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Abstract— Epigenetic cell memory is the property en-
abling multicellular organisms to keep distinct cell types
despite sharing the same genotype. DNA methylation and
histone modifications play a crucial role in maintaining
the long-term memory of gene expression patterns specific
to each cell type. Experimental results in semi-synthetic
genetic systems show that these modifications silence and
reactivate genes in an “all or none” manner, suggesting
digital epigenetic memory (only extremal gene expression
levels have long-term memory). However, in recent years,
continuous and graded variations of gene expression levels
have been identified across multiple cell types. In this
study, we introduce and analyze a mathematical model
including both histone modifications and DNA methylation
to demonstrate that the experimentally observed probabil-
ity distributions of gene expression level, used to support
digital memory hypothesis, are also compatible with analog
memory hypothesis (cells can maintain any initially set
gene expression level). Our study shows that intrinsic
noise combined with an ultrasensitive response between
the level of DNA methylation writer DNMT3A and DNA
methylation grade at a gene causes the potential ambiguity.
The model can then help design key experiments to conduct
in order to distinguish between digital and analog memory,
thereby offering a tool for interrogating the very essence
of epigenetic cell memory.

I. INTRODUCTION

Epigenetic cell memory (ECM) is the property of

multicellular organisms to maintain different phenotypes

despite sharing a common genetic sequence. This prop-

erty is primarily influenced by the compaction of DNA

structure (known as the chromatin state) [1], [2], regu-

lated by epigenetic modifications to DNA and histones

[1], [3]. More precisely, DNA methylation has been

considered the essence of long-term memory, as it can

persist through subsequent cell divisions by the action of

enzymes that replicate the methylation pattern from the

parental DNA strand onto the newly synthesized DNA

strand during DNA replication [4].

In the past, experimental results suggested a genome-

wide distribution of DNA methylation primarily con-

centrated at the extremal levels [5]–[7]. More recently,

studies such as [8] support this notion, showing that
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chromatin modifiers transiently recruited to a gene in-

fluence the fraction of cells that are silenced or active,

rather than directly affecting the gene expression level.

Overall, these experimental results support the hypoth-

esis of digital epigenetic cell memory (cells can stably

maintain only silenced or active gene expression levels).

However, in the past years, graded variations in gene

expression levels have been observed across various cell

types, such as the ones forming the mouse isocortex and

hippocampus [9]. This suggests that cells must have a

mechanism enabling them to maintain their specific gene

expression level and associated identity.

Here, we explore how long-term memory of inter-

mediate gene expression levels can be achieved and

how chromatin modifications affect this process. Our

goal is to demonstrate that the experimentally observed

probability distributions of gene expression level, used to

support digital memory hypothesis, are also compatible

with analog memory hypothesis (cells can maintain

any initially set gene expression level). To this end,

we first introduce a mathematical model combining

histone modifications and DNA methylation. We then

exploit Gillespie’s Stochastic Simulation Algorithm [10]

to understand how system’s parameters qualitatively

affect gene expression memory. Furthermore, we derive

a reduced model recapitulating the mechanisms behind

analog memory and use it to determine how experimen-

tal results may be compatible with analog memory.

The paper is structured as follows: in Sections II and

III we describe the models of chromatin modification

circuit and gene expression, in Sections IV and V we

describe the stochastic analysis conducted to determine

how system’s parameters affect gene expression mem-

ory, and in Section VI we present concluding remarks.

II. CHROMATIN MODIFICATION CIRCUIT MODEL

In this section, we briefly describe the chromatin

modification circuit considered in our study, developed

starting from the one in [11] (see [11] for a more detailed

description). The chromatin modifications considered

are H3K9 methylation (H3K9me3), H3K4 methylation

(H3K4me3), and DNA methylation. In terms of species,

the model includes unmodified nucleosome (D), nucle-

osome with H3K4me3 (DA), with DNA methylation,

(DR
1 ), with H3K9me3 (DR

2 ), or with both H3K9me3 and

DNA methylation (DR
12). The reaction model can be rep-

resented by the circuit diagram shown in Fig. 1(a), with



the corresponding reactions provided in Table I. More

precisely, writer enzymes can de novo establish chro-

matin marks and histone modifications can recruit these

enzymes to establish the same modification on nearby

modifiable nucleosomes (auto-catalysis) [1], [12], [13].

Furthermore, through cross-catalysis, DNA methylation

and repressive histone modification enhance each other

by recruiting each other’s writer enzymes [14]. Eventu-

ally, these modifications are removed through dilution

during DNA replication or by the action of eraser

enzymes (basal erasure). Finally, erasers of activating

modifications can be recruited by repressive modifica-

tions, and viceversa (recruited erasure) [3], [15]–[17].

Let us now introduced the corresponding ordinary

differential equation (ODE) model in terms of D̄A =
nA/Dtot, D̄

R
1 = nDR

1

/Dtot, D̄
R
2 = nDR

2

/Dtot, D̄
R
12 =

nDR
12

/Dtot and D̄ = nD/Dtot, with Dtot represent-

ing the total number of nucleosomes in the gene,

and nA, nR
1 , nR

2 , nR
12, and nD denoting the amount

of DA,DR
1 ,D

R
2 ,D

R
12,D. It is possible to do this by

assuming Dtot large enough to consider D̄A, D̄R
1 ,

D̄R
2 , D̄R

12 and D̄ real numbers. Now, let us introduce

Dtot = Dtot/Ω, with Ω denoting the reaction vol-

ume, and the normalized inputs: uR
i0 = kiW0/k

A
MDtot,

uR
i = kiW /(kAMDtot), u

A
0 = kAW0/(k

A
MDtot), and uA =

kAW /(kAMDtot), with i = 1, 2. Additionally, let

α = kM/kAM , α′ = k′M/kAM , ᾱ = k̄M/kAM . (1)

The parameter α is the non-dimensional rate constant

associated with auto-catalysis and ᾱ, α′ are the ones

associated with cross-catalysis. Finally, let

ε =
δ + k̄AE
kAMDtot

, ε′ =
kAE
kAM

, µ′ =
k

′
∗

T

kAE
, µ =

kRE
kAE

, (2)

with β = O(1) such that (δ′ + k′T )/(δ + k̄AE) = βµ′,

and, similarly, b = O(1) such that (δ+ k̄RE)/(δ + k̄AE) =
bµ. Then, µ′ (µ) quantifies the relative speed between the

rate of DNA demethylation (the repressive histone modi-

fication erasure rate) and the activating modification era-

sure rate. Furthermore, given that (δ+ k̄RE)/(k
A
MDtot) =

bεµ, (δ′ + k′T )/(k
A
MDtot) = βεµ′, kRE/k

A
M = µε′ and

k′∗T /kAM = µ′ε′, ε (ε′) is a parameter that scales the

ratio between the rate of basal (recruited) erasure and

the auto-catalysis rate of each modification. Introducing

the normalized time τ = tkAMDtot, the ODEs are

dD̄R
1

dτ
= (uR

10 + u
R

1 + α
′(D̄R

2 + D̄
R

12))D̄ + µ(bε+ ε
′

D̄
A)D̄R

12

− (uR

20 + α(D̄R

2 + D̄
R

12) + ᾱ(D̄R

1 + D̄
R

12))D̄
R

1

− µ
′(βε+ ε

′

D̄
A))D̄R

1

dD̄R
12

dτ
= (uR

10 + α
′(D̄R

2 + D̄
R

12))D̄
R

2

+ (uR

20 + α(D̄R

2 + D̄
R

12) + ᾱ(D̄R

1 + D̄
R

12))D̄
R

1

− (µ′(βε+ ε
′

D̄
A) + µ(bε+ ε

′

D̄
A))D̄R

12 (3)

dD̄R
2

dτ
= (uR

20 + u
R

2 + α(D̄R

2 + D̄
R

12) + ᾱ(D̄R

1 + D̄
R

12))D̄

+ µ
′(βε+ ε

′

D̄
A)D̄R

12 − (uR

10 + α
′(D̄R

2 + D̄
R

12))D̄
R

2

− µ(bε+ ε
′

D̄
A))D̄R

2

dD̄A

dτ
= (uA

0 + u
A + D̄

A)D̄

− (ε+ ε
′(D̄R

2 + D̄
R

12) + ε
′(D̄R

1 + D̄
R

12))D̄
A
,

with D̄ = 1 − D̄R
1 − D̄R

12 − D̄R
2 − D̄A (see [11] for

the complete derivation). It is important to point out

that, in this model, if the gene expression is governed

by a constitutive promoter, i.e., a promoter continuously

active in standard conditions, without relying on external

activators, then a constant non-basal de-novo establish-

ment term for DA, uA, must be considered.

A. Effect of epigenetic modifiers on model parameters

In order to determine how chromatin modifications

alone (i.e., without permanent external inputs) affect

gene expression memory, in our model we consider only

epigenetic modifiers that are temporarily present in the

system and study how their effect on chromatin state

influences gene expression. From a biological point of

view, one method to temporarily introduce epigenetic

modifiers into the system is transient transfection. With

this method, the concentration of epigenetic modifiers

will gradually decrease due to dilution until it com-

pletely vanishes.

Now, starting with the establishment of H3K9me3,

this aspect can be integrated into the model by writing

the expression for the reaction rate constant of H3K9me3

establishment (k2W , see Table I), as k2W = k̃2WW2e
−δt.

Here, W2 is the total amount of the epigenetic modi-

fier enhancing H3K9me3 establishment, such as KRAB

[18], k̃2W is a parameter independent of W2, and δ
denotes the dilution rate constant. The normalized input

uR
2 in the ODEs (3) can then be written as

uR
2 =

k2W
kAMDtot

=
k̃2W
kAM

W2

Dtot

e
−δt

k
A
M

Dtot

kA
M

Dtot = ũR
2 W̄2e

−ετ ,

(4)

with ũR
2 = k̃2W /kAM and W̄2 = W2/Dtot.

Similarly, the expression for the reaction rate constant

of DNA methylation establishment (k1W , see Table I)

can be written as k1W = k̃1WW1e
−δt. Here, W1 is the

total amount of DNMT3A, DNA methyltransferase that

establishes de novo DNA methylation [1], and k̃1W is a

parameter independent of W1. The normalized input uR
1

in the ODEs (3) can then be written as

uR
1 =

k1W
kAMDtot

=
k̃1W
kAM

W1

Dtot

e
−δt

k
A
M

Dtot

kA
M

Dtot = ũR
1 W̄1e

−ετ ,

(5)

with ũR
1 = k̃1W /kAM and W̄1 = W1/Dtot.
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Fig. 1: Analog memory can be achieved when H3K9me3 does not catalyze DNA methylation (DNAme) establishment,
i.e., when α′ = 0. (a) Diagram of complete chromatin modification circuit. The species are unmodified nucleosome (D),
nucleosome with H3K4me3 (DA), nucleosome with DNAme (DR

1 ), nucleosome with H3K9me3 (DR
2 ), and nucleosome with

both H3K9me3 and DNAme (DR
12). Here, solid arrows denote the nucleosome modification processes and gene expression, while

dashed arrows denote the enzyme recruitment processes. We use red for processes involved in the establishment of H3K9me3,
light (dark) orange for processes involved in the establishment (demethylation) of DNAme, green for processes involved in the
establishment of H3K4me3, gray for processes involved in the erasure of histone modifications, and black for gene expression.
(b) Probability distributions of the system represented by reactions in Tables I, II for different values of α′. The distributions
are obtained computationally using SSA [10] and we denote the gene expression level as nX (logicle scale). The parameter
values used for these simulations are listed in Section VI-C. In particular, we consider α′ = 0, 0.1 and four initial conditions,
that are (nR

12,nR
1 ,nR

2 ,nA): (14,0,1,0), (6,0,8,1), (4,0,5,6), and (1,0,1,13), going from light to dark gray, respectively. For all the
simulations, we set µ′ = 0, α = ᾱ = 1, ε = 0.08, ε′ = 25, µ = 0.1, b = β = 1, and Dtot = 15 Finally, to realize each
distribution, we conduct N = 1000 simulations.

Finally, the expression for the reaction rate constants

of DNA demethylation processes (k′T and k
′
∗

T , see Ta-

ble I) can be written as k′T = k′T1 + k̃′TTe
−δt and

k
′
∗

T = k
′
∗

T1 + k̃
′
∗

T Te−δt. Here, T is the total amount of

the transiently transfected modifier that catalyzes DNA

demethylation, such as TET1 [3], [16], [19], k′T1 (k
′
∗

T1)

is the component of the rate coefficient that does not

depend on the external TET1 transfected, and k̃′T , k̃
′
∗

T

are parameters independent of T . The parameter µ′ in

the ODEs (3) can then be written as

µ′ =
k

′
∗

T

kAE
=

k
′
∗

T1

kAE
+

k̃
′
∗

T Dtot

kAE

T

Dtot

e
−δ

k
A
M

Dtot

kA
M

Dtot

= µ′

1 + µ̃′T̄ e−ετ , (6)

with µ′

1 =
k
′
∗

T1

kA

E

, µ̃′, and T̄ = T/Dtot.

III. GENE EXPRESSION MODEL

During gene expression, DNA is first transcribed into

mRNA m (transcription) and then mRNA is translated

into the gene product X (translation). Chromatin mod-

ifications, by regulating DNA compaction, affect tran-

scription and then gene expression [1], [20]. Therefore,

we assume that transcription is predominantly allowed

by DA, while allowing a low level of transcription to

all the other species. Additionally, m decay depends on

dilution, due to cell division, and degradation, while

X decay depends only on dilution [21] (see reactions

in Table II). Introducing the normalized time τ =

tkAMDtot and the non-dimensional parameters β̄A
m =

βA
m/kAMDtot, β̄m = βm/kAMDtot, β̄ = β/kAMDtot,

γ̄m = γm/kAMDtot, δ̄ = δ/kAMDtot, the gene expression

ODE model can be written as

dm̄

dτ
= β̄A

mD̄A + β̄m(D̄ + D̄R
1 + D̄R

2 + D̄R
12)− γ̄mm̄,

dX̄

dτ
= β̄m̄− δ̄X̄. (7)

IV. IMPACT OF α′
ON THE SYSTEM’S BEHAVIOR

We start our analysis by studying the stochastic be-

havior of the full model, i.e., model combining the

complete chromatin modification circuit model with the

gene expression model, with the aim of understanding

the impact of α′ (normalized rate of DNA methylation

(DNAme) establishment catalyzed by H3K9me3) on

the gene expression level probability distribution and,

therefore, on the nature of gene expression memory

achievable.

In particular, let us consider the parameter regime in

which µ′ = 0, i.e., the DNA demethylation rate can

be considered as approximately zero compared to his-

tone modification erasure rate. This is because, without

external epigenetic modifiers, it has been shown that

the (passive) DNA demethylation process is significantly

slow [8], [22]. When µ′ = 0, analog memory can be

achieved only when α′ = 0, that is, when H3K9me3

does not recruit DNAme writers (Fig. 1(b)). For α′ > 0,

the gene expression level shifts either to a low or a



high level. Furthermore, the higher α′, the more the

distribution tends to shift towards a low gene expression

level (Fig. 1(b)).

Overall, these results suggest we can have analog

memory only when DNA demethylation rate is suffi-

ciently small compared to histone modification dynam-

ics (that is, µ′ ≈ 0) and H3K9me3 does not catalyze

DNAme establishment (α′ = 0).

A. Reduced 2D chromatin modification circuit model

When these parameter conditions are verified and

external epigenetic modifiers are not introduced into

the system, then the total number of nucleosomes with

DNAme remains constant. Denoting the fraction of

nucleosomes with DNAme in the gene of interest as

Ȳ1 = D̄R
1 + D̄R

12, the dynamics of the original model

(3) can then be described by a reduced 2D ODE model.

Before deriving the reduced model, let us first merge

into a unique rate the rates associated with the catalysis

of H3K9me3 establishment by D̄R
12 and assume that

this is equal to the rate of H3K9me3 establishment by

D̄R
1 . Similarly, let us merge the rates associated with the

erasure of H3K4me3 by D̄R
12 and assume that this rate

is equal to the erasure rate of H3K4me3 by D̄R
1 . These

simplifying assumptions do not affect the qualitative

results related to the effect of the cooperative and

competitive interactions among chromatin modifications

on epigenetic cell memory. The ODE model (3) can then

be rewritten as

dD̄R
1

dτ
= (uR

10 + u
R

1 + α
′(D̄R

2 + D̄
R

12))D̄ + µ(bε+ ε
′

D̄
A)D̄R

12

− (uR

20 + α(D̄R

2 + D̄
R

12) + ᾱ(D̄R

1 + D̄
R

12))D̄
R

1

− µ
′(βε+ ε

′

D̄
A))D̄R

1

dD̄R
12

dτ
= (uR

10 + α
′(D̄R

2 + D̄
R

12))D̄
R

2

+ (uR

20 + αD̄
R

2 + ᾱ(D̄R

1 + D̄
R

12))D̄
R

1

− (µ′(βε+ ε
′

D̄
A) + µ(bε+ ε

′

D̄
A))D̄R

12 (8)

dD̄R
2

dτ
= (uR

20 + u
R

2 + αD̄
R

2 + ᾱ(D̄R

1 + D̄
R

12))D̄

+ µ
′(βε+ ε

′

D̄
A)D̄R

12 − (uR

10 + α
′(D̄R

2 + D̄
R

12))D̄
R

2

− µ(bε+ ε
′

D̄
A))D̄R

2

dD̄A

dτ
= (uA

0 + u
A + D̄

A)D̄

− (ε+ ε
′(D̄R

2 ) + ε
′(D̄R

1 + D̄
R

12))D̄
A
,

Now, let us introduce the following proposition:

Proposition IV.1. Let α′ = cµ′

1, with c = O(1), and let

us consider the following system, shown in Fig. 2(a):

dD̄R
2

dτ
= (αD̄R

2 + ᾱȲ1)D̄ − µ(bε+ ε′D̄A)D̄R
2 , (9)

dD̄A

dτ
= (uA + D̄A)D̄ − (ε+ ε′(D̄R

2 + Ȳ1))D̄
A,

with D̄ = 1 − D̄A − D̄R
2 − Ȳ1 and Ȳ1 = constant.

Then, for sufficiently small µ′

1 and α′ = cµ′

1, any

(D̄R
2 (τ, µ

′

1), D̄
A(τ, µ′

1)) from the solution of (8) can be

expressed with the following expansions:

D̄R
2 (τ, µ

′

1) = D̄R∗

2 (τ) +O(µ′

1),

D̄A(τ, µ′

1) = D̄A∗(τ) +O(µ′

1), (10)

in which (D̄R∗

2 (τ), D̄A∗(τ)) is the solution of (9) and

with the error estimate holding as µ′

1 → 0 uniformly for

0 ≤ τ ≤ T .

Proof. Let us start by assuming negligible basal de novo

establishment (uR
10 = uR

20 = uA
0 = 0) and introducing

the variable Ȳ1 = D̄R
1 + D̄R

12. System (8) can then be

rewritten as

dȲ1

dτ
= (uR

1 )D̄ + (α′(D̄R
2 + D̄R

12))(D̄ + D̄R
2 )

− µ′(βε+ ε′D̄A)Ȳ1

dD̄R
12

dτ
= (α′(D̄R

2 + D̄R
12))D̄

R
2 + (αD̄R

2 + ᾱȲ1)D̄
R
1

− (µ′(βε+ ε′D̄A) + µ(bε+ ε′D̄A))D̄R
12 (11)

dD̄R
2

dτ
= (uR

2 + αD̄R
2 + ᾱȲ1)D̄ + µ′(βε+ ε′D̄A)D̄R

12

− (α′(D̄R
2 + D̄R

12))D̄
R
2 − (µ(bε+ ε′D̄A))D̄R

2

dD̄A

dτ
= (uA + D̄A)D̄ − (ε+ ε′D̄R

2 + ε′Ȳ1)D̄
A,

in which D̄ = 1− Ȳ1− D̄R
2 − D̄A and D̄R

1 = Ȳ1− D̄R
12.

Now, let us introduce in (11) the expressions for uR
2 ,

uR
1 , and µ′ derived in Section II-A (Exprs (4) - (6)):

dȲ1

dτ
= ũR

1 W̄1e
−ετ D̄ + (α′(D̄R

2 + D̄R
12))(D̄ + D̄R

2 )

− (µ′

1 + µ̃′T̄ e−ετ )(βε+ ε′D̄A)Ȳ1

dD̄R
12

dτ
= (α′(D̄R

2 + D̄R
12))D̄

R
2 + (αD̄R

2 + ᾱȲ1)D̄
R
1

− ((µ′

1 + µ̃′T̄ e−ετ )(βε+ ε′D̄A))D̄R
12

− µ(bε+ ε′D̄A)D̄R
12 (12)

dD̄R
2

dτ
= (ũR

2 W̄2e
−ετ + αD̄R

2 + ᾱȲ1)D̄

+ (µ′

1 + µ̃′T̄ e−ετ )(βε+ ε′D̄A)D̄R
12

− (α′(D̄R
2 + D̄R

12) + µ(bε+ ε′D̄A))D̄R
2

dD̄A

dτ
= (uA + D̄A)D̄ − (ε+ ε′D̄R

2 + ε′Ȳ1)D̄
A.

After a temporary phase, during which the external

inputs gradually decrease until they completely vanish

(e−ετ ≈ 0), system (12) can then be rewritten as

dȲ1

dτ
= α′(D̄R

2 + D̄R
12)(D̄ + D̄R

2 )− µ′

1(βε+ ε′D̄A)Ȳ1

dD̄R
12

dτ
= (α′(D̄R

2 + D̄R
12))D̄

R
2 + (αD̄R

2 + ᾱȲ1)D̄
R
1
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Fig. 2: Impact of ε and ε′ on the response between H3K4me3 (D̄A), DNA methylation grade (Ȳ1) at the gene, and
initial level of DNA methylation writer DNMT3A (W̄1). (a) Simplified chromatin modification circuit diagram obtained when
α′ = 0, µ′ = 0, W̄1 = 0), and W̄2 = 0. (b) Dose-response curve for (Ȳ1, D̄

A) for different values of ε and ε′, obtained from
simulations of system (9) with (Ȳ1, D̄

R
2 , D̄

A) = (j, 0, 1 − j) as initial conditions, with 0 ≤ j ≤ 1. (c) Dose-response curve
for (W̄1, Ȳ1), for different values of ε and ε′ obtained from simulations of system (9) with (Ȳ1, D̄

R
2 , D̄

A) = (0, 0, 1) as initial
condition and W̄1 = [0, 4]. For panels (b) and (c), we consider ε = 0.0001, 0.1, 50 and ε′ = 1, 25. The other parameter values
are β = 1, ũR

1 = 1, α = ᾱ = 1, µ = 0.1, b = 1, uA = 15. Here, the external input dynamics is modeled as a pulse that
exponentially decreases over time and W̄1 corresponds to the external input value at time 0. In our model, α′ is the normalized
rate of DNAme establishment catalyzed by H3K9me3, µ′ quantifies the relative speed between the rate of DNA demethylation
and the activating modification erasure rate, and ε (ε′) is the parameter scaling the rate of the basal erasure process (recruited
erasure process) with respect to the auto-catalysis rate of each chromatin mark.

− (µ′

1(βε+ ε′D̄A) + µ(bε+ ε′D̄A))D̄R
12 (13)

dD̄R
2

dτ
= (αD̄R

2 + ᾱȲ1)D̄ + µ′

1(βε+ ε′D̄A)D̄R
12

− (α′(D̄R
2 + D̄R

12) + µ(bε+ ε′D̄A))D̄R
2

dD̄A

dτ
= (uA + D̄A)D̄ − (ε+ ε′D̄R

2 + ε′Ȳ1)D̄
A.

Now, let us set µ′

1 = 0 (and then α′ = cµ′

1 = 0),

obtaining

dȲ1

dτ
= 0

dD̄R
12

dτ
= (αD̄R

2 + ᾱȲ1)D̄
R
1 − µ(bε+ ε′D̄A)D̄R

12 (14)

dD̄R
2

dτ
= (αD̄R

2 + ᾱȲ1)D̄ − (µ(bε+ ε′D̄A))D̄R
2

dD̄A

dτ
= (uA + D̄A)D̄ − (ε+ ε′D̄R

2 + ε′Ȳ1)D̄
A,

in which D̄ = 1− Ȳ1− D̄R
2 − D̄A and D̄R

1 = Ȳ1− D̄R
12.

From (14), it follows that Ȳ1 = constant. This implies

that, during the transient phase in which external inputs

are introduced into the system, Ȳ1 evolves according

to dȲ1/dτ = ũR
1 W̄1e

−ετ D̄ until e−ετ ≈ 0, at which

point Ȳ1 reaches a certain value. Now, let us define x =
(Ȳ1, D̄

R
12, D̄

R
2 , D̄

A), and denote as f(x, µ′

1) (f(x, 0)) the

matrix in which each row corresponds to the right-hand

side of each equation in (13) (in (14)). Then, it is evident

that f(x, µ′

1) and f(x, 0) are smooth functions of their

variables. Furthermore, since each entry of ∂f(x, 0)/∂x

is bounded for any x, we have that ||∂f(x, 0)/∂x||2 <
L, with L > 0 being a real number. From this, it follows

that there exists a unique solution x0(τ) for the system

(14) on the interval 0 ≤ τ ≤ T (Existence-Uniqueness

Theorem, [23]). We can then conclude that system (13)

is regularly perturbed, with small parameter µ′

1, and

its solution can be expressed as a Taylor expansion

x(τ, µ′

1) = x0(τ) + O(µ′

1) [24]. In particular, since the

last two ODEs in (14) depend only on D̄R
2 , D̄A, and

Ȳ1, once the external inputs die out (e−ετ ≈ 0), Ȳ1

remains constant and the dynamics of (D̄A, D̄R
2 ) can

be expressed as a series expansion as the one described

in (10), in which (D̄R∗

2 (τ), D̄A∗(τ)) is the solution of

the reduced 2D ODE model represented by the last two

equations in (14), coinciding with the ODEs in (9).

V. IMPACT OF ε AND ε′ ON THE SYSTEM’S BEHAVIOR

Let us now study the deterministic and stochastic

behavior of our system, with the aim of understanding

the impact of ε and ε′ on the probability distribution

of gene expression levels. As a reminder, ε and ε′ are

parameters scaling the rate of the basal erasure process

and recruited erasure process, respectively, with respect

to the auto-catalysis rate of each chromatin mark.

We start by studying the reduced 2D ODE model

(Eqs (9)) in order to determine the effect of ε and ε′

on the value of D̄A at the equilibrium for different Ȳ1,

i.e., fractions of DNAme in the gene (Fig. 2(b)). For

large values of ε, the system has a unique stable steady



ε

Fig. 3: The ultrasensitive response between the level of DNA methylation writer DNMT3A and DNA methylation grade
leads to a bimodal distribution of gene expression levels. Probability distributions of the system represented by reactions in
Tables I, II, after 28 days. We obtained them using SSA [10]. More precisely, on the left-hand side we have gene expression
level probability distribution (logicle scale) and on the right-hand side we have the total DNAme level probability distributions.
The parameter values used to generate these plots are listed in Section VI-C. In particular, we consider ε = 0.13, ε′ = 1.5, 25
and (nR

12,nR
1 ,nR

2 ,nA) = (0, 0, 0,Dtot) as initial condition. We consider Dtot = 15, N = 1000 simulations to generate each
distribution and, for each simulation conducted, the value of W̄1 was randomly selected from a uniformly distributed range,
whose extremes are W̄1 = [0, 0.4], [2.4, 2.8], [3.4, 3.8], respectively.

state characterized by low D̄A, with D̄A decreasing as

Ȳ1 increases (Fig. 2(b)). As ε decreases, the value of

DA at steady-state increases, especially when Ȳ1 is low,

where D̄A ≈ 1 (Fig. 2(b)). Reducing ε even further leads

the system to be bistable for intermediate values of Ȳ1

(Fig. 2(b)). Varying ε′ does not significantly affect these

trends, except when ε is small. In such cases, larger ε′

leads to a smaller range of Ȳ1 in which the system is

bistable and to a smaller difference in the values of D̄A

between the two steady states (Fig. 2(b)). The second

analysis aims to understand how ε and ε′ affect the

level of DNAme Ȳ1 at equilibrium for various initial

levels of W̄1, denoting DNAme writer DNMT3A (Fig.

2(c)). The analysis shows that larger values of W̄1 enable

reaching higher values of Ȳ1. Furthermore, when ε is

low, high values of Ȳ1 can be achieved, and, in case of

small ε, higher ε′ results in a more ultrasensitive curve

(Fig. 2(c)).

Overall, these results suggest that high fractions of

nucleosomes with H3K4me3, and consequently high

levels of gene expression, are possible only for suffi-

ciently small values of ε (Fig. 2(b)). In this parame-

ter regime, when ε′ is sufficiently high, Ȳ1 shows an

ultrasensitive response to transient dosage of DNAme

writer DNMT3A. As a result, different ranges of values

of initial DNMT3A transfection levels (W1) would re-

sult only in either low or high gene expression levels

(Fig. 2(b),(c)). To validate these results, we conduct a

computational study on the full model, whose reactions

are listed in Tables I, II (Fig. 3), using SSA [10]. For dif-

ferent ranges of initial DNMT3A levels (W1), we obtain

a bimodal probability distribution of gene expression

levels when ε′ is sufficiently large. For smaller values of

ε′, the stationary distribution shifts towards a unimodal

shape, in agreement with our expectations derived from

our deterministic analysis (Fig. 2(b),(c)).

VI. CONCLUDING REMARKS AND DISCUSSION

In this work, we investigate how chromatin modifica-

tions affect the memory of intermediate gene expression

levels, in order to determine conditions under which

the probability distributions of gene expression levels,

observed in experiments and used to support digital

memory, are also compatible with analog memory.

To this end, we first introduce a mathematical model

combining histone modifications and DNA methylation,

derived starting from the one in [11] (Sections II,

III). Our results show that, in the absence of external

inputs (epigenetic modifiers), analog memory of gene

expression can be achieved when H3K9me3 does not

catalyze de novo DNA methylation, i.e., α′ = 0, and

DNA methylation decay rate is negligible, i.e., µ′ = 0
(Section IV). When these critical conditions are not

verified, our model predicts that only digital memory is

achievable (Fig. 1(b)). We then conducted an additional

deterministic analysis of a reduced version of the model,

validated through a computational study of our full

model. Our results show that, when considering a range

of values uniformly distributed from which the external

input value is randomly selected and assuming that the

inputs decay over time then, in the parameter regime

compatible with analog memory described above, the

probability distributions of gene expression level are

bimodal, resembling those obtained experimentally [8],

only when ε is sufficiently small and ε′ is sufficiently

large.

Overall, our results suggest the key mechanisms

determining when epigenetic cell memory is analog,

highlighting the key role of DNA methylation. Ex-

perimental studies available in the literature confirm

the low catalysis of DNA methylation by H3K9me3

(α′ = 0) in certain cell types [8]. Furthermore, previous



computational study suggests that long-term memory

of silenced and active gene expression levels can be

achieved only for sufficiently small values of ε [11],

[25]. However, additional experiments are needed to

validate all of our theoretical findings. For instance,

chromosomally integrated, semi-synthetic genetic re-

porter system could be engineered in mammalian cells,

and transient transfections of different epigenetic mod-

ifiers (such as DNMT3A, KRAB and TET1) could be

performed. Then, our model and our theoretical results

could help design key experiments to conduct, involving

time-course flow cytometry measurements, coupled with

bisulfite sequencing analysis at specific time points, in

order to discern the nature of gene expression memory

(analog or digital) and the contributions of DNA methy-

lation and histone modifications to it.

APPENDIX

A. Chromatin modification circuit: reaction list

The reaction model describing the complete chromatin

modification circuit can be written as in Table I.

B. Gene expression: reaction list

The reaction model associated with gene expression

can be written as in Table II. In particular, defining the

transcription rate constants as βA
m and βm, we assume

βm < βA
m (see Section III).

C. Parameter values used in the simulations

Simulations in Fig. 1: kAW0 = 0, kAW = 7.8075 h−1,

k̄AE = 0.0118 h−1, δ = 0.0291 h−1,
kA

M

Ω = 0.0347 h−1,
kA

E

Ω = 0.8675 h−1, k1W0 = 0, k1W = 0, k′T = 0, δ′ = 0,
k′

M

Ω = 0, 3.47 · 10−4, 3.47 · 10−3 h−1,
k
′
∗

T

Ω = 0, k2W0 =
0, k2W = 0, k̄RE = 0.0012 h−1, kM

Ω = 0.0347 h−1,
k̄M

Ω = 0.0347 h−1,
kR

E

Ω = 0.0868 h−1, βm = 0.2556
h−1, βA

m = 0.0021 h−1, β = 2.52 h−1, γm = 0.24 h−1.

Simulations in Fig. 3: kAW0 = 0, kAW = 7.8075 h−1,

k̄AE = 0.0315 h−1, δ = 0.035 h−1,
kA

M

Ω = 0.0347

h−1,
kA

E

Ω = 0.0520, 0.8675 h−1, k1W0 = 0, k1W ∈
[0, 0.3643]e−δt, [0.2602, 0.6246]e−δt, [0.5205, 0.8848]e−δt

h−1, k′T = 0, δ′ = 0,
k′

M

Ω = 0,
k
′
∗

T

Ω = 0, k2W0 = 0,

k2W = 0, k̄RE = 0.0032 h−1, kM

Ω = 0.0347 h−1,
k̄M

Ω = 0.0347 h−1,
kR

E

Ω = 0.0052, 0.0868 h−1,

βm = 0.2556 h−1, βA
m = 0.0021 h−1, β = 2.52 h−1,

γm = 0.24 h−1. In the simulations of both figures, we

set, as initial value for nX of nm, their steady states of

the ODEs.
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