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Abstract— Epigenetic cell memory is the property en-
abling multicellular organisms to keep distinct cell types
despite sharing the same genotype. DNA methylation and
histone modifications play a crucial role in maintaining
the long-term memory of gene expression patterns specific
to each cell type. Experimental results in semi-synthetic
genetic systems show that these modifications silence and
reactivate genes in an ‘“all or none” manner, suggesting
digital epigenetic memory (only extremal gene expression
levels have long-term memory). However, in recent years,
continuous and graded variations of gene expression levels
have been identified across multiple cell types. In this
study, we introduce and analyze a mathematical model
including both histone modifications and DNA methylation
to demonstrate that the experimentally observed probabil-
ity distributions of gene expression level, used to support
digital memory hypothesis, are also compatible with analog
memory hypothesis (cells can maintain any initially set
gene expression level). Our study shows that intrinsic
noise combined with an ultrasensitive response between
the level of DNA methylation writer DNMT3A and DNA
methylation grade at a gene causes the potential ambiguity.
The model can then help design key experiments to conduct
in order to distinguish between digital and analog memory,
thereby offering a tool for interrogating the very essence
of epigenetic cell memory.

I. INTRODUCTION

Epigenetic cell memory (ECM) is the property of
multicellular organisms to maintain different phenotypes
despite sharing a common genetic sequence. This prop-
erty is primarily influenced by the compaction of DNA
structure (known as the chromatin state) [1], [2], regu-
lated by epigenetic modifications to DNA and histones
[1], [3]. More precisely, DNA methylation has been
considered the essence of long-term memory, as it can
persist through subsequent cell divisions by the action of
enzymes that replicate the methylation pattern from the
parental DNA strand onto the newly synthesized DNA
strand during DNA replication [4].

In the past, experimental results suggested a genome-
wide distribution of DNA methylation primarily con-
centrated at the extremal levels [5]-[7]. More recently,
studies such as [8] support this notion, showing that
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chromatin modifiers transiently recruited to a gene in-
fluence the fraction of cells that are silenced or active,
rather than directly affecting the gene expression level.
Overall, these experimental results support the hypoth-
esis of digital epigenetic cell memory (cells can stably
maintain only silenced or active gene expression levels).
However, in the past years, graded variations in gene
expression levels have been observed across various cell
types, such as the ones forming the mouse isocortex and
hippocampus [9]. This suggests that cells must have a
mechanism enabling them to maintain their specific gene
expression level and associated identity.

Here, we explore how long-term memory of inter-
mediate gene expression levels can be achieved and
how chromatin modifications affect this process. Our
goal is to demonstrate that the experimentally observed
probability distributions of gene expression level, used to
support digital memory hypothesis, are also compatible
with analog memory hypothesis (cells can maintain
any initially set gene expression level). To this end,
we first introduce a mathematical model combining
histone modifications and DNA methylation. We then
exploit Gillespie’s Stochastic Simulation Algorithm [10]
to understand how system’s parameters qualitatively
affect gene expression memory. Furthermore, we derive
a reduced model recapitulating the mechanisms behind
analog memory and use it to determine how experimen-
tal results may be compatible with analog memory.

The paper is structured as follows: in Sections II and
IIT we describe the models of chromatin modification
circuit and gene expression, in Sections IV and V we
describe the stochastic analysis conducted to determine
how system’s parameters affect gene expression mem-
ory, and in Section VI we present concluding remarks.

II. CHROMATIN MODIFICATION CIRCUIT MODEL

In this section, we briefly describe the chromatin
modification circuit considered in our study, developed
starting from the one in [11] (see [11] for a more detailed
description). The chromatin modifications considered
are H3K9 methylation (H3K9me3), H3K4 methylation
(H3K4me3), and DNA methylation. In terms of species,
the model includes unmodified nucleosome (D), nucle-
osome with H3K4me3 (D?), with DNA methylation,
(D}, with H3K9me3 (D), or with both H3K9me3 and
DNA methylation (D%). The reaction model can be rep-
resented by the circuit diagram shown in Fig. 1(a), with



the corresponding reactions provided in Table I. More
precisely, writer enzymes can de novo establish chro-
matin marks and histone modifications can recruit these
enzymes to establish the same modification on nearby
modifiable nucleosomes (auto-catalysis) [1], [12], [13].
Furthermore, through cross-catalysis, DNA methylation
and repressive histone modification enhance each other
by recruiting each other’s writer enzymes [14]. Eventu-
ally, these modifications are removed through dilution
during DNA replication or by the action of eraser
enzymes (basal erasure). Finally, erasers of activating
modifications can be recruited by repressive modifica-
tions, and viceversa (recruited erasure) [3], [15]-[17].

Let us now introduced the corresponding ordinary
differential equation (ODE) model in terms of DA =
nA/Dtot, D{{ = pDF/Dtots Df = npg/Dtot, D{%Q =
an/Dtot and D = np/Diot, with Dy represent-
ing the total number of nucleosomes in the gene,
and n4, n{%, n?, nﬁ, and n” denoting the amount
of DA, DR D& DR D. It is possible to do this by
assuming Dtot large enough to consider D4, DE,
DX, D and D real numbers. Now, let us introduce
Diot = Diot/Q, with ©Q denoting the reaction vol-
ume, and the normalized inputs: uff = kij;o/k4;Diot,
ul! = iy /(b Deor). ufh = Ko/ (k5 Drcy). and uf =

K2

ki ) (k3 Dyor), with i = 1,2. Additionally, let
(1

The parameter « is the non-dimensional rate constant
associated with auto-catalysis and &, o’ are the ones
associated with cross-catalysis. Finally, let
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with 8 = O(1) such that (&' +k%)/(0 + ka) = B/,
and, similarly, b = O(1) such that (6+k%)/(6 + k4) =
bu. Then, i/ (1) quantifies the relative speed between the
rate of DNA demethylation (the repressive histone modi-
fication erasure rate) and the activating modification era-
sure rate. Furthermore, given that (6 + &%)/ (k4 Dtot)
bep, (8" + k7)/(kfyDiot) = Bep/, ki /kay = pe’ and
Kk = ’ e, e (s’ ) is a parameter that scales the
ratio between the rate of basal (recruited) erasure and
the auto-catalysis rate of each modification. Introducing
the normalized time 7 = tk:;(}DtOt, the ODEs are

a=ky/ky, o =Ky kY, a=ky/ kL.
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dDF _ _ _ o
= (ulo + uf + o/ (DF + Di%))D + p(be + ' D) D1}

— (uby + (D3 + D1%) + &(Di* + Di%)) Dyt
— i/ (Be + &' D)) DY’

dDFz_ R /AR |, AR\ AR
ar = (u1o + o/ (D" + D13))Ds

+ (uby + (D3’ + Di%) + a(DY* + Dis)) Dt

— (1 (Be + €' D*) + p(be + €' D)) Dy 3)
= (uzh +u5' + a(D3 + Diy) + a(DT* + D13))D
+ 4/ (Be + € D*)DPy — (ufty + o/ (D + D)) DE
— u(be + €' DY) DY

dDf
dr

nA
B — (u +ut + DD
— (e +¢&'(DF + Di%) +€'(Df + Di3)) D,
with D = 1 — DF — DE — DI — D4 (see [11] for

the complete derivation). It is important to point out
that, in this model, if the gene expression is governed
by a constitutive promoter, i.e., a promoter continuously
active in standard conditions, without relying on external
activators, then a constant non-basal de-novo establish-
ment term for D?, u*, must be considered.

A. Effect of epigenetic modifiers on model parameters

In order to determine how chromatin modifications
alone (i.e., without permanent external inputs) affect
gene expression memory, in our model we consider only
epigenetic modifiers that are temporarily present in the
system and study how their effect on chromatin state
influences gene expression. From a biological point of
view, one method to temporarily introduce epigenetic
modifiers into the system is transient transfection. With
this method, the concentration of epigenetic modifiers
will gradually decrease due to dilution until it com-
pletely vanishes.

Now, starting with the establishment of H3K9me3,
this aspect can be integrated into the model by writing
the expression for the reaction rate constant of H3K9me3
establishment (k2,, see Table 1), as k‘Q,V = l;:%/VWQe*‘”.
Here, W, is the total amount of the epigenetic modi-
fier enhancing H3K9me3 establishment, such as KRAB
[18], ];5{2/1/ is a parameter independent of W5, and ¢
denotes the dilution rate constant. The normalized input
ué?' in the ODEs (3) can then be written as

2 _ ’CMDtot
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with 48 = k2 /k and Wy = Wa /Dy

Similarly, the expression for the reaction rate constant
of DNA methylation establishment (k{;,, see Table I)
can be written as kjj, = l;:%,[,Wle*&. Here, W, is the
total amount of DNMT3A, DNA methyltransferase that
establishes de novo DNA methylation [1], and kW is a
parameter independent of ;. The normalized input uf®
in the ODEs (3) can then be written as

—5t kfthot
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with @ = ki, /k4, and Wy = W1 /Dy
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Fig. 1: Analog memory can be achieved when H3K9me3 does not catalyze DNA methylation (DNAme) establishment,
i.e., when o/ = 0. (a) Diagram of complete chromatin modification circuit. The species are unmodified nucleosome (D),
nucleosome with H3K4me3 (D), nucleosome with DNAme (DY), nucleosome with H3K9me3 (DY), and nucleosome with
both H3K9me3 and DNAme (D%,). Here, solid arrows denote the nucleosome modification processes and gene expression, while
dashed arrows denote the enzyme recruitment processes. We use red for processes involved in the establishment of H3K9me3,
light (dark) orange for processes involved in the establishment (demethylation) of DNAme, green for processes involved in the
establishment of H3K4me3, gray for processes involved in the erasure of histone modifications, and black for gene expression.
(b) Probability distributions of the system represented by reactions in Tables I, II for different values of o. The distributions
are obtained computationally using SSA [10] and we denote the gene expression level as n™ (logicle scale). The parameter
values used for these simulations are listed in Section VI-C. In particular, we consider o’ = 0,0.1 and four initial conditions,
that are (nf5,nf,nfn?): (14,0,1,0), (6,0,8,1), (4,0,5,6), and (1,0,1,13), going from light to dark gray, respectively. For all the
simulations, we set ¢/ = 0, a = a =1, = 0.08, ¢’ = 25, 4 = 0.1, b = 8 = 1, and Dot = 15 Finally, to realize each

distribution, we conduct N = 1000 simulations.

Finally, the expression for the reaction rate constants
of DNA demethylation processes (k7. and ki, see Ta-
ble I) can be written as k} = kfp, + kfTe % and
k%‘ = k;‘l + IEIT*Te’&. Here, T is the total amount of
the transiently transfected modifier that catalyzes DNA
demethylation, such as TET1 [3], [16], [19], k- (kz;‘l)
is the component of the rate coefficient that does not
depend on the external TET1 transfected, and &/, k7t
are parameters independent of 7. The parameter ' in
the ODEs (3) can then be written as

; ! 7. A
kg ké ké Dtot
= //1 + [L/Te*”7 ©
with p} = ’ZTAl ,ji/,and T = T/Dioy.
E

III. GENE EXPRESSION MODEL

During gene expression, DNA is first transcribed into
mRNA m (transcription) and then mRNA is translated
into the gene product X (translation). Chromatin mod-
ifications, by regulating DNA compaction, affect tran-
scription and then gene expression [1], [20]. Therefore,
we assume that transcription is predominantly allowed
by DA, while allowing a low level of transcription to
all the other species. Additionally, m decay depends on
dilution, due to cell division, and degradation, while
X decay depends only on dilution [21] (see reactions
in Table II). Introducing the normalized time 7 =

thi{ Dy and the non-dimensional parameters Ba =
ﬁyﬁ/kjje[Dtota ﬂm = Bm/kﬁDtotv B = B/kﬁDtoty

A = Ym /4y Diots 0 = 6/ k4 Dtot, the gene expression
ODE model can be written as

dm A= o _ _ _ o
= BADA + B,.(D + DE + DE + DE) — 5,,m,
dX - _

IV. IMPACT OF o ON THE SYSTEM’S BEHAVIOR

We start our analysis by studying the stochastic be-
havior of the full model, i.e., model combining the
complete chromatin modification circuit model with the
gene expression model, with the aim of understanding
the impact of o’ (normalized rate of DNA methylation
(DNAme) establishment catalyzed by H3K9me3) on
the gene expression level probability distribution and,
therefore, on the nature of gene expression memory
achievable.

In particular, let us consider the parameter regime in
which ¢/ = 0, i.e., the DNA demethylation rate can
be considered as approximately zero compared to his-
tone modification erasure rate. This is because, without
external epigenetic modifiers, it has been shown that
the (passive) DNA demethylation process is significantly
slow [8], [22]. When u/ = 0, analog memory can be
achieved only when o/ = 0, that is, when H3K9me3
does not recruit DNAme writers (Fig. 1(b)). For o’ > 0,
the gene expression level shifts either to a low or a



high level. Furthermore, the higher o/, the more the
distribution tends to shift towards a low gene expression
level (Fig. 1(b)).

Overall, these results suggest we can have analog
memory only when DNA demethylation rate is suffi-
ciently small compared to histone modification dynam-
ics (that is, i/ =~ 0) and H3K9me3 does not catalyze
DNAme establishment (¢ = 0).

A. Reduced 2D chromatin modification circuit model

When these parameter conditions are verified and
external epigenetic modifiers are not introduced into
the system, then the total number of nucleosomes with
DNAme remains constant. Denoting the fraction of
nucleosomes with DNAme in the gene of interest as
Yy = DI + DR the dynamics of the original model
(3) can then be described by a reduced 2D ODE model.
Before deriving the reduced model, let us first merge
into a unique rate the rates associated with the catalysis
of H3K9me3 establishment by D and assume that
this is equal to the rate of H3K9me3 establishment by
D¥. Similarly, let us merge the rates associated with the
erasure of H3K4me3 by D%, and assume that this rate
is equal to the erasure rate of H3K4me3 by D¥. These
simplifying assumptions do not affect the qualitative
results related to the effect of the cooperative and
competitive interactions among chromatin modifications
on epigenetic cell memory. The ODE model (3) can then
be rewritten as

le

= (ufy 4+ uf’ + o/ (DY + DI))D + p(be + ' D*) Db
— (uz0 + a(D3' + Dib) + a(D1' + Dib)) Dy
— 1/ (Be + ' D)) Df
dDE _
d7'12 (U10 + o (DQ + Dlz))DQR
+ (“ +aD5 + @(Dl + Dg))DF
— (1 (Be +¢'D*) + u(be + ' D*)) D1 ®)
dD¥
d’r = ('LL + U2 + OCDQ —+ a(Dl =+ Dlg))D

1 (Be + &' DDy — (up + o/ (D3’ + Dib)) Dy
— p(be +¢'DY)) D’
dD*

P (u$ +u*+D*D
~ (e +¢'(Dg) +€'(Dr' + Di2)) D,
Now, let us introduce the following proposition:

Proposition IV.1. Let o/ = cuf, with ¢ = O(1), and let
us consider the following system, shown in Fig. 2(a):

dD¥ SR o 1A\ HR

e = (aD3" +aY1)D — p(be +'D?)D5t,  (9)
dD* A PHAYH /(AR | v\ DA
7 = (w4 DD — (e + £/(Df + 11)) DA,

with D = 1 — D4 — Df’ — Y1 and Y; = constant.
Then, for sufficiently small p}y and o = cuy, any
(DE(7, 1), DA (T, 1y)) from the solution of (8) can be
expressed with the following expansions:

D3(7,u4) = D3 (1) + O(uy),
DA(Tv /1'/1) = DA*(T) + O(:u/l)v
in which (DL (1), DA* (7)) is the solution of (9) and

with the error estimate holding as 1y — 0 uniformly for
0<r<T.

(10)

Proof. Let us start by assuming negligible basal de novo
establishment (uf}, _— ull = uf' = 0) and introducing

the variable Y; = D¥ + DL, System (8) can then be
rewritten as

dy; - ~ = AT
— = (w)D+ (o' (DFf + D)) (D + D)
— 1/ (Be + ' DMY;
dD{?2 1 AR | HR\\ DR DE L aV\DE
= (o/(Dy + D15)) Dy’ + (aDy + aYi) Dy
— (1 (Be + &' D?) + p(be + &' DA))DE (11)
dD} - a9y YD
= = (u + aDyf + a¥1)D + i (pe + €' D*)Df}
— (o/(D§' + D)) D§' — (u(b +'D*)) Dt
dDA A = AN /YR N\ HA
?:(u +D )D—(5+5D2+5Y1)D7

in which D = 1 —Y; — D& — D4 and DFf =Y, — D},
Now, let us introduce in (11) the expressions for ug,
uf?, and ' derived in Section II-A (Exprs (4) - (6)):

dy; _ _ L
—= =@ W™D + (o (D + Dib))(D + DJY)
— (ph + ' Te™*T)(Be + €' DY,
dDh _ _ _
2 = (o/(Dg' + Di3)) D3’ + (aDg' + a¥) Dyt
— ((h + f'Te"7)(Be + &' D)) D}
u(stre DADE (12)
dDR
= (U5 BWae ™ + aD2 +aY,)D
+( + i'Te7)(Be + ' D*)DE,
— («/(D§ + Df%) + p(be + €' D)) DY
dDA A NA\ N 'R N\ A
o = (u*+D?)D — (e +€'Dy +€'Y1) D™,

After a temporary phase, during which the external
inputs gradually decrease until they completely vanish
(e7*7 = 0), system (12) can then be rewritten as

dY,

e o/ (DF + DY)(D + D3Y) — py(Be + £’ DM)Yy
dDf /(AR | AR\ AR AR | ~vr\AR
i (o/(Dy" + D15)) D" + (aDy" + aY1) Dy
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Fig. 2: Impact of = and ¢’ on the response between H3K4me3 (D*), DNA methylation grade (V;) at the gene, and
initial level of DNA methylation writer DNMT3A (WW1). (a) Simplified chromatin modification circuit diagram obtained when
o =0, =0, W1 = 0), and Wa = 0. (b) Dose-response curve for (171, DA) for different values of € and &, obtained from
simulations of system (9) with (Y1, D&, D) = (4,0,1 — j) as initial conditions, with 0 < j < 1. (¢) Dose-response curve
for (W1, Y1), for different values of € and €’ obtained from simulations of system (9) with (Y1, D, D) = (0,0,1) as initial
condition and W; = [0, 4]. For panels (b) and (c), we consider € = 0.0001,0.1, 50 and &’ = 1, 25. The other parameter values
ae f=1 a4 =1l,a=a=1,pu =010b=1, u = 15. Here, the external input dynamics is modeled as a pulse that
exponentially decreases over time and Wi corresponds to the external input value at time 0. In our model, o is the normalized
rate of DNAme establishment catalyzed by H3K9me3, 1/ quantifies the relative speed between the rate of DNA demethylation
and the activating modification erasure rate, and ¢ (¢’) is the parameter scaling the rate of the basal erasure process (recruited

erasure process) with respect to the auto-catalysis rate of each chromatin mark.

— (41 (Be + €' D*) + p(be +'DY)DE, (13)
dDE _ _ L
d: = (aDf +aY1)D + p} (B + ' DA)DE,
— (o/(DF + D) + p(be + £'D*))DE
dDA A = A\ IR N\ DA
= (u®+D*)D — (e +¢e'Dy +e'Y1)D

Now, let us set ©j = 0 (and then o/ = cuf = 0),
obtaining

dy;

21

dr
dDf AR |~ AR I AAN SR

I = (aD3" + aY1) Dyt — p(be + €' D) Dy, (14)
ADF o -

o = (aD3" + aYy)D — (u(be + &' D)) Ds
dD4 A NAY 'HR N\ DA
T:(u + DD — (e +&' Dy +£'Y1)D?,

-

in which D =1—Y; — DF — D4 and DFf =Y, — D}
From (14), it follows that Y] = constant. This implies
that, during the transient phase in which external inputs
are introduced into the system, Y, evolves according
to dYi/dr = @f*Wye 7D until e=°7 ~ 0, at which
point Y; reaches a certain value. Now, let us define = =
(Y1, DE, DI, D4), and denote as f(z, i}) (f(x,0)) the
matrix in which each row corresponds to the right-hand
side of each equation in (13) (in (14)). Then, it is evident
that f(z,p)) and f(z,0) are smooth functions of their
variables. Furthermore, since each entry of Jf(z,0)/0x

is bounded for any z, we have that ||0f(z,0)/0z||2 <
L, with L > 0 being a real number. From this, it follows
that there exists a unique solution z((7) for the system
(14) on the interval 0 < 7 < T' (Existence-Uniqueness
Theorem, [23]). We can then conclude that system (13)
is regularly perturbed, with small parameter 4}, and
its solution can be expressed as a Taylor expansion
x(7, p1y) = xo(T) + O(py) [24]. In particular, since the
last two ODEs in (14) depend only on D, D4, and
Y1, once the external inputs die out (e7°7 =~ 0), Y;
remains constant and the dynamics of (D, D) can
be expressed as a series expansion as the one described
in (10), in which (D" (), DA*(7)) is the solution of
the reduced 2D ODE model represented by the last two
equations in (14), coinciding with the ODEs in (9). [

V. IMPACT OF € AND &’ ON THE SYSTEM’S BEHAVIOR

Let us now study the deterministic and stochastic
behavior of our system, with the aim of understanding
the impact of ¢ and &’ on the probability distribution
of gene expression levels. As a reminder, ¢ and ¢’ are
parameters scaling the rate of the basal erasure process
and recruited erasure process, respectively, with respect
to the auto-catalysis rate of each chromatin mark.

We start by studying the reduced 2D ODE model
(Egs (9)) in order to determine the effect of ¢ and &’
on the value of D4 at the equilibrium for different Y7,
i.e., fractions of DNAme in the gene (Fig. 2(b)). For
large values of ¢, the system has a unique stable steady
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Fig. 3: The ultrasensitive response between the level of DNA methylation writer DNMT3A and DNA methylation grade
leads to a bimodal distribution of gene expression levels. Probability distributions of the system represented by reactions in
Tables L, II, after 28 days. We obtained them using SSA [10]. More precisely, on the left-hand side we have gene expression
level probability distribution (logicle scale) and on the right-hand side we have the total DNAme level probability distributions.
The parameter values used to generate these plots are listed in Section VI-C. In particular, we consider € = 0.13, ¢’ = 1.5,25
and (nf5,nfnfnt) = (0,0,0,Dsot) as initial condition. We consider Dot = 15, N = 1000 simulations to generate each
distribution and, for each simulation conducted, the value of W1 was randomly selected from a uniformly distributed range,
whose extremes are W1 = [0, 0.4], [2.4, 2.8], [3.4, 3.8], respectively.

state characterized by low D4, with D4 decreasing as
Y, increases (Fig. 2(b)). As ¢ decreases, the value of
DA at steady-state increases, especially when Y] is low,
where D4 ~ 1 (Fig. 2(b)). Reducing € even further leads
the system to be bistable for intermediate values of Y;
(Fig. 2(b)). Varying &’ does not significantly affect these
trends, except when ¢ is small. In such cases, larger &’
leads to a smaller range of Y] in which the system is
bistable and to a smaller difference in the values of D4
between the two steady states (Fig. 2(b)). The second
analysis aims to understand how ¢ and ¢’ affect the
level of DNAme Y; at equilibrium for various initial
levels of W, denoting DNAme writer DNMT3A (Fig.
2(c)). The analysis shows that larger values of 1¥/; enable
reaching higher values of Y;. Furthermore, when ¢ is
low, high values of Y; can be achieved, and, in case of
small ¢, higher ¢’ results in a more ultrasensitive curve
(Fig. 2(c)).

Overall, these results suggest that high fractions of
nucleosomes with H3K4me3, and consequently high
levels of gene expression, are possible only for suffi-
ciently small values of ¢ (Fig. 2(b)). In this parame-
ter regime, when &’ is sufficiently high, Y; shows an
ultrasensitive response to transient dosage of DNAme
writer DNMT3A. As a result, different ranges of values
of initial DNMT3A transfection levels (WW;) would re-
sult only in either low or high gene expression levels
(Fig. 2(b),(c)). To validate these results, we conduct a
computational study on the full model, whose reactions
are listed in Tables I, II (Fig. 3), using SSA [10]. For dif-
ferent ranges of initial DNMT3A levels (W7), we obtain
a bimodal probability distribution of gene expression
levels when ¢’ is sufficiently large. For smaller values of
¢’, the stationary distribution shifts towards a unimodal
shape, in agreement with our expectations derived from
our deterministic analysis (Fig. 2(b),(c)).

VI. CONCLUDING REMARKS AND DISCUSSION

In this work, we investigate how chromatin modifica-
tions affect the memory of intermediate gene expression
levels, in order to determine conditions under which
the probability distributions of gene expression levels,
observed in experiments and used to support digital
memory, are also compatible with analog memory.
To this end, we first introduce a mathematical model
combining histone modifications and DNA methylation,
derived starting from the one in [11] (Sections II,
IIT). Our results show that, in the absence of external
inputs (epigenetic modifiers), analog memory of gene
expression can be achieved when H3K9me3 does not
catalyze de novo DNA methylation, i.e., o/ = 0, and
DNA methylation decay rate is negligible, i.e., ' = 0
(Section IV). When these critical conditions are not
verified, our model predicts that only digital memory is
achievable (Fig. 1(b)). We then conducted an additional
deterministic analysis of a reduced version of the model,
validated through a computational study of our full
model. Our results show that, when considering a range
of values uniformly distributed from which the external
input value is randomly selected and assuming that the
inputs decay over time then, in the parameter regime
compatible with analog memory described above, the
probability distributions of gene expression level are
bimodal, resembling those obtained experimentally [8],
only when ¢ is sufficiently small and ¢’ is sufficiently
large.

Overall, our results suggest the key mechanisms
determining when epigenetic cell memory is analog,
highlighting the key role of DNA methylation. Ex-
perimental studies available in the literature confirm
the low catalysis of DNA methylation by H3K9me3
(¢ = 0) in certain cell types [8]. Furthermore, previous



computational study suggests that long-term memory
of silenced and active gene expression levels can be
achieved only for sufficiently small values of ¢ [11],
[25]. However, additional experiments are needed to
validate all of our theoretical findings. For instance,
chromosomally integrated, semi-synthetic genetic re-
porter system could be engineered in mammalian cells,
and transient transfections of different epigenetic mod-
ifiers (such as DNMT3A, KRAB and TET1) could be
performed. Then, our model and our theoretical results
could help design key experiments to conduct, involving
time-course flow cytometry measurements, coupled with
bisulfite sequencing analysis at specific time points, in
order to discern the nature of gene expression memory
(analog or digital) and the contributions of DNA methy-
lation and histone modifications to it.

APPENDIX
A. Chromatin modification circuit: reaction list

The reaction model describing the complete chromatin
modification circuit can be written as in Table 1.

B. Gene expression: reaction list

The reaction model associated with gene expression
can be written as in Table II. In particular, defining the
transcription rate constants as ﬂ;j‘l and 3,,, we assume
Bm < BA (see Section III).

C. Parameter values used in the simulations
.E'imulations in Fig. I: k{j‘vo =0, k{j},A = 7.8075 h™!,
k# =0.0118 h=%, § = 0.0201 h~*, ¥4t = 0.0347 b1,
A
T = 0.8675 h™", ko = 0, kfy = 0, k- = 0, 8" =0,
Bar = 0,347-107%,347-1073 h™!, 52 = 0, k3, =
0, k%, = 0, k& = 0.0012 h™!, B = 0.0347 h~1,
1 R
Ea = 0.0347 h71, %E = 0.0868 h™1, 3,, = 0.2556
h~1, g4 =0.0021 h~1, B =252 h~1, ~,, = 0.24 h~L.
Simulations in Fig. 3: k{f‘vo =0, k4, = 7.8075 h 1,
— A
k# = 0.0315 h™', § = 0.035 h™!, % = 0.0347
A
h=!, % = 0.0520,0.8675 h™', ki, = 0, ki €
[0,0.3643]e %%, [0.2602, 0.6246]6*‘”/, [0.5205, 0.8848]e
h' k= 0,8 =0, % =0, % =0, k2, =0,
k3, = 0, k& = 0.0032 h™!, £ = 0.0347 h~!,
7 R
%4 = 0.0347 h7%, %3 = 0.0052,0.0868 h~1,
Bm = 0.2556 h=1, BA = 0.0021 h~!, B = 2.52 h™1,
Ym = 0.24 h~!. In the simulations of both figures, we

set, as initial value for nX of n™, their steady states of
the ODEs.
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