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Figure 1: StreetNav is a system that explores the concept of repurposing existing street cameras to support precise outdoor 
navigation for blind and low-vision (BLV) pedestrians. It comprises two components: (i) a computer vision (CV) pipeline, and 
(ii) a companion smartphone app. The computer vision pipeline processes the street camera’s video feeds and delivers real-time 
navigation feedback via the app. StreetNav ofers precise turn-by-turn directions to destinations while also providing real-time, 
scene-aware assistance to alert them of nearby obstacles and facilitate safe street crossings. 
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ABSTRACT 
Blind and low-vision (BLV) people rely on GPS-based systems for 
outdoor navigation. GPS’s inaccuracy, however, causes them to 
veer of track, run into obstacles, and struggle to reach precise 
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destinations. While prior work has made precise navigation pos-
sible indoors via hardware installations, enabling this outdoors 
remains a challenge. Interestingly, many outdoor environments are 
already instrumented with hardware such as street cameras. In this 
work, we explore the idea of repurposing existing street cameras 
for outdoor navigation. Our community-driven approach considers 
both technical and sociotechnical concerns through engagements 
with various stakeholders: BLV users, residents, business owners, 
and Community Board leadership. The resulting system, StreetNav, 
processes a camera’s video feed using computer vision and gives 
BLV pedestrians real-time navigation assistance. Our evaluations 
show that StreetNav guides users more precisely than GPS, but 
its technical performance is sensitive to environmental occlusions 
and distance from the camera. We discuss future implications for 
deploying such systems at scale. 

CCS CONCEPTS 
• Human-centered computing → Accessibility systems and 
tools. 
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1 INTRODUCTION 
Outdoor navigation in unfamiliar environments is a major challenge 
for blind and low-vision (BLV) people. Among the many navigation 
systems that have been developed to assist BLV people outdoors, 
GPS-based systems are the most popular [30, 33, 44, 63, 68]. These 
systems, such as BlindSquare [44] and Microsoft Soundscape [30], 
guide users to a destination and notify them of surrounding points 
of interest (POIs). Despite GPS’s undeniable impact in making out-
door environments navigable, its imprecision is a major limita-
tion [61]. GPS precision can range from 5 meters at best to over 
tens of meters in urban areas with buildings and trees [23, 46, 69]. 
This imprecision causes BLV people to veer of track [53], run 
into unexpected obstacles [8, 54, 56], and struggle to reach precise 
destinations [61] when navigating outdoors. 

Prior work on indoor navigation, on the contrary, has made pre-
cise navigation assistance possible for BLV people [2, 21, 36, 48, 62]. 
Most approaches do so by installing a dense network of Blue-
tooth [2] or WiFi [21] beacons. However, extending this approach 
for outdoor navigation is not feasible due to the vast scale and 
complex nature of outdoor spaces. Interestingly, many outdoor 
environments of interest, such as urban districts and downtown ar-
eas, are already instrumented with hardware that has the potential 
to help, including street cameras, trafc sensors, and other urban 
infrastructure components. 

Street cameras, in particular, have the potential to support BLV 
pedestrians’ outdoor navigation. The video feed from these cameras 
could be processed using computer vision to track BLV pedestrians 
and perceive their visual environment with greater precision and 
fdelity compared to GPS-based systems. The profound potential of 
street cameras for assistive technology is accompanied by signif-
cant challenges and concerns — both technical and sociotechnical. 

On the technical front, there is a lack of understanding regarding 
the precise capabilities of street cameras to track BLV pedestri-
ans and how camera-based systems should be designed to efec-
tively support BLV people’s outdoor navigation. Sociotechnically, 
a major concern revolves around privacy due to cameras’ capa-
bility to collect pervasive data, not only afecting BLV users but 
also other pedestrians and vehicles in the vicinity [17]. Moreover, 
street cameras are often deployed by governments to force surveil-
lance [4, 12, 20, 38, 42], which exacerbates people’s privacy con-
cerns. Limited work has been done to explore how camera-based 
technologies can respect people’s privacy concerns and directly 
serve their interests, rather than solely serving government-defned 
purposes [17, 28, 41, 74]. 

In this work, we take a community-driven approach to explore 
the concept of leveraging street cameras to support outdoor navi-
gation for blind pedestrians.To this end, we engage with various 
stakeholders including BLV users, local residents, local business 
owners, and Community Board leadership. We aim to address both 
the technical and sociotechnical aspects of this concept through 
the following research questions: 

RQ1. What are stakeholders’ privacy concerns toward camera-
based assistive technology, and how might they be respected? 

RQ2. How might a street camera-based navigation assistance sys-
tem be designed? 

RQ3. To what extent do street camera-based systems support BLV 
people’s outdoor navigation? 

To answer RQ1, we interviewed various stakeholders, including 
two BLV users, two local residents, a local business owner, and a 
Community Board leader. We discovered stakeholders’ difering 
perspectives on privacy concerns towards camera-based assistive 
technology. All stakeholders expressed that repurposing existing 
cameras to help BLV people, rather than installing new cameras, sig-
nifcantly alleviates their privacy concerns. Participants also shared 
that regulating data storage, anonymization, and access policies 
could further enhance their sense of comfort around privacy. 

To answer RQ2, we developed StreetNav, a system that lever-
ages a street camera to support precise outdoor navigation for BLV 
pedestrians. StreetNav’s design is informed by BLV people’s out-
door navigation challenges (Section 3) and by various stakeholders’ 
privacy concerns toward camera-based assistive technology (Sec-
tion 4). As Figure 1 illustrates, StreetNav comprises two components: 
(i) a computer vision pipeline, and (ii) a companion smartphone app. 
The computer vision pipeline processes the street camera’s video 
feed and delivers real-time navigation assistance to BLV pedestrians 
via the smartphone app. StreetNav ofers precise turn-by-turn di-
rections to destinations while also providing real-time, scene-aware 
assistance to prevent users from veering of course, alert them of 
nearby obstacles, and facilitate safe street crossings. 

https://doi.org/10.1145/3654777.3676333
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StreetNav supports BLV pedestrians’ outdoor navigation by re-
purposing an existing street camera. Through StreetNav, we explore 
the feasibility of street camera-based systems at a single street inter-
section as a frst step. We chose to use a camera from the NSF PAWR 
COSMOS testbed [60, 72] because it is available to researchers after 
an approval process and IRB review. We considered other publicly 
available testbeds, such as Mobintel [45] and DataCity SMTG [14], 
but chose COSMOS due to its location in a major city (New York) 
with high pedestrian and vehicle trafc. Anonymized video samples 
from the COSMOS cameras, including the one used in this work, 
can be found online [13]. 

To answer RQ3, we conducted both a user evaluation and a 
technical evaluation of StreetNav. Our user evaluation involved 
eight BLV pedestrians who navigated routes with both StreetNav 
and BlindSquare [44], a popular GPS-based navigation app specially 
designed for BLV people. Our fndings reveal that StreetNav ofers 
signifcantly greater precision in guiding pedestrians compared to 
BlindSquare. Specifcally, StreetNav guided participants to within 
an average of 2.9 times closer to their destination and reduced 
veering of course by over 53% when compared to BlindSquare. This 
substantial improvement was refected in a forced ranking, where 
all participants unanimously preferred StreetNav over BlindSquare. 

Despite an improved user experience, StreetNav’s technical eval-
uation exposes certain limitations. We found that although Street-
Nav tracks pedestrians with an 82% precision and 65% recall at 0.5 
IOU threshold, the accuracy drops signifcantly as the pedestrian’s 
distance from the camera increases. The false negative rates goes 
up from 1% at a distance of 5 meters to 74% at a distance of 40 
meters from the camera. Additionally, StreetNav’s performance is 
sensitive to occlusions and distance from camera. We discuss fu-
ture implications of our fndings in the context of deploying street 
camera-based navigation systems at scale. 

In summary, we contribute (1) a study of various stakeholders’ 
privacy concerns toward camera-based assistive technology, (2) 
the StreetNav system through which we explore the concept of 
repurposing existing street cameras for precise outdoor navigation 
assistance, and (3) both a user and technical evaluation of StreetNav. 

2 RELATED WORK 
Our work builds on the following three main research threads: (i) 
outdoor navigation approaches, (ii) overhead camera-based robot 
navigation, and (iii) indoor navigation approaches. 

Outdoor Navigation Approaches. Existing approaches for out-
door navigation primarily rely on GPS-based navigation systems for 
guiding users to the destination and providing information about 
nearby POIs [30, 33, 44, 63, 68]. BlindSquare[44], for instance, uti-
lizes the smartphone’s GPS signal to determine the user’s location 
and then provides the direction and distance to the destination, 
gathered from Foursquare and Open Street Map. The GPS signal, 
however, ofers poor precision with localization errors as big as tens 
of meters [2, 23, 46, 73]. The accuracy is lower in densely populated 
cities [70], which is even more concerning given that a dispropor-
tionately high percentage of BLV people live in cities [27]. Despite 
GPS-based systems’ undeniable impact on helping BLV people in 
outdoor navigation, their low precision and inability to provide 
real-time support for avoiding obstacles and veering of the path 

limits their usability as a standalone navigation solution. Our work 
attempts to investigate street cameras’ potential as an alternative 
solution for providing precise and real-time navigation assistance. 

Another approach for outdoor navigation has explored devel-
oping personalized, purpose-built, assistive devices that support 
BLV people with scene-aware aspects of outdoor navigation, such 
as crossing streets [26, 39, 66], recording routes [73], and avoid-
ing obstacles [16, 18, 34, 40, 59, 71]. While these solutions address 
some of the precise and real-time aspects of BLV people’s outdoor 
navigation, support for point-to-point navigation is missing. Conse-
quently, they do not ofer a comprehensive, all-in-one solution for 
outdoor navigation. Furthermore, these systems place the burden 
of purchasing devices onto the BLV users. Our work, by contrast, 
explores the possibility of using existing street cameras to provide 
a comprehensive solution for outdoor navigation. We investigate 
repurposing existing hardware in outdoor environments to support 
accessibility applications, thus directly imbuing accessibility within 
the city infrastructure at no additional cost to the BLV user. 

Overhead Camera-based Robot Navigation. A parallel research 
space to street cameras for blind navigation is robot navigation 
using overhead cameras. One common subspace within this feld is 
sensor fusion for improved mapping. Research in this space focuses 
on fusing information between sighted “guide” robots and overhead 
cameras [11], fusing multiple camera views for improved track-
ing [11, 52, 55], and improving homography for robust mapping, 
independent of camera viewing angle [64, 65]. Another challenge 
tackled within this space is robot path planning. Research in this 
space aims to improve path planning algorithms [11, 52, 65], assign 
navigational tasks to robot assistants [11, 52], and address the bal-
ance between obstacle avoidance and path following [11, 65]. While 
prior work on robot navigation using fxed cameras explores the 
research space of automating “blind” robot navigation, our work 
explores how fxed cameras, specifcally street cameras, could be 
repurposed to support navigation for blind pedestrians. Our prelim-
inary work [31] explores an initial system concept that considers 
street cameras for blind navigation. This concept was not evalu-
ated, however, nor were community issues considered. In this work, 
we perform both a technical and user evaluation to holistically 
explore the concept of leveraging street cameras for blind naviga-
tion. Moreover, we take a community-driven approach to consider 
both technical and sociotechnical challenges in developing street 
camera-based navigation systems, engaging with not only BLV 
users but also various stakeholders. 

Indoor Navigation Approaches. Prior work in indoor naviga-
tion assistance has made signifcant progress through the utiliza-
tion of various localization technologies, which usually relies on 
hardware like WiFi or Bluetooth beacons [2, 21, 36, 48, 62]. These 
solutions have proven highly efective within indoor environments. 
NavCog3 [2], for example, excels in indoor navigation by employ-
ing Bluetooth beacons for precise turn-by-turn guidance. Nakajima 
and Haruyama [48] exploit the use of visible lights communica-
tion technology, utilizing LED lights and a geomagnetic correction 
method to localize BLV users. However, extending these approaches 
to support outdoor navigation is not feasible. This is particularly 
evident when considering the substantial efort in hardware setup 
that these systems typically require, making them ill-suited for the 
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larger, unstructured outdoor environment. Furthermore, most of 
these methods lack the capability to assist with obstacle avoidance 
and to prevent users from veering of course — both of which are 
less severe issues indoors compared to outdoors [53]. Our explo-
ration of using existing street cameras is better suited to address 
the largely unaddressed challenges of outdoor navigation. This 
approach has the potential to ofer precise localization without re-
quiring dense hardware installations. It can harness existing street 
cameras for locating a pedestrian’s position. Additionally, it holds 
the potential to tackle the distinctive challenges posed by the un-
structured nature of outdoor environments, including real-time 
obstacle avoidance and safe street crossing. 

3 BLV PEOPLE’S CHALLENGES IN OUTDOOR 
NAVIGATION USING GPS-BASED SYSTEMS 

We conducted semi-structured interviews with six BLV partici-
pants to identify challenges that they face when navigating out-
doors using GPS-based systems. Our interviews found three major 
challenges, C1: following routing instructions through complex en-
vironment layouts, C2: avoiding unexpected obstacles while using 
GPS-based systems, and C3: crossing streets safely. While these 
challenges are well-documented within existing literature [8, 53, 
54, 56, 61], our fndings highlight areas that could be prioritized for 
resolution through the implementation of a street camera-based 
navigation system. Appendix A provides additional detail on partic-
ipant demographics, interview procedure, and interview fndings. 

4 STAKEHOLDERS’ PRIVACY CONCERNS 
TOWARD CAMERA-BASED SYSTEMS 

We conducted fve semi-structured interviews with various stake-
holders from Harlem, New York City, where the COSMOS testbed 
is located. Harlem is a diverse community within a major city that 
has become sensitive to government surveillance and overreach. 
The interviews were with two BLV users (B1, B2), two local resi-
dents (R1, R2), a local business owner (O1), and a Community Board 
leader (CB1). Our objective was to understand stakeholders’ privacy 
concerns regarding camera-based assistive technology and explore 
ways to address these concerns (RQ1). 

4.1 Methods 
Participants. Table 3 (Appendix B) reports participant demograph-
ics. Each interview lasted for about 45-60 minutes, except for the 
interview with the Community Board leader that lasted for 15 min-
utes. Three interviews (B1, B2, R1) were conducted online over 
Zoom, two (O1, R1) were conducted in person, and one (CB1) was 
conducted over phone. All participants, except for CB1, were com-
pensated $50 for their participation in this IRB-approved study. CB1 
refused to accept the compensation. 

Procedure. We began by giving participants a short presentation 
describing an initial system concept. The presentation illustrated 
how street cameras could capture street intersections, use computer 
vision to track pedestrians and vehicles, and deliver navigation in-
structions to BLV users via smartphones. We verbally described 
visuals to BLV participants during the study. We then asked par-
ticipants questions about their perceived benefts and concerns, 

preferences around data collection and use scenarios that may raise 
privacy concerns: e.g., Does it matter to you who has access to the 
camera feed? During interview with the Community Board leader, 
we inquired about the feasibility of such a system: e.g., How feasible 
would it be to use street cameras for assistive technology purposes? 
We concluded interviews by discussing strategies for how such 
systems might respect their privacy concerns. 

Interview Analysis. We used thematic analysis [10] to analyze 
the interviews, similar to our methodology described in Section 3. 
This analysis involved three researchers independently generating 
initial sets of codes, which were then collaboratively iterated to 
identify emerging themes. 

4.2 Findings: Privacy Concerns 
Our participants, irrespective of their stakeholder category, held 
difering perspectives on privacy concerns toward camera-based 
assistive technology. While some had no privacy concerns what-
soever, others felt uncomfortable with the concept of a camera 
monitoring them. When asked if there was anything that could sat-
isfy their concerns, concerned participants identifed two strategies: 
(i) regulating data storage, anonymization, and access policies; and 
(ii) repurposing existing cameras rather than installing new cameras 
to assist BLV people. The following sections detail our fndings on 
stakeholders’ difering viewpoints on privacy and strategies that 
this assistive technology could employ to respect those viewpoints. 

Stakeholders’ difering perspectives on privacy concerns. 
Nearly half of the participants (B1, R2, O1) expressed no concerns 
about being recorded by the camera. In fact, they highlighted the 
added benefts of street cameras in enhancing public safety, partic-
ularly aiding in crime investigation. These participants expressed 
the willingness to sacrifce some privacy in exchange for societal 
benefts such as accessibility and public safety. This fnding aligns 
with earlier fndings by Profta et al. [57]. Additionally, B1 pointed 
out that complete privacy should not be expected in public spaces: 
“If you’re on a public street, you pretty much could expect for anyone 
to see you at any time. So it’s no more invasive than anything else on 
a public street. A public street is pretty much fair game for anybody.” 

In contrast, other participants (B2, R1) expressed discomfort with 
cameras’ capability not only to track people’s movements but also 
to “know what [they] look like” (B2). R1 compared a camera’s pres-
ence to an “overarching shadow that’s always looking over [and] 
monitoring their everyday moves.” These participants voiced con-
cerns against the use of such cameras for public safety purposes. 
They feared that the ability to determine individuals’ identities from 
the video feed could result in the targeting of marginalized groups 
such as people of color (R1) and BLV individuals (B2). As B2 stated: 
“The fact that I’m being surveilled even more as a blind person, and 
knowing that police disproportionately target the disabled whenever 
things are going wrong, that just makes me feel even less safe.” 

Regulating data storage, anonymization, and access policies. 
We inquired about participants’ preferences regarding the collec-
tion and storage of the video feed. Those without privacy concerns 
(B1, R2, O1) expressed indiference regarding the duration and form 
(e.g., anonymized vs. raw footage) of video footage storage, assert-
ing they had “nothing to hide” (O1). B1 elaborated: “It really doesn’t 



StreetNav: Leveraging Street Cameras to Support Precise Outdoor Navigation for Blind Pedestrians UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

matter to me. I’m not the person who is going to commit the crime, 
so I don’t care if they keep [the data] forever.” Conversely, partici-
pants with privacy concerns (B2, R1) expressed discomfort with any 
long-term data storage if such storage was not necessary for the 
functionality of the assistive technology. They proposed anonymiz-
ing the video footage by techniques such as blurring faces (R1) or 
representing individuals with “dots” (B2) or avatars akin to those 
used in GPS-based applications. However, complete anonymization 
would negate safety benefts desired by some individuals. A com-
promise was reached in favor of limited storage duration, up to 
a week, alongside clear guidelines regarding access and legal use 
of the video footage. Most participants expressed greater trust in 
government entities than in corporations to manage these cameras, 
citing concerns about potential data exploitation by the latter. 

Repurposing existing cameras rather than install new cam-
eras. During the interview, R2 highlighted the ubiquity of cameras 
in urban areas: “It’s New York, there’s going to be a camera every 
other block. There’s no way that these cameras can’t pick you up.” We 
pursued this observation with other participants and discovered 
that assisting BLV pedestrians with existing cameras rather than 
install new cameras signifcantly alleviated their privacy concerns. 
B2 afrmed this, saying, “I would be okay with that because, you 
know, it’s a dual purpose thing. [The Dept. of Transportation] is al-
ready putting the speeding cameras there, so at least it does something 
nice for people while the camera is in place.” The business owner, 
O1, consented to lending the cameras at their restaurant’s entrance, 
overlooking the street, under two conditions: (i) it should be used 
solely and responsibly to assist people, and (ii) it should not record 
any views inside their restaurant. 

We consulted with the Community Board leader (CB1) to under-
stand the feasibility of repurposing existing street cameras. CB1 
emphasized the need for collaboration among various government 
entities to efectively enable this technology. This collaboration 
would not only involve granting access to the cameras but also en-
suring that they possess the necessary capabilities to support this 
application. CB1 identifed several key institutions that could play 
vital roles in this efort: the Department of Transportation, responsi-
ble for providing camera access and relevant technical support; the 
Department of Buildings or the Metropolitan Transportation Au-
thority (MTA), tasked with granting camera access and permissions 
to house any required computational resources; and the National 
Security Agency (NSA), tasked with ensuring that camera access 
maintains security protocols. Additionally, CB1 highlighted the 
importance of implementing processes to monitor the impact of 
this technology on local communities. For instance, public outreach 
initiatives would help the public understand the purpose of the 
technology, ensuring transparency and accountability throughout 
the deployment process. 

5 THE STREETNAV SYSTEM 
StreetNav is a system that explores the concept of repurposing ex-
isting street cameras to support outdoor navigation for BLV pedes-
trians (RQ2). The following sections describe StreetNav’s design 
rationale (Section 5.1), the computer vision pipeline (Section 5.2), 
and the smartphone app’s user interface (Section 5.3). 

Figure 2: Street camera used for StreetNav’s development 
and evaluation. The camera is (a) mounted on the building’s 
second foor and (b) faces a four-way intersection. 

5.1 StreetNav: Design Rationale 
Our design and development of StreetNav considers prior work on 
navigation assistance, functions of traditional mobility aids, and 
insights gathered from our interviews with BLV people (Section 3) 
and with various stakeholders (Section 4) 

To address challenges that BLV people face when navigating out-
doors using existing GPS-based systems, StreetNav provides users 
precise turn-by-turn navigation instructions to destinations and 
prevents veering of track (C1); gain awareness of nearby obstacles 
(C2); and assist in crossing streets safely (C3). StreetNav enables 
these afordances through its two main components: (i) computer 
vision pipeline, and (ii) companion smartphone app. The computer 
vision pipeline processes the street camera’s video feeds to give 
BLV pedestrians real-time navigation feedback via the app. 

To ensure that StreetNav respects stakeholders’ privacy concerns, 
we explore how an existing camera may be repurposed, rather than 
installing a new camera, to support BLV people’s outdoor navigation 
(Section 4). For this reason, we chose a camera that faces a four-way 
street intersection—the most common type of intersection—and 
is mounted on a building’s second foor, ofering a typical street-
level view of the intersection. Figure 2 shows the street camera 
and its view of the street intersection. StreetNav eliminates the 
requirement of storing any video data by processing the camera 
feed in real-time to generate navigation instructions. 

Appendix C describes StreetNav’s technical setup which enables 
the real-time navigation assistance. 

5.2 StreetNav: Computer Vision Pipeline 
StreetNav’s computer vision pipeline processes the street camera’s 
video feed in real time to facilitate navigation assistance. It consists 
of four components: (i) localizing and tracking the user: locating 
user’s position on the environment’s map; (ii) planning routes: gen-
erating turn-by-turn navigation instructions from user’s current 
position to destinations; (iii) identifying obstacles: predicting po-
tential collisions with other pedestrians, vehicles, and objects (e.g., 
trash can, pole); and (iv) recognizing pedestrian signals: determining 
when it is safe for pedestrians to cross (walk vs. wait) and calcu-
lating the duration of each cycle. Next, we describe the computer 
vision pipeline’s four components in detail. 

Localizing and tracking the user. To ofer precise navigation 
assistance, a system must frst determine the user’s position from 
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Figure 3: Gesture-based localization for determining a user’s 
position on the map. (a) A study participant (P1) is (c) 
prompted to wave one hand above their head, enabling the 
computer vision pipeline to distinguish them from other 
pedestrians in (b) the camera feed view and (d) the map. 

the camera view and then project it onto the environment’s map. 
Figure 3d shows the map representation we used, which is a snap-
shot from Apple Maps’ [5] satellite view of the intersection where 
the camera is deployed. 

StreetNav tracks pedestrians from the camera’s video feed using 
Nvidia’s DCF-based multi-object tracker [49] and the YOLOv8 ob-
ject detector [67]. The tracker detects all pedestrians and assigns 
them a unique ID. However, the system needs a way to diferentiate 
between the BLV user and other pedestrians. 

Figure 3 shows the gesture-based localization approach we in-
troduced to address this issue. To connect with the system, BLV 
pedestrians must wave one hand above their head for 2–3 seconds 
(Figure 3a), enabling the system to determine the BLV pedestrian’s 
unique tracker ID. We chose this gesture after discussions with 
several BLV individuals, including our BLV co-author, and most 
agreed that this single-handed action was both convenient and 
socially acceptable to them. Moreover, over-the-head gestures such 
as waving a hand can also be detected when users are not directly 
facing the street camera. 

We implement hand gesture-based localization by frst creating 
image crops of all detected pedestrians, then classifying them as 
‘waving’ or ‘walking’ pedestrians using CLIP [58]. CLIP classifes 
each pedestrian by computing visual similarity between the pedes-
trian’s image crop and two language prompts: ‘person walking’ and 
‘person waving hand.’ We experimentally fne-tuned the confdence 
thresholds and these language prompts. 

We estimate the user’s feet position to be the mid-point of bound-
ing box’s bottom edge. Finally, we transform the user’s feet position 
from the street camera view (Figure 3b) to the map (Figure 3d) us-
ing a simple feed-forward neural network trained on data that we 

Figure 4: StreetNav’s internal graph representation for route 
planning. The user’s current position is added dynamically 
as a start node to the graph upon choosing a destination. The 
shortest path, highlighted in green, is then calculated as per 
this graph representation. 

manually annotated. The network takes as input the 2D pixel coor-
dinate from the street camera view and outputs the corresponding 
2D coordinate on the map. 

Planning routes. To plan routes, a street camera-based systems 
require a map of the environment, internally represented as a graph 
with waypoints and connections between them. For StreetNav, one 
of the researchers manually annotated a satellite view image of the 
street intersection to create this graph, a process that took roughly 
10 minutes. This process could be automated by integrating with 
OpenStreetMap [51] map data in the future. 

Figure 4 shows the internal graph structure that StreetNav uses 
for planning routes. Similar representations have been used in 
prior work on indoor navigation systems [2, 25, 62]. In the graph, 
nodes correspond to POIs and sidewalk corners, whereas edges 
correspond to walkable paths. Once the user chooses a destination 
from the POIs, StreetNav adds the user’s current position as a start 
node to this graph representation and computes the shortest path 
to the chosen POI using A∗ algorithm [15]. 

Identifying obstacles. StreetNav provides users with information 
about an obstacle’s category and relative location. This gives users 
context on the size, shape, and location of an obstacle; enabling them 
to confdently apply their mobility skills to go around unexpected 
obstacles. 

Figure 5 illustrates how the system identifes obstacles in the 
user’s vicinity. StreetNav’s multi-object tracker is used to track 
other objects and pedestrians. Examples of other objects include 
cars, bicycles, poles, and trash cans. The computer vision pipeline 
then projects the detected objects’ positions onto the map. To iden-
tify obstacles in the BLV user’s vicinity, StreetNav computes the 
distance and angle between the user and other detected objects with 
respect to the map (Figure 5b). Any object (or pedestrian) within 
a fxed radial distance from the BLV user is fagged as an obstacle. 
Through a series of experiments with our BLV co-author, we found 
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Figure 5: Identifying obstacles in the user’s vicinity. (a) A 
vehicle turning left yields to the BLV pedestrian (detected 
in purple) crossing the street. (b) StreetNav identifes the ob-
stacles’ category and relative location on the map to provide 
real-time feedback via the app. 

Figure 6: Recognizing pedestrian signal states. StreetNav com-
pares the number of white and red pixels in the signal crops 
to determine its state: (a) walk vs. (b) wait. 

that a 4 foot radius works best for StreetNav to provide users with 
awareness of obstacles in a timely manner. 

Recognizing pedestrian signals. To determine the pedestrian 
signals’ state (i.e., walk vs. wait), we leverage the fact that walk 
signals are always white and wait signals are always red in color. 
A street camera-based system would frst need to detect pedestrian 
signals from the camera feed before detecting its state. For Street-
Nav’s implementation, one of the researchers manually annotated 
the pedestrian signals’ screens in the camera feed. Future itera-
tions could scale this process by automatically detecting signals by 
training custom object detectors. 

Figure 6 shows pedestrian signals in the camera’s video feed. 
StreetNav applies pixel-thresholding onto the pedestrian signal 
crops to flter all white and red pixels. Then, it compares the number 
of white and red pixels to determine signal state: walk (Figure 6a) 
vs. wait (Figure 6b). We experimentally fne-tuned the thresholds 
to identify the signal state. 

Our formative interviews revealed that BLV pedestrians struggle 
with pacing themselves while crossing streets (C3). To assist them, 
StreetNav informs users of the remaining crossing time. Its com-
puter vision pipeline tracks signal cycle durations and maintains 

Figure 7: Audiohaptic cues for preventing users from veering 
of track. Sample user trajectories showing feedback when 
users (a) veers to the left, (b) do not veer, and (c) veer to the 
right. When the user’s heading coincides with the route to the 
destination, within a tolerance angle � (highlighted in green), 
users receive (b) subtle haptic vibrations to reinforce them. 
When they veer of the route, outside the tolerance angle � , 
they hear spatialized beeping sounds that are rendered from 
the (a) right speaker when veering left, and from the (c) left 
speaker when veering right. 

a timer that records signal state changes. By observing full cycles, 
StreetNav accurately monitors signal states and timings. Periodic 
timer updates ensure adaptability to changes in signal durations 
due to trafc management. 

5.3 StreetNav App: User Interface 
The StreetNav iOS app interacts with the computer vision pipeline 
to allow BLV pedestrians to choose a destination and receive real-
time navigation feedback that guides them to it. BLV users frst 
initiate a connection request through the app, which activates 
the gesture-based localization (Section 5.2) in the computer vision 
pipeline. The app prompts the user to wave one hand over their 
head (Figure 3b), enabling the system to begin tracking their precise 
location on the map (Figure 3d). BLV users can then select a desti-
nation from nearby POIs and begin receiving navigation feedback 
through the app. 

Figure 8 shows the StreetNav app’s user interface, which uses 
audiohaptic cues for (i) providing routing instructions, (ii) prevent-
ing veering of track, (iii) notifying about nearby obstacles, and 
(iv) assisting with crossing streets. Upon reaching the destination, 
the app confrms their arrival. The following sections describe the 
app’s interface in detail. 

Providing routing instructions. The app provides routing in-
structions to users by ofering a route overview before they start 
walking, as shown in Figure 8a. This helps users prepare for their 
journey [1, 24, 32]. During navigation, the app announces instruc-
tions based on the user’s location and provides continuous audio-
haptic feedback to guide them. 

Figure 8b–f show how the app dynamically updates instructions 
based on the user’s location. Users can access the path overview 
and current instructions on demand via VoiceOver [7]. 

Figure 7 illustrates the app’s audiohaptic feedback. Based on 
the user’s position, heading, and destination, StreetNav computes 
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Figure 8: The StreetNav App’s user interface. It provides routing instructions to their destination via (a) a path overview and (c, 
e) real-time feedback that updates their current instruction based on their location. Upon reaching a sidewalk, (b) the app 
informs the user about when it is safe to cross and (d) how much remains for them to cross over. It also (d) notifes the user of a 
nearby obstacle’s category and relative location to help them avoid it. The app (f) confrms the user’s arrival at the destination. 
Throughout the journey, the app provides (g) continuous audiohaptic feedback to prevent users from veering of track. 

the direction and extent of veering. We initially used the Kalman 
flter to predict the user’s heading based on their trajectory, but this 
proved inaccurate due to noisy tracking data. Instead, we used the 
smartphone’s compass, ofset by a fxed value to align its zero with 
the map’s horizontal direction, allowing us to perform all heading 
computations relative to the map’s frame of reference. 

For directional guidance, we used stereo sound: beeping from 
the right speaker when users veer left (Figure 7a) and from the left 
speaker when users veer right (Figure 7c). The frequency of beeps 
increases with the extent of veering, allowing users to navigate 
efectively without headphones. To prevent overwhelming users 
with continuous audio feedback, a tolerance angle (� ) of 50 degrees 
was introduced. Within this angle, subtle haptic vibrations guide 
users in the correct direction, while beeping sounds indicate veering, 
balancing audio as negative reinforcement and haptic feedback as 
positive reinforcement. 

Notifying about nearby obstacles. Figure 8d shows how Street-
Nav alerts the user of obstacles nearby. The app announces the 
obstacle’s category, distance, and relative location. For example, 

when a car approaches the user, the app announces: “Caution! Car, 
4 ft. to the left.” Similar to veering feedback, the relative location is 
computed using both the computer vision pipeline’s outputs and 
the smartphone’s compass reading. 

We tried feedback formats with varying granularity to convey 
the obstacle’s relative location. First, we experimented with clock-
faced directions: “Car, 4 ft. at 1 o’clock.” Clock-faced directions are 
commonly used in many GPS-based systems such as BlindSquare to 
convey directions. We learned from pilot evaluations with our BLV 
co-author that this feedback format was too fne-grained, as it took 
them a few seconds to decode the obstacle’s location. This does not 
fare well with moving obstacles, such as pedestrians, that may have 
already passed the user before they are able to decode the location. 
Moreover, StreetNav’s goal with obstacle awareness is to give users 
a quick idea that something is nearby them, which they can then 
use to circumnavigate via their mobility skills. To address this, we 
tried the more coarse format with just four directions: left, right, 
front, and back. This was found to give users a quick intimation, 
compared to the clock-faced directions. 
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Assisting with crossing streets. The StreetNav app helps users 
cross streets by informing them when to cross and how much time 
remains before the signal changes. 

Figure 8b and Figure 8d illustrate the feedback. Upon reaching 
a sidewalk corner, the app checks for the signal state recognized 
by the computer vision pipeline. If the signal is ‘wait’ when the 
user arrives, the app informs the user to wait along with the time 
remaining before the signal changes. If the signal is ‘walk’ when the 
user arrives, the app informs the user to begin crossing only if the 
time remaining is sufcient for crossing. For the intersection used 
in our user studies, this was experimentally found to be 15 seconds. 
Otherwise, the user is advised to wait for the next cycle. Once the 
user begins crossing on the ‘walk’ signal, the app announces the 
time remaining for them to cross over. This feedback is repeated at 
fxed intervals until the user reaches the other sidewalk corner. We 
experimentally fne-tuned this interval with feedback from our BLV 
co-author. We tried several intervals, such as 5, 10, and 15 seconds, 
and found that shorter intervals overwhelmed the users, whereas 
longer intervals practically would not be repeated enough times 
to give them meaningful information. We settled on repeating the 
feedback every 10 seconds for our implementation. 

6 USER STUDY 
Our user study had two goals, related to RQ3. First, we wanted to 
evaluate the extent to which StreetNav addressed BLV pedestrians’ 
challenges in navigating outdoor environments when using existing 
GPS-based systems (Section 3). Second, we wanted to analyze BLV 
pedestrians’ experience of navigating outdoors using StreetNav 
compared to existing GPS-based systems. 

6.1 Study Description 
Participants. We recruited eight BLV participants (fve males, 
three females; aged 24–52) by posting to social media platforms 
and by snowball sampling [22]. Participants identifed themselves 
with a range of racial identities (Asian, Black, White, Latino, and 
Mixed), and all of them lived in a major city in the US. Participants 
also had diverse visual abilities, onset of vision impairment, and 
familiarity with assistive technology (AT) for navigation. 

Table 2 summarizes participants’ information. All but three par-
ticipants (P1, P7, and P8) reported themselves as being moderately– 
extremely experienced with AT for navigation (3+ scores on a 
5-point rating scale). Only P3 reported minor hearing loss in both 
ears and wore hearing aids. All participants except two (P2, P9) 
used white cane as their primary mobility aid. P2 did not use any 
mobility aid, while P9 primarily used a guide dog for navigation. 
The IRB-approved study lasted for about 120 minutes, and partici-
pants were compensated $75 for their time. We obtained informed 
consent from all study participants. 

Experimental Design. In the study, participants completed three 
navigation tasks at a street intersection in two conditions: (i) Street-
Nav and (ii) BlindSquare [44], a popular GPS-based navigation app 
specially designed for BLV people. We selected BlindSquare as the 
baseline because it emerged as one of the most frequently used apps 
among our BLV participants for outdoor navigation, as identifed 
during the formative interviews (Section 3). We evaluated the two 
systems via their respective iOS apps on an iPhone 14 Pro. Both 

Figure 9: The routes used in the navigation tasks. (A) 12 me-
ters, stationary person to avoid on the sidewalk. (B) 30 meters, 
cross street, and moving person to avoid on the sidewalk. (C) 
38 meters, a 90◦ turn, cross street, and moving person to avoid 
on the crosswalk. To mitigate learning efects, routes for the 
two conditions are symmetrically designed, situated on op-
posite sides of the street. 

systems’ apps seamlessly integrated with VoiceOver, and all eight 
participants had a high level of familiarity with using iPhones and 
VoiceOver, with ratings of 3 or higher on a 5-point scale. 

Note that our study objective is to compare StreetNav against 
BLV people’s current navigation methods using GPS-based systems. 
Since such apps, including BlindSquare, do not ofer any assistance 
with obstacle awareness or crossing streets, the comparison ef-
fectively becomes StreetNav vs. participants’ own abilities with 
mobility aids and non-visual senses. 

Our study followed a within-subjects design, in which partic-
ipants tested the two navigation systems in a counter-balanced 
order to minimize potential order bias and learning efects. In each 
condition, participants were tasked with completing three distinct 
navigation challenges corresponding to three specifc routes. Fig-
ure 9 illustrates these three navigation routes. We deliberately chose 
the routes to lie within the street camera’s feld of view and include 
a range of difculty levels for each task: (A) a short route, 12 meters, 
that involved avoiding a stationary person on the sidewalk; (B) a 
long route, 30 meters, that involved crossing a street and avoiding 
a moving person on the sidewalk; and (C) a complex route, 38 me-
ters, that involved making a 90 degree turn, crossing a street, and 
avoiding a moving person on the crosswalk. For each of these tasks, 
one of the researchers assumed the role of an obstacle. None of the 
participants were familiar with the study location. 

Given that participants navigated the same intersection in both 
conditions, the potential for learning efects as a confounding factor 
was carefully considered. To address this concern, we took deliber-
ate measures by creating distinct routes for each condition. Specif-
cally, we designed the routes in both conditions to be symmetric— 
rather than being identical—with the starting and ending points of 
each route strategically positioned on opposite sides of the street 
intersection, as illustrated in Figure 9. The symmetry of routes 
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ensured that participants encountered the same challenges in both 
conditions. To ensure participants’ safety, the researchers accom-
panied them at all times during the study, prepared to intervene 
whenever necessary. 

Procedure. We began each study condition by giving a short tuto-
rial of the respective smartphone app for the system. During these 
tutorials, participants were taught how to use the app and how to 
interpret the various audiohaptic cues it ofered. To accommodate 
potential challenges arising from ambient noise at the street inter-
section, participants were given the option to wear headphones 
during the study. Only two participants, namely P3 and P5, exer-
cised that option; rest of the participants relied on the smartphone’s 
built-in speaker to hear the audiohaptic cues. 

After completing the three navigation tasks for each condi-
tion, we administered a questionnaire comprising four distinct 
parts. These parts were designed to assess participants’ experiences 
around challenges faced by BLV pedestrians in outdoor navigation, 
specifcally addressing the following aspects: routing to destina-
tion (C1), veering of course (C1), avoiding obstacles (C2), and 
crossing streets (C3). It included questions about how well each 
system assisted with the challenges, if at all. Participants rated their 
experience on a 5-point rating scale, where a rating of “1” indicated 
“not at all well,” and a rating of “5” indicated “extremely well.” After 
each part of the questionnaire, we asked follow-up questions to 
gain deeper insights into the reasons behind their ratings and their 
overall experiences. 

Following their experience with both navigation systems, par-
ticipants were asked to complete a post-study questionnaire. This 
questionnaire required them to rank the two navigation systems in 
terms of their preference for outdoor navigation. Subsequently, we 
directed our discussion toward StreetNav, engaging participants in 
a conversation about potential avenues for improvement. We also 
inquired about the specifc scenarios in which they envision using 
this system in the future. 

In addition to questionnaires capturing participants’ subjective 
experiences, we also analyzed system usage logs and video record-
ings to assess participants’ actual performance in the navigation 
tasks. We note that willingness to be video-recorded was completely 
voluntary. All eight participants still agreed to be video-recorded, 
providing us with written consent to do so. 

Analysis. We report participants’ spontaneous comments that best 
represent their overall opinions, providing further context on the 
quantitative data we collected during the study. We analyzed the 
transcripts for participants’ quotes and grouped them according to 
the (i) questionnaire’s four parts: routing to destination, veering 
of course, avoiding obstacles, and crossing streets; (ii) overall sat-
isfaction and ranking preferences, and (iii) how users’ individual 
experiences infuenced their preferences. 

6.2 Results 
Our results show that StreetNav guided participants to destinations 
with greater precision and reduced veering, improved obstacle 
awareness, and increased confdence in street crossing. For the 
statistic analysis of each measure, we frst used a Kolmogorov-
Smirnov test to determine if the data was parametric. Then, for 

Figure 10: Results for participants’ experience with routing to 
the destination. Participants rated the (1) usefulness of rout-
ing instructions, and (2) the system’s ability to track them en 
route to the destination. Participants found StreetNav’sturn-
by-turn instructions signifcantly more useful and precise 
than BlindSquare’s “as the crow fies”-style routing instruc-
tions. Pairwise signifcance is depicted for � < 0.01 (∗) and 
� < 0.05 (∗∗). The error bars indicate standard error. 

parametric data, we used a paired t-test to compare the two condi-
tions. Additionally, we analyzed video recordings, annotating routes 
that participants took during the study. We report key results below, 
with additional fndings in Appendix D. 

Routing to Destination. Figure 10 shows participants’ average 
rating for their experience following routes to the destination in 
each condition. The mean (± std. dev.) rating for participants’ per-
ceived usefulness of the routing instructions in guiding them to 
the destination was 4.13 (±0.64) for StreetNav and 2.38 (±0.91) for 
BlindSquare. The condition had a signifcant main efect (� = 0.014) 
on participants’ experience reaching destinations with the routing 
instructions. The mean (± std. dev.) rating for participants’ expe-
rience with the system’s ability to track them was 4.50 (±0.76) 
for StreetNav and 2.88 (±1.13) for BlindSquare. The condition had 
a signifcant main efect (� = 0.001) on participants’ perception 
of how well the system tracked them en route to the destination. 
This indicates that participants found StreetNav more useful than 
BlindSquare for guiding them to the destination. 

Figure 11 illustrates our analysis of the video recordings, plotting 
the typical paths taken by participants in the third route across 
both conditions. We computed various metrics from their paths, 
that provide insights into participants’ self-reported ratings. 

We found that when using BlindSquare, participants covered 
greater distances to reach the same destinations compared to when 
using StreetNav. On average, participants traveled a distance ap-
proximately 2.1 times longer than the shortest route when relying 
on BlindSquare. In contrast, when using StreetNav, they covered a 
distance of only about 1.1 times the shortest route to their destina-
tion. This represents a 51% reduction in the unnecessary distance 
traveled with StreetNav in comparison to BlindSquare. Figure 11b 
shows how participants using BlindSquare often exhibited an os-
cillatory pattern near their destinations (P1, P8) before eventually 
reaching close to them. 

Additionally, StreetNav’s routing instructions displayed a no-
tably higher level of precision, guiding participants to their destina-
tions with 2.9 times greater accuracy than BlindSquare. Figure 11 
clearly shows this trend for the third route. On average, across 
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(a) StreetNav (b) BlindSquare 

Figure 11: Comparison of paths traveled by three participants (P1, P3, P8) for route ‘C’ using (a) StreetNav, and (b) BlindSquare. 
StreetNav’s routing instructions consistently guided participants to the destination via the shortest path. BlindSquare, however, 
caused participants to take incorrect turns (P1, P3, P8), oscillate back and forth near destinations (P1, P8), and even go around 
the whole intersection before getting close to the destination (P8). 

the three study routes, participants using StreetNav concluded 
their journeys within a tighter radius of 12.53 feet from their in-
tended destination. In contrast, participants relying on BlindSquare 
concluded their journeys within a radius of 35.94 feet from their 
intended destination. Two study participants, P4 and P5, even re-
fused to navigate to the destination in two of the three tasks with 
BlindSquare. This was primarily attributed to BlindSquare’s low 
precision in tracking the participants and often guiding them to 
take incorrect turns. Figure 11b highlights how BlindSquare caused 
P8 to go around the intersection before fnally getting close the 
destination. 

Participants preferred StreetNav over BlindSquare for its audio-
haptic cues for turn-by-turn navigation instructions, which they 
found to be more useful and precise than BlindSquare’s “as the 
crow fies”-style clock face and distance-based instructions. P3’s 
comment encapsulates this sentiment: 

“When it’s time for me to turn right and walk a certain 
distance, [StreetNav] is very, very, very precise.” –P3 

Although all participants preferred StreetNav’s routing feedback 
over BlindSquare’s, distinct patterns emerged in their preference 
and utilization of these cues. StreetNav delivers a combination 
of audiohaptic and speech feedback for routing, and participants 
adopted varying strategies for utilizing this feedback. Some indi-
viduals placed greater reliance on the veering haptic feedback as 
their primary directional guide, while reserving speech feedback 
as a fallback option. Conversely, some participants prioritized the 
speech feedback, assigning it a higher level of importance in their 
navigation process compared to audio-haptic cues. 

Maintaining a straight walking path is crucial for efective rout-
ing. Thus, we separately analyzed the extent to which each system 
prevented veering, with fndings reported in Appendix D.1. 

Obstacle Awareness. Figure 12 shows participants’ average rating 
for their perceived awareness of obstacles across the two conditions. 
Specifcally, participants rated their ability to (1) avoid obstacles, 
(2) identify its category (e.g., person, bicycle, trash can), and (3) 
determine its relative location. The mean (± std. dev.) rating for 
participants’ perceived ability to avoid obstacles was 4.38 (±0.74) for 

Figure 12: Results for participants’ perceived obstacle aware-
ness. Participants rated their ability to (1) avoid obstacles, (2) 
identify its category (e.g., person, bicycle), and (3) determine 
its relative location; on a scale of 1–5. StreetNav signifcantly 
improved participants’ awareness of nearby obstacles during 
navigation. Pairwise signifcance is depicted for � < 0.01 (∗) 
and � < 0.05 (∗∗). The error bars indicate standard error. 

StreetNav and 2.88 (±0.99) for BlindSquare, to identify its category 
was 4.50 (±0.76) for StreetNav and 3.13 (±1.46) for BlindSquare, 
and to determine obstacle’s relative location was 4.13 (±0.64) for 
StreetNav and 2.88 (±1.25) for BlindSquare. A paired t-test revealed 
that the condition had a signifcant main efect on participants’ 
perceived ability to avoid obstacles (� = 0.030), identify its category 
(� = 0.037), and relative location (� = 0.004). This suggests that 
StreetNav ofered users a heightened awareness of nearby obstacles 
compared to the baseline condition of BlindSquare. 

With StreetNav, participants had the option to use obstacle avoid-
ance audio feedback in conjunction with their conventional mobility 
aids. However, in the case of BlindSquare, the system itself did not 
ofer any obstacle-related information. Consequently, participants 
primarily relied on their traditional mobility aids in this condition, 
as is typical when using GPS-based systems. Our analysis of the 
video recordings found that in both experimental conditions, par-
ticipants encountered no instances of being severely hindered by 
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Figure 13: Results for participants’ perceived comfort in cross-
ing streets. Participants rated their perceived comfort in (1) 
making the decision on when to begin crossing the street, and 
in (2) pacing themselves when crossing. Participants were 
signifcantly more comfortable crossing streets with Street-
Nav in comparison to BlindSquare. Pairwise signifcance is 
depicted for � < 0.01 (∗) and � < 0.05 (∗∗). The error bars 
indicate standard error. 

obstacles. Instead, they adeptly navigated around obstacles with 
the assistance of their white canes or guide dogs. 

Although participants generally had a positive perception of 
obstacle avoidance when using StreetNav, their opinions on the 
utility of obstacle awareness information varied. Some participants 
found this information benefcial, emphasizing its role in preventing 
“awkward bumping into people” (P2) and boosting their confdence, 
resulting in greater “speed in terms of walking” (P3). Conversely, par-
ticipants who felt confdent avoiding obstacles with their mobility 
aids regarded StreetNav’s obstacle information to be extraneous. P8 
also expressed concerns about the potential information overload 
it could cause in dense urban areas: 

“To know where people are, is a bit of overkill, because, 
especially in a city like this, if you turn this thing on in 
Times Square, it would have your head go upside down... 
If I’m around a lot of people, I’m not really thinking 
about avoiding them. I have a cane for a reason. They 
can see and I can’t, so I’m relying on them to see me 
and get out of my way.” –P8 

Many participants proposed an alternative use case for Street-
Nav’s obstacle awareness information, highlighting its potential 
for providing insights into their surroundings. They suggested that 
this information could unlock environmental afordances, including 
the identifcation of accessible light signals and available benches 
for resting: “knowing there was a bench was top-notch for me” (P8). 
Therefore, StreetNav’s obstacle awareness information served a 
dual purpose, aiding in both obstacle avoidance and environmental 
awareness, allowing users to “know what’s around” (P8) them. 

Crossing Streets. Figure 13 shows participants’ average rating for 
their perceived comfort in crossing streets. The mean (± std. dev.) 
rating of participants’ perceived comfort in making the decision on 
when to begin crossing the street was 4.50 (±0.76) for StreetNav 
and 2.88 (±1.64) for BlindSquare. The mean (± std. dev.) rating of 
participants’ perceived comfort in safely making it through the 
crosswalk and reach the other end was 4.63 (±0.52) for StreetNav 
and 2.00 (±1.41) for BlindSquare. A paired t-test showed that the 
condition had a signifcant main efect on participants’ comfort in 

beginning to cross streets (� = 0.029) and in safely making it to the 
other side (� = 0.001). 

As BlindSquare does not provide feedback for crossing streets, 
participants reported relying on their auditory senses by listening 
for the surge of parallel trafc. However, during the semi-structured 
interviews, some participants highlighted challenging scenarios 
that can make this strategy less reliable. P4, for instance, pointed 
out that ironically, less trafc can complicate street crossings: 

“I don’t always know when to cross because it’s so quiet. 
And sometimes two, three light cycles go by, and I’m 
just standing there.” –P4 

This issue has been exacerbated by the presence of electric cars, 
which are difcult to hear due to their quiet motors. For P3, their 
hearing impairments made it challenging to listen for trafc. Thus, 
most participants appreciated StreetNav’s ability to assist with 
crossing streets: 

“When it’s quiet, I would cross. But now with hybrid 
cars, it’s not safe to do that. [StreetNav] app telling you 
which street light is coming on is really helpful.” –P7 

Participants made decisions to cross the streets by combining 
StreetNav’s feedback with their auditory senses. Many participants 
emphasized that having information about the time remaining to 
cross signifcantly boosted their confdence, especially when this 
information aligned with the sounds of trafc: “I thought it was 
great because I could tell that it matched up” (P8). This alignment 
between the provided information and their sensory perception 
inspired confdence in participants: 

“Relying on my senses alone feels like a gamble about 
90 percent of the time, so a system like [StreetNav] that 
accurately displays the amount of time I have to cross 
the street is great.” –P2 

P4 compared StreetNav with the Oko App [9]. While P4 found Oko 
efective in identifying signal state, they appreciated StreetNav’s 
seamless integration, which does not require pointing the camera 
at the pedestrian signal. 

7 TECHNICAL EVALUATION 
We evaluate StreetNav’s technical performance to compare its efec-
tiveness against the status quo of GPS-based systems. StreetNav’s 
main advantage is its precise user localization. Thus, this evaluation 
aims to answer the question: How precisely does StreetNav localize 
the user, and what factors impact this precision? 

In comparing overall accuracy, StreetNav’s localization error was 
0.41 (± 1.49) meters in estimating the user’s feet position and an 
additional 0.65 (± 0.26) meters in transforming this position from 
the camera view to the map. This error is signifcantly lower than 
GPS, which achieves localization errors in excess of 10-15 meters 
in urban areas [23, 46, 69]. 

We independently analyzed technical performance of the three 
steps in StreetNav’s computer vision pipeline for user localization: 
(i) CLIP-based gesture recognition, (ii) pedestrian feet position esti-
mation, and (iii) camera to map-view transformation. Key results for 
each step are reported here, with detailed discussion in Appendix E. 

StreetNav’s CLIP-based gesture recognition achieves 83% ac-
curacy in identifying the hand-waving gesture, with a 24% false 
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positive rate and a 10% false negative rate. For pedestrian feet posi-
tion estimation, the root mean squared error (± std.) is 0.41 (± 1.49) 
meters. Although StreetNav detects pedestrians with 82% precision 
and 65% recall at a 0.5 IOU (intersection over union) threshold, 
accuracy decreases as the pedestrian’s distance from the camera in-
creases, with the false negative rate rising from 1% at 5 meters to 74% 
at 40 meters. The root mean squared error (± std.) for transforming 
points from camera view to map view is 0.65 (± 0.26) meters. 

Appendix E elaborates on the evaluation procedure and provides 
additional detail on factors that impact performance for each step. 

8 DISCUSSION 
Our goal with StreetNav was to explore the idea of repurposing 
existing street cameras to support precise outdoor navigation for 
BLV pedestrians. We refect upon our fndings to discuss how street 
camera-based systems might be deployed at scale, privacy concerns 
with camera-based assistive technology, implications of a street 
camera-based navigation approach for existing GPS-based navi-
gation systems, and the afordances enabled by precise, real-time 
outdoor navigation assistance. 

Deploying street camera-based navigation systems at scale. 
StreetNav demonstrates that street cameras have the potential to 
be repurposed for supporting precise outdoor navigation for BLV 
pedestrians. Our study results show that street camera-based navi-
gation systems can guide users to their destination more precisely 
and prevent them from veering of course (Figure 11). Our results 
also show that street camera-based systems can support real-time, 
scene-aware assistance by notifying users of nearby obstacles (Fig-
ure 12) and giving information about when to cross streets (Fig-
ure 13). These benefts of a street camera-based approach over 
existing GPS-based systems underscore the need for deploying 
such systems at scale. Although StreetNav was deployed at a single 
intersection, we learned insights on potential challenges and con-
siderations that must be addressed to deploy street camera-based 
systems at scale. 

Several internal and external factors need to be considered be-
fore street cameras can be efectively leveraged to support blind 
navigation at scale. External factors, including lighting conditions 
and occlusions on the street, may afect system performance. For in-
stance, we noticed that StreetNav’s ability to track pedestrians was 
afected severely in low-light conditions (e.g., at night) and by occlu-
sions due to the presence of large vehicles (e.g., trucks, buses) and 
the installation of scafolding for construction (Figure 17d). Such 
challenges afect the reliability of street camera-based systems and 
may limit its operational hours. Internal factors, including the posi-
tioning of cameras, their feld of view, and variability in resolution, 
may afect the extent to which such systems can promise precise 
navigation assistance. For instance, the visibility of the pedestrian 
signals from the camera feed could afect how much such systems 
can assist users with crossing streets. With StreetNav, we observed 
a drop in tracking accuracy as pedestrians moved further away 
from the camera. 

Therefore, deploying street camera-based systems at scale would 
require future work to investigate the extent to which both external 
factors (e.g., lighting, occlusions) and internal factors (e.g., camera 
resolution) afect system performance and reliability. To address 

some of the technical limitations around tracking performance and 
feld of view limitations, future research could explore integrating 
multiple cameras at various elevations and viewing angles. Prior 
work on robot navigation has explored the fusion of multiple cam-
eras to improve tracking performance [11, 52, 55]. Future work 
could also explore an ecosystem of accessible street cameras that 
can share information to automatically manage hand-ofs across 
street intersections, providing users with a seamless experience 
beyond a single street intersection. Such ecosystems, which span 
beyond one intersection to a whole district or city, could enable 
new afordances, such as automatically sensing pedestrian trafc 
to inform trafc signals and vice versa [37]. 

Privacy concerns with camera-based assistive technology. 
Privacy is a signifcant consideration for the practical deployment 
of street camera-based assistive technology. Our study with various 
stakeholders (Section 4) revealed difering perspectives on privacy 
and identifed strategies for respecting those perspectives. Recall 
from Section 4 the two strategies that our stakeholders identifed: 
(i) regulating data storage, anonymization, and access policies; and 
(ii) repurposing existing cameras rather than installing new ones. 
Concerning the frst strategy, StreetNav’s implementation does 
not necessitate any data storage for facilitating outdoor naviga-
tion assistance. The video feed is processed in real-time on a local 
server, and only navigation instructions are shared with the BLV 
user’s smartphone. Furthermore, StreetNav employs a map view 
representation—as depicted in Figure 3d—for computing routes 
and identifying obstacles, inherently enabling data anonymization. 
The questions regarding who should have access to these cameras 
and for what other purposes, including public safety, they might 
be used for, still require further investigation. As for the second 
strategy, although StreetNav repurposes a camera from an exist-
ing publicly available testbed, the feasibility of securing camera 
access and resources of already existing street cameras at scale re-
mains an open question. From our interview with the Community 
Board leader (Section 4), collaboration among diferent government 
entities emerged as a potential next step. Future research could 
investigate the roles of diferent government entities and the im-
plementation of policies that ensure responsible and transparent 
use of street cameras. 

Implications for GPS-based navigation systems. When cam-
eras are available, and conditions align favorably, street camera-
based systems ofer BLV individuals a valuable source of fne-
grained, high-precision information, signifcantly enhancing their 
navigational experience and environmental awareness. These capa-
bilities are currently beyond the reach of conventional GPS-based 
systems. All eight study participants unanimously chose StreetNav 
over BlindSquare as their preferred navigation system due to its 
precise, scene-aware navigation assistance (Section D.2). However, 
it’s important to acknowledge that street camera-based systems 
have their own set of limitations. The widespread availability of 
street cameras is not yet a reality, and ideal conditions may not 
always be met for their efective use. In contrast, GPS-based sys-
tems, while lacking in precision and environmental awareness, are 
universally accessible and resilient in varying conditions, includ-
ing low light. A harmonious integration of these two approaches 
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is a promising solution. Users can tap into street-camera infor-
mation when conditions permit, seamlessly transitioning to GPS 
data when necessary. This can be facilitated through sensor fu-
sion or information hand-ofs, creating a synergy that ensures a 
smooth and reliable navigational experience. Future approaches 
could explore how these two systems can efectively complement 
each other, addressing their respective limitations and enhancing 
overall performance. 

Afordances of precise outdoor navigation assistance for BLV 
people. Previous research in indoor navigation has demonstrated 
the advantages of accurately pinpointing users’ locations [2, 36, 
62] and providing scene-aware navigational information [25, 35]. 
However, achieving such precision has remained a challenge in 
outdoor environments, primarily due to the limited accuracy of GPS 
technology [23]. StreetNav’s approach of leveraging existing street 
cameras demonstrates that precise outdoor navigation support for 
BLV pedestrians is possible. Our study reveals the advantages of 
precise, fne-grained navigation for BLV individuals. These benefts 
include a substantial reduction in instances of veering and routing 
errors, such as deviation from the shortest path or missing intended 
destinations, as well as augmented environmental awareness. 

StreetNav ofered our participants a glimpse into the potential 
of precise outdoor navigation. Several participants desired even 
greater precision, including the ability to discern the exact num-
ber of steps remaining before reaching a crosswalk’s curb. Future 
research could delve into exploring how to best deliver such granu-
lar feedback to BLV users, alongside the necessary technological 
advancements needed to achieve this level of precision. These ad-
vantages, as our fndings suggest, extend beyond merely improv-
ing navigation performance. Participants shared insights into how 
precise navigation could enhance their independence when navi-
gating outdoors. It could empower BLV people to venture outdoors 
more frequently, unlocking new travel opportunities, as exempli-
fed by P3’s newfound confdence in using public transportation 
with StreetNav-like systems: 

“I don’t really use the city buses, except if I’m with 
somebody, but [StreetNav] would make me want to get 
up, go outside, and walk to the bus stop.” –P3 

This newfound confdence is particularly noteworthy, considering 
the unpredictable nature of outdoor environments. Future research 
could explore new afordances that street camera-based systems 
can enable for people, in general. 

9 LIMITATIONS 
Our work revealed valuable insights into the benefts and efec-
tiveness of a new approach that uses existing street cameras for 
outdoor navigation assistance. At the same time, we acknowledge 
that our work has several limitations. 

StreetNav was developed using a camera from an existing cloud-
networked testbed that is publicly available to the researchers [13, 
60, 72], situated at a specifc street intersection. It is important to 
note that our development process may not have encountered all 
potential technical challenges and design considerations, given the 
constraints of this setup. Additionally, StreetNav’s use of the testbed 
camera instead of a regular security camera may yield slightly difer-
ent performance due to factors like camera perspective, resolution, 

availability, and even the layout of the intersection. Future research 
could expand upon our design and investigate how street camera-
based systems can be adapted to diferent environments. 

Furthermore, to ensure the safety of participants and to ft the 
user study within a 120-minute timeframe, we designed the study 
routes to be less complex and dangerous. Real-world outdoor en-
vironments can vary signifcantly across regions, and our study 
location may not fully capture the diversity of scenarios BLV people 
encounter when navigating outdoors. 

Lastly, it is important to note that our design of StreetNav was 
guided by interviews with six BLV individuals, six stakeholders 
from New York City, and was evaluated in a study with only eight 
BLV individuals. While our participants’ insights are valuable, their 
preferences may not represent the general population’s perspectives 
on BLV people’s navigation challenges and various stakeholders’ 
privacy concerns. There could be additional challenges and design 
possibilities that we did not explore because of the cultural and 
regional context. Future research should consider a more exten-
sive and diverse participant pool to gain a more comprehensive 
understanding of BLV people’s challenges and privacy preferences 
of various stakeholders. 

10 CONCLUSION 
We explored the idea of leveraging existing street cameras to sup-
port precise outdoor navigation for BLV pedestrians. Our resulting 
system, StreetNav, investigates both technical and sociotechnical 
concerns with a street camera-based navigation system. Our eval-
uations revealed StreetNav’s potential to guide users more pre-
cisely to destinations compared to existing GPS-based systems. It 
also demonstrated camera-based system’s ability to ofer real-time, 
context-aware navigation assistance, aiding in obstacle avoidance 
and safe street crossings. However, we also identifed challenges 
and opportunities for deploying street camera-based navigation 
systems at scale. These challenges suggest areas for future research 
to enhance system robustness and reliability while addressing pri-
vacy concerns. Our work highlights the potential of embedding 
accessibility into urban infrastructure using existing resources like 
street cameras. We envision a future where these systems seam-
lessly integrate into urban environments, providing BLV people 
with safe, precise navigation capabilities and empowering them to 
navigate their surroundings confdently. 
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APPENDIX 
A FORMATIVE INTERVIEWS WITH BLV 

PEOPLE 
We provide details on the semi-structured interviews with BLV 
participants that we conducted to identify challenges that they face 
when navigating outdoors using GPS-based systems. 

A.1 Methods 
Participants. We recruited six BLV participants (three males, three 
females; aged 29–66) by posting on social media platforms and snow-
ball sampling [22]. Table 1 summarises the participants’ informa-
tion. All interviews were conducted over Zoom and lasted about 60 
minutes. Participants were compensated $25 for this IRB-approved 
study. We obtained informed consent from all study participants. 

Procedure. To identify the specifc challenges that BLV people 
face when navigating outdoors, we used a recent critical incident 
technique (CIT) [19], in which we asked participants to recall and 
describe a recent time when they navigated outdoor environments 
using GPS-based assistive technology (AT). For example, we frst 
asked participants to name the AT they commonly use and then 
asked them to elaborate on their recent experience of using it: “So, 
you mentioned using BlindSquare a lot. When was the last time you 
used it?” Then, we initiated a discussion by establishing the scenario 
for them: “Now, let’s walk through your visit from the ofce to this 
restaurant. Suppose, I spotted you at your ofce. What would I observe? 
Let’s start with you getting out of your ofce building.” We asked 
follow-up questions to gain insights into what made the aspects of 
outdoor navigation challenging and what additional information 
could help address them. 

Interview Analysis. To analyze the interviews, we frst transcribed 
the study sessions in full and then performed thematic analysis [10] 
involving three members of our research team. Each researcher frst 
independently went through the interview transcripts and used 
NVivo [50] to create an initial set of codes. Then, all three iterated 
on the codes together to identify emerging themes. 
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Table 1: Self-reported demographics of our participants. Gender information was collected as a free response; our participants 
identifed themselves as female (F) or male (M). Participants rated their assistive technology (AT) familiarity on a scale of 1–5. 

PID Age Gender Race Occupation Vision ability Onset Mobility aid AT familiarity (1–5) 
F1 29 Female White Claims expert Totally blind At birth White cane 3: Moderately familiar 
F2 61 Female White Retired Light perception only Age 6 Guide dog 1: Not at all familiar 
F3 66 Female White Retired Totally blind Age 58 Guide dog 2: Slightly familiar 
F4 48 Male Black Unemployed Light perception only Age 32 White cane 3: Moderately familiar 
F5 27 Male Mixed Unemployed Totally blind At birth White cane 3: Moderately familiar 
F6 38 Male White AT instructor Totally blind At birth White cane 5: Extremely familiar 

A.2 Findings 
We found three major themes around challenges that BLV pedes-
trians face when navigating outdoors using GPS-based systems. 

C1: Routing through complex environment layouts. Partic-
ipants reported difculties in following routing instructions pro-
vided by GPS-based systems. These instructions, as explained by the 
participants, often did not match their current location. Many partic-
ipants cited problems such as making wrong turns into unexpected 
“alleyways” (F1, F2, F4) that landed them in dangerous situations 
with “cars coming through” (F2). Participants cited examples of how 
these instructions caused them to veer of course—a common issue 
for BLV individuals in open, outdoor spaces [53]—and end up in the 
middle of the streets. This problem was particularly pronounced 
in complex environment layouts, as F3 recalled: “I didn’t know if 
crosswalks were straight or curved or if they were angled. [It was 
hard] to fgure out which way you needed to be to be in the crosswalk.” 
Since "not everything is organized in the ideal grid-like way” (F1), 
participants were hesitant to act on the navigation instructions 
without a clear understanding of the layout. 

C2: Avoiding unexpected obstacles while using GPS-based 
systems. BLV people’s challenges relating to obstacles during nav-
igation are well researched [54, 56]. However, we found specifc 
nuances in their difculties, particularly when they rely on their 
conventional mobility aids in conjunction with GPS-based naviga-
tion systems. Participants commonly reported the use of mobility 
aids like white canes alongside GPS systems for guidance. During 
this combined navigation process, they encountered difculties in 
maintaining their focus on avoiding obstacles, often resulting in 
collisions with objects that they would have otherwise detected 
using their white canes. For instance, F2 shared an incident where 
they remarked, “there were trafc cones [and] I tripped over those” 
while following directions from BlindSquare [44]. Notably, mov-
ing obstacles such as pedestrians and cars, as well as temporarily 
positioned stationary obstacles like triangle sandwich board signs, 
posed signifcant challenges for navigation. F4 expressed this senti-
ment, stating, “You know how many times I’ve walked into the sides 
of cars even though I have the right of way. Drivers have gotten angry, 
accusing me of scratching their vehicles. It can spoil your day [and 
make] you feel insecure.” 
C3: Crossing street intersections safely. Consistent with prior 
research [3, 26, 43], our study participants highlighted that crossing 

streets remained a signifcant challenge for them. Since GPS-based 
systems do not help with street-crossing, most participants relied 
on their auditory senses and apps like Oko [9]. Regarding the use 
of auditory senses, they mentioned the practice of listening to ve-
hicular sounds to gauge trafc fow on streets running parallel and 
perpendicular to their position. This auditory technique helped 
them assess when it was safe to cross streets. However, participants 
also reported instances where this method proved inadequate due 
to external factors: “yeah, it can be tricky, because [there may be] re-
ally loud construction nearby that can defnitely throw me of because 
I’m trying to listen to the trafc” (F1). Furthermore, their confdence 
in street-crossing decisions was afected by their inability to as-
certain the duration of pedestrian signals and the length of the 
crosswalk. This uncertainty led to apprehension, as they expressed 
a fear of becoming stranded mid-crossing, as exemplifed by one 
participant’s comment: “I don’t want to be caught in the middle [of 
the street]” (F4). Regarding the use of Oko [9], participants found 
it cumbersome to point their phone’s camera toward a pedestrian 
signal and to switch between this app and others during navigation. 

B PARTICIPANT DEMOGRAPHICS 
Table 3 summarizes demographics of various stakeholders we in-
terviewed (Section 4), and Table 2 summarizes our user study par-
ticipant demographics (Section 6). 

C STREETNAV: TECHNICAL SETUP 
Figure 2 shows the street camera we used for developing and eval-
uating StreetNav. The camera is part of the NSF PAWR COSMOS 
wireless edge-cloud testbed [60, 72], and is available to researchers 
after an approval process and IRB review. We considered other 
publicly available testbeds such as Mobintel [45] and DataCity 
SMTG [14], but chose COSMOS due to its location in a major city 
(New York) with high pedestrian and vehicle trafc. Anonymized 
video samples from the COSMOS cameras, including the one used 
in this work, can be found online [13]. StreetNav’s computer vi-
sion pipeline takes the real-time video feed from the camera as 
input. For this purpose, we deployed the computer vision pipeline 
on one of the testbed servers, which captures the camera’s video 
feed in real time. This server runs Ubuntu 20.04 with an Intel Xeon 
CPU@2.60GHz and an Nvidia V100 GPU. 

StreetNav’s two components—the computer vision pipeline and 
the app—interact with each other via a cloud server, sharing infor-
mation using the MQTT messaging protocol [47]. Since MQTT is 

mailto:CPU@2.60GHz
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Table 2: Self-reported demographics of our user study participants. Gender information was collected as a free response. 
Participants rated their familiarity with assistive technology (AT) on a scale of 1–5. 

PID Age Gender Occupation Race Vision ability Onset Mobility aid AT familiarity (1–5) 
P1 24 Male App developer Asian Low vision Age 19 White cane 2: Slightly familiar 
P2 28 Male Data manager White Low vision At birth None 3: Moderately familiar 
P3 48 Male Not employed Black Totally blind Age 32 White cane 3: Moderately familiar 
P4 46 Female Social worker Latino Totally blind Age 40 White cane 4: Very familiar 
P5 43 Female Not employed Asian Totally blind At birth White cane 4: Very familiar 
P6 52 Male Mgmt. analyst Mixed Light perception only Age 9 White cane 5: Extremely familiar 
P7 26 Female Writer Mixed Low vision At birth White cane 2: Slightly familiar 
P8 51 Male Not employed Black Light perception only Age 26 Guide dog 3: Moderately familiar 

Table 3: Self-reported demographics of our formative interviews with various stakeholders. 

PID Stakeholder Category Gender Age Notes 

B1 BLV individual Female 62 Light perception only 
B2 BLV individual Gender Neutral 41 Limited vision in only left eye 
R1 Local resident Female 29 Lived in Harlem for 12+ years 
R2 Local resident Female 35 Lived in Harlem for 13+ years 
O1 Local business owner Male 58 Running for 7+ years 
CB1 Community Board leader Male 53 Serving as leader in Harlem 

a lightweight messaging protocol, it runs efciently even in low-
bandwidth environments. The computer vision pipeline only sends 
processed navigation information (e.g., routing instructions, ob-
stacle’s category and location) to the app, rather than sending 
video data. This alleviates the privacy concerns around streaming 
the video feed to the users and avoids any computational bottle-
necks that may happen due to smartphones’ limited processing 
capabilities. The StreetNav app’s primary purpose is to act as an 
interface between the user and the computer vision pipeline. We de-
veloped StreetNav’s iOS App using Swift [6], enabling us to leverage 
VoiceOver [7] and other built-in accessibility features. 

D ADDITIONAL USER STUDY RESULTS 
D.1 Results for Veering Prevention 
Figure 14 shows participants’ average rating for their perceived 
ability to (1) maintain a straight walking path, i.e., prevent veer-
ing of course, and (2) intuitiveness of the feedback they received 
regarding direction to move in. The mean (± std. dev.) rating of 
participants’ perceived ability to maintain a straight walking path 
with StreetNav was 4.63 (±0.52) and with BlindSquare was 2.75 
(±1.17). The condition had a signifcant main efect (� = 0.001) 
on participants’ perceived ability to prevent veering of course. 
The mean (± std. dev.) rating for intuitiveness of the feedback that 
helped them know which direction to move in was 4.63 (±0.52) for 
StreetNav and 3.00 (±0.76) for BlindSquare. The condition had a 
signifcant main efect (� = 0.006) on intuitiveness of feedback that 
helped participants prevent veering of path. 

Our examination of the video recordings aligns closely with par-
ticipants’ ratings. It reveals that StreetNav minimized participants’ 
deviations from the shortest path to the destinations in comparison 
to BlindSquare. Over the course of the three routes, participants 
displayed an average deviation from shortest path, that was reduced 
by 53% when using StreetNav as opposed to BlindSquare. 

With BlindSquare, many participants reported difculty main-
taining awareness of their surroundings, including both obstacles 
and navigation direction, which frequently led to deviations from 
their intended paths. For instance, P2 reported challenges in main-
taining their orientation with the need to avoid obstacles: 

“[BlindSquare] basically demanded me to keep track of 
my orientation as I was moving, which is pretty difcult 
to do when you’re also trying to keep other things in 
mind, like not bumping into things.” –P6 

In contrast, StreetNav efectively addressed this challenge by pro-
viding continuous audiohaptic feedback for maintaining a straight 
walking path, instilling a sense of confdence in participants. P3, 
who tested StreetNav before BlindSquare, refected on their desire 
for a similar continuous feedback mechanism within BlindSquare, 
akin to the experience they had with StreetNav: 

“[with BlindSquare] even though I couldn’t see the phone 
screen, my eyes actually went towards where I’m hold-
ing the screen. It is almost as if on a subconscious level, 
I was trying to get more feedback. With [StreetNav] I 
had enough feedback.” –P3 
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Figure 14: Results for participants’ perceived ability to pre-
vent veering of path. Participants rated their ability to (1) 
maintain a straight walking path, and (2) intuitiveness of 
the feedback regarding direction they should be moving in; 
on a scale of 1–5. StreetNav’saudiohaptic feedback was sig-
nifcantly more intuitive than BlindSquare’s in preventing 
participants from veer of path. Pairwise signifcance is de-
picted for � < 0.01 (∗). The error bars indicate standard error. 

Many participants appreciated StreetNav’s choice of haptic feed-
back for veering. Some participants envisioned the haptic feedback 
to be especially useful in environments with complex layouts: 

“In the [areas] where the streets are very slanted and 
confusing. I think haptic feedback will be especially 
helpful.” –P5 

Other participants highlighted the advantage of haptic feedback 
in noisy environments where audio and speech feedback might be 
less efective. 

However, both P4 and P6 exclaimed that StreetNav’s haptic feed-
back would only work well when holding the phone in their hands. 
This meant that hands-free operation of the app may not be pos-
sible, which is important for BLV people since one of their hands 
is always occupied by the white cane. P4 proposed integrating the 
app with their smartwatch for rendering the haptic feedback to 
enable hands-free operation. 

D.2 Forced Ranking Results 
All eight participants unanimously chose StreetNav over Blind-
Square as their preferred navigation assistance system. We asked 
participants to also rank their preferred type of routing instructions. 
All eight participants strongly preferred StreetNav’s turn-by-turn 
routing instructions compared to BlindSquare’s “as the crow fies,” 
direction and distance-style routing instructions. 

In the semi-structured interview, participants were asked to 
elaborate on their rankings. Participants pointed out multiple nav-
igation gaps in BlindSquare, with P2 summarizing participants’ 
sentiment: 

“If you’re only getting somebody 90 percent of the way 
there, you’re not really achieving what I would consider 
to be the prime functionality of the system.” –P2 

In contrast, participants praised StreetNav for its precision and real-
time feedback, emphasizing the importance of granular and holistic 
information to support all facets of navigation. However, partici-
pants did acknowledge occasional “glitchiness” (P7) with StreetNav, 
which occurred when they moved out of the camera’s feld of view 
or were occluded by other pedestrians or vehicles, resulting in lost 

tracking. Nevertheless, participants still regarded StreetNav as a 
signifcant enhancement to their typical navigation experiences, 
expressing increased confdence in exploring unfamiliar outdoor 
environments in the future. 

“It would encourage me to do things that I would not 
usually... It would make me more confdent about going 
out by myself.” –P4 

Participants also appreciated StreetNav’s ability to identify them 
in near real-time: 

“What I found very interesting about the connection 
part is how quickly it identifes where I am, as soon as I 
waved my hand, it senses me.” –P3 

Participants also provided suggestions for improving StreetNav. 
Some participants wanted a hands-free version that would allow 
them to hold a white cane in one hand while keeping the other 
free. Additionally, while they found the gesture of waving hands for 
connecting with the system socially acceptable, they acknowledged 
that it might be perceived as somewhat awkward by others in the 
street. 

“[Waving a hand] may seem kind of weird to people 
who don’t understand what is going on. But for me 
personally, I have no issue.” –P3 

Some participants highlighted that waving a hand might be misin-
terpreted by others on the street as a call for help, and may even 
cause security issues if a malicious person becomes aware that they 
were blind. P1 highlighted the role of public education in addressing 
this concern: 

“If [others] see someone with a white cane, they know 
that’s a blind person traveling. But if they see someone 
with their hand raised, they might think someone needs 
help or hailing a cab. So, I think it’s going to be education 
to other people as much as to the person who is using 
this navigation system.” –P1 

D.3 How Individual Experiences Infuenced 
Participants’ Preferences 

Throughout the study, participants ofered feedback based on their 
unique backgrounds. We observed distinct patterns in their prefer-
ences, afected by their (i) onset of vision impairment, (ii) level of 
vision impairment, and (iii) familiarity with assistive technology. 

Onset of vision impairment. Participants with early onset blind-
ness preferred nuanced, concise feedback with an emphasis on 
environmental awareness. They used the system as an additional 
data point without complete reliance. In contrast, participants with 
late onset blindness trusted the system more and relied heavily on 
its feedback. 

Level of vision impairment. Totally blind participants appreci-
ated the veering feedback, while low-vision users, having more 
visual information, relied on their senses and needed less assistance 
with veering. Low-vision participants preferred the street-crossing 
feedback to interpreting pedestrian signals across the street. Totally 
blind participants primarily listened for parallel trafc, their usual 
method, using StreetNav’s feedback for confrmation. 
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Figure 15: Illustration of StreetNav’s localization steps an-
alyzed in the technical evaluation: (a) CLIP-based gesture 
recognition, (b) pedestrian feet position estimation, (c) cam-
era to map-view transformation. 

Familiarity with assistive technology (AT). We noticed that 
participants who commonly use AT for navigation quickly adapted 
to StreetNav, while those with less experience hesitated in trusting 
StreetNav’s feedback and had a slightly steeper learning curve. Still, 
all participants mentioned feeling more comfortable with Street-
Nav as the study progressed. Both groups also expressed increased 
confdence in exploring new areas with StreetNav. 

E TECHNICAL EVALUATION 
We independently analyzed the technical performance of each of 
the three steps that enable StreetNav’s computer vision pipeline to 
localize the user. Figure 15 illustrates the three steps: (i) CLIP-based 
gesture recognition (Figure 15a), (ii) pedestrian feet position esti-
mation (Figure 15b), and (iii) camera to map-view transformation 
(Figure 15c). Recall from Section 5.2, StreetNav frst distinguishes 
the BLV pedestrians from other pedestrians by recognizing the 
hand-waving gesture, then estimates their feet position as the mid-
point of bounding box’s bottom edge, and fnally transforms their 
feet position from the camera view to the map. 

E.1 Procedure 
We recorded a 15-minute evaluation video (22500 frames) from the 
camera feed to perform the technical evaluation. While recording 
this video, researchers posed as users navigating through the street 
intersection and played out diferent scenarios, such as waving 
hands and crossing streets. We also analyzed the errors for each of 
the three steps, revealing factors that impact StreetNav’s ability to 
precisely determine a user’s position. 

E.2 Results 
CLIP-based gesture recognition. To evaluate the frst step, we 
randomly sampled a balanced dataset of 140 image crops from the 

evaluation video. Figure 15a highlights the pedestrian image crops 
from each class. The CLIP-based gesture recognition module clas-
sifes each crop as waving or non-waving (i.e., walking, standing) 
pedestrian. 

Figure 16: Confusion matrix for StreetNav’s CLIP-based ges-
ture recognition module. StreetNav distinguishes waving 
pedestrians from non-waving (i.e., walking, standing) ones 
with an 83% accuracy. 

Figure 17: Failure cases in StreetNav’s CLIP-based gesture 
recognition module. False positives occur when other pedes-
trians perform actions similar to waving their hand, such 
as (a) talking over phone or (b) casually resting their hand 
on forehead. False negatives occur when (c) users are too 
far from the camera and (d) due to foreground occlusions 
and background overlaps with vehicles, scafolding, or other 
pedestrians. 

Figure 16 shows the confusion matrix for CLIP-based gesture 
recognition module’s performance. StreetNav achieves an 83% accu-
racy in recognizing the hand-waving gesture, with a false positive 
rate of 24% and a false negative rate of 10%. We analyzed the failure 
cases to identify specifc scenarios that lead to the errors. 

Figure 17 shows instances of the most common scenarios leading 
to false positives and false negatives. The false positives occur when 
other pedestrians perform actions similar to waving their hand, 
such as talking over a phone (Figure 17a) or casually resting their 
hand on their forehead (Figure 17b). The false negatives occur when 
users are too far from the camera (Figure 17c) or due to foreground 
occlusions and background overlaps such as vehicles, scafolding, 
and other pedestrians (Figure 17d). While false negatives may result 
in users needing to wave their hands for a longer duration until 
recognized, false positives can lead them to follow incorrect instruc-
tions based on another pedestrian’s location. StreetNav’s approach 
to mitigating false positives is to announce the relative location of 
the detected pedestrian (e.g., ‘southwest corner’), providing users 
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Figure 18: False negative rate (FNR) for pedestrian detection 
over distance from the camera in meters. StreetNav’s error 
rates in detecting pedestrians increases signifcantly as they 
get further away from the camera. The FNR goes up from 1% 
at 5 meters to 74% at 40 meters distance from the camera. 

with additional contextual information to confrm whether they 
were recognized. The idea is that if this information does not align 
with the user’s perception, they could then choose to re-establish 
the connection. Fine-tuning the CLIP model for this purpose could 
potentially enhance accuracy even further. 

Pedestrian feet position estimation. To evaluate the second 
step, we manually annotated the ground truth pedestrian bounding 
boxes for 250 frames, randomly sampled from the evaluation video. 
Figure 15b shows the ground truth bounding box and StreetNav’s 
predicted bounding box for a pedestrian. We report the root mean 
square errors between the feet positions estimated using the ground 
truth and predicted bounding boxes. 

The root mean squared error (± std.) in estimating pedestri-
ans’ feet position is 0.41 (± 1.49) meters. The pixel distances were 
converted to physical distances to obtain the error in meters. We 
observed larger error rates for scenarios where pedestrians are 
occluded by other pedestrians or objects such as trash cans and fre 
hydrants. Future approaches could explore fltering abrupt changes 
in pedestrians’ bounding boxes, caused by occlusions, to reduce 
this error. 

While analyzing the feet positions from the bounding boxes, we 
also noticed a trend in StreetNav’s pedestrian detection pipeline. 

Recall from Section 5.2, StreetNav uses Nvidia’s DCF-based multi-
object tracker [49] and the YOLOv8 object detector [67] for tracking 
pedestrians. We found that although StreetNav detects pedestrians 
with an 82% precision and 65% recall at 0.5 IOU (intersection over 
union) threshold, the accuracy drops signifcantly as the pedes-
trian’s distance from the camera increases. This is attributed to 
the relatively smaller size of pedestrians, low resolution, and high 
chances of occlusion as pedestrians move further away from the 
camera. 

Figure 18 shows the false negative rate over distance from the 
camera. The false negative rate increases from 1% at a distance of 5 
meters from the camera to 74% at a distance of 40 meters from the 
camera. Note that the distances were calculated between the pedes-
trian’s feet estimations and the camera position’s projection on the 
ground. Future approaches could combine detections from multiple 
cameras, such as two cameras positioned diagonally across a street 
intersection, to address this drop in accuracy. Alternatively, using 
training strategies that can detect both small and large pedestrians 
could also improve performance [29]. 

Camera to map-view transformation. To evaluate the third 
step, we selected a dataset of 50 points in the camera view and we 
manually annotated their corresponding position on the map. We 
chose these specifc points for evaluation as they correspond to 
visual landmarks on the street and are evenly spread across the 
street intersection. For example, we selected points on the crosswalk 
edges and road signs. As a result, annotating their ground truth 
position on the map view could be done with reasonable accuracy 
by simply comparing the camera and map view images. For these 
50 points, we also generated StreetNav’s predicted transformations 
from the camera view to the map view. Figure 15c shows the points 
we selected and their corresponding ground truth and predicted 
transformations. We computed the root mean square errors between 
the transformed ground truth positions and StreetNav’s predicted 
positions.

The root mean squared error (± std.) in transforming points 
from the camera view to the map view, averaged across the points 
shown in Figure 15c, is 0.65 (± 0.26) meters. The pixel distances 
were converted to physical distances to obtain the error in meters. 
These errors occur due to the curvature in the camera lens. 
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