{E}_x[\tau_1^{\varepsilon, 0}] = \Theta(\varepsilon^{-p_0(u)})$.

1691 (b) for each $(u, v) \in E^{(0)}$ and $x \in S(u)$, $\mathbb{P}_x[X^\varepsilon(\tau_1^{\varepsilon, 0}) \in S(v)] = \Theta(\varepsilon^{\mathcal{K}_{uv}})$.

1692 (ii) For $N \in \{1, 2, \dots, M\}$ in Step 3, let

$$1693 k = \min\{\mathcal{K}_{uv} : u \in C_N, v \notin C_N \text{ and } (u, v) \in E^{(N-1)}\}.$$

1694 (We note that k depends on N although we will not indicate that in the notation.)

1695 (a) For each $x \in S(c_N)$, $\mathbb{E}_x[\tau_1^{\varepsilon, N}] = \Theta(\varepsilon^{-p_0^x(c_N)})$ where $p_0^x(c_N) = p_0(c_N)$ and

$$1696 p_0(c_N) = \max\{p_0(u) : u \in C_N\} + k,$$

1697 (b) For each $x \in S(c_N)$ and $w \in V^{(N-1)} \setminus C_N$ such that $(u, w) \in E^{(N-1)}$ for some
1698 $u \in C_N$, $\mathbb{P}_x[X^\varepsilon(\tau_1^{\varepsilon, N}) \in S(w)] = \Theta(\varepsilon^{\mathcal{K}_{c_N w}^x})$ where $\mathcal{K}_{c_N w}^x = \mathcal{K}_{c_N w}$ and

$$1699 \mathcal{K}_{c_N w} = \min\{\mathcal{K}_{uw} : u \in C_N \text{ and } (u, w) \in E^{(N-1)}\} - k,$$

1700 (c) For each $x \in S(w)$ where $w \in V^{(N-1)} \setminus C_N$ is such that $(w, v) \in E^{(N-1)}$ for
1701 some $v \in C_N$, $\mathbb{P}_x[X^\varepsilon(\tau_1^{\varepsilon, N}) \in S(c_N)] = \Theta(\varepsilon^{\mathcal{K}_{w c_N}^x})$ where $\mathcal{K}_{w c_N}^x = \mathcal{K}_{w c_N}$ and

$$1702 \mathcal{K}_{w c_N} = \min\{\mathcal{K}_{wv} : v \in C_N \text{ and } (w, v) \in E^{(N-1)}\}.$$

1703 *Proof.* Our proof proceeds by induction. The base case ($N = 0$) is established in Section
1704 S.4.

1705 For fixed $1 \leq N \leq M$, assume that (i) (a)-(b) and (ii) (a)-(c) hold with N replaced by
1706 $0, 1, \dots, N-1$. We abbreviate $\tau_n^{\varepsilon, N-1}$ as τ_n^ε for $n = 0, 1, 2, \dots$. Let

$$1707 \delta_{out}(C_N) = \{(u, v) \in E^{(N-1)} : u \in C_N \text{ and } v \notin C_N\}$$

1708 denote all out-going boundary edges of C_N so that

$$1709 k = \min\{\mathcal{K}_{uv} : (u, v) \in \delta_{out}(C_N)\}.$$

1710 First, consider the discrete time process $\{X^\varepsilon(\tau_n^\varepsilon)\}_{n=0}^\infty$, which is not necessarily a Markov
1711 process. We will derive a lower bound and an upper bound for

$$1712 \text{(S.36)} \quad \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m \leq n\}} \right],$$

1713 which is the expected amount of time that $\{Y_n^\varepsilon = X^\varepsilon(\tau_n^\varepsilon)\}_{n=0}^\infty$ spends in $S(c_N)$ before exiting
1714 from there, when started from a fixed state $x \in S(c_N)$.

1715 For the lower bound, let

$$1716 \rho_1 = \max_{y \in S(c_N)} \mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \notin S(c_N)],$$

1717 the maximum over $y \in S(c_N)$ of the probability that for X^ε started at y , when X^ε exits $S(u_y)$,
 1718 where $u_y \in C_N$ such that $y \in S(u_y)$, X^ε exits outside of $S(c_N)$. By the induction hypothesis,
 1719 $\mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(v)] = \Theta(\varepsilon^{\mathcal{K}_{uv}})$ for each u, v such that $(u, v) \in \delta_{out}(C_N)$ and $y \in S(u)$. Thus,
 1720 using Lemma S.19, we have

$$1721 \quad \rho_1 = \max_{y \in S(c_N)} \sum_{\substack{(u, v) \in \delta_{out}(C_N): \\ y \in S(u)}} \mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(v)] = \Theta(\varepsilon^{\min\{\mathcal{K}_{uv}: (u, v) \in \delta_{out}(C_N)\}}) = \Theta(\varepsilon^k).$$

1722 For $x \in S(c_N)$, let $\phi_n(x) = \mathbb{P}_x[X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m \leq n]$ for $n = 0, 1, 2, \dots$. Then,
 1723 $\phi_0(x) = 1$, $\phi_1(x) = \mathbb{P}_x[X^\varepsilon(\tau_1^\varepsilon) \in S(c_N)] \geq 1 - \rho_1$, and by the strong Markov property, for
 1724 $n \geq 2$,

$$1725 \quad \phi_n(x) = \sum_{y \in S(c_N)} \mathbb{P}_x[X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m \leq n-2; X^\varepsilon(\tau_{n-1}^\varepsilon) = y] \mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(c_N)] \\ 1726 \quad \geq \phi_{n-1}(x)(1 - \rho_1).$$

1727 Hence, $\phi_n(x) \geq (1 - \rho_1)^n$ for $n = 0, 1, 2, \dots$. Then, for $x \in S(c_N)$,

$$1728 \quad (\text{S.37}) \quad \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m \leq n\}} \right] = \sum_{n=0}^{\infty} \phi_n(x) \geq \sum_{n=0}^{\infty} (1 - \rho_1)^n = \frac{1}{\rho_1} = \Theta(\varepsilon^{-k}).$$

1729 and so (S.36) is bounded below by $\Theta(\varepsilon^{-k})$.

1730 For the upper bound, let $w_0 \in C_N$ be such that

$$1731 \quad \min\{\mathcal{K}_{w_0 v} : (w_0, v) \in \delta_{out}(C_N)\} = \min\{\mathcal{K}_{uv} : (u, v) \in \delta_{out}(C_N)\} = k.$$

1732 Since the order of the probability $\mathbb{P}_x[X^\varepsilon(\tau_1^\varepsilon) \notin S(c_N)]$ might equal $k' > k$ for some $w \neq$
 1733 $w_0 \in C_N$ and $x \in S(w)$, such a smaller order probability of directly exiting $S(c_N)$ from $S(w)$
 1734 makes it seem possible that (S.36) could be $\Theta(\varepsilon^{-k'})$ for some $k' > k$. Indeed, using a similar
 1735 approach to the one we used for the lower bound, we can show that (S.36) is bounded above
 1736 by $\Theta(\varepsilon^{\max\{\mathcal{K}_{uv} : (u, v) \in \delta_{out}(C_N)\}}) \geq \Theta(\varepsilon^k)$. However, we would like a more stringent upper bound.
 1737 To achieve this, we will show below that from $S(w)$, X^ε can exit $S(c_N)$ at least as quickly
 1738 by means of a transition from $S(w)$ to $S(w_0)$ via the r-connected set and then from $S(w_0)$ to
 1739 $V^{(N-1)} \setminus S(c_N)$.

1740 Let $\zeta_0^\varepsilon = 0$, and for $n = 1, 2, \dots$, we successively define

$$1741 \quad \eta_{n-1}^\varepsilon = \inf \left\{ t \geq \zeta_{n-1}^\varepsilon : X^\varepsilon(t) \notin S(v) \text{ where } v \in V^{(N-1)} \text{ and } X^\varepsilon(\zeta_{n-1}^\varepsilon) \in S(v) \right\},$$

1742

$$1743 \quad \zeta_n^\varepsilon = \inf \left\{ t \geq \eta_{n-1}^\varepsilon : X^\varepsilon(t) \in S(w_0) \text{ or } X^\varepsilon(t) \notin S(c_N) \right\}.$$

1744 Note that $\{\zeta_n^\varepsilon\}_{n=0}^\infty$ and $\{\eta_n^\varepsilon\}_{n=0}^\infty$ depend on N . Let

$$1745 \quad \rho_2 = \min_{y \in S(w_0)} \mathbb{P}_y[X^\varepsilon(\zeta_1^\varepsilon) \notin S(w_0)] = \min_{y \in S(w_0)} \mathbb{P}_y[X^\varepsilon(\zeta_1^\varepsilon) \notin S(c_N)],$$

1746 By the induction hypothesis, $\mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(v)] = \Theta(\varepsilon^{\mathcal{K}_{w_0 v}})$ for each v such that $(w_0, v) \in$
 1747 $\delta_{out}(C_N)$ and $y \in S(w_0)$, and so

1748 (S.38) $\rho_2 \geq \min_{y \in S(w_0)} \mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \notin S(c_N)] = \Theta(\varepsilon^{\min\{\mathcal{K}_{w_0 v} : (w_0, v) \in \delta_{out}(C_N)\}}) = \Theta(\varepsilon^k),$

1749 where the inequality holds since starting from any $y \in S(w_0)$, if $X^\varepsilon(\tau_1^\varepsilon) \notin S(c_N)$, X^ε exits
 1750 outside of $S(c_N)$ after leaving $S(w_0)$ and so $X^\varepsilon(\zeta_1^\varepsilon) \notin S(w_0)$.

1751 For $x \in S(c_N)$, \mathbb{P}_x -a.s., the sum

1752 (S.39)
$$\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w_0)\}}$$

1753 counts the number of distinct visits to $S(w_0)$, including the initial start there if $x \in S(w_0)$,
 1754 before X^ε escapes from $S(c_N)$. By the definition of the $\{\zeta_n^\varepsilon\}_{n=0}^\infty$, \mathbb{P}_x -a.s., the sum

1755
$$\mathbb{1}_{\{X^\varepsilon(0) \in S(w_0)\}} + \sum_{n=1}^{\infty} \mathbb{1}_{\{X^\varepsilon(\zeta_m^\varepsilon) \in S(w_0) \text{ for } 1 \leq m \leq n\}}$$

1756 counts the same quantity. Thus, for $x \in S(w_0)$, using the strong Markov property and (S.38),

1757
$$\begin{aligned} \psi(x) &:= \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w_0)\}} \right] \\ 1758 &= 1 + \mathbb{E}_x \left[\sum_{n=1}^{\infty} \mathbb{1}_{\{X^\varepsilon(\zeta_m^\varepsilon) \in S(w_0) \text{ for } 1 \leq m \leq n\}} \right] \\ 1759 &= 1 + \mathbb{E}_x \left[\mathbb{1}_{\{X^\varepsilon(\zeta_1^\varepsilon) \in S(w_0)\}} \mathbb{E}_{X^\varepsilon(\zeta_1^\varepsilon)} \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\zeta_m^\varepsilon) \in S(w_0) \text{ for } 0 \leq m \leq n\}} \right] \right] \\ 1760 \text{(S.40)} &\leq 1 + (1 - \rho_2) \max_{y \in S(w_0)} \psi(y). \end{aligned}$$

1761 Note that $\max_{y \in S(w_0)} \psi(y) < \infty$ because the state space is finite and X^ε is positive recurrent.
 1762 Hence, by (S.40), $\max_{y \in S(w_0)} \psi(y) \leq \frac{1}{\rho_2}$. Then, for $x \in S(c_N) \setminus S(w_0)$, by the strong Markov
 1763 property,

1764
$$\psi(x) \leq \mathbb{P}_x[X^\varepsilon(\zeta_1^\varepsilon) \in S(w_0)] \max_{y \in S(w_0)} \psi(y) \leq \frac{1}{\rho_2}.$$

1765 Thus, for any $x \in S(c_N)$,

1766 (S.41)
$$\mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w_0)\}} \right] \leq \frac{1}{\rho_2} = \Theta(\varepsilon^{-k}).$$

1767 Let $w_1, w_2 \in C_N$ be such that $(w_1, w_2) \in E^{(N-1)}$ and $\mathcal{K}_{w_1 w_2} = 0$. By the induction
 1768 hypothesis, $\mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(w_2)] = \Theta(1)$ for all $y \in S(w_1)$. Then, for $x \in S(c_N)$,

1769
$$\mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w_2)\}} \right]$$

$$\begin{aligned}
1770 \quad & \geq \sum_{n=0}^{\infty} \mathbb{P}_x[X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w_1), X^\varepsilon(\tau_{n+1}) \in S(w_2)] \\
1771 \quad & = \sum_{n=0}^{\infty} \sum_{y \in S(w_1)} \mathbb{P}_x[X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) = y] \cdot \mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(w_2)] \\
1772 \quad & \geq \sum_{n=0}^{\infty} \mathbb{P}_x[X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w_1)] \cdot \min_{y \in S(w_1)} \mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(w_2)] \\
1773 \quad (\text{S.42}) \quad & = \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w_1)\}} \right] \cdot \Theta(1).
\end{aligned}$$

1774 where the first equality holds from the strong Markov property of X^ε . Since C_N is an r-
1775 connected set, we can start from the node w_1 and the order inequality (S.42) can be passed
1776 from node to node in C_N and back to the node w_1 (w_0 is included in the path) so that we will
1777 actually have equality in (S.42) and for all $v \in C_N$,

$$\begin{aligned}
1778 \quad & \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(v)\}} \right] \\
1779 \quad (\text{S.43}) \quad & = \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w_0)\}} \right] \cdot \Theta(1).
\end{aligned}$$

1780 Therefore, combining (S.41) and (S.43), and since there are only finitely many nodes in C_N ,
1781 we can obtain by summing over $v \in C_N$ that (S.36) is bounded above by $\Theta(\varepsilon^{-k})$. Combining
1782 with (S.37), we have that, for $x \in S(c_N)$, (S.36) is $\Theta(\varepsilon^{-k})$. Moreover, by (S.43), for each
1783 $x \in S(c_N)$ and each $v \in C_N$,

$$1784 \quad (\text{S.44}) \quad \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(v)\}} \right] = \Theta(\varepsilon^{-k}).$$

1785 To prove (ii) (a), fix $x \in S(c_N)$. By the induction hypothesis, $\mathbb{E}_y[\tau_1^\varepsilon] = \Theta(\varepsilon^{-p_0(u)})$ for each
1786 $y \in S(u)$ where $u \in C_N$. Thus, the expected sojourn time in $S(c_N)$ is

$$\begin{aligned}
1787 \quad & \mathbb{E}_x[\tau_1^{\varepsilon, N}] = \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m \leq n\}} \cdot (\tau_{n+1}^\varepsilon - \tau_n^\varepsilon) \right] \\
1788 \quad & = \sum_{n=0}^{\infty} \sum_{u \in C_N} \sum_{y \in S(u)} \mathbb{E}_x[\mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) = y\}}] \cdot \mathbb{E}_y[\tau_1^\varepsilon - \tau_0^\varepsilon] \\
1789 \quad & = \sum_{u \in C_N} \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(u)\}} \right] \cdot \Theta(\varepsilon^{-p_0(u)}) \\
1790 \quad & = \sum_{u \in C_N} \Theta(\varepsilon^{-k-p_0(u)}) = \Theta(\varepsilon^{-k-\max\{p_0(u):u \in C_N\}}) = \Theta(\varepsilon^{-p_0(c_N)}).
\end{aligned}$$

1791 where the first equality holds from the strong Markov property of X^ε , we used (S.44) for the
1792 third equality, and we used Lemma S.19 for the fourth equality.

1793 To prove (ii) (b), fix $x \in S(c_N)$ and $w \in V^{(N-1)} \setminus C_N$. By the induction hypothesis,
 1794 $\mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(w)] = \Theta(\varepsilon^{\mathcal{K}_{uw}})$ for each $y \in S(u)$ where $u \in C_N$. Thus, starting from x , the
 1795 probability of exiting $S(c_N)$ by means of a transition from a state in $S(c_N)$ to a state in $S(w)$
 1796 is given by

$$\begin{aligned}
 1797 \quad & \mathbb{P}_x[X^\varepsilon(\tau_1^\varepsilon, N) \in S(w)] = \sum_{n=0}^{\infty} \mathbb{P}_x[X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m \leq n; X^\varepsilon(\tau_{n+1}^\varepsilon) \in S(w)] \\
 1798 \quad & = \sum_{n=0}^{\infty} \sum_{u \in C_N} \sum_{y \in S(u)} \mathbb{E}_x[\mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) = y\}}] \cdot \mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(w)] \\
 1799 \quad & = \sum_{\substack{u \in C_N: \\ (u, w) \in E^{(N-1)}}} \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in S(c_N) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(u)\}} \right] \cdot \Theta(\varepsilon^{\mathcal{K}_{uw}}) \\
 1800 \quad & = \sum_{\substack{u \in C_N: \\ (u, w) \in E^{(N-1)}}} \Theta(\varepsilon^{-k + \mathcal{K}_{uw}}) = \Theta(\varepsilon^{-k + \min\{\mathcal{K}_{uw}: u \in C_N \text{ and } (u, w) \in E^{(N-1)}\}}) = \Theta(\varepsilon^{\mathcal{K}_{c_N w}}),
 \end{aligned}$$

1801 where we used (S.44) for the third equality, and for the second equality, we used the fact that
 1802 there must be an edge in $E^{(N-1)}$ between u and w if $\mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(w)] > 0$ for some and
 1803 hence all $y \in S(u)$.

1804 To prove (ii) (c), fix $x \in S(w)$ where $w \in V^{(N-1)} \setminus C_N$. By the induction hypothesis,
 1805 $\mathbb{P}_x[X^\varepsilon(\tau_1^\varepsilon) \in S(v)] = \Theta(\varepsilon^{\mathcal{K}_{wv}})$ for each $v \in C_N$. Thus, starting from x , the probability of
 1806 entering $S(c_N)$ by means of a transition from a state in $S(w)$ to a state in $S(c_N)$ is

$$\begin{aligned}
 1807 \quad & \mathbb{P}_x[X^\varepsilon(\tau_1^\varepsilon, N) \in S(c_N)] = \sum_{v \in C_N} \mathbb{P}_x[X^\varepsilon(\tau_1^\varepsilon) \in S(v)] \\
 1808 \quad & = \sum_{\substack{v \in C_N: \\ (w, v) \in E^{(N-1)}}} \Theta(\varepsilon^{\mathcal{K}_{wv}}) = \Theta(\varepsilon^{\min\{\mathcal{K}_{wv}: v \in C_N \text{ and } (w, v) \in E^{(N-1)}\}}) = \Theta(\varepsilon^{\mathcal{K}_{wc_N}}).
 \end{aligned}$$

1809 ■

1810 S.5.4 Justification for Step 4 of the algorithm

1811 **Lemma S.21.** Fix $w \in V^{(M,0)} \setminus \{a\}$. Let $\tau_n^\varepsilon = \tau_n^{\varepsilon,M}$, for $n = 0, 1, 2, \dots$, as defined in Section
 1812 S.5.2. Then, starting from $x \in S(w)$, the expected number of distinct visits to $S(w)$, including
 1813 the initial start there, before X^ε enters $S(a)$ is

$$1814 \quad \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \notin S(a) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w)\}} \right] = \Theta(1).$$

1815 *Proof.* Let $\zeta_0^\varepsilon = 0$, and for $n = 1, 2, \dots$, successively define

$$1816 \quad \eta_{n-1}^\varepsilon = \inf \left\{ t \geq \zeta_{n-1}^\varepsilon : X^\varepsilon(t) \notin S(v) \text{ where } v \in V^{(M,0)} \text{ and } X^\varepsilon(\zeta_{n-1}^\varepsilon) \in S(v) \right\},$$

1817

$$1818 \quad \zeta_n^\varepsilon = \inf \left\{ t \geq \eta_{n-1}^\varepsilon : X^\varepsilon(t) \in S(w) \cup S(a) \right\}.$$

1819 Note that for $x \in S(w)$, \mathbb{P}_x -a.s.,

1820 (S.45)
$$\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \notin S(a) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w)\}} = \sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\zeta_m^\varepsilon) \in S(w) \text{ for } 0 \leq m \leq n\}},$$

1821 since they both count the number of distinct visits to $S(w)$, including the initial start there,
1822 before X^ε enters $S(a)$.

1823 Recall from Section S.4 that for each $u \in V^{(M,0)} \setminus \{a\}$, there is an r-path from u to a . Let
1824 such an r-path from w to a be $w \rightarrow w_1 \dots \rightarrow w_d \rightarrow a$ where w, w_1, \dots, w_d, a are distinct. By
1825 definition, an edge $(u, v) \in V^{(M,0)}$ is an r-edge implies that $\mathbb{P}_z[X^\varepsilon(\tau_1^\varepsilon) \in S(v)] = \Theta(1)$ for all
1826 $z \in S(u)$. Thus, for any $y \in S(w)$, using the strong Markov property of X^ε , we have

1827
$$\begin{aligned} \Theta(1) &= 1 \geq \mathbb{P}_y[X^\varepsilon(\zeta_1^\varepsilon) \notin S(w)] = \mathbb{P}_y[X^\varepsilon(\zeta_1^\varepsilon) \in S(a)] \\ 1828 &\geq \mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(w_1), \dots, X^\varepsilon(\tau_d^\varepsilon) \in S(w_d), X^\varepsilon(\tau_{d+1}^\varepsilon) \in S(a)] \\ 1829 &= \sum_{z \in S(w_d)} \mathbb{P}_x[X^\varepsilon(\tau_1^\varepsilon) \in S(w_1), \dots, X^\varepsilon(\tau_d^\varepsilon) \in S(w_d), X^\varepsilon(\tau_d^\varepsilon) = z] \cdot \mathbb{P}_z[X^\varepsilon(\tau_1^\varepsilon) \in S(a)] \\ 1830 &= \mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(w_1), \dots, X^\varepsilon(\tau_d^\varepsilon) \in S(w_d)] \cdot \Theta(1) = \dots = \Theta(1) \cdot \dots \cdot \Theta(1) = \Theta(1). \end{aligned}$$

1831 Using a similar approach to that used in Section S.5.3, we can show that for $x \in S(w)$,

1832
$$\mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\zeta_m^\varepsilon) \in S(w) \text{ for } 0 \leq m \leq n\}} \right] \geq \frac{1}{\max_{y \in S(w)} \mathbb{P}_y[X^\varepsilon(\zeta_1^\varepsilon) \notin S(w)]} = \Theta(1),$$

1833 and

1834
$$\mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\zeta_m^\varepsilon) \in S(w) \text{ for } 0 \leq m \leq n\}} \right] \leq \frac{1}{\min_{y \in S(w)} \mathbb{P}_y[X^\varepsilon(\zeta_1^\varepsilon) \notin S(w)]} = \Theta(1).$$

1835 Combining these inequalities with (S.45) yields the desired result. ■

1836 **Theorem S.22.** *Let $\tau_B^\varepsilon = \inf\{t \geq 0 : X^\varepsilon(t) \in \mathcal{B}\}$ be the first passage time to \mathcal{B} for X^ε . For
1837 each $N = 1, \dots, |V^{(M)}| - 1$ and $x \in S(v_N)$, we have*

1838 (S.46)
$$\mathbb{E}_x[\tau_B^\varepsilon] = \Theta(\varepsilon^{-p(v_N)}).$$

1839 *Proof.* It suffices by iteration to prove that for each fixed $1 \leq N \leq |V^{(M)}| - 1$, if

1840 (S.47)
$$\mathbb{E}_y[\tau_B^\varepsilon] = \Theta(\varepsilon^{-p(v_k)}) \text{ for all } y \in S(v_k) \text{ and } 1 \leq k \leq N - 1,$$

1841 then (S.46) holds for all $x \in S(v_N)$. By convention, (S.47) holds automatically for $N = 1$.

1842 For the iteration step, fix $1 \leq N \leq |V^{(M)}| - 1$, and assume that (S.47) holds. If $N = 1$, let
1843 $A = V^{(M,0)} \setminus \{a\}$, and if $N > 1$, let $A = V^{(M,0)} \setminus \{v_1, \dots, v_{N-1}, a\}$. Recall that for $w \in A$ and
1844 $1 \leq k \leq N - 1$, we have $w \in V^{(M,k)}$, and so by (S.35),

1845 (S.48)
$$p_k(w) = \begin{cases} \max\{p_{k-1}(w), p_{k-1}(v_k) - \mathcal{K}_{wv_k}\} & \text{for } (w, v_k) \in E^{(M,k-1)}, \\ p_{k-1}(w), & \text{for } (w, v_k) \notin E^{(M,k-1)}. \end{cases}$$

1846 Note that $(w, v_k) \in E^{(M, k-1)}$ if and only if $(w, v_k) \in E^{(M, 0)}$. Since $p_{k-1}(v_k) =: p(v_k)$ for
 1847 $1 \leq k \leq N-1$, by iterating (S.48), we can obtain

1848 (S.49) $p_{N-1}(w) = \max\{p_0(w), \max\{p(v_k) - \mathcal{K}_{wv_k} : 1 \leq k \leq N-1 \text{ and } (w, v_k) \in E^{(M, 0)}\}\}$,

1849 where we make the convention that a maximum over an empty set is $-\infty$. In particular, since
 1850 $v_N \in A$, we have

(S.50) $p(v_N) := p_{N-1}(v_N) = \max\{p_0(v_N), \max\{p(v_k) - \mathcal{K}_{v_N v_k} : 1 \leq k \leq N-1 \text{ and } (v_N, v_k) \in E^{(M, 0)}\}\}$.

1852 Fix $x \in S(v_N)$. We will derive a lower bound and an upper bound for $\mathbb{E}_x[\tau_{\mathcal{B}}^\varepsilon]$. For the lower
 1853 bound, let $\tau^\varepsilon = \inf\{t \geq 0 : X^\varepsilon(t) \notin S(v_N)\}$. Recall that \mathbb{P}_x -a.s., $\tau^\varepsilon = \tau_1^{\varepsilon, M}$ as defined in
 1854 Section S.5.2. By Lemma S.20, for each $y \in S(w)$ where $w \in V^{(M, 0)} = V^{(M)}$ is such that
 1855 $(v_N, w) \in E^{(M, 0)} = E^{(M)}$, $\mathbb{P}_x[X^\varepsilon(\tau^\varepsilon) = y] = \Theta(\varepsilon^{\mathcal{K}_{v_N w}})$ and $\mathbb{E}_x[\tau^\varepsilon] = \Theta(\varepsilon^{-p_0(v_N)})$. By first
 1856 step analysis,

1857
$$\mathbb{E}_x[\tau_{\mathcal{B}}^\varepsilon] = \mathbb{E}_x[\tau^\varepsilon] + \sum_{(v_N, w) \in E^{(M, 0)}} \sum_{y \in S(w)} \mathbb{P}_x[X^\varepsilon(\tau^\varepsilon) = y] \cdot \mathbb{E}_y[\tau_{\mathcal{B}}^\varepsilon]$$

 1858
$$\geq \mathbb{E}_x[\tau^\varepsilon] + \sum_{\substack{1 \leq k \leq N-1: \\ (v_N, v_k) \in E^{(M, 0)}}} \sum_{y \in S(v_k)} \mathbb{P}_x[X^\varepsilon(\tau^\varepsilon) = y] \cdot \mathbb{E}_y[\tau_{\mathcal{B}}^\varepsilon]$$

 1859 (S.51)
$$= \Theta(\varepsilon^{-p_0(v_N)}) + \sum_{\substack{1 \leq k \leq N-1: \\ (v_N, v_k) \in E^{(M, 0)}}} \Theta(\varepsilon^{\mathcal{K}_{v_N v_k}}) \cdot \Theta(\varepsilon^{-p(v_k)}) = \Theta(\varepsilon^{-p_{N-1}(v_N)}).$$

1860 where we used (S.47) in the second last equality, and used Lemma S.19 and (S.50) for the last
 1861 equality.

1862 For the upper bound, let $\eta^\varepsilon = \inf\{t \geq 0 : X^\varepsilon(t) \notin \bigcup_{u \in A} S(u)\}$. Let $\tau_n^\varepsilon = \tau_n^{\varepsilon, M}$, for
 1863 $n = 0, 1, 2, \dots$, as defined in Section S.5.2. Then, using Lemma S.21 and the strong Markov
 1864 property, for $w \in A \subset V^{(M, 0)} \setminus \{a\}$,

1865
$$\mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in \bigcup_{u \in A} S(u) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w)\}} \right]$$

 1866 (S.52)
$$\leq \mathbb{P}_x[X^\varepsilon(\zeta^\varepsilon) \in S(w)] \max_{y \in S(w)} \mathbb{E}_y \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \notin S(a) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w)\}} \right] \leq \Theta(1).$$

1867 where $\zeta^\varepsilon = \inf\{t \geq 0 : X^\varepsilon(t) \in S(w)\}$.

1868 For $1 \leq k \leq N-1$ such that there exists $w \in A$ where $(w, v_k) \in E^{(M, 0)}$,

1869
$$\mathbb{P}_x[X^\varepsilon(\eta^\varepsilon) \in S(v_k)] = \sum_{n=0}^{\infty} \mathbb{P}_x[X^\varepsilon(\tau_m^\varepsilon) \in \bigcup_{u \in A} S(u) \text{ for } 0 \leq m \leq n; X^\varepsilon(\tau_{n+1}^\varepsilon) \in S(v_k)]$$

 1870
$$= \sum_{n=0}^{\infty} \sum_{w \in A} \sum_{y \in S(w)} \mathbb{P}_x[X^\varepsilon(\tau_m^\varepsilon) \in \bigcup_{u \in A} S(u) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) = y] \cdot \mathbb{P}_y[X^\varepsilon(\tau_1^\varepsilon) \in S(v_k)]$$

$$\begin{aligned}
1871 \quad &= \sum_{\substack{w \in A: \\ (w, v_k) \in E^{(M, 0)}}} \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in \bigcup_{u \in A} S(u) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w)\}} \right] \cdot \Theta(\varepsilon^{\mathcal{K}_{wv_k}}) \\
1872 \quad (\text{S.53}) \leq & \sum_{\substack{w \in A: \\ (w, v_k) \in E^{(M, 0)}}} \Theta(1) \cdot \Theta(\varepsilon^{\mathcal{K}_{wv_k}}),
\end{aligned}$$

1873 where the second equality holds from strong Markov property of X^ε , the third equality uses
1874 Lemma S.20, and we used (S.52) for the last inequality. Using Lemma S.20 and (S.52),

$$\begin{aligned}
1875 \quad \mathbb{E}_x[\eta^\varepsilon] &= \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in \bigcup_{u \in A} S(u) \text{ for } 0 \leq m \leq n\}} \cdot (\tau_{n+1}^\varepsilon - \tau_n^\varepsilon) \right] \\
1876 \quad &= \sum_{n=0}^{\infty} \sum_{w \in A} \sum_{y \in S(w)} \mathbb{P}_x[X^\varepsilon(\tau_m^\varepsilon) \in \bigcup_{u \in A} S(u) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) = y] \cdot \mathbb{E}_y[\tau_1^\varepsilon - \tau_0^\varepsilon] \\
1877 \quad &= \sum_{w \in A} \mathbb{E}_x \left[\sum_{n=0}^{\infty} \mathbb{1}_{\{X^\varepsilon(\tau_m^\varepsilon) \in \bigcup_{u \in A} S(u) \text{ for } 0 \leq m < n; X^\varepsilon(\tau_n^\varepsilon) \in S(w)\}} \right] \cdot \Theta(\varepsilon^{-p_0(w)}) \\
1878 \quad (\text{S.54}) \leq & \sum_{w \in A} \Theta(1) \cdot \Theta(\varepsilon^{-p_0(w)}) \leq \Theta(\varepsilon^{-p_{N-1}(v_N)}),
\end{aligned}$$

1879 where we have used (S.49) and (S.34) to conclude that $p_0(w) \leq p_{N-1}(w) \leq p_{N-1}(v_N)$ for all
1880 $w \in A$. Therefore, using first step analysis, we have

$$\begin{aligned}
1881 \quad \mathbb{E}_x[\tau_B^\varepsilon] &= \mathbb{E}_x[\eta^\varepsilon] + \sum_{1 \leq k \leq N-1} \sum_{y \in S(v_k)} \mathbb{P}_x[X^\varepsilon(\eta^\varepsilon) = y] \cdot \mathbb{E}_y[\tau_B^\varepsilon] \\
1882 \quad &= \mathbb{E}_x[\eta^\varepsilon] + \sum_{1 \leq k \leq N-1} \mathbb{P}_x[X^\varepsilon(\eta^\varepsilon) \in S(v_k)] \cdot \Theta(\varepsilon^{-p(v_k)}) \\
1883 \quad &\leq \Theta(\varepsilon^{-p_{N-1}(v_N)}) + \sum_{\substack{w \in A, \\ 1 \leq k \leq N-1: \\ (w, v_k) \in E^{(M, 0)}}} \Theta(\varepsilon^{\mathcal{K}_{wv_k}}) \cdot \Theta(\varepsilon^{-p(v_k)}) \\
1884 \quad (\text{S.55}) \leq & \Theta(\varepsilon^{-p_{N-1}(v_N)}) + \Theta(\varepsilon^{-\max\{p_{N-1}(w): w \in A\}}) = \Theta(\varepsilon^{-p_{N-1}(v_N)}),
\end{aligned}$$

1885 where we used (S.47) for the second equality, (S.53) and (S.54) for the first inequality, and
1886 (S.49) and Lemma S.19 for the second inequality.

1887 By (S.51) and (S.55), we conclude that $\mathbb{E}_x[\tau_B^\varepsilon] = \Theta(\varepsilon^{-p_{N-1}(v_N)}) = \Theta(\varepsilon^{-p(v_N)})$. ■

1888 **S.6 Application of the algorithm to the 2D, 3D and 4D models** The algorithm is
1889 described in Section 4.2.1, and it finds the order of the pole of the mean first passage time to
1890 $\emptyset \neq \mathcal{B} \subset \mathcal{X}$ from each state in \mathcal{B}^c . In this section, we will apply the algorithm to the 2D,
1891 3D and 4D models and find the order of the poles of the mean first passage times of interest
1892 to the fully repressed state and the fully active state (Figure S.1 – S.5). For each figure, the
1893 “Input” panel shows the order of each of the non-zero off-diagonal entries in $Q(\varepsilon)$ and the set
1894 \mathcal{B} which contains a single state, which is either the fully repressed state or the fully active
1895 state. The orders of these non-zero entries in $Q(\varepsilon)$ are represented by colored arrows in the
1896 graph (red for order 0 and blue for order 1). Step 1 transforms the orders in the infinitesimal

1897 generator $Q(\varepsilon)$ into orders for the transition matrix $P(\varepsilon)$ and the exponential parameters $q(\varepsilon)$
 1898 to give an equivalent construction for the continuous time Markov chain. The orders of the
 1899 non-zero entries in $P(\varepsilon)$ are given by \mathcal{K} and represented by colored arrows in the graph, and
 1900 the number in the circle at a state $x \in \mathcal{B}^c$ is the order of the pole $p(x)$ of $\frac{1}{q_x(\varepsilon)}$ (the mean
 1901 sojourn time at the state x). In Step 2, the set \mathcal{B} contains only one state and is just relabeled
 1902 as the node a . All transitions from a to \mathcal{B}^c are then removed. While the Input, Step 1 and
 1903 Step 2 are universal across all the figures in this section, we explain the Step 3, Step 4 and
 1904 Output panels separately for each application below since they are more distinct.

1905 **2D model (from the fully active state to the fully repressed state):** see Figure S.1.
 1906 The explanation of the panels for Input, Step 1 and Step 2 is given above with $\mathcal{B} = \{(D_{\text{tot}}, 0)^T\}$.
 1907 Step 3 for the 2D model involves only one iteration, where the collection of all nodes except the
 1908 node a and the origin 0 (called an r-connected set C) is condensed to a single node c , and the
 1909 order of the pole at c is $p(c) = \max_{u \in C} p(u) + \min\{\mathcal{K}_{uv} : u \in C, v \notin C \text{ and } (u, v) \in E\} = 1 + 0 =$
 1910 1, where E denotes the edge set of the graph in Step 3 before the first iteration. Moreover,
 1911 $\mathcal{K}_{c0} = \min\{\mathcal{K}_{u0} : u \in C \text{ and } (u, 0) \in E\} - \min\{\mathcal{K}_{uv} : u \in C, v \notin C \text{ and } (u, v) \in E\} = 1 - 0 = 1$,
 1912 $\mathcal{K}_{ca} = \min\{\mathcal{K}_{ua} : u \in C \text{ and } (u, a) \in E\} - \min\{\mathcal{K}_{uv} : u \in C, v \notin C \text{ and } (u, v) \in E\} = 0 - 0 = 0$,
 1913 and $\mathcal{K}_{0c} = \min\{\mathcal{K}_{0v} : v \in C \text{ and } (0, v) \in E\} = 0$. Step 4 involves two iterations. In the
 1914 first iteration, we fix the node with the largest value of p , which is c in our case. At any
 1915 node other than a that is connected to c (i.e., the origin 0), the value of p is updated to
 1916 $p(0) = \max\{p(0), p(c) - \mathcal{K}_{0c}\} = \max\{0, 1 - 0\} = 1$, and then any edges leading to or from c
 1917 are removed. In the second iteration, of the remaining nodes, we fix the node with the largest
 1918 value of p , which is the origin. When all of the nodes other than a have been fixed, the order
 1919 of the pole of the mean first passage time from each state in \mathcal{B}^c to \mathcal{B} is given by the fixed value
 1920 of the node to which the state belongs.

1921 **2D model (from the fully repressed state to the fully active state)** Because of the
 1922 symmetry in the input graph in Figure S.1, the orders of the poles of the mean first passage
 1923 times to the fully repressed state can be obtained in the same way as above.

1924 **3D model (from the fully active state to the fully repressed state):** see Figure S.2. The
 1925 explanation of the panels for Input, Step 1 and Step 2 is given above with $\mathcal{B} = \{(D_{\text{tot}}, 0, 0)^T\}$.
 1926 A state represents $(n_{D_{12}^R}, n_{DA}, n_{D_1^R})^T$. Step 3 involves only one iteration, where the collection of
 1927 all nodes except for $(0, 0, 0)^T, (0, 0, D_{\text{tot}})^T, (1, 0, D_{\text{tot}} - 1)^T, (2, 0, D_{\text{tot}} - 2)^T, \dots, (D_{\text{tot}} - 2, 0, 2)^T$,
 1928 and $(D_{\text{tot}} - 1, 0, 1)^T$ (called an r-connected set C) is condensed to a single node c . The order of
 1929 the pole of the sojourn time at C is $p(c) = \max_{u \in C} p(u) + \min\{\mathcal{K}_{uv} : u \in C, v \notin C \text{ and } (u, v) \in$
 1930 $E\} = 1 + 0 = 1$, where E denotes the edge set of the graph in Step 3 before the first iteration.
 1931 Moreover, $\mathcal{K}_{c,(0,0,0)^T} = \min\{\mathcal{K}_{u,(0,0,0)^T} : u \in C \text{ and } (u, (0, 0, 0)^T) \in E\} - \min\{\mathcal{K}_{uv} : u \in C, v \notin$
 1932 $C \text{ and } (u, v) \in E\} = 1 - 0 = 1$, $\mathcal{K}_{(0,0,0)^T,c} = \min\{\mathcal{K}_{(0,0,0)^T,v} : v \in C \text{ and } ((0, 0, 0)^T, v) \in$
 1933 $E\} = 0$, $\mathcal{K}_{c,(0,0,D_{\text{tot}})^T} = \min\{\mathcal{K}_{u,(0,0,D_{\text{tot}})^T} : u \in C \text{ and } (u, (0, 0, D_{\text{tot}})^T) \in E\} - \min\{\mathcal{K}_{uv} : u \in C, v \notin C \text{ and } (u, v) \in E\} = 0 - 0 = 0$, $\mathcal{K}_{(0,0,D_{\text{tot}})^T,c} = \min\{\mathcal{K}_{(0,0,D_{\text{tot}})^T,v} : v \in C \text{ and } ((0, 0, D_{\text{tot}})^T, v) \in E\} = 1$,
 1934 \dots , and $\mathcal{K}_{c,(D_{\text{tot}}-1,0,1)^T} = \min\{\mathcal{K}_{u,(D_{\text{tot}}-1,0,1)^T} : u \in C \text{ and } ((D_{\text{tot}} - 1, 0, 1)^T, v) \in E\} - \min\{\mathcal{K}_{uv} : u \in C, v \notin C \text{ and } (u, v) \in E\} = 0 - 0 = 0$,
 1935 $\mathcal{K}_{(D_{\text{tot}}-1,0,1)^T,c} = \min\{\mathcal{K}_{(D_{\text{tot}}-1,0,1)^T,v} : v \in C \text{ and } ((D_{\text{tot}} - 1, 0, 1)^T, v) \in E\} = 1$. Step 4
 1936 involves $(D_{\text{tot}} + 2)$ iterations. In the first iteration, we fix the node with the largest value of
 1937 p , which is c in our case. At any node u other than a that is connected to c , the value of p is
 1938

1940 updated according to the formula $p(u) = \max\{p(u), p(c) - \mathcal{K}_{uc}\}$, and then any edges leading
 1941 to or from c are removed. In the second iteration, the node $(0, 0, 0)^T$ has the largest value of p
 1942 among the remaining nodes, and thus is fixed. There is no other nodes connected to $(0, 0, 0)^T$
 1943 at this point, so we move to the next iteration. In the third iteration, the node $(0, 0, D_{\text{tot}})^T$ is
 1944 fixed. The node $(1, 0, D_{\text{tot}} - 1)^T$ is connected to it, and thus the $p((1, 0, D_{\text{tot}} - 1)^T)$ is updated
 1945 to be $\max\{p((1, 0, D_{\text{tot}} - 1)^T), p((0, 0, D_{\text{tot}})^T) - \mathcal{K}_{(1,0,D_{\text{tot}}-1)^T,(0,0,D_{\text{tot}})^T}\} = 0$. Then, any edges
 1946 leading to or from $(0, 0, D_{\text{tot}})^T$ are removed. The remaining iterations will be similar to the
 1947 third one. When all of the nodes other than a have been fixed, the order of the pole of the
 1948 mean first passage time from each state in \mathcal{B}^c to \mathcal{B} is given by the fixed value of the node to
 1949 which the state belongs.

1950 **3D model (from the fully repressed state to the fully active state):** see Figure
 1951 [S.3](#). The explanation of the panels for Input, Step 1 and Step 2 is given above with $\mathcal{B} =$
 1952 $\{(0, D_{\text{tot}}, 0)^T\}$. Step 3 involves two iterations. In the first iteration, the collection of nodes
 1953 consisting of $(D_{\text{tot}} - 1, 0, 1)^T$ and $(D_{\text{tot}}, 0, 0)^T$ (called an r-connected set C_1) is condensed into
 1954 a single node c_1 . The order of the pole of the sojourn time in C_1 is $p(c_1) = \max_{u \in C_1} p(u) +$
 1955 $\min\{\mathcal{K}_{uv} : u \in C_1, v \notin C_1 \text{ and } (u, v) \in E\} = 1 + 1 = 2$, where E denotes the edge set of the
 1956 graph in Step 3 before the first iteration. Moreover, $\mathcal{K}_{c_1, (D_{\text{tot}} - 2, 0, 2)^T} = \min\{\mathcal{K}_{u, (D_{\text{tot}} - 2, 0, 2)^T} : u \in C_1 \text{ and } (u, (D_{\text{tot}} - 2, 0, 2)^T) \in E\} - \min\{\mathcal{K}_{uv} : u \in C_1, v \notin C_1 \text{ and } (u, v) \in E\} = 1 - 1 = 0$, $\mathcal{K}_{(D_{\text{tot}} - 2, 0, 2)^T, c_1} = \min\{\mathcal{K}_{(D_{\text{tot}} - 2, 0, 2)^T, v} : v \in C_1 \text{ and } ((D_{\text{tot}} - 2, 0, 2)^T, v) \in E\} = 0$,
 1957 $\mathcal{K}_{c_1, (D_{\text{tot}} - 1, 0, 0)^T} = \min\{\mathcal{K}_{u, (D_{\text{tot}} - 1, 0, 0)^T} : u \in C_1 \text{ and } (u, (D_{\text{tot}} - 1, 0, 0)^T) \in E\} - \min\{\mathcal{K}_{uv} : u \in C_1, v \notin C_1 \text{ and } (u, v) \in E\} = 1 - 1 = 0$ and $\mathcal{K}_{(D_{\text{tot}} - 1, 0, 0)^T, c_1} = \min\{\mathcal{K}_{(D_{\text{tot}} - 1, 0, 0)^T, v} : v \in C_1 \text{ and } ((D_{\text{tot}} - 1, 0, 0)^T, v) \in E\} = 0$. In the second iteration of Step 3, the collection of all
 1958 nodes except for $(0, 0, 0)^T$ and a (called an r-connected set C_2) is condensed to a single node c_2 .
 1959 The order of the pole of the sojourn time in C_2 is $p(c_2) = \max_{u \in C_2} p(u) + \min\{\mathcal{K}_{uv} : u \in C_2, v \notin$
 1960 $C_2 \text{ and } (u, v) \in E\} = 2 + 0 = 2$, where E denotes the edge set of the graph in Step 3 before
 1961 the second iteration. Moreover, $\mathcal{K}_{c_2, (0, 0, 0)^T} = \min\{\mathcal{K}_{u, (0, 0, 0)^T} : u \in C_2 \text{ and } (u, (0, 0, 0)^T) \in$
 1962 $E\} - \min\{\mathcal{K}_{uv} : u \in C_2, v \notin C_2 \text{ and } (u, v) \in E\} = 1 - 0 = 1$, $\mathcal{K}_{c_2, a} = \min\{\mathcal{K}_{ua} : u \in$
 1963 $C_2 \text{ and } (u, a) \in E\} - \min\{\mathcal{K}_{uv} : u \in C_2, v \notin C_2 \text{ and } (u, v) \in E\} = 0 - 0 = 0$, and $\mathcal{K}_{(0, 0, 0)^T, c_2} =$
 1964 $\min\{\mathcal{K}_{(0, 0, 0)^T, v} : v \in C_2 \text{ and } ((0, 0, 0)^T, v) \in E\} = 0$. Step 4 involves two iterations. In the
 1965 first iteration, we fix the node with the largest value of p , which is c_2 in our case. At any node
 1966 other than a that is connected to c_2 (i.e., the origin $(0, 0, 0)^T$), the value of p is updated to
 1967 $p((0, 0, 0)^T) = \max\{p((0, 0, 0)^T), p(c_2) - \mathcal{K}_{(0,0,0)^T,c_2}\} = \max\{0, 2 - 0\} = 2$, and then any edges
 1968 leading to or from c_2 are removed. In the second iteration, among the remaining nodes, we fix
 1969 the node with the largest value of p , which is the origin. When all of the nodes other than a
 1970 have been fixed, the order of the pole of the mean first passage time from each state in \mathcal{B}^c to
 1971 \mathcal{B} is given by the fixed value of the node to which the state belongs.

1972 **4D model (from the fully active state to the fully repressed state):** see Figure
 1973 [S.4](#). We illustrate how to use the algorithm for the 4D model when $D_{\text{tot}} = 2$; for larger
 1974 D_{tot} , the methodology will be the same. A state represents $(n_{D_{12}^R}, n_{DA}, n_{D_1^R}, n_{D_2^R})^T$. The
 1975 explanation of the panels for Input, Step 1 and Step 2 is given above with $\mathcal{B} = \{(2, 0, 0, 0)^T\}$.
 1976 Step 3 involves only one iteration, where the collection of all nodes except for $(0, 0, 0, 0)^T$,
 1977 $(0, 0, 2, 0)^T$, $(0, 0, 1, 1)^T$, $(0, 0, 0, 2)^T$, $(1, 0, 1, 0)^T$ and $(1, 0, 0, 1)^T$ (called an r-connected set C)
 1978 is condensed to a single node c . The order of the pole of the sojourn time in C is $p(c) =$

1983 $\max_{u \in C} p(u) + \min\{\mathcal{K}_{uv} : u \in C, v \notin C \text{ and } (u, v) \in E\} = 1 + 0 = 1$, where E denotes
 1984 the edge set of the graph in Step 3 before the first iteration. Moreover, the value of \mathcal{K} for
 1985 edges between c and an original node w that is not in C are defined according to the formula
 1986 $\mathcal{K}_{c,w} = \min\{\mathcal{K}_{uw} : u \in C \text{ and } (u, w) \in E\} - \min\{\mathcal{K}_{uv} : u \in C, v \notin C \text{ and } (u, v) \in E\}$,
 1987 $\mathcal{K}_{w,c} = \min\{\mathcal{K}_{w,v} : v \in C \text{ and } (w, v) \in E\}$. Step 4 involves seven iterations. In the first
 1988 iteration, we fix the node with the largest value of p , which is c in our case. At any node
 1989 u other than a that is connected to c , the value of p is updated according to the formula
 1990 $p(u) = \max\{p(u), p(c) - \mathcal{K}_{uc}\}$, and then any edges leading to or from c are removed. In
 1991 the second iteration of Step 4, the node $(0, 0, 0, 0)^T$ has the largest value of p among the
 1992 remaining nodes, and then is fixed. There are no other nodes connected to $(0, 0, 0, 0)^T$ at
 1993 this point, so we move to the next iteration. In the third iteration, the node $(0, 0, 2, 0)^T$
 1994 is fixed. The node $(1, 0, 1, 0)^T$ is connected to it, and thus $p((1, 0, 1, 0)^T)$ is updated to be
 1995 $\max\{p((1, 0, 1, 0)^T), p((0, 0, 2, 0)^T) - \mathcal{K}_{(1,0,1,0)^T,(0,0,2,0)^T}\} = 0$. Then, any edges leading to or
 1996 from $(0, 0, 2, 0)^T$ are removed. The remaining iterations will be similar to the third one. When
 1997 all of the nodes other than a have been fixed, the order of the pole of the mean first passage
 1998 time from each state in \mathcal{B}^c to \mathcal{B} is given by the fixed value of the node to which the state
 1999 belongs.

2000 **4D model (from the fully repressed state to the fully active state):** see Figure S.5.
 2001 We again illustrate how to use the algorithm for the 4D model when $D_{\text{tot}} = 2$; for larger D_{tot} ,
 2002 the methodology will be the same. The explanation of the panels for Input, Step 1 and Step
 2003 2 is given above with $\mathcal{B} = \{(0, 2, 0, 0)^T\}$. Step 3 involves two iterations. In the first iteration,
 2004 the collection of the nodes $(1, 0, 1, 0)^T$, $(1, 0, 0, 1)^T$ and $(2, 0, 0, 0)^T$ (called an r-connected set
 2005 C_1) is condensed into a single node c_1 . The order of the pole of the sojourn time in C_1
 2006 is $p(c_1) = \max_{u \in C_1} p(u) + \min\{\mathcal{K}_{uv} : u \in C_1, v \notin C_1 \text{ and } (u, v) \in E\} = 1 + 1 = 2$, where E
 2007 denotes the edge set of the graph in Step 3 before the first iteration. Moreover, the value of \mathcal{K} of
 2008 edges between c_1 and an original node w that is not in C_1 are defined if there is an edge between
 2009 some node $u \in C_1$ and w and according to the formula $\mathcal{K}_{c_1,w} = \min\{\mathcal{K}_{uw} : u \in C_1 \text{ and } (u, w) \in$
 2010 $E\} - \min\{\mathcal{K}_{uv} : u \in C_1, v \notin C_1 \text{ and } (u, v) \in E\}$, $\mathcal{K}_{w,c_1} = \min\{\mathcal{K}_{w,v} : v \in C_1 \text{ and } (w, v) \in E\}$.
 2011 In the second iteration of Step 3, the collection of all nodes except for $(0, 0, 0, 0)^T$ and a (called
 2012 an r-connected set C_2) is condensed to a single node c_2 . The order of the pole of the sojourn
 2013 time in C_2 is $p(c_2) = \max_{u \in C_2} p(u) + \min\{\mathcal{K}_{uv} : u \in C_2, v \notin C_2 \text{ and } (u, v) \in E\} = 2 + 0 = 2$,
 2014 where E denotes the edge set of the graph in Step 3 before the second iteration. Moreover,
 2015 $\mathcal{K}_{c_2,(0,0,0,0)^T} = \min\{\mathcal{K}_{u,(0,0,0,0)^T} : u \in C \text{ and } (u, (0, 0, 0, 0)^T) \in E\} - \min\{\mathcal{K}_{uv} : u \in C_2, v \notin$
 2016 $C_2 \text{ and } (u, v) \in E\} = 1 - 0 = 1$, $\mathcal{K}_{c_2,a} = \min\{\mathcal{K}_{ua} : u \in C_2 \text{ and } (u, a) \in E\} - \min\{\mathcal{K}_{uv} : u \in$
 2017 $C_2, v \notin C_2 \text{ and } (u, v) \in E\} = 0 - 0 = 0$, and $\mathcal{K}_{(0,0,0,0)^T,c_2} = \min\{\mathcal{K}_{(0,0,0,0)^T,v} : v \in$
 2018 $C_2 \text{ and } ((0, 0, 0, 0)^T, v) \in E\} = 0$. Step 4 involves two iterations. In the first iteration,
 2019 we fix the node with the largest value of p , which is c_2 in our case. At any node other
 2020 than a that is connected to c_2 (i.e., the origin $(0, 0, 0, 0)^T$), the value of p is updated to
 2021 $p((0, 0, 0, 0)^T) = \max\{p((0, 0, 0, 0)^T), p(c_2) - \mathcal{K}_{(0,0,0,0)^T,c_2}\} = \max\{0, 2 - 0\} = 2$, and then any
 2022 edges leading to or from c_2 are removed. In the second iteration, of the remaining nodes, we
 2023 fix the node with the largest value of p , which is the origin. When all of the nodes other than
 2024 a have been fixed, the order of the pole of the mean first passage time from each state in \mathcal{B}^c
 2025 to \mathcal{B} is given by the fixed value of the node to which the state belongs.

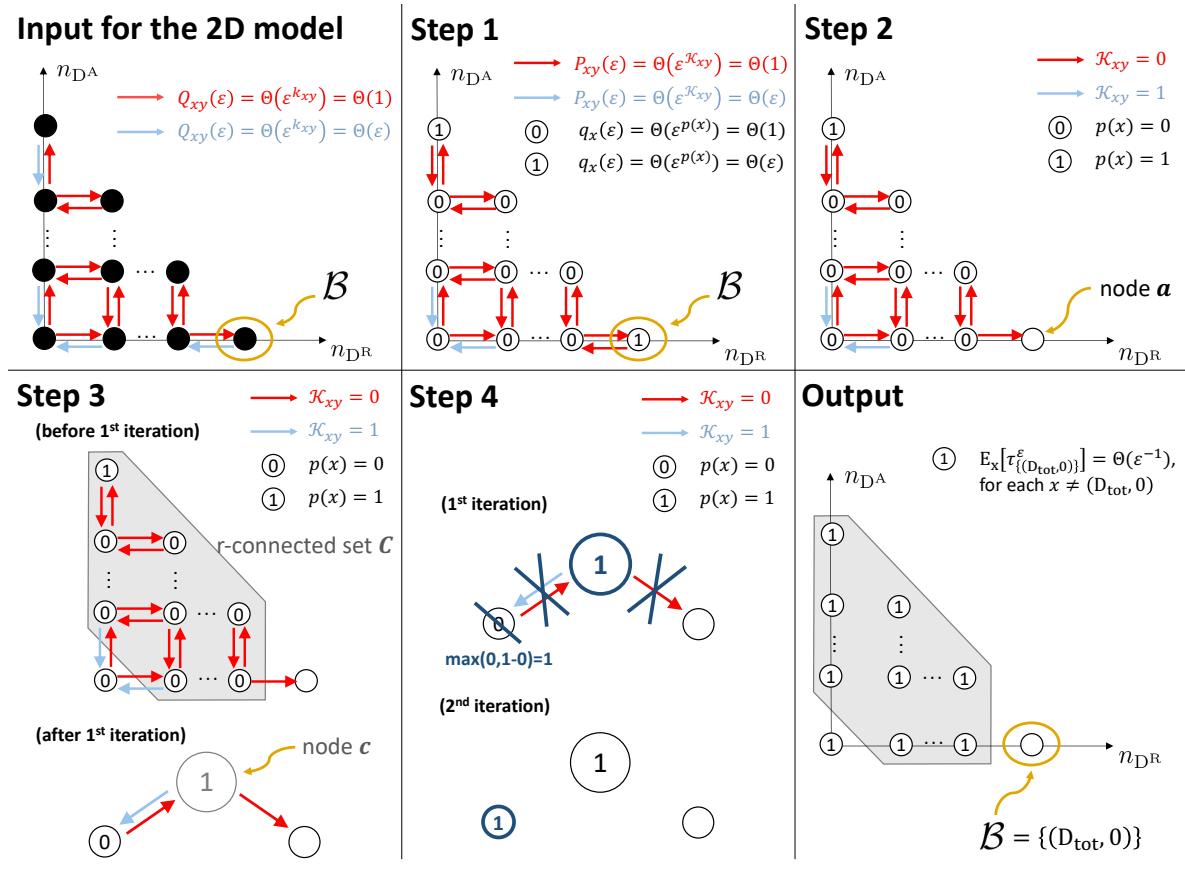


Figure S.1: Key steps of the algorithm for the 2D model.

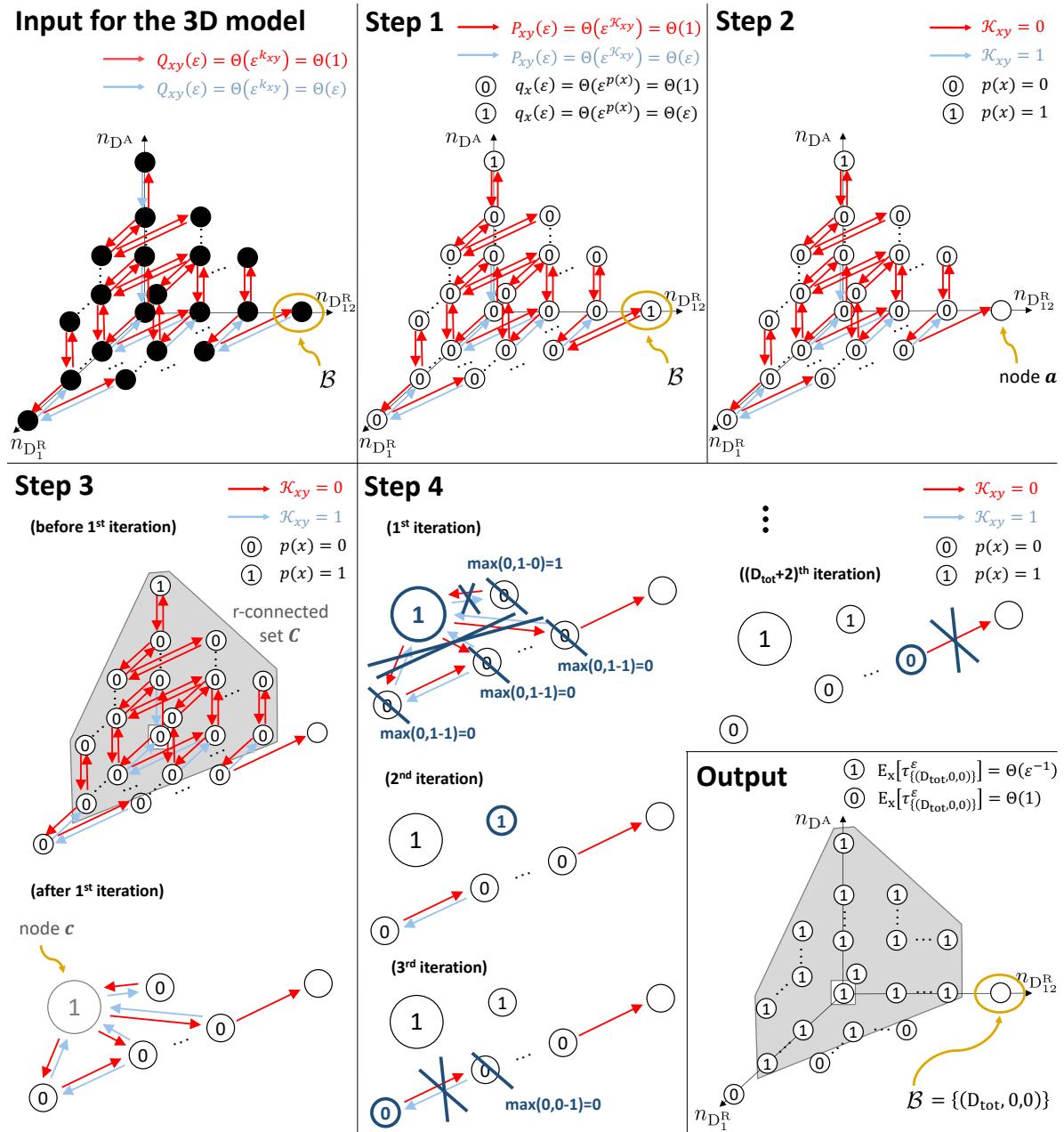


Figure S.2: Key steps of the algorithm for the 3D model (from the fully active state to the fully repressed state).

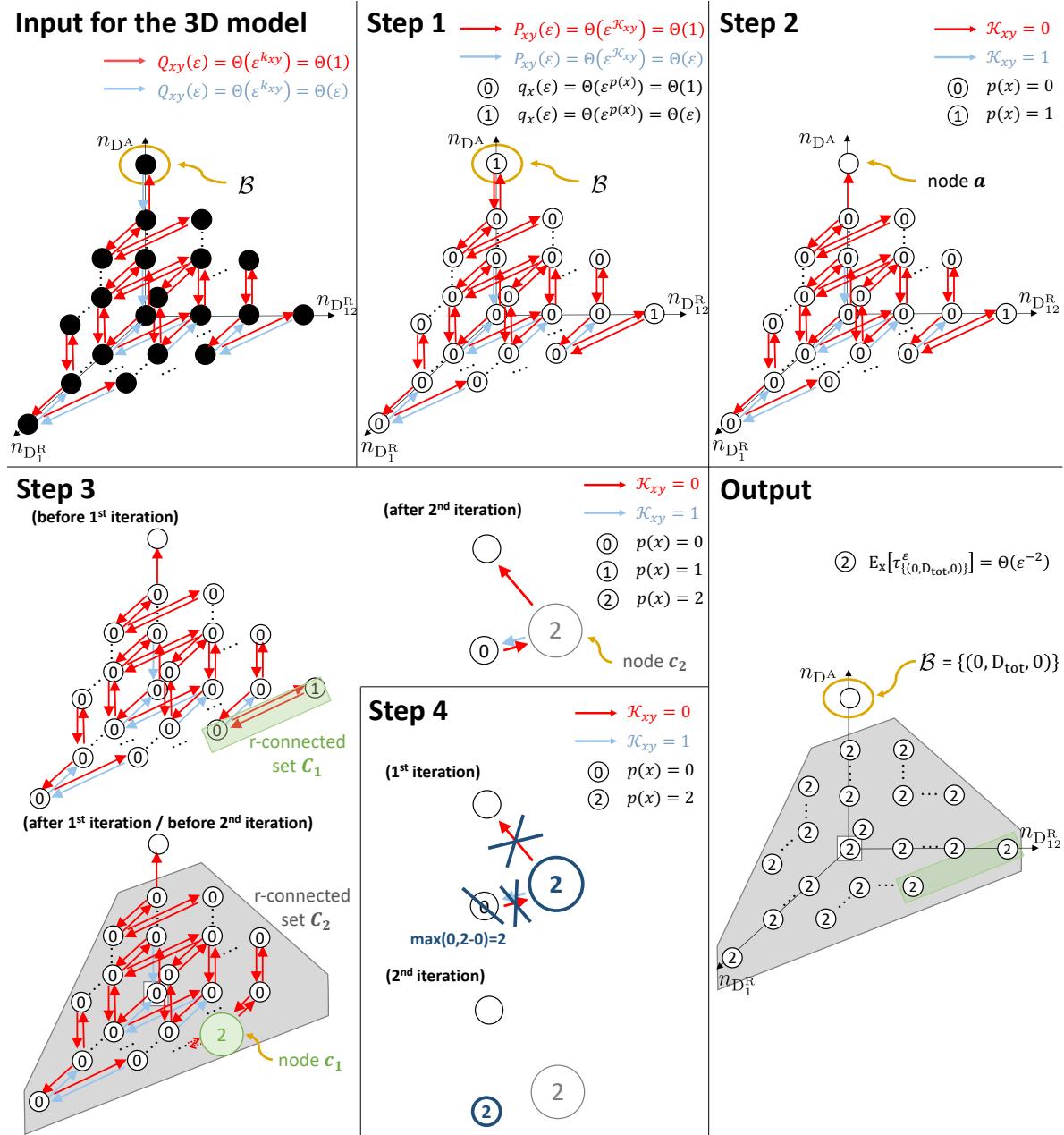


Figure S.3: Key steps of the algorithm for the 3D model (from the fully repressed state to the fully active state).

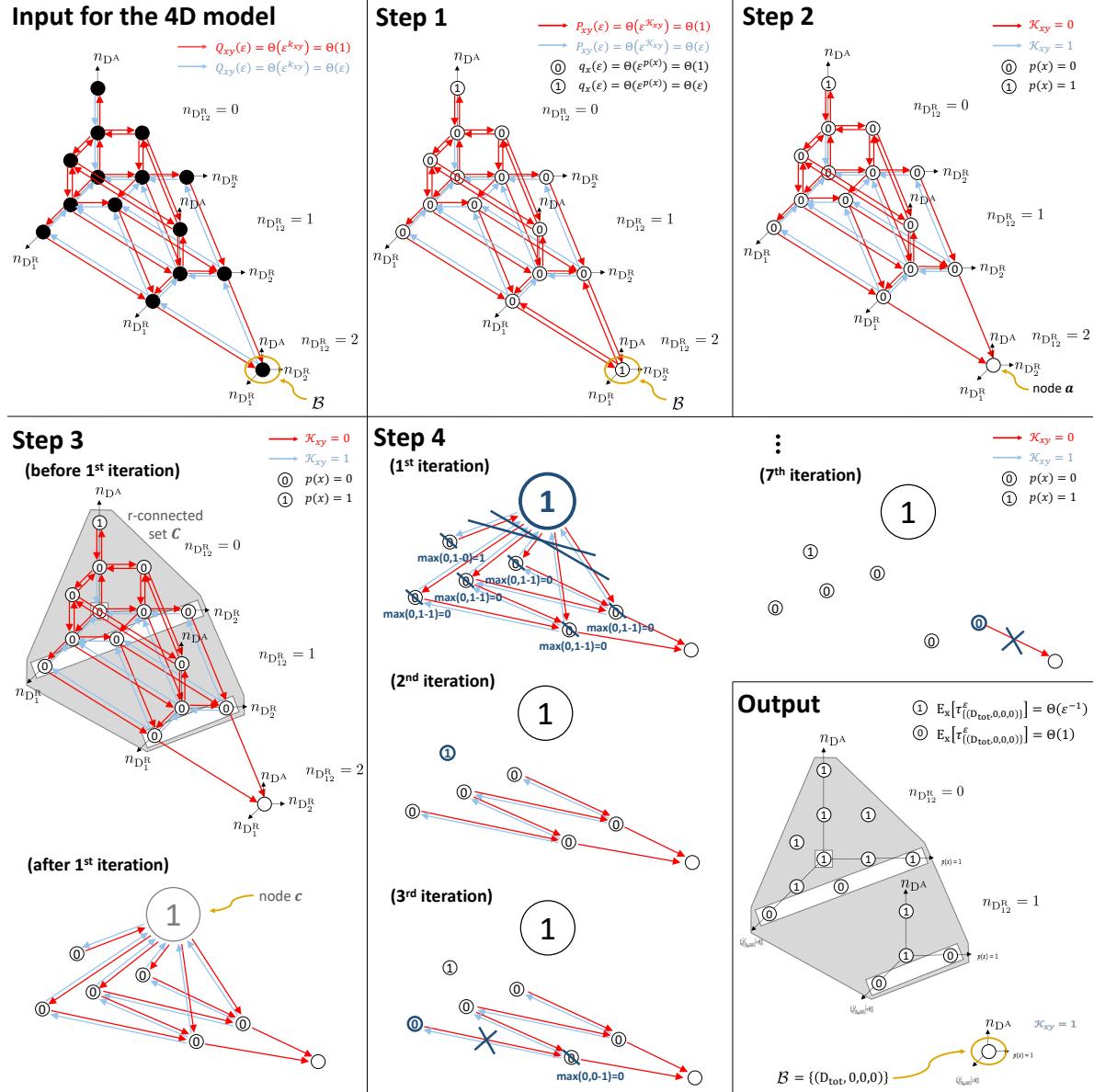


Figure S.4: Key steps of the algorithm for the 4D model (from the fully active state to the fully repressed state).

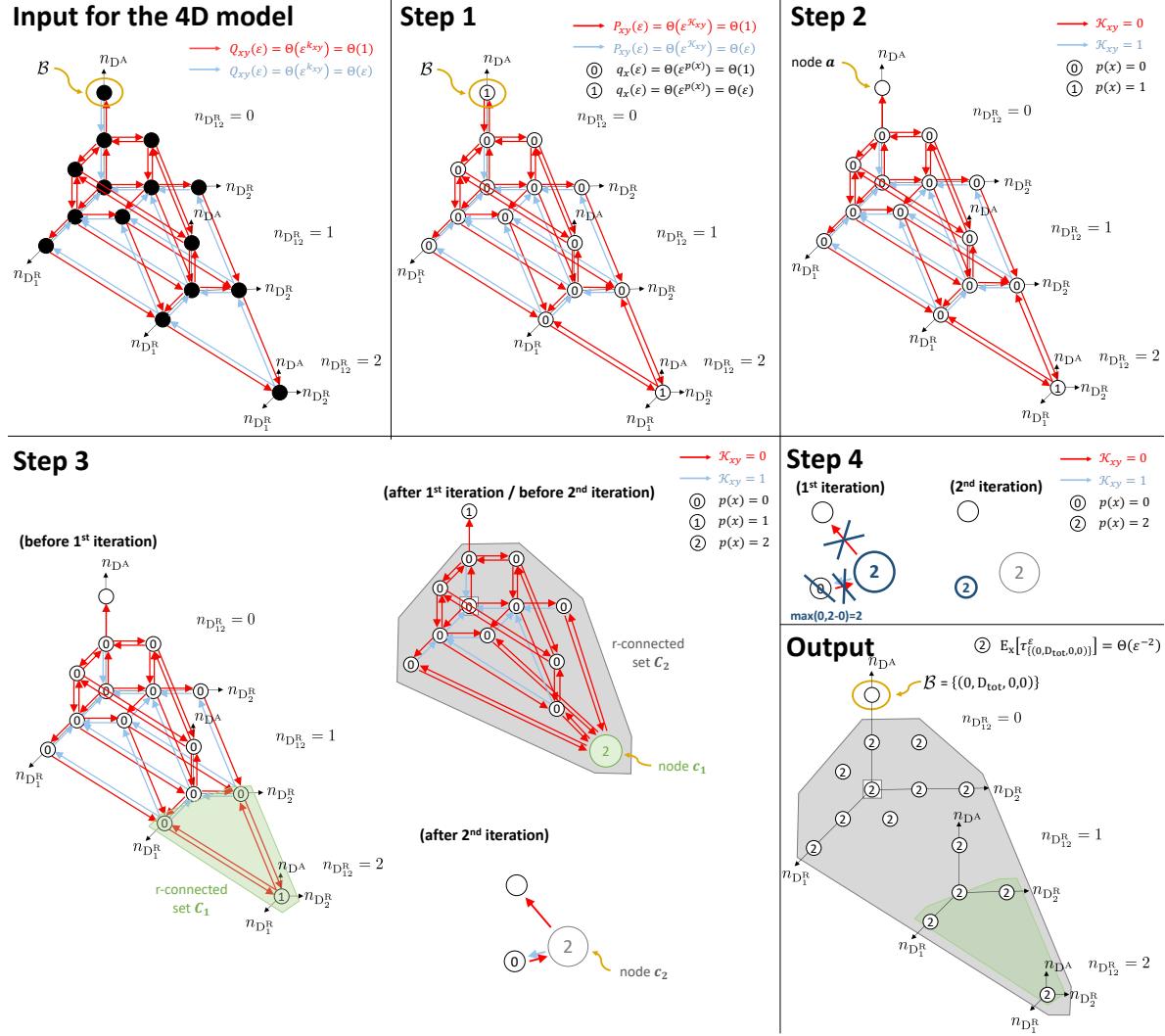


Figure S.5: Key steps of the algorithm for the 4D model (from the fully repressed state to the fully active state).

2026 **S.7 Leading coefficient for the MFPT**2027 **S.7.1 Proof of Theorem 4.7**

2028 *Proof.* Fix $\lambda = \max\{q_x(\varepsilon) : x \in \mathcal{X}, 0 \leq \varepsilon < \varepsilon_0\}$. The λ here should not be confused
 2029 with other rates λ with subscripts and/or superscripts used elsewhere of this paper. In the
 2030 following, we use the breve symbol to denote notation associated with discrete time Markov
 2031 chains defined below.

2032 Let $Y^\varepsilon = \{Y^\varepsilon(n) : n \in \mathbb{Z}_+\}$ be a discrete time Markov chain with transition matrix $\check{P}(\varepsilon) =$
 2033 $I + \frac{1}{\lambda}Q(\varepsilon)$ for each $0 \leq \varepsilon < \varepsilon_0$ ⁵. Note that Y^ε is a singularly perturbed discrete time Markov
 2034 chain under the definition of Avrachenkov et al. [2]. Let $\check{\Pi}(\varepsilon)$ be the ergodic projection of Y^ε
 2035 and $\check{H}(\varepsilon)$ be the deviation matrix of Y^ε (see definitions in SI - Section S.7.2). The ergodic
 2036 projection of Y^0 is $\check{\Pi}(0) = \check{W}\check{M}$, where I is the $|\mathcal{A}| \times |\mathcal{A}|$ identity matrix and

$$2037 \quad \check{W} = \begin{pmatrix} I \\ -T_0^{-1}R_0 \end{pmatrix} \quad \text{and} \quad \check{M} = (I \mid 0).$$

2038 Then,

$$2039 \quad \check{M}\left(\frac{1}{\lambda}Q^{(1)}\right)\check{W} = \frac{1}{\lambda} (I \mid 0) \begin{pmatrix} A_1 & S_1 \\ R_1 & T_1 \end{pmatrix} \begin{pmatrix} I \\ -T_0^{-1}R_0 \end{pmatrix} = \frac{1}{\lambda}(A_1 + S_1(-T_0)^{-1}R_0) = \frac{1}{\lambda}Q_{\mathcal{A}}.$$

2040 Assumptions 4.1, 4.2 and Lemma S.1 imply that the null space of this matrix is one dimensional.
 2041

2042 Using the computational algorithm in Section 6.3.1 of [2], the generator⁶ for an aggregated
 2043 discrete time Markov chain is $\check{M}\left(\frac{1}{\lambda}Q^{(1)}\right)\check{W} = \frac{1}{\lambda}Q_{\mathcal{A}}$, whose null space is one dimensional.
 2044 Then, by the computational algorithm on page 176-177 of [2] the deviation matrix $\check{H}(\varepsilon)$ has a
 2045 Laurent series expansion with order of the pole equal to one:

$$2046 \quad \check{H}(\varepsilon) = \frac{1}{\varepsilon}\check{H}^{(-1)} + \check{H}^{(0)} + \varepsilon\check{H}^{(1)} + \dots$$

2047 Since the aggregated Markov chain has a single recurrent class by Assumption 4.2, the ergodic
 2048 projection of the aggregated Markov chain is $\mathbf{1}\alpha$, where α is a row vector denoting the unique
 2049 stationary distribution of the aggregated discrete time Markov chain. The deviation matrix of
 2050 this aggregated Markov chain is $\check{D} = (-\frac{1}{\lambda}Q_{\mathcal{A}} + \mathbf{1}\alpha)^{-1} - \mathbf{1}\alpha$. By Theorem 6.7 in [2],

$$2051 \quad \check{H}^{(-1)} = \check{W}\check{D}\check{M} = \begin{pmatrix} I \\ -T_0^{-1}R_0 \end{pmatrix} \check{D} (I \mid 0) = \begin{pmatrix} \check{D} & \mid 0 \\ T_0^{-1}R_0\check{D} & \mid 0 \end{pmatrix}.$$

2052 For each $0 < \varepsilon < \varepsilon_0$, let $\check{h}_{x,y}(\varepsilon)$ be the mean first passage time from x to y in Y^ε . Then, the

⁵In general, when $0 < \varepsilon < \varepsilon_0$, the discrete time Markov chain Y^ε is different from the embedded discrete time Markov chain described in Section 3.1. In particular, the discrete time Markov chain used here can have self loops, whereas the embedded discrete time Markov chain has no self loops.

⁶The transition matrix for a discrete time Markov chain with generator \mathcal{G} is $\mathcal{P} = I + \mathcal{G}$.

2053 mean first passage time from x to y in X^ε is

$$\begin{aligned}
 2054 \quad h_{x,y}(\varepsilon) &= \frac{1}{\lambda} \check{h}_{x,y}(\varepsilon) = \frac{1}{\lambda} \frac{\check{H}_{y,y}(\varepsilon) - \check{H}_{x,y}(\varepsilon)}{\pi_y(\varepsilon)} \\
 2055 \quad &= \frac{1}{\lambda} \frac{\left(\frac{1}{\varepsilon} \check{D}_{y,y} + O(1)\right) - \left(\frac{1}{\varepsilon} \check{D}_{x,y} + O(1)\right)}{\pi_y^{(k_y)} \varepsilon_y^{k_y} + O(\varepsilon^{k_y+1})} \\
 2056 \quad &= \frac{D_{y,y} - D_{x,y}}{\pi_y^{(k_y)}} \frac{1}{\varepsilon^{k_y+1}} + O\left(\frac{1}{\varepsilon^{k_y}}\right),
 \end{aligned}$$

2057 where we used (S.56) to show that $\check{D} = \lambda D$. The above equations use the properties of the
2058 deviation matrix given in SI - Section S.7.2.

2059 When $\hat{X}_{\mathcal{A}}$ is irreducible, then $\pi^{(0)} = \alpha$ has all strictly positive entries. Again, by SI -
2060 Section S.7.2, the mean first passage time from x to y in $\hat{X}_{\mathcal{A}}$ is finite and positive, and it is
2061 $\frac{1}{\lambda} \frac{\check{D}_{y,y} - \check{D}_{x,y}}{\alpha_y} = \frac{D_{y,y} - D_{x,y}}{\pi_y^{(0)}}$. In this case, the order of the pole of $h_{x,y}(\varepsilon)$ is one and the leading
2062 coefficient is the mean first passage time from x to y in $\hat{X}_{\mathcal{A}}$. ■

2063 **S.7.2 Properties of the deviation matrix for a discrete time Markov chain** In this
2064 section, we will start with a few results stated in Section 6.1 of Avrachenkov et al. [2] about
2065 discrete time Markov chains with finite state space. These include the definitions and properties
2066 of the ergodic projection, the fundamental matrix and the deviation matrix. Then, we show
2067 one more fact about the deviation matrix. Lastly, Theorem 4.4.7 of Kemeny and Snell [14] gave
2068 a formula for mean first passage times for irreducible discrete time Markov chains in terms of
2069 the fundamental matrix and the stationary distribution, which is also briefly mentioned in [2].
2070 We will write this in terms of the deviation matrix and the stationary distribution with a
2071 simple modification.

2072 Suppose $Y = \{Y(n) : n \in \mathbb{Z}_+\}$ is a discrete time Markov chain with a finite state space \mathcal{Y} .
2073 Suppose the state space \mathcal{Y} is partitioned into m ergodic classes (possibly including absorbing
2074 states) and a set of transient states, and accordingly, the transition matrix \check{P} is

$$2075 \quad \check{P} = \left(\begin{array}{ccc|c} \check{A}_1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \check{A}_m & 0 \\ \hline \check{R}_1 & \dots & \check{R}_m & \check{T} \end{array} \right).$$

2076 The ergodic projection of Y is given by the *Cesaro* limit,

$$2077 \quad \check{\Pi} = \lim_{N \rightarrow \infty} \frac{1}{N+1} \sum_{n=0}^N \check{P}^n.$$

2078 It follows that $\check{\Pi}(I - \check{P}) = 0$ and $\check{\Pi}\check{\Pi} = \check{\Pi}$. The ergodic projection $\check{\Pi}$ is the eigenprojection
2079 of the transition matrix \check{P} corresponding to its maximal eigenvalue 1. That is, if $\check{\pi}_i$ is the
2080 unique stationary distribution for the discrete time Markov chain with transition matrix \check{A}_i

2081 for $1 \leq i \leq m$, then $\check{\Pi} = \check{W} \check{M}$ with

$$2082 \quad \check{W} = \begin{pmatrix} \mathbb{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \mathbb{1} \\ \hline (I - \check{T})^{-1} \check{R}_1 \mathbb{1} & \dots & (I - \check{T})^{-1} \check{R}_m \mathbb{1} \end{pmatrix} \quad \text{and} \quad \check{M} = \left(\begin{array}{ccc|c} \check{\pi}_1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \check{\pi}_m & 0 \end{array} \right),$$

2083 where \check{W} and \check{M} form bases for the right and left eigenspaces, respectively, which implies that
2084 $\check{P}\check{W} = \check{W}$ and $\check{M}\check{P} = \check{M}$. One can see that $v(I - \check{P} + \check{\Pi}) = 0$ implies that $v = 0$ and so
2085 $(I - \check{P} + \check{\Pi})$ is invertible. The fundamental matrix \check{Z} and the deviation matrix \check{H} of Y are
2086 well-defined:

$$2087 \quad \check{Z} = \lim_{N \rightarrow \infty} \frac{1}{N+1} \sum_{n=0}^N \sum_{\ell=0}^n (\check{P} - \check{\Pi})^\ell = (I - \check{P} + \check{\Pi})^{-1},$$

2088

$$2089 \quad \check{H} = \check{Z} - \check{\Pi} = (I - \check{P} + \check{\Pi})^{-1} - \check{\Pi}.$$

2090 We also have that $\check{H}\check{\Pi} = (\check{Z} - \check{\Pi})\check{\Pi} = 0$ since $\check{P}\check{\Pi} = \check{P}\check{W}\check{M} = \check{W}\check{M} = \check{\Pi}$, $\check{\Pi} = \check{Z}(I - \check{P} + \check{\Pi})\check{\Pi} =$
2091 $\check{Z}(\check{\Pi} - \check{\Pi} + \check{\Pi}) = \check{Z}\check{\Pi}$, and $\check{\Pi}^2 = \check{\Pi}$.

2092 Now, we show a property of the deviation matrix that is not in [2] and is useful in Section
2093 4.2.2. Suppose Q is an infinitesimal generator for a continuous time Markov chain on \mathcal{Y} and
2094 $|Q_{y,y}| \leq \lambda$ for all $y \in \mathcal{Y}$. Then, $\check{P} = I + \frac{1}{\lambda}Q$ defines a transition matrix for a discrete time
2095 Markov chain. The associated ergodic projection and deviation matrix $\check{\Pi}$ and \check{H} for \check{P} satisfy
2096 $\check{\Pi}Q = \lambda(\check{\Pi}\check{P} - \check{\Pi}) = 0$ and

$$2097 \quad \check{H} = \left(I - \left(I + \frac{1}{\lambda}Q \right) + \check{\Pi} \right)^{-1} - \check{\Pi} = \left(-\frac{1}{\lambda}Q + \check{\Pi} \right)^{-1} - \check{\Pi},$$

2098 and so

$$2099 \quad I = (\check{H} + \check{\Pi}) \left(-\frac{1}{\lambda}Q + \check{\Pi} \right) = -\frac{1}{\lambda}\check{H}Q + \check{H}\check{\Pi} - \frac{1}{\lambda}\check{\Pi}Q + \check{\Pi}\check{\Pi}$$

$$2100 \quad = -\frac{1}{\lambda}\check{H}Q + \check{\Pi} = -\frac{1}{\lambda}\check{H}Q + \frac{1}{\lambda}\check{H}\check{\Pi} - \check{\Pi}Q + \check{\Pi}\check{\Pi} = \left(\frac{1}{\lambda}\check{H} + \check{\Pi} \right) (-Q + \check{\Pi}).$$

2101 Thus,

$$2102 \quad (\text{S.56}) \quad \frac{1}{\lambda}\check{H} = ((-Q + \check{\Pi})^{-1} - \check{\Pi}),$$

2103 where we have used the fact that $-Q + \check{\Pi}$ is invertible because $\check{\Pi}$ is the eigenprojection of Q
2104 corresponding to the eigenvalue 0.

2105 Lastly, assume that Y is irreducible. Then, Y has a unique stationary distribution $\check{\pi}$, which
2106 is a row vector, and the ergodic projection of Y is $\mathbb{1}\check{\pi}$. By Theorem 4.4.7 in [14], the mean

2107 first passage time from $x \in \mathcal{Y}$ to $y \in \mathcal{Y}$ is $\frac{\check{Z}_{y,y} - \check{Z}_{x,y}}{\check{\pi}_y}$. Since $\check{Z} = \check{H} + \mathbf{1}\check{\pi}$, the mean first passage
2108 time from $x \in \mathcal{Y}$ to $y \in \mathcal{Y}$ is

$$2109 \quad \frac{(\check{H}_{y,y} + (\mathbf{1}\check{\pi})_{y,y}) - (\check{H}_{x,y} + (\mathbf{1}\check{\pi})_{x,y})}{\check{\pi}_y} = \frac{(\check{H}_{y,y} + \check{\pi}_y) - (\check{H}_{x,y} + \check{\pi}_y)}{\check{\pi}_y} = \frac{\check{H}_{y,y} - \check{H}_{x,y}}{\check{\pi}_y}.$$

2110 S.8 1D Model: additional mathematical details

2111 **Verification of Assumption 4.1.** In order to show that Assumption 4.1 holds, consider the
2112 states $a = 0$ and $r = D_{\text{tot}}$ and the set $\mathcal{T} = \{1, \dots, D_{\text{tot}} - 1\}$ defined in Section 2.1. Since $D_{\text{tot}} \geq$
2113 2, $\mathcal{T} \neq \emptyset$. From (2.2), we can see that $Q_{a,a+1}(0) = Q_{a,a-1}(0) = Q_{r,r+1}(0) = Q_{r,r-1}(0) = 0$.
2114 As a consequence, both a and r are absorbing states under $Q(0)$. To see that the states in \mathcal{T}
2115 are transient under $Q(0)$, consider a state $x \in \mathcal{T}$. Since $Q_{z,z+1}(0) = \frac{k_E^A}{V}(D_{\text{tot}} - z)z > 0$ for all
2116 $z \in \{1, \dots, D_{\text{tot}} - 1\}$, we have $Q_{x,x+1}(0) \dots Q_{D_{\text{tot}}-1,D_{\text{tot}}}(0) > 0$. By Lemma S.8 and the fact
2117 that r is an absorbing state, we have that x is a transient state for X^0 .

2118 **Verification of Assumptions 4.4 and 4.2.** By Lemma 4.4, it suffices to show Assumption
2119 4.4 holds. From (2.2), we can see that $\tilde{Q}_{a,a+1} > 0$. From the analysis made to prove Assump-
2120 tion 4.1, we know that there is a positive probability for \tilde{X} to transition from $x \in \mathcal{X} \setminus \{a, r\}$
2121 to r . It follows that any state $x \in \mathcal{X} \setminus \{r\}$ leads to r under \tilde{X} . Now, we would like to show
2122 that there is a positive probability for transition from r to $x \neq r \in \mathcal{X}$ for the process \tilde{X} .
2123 This is because $\tilde{Q}_{r,r-1} = b \frac{k_E^A}{V} D_{\text{tot}}^2 > 0$ and $\tilde{Q}_{z,z-1} = Q_{z,z-1}(0) = \mu \frac{k_E^A}{V}(D_{\text{tot}} - z)z > 0$ for all
2124 $z \in \{1, \dots, D_{\text{tot}} - 1\}$. Thus, r leads to any state in $\mathcal{X} \setminus \{r\}$ under \tilde{X} . Combining the above,
2125 we see that \tilde{X} is irreducible and Assumption 4.4 holds.

2126 **Stationary distribution.** Let us consider a one-dimensional finite state continuous time
2127 Markov chain in which the state space $\mathcal{X} = \{0, 1, \dots, K\}$ and the off-diagonal entries of the
2128 infinitesimal generator Q are all zero except for the following positive rates:

$$2129 \quad (S.57) \quad \begin{aligned} Q_{x,x+1} &= \lambda_x & \text{if } x \in \{0, \dots, K-1\}, \\ Q_{x,x-1} &= \gamma_x & \text{if } x \in \{1, \dots, K\}. \end{aligned}$$

2130 Thus, the continuous time Markov chain is a birth-and-death process, it satisfies detailed
2131 balance (see [7]) and so the stationary distribution $\pi = (\pi_x)_{x \in \{0,1,\dots,K\}}$ satisfies

$$2132 \quad \pi_x = \frac{\lambda_{x-1}}{\gamma_x} \pi_{x-1}, \quad \text{for } x \in \{1, \dots, K\}.$$

2133 Applying this equality recursively, we can express π_x , $x \in \{1, \dots, K\}$, as a function of π_0 ,
2134 obtaining

$$2135 \quad (S.58) \quad \pi_x = \pi_0 \prod_{i=1}^x \frac{\lambda_{i-1}}{\gamma_i}.$$

2136 Using the fact that $\sum_{j=0}^K \pi_j = 1$, we obtain

$$2137 \quad (S.59) \quad \pi_0 = \frac{1}{1 + \sum_{j=1}^K \left(\prod_{i=1}^j \frac{\lambda_{i-1}}{\gamma_i} \right)}.$$

2138 Substituting (S.59) in (S.58), we obtain

2139 (S.60)
$$\pi_x = \frac{\prod_{i=1}^x \frac{\lambda_{i-1}}{\gamma_i}}{1 + \sum_{j=1}^K \left(\prod_{i=1}^j \frac{\lambda_{i-1}}{\gamma_i} \right)} \quad \text{for } x \in \{1, \dots, K\}.$$

2140 Now, consider the one-dimensional continuous time Markov chain introduced in Section 2.1
 2141 with state space $\mathcal{X} = \{0, 1, \dots, D_{\text{tot}}\}$ and infinitesimal generator as defined in (2.2), which has
 2142 nonzero off-diagonal entries given, for $\varepsilon > 0$, by

2143 (S.61)
$$\begin{aligned} \lambda_x^\varepsilon &:= Q_{x,x+1}(\varepsilon) = \left(\frac{k_E^A}{V} x + \varepsilon \frac{k_E^A}{V} D_{\text{tot}} \right) (D_{\text{tot}} - x) & \text{if } x \in \{0, \dots, D_{\text{tot}} - 1\}, \\ \gamma_x^\varepsilon &:= Q_{x,x-1}(\varepsilon) = \mu \left(\frac{k_E^A}{V} (D_{\text{tot}} - x) + b\varepsilon \frac{k_E^A}{V} D_{\text{tot}} \right) x & \text{if } x \in \{1, \dots, D_{\text{tot}}\}. \end{aligned}$$

2144 By substituting the expressions for the rates in (S.61) into (S.59)-(S.60), and suitably rear-
 2145 ranging the terms, we obtain that

2146
$$\pi_x(0) = \lim_{\varepsilon \rightarrow 0} \pi_x(\varepsilon) = \begin{cases} \frac{b\mu^{D_{\text{tot}}}}{1+b\mu^{D_{\text{tot}}}} & \text{if } x = 0 \\ 0 & \text{if } x \in \{1, \dots, D_{\text{tot}} - 1\} \\ \frac{1}{1+b\mu^{D_{\text{tot}}}} & \text{if } x = D_{\text{tot}}. \end{cases}$$

2147 **Mean first passage time.** Consider the one-dimensional, finite state, continuous time
 2148 Markov chain introduced in (S.57). We will determine an analytical expression for the MFPT
 2149 from $x = K$ to $x = 0$ and from $x = 0$ to $x = K$ for this chain. We first focus on the former. For
 2150 this, we exploit first step analysis (see Equation 3.1 of [16]), proceeding in a similar manner
 2151 to that for (3.2), to obtain

2152 (S.62)
$$\begin{cases} h_{0,0} = 0, \\ h_{x,0} = \frac{1}{\lambda_x + \gamma_x} + \frac{\lambda_x}{\lambda_x + \gamma_x} h_{x+1,0} + \frac{\gamma_x}{\lambda_x + \gamma_x} h_{x-1,0} & \text{if } x \in \{1, \dots, K - 1\}, \\ h_{K,0} = \frac{1}{\gamma_K} + h_{K-1,0}, \end{cases}$$

2153 where for $x, y \in \mathcal{X}$, $h_{x,y} = \mathbb{E}_x[\tau_y]$, $\tau_y = \inf\{t \geq 0 : X(t) = y\}$, X is the continuous time Markov
 2154 chain with infinitesimal generator given by (S.57). Now, defining $\Delta h_{x,x-1} = h_{x,0} - h_{x-1,0}$ for
 2155 $x \in \{1, \dots, K\}$, we can rewrite (S.62) in the following way:

2156 (S.63)
$$\begin{cases} h_{0,0} = 0, \\ \Delta h_{x,x-1} = \frac{1}{\gamma_x} + \frac{\lambda_x}{\gamma_x} \Delta h_{x+1,x} & \text{if } x \in \{1, \dots, K - 1\}, \\ \Delta h_{K,K-1} = \frac{1}{\gamma_K}. \end{cases}$$

2157 From (S.63), we have an explicit formula for $\Delta h_{K,K-1}$ and any $\Delta h_{x,x-1}$ can be expressed as
 2158 a function of $\Delta h_{x+1,x}$. Furthermore, if we sum the $\Delta h_{x,x-1}$ for $x = 1, \dots, K$, we obtain
 (S.64)

2159
$$h_{K,0} = h_{K,0} - h_{0,0} = \sum_{x=1}^K (\Delta h_{x,x-1}) = \Delta h_{1,0} + \Delta h_{2,1} + \dots + \Delta h_{K-1,K-2} + \Delta h_{K,K-1}.$$

2160 Thus, to evaluate the MFPT from $x = K$ to $x = 0$, we can calculate $\Delta h_{x,x-1}$ for $x =$
 2161 $K, K-1, \dots, 1$ and then sum all of the terms. Defining $r_j = \frac{\lambda_1 \lambda_2 \dots \lambda_j}{\gamma_1 \gamma_2 \dots \gamma_j}$, for $j = 1, \dots, K$, we
 2162 obtain

$$2163 \quad \begin{aligned} h_{K,0} &= \frac{1}{\gamma_K} \left(1 + \frac{\lambda_{K-1}}{\gamma_{K-1}} + \frac{\lambda_{K-1} \lambda_{K-2}}{\gamma_{K-1} \gamma_{K-2}} + \dots + r_{K-1} \right) \\ &\quad + \frac{1}{\gamma_{K-1}} \left(1 + \frac{\lambda_{K-2}}{\gamma_{K-2}} + \frac{\lambda_{K-2} \lambda_{K-3}}{\gamma_{K-2} \gamma_{K-3}} + \dots + r_{K-2} \right) + \dots + \frac{1}{\gamma_1} \\ &= \frac{r_{K-1}}{\gamma_K} \left(1 + \sum_{i=1}^{K-1} \frac{1}{r_i} \right) + \sum_{i=2}^{K-1} \left[\frac{r_{i-1}}{\gamma_i} \left(1 + \sum_{j=1}^{i-1} \frac{1}{r_j} \right) \right] + \frac{1}{\gamma_1}. \end{aligned} \quad (\text{S.65})$$

2164 With a similar procedure, we can obtain the MFPT from $x = 0$ to $x = K$. More precisely,
 2165 defining $\tilde{r}_j = \frac{\gamma_{K-1} \gamma_{K-2} \dots \gamma_{K-j}}{\lambda_{K-1} \lambda_{K-2} \dots \lambda_{K-j}}$, we have

$$2166 \quad h_{0,K} = \frac{1}{\lambda_0} \left(1 + \frac{\gamma_1}{\lambda_1} + \frac{\gamma_1 \gamma_2}{\lambda_1 \lambda_2} + \dots + \tilde{r}_{K-1} \right) \\ 2167 \quad \quad \quad + \frac{1}{\lambda_1} \left(1 + \frac{\gamma_2}{\lambda_2} + \frac{\gamma_2 \gamma_3}{\lambda_2 \lambda_3} + \dots + \tilde{r}_{K-2} \right) + \dots + \frac{1}{\lambda_{K-1}} \\ 2168 \quad \quad \quad = \frac{\tilde{r}_{K-1}}{\lambda_0} \left(1 + \sum_{j=1}^{K-1} \frac{1}{\tilde{r}_i} \right) + \sum_{i=2}^{K-1} \left[\frac{\tilde{r}_{i-1}}{\lambda_{K-i}} \left(1 + \sum_{j=1}^{i-1} \frac{1}{\tilde{r}_j} \right) \right] + \frac{1}{\lambda_{K-1}}. \quad (\text{S.66})$$

2169 A more detailed derivation of the $h_{0,K}$ and $h_{K,0}$ is given in [3].

2170 Let us consider the one-dimensional continuous time Markov chain introduced in Section 2.1,
 2171 with state space $\mathcal{X} = \{0, 1, \dots, D_{\text{tot}}\}$ and infinitesimal transition rates that can be written as
 2172 in (S.61). Since all of the transition rates are $O(1)$, except for λ_0^ε and $\gamma_{D_{\text{tot}}}^\varepsilon$ which are $O(\varepsilon)$,
 2173 then both $h_{D_{\text{tot}},0}(\varepsilon)$ and $h_{0,D_{\text{tot}}}(\varepsilon)$ are $O(1/\varepsilon)$. This means that in the limit as $\varepsilon \rightarrow 0$, $h_{D_{\text{tot}},0}(\varepsilon)$
 2174 and $h_{0,D_{\text{tot}}}(\varepsilon)$, which correspond to the time to memory loss of the repressed and active states,
 2175 respectively, tend to infinity. Substituting parameters in (S.65) and (S.66) yields (2.7) and
 2176 (2.8), respectively.

2177 S.9 2D Model: additional mathematical details

2178 **Verification of Assumption 4.1.** In order to show that Assumption 4.1 holds, consider
 2179 the states $a = (0, D_{\text{tot}})^T$ and $r = (D_{\text{tot}}, 0)^T$ and the set $\mathcal{T} = \{i_1, \dots, i_m\}$ defined in Section
 2180 4.1.2. From (2.10), we can see that $Q_{a,a+v_j}(0) = Q_{r,r+v_j}(0) = 0$ for every $1 \leq j \leq 4$. As a
 2181 consequence, both a and r are absorbing states under $Q(0)$. To see that the states in \mathcal{T} are
 2182 transient under $Q(0)$, consider a state $x = (x_1, x_2)^T \in \mathcal{T}$. First, suppose $x_1 \neq 0$. By having
 2183 the one-step transition along $v_2 = (0, -1)^T$ occurring x_2 times where $Q_{z,z+v_2}(0) = \frac{k_E^A}{V} z_2 x_1 > 0$
 2184 for all $z = (x_1, z_2)^T$ and $1 \leq z_2 \leq x_2$, and having one-step transition along $v_3 = (1, 0)^T$
 2185 occurring $D_{\text{tot}} - x_1$ times where $Q_{z,z+v_3}(0) = (D_{\text{tot}} - z_1) \left(k_{W0}^R + k_W^R + \frac{k_M^R}{V} z_1 \right) > 0$ for all
 2186 $z = (z_1, 0)^T$ and $x_1 \leq z_1 \leq D_{\text{tot}} - 1$, we have a positive probability of transition from x to
 2187 r under $Q(0)$. By Lemma S.8 and the fact that r is an absorbing state, we have that x is
 2188 a transient state for X^0 . On the other hand, suppose $x_1 = 0$. Since $x = (0, x_2) \in \mathcal{T}$, we

2189 have $0 \leq x_2 \leq D_{\text{tot}} - 1$. We can first have a one-step transition along $v_3 = (1, 0)^T$, where
 2190 $Q_{x, x+v_3}(0) = (D_{\text{tot}} - x_2)(k_{W0}^R + k_W^R) > 0$, to reach the state $(1, x_2)^T$ and then take the steps
 2191 for the $x_1 \neq 0$ case to reach r . In this way, there is a positive probability of transition from x
 2192 to the absorbing state r under $Q(0)$, and thus x is transient by Lemma S.8.

2193 **Verification of Assumptions 4.3 and 4.2.** By Lemma 4.4, it suffices to show Assumption
 2194 4.3 holds. From (2.10), we can see that $\tilde{Q}_{a, a+v_2} > 0$. From the analysis made to prove
 2195 Assumption 4.1, we know that there is a positive probability to transition from all $x \in \mathcal{X} \setminus \{a, r\}$
 2196 to r . Now, we would like to show that there is a positive probability to transition from r to
 2197 $x = (x_1, x_2)^T \in \mathcal{X} \setminus \{(0, 0)^T\}$ for the process \tilde{X} . We first can have a one-step transition
 2198 along $v_4 = (-1, 0)^T$ where $Q_{r, r+v_4}^{(1)} = \mu b \frac{k_M^A}{V} D_{\text{tot}}^2 > 0$, then have a one-step transition along
 2199 $v_1 = (0, 1)^T$ where $Q_{r+v_4, r+v_4+v_1}^{(0)} = k_{W0}^A + k_W^A > 0$, then have one-step transitions along
 2200 $v_4 = (-1, 0)^T$ occurring $D_{\text{tot}} - x_1 - 1$ times where $Q_{z, z+v_4}^{(0)} = \mu \frac{k_E^A}{V} z_1 > 0$ for all $z = (z_1, 1)^T$
 2201 and $x_1 + 1 \leq z_1 \leq D_{\text{tot}} - 1$. If $x_2 \neq 0$, we finally have one-step transitions along $v_1 = (0, 1)^T$
 2202 occurring $x_2 - 1$ times where $Q_{z, z+v_1}^{(0)} = (D_{\text{tot}} - (x_1 + z_2)) \left(k_{W0}^A + k_W^A + \frac{k_M^A}{V} z_2 \right) > 0$ for all
 2203 $z = (x_1, z_2)^T$ and $1 \leq z_2 \leq x_2 - 1$; if $x_2 = 0$ and $x_1 \neq 0$, we will make a one-step transition along
 2204 $v_2 = (0, -1)^T$ to $(x_1, 0)^T$ where $Q_{z, z+v_2}^{(0)} = \frac{k_E^A}{V} x_1 > 0$ with $z = (x_1, 1)^T$ and $x_1 \geq 1$. Therefore,
 2205 we have that there is a positive probability of transition from r to each $x \in \mathcal{X} \setminus \{(0, 0)^T\}$.
 2206 Since $Q_{-v_j, (0, 0)^T}^{(0)} = 0$ for $j \in \{1, 2, 3, 4\}$ such that $-v_j \in \mathcal{X}$, we conclude that $\mathcal{C} = \mathcal{X} \setminus \{(0, 0)^T\}$
 2207 is a closed communicating class under \tilde{Q} and since it contains \mathcal{A} , Assumption 4.3 holds. Note
 2208 that Assumption 4.4 does not hold.

2209 **Stationary distribution.** Here, we derive the expression for $\pi_x^{(1)}$, $x \in \mathcal{T} = \{i_1, \dots, i_m\}$, for
 2210 the case $D_{\text{tot}} = 2$. In this case $T(\varepsilon) = T_0 + \varepsilon T_1$, with

$$2211 T_0 = \begin{pmatrix} -q_3 & k_{W0}^R + k_W^R & 0 & 0 \\ \mu \frac{k_E^A}{V} & -\frac{k_E^A}{V}(1 + \mu) & 0 & \frac{k_E^A}{V} \\ 2(k_{W0}^A + k_W^A) & 0 & -q_5 & 2(k_{W0}^R + k_W^R) \\ 0 & k_{W0}^A + k_W^A & 0 & -q_6 \end{pmatrix},$$

$$2212 T_1 = \begin{pmatrix} -2 \frac{k_M^A}{V} & 0 & 2 \frac{k_M^A}{V} & 0 \\ 2 \frac{k_M^A}{V} \mu b & -2 \frac{k_M^A}{V}(1 + \mu b) & 0 & 2 \frac{k_M^A}{V} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 \frac{k_M^A}{V} \mu b & -2 \frac{k_M^A}{V} \end{pmatrix},$$

2213 in which $q_3 = (k_{W0}^A + k_W^A + \frac{k_M^A}{V} + k_{W0}^R + k_W^R)$, $q_5 = 2(k_{W0}^A + k_W^A + k_{W0}^R + k_W^R)$ and $q_6 =$
 2214 $(k_{W0}^A + k_W^A + k_{W0}^R + k_W^R + \frac{k_M^R}{V})$. Then, by (4.5), $\beta^{(1)} = \pi_x^{(1)}$, $x \in \mathcal{T}$, is given by $\beta^{(1)} = \alpha S_1(-T_0)^{-1}$,
 2215 where $\alpha = (\pi_{(0,2)}^{(0)}, \pi_{(2,0)}^{(0)})$ was derived in Section 4.1.2 (Eq. (4.14)). After some calculations,

2216 $\pi_x^{(1)}$ can be written for $D_{\text{tot}} = 2$ as

$$2217 \quad \pi_{i_1}^{(1)} = \frac{4b\varepsilon^2 \left(\frac{k_M^A}{V}\right)^2 \bar{k}_W^A \mu^2 \left(\bar{k}_W^R (\bar{k}_W^R + \frac{k_M^R}{V}) + (\bar{k}_W^A + \frac{k_M^A}{V}) \left((1 + \mu)(\bar{k}_W^R + \frac{k_M^R}{V}) + \mu \frac{k_M^A}{V}\right)\right)}{d_1 d_2},$$

$$2218 \quad \pi_{i_2}^{(1)} = \frac{4b\varepsilon^2 \left(\frac{k_M^A}{V}\right)^2 \bar{k}_W^A \bar{k}_W^R \mu \left((\bar{k}_W^R + \frac{k_M^R}{V})(\bar{k}_W^R + \bar{k}_W^A + k_M^A) + \mu(\bar{k}_W^A + \frac{k_M^A}{V})(\bar{k}_W^R + \bar{k}_W^A + k_M^R)\right)}{\frac{k_E^A}{V} d_1 d_2},$$

$$2219 \quad \pi_{i_3}^{(1)} = 0,$$

$$2220 \quad \pi_{i_4}^{(1)} = \frac{4b\varepsilon^2 \left(\frac{k_M^A}{V}\right)^2 \bar{k}_W^R \mu \left((\bar{k}_W^R + \frac{k_M^R}{V}) \left((1 + \mu)(\bar{k}_W^A + \frac{k_M^A}{V}) + \mu \bar{k}_W^R\right) + \mu \bar{k}_W^A (\bar{k}_W^A + \frac{k_M^A}{V})\right)}{d_1 d_2},$$

2221 in which $\bar{k}_W^A = k_{W0}^A + k_W^A$, $\bar{k}_W^R = k_{W0}^R + k_W^R$, $d_1 = \varepsilon \frac{k_M^A}{V} (\bar{k}_W^R (\bar{k}_W^R + \frac{k_M^R}{V}) + b \bar{k}_W^A \mu^2 (\bar{k}_W^A + \frac{k_M^A}{V}))$, and
2222 $d_2 = ((\bar{k}_W^A + \frac{k_M^A}{V})((1 + \mu)(\bar{k}_W^R + \frac{k_M^R}{V}) + \mu \bar{k}_W^A) + \bar{k}_W^R (\bar{k}_W^R + \frac{k_M^R}{V}))$ and in which $i_1 = (0, 1)^T$, $i_2 = (1, 1)^T$, $i_3 = (0, 0)^T$, and $i_4 = (0, 2)^T$.

2224 **S.10 3D Model: additional mathematical details Verification of Assumption 4.1.**
2225 In order to show that Assumption 4.1 holds, consider the states $a = (0, D_{\text{tot}}, 0)^T$ and $r = (D_{\text{tot}}, 0, 0)^T$ and the set $\mathcal{T} = \{i_1, \dots, i_m\}$ defined in Section 5.1.1. From (5.2), we can see that
2227 $Q_{a,a+v_j}(0) = Q_{r,r+v_j}(0) = 0$ for every $1 \leq j \leq 6$. As a consequence, both a and r are absorbing
2228 states under $Q(0)$. To see that the states in \mathcal{T} are transient under $Q(0)$, consider a state $x = (x_1, x_2, x_3)^T \in \mathcal{T}$. First, suppose $x_1 + x_3 \neq 0$. By having the one-step transitions along $v_2 = (0, -1, 0)^T$ occurring x_2 times where $Q_{z,z+v_2}(0) = \frac{k_M^A}{V} (x_3 + 2x_1) z_2 > 0$ for all $z = (x_1, z_2, x_3)^T$
2231 and $1 \leq z_2 \leq x_2$, then having one-step transitions along $v_3 = (0, 0, 1)^T$ occurring $D_{\text{tot}} - x_1 - x_3$
2232 times where $Q_{z,z+v_3}(0) = (D_{\text{tot}} - (x_1 + z_3)) \left(k_{W0}^1 + k_W^1 + \frac{k_M^1}{V} x_1\right) > 0$ for all $z = (x_1, 0, z_3)^T$
2233 and $x_3 \leq z_3 \leq D_{\text{tot}} - x_1 - 1$ and finally having one-step transitions along $v_5 = (1, 0, -1)^T$
2234 occurring $D_{\text{tot}} - x_1$ times where $Q_{z,z+v_5}(0) = (D_{\text{tot}} - z_1) \left(k_{W0}^2 + \frac{k_M^2}{V} z_1 + \frac{k_M^2 D_{\text{tot}} + z_1 - 1}{2}\right) > 0$
2235 for all $z = (z_1, 0, D_{\text{tot}} - z_1)^T$ and $x_1 \leq z_1 \leq D_{\text{tot}} - 1$, we have a positive probability of
2236 transition from x to r under $Q(0)$. By Lemma S.8 and the fact that r is an absorbing state,
2237 we have that x is a transient state for X^0 . On the other hand, suppose $x_1 + x_3 = 0$. Since
2238 $x = (0, x_2, 0)^T \in \mathcal{T}$, we have $0 \leq x_2 \leq D_{\text{tot}} - 1$. We can first have a one-step transition along
2239 $v_3 = (0, 0, 1)^T$, where $Q_{x,x+v_3}(0) = (D_{\text{tot}} - x_2) (k_{W0}^1 + k_W^1) > 0$, to reach the state $(0, x_2, 1)^T$
2240 and then take the steps in the $x_1 + x_3 \neq 0$ case. In this way, there is a positive probability of
2241 transition from x to the absorbing state r , and thus x is transient by Lemma S.8.

2242 **Verification of Assumption 4.2.** To show that Assumption 4.2 holds, consider the continuous time Markov chain \tilde{X} with infinitesimal generator \tilde{Q} as described in (4.7) and shown
2243 in Fig. 6(d). We will first see that $\{i_m, r\}$ forms a closed class under \tilde{Q} . For this, we see
2245 that $Q_{r,r+v_j}(\varepsilon)$ vanishes for every $1 \leq j \leq 5$ and $\varepsilon \geq 0$, while $Q_{r,r+v_6}(\varepsilon) = \varepsilon \mu b \frac{k_M^A}{V} D_{\text{tot}}^2$.
2246 Therefore, the only transition from r under \tilde{Q} is given by $\tilde{Q}_{r,r+v_6} = \mu b \frac{k_M^A}{V} D_{\text{tot}}^2 > 0$, where
2247 $r + v_6 = i_m$. From (5.2), we can see that $Q_{i_m, i_m+v_j}(0) = 0$ for every $j \in \{1, 2, 3, 4, 6\}$ and
2248 $Q_{i_m, i_m+v_5}(0) = k_{W0}^2 + \frac{k_M^2}{V} (D_{\text{tot}} - 1) + \frac{\bar{k}_M}{V} (D_{\text{tot}} - 1) > 0$. Since $i_m + v_5 = r$ we see that

2249 $\tilde{Q}_{i_m, r} > 0$. Therefore, $\{i_m, r\}$ forms a closed class under \tilde{Q} . The fact that $\hat{X}_{\mathcal{A}}$, shown in Fig.
 2250 6(e) consists of erasing the times from \tilde{X} in which the process is in \mathcal{T} , together with Lemma
 2251 4.3, yields that r is an absorbing state under $Q_{\mathcal{A}}$. From (5.2), we can see that $\tilde{Q}_{a, i_1} > 0$. From
 2252 the analysis made to prove Assumption 4.1 we obtain that i_1 leads to r under \tilde{Q} which is part
 2253 of a closed class. By interpreting $\hat{X}_{\mathcal{A}}$ again as a time-change of \tilde{X} , by Lemma 4.3 we obtain
 2254 that a is transient under $Q_{\mathcal{A}}$. As a consequence, $Q_{\mathcal{A}}$ has a single recurrent class consisting
 2255 of the state r , and so Assumption 4.2 holds, and furthermore, $\alpha = [\alpha_a, \alpha_r]$ with $\alpha_a = 0$ and
 2256 $\alpha_r = 1$. In addition, the previous arguments show that neither Assumption 4.3 nor 4.4 holds
 2257 for this model.

2258 **Stationary distribution.** Here, we derive an expression for $\pi_x^{(1)}$, $x \in \mathcal{T} = \{i_1, \dots, i_m\}$.
 2259 Matrices A_1 , S_1 , and R_0 can be written as

$$2260 \quad A_1 = \begin{pmatrix} -s_1 & 0 \\ 0 & -s_2 \end{pmatrix}, \quad S_1 = \begin{pmatrix} s_1 & 0 & \dots & \dots & 0 \\ 0 & \dots & \dots & 0 & s_2 \end{pmatrix}, \quad R_0 = \begin{pmatrix} r_1 & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & r_2 \end{pmatrix},$$

2261 with $s_1 = \frac{k_M^A}{V} D_{\text{tot}}^2$, $s_2 = \mu b \frac{k_M^A}{V} D_{\text{tot}}^2$, $r_1 = (k_{W0}^A + k_W^A + \frac{k_M^A}{V} (D_{\text{tot}} - 1))$, and $r_2 = (k_{W0}^2 + (\frac{k_M}{V} + \frac{\bar{k}_M}{V}) (D_{\text{tot}} - 1))$. From (4.5), $\beta^{(1)} = [\pi_{i_1}^{(1)}, \dots, \pi_{i_m}^{(1)}] = \alpha S_1 (-T_0)^{-1}$, and so, given that the last
 2262 row of T_0 is made of all zeros except for the last element, that is $(T_0)_{i_m, i_m}$ and given that
 2263 $(T_0)_{i_m, i_m} = k_{W0}^2 + (\frac{k_M}{V} + \frac{\bar{k}_M}{V}) (D_{\text{tot}} - 1)$, $\beta^{(1)} = [0, \dots, 0, \pi_{i_m}^{(1)}]$, with

$$2265 \quad \pi_{i_m}^{(1)} = \frac{\mu b \frac{k_M^A}{V} D_{\text{tot}}^2}{k_{W0}^2 + (\frac{k_M}{V} + \frac{\bar{k}_M}{V}) (D_{\text{tot}} - 1)}.$$

2266 Now, $\alpha^{(1)} = [\pi_a^{(1)}, \pi_r^{(1)}]$ is the unique vector such that

$$2267 \quad (\text{S.67}) \quad \alpha^{(1)} Q_{\mathcal{A}} = -\beta^{(1)} [R_1 + T_1 (-T_0)^{-1} R_0], \quad \alpha^{(1)} \mathbb{1} = -\beta^{(1)} \mathbb{1}.$$

2268 For an illustration, suppose $D_{\text{tot}} = 2$. Then $A_0 = 0$, $S_0 = 0$ and matrices $A_1 \in \mathbb{R}^{2 \times 2}$ and
 2269 $S_1 \in \mathbb{R}^{2 \times 8}$ are given by

$$2270 \quad A_1 = \begin{pmatrix} -4 \frac{k_M^A}{V} & 0 \\ 0 & -4 \frac{k_M^A}{V} \mu b \end{pmatrix}, \quad S_1 = \begin{pmatrix} 4 \frac{k_M^A}{V} & 0 & \dots & \dots & 0 \\ 0 & \dots & \dots & 0 & 4 \frac{k_M^A}{V} \mu b \end{pmatrix}.$$

2271 Furthermore, $R_1 = 0$ and $R_0 \in \mathbb{R}^{8 \times 2}$ can be written as

$$2272 \quad R_0 = \begin{pmatrix} \bar{k}_W^A + \frac{k_M^A}{V} & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & k_{W0}^2 + \frac{k_M}{V} + \frac{\bar{k}_M}{V} \end{pmatrix}.$$

2273 Finally, matrices T_0 and T_1 can be written as

$$2274 \quad T_0 = \begin{pmatrix} -\bar{k}_W^A - \frac{k_M^A}{V} - \bar{k}_W^1 & 0 & 0 & 0 & \bar{k}_W^1 & 0 & 0 & 0 \\ 0 & -\frac{k_E^A}{V}(2 + \mu) & 0 & 2\frac{k_E^A}{V} & \mu\frac{k_E^A}{V} & 0 & 0 & 0 \\ 2\bar{k}_W^A & 0 & -2(\bar{k}_W^A + \bar{k}_W^1) & 0 & 0 & 2\bar{k}_W^1 & 0 & 0 \\ 0 & \bar{k}_W^A & 0 & -(\bar{k}_W^A + \bar{k}_W^1 + \frac{k_M'}{V}) & 0 & 0 & 0 & \bar{k}_W^1 + \frac{k_M'}{V} \\ \mu'\frac{k_M^A}{V} & k_{W0}^2 & 0 & 0 & -(\frac{k_E^A}{V}(1 + \mu') + k_{W0}^2) & 0 & 0 & 0 \\ 0 & 0 & 0 & k_{W0}^2 & \bar{k}_W^A & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -2(k_{W0}^2 + \frac{\bar{k}_M}{V}) & 2(k_{W0}^2 + \frac{\bar{k}_M}{V}) \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2(k_{W0}^2 + \frac{k_M^A}{V} + \frac{\bar{k}_M}{V}) \end{pmatrix},$$

$$T_1 = \begin{pmatrix} -2\frac{k_M^A}{V} & 0 & 2\frac{k_M^A}{V} & 0 & 0 & 0 & 0 & 0 \\ 0 & -2\frac{k_M^A}{V}(1 + b\mu) & 0 & 2\frac{k_M^A}{V} & 2b\mu\frac{k_M^A}{V} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2b\mu\frac{k_M^A}{V} & 0 & 2b\mu\frac{k_M^A}{V} & 0 & 0 \\ 2\mu'\beta\frac{k_M^A}{V} & 0 & 0 & 0 & -2\frac{k_M^A}{V}(1 + \beta\mu') & 2\frac{k_M^A}{V} & 0 & 0 \\ 0 & 0 & 2\mu'\beta\frac{k_M^A}{V} & 0 & 0 & -2\mu'\beta\frac{k_M^A}{V} & 0 & 0 \\ 0 & 0 & 0 & 0 & 4\mu'\beta\frac{k_M^A}{V} & -4\mu'\beta\frac{k_M^A}{V} & 0 & 0 \\ 0 & 0 & 0 & 2\mu'\beta\frac{k_M^A}{V} & 0 & 2\mu b\frac{k_M^A}{V} & -2(\mu'\beta\frac{k_M^A}{V} + \mu b\frac{k_M^A}{V}) & 0 \end{pmatrix},$$

2275 in which $\bar{k}_W^A = k_{W0}^A + k_W^A$, $\bar{k}_W^R = k_{W0}^R + k_W^R$. Now, by applying Theorem S.9, we first obtain
2276 that $\pi(0) = \pi^{(0)} = [\alpha, 0] = [\alpha_a, \alpha_r, 0 \dots, 0]$ where α is the unique probability vector such that
2277 $\alpha Q_{\mathcal{A}} = 0$. In this case,

$$2278 \quad (S.68) \quad Q_{\mathcal{A}} = \frac{K_1 + \mu K_2}{K_3 + \mu K_4 + \mu' K_5 + \mu\mu' K_6} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix},$$

2279 with

$$2280 \quad K_1 = 8\bar{k}_W^1 \frac{k_M^A}{V} (\bar{k}_W^1 + \frac{k_M'}{V}) ((\bar{k}_W^1 + k_{W0}^2) (\frac{k_E^A}{V} + k_{W0}^2) + \bar{k}_W^A k_{W0}^2),$$

$$2281 \quad K_2 = 4\bar{k}_W^1 \frac{k_M^A}{V} \frac{k_E^A}{V} ((\bar{k}_W^1 + \frac{k_M'}{V}) (\bar{k}_W^1 + k_{W0}^2) + \bar{k}_W^1 \bar{k}_W^A),$$

$$2282 \quad K_3 = \frac{k_E^A}{V} (2(\bar{k}_W^1 + \bar{k}_W^A + k_{W0}^2 + \frac{k_M'}{V} + \frac{k_M^A}{V})) (\bar{k}_W^1)^2$$

$$2283 \quad + 2\bar{k}_W^1 (\bar{k}_W^1 (\bar{k}_W^1 + k_{W0}^2 (k_{W0}^2 + \frac{k_M'}{V})) + \frac{k_M'}{V} (k_{W0}^2)^2)$$

$$2284 \quad + 2\frac{k_M^A}{V} k_{W0}^2 (\frac{k_M'}{V} (k_{W0}^2 + \bar{k}_W^A) + \bar{k}_W^1 + (2\bar{k}_W^1 + \bar{k}_W^A + k_{W0}^2))$$

$$2285 \quad + 2\frac{k_M^A}{V} \frac{k_M'}{V} k_{W0}^2 (\bar{k}_W^1 + \bar{k}_W^A) + 2\bar{k}_W^1 k_{W0}^2 (\frac{k_E^A}{V} \frac{k_M'}{V} + \bar{k}_W^A \frac{k_M^A}{V} + 2\bar{k}_W^A \frac{k_M'}{V}),$$

$$2286 \quad K_4 = \frac{k_E^A}{V} ((\bar{k}_W^1 + \frac{k_M'}{V}) (\bar{k}_W^A + \frac{k_M^A}{V}) (\bar{k}_W^1 + k_{W0}^2) + (\bar{k}_W^1 + k_{W0}^2) \bar{k}_W^1 \frac{k_M'}{V})$$

$$2287 \quad (S.69) \quad + \frac{k_E^A}{V} \bar{k}_W^1 (\bar{k}_W^1 (\bar{k}_W^A + k_{W0}^2 + 1) + \bar{k}_W^A (\bar{k}_W^A + \frac{k_M^A}{V})),$$

$$2288 \quad K_5 = 2\frac{k_E^A}{V} (\bar{k}_W^1 + k_{W0}^2 + \bar{k}_W^A) (\bar{k}_W^A + \frac{k_M^A}{V}) (\bar{k}_W^1 + \frac{k_M'}{V}),$$

$$2289 \quad K_6 = \frac{k_E^A}{V} (\bar{k}_W^1 + k_{W0}^2 + \bar{k}_W^A) (\bar{k}_W^A + \frac{k_M^A}{V}) (\bar{k}_W^1 + \bar{k}_W^A + \frac{k_M'}{V}),$$

2290 and then $\alpha_a = 0$ and $\alpha_r = 1$. Let us now derive an expression for $\beta^{(1)}$. Starting from the
 2291 transient states $\mathcal{T} = \{i_1, \dots, i_8\}$, we obtain that $\beta^{(1)} = [\pi_{i_1}^{(1)}, \dots, \pi_{i_8}^{(1)}]$ can be determine by
 2292 $\beta^{(1)} = \alpha S_1(-T_0)^{-1}$, obtaining $\beta^{(1)} = [0, \dots, 0, \pi_{i_8}^{(1)}]$, with

$$2293 \quad \pi_{i_8}^{(1)} = \frac{4\mu b \frac{k_M^A}{V}}{k_{W0}^2 + (\frac{k_M}{V} + \frac{\bar{k}_M}{V})}.$$

2294 Finally, $\alpha^{(1)} = [\pi_a^{(1)}, \pi_r^{(1)}]$ is the unique vector such that $\alpha^{(1)} Q_{\mathcal{A}} = -\beta^{(1)} [R_1 + T_1(-T_0)^{-1} R_0]$
 2295 and $\alpha^{(1)} \mathbb{1} = -\beta^{(1)} \mathbb{1}$. After some calculations, we obtain

$$2296 \quad (\text{S.70}) \quad \pi_a^{(1)} = \frac{\mu^2 \mu'^2 K_7}{K_8(K_9 + K_{10}\mu)}, \quad \pi_r^{(1)} = -\pi_a^{(1)} - \pi_{i_8}^{(1)} = -\frac{\mu^2 \mu'^2 K_7 + \mu K_{11}(K_9 + K_{10}\mu)}{K_8(K_9 + K_{10}\mu)},$$

2297 with

$$2298 \quad \begin{aligned} \bar{k}_W^1 &= k_{W0}^1 + k_W^1, \quad \bar{k}_W^A = k_{W0}^A + k_W^A, \\ K_7 &= 2\beta b \frac{k_M^A}{V} \bar{k}_W^A (\bar{k}_W^A + \frac{k_M^A}{V}) (\bar{k}_W^A + \bar{k}_W^1 + k_{W0}^2), \\ K_8 &= \bar{k}_W^1 (k_{W0}^2 + \frac{k_M}{V} + \frac{\bar{k}_M}{V}), \quad K_{10} = \frac{k_E^A}{V} \left((\bar{k}_W^1 + k_{W0}^2) (\bar{k}_W^1 + \frac{k_M'}{V}) + \bar{k}_W^A \bar{k}_W^1 \right) \\ K_9 &= 2(\bar{k}_W^1 + \frac{k_M'}{V}) (\frac{k_E^A}{V} (\bar{k}_W^1 + k_{W0}^2) + k_{W0}^2 (k_{W0}^2 + \bar{k}_W^1 + \bar{k}_W^A)), \quad K_{11} = 4b \bar{k}_W^1 \frac{k_M^A}{V}. \end{aligned}$$

2299 **Time to memory loss.** As a reminder, we define the time to memory loss of the active state
 2300 as $h_{a,r}(\varepsilon)$ and the time to memory loss of repressed state as $h_{r,a}(\varepsilon)$. Let us start by deriving
 2301 the order and the leading coefficient of $h_{a,r}(\varepsilon)$ and $h_{r,a}(\varepsilon)$. By (4.16), we know the order of the
 2302 stationary distribution at a and r are $k_a = -\min\{1-2, 0\} = 1$ and $k_r = -\min\{1-1, 0\} =$
 2303 0, respectively. This is consistent with the results in Section 5.1.1. Moreover, the leading
 2304 coefficient in the stationary distribution for the fully repressed and fully active states are
 2305 $\pi_r^{(0)} = 1$ and $\pi_a^{(1)} > 0$, respectively. Now, $\hat{X}_{\mathcal{A}}$ has the infinitesimal generator in the form of

$$2306 \quad Q_{\mathcal{A}} = \begin{pmatrix} -(Q_{\mathcal{A}})_{a,r} & (Q_{\mathcal{A}})_{a,r} \\ 0 & 0 \end{pmatrix},$$

2307 and $\hat{X}_{\mathcal{A}}$ has a unique stationary distribution $\alpha = [0, 1]$. By Theorem 4.7,

$$2308 \quad D = \begin{pmatrix} \frac{1}{(Q_{\mathcal{A}})_{a,r}} & -\frac{1}{(Q_{\mathcal{A}})_{a,r}} \\ 0 & 0 \end{pmatrix},$$

$$2309 \quad 2310 \quad h_{a,r}(\varepsilon) = \frac{D_{r,r} - D_{a,r}}{\pi_r^{(k_r)}} \frac{1}{\varepsilon^{k_r+1}} + O\left(\frac{1}{\varepsilon^{k_r}}\right) = \frac{D_{r,r} - D_{a,r}}{\alpha_r} \frac{1}{\varepsilon} + O(1) = \frac{1}{(Q_{\mathcal{A}})_{a,r}} \frac{1}{\varepsilon} + O(1),$$

2311 and

2312
$$h_{r,a}(\varepsilon) = \frac{D_{a,a} - D_{r,a}}{\pi_a^{(k_a)}} \frac{1}{\varepsilon^{k_a+1}} + O\left(\frac{1}{\varepsilon^{k_a}}\right) = \frac{D_{a,a} - D_{r,a}}{\pi_a^{(1)}} \frac{1}{\varepsilon^2} + O\left(\frac{1}{\varepsilon}\right) = \frac{1}{(Q_{\mathcal{A}})_{a,r} \cdot \pi_a^{(1)}} \frac{1}{\varepsilon^2} + O\left(\frac{1}{\varepsilon}\right).$$

2313 As an example, when $D_{\text{tot}} = 2$, $Q_{\mathcal{A}}$ and $\pi_a^{(1)}$ are shown in (5.3) and (5.4), and we obtain that

2314
$$h_{a,r}(\varepsilon) = \frac{K_3 + \mu K_4 + \mu' K_5 + \mu\mu' K_6}{K_1 + \mu K_2} \frac{1}{\varepsilon} + O(1),$$

2315 and

2316
$$h_{r,a}(\varepsilon) = \frac{K_3 + \mu K_4 + \mu' K_5 + \mu\mu' K_6}{K_1 + \mu K_2} \frac{K_8(K_9 + K_{10}\mu)}{\mu^2\mu'^2 K_7} \frac{1}{\varepsilon^2} + O\left(\frac{1}{\varepsilon}\right),$$

2317 where K_i , $i = 1, \dots, 11$, are non-negative functions independent of μ and μ' as defined in (S.69).

2318 Now, let us verify that both conditions (i) and (ii) of Theorem 4.10 hold. To this end,
2319 let us first write the directions of the six possible transitions of the continuous time Markov
2320 chain $X^{\varepsilon}(t)$, which are $v_1 = (0, 1, 0)^T$, $v_2 = (0, -1, 0)^T$, $v_3 = (0, 0, 1)^T$, $v_4 = (0, 0, -1)^T$,
2321 $v_5 = (1, 0, -1)^T$, $v_6 = (-1, 0, 1)^T$, with the associated infinitesimal transition rates that can be
2322 written as $\Upsilon_1(x) = f_A(x)$, $\Upsilon_2(x) = g_{\varepsilon}^A(x)$, $\Upsilon_3(x) = f_{R1}(x)$, $\Upsilon_4(x) = g_{R1}^{\varepsilon}(x)$, $\Upsilon_5(x) = f_{R12}(x)$,
2323 $\Upsilon_6(x) = g_{R12}^{\varepsilon}(x)$. Define the matrix

2324
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

2325 and, for $x \in \mathcal{X}$, $(K_A + x) \cap \mathcal{X} = \{w \in \mathcal{X} : x \preceq_A w\}$. Let us also introduce infinitesimal transition
2326 rates $\check{\Upsilon}_i(x)$, $i = 1, 2, \dots, 6$, defined as for $\Upsilon_i(x)$, $i = 1, 2, \dots, 6$, with all the parameters having
2327 the same values except that μ' is replaced by $\check{\mu}'$, with $\mu' \geq \check{\mu}'$. Given that $Av_1 = (0, -1, 0)^T$,
2328 $Av_2 = (0, 1, 0)^T$, $Av_3 = (0, 0, 1)^T$, $Av_4 = (0, 0, -1)^T$, $Av_5 = (1, 0, 0)^T$, $Av_6 = (-1, 0, 0)^T$,
2329 condition (i) of Theorem 4.10 holds.

2330 To verify condition (ii) of Theorem 4.10, consider $x \in \mathcal{X}$ and $y \in \partial_1(K_A + x) \cap \mathcal{X} = \{w \in \mathcal{X} : x_1 = w_1, x_2 \geq w_2, x_1 + x_3 \leq w_1 + w_3\} = \{w \in \mathbb{R}^3 : x_1 = w_1, x_2 \geq w_2, x_3 \leq w_3\}$. Given
2331 that $\langle A_{1\bullet}, v_5 \rangle = 1$ and $\langle A_{1\bullet}, v_6 \rangle = -1$, we need to verify that $\Upsilon_5(x) \leq \check{\Upsilon}_5(y)$ and $\Upsilon_6(x) \geq \check{\Upsilon}_6(y)$. Since $x_1 = y_1, x_2 \geq y_2, x_3 \leq y_3$, then $\Upsilon_5(x) = x_3 \left(k_{W0}^2 + \frac{k_M}{V} x_1 + \frac{\bar{k}_M}{V} (x_1 + \frac{x_3-1}{2}) \right) \leq$
2334 $y_3 \left(k_{W0}^2 + \frac{k_M}{V} x_1 + \frac{\bar{k}_M}{V} (y_1 + \frac{y_3-1}{2}) \right) = \check{\Upsilon}_5(y)$ and $\Upsilon_6(x) = x_1 \mu \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} b + x_2 \frac{k_E^A}{V} \right)$
2335 $\geq y_1 \mu \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} b + y_2 \frac{k_E^A}{V} \right) = \check{\Upsilon}_6(y)$. Let us now consider $x \in \mathcal{X}$ and $y \in \partial_2(K_A + x) \cap \mathcal{X} = \{w \in \mathcal{X} : x_1 \leq w_1, x_2 = w_2, x_1 + x_3 \leq w_1 + w_3\}$. Given that $\langle A_{2\bullet}, v_1 \rangle = -1$ and
2336 $\langle A_{2\bullet}, v_2 \rangle = 1$, we need to verify that $\Upsilon_1(x) \geq \check{\Upsilon}_1(y)$ and $\Upsilon_2(x) \leq \check{\Upsilon}_2(y)$. Since $x_1 \leq y_1, x_2 =$
2337 $y_2, x_1 + x_3 \leq y_1 + y_3$, then $\Upsilon_1(x) = (D_{\text{tot}} - (x_1 + x_2 + x_3)) \left(k_{W0}^A + k_W^A + \frac{k_M^A}{V} x_2 \right) \geq (D_{\text{tot}} -$
2338 $(y_1 + y_2 + y_3)) \left(k_{W0}^A + k_W^A + \frac{k_M^A}{V} y_2 \right) = \check{\Upsilon}_1(y)$ and $\Upsilon_2(x) = x_2 \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} + \frac{k_E^A}{V} (x_3 + 2x_1) \right) \leq$
2339 $y_2 \left(\varepsilon \frac{k_M^A}{V} D_{\text{tot}} + \frac{k_E^A}{V} (y_3 + 2y_1) \right) = \check{\Upsilon}_2(y)$. Finally, consider $x \in \mathcal{X}$ and $y \in \partial_3(K_A + x) \cap \mathcal{X} = \{w \in$

2341 $\mathcal{X} | x_1 \leq w_1, x_2 \geq w_2, x_1 + x_3 = w_1 + w_3 \} = \{w \in \mathcal{X} | x_1 \leq w_1, x_2 \geq w_2, x_3 \geq w_3\}$. Given that
 2342 $\langle A_{3\bullet}, v_3 \rangle = 1$ and $\langle A_{3\bullet}, v_4 \rangle = -1$, we need to check that $\Upsilon_3(x) \leq \Upsilon_3(y)$ and $\Upsilon_4(x) \geq \Upsilon_4(y)$.
 2343 Since $x_1 \leq y_1, x_2 \geq y_2, x_3 \geq y_3$, then $\Upsilon_3(x) = (D_{\text{tot}} - (x_1 + x_2 + x_3)) \left(k_{W0}^1 + k_W^1 + \frac{k'_M}{V} x_1 \right) \leq$
 2344 $(D_{\text{tot}} - (y_1 + y_2 + y_3)) \left(k_{W0}^1 + k_W^1 + \frac{k'_M}{V} y_1 \right) = \Upsilon_3(y)$ and $\Upsilon_4(x) = x_3 \mu' \left(\varepsilon \frac{k_A^A}{V} D_{\text{tot}} \beta + x_2 \frac{k_E^A}{V} \right) \geq$
 2345 $y_3 \mu' \left(\varepsilon \frac{k_A^A}{V} D_{\text{tot}} \beta + y_2 \frac{k_E^A}{V} \right) = \Upsilon_4(y)$.

2346 We can then conclude that all of the conditions of Theorem 4.10 hold.

S.11 4D Model: additional mathematical details

2347 **Verification of Assumption 4.1.** In order to show that Assumption 4.1 holds, consider
 2348 the states $a = (0, D_{\text{tot}}, 0, 0)^T$ and $r = (D_{\text{tot}}, 0, 0, 0)^T$ and the set $\mathcal{T} = \{i_1, \dots, i_m\}$ defined in
 2349 Section 5.2.1. From (5.9), we can see that $Q_{a,a+v_j}(0) = Q_{r,r+v_j}(0) = 0$ for every $1 \leq j \leq 10$.
 2350 As a consequence, both a and r are absorbing states under $Q(0)$. To see that the states
 2351 in \mathcal{T} are transient under $Q(0)$, consider a state $x = (x_1, x_2, x_3, x_4)^T \in \mathcal{T}$. First, suppose
 2352 $x_1 + x_3 + x_4 \neq 0$. By having the one-step transitions along $v_2 = (0, -1, 0, 0)^T$ occurring x_2
 2353 times where $Q_{z,z+v_2}(0) = \frac{k_E^A}{V} (x_3 + x_4 + 2x_1) z_2 > 0$ for all $z = (x_1, z_2, x_3, x_4)^T$ and $1 \leq z_2 \leq x_2$,
 2354 then having one-step transitions along $v_3 = (0, 0, 1, 0)^T$ occurring $D_{\text{tot}} - x_1 - x_3 - x_4$ times where
 2355 $Q_{z,z+v_3}(0) = (D_{\text{tot}} - (x_1 + z_3 + x_4)) \left(k_{W0}^1 + k_W^1 + \frac{k'_M}{V} (x_1 + x_4) \right) > 0$ for all $z = (x_1, 0, z_3, x_4)^T$
 2356 and $x_3 \leq z_3 \leq D_{\text{tot}} - x_1 - x_4 - 1$, then having one-step transitions along $v_9 = (1, 0, 0, -1)^T$
 2357 occurring x_4 times where $Q_{z,z+v_9}(0) = (x_1 + x_4 - z_1) \left(k_{W0}^1 + \frac{k'_M}{V} \frac{x_1 + x_4 + z_1 - 1}{2} \right) > 0$ for all
 2358 $z = (z_1, 0, D_{\text{tot}} - x_1 - x_4, x_1 + x_4 - z_1)^T$ and $x_1 \leq z_1 \leq x_1 + x_4 - 1$, and finally having one-
 2359 step transitions along $v_7 = (1, 0, -1, 0)^T$ occurring $D_{\text{tot}} - x_1 - x_4$ times where $Q_{z,z+v_7}(0) =$
 2360 $(D_{\text{tot}} - z_1) \left(k_{W0}^2 + \frac{k_M}{V} z_1 + \frac{\bar{k}_M D_{\text{tot}} + z_1 - 1}{2} \right) > 0$ for all $z = (z_1, 0, D_{\text{tot}} - z_1, 0)^T$ and $x_1 + x_4 \leq$
 2361 $z_1 \leq D_{\text{tot}} - 1$, we have a positive probability of transition from x to r under $Q(0)$. By
 2362 Lemma S.8 and the fact that r is an absorbing state, we have that x is a transient state for
 2363 X^0 . On the other hand, suppose $x_1 + x_3 + x_4 = 0$. Since $x = (0, x_2, 0, 0)^T \in \mathcal{T}$, we have
 2364 $0 \leq x_2 \leq D_{\text{tot}} - 1$. We can first have a one-step transition along $v_3 = (0, 0, 1, 0)^T$, where
 2365 $Q_{x,x+v_3}(0) = (D_{\text{tot}} - x_2)(k_{W0}^1 + k_W^1) > 0$, to reach the state $(0, x_2, 1, 0)^T$ and then take the
 2366 steps in the $x_1 + x_3 + x_4 \neq 0$ case. In this way, there is a positive probability of transition
 2367 from x to the absorbing state r , and thus x is transient by Lemma S.8.

2368 **Verification of Assumption 4.2.** To show that Assumption 4.2 holds, consider the continuous
 2369 time Markov chain \tilde{X} with infinitesimal generator \tilde{Q} as described in (4.7) and shown in Fig.
 2370 7(d). We will first see that $\{i_{m-1}, i_m, r\}$, with $i_{m-1} = r + v_{10}$ and $i_m = r + v_8$, forms a closed
 2371 class under \tilde{Q} . For this, we see that $Q_{r,r+v_j}(\varepsilon)$ vanishes for every $j = \{1, 2, 3, 4, 5, 6, 7, 9\}$
 2372 and $\varepsilon \geq 0$, while $Q_{r,r+v_8}(\varepsilon) = \varepsilon \mu b \frac{k_M^A}{V} D_{\text{tot}}^2$ and $Q_{r,r+v_{10}}(\varepsilon) = \varepsilon \mu' \beta \frac{k_A^A}{V} D_{\text{tot}}^2$. Therefore, the
 2373 only transitions from r under \tilde{Q} are to i_{m-1} with rate $\tilde{Q}_{r,i_{m-1}} = \mu' \beta \frac{k_M^A}{V} D_{\text{tot}}^2 > 0$ and to i_m
 2374 with rate $\tilde{Q}_{r,i_m} = \mu b \frac{k_A^A}{V} D_{\text{tot}}^2 > 0$. From (5.9), we can see that $Q_{i_{m-1},i_{m-1}+v_j}(0) = 0$ for
 2375 $j \in \{1, 2, 3, 4, 5, 6, 7, 8, 10\}$, $Q_{i_m,i_m+v_j}(0) = 0$ for $j \in \{1, 2, 3, 4, 5, 6, 8, 9, 10\}$, $Q_{i_{m-1},r}(0) =$
 2377 $Q_{i_{m-1},i_{m-1}+v_9}(0) = k_{W0}^1 + \frac{k'_M}{V} (D_{\text{tot}} - 1) > 0$ and $Q_{i_m,r}(0) = Q_{i_m,i_m+v_7}(0) = k_{W0}^2 + \frac{k_M}{V} (D_{\text{tot}} -$

2378 1) + $\frac{\bar{k}_M}{V}(D_{\text{tot}} - 1) > 0$. Therefore, $\{i_{m-1}, i_m, r\}$ forms a closed class under \tilde{Q} . The fact that
 2379 $\hat{X}_{\mathcal{A}}$ consists of erasing the times from \tilde{X} in which the process is in \mathcal{T} , together with Lemma
 2380 4.3, yields that r is an absorbing state under $Q_{\mathcal{A}}$. From (5.9), we can see that $\tilde{Q}_{a,i_1} > 0$ where
 2381 $i_1 = (0, D_{\text{tot}} - 1, 0, 0)^T$. From the analysis made to prove Assumption 4.1, we obtain that i_1
 2382 leads to r under \tilde{Q} , which is part of the closed class $\{i_{m-1}, i_m, r\}$. By interpreting $\hat{X}_{\mathcal{A}}$ again as
 2383 a time-change of \tilde{X} , by Lemma 4.3 we obtain that a is transient under $Q_{\mathcal{A}}$. As a consequence,
 2384 $Q_{\mathcal{A}}$ has a single recurrent class consisting of the state r . Thus, Assumption 4.2 holds, and
 2385 furthermore, $\alpha = [\alpha_a, \alpha_r]$ with $\alpha_a = 0$ and $\alpha_r = 1$. In addition, the previous arguments show
 2386 that neither Assumption 4.3 nor 4.4 holds for this model.

2387 **Stationary distribution.** Here, we derive an expression for $\pi_x^{(1)}$, $x \in \mathcal{T} = \{i_1, \dots, i_m\}$.
 2388 Matrices A_1 , S_1 , and R_0 can be written as

$$2389 \quad A_1 = \begin{pmatrix} -s_1 & 0 \\ 0 & -(s_2 + s_3) \end{pmatrix}, \quad S_1 = \begin{pmatrix} s_1 & 0 & \dots & \dots & 0 & 0 \\ 0 & \dots & \dots & 0 & s_2 & s_3 \end{pmatrix}, \quad R_0 = \begin{pmatrix} r_1 & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & r_2 \\ 0 & r_3 \end{pmatrix},$$

2390 with $s_1 = \frac{k_M^A}{V}D_{\text{tot}}^2$, $s_2 = \mu'\beta\varepsilon\frac{k_M^A}{V}D_{\text{tot}}^2$, $s_3 = \mu b\varepsilon\frac{k_M^A}{V}D_{\text{tot}}^2$, $r_1 = (k_{W0}^A + k_W^A + \frac{k_M^A}{V}(D_{\text{tot}} - 1))$,
 2391 $r_2 = (k_{W0}^1 + \frac{k_M'}{V}(D_{\text{tot}} - 1))$ and $r_3 = (k_{W0}^2 + (\frac{k_M}{V} + \frac{\bar{k}_M}{V})(D_{\text{tot}} - 1))$. Now, we determine
 2392 $\beta^{(1)} = [\pi_{i_1}^{(1)}, \dots, \pi_{i_m}^{(1)}] = \alpha S_1(-T_0)^{-1}$. Given that the only two elements different from zero in
 2393 the last two rows of T_0 are $(T_0)_{i_{m-1}, i_{m-1}} = (k_{W0}^1 + \frac{k_M'}{V}(D_{\text{tot}} - 1))$ and $(T_0)_{i_m, i_m} = (k_{W0}^2 + (\frac{k_M}{V} +$
 2394 $\frac{\bar{k}_M}{V}(D_{\text{tot}} - 1))$, we obtain $\beta^{(1)} = [0, \dots, 0, \pi_{i_{m-1}}^{(1)}, \pi_{i_m}^{(1)}]$, with

$$2395 \quad \pi_{i_{m-1}}^{(1)} = \frac{\mu'\beta\frac{k_M^A}{V}D_{\text{tot}}^2}{k_{W0}^1 + \frac{k_M'}{V}(D_{\text{tot}} - 1)}, \quad \pi_{i_m}^{(1)} = \frac{\mu b\frac{k_M^A}{V}D_{\text{tot}}^2}{k_{W0}^2 + (\frac{k_M}{V} + \frac{\bar{k}_M}{V})(D_{\text{tot}} - 1)}.$$

2396 Now, $\alpha^{(1)} = [\pi_a^{(1)}, \pi_r^{(1)}]$ is the unique vector such that $\alpha^{(1)}Q_{\mathcal{A}} = -\beta^{(1)}[R_1 + T_1(-T_0)^{-1}R_0]$,
 2397 $\alpha^{(1)}\mathbb{1} = -\beta^{(1)}\mathbb{1}$.

2398 As an example, suppose $D_{\text{tot}} = 2$, $\beta = b$, $k_W^1 = k_W^2 = k_W^A = 0$, $k_{W0}^1 = k_{W0}^2 = k_{W0}^A = k_{W0}$
 2399 and $k_M' = \bar{k}_M = k_M^A = k_M$. Then, we have that $A_0 = 0$, $S_0 = 0$ and matrices $A_1 \in \mathbb{R}^{2 \times 2}$ and
 2400 $S_1 \in \mathbb{R}^{2 \times 13}$ are equal to

$$2401 \quad A_1 = \begin{pmatrix} -4\frac{k_M}{V} & 0 \\ 0 & -4\frac{k_M}{V}(\mu b + \mu'\beta) \end{pmatrix}, \quad S_1 = \begin{pmatrix} 4\frac{k_M}{V} & 0 & \dots & \dots & 0 & 0 \\ 0 & \dots & \dots & 0 & 4\frac{k_M}{V}\mu'b & 4\frac{k_M}{V}\mu b \end{pmatrix}.$$

2402 Furthermore, $R_1 = 0$ and $R_0 \in \mathbb{R}^{13 \times 2}$ can be written as

$$2403 \quad R_0 = \begin{pmatrix} k_{W0} + \frac{k_M}{V} & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & k_{W0} + \frac{k_M}{V} \\ 0 & k_{W0} + 2\frac{k_M}{V} \end{pmatrix}.$$

2404 Finally, matrices T_0 and T_1 can be written as

$$2405 \quad T_0 = \begin{pmatrix} T_0^1 & T_0^2 \\ T_0^3 & T_0^4 \end{pmatrix}, T_1 = \begin{pmatrix} T_1^1 & T_1^2 \\ T_1^3 & T_1^4 \end{pmatrix},$$

2406 with $T_1^2 = 0^{7 \times 6}$ and

$$T_0^1 = \begin{pmatrix} -3k_{W0} - \frac{k_M}{V} & k_{W0} & 0 & 0 & 0 & k_{W0} & 0 \\ \mu \frac{k_E^A}{V} & -(1 + \mu) \frac{k_E^A}{V} - k_{W0} & 0 & \frac{k_E^A}{V} & 0 & 0 & 0 \\ 2k_{W0} & 0 & -6k_{W0} & 2k_{W0} & 0 & 0 & 2k_{W0} \\ 0 & k_{W0} & 0 & -(4k_{W0} + 2\frac{k_M}{V}) & k_{W0} + \frac{k_M}{V} & 0 & 0 \\ 0 & 0 & 0 & 0 & -(k_{W0} + \frac{k_M}{V}) & 0 & 0 \\ \mu' \frac{k_E^A}{V} & 0 & 0 & 0 & 0 & -(1 + \mu') \frac{k_E^A}{V} - k_{W0} & \frac{k_E^A}{V} \\ 0 & 0 & 0 & 0 & 0 & k_{W0} & -(4k_{W0} + \frac{k_M}{V}) \end{pmatrix},$$

$$T_0^2 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & k_{W0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ k_{W0} + \frac{k_M}{V} & 0 & 0 & k_{W0} & 0 & 0 \\ 0 & 0 & 0 & 0 & k_{W0} + \frac{k_M}{V} & 0 \\ 0 & 0 & k_{W0} & 0 & 0 & 0 \\ k_{W0} + \frac{k_M}{V} & k_{W0} & 0 & k_{W0} & 0 & 0 \end{pmatrix}, T_1^3 = \begin{pmatrix} 0 & 0 & 0 & 2\mu' b \frac{k_M}{V} & 0 & 0 & 2\mu b \frac{k_M}{V} \\ 0 & 0 & 0 & 0 & 0 & 0 & 2\mu' b \frac{k_M}{V} \\ 0 & 2\mu' b \frac{k_M}{V} & 0 & 0 & 0 & 2\mu b \frac{k_M}{V} & 0 \\ 0 & 0 & 0 & 2\mu' b \frac{k_M}{V} & 0 & 0 & 2\mu b \frac{k_M}{V} \\ 0 & 0 & 0 & 0 & 2\mu' b \frac{k_M}{V} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

$$2407 \quad T_1^1 = \begin{pmatrix} -2\frac{k_M}{V} & 0 & 2\frac{k_M}{V} & 0 & 0 & 0 & 0 \\ 2\mu b \frac{k_M}{V} & -2(\mu b + 1) \frac{k_M}{V} & 0 & 2\frac{k_M}{V} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2\mu b \frac{k_M}{V} & -2\mu b \frac{k_M}{V} & 0 & 0 & 0 \\ 2\mu' b \frac{k_M}{V} & 0 & 0 & 0 & -2(\mu' b + 1) \frac{k_M}{V} & 2\frac{k_M}{V} & 0 \\ 0 & 0 & 2\mu' b \frac{k_M}{V} & 0 & 0 & -2\mu' b \frac{k_M}{V} & 0 \end{pmatrix}, T_0^3 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mu' \frac{k_E^A}{V} & 0 & 0 & 0 & \mu' \frac{k_E^A}{V} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

$$T_0^4 = \begin{pmatrix} -(2k_{W0} + \frac{k_M}{V}) & 0 & 0 & 0 & k_{W0} + \frac{k_M}{V} & k_{W0} & k_{W0} + \frac{k_M}{V} \\ 0 & -(k_{W0} + \frac{k_M}{V}) & 0 & 0 & 0 & k_{W0} + \frac{k_M}{V} & k_{W0} + \frac{k_M}{V} \\ 0 & 0 & -(\mu + \mu' + 2) \frac{k_E^A}{V} & 2\frac{k_E^A}{V} & 0 & 0 & 0 \\ 0 & 0 & k_{W0} & -3(k_{W0} + \frac{k_M}{V}) & k_{W0} + 2\frac{k_M}{V} & k_{W0} + \frac{k_M}{V} & 0 \\ 0 & 0 & 0 & 0 & -(k_{W0} + \frac{k_M}{V}) & 0 & -(k_{W0} + 2\frac{k_M}{V}) \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

$$T_1^4 = \begin{pmatrix} -2(\mu + \mu') b \frac{k_M}{V} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -2\mu' b \frac{k_M}{V} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2(\mu b + \mu' b + 1) \frac{k_M}{V} & 2\frac{k_M}{V} & 0 & 0 & 0 \\ 0 & 0 & 0 & -2(\mu + \mu') b \frac{k_M}{V} & 0 & 0 & 0 \\ 2\mu b \frac{k_M}{V} & 0 & 0 & 2\mu b \frac{k_M}{V} & -2(2\mu + \mu') b \frac{k_M}{V} & 0 & 0 \\ 2\mu' b \frac{k_M}{V} & 2\mu b \frac{k_M}{V} & 0 & 2\mu' b \frac{k_M}{V} & 0 & -2(\mu + 2\mu') b \frac{k_M}{V} & 0 \end{pmatrix},$$

2408 Now, by applying Theorem S.9, we first obtain that $\pi(0) = \pi^{(0)} = [\alpha, 0] = [\alpha_a, \alpha_r, 0 \dots, 0]$ ■

2409 where α can be obtained by solving $\alpha Q_{\mathcal{A}} = 0$. In this case, we obtain that

$$2410 \quad Q_{\mathcal{A}} = \frac{K_1((\mu')^2 K_2 + (\mu)^2 K_3 + \mu\mu' K_4 + \mu' K_5 + \mu K_6 + K_7)}{\mu'\mu(\mu' + \mu)K_8 + (\mu')^2 K_9 + (\mu)^2 K_{10} + \mu\mu' K_{11} + \mu' K_{12} + \mu K_{13} + K_{14}} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix},$$

2411 with

$$2412 \quad K_1 = 4k_{W0} \frac{k_M}{V},$$

$$2413 \quad K_2 = \left(\frac{k_E^A}{V} \right)^2 \left(6 \left(\frac{k_M}{V} \right)^3 + 39k_{W0} \left(\frac{k_M}{V} \right)^2 + 68 \frac{k_M}{V} (k_{W0})^2 + 32(k_{W0})^3 \right),$$

$$2414 \quad K_3 = \left(\frac{k_E^A}{V} \right)^2 \left(6 \left(\frac{k_M}{V} \right)^3 + 36k_{W0} \left(\frac{k_M}{V} \right)^2 + 64 \frac{k_M}{V} (k_{W0})^2 + 32(k_{W0})^3 \right),$$

$$2415 \quad K_4 = \left(\frac{k_E^A}{V} \right)^2 \left(12 \left(\frac{k_M}{V} \right)^3 + 75k_{W0} \left(\frac{k_M}{V} \right)^2 + 132 \frac{k_M}{V} (k_{W0})^2 + 64(k_{W0})^3 \right),$$

$$2416 \quad K_5 = \left(\frac{k_E^A}{V} \right)^2 \left(24 \left(\frac{k_M}{V} \right)^3 + 140k_{W0} \left(\frac{k_M}{V} \right)^2 + 222 \frac{k_M}{V} (k_{W0})^2 + 96(k_{W0})^3 \right)$$

$$2417 \quad + \frac{k_E^A}{V} k_{W0} \left(24 \left(\frac{k_M}{V} \right)^3 + 158k_{W0} \left(\frac{k_M}{V} \right)^2 + 280 \frac{k_M}{V} (k_{W0})^2 + 128(k_{W0})^3 \right),$$

$$2418 \quad K_6 = \left(\frac{k_E^A}{V} \right)^2 \left(24 \left(\frac{k_M}{V} \right)^3 + 134k_{W0} \left(\frac{k_M}{V} \right)^2 + 216 \frac{k_M}{V} (k_{W0})^2 + 96(k_{W0})^3 \right)$$

$$2419 \quad + \frac{k_E^A}{V} k_{W0} \left(24 \left(\frac{k_M}{V} \right)^3 + 152k_{W0} \left(\frac{k_M}{V} \right)^2 + 272 \frac{k_M}{V} (k_{W0})^2 + 128(k_{W0})^3 \right),$$

$$2420 \quad K_7 = \left(\frac{k_E^A}{V} \right)^2 \left(24 \left(\frac{k_M}{V} \right)^3 + 124k_{W0} \left(\frac{k_M}{V} \right)^2 + 180 \frac{k_M}{V} (k_{W0})^2 + 72(k_{W0})^3 \right)$$

$$2421 \quad + \frac{k_E^A}{V} k_{W0} \left(48 \left(\frac{k_M}{V} \right)^3 + 284k_{W0} \left(\frac{k_M}{V} \right)^2 + 456 \frac{k_M}{V} (k_{W0})^2 + 192(k_{W0})^3 \right)$$

$$2422 \quad + (k_{W0})^2 \left(24 \left(\frac{k_M}{V} \right)^3 + 160k_{W0} \left(\frac{k_M}{V} \right)^2 + 288 \frac{k_M}{V} (k_{W0})^2 + 128(k_{W0})^3 \right),$$

$$2423 \quad K_8 = \left(\frac{k_E^A}{V} \right)^2 \left(6 \left(\frac{k_M}{V} \right)^4 + 48k_{W0} \left(\frac{k_M}{V} \right)^3 + 126(k_{W0})^2 \left(\frac{k_M}{V} \right)^2 + 132 \frac{k_M}{V} (k_{W0})^3 + 72(k_{W0})^4 \right),$$

$$2424 \quad K_9 = \left(\frac{k_E^A}{V} \right)^2 \left(6 \left(\frac{k_M}{V} \right)^4 + 51k_{W0} \left(\frac{k_M}{V} \right)^3 + 146(k_{W0})^2 \left(\frac{k_M}{V} \right)^2 + 168 \frac{k_M}{V} (k_{W0})^3 + 64(k_{W0})^4 \right),$$

$$2425 \quad K_{10} = \left(\frac{k_E^A}{V} \right)^2 \left(6 \left(\frac{k_M}{V} \right)^4 + 48k_{W0} \left(\frac{k_M}{V} \right)^3 + 136(k_{W0})^2 \left(\frac{k_M}{V} \right)^2 + 160 \frac{k_M}{V} (k_{W0})^3 + 64(k_{W0})^4 \right),$$

$$2426 \quad K_{11} = \left(\frac{k_E^A}{V} \right)^2 \left(24 \left(\frac{k_M}{V} \right)^4 + 191k_{W0} \left(\frac{k_M}{V} \right)^3 + 509(k_{W0})^2 \left(\frac{k_M}{V} \right)^2 + 547 \frac{k_M}{V} (k_{W0})^3 + 200(k_{W0})^4 \right),$$

$$2427 \quad + \frac{k_E^A}{V} k_{W0} \left(12 \left(\frac{k_M}{V} \right)^4 + 96k_{W0} \left(\frac{k_M}{V} \right)^3 + 252(k_{W0})^2 \left(\frac{k_M}{V} \right)^2 + 264 \frac{k_M}{V} (k_{W0})^3 + 96(k_{W0})^4 \right),$$

$$2428 \quad K_{12} = \left(\frac{k_E^A}{V} \right)^2 \left(19 \left(\frac{k_M}{V} \right)^4 + 149k_{W0} \left(\frac{k_M}{V} \right)^3 + 416(k_{W0})^2 \left(\frac{k_M}{V} \right)^2 + 463 \frac{k_M}{V} (k_{W0})^3 + 168(k_{W0})^4 \right),$$

$$2429 \quad + \frac{k_E^A}{V} k_{W0} \left(18 \left(\frac{k_M}{V} \right)^4 + 161k_{W0} \left(\frac{k_M}{V} \right)^3 + 489(k_{W0})^2 \left(\frac{k_M}{V} \right)^2 + 588 \frac{k_M}{V} (k_{W0})^3 + 224(k_{W0})^4 \right),$$

$$\begin{aligned}
2430 \quad K_{13} &= \left(\frac{k_E^A}{V} \right)^2 \left(18 \left(\frac{k_M}{V} \right)^4 + 143k_{W0} \left(\frac{k_M}{V} \right)^3 + 399(k_{W0})^2 \left(\frac{k_M}{V} \right)^2 + 452 \frac{k_M}{V} (k_{W0})^3 + 168(k_{W0})^4 \right), \\
2431 \quad &+ \frac{k_E^A}{V} k_{W0} \left(18 \left(\frac{k_M}{V} \right)^4 + 158k_{W0} \left(\frac{k_M}{V} \right)^3 + 476(k_{W0})^2 \left(\frac{k_M}{V} \right)^2 + 576 \frac{k_M}{V} (k_{W0})^3 + 224(k_{W0})^4 \right), \\
2432 \quad K_{14} &= \left(\frac{k_E^A}{V} \right)^2 \left(12 \left(\frac{k_M}{V} \right)^4 + 98k_{W0} \left(\frac{k_M}{V} \right)^3 + 276(k_{W0})^2 \left(\frac{k_M}{V} \right)^2 + 306 \frac{k_M}{V} (k_{W0})^3 + 108(k_{W0})^4 \right), \\
2433 \quad &+ \frac{k_E^A}{V} k_{W0} \left(24 \left(\frac{k_M}{V} \right)^4 + 214k_{W0} \left(\frac{k_M}{V} \right)^3 + 654(k_{W0})^2 \left(\frac{k_M}{V} \right)^2 + 780 \frac{k_M}{V} (k_{W0})^3 + 288(k_{W0})^4 \right), \\
2434 \quad &+ (k_{W0})^2 \left(12 \left(\frac{k_M}{V} \right)^4 + 116k_{W0} \left(\frac{k_M}{V} \right)^3 + 384(k_{W0})^2 \left(\frac{k_M}{V} \right)^2 + 496 \frac{k_M}{V} (k_{W0})^3 + 192(k_{W0})^4 \right).
\end{aligned}$$

2435 Let us now derive an expression for $\pi^{(1)}$. Starting with the transient states $\mathcal{T} = \{i_1, \dots, i_{15}\}$,
2436 we obtain that $\beta^{(1)} = [\pi_{i_1}^{(1)}, \dots, \pi_{i_{15}}^{(1)}] = \alpha S_1(-T_0)^{-1}$, and so $\beta^{(1)} = [0, \dots, 0, \pi_{i_{14}}^{(1)}, \pi_{i_{15}}^{(1)}]$, with

$$2437 \quad \pi_{i_{12}}^{(1)} = \frac{4\mu'\beta \frac{k_M^A}{V}}{k_{W0}^1 + \frac{k_M'}{V}}, \quad \pi_{i_{13}}^{(1)} = \frac{4\mu\beta \frac{k_M^A}{V}}{k_{W0}^2 + (\frac{k_M}{V} + \frac{\bar{k}_M}{V})}.$$

2438 Finally, $\alpha^{(1)} = [\pi_a^{(1)}, \pi_r^{(1)}]$ is the unique vector such that $\alpha^{(1)} Q_{\mathcal{A}} = -\beta^{(1)} [R_1 + T_1(-T_0)^{-1} R_0]$
2439 and $\alpha^{(1)} \mathbf{1} = -\beta^{(1)} \mathbf{1}$. After some calculations, we obtain

$$\begin{aligned}
2440 \quad \pi_a^{(1)} &= \frac{(\mu\mu')^2 K_{15}((\mu + \mu')K_{16} + K_{17})}{K_{20}((\mu')^2 K_2 + (\mu)^2 K_3 + (\mu' + \mu)K_4 + \mu'K_5 + \mu K_6 + K_7)}, \\
\pi_r^{(1)} &= -\pi_a^{(1)} - \pi_{i_{14}}^{(1)} - \pi_{i_{15}}^{(1)} \\
&= -\frac{(\mu\mu')^2 K_{15}((\mu + \mu')K_{16} + K_{17})}{K_{20}((\mu')^2 K_2 + (\mu)^2 K_3 + (\mu' + \mu)K_4 + \mu'K_5 + \mu K_6 + K_7)} - \mu' K_{18} - \mu K_{19},
\end{aligned}$$

2441 with

$$\begin{aligned}
2442 \quad K_{15} &= 2 \frac{k_E^A}{V} \frac{k_M}{V} \left(3 \frac{k_M}{V} + 2k_{W0} \right) b^2, \quad K_{16} = \frac{k_E^A}{V} \left(2 \left(\frac{k_M}{V} \right)^2 + 16(k_{W0})^2 + 12 \frac{k_M}{V} k_{W0} \right), \\
2443 \quad K_{17} &= \frac{k_E^A}{V} \left(21 \frac{k_M}{V} k_{W0} + 4 \left(\frac{k_M}{V} \right)^2 + 24(k_{W0})^2 \right) + k_{W0} \left(24 \frac{k_M}{V} k_{W0} + 4 \left(\frac{k_M}{V} \right)^2 + 32(k_{W0})^2 \right), \\
2444 \quad K_{18} &= \frac{4b \frac{k_M}{V}}{k_W + \frac{k_M}{V}}, \quad K_{19} = \frac{4b \frac{k_M}{V}}{k_W + 2 \frac{k_M}{V}}, \quad K_{20} = \left(2 \frac{k_M}{V} + k_{W0} \right).
\end{aligned}$$

2445 **Time to memory loss.** As a reminder, we define the time to memory loss of the active
2446 state as $h_{a,r}(\varepsilon)$ and the time to memory loss of the repressed state as $h_{r,a}(\varepsilon)$. Let us start by
2447 deriving the order and the leading coefficients of $h_{a,r}(\varepsilon)$ and $h_{r,a}(\varepsilon)$. By (4.16), the order of the
2448 stationary distribution at a and r are $k_a = -\min\{1-2, 0\} = 1$ and $k_r = -\min\{1-1, 0\} = 0$,
2449 respectively. This is consistent with the results obtained in Section 5.2.1. As obtained for the
2450 3D model, here we obtain $\pi_r^{(0)} = 1$ and $\pi_a^{(1)} > 0$, and thus

$$2451 \quad h_{a,r}(\varepsilon) = \frac{1}{(Q_{\mathcal{A}})_{a,r}} \frac{1}{\varepsilon} + O(1), \quad \text{and} \quad h_{r,a}(\varepsilon) = \frac{1}{(Q_{\mathcal{A}})_{a,r} \cdot \pi_a^{(1)}} \frac{1}{\varepsilon^2} + O\left(\frac{1}{\varepsilon}\right).$$

Now, in order to exploit Theorems S.2 and 3.4 from [13] and determine how μ' affects $h_{a,r}(\varepsilon)$ and $h_{r,a}(\varepsilon)$, we introduce a small approximation in the transition rates of X^ε , namely, $\frac{x_3-1}{2} \approx x_3$ and $\frac{x_4-1}{2} \approx x_4$ in $f_{R121}(x)$ and $f_{R122}(x)$, respectively. This approximation can be justified by introducing the reasonable assumption that each nucleosome characterized by a repressive modification (D_1^R and D_2^R) has the ability to catalyze the establishment of the opposite repressive mark on itself. Now, let us verify that both conditions (i) and (ii) of Theorem S.2 in [5] hold. These conditions can be written as follows:

(i) For each $1 \leq j \leq n$, the vector Av_j has entries in $\{-1, 0, 1\}$ only.

(ii) For each $x \in \mathcal{X}$, $1 \leq i \leq m$ and $y \in \partial_i(K_A + x) \cap \mathcal{X}$ we have that for each $1 \leq k \leq s$,

$$\sum_{j \in G_i^{k,-}} \check{\Upsilon}_j(y) \leq \sum_{j \in G_i^{k,-}} \Upsilon_j(x), \quad \text{where } G_i^{k,-} = \{j \in G^k \mid \langle A_{i\bullet}, v_j \rangle = -1\},$$

and

$$\sum_{j \in G_i^{k,+}} \check{\Upsilon}_j(y) \geq \sum_{j \in G_i^{k,+}} \Upsilon_j(x), \quad \text{where } G_i^{k,+} = \{j \in G^k \mid \langle A_{i\bullet}, v_j \rangle = 1\}.$$

To verify that these conditions hold, let us first note the ten possible transitions vectors for the continuous time Markov chain $X^\varepsilon(t)$: $v_1 = -v_2 = (1, 0, -1, 0)^T$, $v_3 = -v_4 = (1, 0, 0, -1)^T$, $v_5 = -v_6 = (0, 1, 0, 0)^T$, $v_7 = -v_8 = (0, 0, 1, 0)^T$, $v_9 = -v_{10} = (0, 0, 0, 1)^T$, with the associated infinitesimal transition rates $\Upsilon_1(x) = f_{R121}(x)$, $\Upsilon_2(x) = g_{R121}^\varepsilon(x)$, $\Upsilon_3(x) = f_{R122}(x)$, $\Upsilon_4(x) = g_{R122}^\varepsilon(x)$, $\Upsilon_5(x) = f_A(x)$, $\Upsilon_6(x) = g_A^\varepsilon(x)$, $\Upsilon_7(x) = f_{R1}(x)$, $\Upsilon_8(x) = g_{R1}^\varepsilon(x)$, $\Upsilon_9(x) = f_{R2}(x)$, $\Upsilon_{10}(x) = g_{R2}^\varepsilon(x)$. Let

$$A = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}.$$

Then, $(K_A + x) \cap \mathcal{X} = \{w \in \mathcal{X} : x \preceq_A w\}$. Consider infinitesimal transition rates $\check{\Upsilon}_i(x)$, $i = 1, 2, \dots, 10$, defined as for $\Upsilon_i(x)$, $i = 1, 2, \dots, 10$, with all the parameters having the same values except that μ' is replaced by $\check{\mu}'$, with $\mu' \geq \check{\mu}'$. Now, condition (i) of Theorem S.2 in [5] holds since $Av_1 = -Av_2 = (0, 0, 1, 0)^T$, $Av_3 = -Av_4 = (0, 1, 0, 0)^T$, $Av_5 = -Av_6 = (-1, 0, 0, 0)^T$, $Av_7 = -Av_8 = (0, 1, 0, 1)^T$ and $Av_9 = -Av_{10} = (0, 0, 1, 1)^T$. Assumption S.1 in [5] holds with $G^1 = \{9, 1\}$, $G^2 = \{10, 2\}$, $G^3 = \{7, 3\}$, $G^4 = \{8, 4\}$, $G^5 = \{5\}$, $G^6 = \{6\}$ and $\sigma(1) = 9$, $\sigma(2) = 1$, $\sigma(3) = 10$, $\sigma(4) = 2$, $\sigma(5) = 7$, $\sigma(6) = 3$, $\sigma(7) = 8$, $\sigma(8) = 4$, $\sigma(9) = 5$, $\sigma(10) = 6$. To verify that also condition (ii) of Theorem S.2 in [5] holds, let us start with considering $x \in \mathcal{X}$ and $y \in \partial_1(K_A + x) \cap \mathcal{X} = \{w \in \mathcal{X} : x_2 = w_2, x_1 + x_3 \leq w_1 + w_3, x_1 + x_4 \leq w_1 + w_4, x_1 + x_3 + x_4 \leq w_1 + w_3 + w_4\}$. Given that $\langle A_{1\bullet}, v_5 \rangle = -1$ and $\langle A_{1\bullet}, v_6 \rangle = 1$, we must verify that $\Upsilon_5(x) \geq \check{\Upsilon}_5(y)$ and $\Upsilon_6(x) \leq \check{\Upsilon}_6(y)$. Since $x_2 = y_2$, $x_1 + x_3 \leq y_1 + y_3$, $x_1 + x_4 \leq y_1 + y_4$, $x_1 + x_3 + x_4 \leq y_1 + y_3 + y_4$, then $\Upsilon_5(x) = (D_{\text{tot}} - (x_1 + x_2 + x_3 + x_4)) (k_{W0}^A + k_W^A + \frac{k_M^A}{V} x_2) \geq (D_{\text{tot}} - (y_1 + y_2 + y_3 + y_4)) (k_{W0}^A + k_W^A + \frac{k_M^A}{V} y_2) = \check{\Upsilon}_5(y)$ and $\Upsilon_6(x) = x_2 (\varepsilon \frac{k_M^A}{V} D_{\text{tot}} + \frac{k_E^A}{V} (x_3 + x_4 + 2x_1)) \leq y_2 (\varepsilon \frac{k_M^A}{V} D_{\text{tot}} + \frac{k_E^A}{V} (y_3 + y_4 + 2y_1)) = \check{\Upsilon}_6(y)$.

2485 Let us now consider $x \in \mathcal{X}$ and $y \in \partial_2(K_A + x) \cap \mathcal{X} = \{w \in \mathcal{X} : x_2 \geq w_2, x_1 + x_3 =$
 2486 $w_1 + w_3, x_1 + x_4 \leq w_1 + w_4, x_1 + x_3 + x_4 \leq w_1 + w_3 + w_4\}$. Given that $\langle A_{2\bullet}, v_3 \rangle = \langle A_{2\bullet}, v_7 \rangle = 1$
 2487 and $\langle A_{2\bullet}, v_4 \rangle = \langle A_{2\bullet}, v_8 \rangle = -1$, we need to verify that $\Upsilon_3(x) + \Upsilon_7(x) \leq \check{\Upsilon}_3(y) + \check{\Upsilon}_7(y)$ and
 2488 $\Upsilon_4(x) + \Upsilon_8(x) \geq \check{\Upsilon}_4(y) + \check{\Upsilon}_8(y)$ hold. Since $x_2 \geq y_2, x_1 + x_3 = y_1 + y_3, x_1 + x_4 \leq y_1 + y_4, x_1 +$
 2489 $x_3 + x_4 \leq y_1 + y_3 + y_4$, then $\Upsilon_3(x) + \Upsilon_7(x) = (D_{\text{tot}} - (x_1 + x_2 + x_3)) \left(k_{W0}^1 + \frac{k'_M}{V} (x_1 + x_4) \right) \leq$
 2490 $(D_{\text{tot}} - (y_1 + y_2 + y_3)) \left(k_{W0}^1 + \frac{k'_M}{V} (y_1 + y_4) \right) = \check{\Upsilon}_3(y) + \check{\Upsilon}_7(y)$ and $\Upsilon_4(x) + \Upsilon_8(x) = (x_3 +$
 2491 $x_1) \mu' \left(\varepsilon \frac{k'_M}{V} D_{\text{tot}} \beta + x_2 \frac{k^A_E}{V} \right) \geq (y_3 + y_1) \check{\mu}' \left(\varepsilon \frac{k^A_M}{V} D_{\text{tot}} \beta + y_2 \frac{k^A_E}{V} \right) = \check{\Upsilon}_4(y) + \check{\Upsilon}_8(y)$. Let us now
 2492 consider $x \in \mathcal{X}$ and $y \in \partial_3(K_A + x) \cap \mathcal{X} = \{w \in \mathcal{X} : x_2 \geq w_2, x_1 + x_3 \leq w_1 + w_3, x_1 + x_4 =$
 2493 $w_1 + w_4, x_1 + x_3 + x_4 \leq w_1 + w_3 + w_4\}$. Given that $\langle A_{3\bullet}, v_1 \rangle = \langle A_{3\bullet}, v_9 \rangle = 1$ and $\langle A_{3\bullet}, v_2 \rangle =$
 2494 $\langle A_{3\bullet}, v_{10} \rangle = 1$, we need to verify that $\Upsilon_1(x) + \Upsilon_9(x) \leq \check{\Upsilon}_1(y) + \check{\Upsilon}_9(y)$ and $\Upsilon_2(x) + \Upsilon_{10}(x) \geq$
 2495 $\check{\Upsilon}_2(y) + \check{\Upsilon}_{10}(y)$ hold. Since $x_2 \geq y_2, x_1 + x_3 \leq y_1 + y_3, x_1 + x_4 = y_1 + y_4, x_1 + x_3 + x_4 \leq y_1 + y_3 + y_4$,
 2496 then $\Upsilon_1(x) + \Upsilon_9(x) = (D_{\text{tot}} - (x_1 + x_2 + x_4)) \left(k_{W0}^2 + \frac{k_M}{V} (x_1 + x_4) + \frac{\bar{k}_M}{V} (x_1 + x_3) \right) \leq (D_{\text{tot}} -$
 2497 $(y_1 + y_2 + y_4)) \left(k_{W0}^2 + \frac{k_M}{V} (y_1 + y_4) + \frac{\bar{k}_M}{V} (y_1 + y_3) \right) = \check{\Upsilon}_1(y) + \check{\Upsilon}_9(y)$ and $\Upsilon_2(x) + \Upsilon_{10}(x) =$
 2498 $(x_1 + x_4) \mu \left(\varepsilon \frac{k^A_M}{V} D_{\text{tot}} b + x_2 \frac{k^A_E}{V} \right) \geq (y_1 + y_4) \mu \left(\varepsilon \frac{k^A_M}{V} D_{\text{tot}} b + y_2 \frac{k^A_E}{V} \right) = \check{\Upsilon}_2(y) + \check{\Upsilon}_{10}(y)$. Finally, let
 2499 us consider $x \in \mathcal{X}$ and $y \in \partial_3(K_A + x) \cap \mathcal{X} = \{w \in \mathcal{X} : x_2 \geq w_2, x_1 + x_3 \leq w_1 + w_3, x_1 + x_4 \leq$
 2500 $w_1 + w_4, x_1 + x_3 + x_4 = w_1 + w_3 + w_4\}$. Given that $\langle A_{4\bullet}, v_7 \rangle = \langle A_{4\bullet}, v_9 \rangle = 1$ and $\langle A_{4\bullet}, v_8 \rangle =$
 2501 $\langle A_{4\bullet}, v_{10} \rangle = -1$, we need to verify that $\Upsilon_7(x) \leq \check{\Upsilon}_7(y), \Upsilon_9(x) \leq \check{\Upsilon}_9(y), \Upsilon_8(x) \geq \check{\Upsilon}_8(y)$ and
 2502 $\Upsilon_{10}(x) \geq \check{\Upsilon}_{10}(y)$ hold. Since $x_2 \geq y_2, x_1 + x_3 \leq y_1 + y_3, x_1 + x_4 \leq y_1 + y_4, x_1 + x_3 + x_4 =$
 2503 $y_1 + y_3 + y_4$, that also imply $x_1 \leq y_1, x_3 \geq y_3, x_4 \geq y_4$, then $\Upsilon_7(x) = (D_{\text{tot}} - (x_1 + x_2 +$
 2504 $x_3 + x_4)) \left(k_{W0}^1 + \frac{k'_M}{V} (x_1 + x_4) \right) \leq (D_{\text{tot}} - (y_1 + y_2 + y_3 + y_4)) \left(k_{W0}^1 + \frac{k'_M}{V} (y_1 + y_4) \right) = \check{\Upsilon}_7(y)$,
 2505 $\Upsilon_9(x) = (D_{\text{tot}} - (x_1 + x_2 + x_3 + x_4)) \left(k_{W0}^2 + \frac{k_M}{V} (x_1 + x_4) + \frac{\bar{k}_M}{V} (x_1 + x_3) \right) \leq (D_{\text{tot}} - (y_1 + y_2 +$
 2506 $y_3 + y_4)) \left(k_{W0}^2 + \frac{k_M}{V} (y_1 + y_4) + \frac{\bar{k}_M}{V} (y_1 + y_3) \right) = \check{\Upsilon}_9(y)$, $\Upsilon_8(x) = x_3 \mu' \left(\varepsilon \frac{k^A_M}{V} D_{\text{tot}} \beta + x_2 \frac{k^A_E}{V} \right) \geq$
 2507 $y_3 \check{\mu}' \left(\varepsilon \frac{k^A_M}{V} D_{\text{tot}} \beta + y_2 \frac{k^A_E}{V} \right) = \check{\Upsilon}_8(y)$ and $\Upsilon_{10}(x) = x_4 \mu \left(\varepsilon \frac{k^A_M}{V} D_{\text{tot}} b + x_2 \frac{k^A_E}{V} \right)$
 2508 $\geq y_4 \mu \left(\varepsilon \frac{k^A_M}{V} D_{\text{tot}} b + y_2 \frac{k^A_E}{V} \right) = \check{\Upsilon}_{10}(y)$. Then, condition (ii) of Theorem S.2 in [5] also holds.

2509 We can then conclude that all of the conditions of Theorem S.2 in [5] hold and so do the
 2510 conclusions of Theorem 3.4 in [5], as per the remarks in SI - Section S.3 in [5].

2511

REFERENCES

2512 [1] ASMUSSEN, S. (2003). *Applied Probability and Queues*, 2nd edition. Stochastic Modelling and Applied
 2513 Probability, Springer, New York, NY.

2514 [2] AVRACHENKOV K.E., FILAR, J.A. AND HOWLETT, P.G. (2013). *Analytic Perturbation Theory and Its
 2515 Applications*. SIAM, Philadelphia.

2516 [3] BRUNO, S., WILLIAMS, R.J. AND DEL VECCHIO, D. (2022). *Epigenetic cell memory: The gene's inner
 2517 chromatin modification circuit*. PLOS Computational Biology, Public Library of Science, vol. 18(4): 1
 2518 - 27.

2519 [4] MEYER, JR. AND CARL, D. (1975). The role of the group generalized inverse in the theory of finite Markov
 2520 chains. *SIAM Review*, vol. 17, no. 3, pp. 443–464.

2521 [5] CAMPOS, F.A., BRUNO, S., FU, Y., DEL VECCHIO, D. AND WILLIAMS, R.J. (2023). Comparison
2522 theorems for stochastic chemical reaction networks. *Bull Math Biol*, vol. 85(39).

2523 [6] FRIEDBERG, S. H., INSEL, A. J. AND SPENCE, L. E. (2014). *Linear Algebra, 4th edition*. Pearson Edu-
2524 cation.

2525 [7] GARDINER, C.W. (1994). *Handbook of stochastic methods for physics, chemistry and the natural sciences*.
2526 Springer-Verlag.

2527 [8] GAVER, D. P., JACOBS, P. A. AND LATOUCHE, G. (1984). Finite birth-and death models in randomly
2528 changing environments. *Advances in Applied Probability*, Vol. 16, 715-731.

2529 [9] GRASSMANN, W.K. (1977). Transient solutions in Markovian queueing systems. *Computers & Operations
2530 Research*, vol. 4, no. 1, pp. 47-53.

2531 [10] HORN, R.A AND JOHNSON, C.R. (2013). *Matrix Analysis, 2nd Edition* Cambridge University Press.

2532 [11] ISSACSON, D.L. AND MADSEN R.W. (1985). *Markov Chains: Theory and Applications* R.E. Krieger Pub.
2533 Co.

2534 [12] JAMES, M. (1978). The generalised inverse. *The Mathematical Gazette*, 62 (420), 109-114.

2535 [13] KELLY, F.P. (1979). *Reversibility and Stochastic Networks*. Cambridge University Press.

2536 [14] KEMENY, J.G. AND SNELL, J.L. (1960). *Finite Markov Chains*. Van Nostrand Comp. Int., New York

2537 [15] LIGGETT, T.M. (2010). *Continuous Time Markov Processes: An Introduction*. Graduate Studies in Math-
2538 ematics, Volume 113 . American Mathematical Society.

2539 [16] NORRIS, J.R. (1997). *Markov Chains*. Cambridge University Press.

2540 [17] PENROSE, R. (1955). A generalized inverse for matrices. *Mathematical Proceedings of the Cambridge
2541 Philosophical Society*, 51(3), 406-413.