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As one of the most primitive operators in graph algorithms, such as the triangle counting, maximal clique

enumeration, and subgraph listing, a set intersection operator returns common vertices between any two

given sets of vertices in data graphs. It is therefore very important to accelerate the set intersection, which

will benefit a bunch of tasks that take it as a built-in block. Existing works on the set intersection usually

followed the merge intersection or galloping-search framework, and most optimization research focused on

how to leverage the SIMD hardware instructions. In this paper, we propose a novel multi-level set intersection

framework, namely hierarchical set partitioning and join (HERO), by using our well-designed set intersection
bitmap tree (SIB-tree) index, which is independent of SIMD instructions and completely orthogonal to themerge

intersection framework. We recursively decompose the set intersection task into small-sized subtasks and

solve each subtask using bitmap and boolean AND operations. To sufficiently achieve the acceleration brought

by our proposed intersection approach, we formulate a graph reordering problem, prove its NP-hardness,

and then develop a heuristic algorithm to tackle this problem. Extensive experiments on real-world graphs

have been conducted to confirm the efficiency and effectiveness of our HERO approach. The speedup over

classic merge intersection achieves up to 188x and 176x for triangle counting and maximal clique enumeration,

respectively.
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1 INTRODUCTION
In a wide spectrum of real-world applications such as social network analysis [7, 25], friend

recommendation [4, 15, 17], and community search/detection [9, 28, 29], a set intersection problem,

which obtains common elements between any two sets, has been one of the most fundamental and
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Fig. 1. An example of the friend recommendation in a social network 𝐺 .

important operators in graph algorithms/tasks such as the triangle counting [8, 27], maximal clique

enumeration [5], and subgraph listing [24, 30].

1.1 Motivation Example
Below, we give a motivation example of the friend recommendation in social networks.

Example 1.1 (Friend Recommendation in Social Networks). Consider an example of social network,

𝐺 , in Figure 1, where each vertex is a user and each edge between two vertices indicates the friend

relationship between the two users. One important function on the social network platform (e.g.,

Twitter or Facebook) is to help users find and connect their friends. Intuitively, if two users have

many common friends on social networks, they are more likely to know each other in reality.

Therefore, in this case, we need to obtain a set of common friends between these two users and

recommend them to add each other as friends (if this set is large).

Figure 1 illustrates two users 𝑢1 and 𝑢2 who are not connected in social network𝐺 , where their 1-

hop neighbor sets are given by N(𝑢1) = {𝑣3, 𝑣4, 𝑣5, 𝑣7, 𝑣9, 𝑣22} and N(𝑢2) = {𝑣3, 𝑣10, 𝑣11, 𝑣17, 𝑣18, 𝑣24},
respectively. To find their common friends, we need to conduct the set intersection operator,

N(𝑢1) ∩ N (𝑢2), between their 1-hop neighbor sets, and obtain common friends (i.e., {𝑣3} in this

example). ■

Due to the large scale of social networks 𝐺 in Example 1, in the worst case, there are quadratic

pairs of user vertices (or set intersections) that need to be checked. Therefore, it is rather important,

yet challenging, to optimize the cost of performing each set intersection operator, which inspires

our work in this paper.

1.2 Existing Methods and Limitations
Existing works on the set intersection [14, 16, 23] follows a widely-used framework, the merge
intersection, which assumes two sorted sets 𝐴 and 𝐵 (w.l.o.g. in the ascending order) and scans

to merge both lists at the same time. The time complexity of this merge intersection method is

O(|𝐴|+ |𝐵 |) in the worst case, where |𝐴| and |𝐵 | are the numbers of elements in𝐴 and 𝐵, respectively.
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Another classic approach to perform the set intersection is the galloping search [10]. Let us

assume that |𝐴| < |𝐵 |. For each element 𝑢 in 𝐴, the galloping search determines whether 𝑢 is

contained in 𝐵 by using a binary search. The time complexity of this method is O(|𝐴| log |𝐵 |),
thereby it is more efficient when |𝐴| ≪ |𝐵 | holds.
A bunch of algorithms have been developed powered by SIMD [1, 14, 16]. For example, QFilter

[14] improves the merge intersection by leveraging the SIMD instructions and a proposed byte-

checking filter. However, due to the variability in available SIMD support across different processor

architectures, the SIMD instruction sets are architecture-specific, leading to the inconvenience

of implementing algorithms. In the worst-case scenario, some processors may not have SIMD

instructions at all, making the SIMD-based algorithms even unable to work. Recently, a reducing-

merging framework [31] has been devised to enhance the performance of merge intersection.

The basic idea is to reduce the input sets as much as possible before conducting intersection. The

corresponding time cost is O(log |𝐴| + log |𝐵 | + |𝐴′ | + |𝐵′ |), where𝐴′ and 𝐵′ refer to subsets retrieved
from 𝐴 and 𝐵 with range code reduction, respectively. The reducing-merging framework highly

depends on the reducing performance, however, it remains an open problem to maximize the

reducing ability.

Although advanced techniques such as SIMD [14] and set reduction [31] have been proposed to

boost the set intersection task, they all take merge intersection or galloping-search paradigms as

the backbone. In contrast, we focus on the following question: Can we develop a novel and more
powerful framework to make set intersections on graphs even faster in practice?

1.3 Our Contributions
In order to speed up the intersection 𝐴 ∩ 𝐵 between two sets 𝐴 and 𝐵, in this paper, we design a

novel multi-level set intersection framework, namely hierarchical set partitioning and join (HERO),

which consists of offline set decomposition and online set intersection stages. The intuition behind

our HERO framework is to decompose the task of the set intersection into several intersection

subtasks with smaller subsets and avoid the computation cost if one of the two subsets to intersect

in subtasks is empty.

Specifically, in the offline set decomposition phase, we divide the universal set into disjoint

partitions and project each set 𝐴 (or 𝐵) onto these partitions (called set partitioning), leading to

projected subsets. Then, we take the IDs of non-empty (projected) subsets and form a new partition

ID set. We recursively project this new partition ID set into partition ID subsets. This way, we can

offline build a hierarchical structure of (element or partition ID) subsets for the original set 𝐴 (or 𝐵).

In the online set intersection phase, we will start from the top of the hierarchical structures

for sets 𝐴 and 𝐵 to perform the join over partition ID sets (called partition ID join). Then, we can
traverse hierarchical structures of 𝐴 and 𝐵 to the next-level (sub)set intersection, based on the

partition IDs in the join results, in a recursive top-down manner.

Under the HERO framework, we also propose an effective index, namely set intersection bitmap
tree (SIB-tree) for the set intersection in the graph. We notice that the bitwise operators, supported

by most computers, enable bit-level parallel comparisons, implying a great potential to accelerate

the set intersection task. To the end, it is necessary to represent each set using a bitmap where each

bit denotes whether or not a vertex appears in the set. However, maintaining bitmaps for sets of

neighbors for all the vertices results in the overhead O(|𝑉 |2), which is impractical for large-scale

graphs. Moreover, due to the size limit of an operand register (namely word length), the bitwise

operators (such as boolean AND operation) on over-width bitmaps cannot be completed by a

single instruction. To handle the problems, we construct the SIB-tree, that is, plugging the bitwise

operators into the HERO framework by decomposing the original set intersection into small-sized
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(a) Decomposition Stage (offline) (b) Intersection Stage (online)

Fig. 2. An example of two-level set intersection.

subtasks such that each subtask can be efficiently solved by a single instruction. The SIB-tree can

facilitate the multi-level set intersection efficiently.

In fact, many different SIB-trees can be built based on distinct set partitionings, and thus affect the

intersection performance. We find that any particular set partitioning can be achieved by applying

the graph reorder technique. Therefore, we formulate a novel graph reordering task and develop

an efficient heuristic algorithm to optimize the performance of our proposed HERO approach, by

minimizing the total size of the SIB-tree for all vertices in the graph.

In summary, we make the following contributions in this paper.

(1) A novel set intersection framework: We propose a novel hierarchical set partitioning and
join (HERO) framework in Section 3 that decomposes the set intersection task into small-sized

subtasks and filters out unnecessary comparisons.

(2) A well-designed index for the set intersection: We build an effective set intersection bitmap
tree (SIB-tree) index for set intersection in the graph in Section 4, which can support efficient

accomplishment of (sub)set intersection (sub)tasks via boolean AND operations over bitmaps.

(3) Graph ordering optimization: We formulate a novel graph reordering problem and propose

a heuristic algorithm to optimize the performance of the proposed HERO approach in Section 5.

(4) Remarkable empirical studies: We have conducted extensive experiments in Section 6 to

evaluate the proposed HERO approach. The results show that the speedup of our approach over

the classic merge intersection achieves up to 188x and 176x for triangle counting and maximal

clique enumeration, respectively.

2 PROBLEM DEFINITION
In this section, we formally define several concepts used for the set intersection problem.

Set Over the Graph. A graph is denoted as𝐺 = (𝑉 , 𝐸), where𝑉 and 𝐸 represent the sets of vertices

and edges, respectively. We define a (vertex) set in the graph 𝐺 below.

Definition 2.1 (Set in the Graph). Given a graph𝐺 = (𝑉 , 𝐸), a set 𝐴 in the graph refers to a subset

of 𝑉 , i.e., 𝐴 ⊆ 𝑉 .

One example of the set 𝐴 in graph 𝐺 can be a set of neighbors of a vertex 𝑢 ∈ 𝑉 . In this paper,

we assume that each vertex 𝑢 is assigned with a unique integer ID, and all vertices in a set 𝐴 in

graph 𝐺 are sorted (e.g., in ascending order).

Set Intersection Problem. Next, we define the set intersection over the graph as follows.

Definition 2.2 (Set Intersection in the Graph). Given two sets 𝐴 and 𝐵 in the graph 𝐺 , the set

intersection task returns a set, 𝐴 ∩ 𝐵, of common vertices between two sets 𝐴 and 𝐵, i.e., 𝐴 ∩ 𝐵 =

{𝑢 ∈ 𝑉 | 𝑢 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵}.
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As discussed above, two classical methods, merge intersection and galloping search, can be used

to handle the set intersection problem in graphs. However, they often fail to fully leverage the

intrinsic relationships among vertices, which can be improved. For instance, the merge intersection

often involves unnecessary comparisons, leading to inefficiency. Furthermore, due to the limitation

of comparing only one pair of elements per machine instruction, they are unable to fully exploit

parallel advantages offered by bit-level computations. To address these limitations, we develop

a novel HERO framework, which effectively filters out unnecessary comparisons and seamlessly

integrates efficient boolean AND operations.

3 THE HIERARCHICAL SET PARTITIONING AND JOIN FRAMEWORK
In Section 3.1, we introduce a two-level intersection method that decomposes set intersection into

two subtasks of intersection to be performed in two stages. We then expand the two-level method

to a multi-level intersection framework by recursively abstracting set intersection to a higher-level

task in Section 3.2.

3.1 Set Partitioning and Join
Set Partitioning: Let 𝑆 be a universal set that contains all possible elements in the domain of

set elements (e.g., all the vertex IDs in the graph). Given a positive integer 𝑛, our two-level set

partitioning and join approach partitions the universal set 𝑆 into 𝑛 disjoint subsets 𝑆1, 𝑆2, . . . , and

𝑆𝑛 . We also call such subsets, 𝑆𝑖 , space partitions of the set 𝑆 , where 𝑖 is the partition ID of the subset

𝑆𝑖 .

Definition 3.1 (Subset Projection). Given a set 𝐴 ⊆ 𝑆 and a subset 𝑆𝑖 of 𝑆 , the subset projection, 𝐴𝑖 ,

of 𝐴 over 𝑆𝑖 contains common vertices between 𝐴 and 𝑆𝑖 , i.e., 𝐴𝑖 = 𝐴 ∩ 𝑆𝑖 .

Problem Reduction Based on the Set Partitioning: Given any two sets 𝐴 ⊆ 𝑆 and 𝐵 ⊆ 𝑆 to be

intersected, it holds that:

𝐴 ∩ 𝐵 = (𝐴 ∩ 𝐵 ∩ 𝑆) =
𝑛⋃
𝑖=1

(
𝐴 ∩ 𝐵 ∩ 𝑆𝑖

)
=

𝑛⋃
𝑖=1

(𝐴 ∩ 𝑆𝑖 ) ∩
𝑛⋃
𝑖=1

(𝐵 ∩ 𝑆𝑖 )

=

𝑛⋃
𝑖=1

(𝐴𝑖 ∩ 𝐵𝑖 ), (1)

where 𝐴𝑖 and 𝐵𝑖 (for 1 ≤ 𝑖 ≤ 𝑛) are the subsets projected from 𝐴 and 𝐵 onto the partition 𝑆𝑖 ,

respectively, that is, 𝐴𝑖 = 𝐴 ∩ 𝑆𝑖 and 𝐵𝑖 = 𝐵 ∩ 𝑆𝑖 .
Note that, when 𝐴𝑖 = ∅ or 𝐵𝑖 = ∅ holds, we have 𝐴𝑖 ∩ 𝐵𝑖 = ∅. Therefore, in this case, we can

actually avoid the set intersection cost of the 𝑖-th subtask 𝐴𝑖 ∩ 𝐵𝑖 , if either 𝐴𝑖 or 𝐵𝑖 is empty.

Partition ID Join: Based on the observation above, we can record whether or not subsets 𝐴𝑖 (or

𝐵𝑖 ) are empty, by keeping their partition IDs 𝑖 in a so-called support set defined below (i.e., partition

ID set) Sup𝐴 (or Sup𝐵) if 𝐴𝑖 (or 𝐵𝑖 ) are not empty. Then, we can join the two support sets Sup𝐴 and

Sup𝐵 to obtain a list of subset pairs (or partition IDs) that need to perform the actual set intersection

(i.e., subtasks).

Below we give the definition of the support set.

Definition 3.2 (Support Set). Given two sets𝐴 and 𝐵 to be intersected, their support sets, Sup𝐴 and

Sup𝐵 , over the space partition 𝑆1, 𝑆2, . . . , 𝑆𝑛 of the universal set 𝑆 are defined as Sup𝐴 = {𝑖 | 𝐴𝑖 ≠
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(a) Merge Intersection (b) Partitioning and Join Framework

Fig. 3. Comparing costs of merge intersection with two-level set partitioning and join intersection

∅, for 1 ≤ 𝑖 ≤ 𝑛} and Sup𝐵 = {𝑖 | 𝐵𝑖 ≠ ∅, for 1 ≤ 𝑖 ≤ 𝑛}, where 𝐴𝑖 and 𝐵𝑖 are subset projections for

𝐴 and 𝐵 over 𝑆𝑖 , respectively.

Further Problem Reduction Based on the Partition ID Join: By using the concept of the support set
(as given in Definition 3.2), we can rewrite the set intersection task in Equation (1) as:

𝐴 ∩ 𝐵 =
⋃

𝑖∈ (Sup𝐴∩Sup𝐵 )
(𝐴𝑖 ∩ 𝐵𝑖 ). (2)

Two-Level Intersection (Set Partitioning and Join): From Equation (2), we can: 1) first conduct

the partition ID join, Sup𝐴 ∩ Sup𝐵 , over the two support sets (Level 2, partition ID join), and 2)

then perform the set intersection, 𝐴𝑖 ∩ 𝐵𝑖 , only on those non-empty subsets 𝐴𝑖 and 𝐵𝑖 (Level 1,

subset intersection), where partition IDs 𝑖 are in the join result Sup𝐴 ∩ Sup𝐵 . The above two steps

exactly correspond to two levels of set intersection join, respectively.

In summary, our principle is that the original task of the set intersection is decomposed into smaller
subtasks of set intersections on two levels. We will later discuss in Section 3.2 how to generalize this

principle to that of multiple levels in a hierarchical structure.

Example 3.3. Assume that we have a universal set 𝑆 = {𝑣 ∈ Z | 1 ≤ 𝑣 ≤ 27}, which can be

partitioned into 9 disjoint subsets, 𝑆1 ∼ 𝑆9, where 𝑆𝑖 = {𝑣 ∈ 𝑆 | 3(𝑖 − 1) < 𝑣 ≤ 3𝑖} for 1 ≤ 𝑖 ≤ 9.

Given two sets 𝐴 = {1, 4, 5, 7, 9, 22} and 𝐵 = {1, 2, 10, 17, 18,24}, as shown in Figure 2(a), we first

compute subset projections, 𝐴𝑖 , of 𝐴 over 9 partitions 𝑆𝑖 . That is, we have 𝐴1 = {1}, 𝐴2 = {4, 5},
𝐴3 = {7, 9}, and 𝐴8 = {22} (note: other subsets 𝐴𝑖 = ∅ for 𝑖 ≠ 1, 2, 3, 8). Similarly, for set 𝐵, we have

non-empty subset projections 𝐵1 = {1, 2}, 𝐵4 = {10}, 𝐵6 = {17, 18}, and 𝐵8 = {24}.
Hence, the support set of 𝐴 is Sup𝐴 = {1, 2, 3, 8}, whereas that of 𝐵 is Sup𝐵 = {1, 4, 6, 8}.
In order to do the set intersection task 𝐴 ∩ 𝐵, as illustrated in Figure 2(b), we first compute the

support set intersection Sup𝐴 ∩ Sup𝐵 = {1, 8} on the support set level (Level 2), and then perform

the intersection of subsets for those partition IDs appearing in Sup𝐴 ∩ Sup𝐵 (i.e., 1-st and 8-th

partitions), that is, 𝐴 ∩ 𝐵 =
⋃

𝑖∈{1,8} (𝐴𝑖 ∩ 𝐵𝑖 ) =
(
𝐴1 ∩ 𝐵1

)
∪
(
𝐴8 ∩ 𝐵8

)
= {1} ∪ ∅ = {1} (Level 1).■

Superiority of Two-Level Set Partitioning and Join:We illustrate the superiority of the two-level

set intersection join mentioned above, by using Example 3.3. Figure 3 shows the computation costs

of merge intersection [12] and our two-level set intersection frameworks, where each line segment

represents one comparison between two elements in the sets. We can see that our framework
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(a) Decomposition Stage (offline) (b) Intersection Stage (online)

Fig. 4. An example of the Hierarchical Set Partitioning and Join (HERO) framework

only takes 8 (=6+2) comparisons, which is lower than 10 comparisons of the merge intersection

algorithm. This is because the set intersection over some partitions (e.g., Partitions 2, 3, 4, and 6)

can be avoided, and thus their computation costs can be saved.

From Figure 3, we can see that the major cost of our two-level set partitioning and join is now

on Level 2 (i.e., 6 out of 8). It inspires us to further reduce the cost on this support set level, by

introducing hierarchical set partitioning and join in the next section.

3.2 The Hierarchical Set Partitioning and Join (HERO) Framework
In this section, we generalize our idea of set intersection partitioning and join (as mentioned in

Section 3.1) from two levels to multiple levels in a hierarchical structure. Algorithm 1 shows our

hierarchical set partitioning and join (HERO) framework for the set intersection operator. It has

two stages, i.e., offline set decomposition (lines 1-8) and online set intersection stages (lines 9-13).

Offline Set Decomposition:Given a set intersection task𝐴∩𝐵, we consider anℎ-level intersection
framework. Specifically, similar to the two-level case discussed in Section 3.1, on Level 1, we

decompose the universal set 𝑆 into 𝑛1 disjoint partitions 𝑆
1

1
, 𝑆1

2
, . . . , and 𝑆1

𝑛1

, and obtain projected

subsets {𝐴1

𝑖 }
𝑛1

𝑖=1
and {𝐵1

𝑖 }
𝑛1

𝑖=1
from sets 𝐴 and 𝐵, respectively. For ease of presentation, we use the

superscript to denote the level number.

Then, on Level 2, we maintain two support sets, Sup
1

𝐴
and Sup

1

𝐵
, containing partition IDs of non-

empty projected subsets𝐴1

𝑖 and 𝐵
1

𝑖 . The universal set on this level becomes 𝑆2 = { 𝑗 ∈ Z|1 ≤ 𝑗 ≤ 𝑛1}.
In order to enable the intersection between support sets, Sup

1

𝐴
∩ Sup

1

𝐵
, similar to Level 1, we

recursively divide the new universal set into at most 𝑛2 partitions 𝑆
2

1
, 𝑆2

2
, ..., and 𝑆2

𝑛2

, and project

Sup
1

𝐴
and Sup

1

𝐵
onto these partitions, leading to𝐴2

𝑖 and 𝐵
2

𝑖 , where𝐴
2

𝑖 = Sup
1

𝐴
∩𝑆2

𝑖 and 𝐵
2

𝑖 = Sup
1

𝐵
∩𝑆2

𝑖

(for 1 ≤ 𝑖 ≤ 𝑛2).

In general, on Level 𝑙 (2 < 𝑙 ≤ ℎ), we maintain two support sets Sup
𝑙−1

𝐴
and Sup

𝑙−1

𝐵
, containing

partition IDs of non-empty projected subsets 𝐴𝑙−1

𝑖 and 𝐵𝑙−1

𝑖 . The universal set in this level should

be 𝑆𝑙 = { 𝑗 ∈ Z|1 ≤ 𝑗 ≤ 𝑛𝑙−1} and we divide it into 𝑛𝑙 partitions 𝑆
𝑙
1
, 𝑆𝑙

2
, . . . , and 𝑆𝑙𝑛𝑙 . The support

sets Sup
𝑙−1

𝐴
and Sup

𝑙−1

𝐵
will be projected onto these partitions, leading to the projected subsets 𝐴𝑙

𝑖

and 𝐵𝑙𝑖 , where 𝐴
𝑙
𝑖 = Sup

𝑙−1

𝐴
∩ 𝑆𝑙𝑖 and 𝐵𝑙𝑖 = Sup

𝑙−1

𝐵
∩ 𝑆𝑙𝑖 (for 1 ≤ 𝑖 ≤ 𝑛𝑙 ).

Online Set Intersection: In contrast to the offline set decomposition, the online set intersection

operates following a top-down paradigm. Initially, 𝑅ℎ is calculated directly by intersecting the two

support sets, Sup
ℎ
𝐴
∩ Sup

ℎ
𝐵
, (line 8). The filtering result 𝑅𝑙 determines which subsets in the 𝑙-th

level subtasks need to be joined, where 𝑙 ranges from ℎ to 1. That is, for any element 𝑖 in 𝑅𝑙 , we
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Algorithm 1: The Hierarchical Set Partitioning and Join (HERO) Framework

Input: a universal set 𝑆 , set 𝐴, set 𝐵, and level ℎ

Output: the intersection result 𝑅 = 𝐴 ∩ 𝐵
// offline set decomposition

1 Initialize 𝑆1
as 𝑆 , Sup

0

𝐴
as 𝐴, Sup

0

𝐵
as 𝐵

2 for 𝑙 = 1 to h do
3 𝑆𝑙

1
, . . . , 𝑆𝑙𝑛𝑙 ← partition the universal set 𝑆𝑙 into 𝑛𝑙 disjoint subsets

4 𝐴𝑙
1
, . . . , 𝐴𝑙

𝑛𝑙
←Project (Sup

𝑙−1

𝐴
, {𝑆𝑙𝑖 }

𝑛𝑙
𝑖=1
)

5 𝐵𝑙
1
, . . . , 𝐵𝑙𝑛𝑙 ←Project (Sup

𝑙−1

𝐵
, {𝑆𝑙𝑖 }

𝑛𝑙
𝑖=1
)

6 𝑆𝑙+1 ← {𝑖 ∈ Z|1 ≤ 𝑖 ≤ 𝑛𝑙 }
7 Sup

𝑙
𝐴
← {𝑖 ∈ 𝑆𝑙+1 |𝐴𝑙

𝑖 ≠ ∅}, Sup
𝑙
𝐵
← {𝑖 ∈ 𝑆𝑙+1 |𝐵𝑙𝑖 ≠ ∅}

// online set intersection

8 𝑅ℎ ← Sup
ℎ
𝐴
∩ Sup

ℎ
𝐵

9 for 𝑙 = ℎ to 1 do
10 𝑅𝑙−1 ←Join (𝑅𝑙 , {𝐴𝑙

𝑖 }
𝑛𝑙
𝑖=1
}, {𝐵𝑙𝑖 }

𝑛𝑙
𝑖=1
)

11 return 𝑅0

// Details of the invoked procedure

12 Procedure Project(𝑋, {𝑍𝑖 }𝑛𝑖=1
)

13 for 𝑖 = 1 to 𝑛 do
14 𝑋𝑖 ← 𝑍𝑖 ∩ 𝑋
15 return {𝑋𝑖 }𝑛𝑖=1

16 Procedure Join (𝑅, {𝑋𝑖 }𝑛𝑖=1
, {𝑌𝑖 }𝑛𝑖=1

)
17 𝑅′ ← ∅
18 for 𝑖 ∈ 𝑅 do
19 𝑅′ ← 𝑅′ ∪ Intersect(𝑋𝑖 , 𝑌𝑖 )
20 return 𝑅′.

need to solve the subtask Intersection(𝐴𝑙
𝑖 , 𝐵

𝑙
𝑖 ) and add the results into 𝑅𝑙−1

, while other subtasks

can be safely skipped (lines 17-19). The above process also holds for 𝑙 = 1, where the 𝑅𝑙−1
(i.e., 𝑅0

)

denotes result of 𝐴 ∩ 𝐵. The involved procedure Intersection(𝑋,𝑌 ) is used to complete the subtask

of computing the intersection between two sets 𝑋 and 𝑌 . Notice that any particular algorithm for

set intersection, such as the merge intersection, can be applied.

Example 3.4. Following the settings of 𝑆 , 𝐴, 𝐵, and the space partition of 𝑆 in Example 3.3, we

can easily have the following results.

• Sup
1

𝐴
= {1, 2, 3, 8} and Sup

1

𝐵
= {1, 4, 6, 8};

• 𝐴1

1
= {1}, 𝐴1

2
= {4, 5}, 𝐴1

3
= {7, 9}, 𝐴1

8
= {22}, and 𝐴1

𝑙
= ∅ for any 𝑙 ∉ Sup

1

𝐴
.

• 𝐵1

1
= {1, 2}, 𝐵1

4
= {10}, 𝐵1

6
= {17, 18}, 𝐵1

8
= {24}, and 𝐵1

𝑙
= ∅ for any 𝑙 ∉ Sup

1

𝐵
.

To deal with the support set intersection of Sup
1

𝐴
and Sup

1

𝐵
, we define the 2nd level space partition

as 𝑆2

1
= {1, 2, 3}, 𝑆2

2
= {4, 5, 6} and 𝑆2

3
= {7, 8, 9}, where the new universal set is {𝑖 ∈ Z|1 ≤ 𝑖 ≤ 9}.

Then, as illustrated in Figure 4(a), we project the support set Sup
1

𝐴
and Sup

1

𝐵
into the partitions,

and the non-empty projections should be 𝐴2

1
= {1, 2, 3}, 𝐴2

3
= {8}, 𝐵2

1
={1}, 𝐵2

2
= {4, 6} and 𝐵2

3
= {8}.

Correspondingly, the support set should be Sup
2

𝐴
= {1, 3} and Sup

2

𝐵
= {1, 2, 3}. With the above
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Fig. 5. An example of the SIB-tree index and intersection method. (a) The SIB-tree structure of set 𝐴; (b) The
SIB-tree structure of set 𝐵; (c) The intersection procedure using the SIB-tree structure.

pre-computation, we can execute the multi-layer intersection as follows, which is also illustrated

in Figure 4(b).

(1) 𝑅2 = Sup
2

𝐴
∩ Sup

2

𝐵
= {1, 3};

(2) 𝑅1 =
⋃

𝑖∈𝑅2

(
𝐴2

𝑖 ∩ 𝐵2

𝑖

)
=
(
𝐴2

1
∩ 𝐵2

1

)
∪
(
𝐴2

3
∩ 𝐵2

3

)
= {1, 8};

(3) 𝐴 ∩ 𝐵 =
⋃

𝑖∈𝑅1

(
𝐴1

𝑖 ∩ 𝐵1

𝑖

)
=
(
𝐴1

1
∩ 𝐵1

1

)
∪
(
𝐴1

8
∩ 𝐵1

8

)
= {1}. ■

Time Complexity. The complexity of online set intersection in our HERO framework is highly

related to a particular algorithm used in the subtask Intersection(·, ·). Assume that the complexity

of procedure Intersection(𝐴, 𝐵) is O(𝑓 ( |𝐴|, |𝐵 |)), where |𝐴| and |𝐵 | are the size of sets 𝐴 and 𝐵,

respectively. The complexity of hierarchical online set intersection comprises of the cost of all the

subtasks involved, i.e., O(∑ℎ
𝑙=1

∑
𝑖∈𝑅ℎ 𝑓 ( |𝐴𝑙

𝑖 |, |𝐵𝑙𝑖 |) + 𝑓 ( |Sup
ℎ
𝐴
|, |Sup

ℎ
𝐵
|)).

4 BITMAP-BASED SET INTERSECTION
4.1 Set Intersection Using Boolean AND Over Bitmaps
In the HERO framework (as illustrated in Algorithm 1), one of the most fundamental and important

operators is the subset intersections in subtasks (i.e., join two subsets to obtain their common

elements). While we can plug in any existing set intersection method, in this paper, we use bitmap
synopses to encode subsets and apply bit AND operator to enable the subset intersection.

Bitmap: Let 𝑑 be the size of the set element domain. We define the bitmap, 𝐵𝑀 (𝑍 ), for a subset 𝑍
as follows.

Definition 4.1 (Bitmap for a Subset, 𝐵𝑀 (𝑍 )). Given a set 𝑍 , a bitmap, 𝐵𝑀 (𝑍 ), of set 𝑍 is a bit

vector containing𝑑 bits. If there exists an element 𝑧 ∈ 𝑍 such that 𝑓 (𝑧) = 𝑝𝑜𝑠 , then 𝐵𝑀 (𝑍 ) [𝑝𝑜𝑠] = 1

holds; otherwise, we have 𝐵𝑀 (𝑍 ) [𝑝𝑜𝑠] = 0, where 𝑓 (𝑧) is a hash function that maps an element 𝑧

to an integer 𝑝𝑜𝑠 within the range [0, 𝑑).

Boolean AND Over Bitmaps: Given two subsets 𝑋𝑖 and 𝑌𝑖 , we can obtain their intersection

𝑋𝑖 ∩ 𝑌𝑖 (i.e., subtask) by using Boolean AND over their bitmaps, that is, 𝐵𝑀 (𝑋𝑖 ) ∧ 𝐵𝑀 (𝑌𝑖 ). Then,
we can obtain those non-zero bit positions, 𝑝𝑜𝑠 , in the bitmap AND result, and their corresponding

elements are common elements between subsets 𝑋𝑖 and 𝑌𝑖 .

Discussions on the Advantages of Using Bitmaps for HERO:
Boolean AND operators are strictly constrained by the size of an operand register, also known

as the word length. Thus, for the universal set 𝑆 of large size (i.e., large element domain size), it is

not efficient to directly perform Boolean AND operators over bitmaps of large size 𝑑 . Assuming

the word length is 64 and the graph contains more than a million vertices, it implies that more

than 10,000 words are needed to encode a set using bitmaps, which leads to costly boolean AND

operations to conduct a set intersection task. There are several methods that adopt the bitmap, such
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as the compressed bitmap method Roaring [6] and the SIMD-based method QFilter [14]. However,

these methods have to conduct merge operations that perform vertex-wise comparisons during the

intersection procedure. In other words, the set intersection partially benefits from the advantage of

bitmaps (i.e., supporting bit-wise parallel comparisons).

In contrast, our HERO framework recursively decomposes the set intersection task into small-

sized subtasks, until each subtask can be efficiently handled by a single boolean AND instruction.

Hence, our HERO is scalable for the intersection over sets of large domain sizes.

4.2 SIB-Tree Structure
In this subsection, we discuss how to design a set intersection bitmap tree (SIB-tree) structure to
facilitate our proposed HERO framework for the set intersection.

Ordered Partitioning. Before introducing the details of the SIB-tree, we would like to unify the

space partitioning in a natural way at first. To sufficiently leverage the advantage of the boolean

AND operator, for subsets in varying-level space partitions, it is necessary to maintain a shared size

of𝑤 which refers to the machine’s word length. Given a universal set 𝑆𝑙 , it can be simply partitioned

into 𝑛𝑙 = ⌈𝑛𝑙−1

𝑤
⌉ subsets 𝑆𝑙

1
, . . . , 𝑆𝑙𝑛𝑙 , where 𝑆

𝑙
𝑖 = { 𝑗 ∈ 𝑆𝑙 |𝑤 · (𝑖 − 1) < 𝑗 ≤ 𝑤 · 𝑖} and 𝑛𝑙−1 = |𝑆𝑙 |. We

call this partitioning strategy an ordered partitioning. Clearly, the ordered partitioning is sensitive

to the element orderings, and we will discuss the impact of various orderings in Section 5.

Let us recall the offline set decomposition in the HERO framework. Subset projections are

performed from the 𝑙-th level to ( 𝑗 + 1)-th level recursively. It naturally produces a tree structure,

where each node represents a non-empty subset projection as shown in Figure 5. Following the

tree, we can build an SIB-tree for each set to facilitate the boolean AND operation.

Definition 4.2 (Set Intersection Bitmap Tree, SIB-tree). Given a set 𝐴, its SIB-tree is denoted by

𝑇 (𝐴), where each node 𝑇 𝑙
𝑖 (𝐴) represents a non-empty subset projection 𝐴𝑙

𝑖 in a bitmap format and

contains two attributes: base value and bitmap value.
• The base value, denoted by 𝑇 𝑙

𝑖 (𝐴).base, is set to 𝑖 , which implies that the elements of 𝐴𝑙
𝑖 fall

in the range (𝑤 · (𝑖 − 1),𝑤 · 𝑖].
• The bitmap value, denoted by 𝑇 𝑙

𝑖 (𝐴).𝑏𝑖𝑡 , is a𝑤-bit bitmap whose 𝑘-th bit indicates whether

or not the element𝑤 · (𝑖 − 1) + 𝑘 is involved in 𝐴𝑙
𝑖 .

• The root node of the SIB-tree 𝑇 (𝐴) is 𝑇ℎ
1
(𝐴), where ℎ = ⌈log𝑤 |𝑆 |⌉. The ℎ-th level universal

set 𝑆ℎ has no more than𝑤 elements, such that the corresponding ℎ-th level subtask can be

solved by a single boolean AND instruction.

• The nodes {𝑇 1

𝑖 (𝐴)}
𝑛1

𝑖=1
constitute the leaf nodes.

• For each node 𝑇 𝑙
𝑖 (𝐴), its child nodes are {𝑇 𝑙−1

𝑢 (𝐴)}𝑢∈𝐴𝑙
𝑖
.

It is clear that the 𝑙-th layer nodes of the SIB-tree 𝑇 (𝐴) represent the 𝑙-th level non-empty

subset projections {𝐴𝑙
𝑖 }𝑖∈Sup

𝑙
𝐴
. Furthermore, the base value of a node tells which subset projection

it represents in the corresponding level. Therefore, according to the HERO framework, the boolean

AND operators only occur between nodes from two SIB-trees that locate on the same level and

share the same base value.

Example 4.3. We follow the setting of 𝑆 , 𝐴, 𝐵, and the space partition of 𝑆 in Example 3.4. We

first consider the bottom layer of 𝑇 (𝐴). According to the Example 3.4, the non-empty 1st-level

subset projections of 𝐴 are 𝐴1

1
= {1}, 𝐴1

2
= {4, 5}, 𝐴1

3
= {7, 9}, 𝐴1

8
= {22}. Hence, there are 4 nodes

𝑇 1

1
(𝐴),𝑇 1

2
(𝐴),𝑇 1

3
(𝐴), and𝑇 1

8
(𝐴) in the bottom layer of𝑇 (𝐴). The corresponding pairs of base value

and bitmap value are (1, 001), (2, 011), (3, 101), and (8, 001), respectively. We then consider the

2nd layer. The non-empty 2nd-level subset projections of 𝐴 are 𝐴2

1
= {1, 2, 3}, and 𝐴2

3
= {8}. Thus,

the 2nd layer nodes are 𝑇 2

1
(𝐴) and 𝑇 2

3
(𝐴), together with the pairs of base value and bitmap value

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.



HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:11

(1, 111), and (3, 010), respectively. The 3rd level has only one subset projection 𝐴3

1
= {1, 3}, which

refers to the root node 𝑇 3

1
(𝐴) with the base and bitmap value (1, 101). We deliver an illustration of

𝑇 (𝐴) in Figure 5(a). The construction of 𝑇 (𝐵) is similar, so we skip the description and just show

its illustration in Figure 5(b). ■

SIB-Tree Construction: Given a set 𝐴, we construct 𝑇 (𝐴) in a bottom-up manner, progressing

layer by layer. To construct the lowest layer (leaf nodes) of 𝑇 (𝐴), it is necessary to compute subset

projections 𝐴1

𝑖 = 𝐴 ∩ 𝑆1

𝑖 , where 𝑖 ranges from 1 to 𝑛1. For each non-empty subset projection 𝐴1

𝑖 , a

leaf node 𝑇 1

𝑖 (𝐴) should be generated based on the SIB-tree definition. To establish the 𝑙-th layer of

𝑇 (𝐴), where 2 ≤ 𝑗 ≤ 𝑑 , we need to follow the subsequent steps.

(1) Collect the base value of the nodes in the ( 𝑗 − 1)-th layer, where each node corresponds to a

non-empty subset projection. Thus, all the base values in this layer constitute the support set

Sup
𝑙−1

𝐴
.

(2) Project Sup
𝑙−1

𝐴
into the 𝑙-th level space partitions {𝑆𝑙𝑖 }

𝑛𝑙
𝑖=1

, leading to the subset projections

{𝐴𝑙
𝑖 }

𝑛𝑙
𝑖=1

.

(3) For each non-empty subset projection 𝐴𝑙
𝑖 , a new node 𝑇 𝑙

𝑖 (𝐴) is created. For each 𝑒 ∈ 𝐴𝑙
𝑖 , we set

𝑇 𝑙
𝑖 (𝐴) as the parent node of 𝑇 𝑙−1

𝑒 (𝐴).
OfflineComplexity: For a wide range of graph analytics algorithms, the set intersection operations

are conducted on the neighborhoods of several vertices. Therefore, we can construct an SIB-tree

for the neighbors of each vertex during the offline stage. Since the total number of leaf nodes is

no more than |𝐸 |, and the height of the SIB-tree is bounded by O(log |𝐸 |), the space complexity of

such an offline computation is bounded by O(|𝐸 | log |𝐸 |). Furthermore, each SIB-tree node will be

traversed at most once during the SIB-tree construction. Hence, the time complexity of the offline

computation is also bounded by O(|𝐸 | log |𝐸 |).

4.3 SIB-Tree Based Intersection
Algorithm 2 shows how to calculate the set intersection using the SIB-tree structure in a depth-first

manner. The algorithm employs a recursive approach, utilizing a helper function that takes a pair

of vertices, denoted as (𝑣𝑎, 𝑣𝑏), from 𝑇 (𝐴) and 𝑇 (𝐵) respectively, as input. These vertices share the
same base value and depth (line 4).

Helper Function: The helper function first performs a boolean AND operation on the bitmap

values of 𝑣𝑎 and 𝑣𝑏 (lines 5-6). Then, an iterator is created based on the shared base value of 𝑣𝑎 and

𝑣𝑏 , along with the result of the boolean AND operation (lines 15-20). The subsequent steps depend

on whether the input vertices 𝑣𝑎 and 𝑣𝑏 are leaf vertices. If they are, each element in the iterator is

directly added to the intersection result (lines 8-9). However, if they are not leaf vertices, the helper

function iterates through each element in the iterator. If the iterator is empty, it backtracks to the

last uncompleted subtask. For each element, it identifies the child vertices of 𝑣𝑎 and 𝑣𝑏 (referred to

as child𝑎 and child𝑏 , respectively) whose base value matches the given element from the iterator

(lines 12-13). Finally, the helper function recursively executes itself with child𝑎 and child𝑏 as input

parameters (line 14).

Iterator Function: A base value and a bitmap value actually encode a set given a word length

𝑤 . This iterator function is used to enumerate the elements contained in the set it encodes. The

process is depicted in Algorithm 2 (lines 15-20). More specifically, in each iteration, the minimum

element contained in the encoded set is computed by line 18, and then the bitmap value is updated

by setting the first “1” bit to “0” (line 19).

Auxiliary Functions: Algorithm 2 includes two functions that require further clarification. The

first function is FindChildNode(·). It takes a vertex 𝑣 from the SIB-tree𝑇 and a query 𝑝𝑜𝑠 as inputs.
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Algorithm 2: SIB-Tree Based Intersection

Input: 𝑇 (𝐴),𝑇 (𝐵), word length𝑤 , and tree height ℎ.

Output: the result of intersection 𝑅 = 𝐴 ∩ 𝐵.
1 res← ∅
2 Helper (𝑇ℎ

1
(𝐴),𝑇ℎ

1
(𝐵), res)

3 return res

4 Function Helper(𝑣𝑎, 𝑣𝑏, res):
5 𝑏𝑖𝑡𝑎 ← 𝑣𝑎 .𝑏𝑖𝑡 , 𝑏𝑖𝑡𝑏 ← 𝑣𝑏 .𝑏𝑖𝑡

6 𝑏𝑖𝑡 ← bita & bitb

7 base← 𝑣𝑎 .base

8 if 𝑣𝑎 and 𝑣𝑏 are leaf vertices then
9 res.extend(Iterator(base, 𝑏𝑖𝑡,𝑤))

10 else
11 for 𝑖 in Iterator (base, 𝑏𝑖𝑡,𝑤) do
12 child𝑎 ←FindChildNode (𝑣𝑎, 𝑖)
13 child𝑏 ←FindChildNode (𝑣𝑏, 𝑖)
14 Helper (child𝑎, child𝑏, res)

15 Function Iterator(base, 𝑏𝑖𝑡,𝑤 ):
16 res← ∅
17 while 𝑏𝑖𝑡 > 0 do
18 res.push_back

(
(base − 1) ∗𝑤 + Ffs(𝑏𝑖𝑡)

)
19 𝑏𝑖𝑡 ← 𝑏𝑖𝑡&(𝑏𝑖𝑡 − 1)
20 return res

It returns a child vertex of 𝑣 whose base value matches 𝑝𝑜𝑠 . The specific implementation details

of FindChildNode(·) are dependent on the structure of the SIB-tree. The second function is Ffs(·),
which is the acronym for “Find First Significant”. Taking a bitmap as the input, the Ffs(·) function
finds its lowest significant bit (i.e., the first “1” bit) and returns the corresponding index. With the

help of Ffs(·) function, we can construct an iterator to enumerate the elements contained in the set

encoded by a base value and bitmap value pair as discussed above. The GCC compiler provides

efficient implementations of Ffs(·), such as the __builtin_ffs(·) for 32-bit unsigned integers and the

__builtin_ffsll(·) for 64-bit unsigned integers.

Example 4.4. Based on the SIB-trees𝑇 (𝐴) and𝑇 (𝐵) constructed in Example 4.3, we illustrate how

to conduct𝐴∩𝐵 as shown in Figure 5(c). First, we input the pair of root nodes (𝑇 3

1
(𝐴),𝑇 3

1
(𝐵)) into the

helper function. The boolean AND operator is conducted on their bitmap values, i.e., 101&111 = 101.

The iterator function can help us decode the boolean AND result 101 and the base value 1 into the

set {1, 3}. Hence, we need to find child node pairs (𝑇 2

1
(𝐴),𝑇 2

1
(𝐵)) and (𝑇 2

3
(𝐴),𝑇 2

3
(𝐵)), and feed them

as input into the helper function sequentially. So far, we have accomplished a complete procedure

of a helper function. The rest of the intersection process is similar. ■

Time Complexity: As outlined in Algorithm 2, the time cost of the SIB-tree based intersection

mainly comes from the following three parts: (1) Computing intersection using boolean AND

operator (lines 5-6). (2) Constructing the iterator (line 9 and line 11), whose time cost depends on

the size of the iterator. (3) The invoking of FindChildNode(·) (lines 12-13) with the cost O(1). It
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is easy to find that each node in the SIB-tree will be traversed once at most in the intersection

procedure. Furthermore, the times of invoking the boolean AND operator and FindChildNode(·)
procedure are both bounded by the number of nodes that are traversed in the SIB-tree based

intersection calculation. Hence, the time complexity is bounded by O(|𝑇 (𝐴) | + |𝑇 (𝐵) |), where
|𝑇 (𝐴) | represents the size of 𝑇 (𝐴) (i.e., the number of nodes in 𝑇 (𝐴)). The construction of Iterator

can be divided into leaf case (line 9) and non-leaf case (line 11). For the leaf case, the union of all the

iterators equals 𝑅. Thus, the time complexity is bounded by O(|𝑅 |), where 𝑅 refers to the result of

the intersection. As for the non-leaf case, it is clear that each element in the iterator corresponds to

two FindChildNode(·) procedures. Therefore, the time cost is also bounded by O(|𝑇 (𝐴) | + |𝑇 (𝐵) |).
In summary, the time complexity of SIB-tree based intersection is O(|𝑇 (𝐴) | + |𝑇 (𝐵) | + |𝑅 |).
Discussion on On-the-fly Intersection: If the sets for intersection are given on the fly, we have to

construct the SIB-trees online. However, as long as the SIB-tree index is constructed, the subsequent

intersection calculation can be accelerated. Especially, for the sets that are frequently involved in

the intersection tasks, it will be beneficial if the corresponding SIB-trees are constructed.

Trade-off Between Online and Offline Computations. As mentioned in Section 4.2, we would

like to construct SIB-trees for the neighbors of all vertices offline if it is allowed. However, if the

offline computation resource (either time or space) is limited, there is an alternative to construct

SIB-trees only for a subset of vertices. Intuitively, vertices that are frequently involved in the graph

set intersection tasks are recommended to be selected.

5 GRAPH REORDERING
Section 4.2 recursively partitions/projects (support) sets onto subsets (partition ID subsets) by using

the ordered partitioning as the space partition. Different space partitioning/projections may lead

to different subsets, which in turn result in distinct SIB-tree performance. We find that different

orderings of graph vertices may lead to different space partitions. Therefore, our basic idea of the

graph reordering is to assign each vertex in the data graph𝐺 a new vertex ID, which equivalently

reorders those vertices and obtains a better partitioning/projection strategy for the SIB-tree.

Example 5.1. We follow the settings of 𝑆 , 𝐴, and 𝐵 in Example 3.4. The reorder rule is illustrated

at the top of Figure 6. Each vertex in 𝑆 will be assigned a new ID, and the reordered set will be sorted

according to the new IDs. Sets 𝐴 and 𝐵 are {1, 2, 3, 4, 5, 6} and {1, 7, 8, 9, 10, 11} after reordering,
respectively. We also present the SIB-trees of reordered sets 𝐴 and 𝐵 in the Figure 6. The reordered

SIB-trees of both sets 𝐴 and 𝐵 contain fewer tree nodes than the original SIB-trees in Figure 5 (4 v.s.

7, and 6 v.s. 8). Furthermore, the intersection task 𝐴 ∩ 𝐵 needs to handle only 3 subtasks based on

new SIB-trees, which gains a significant improvement over the original order that has 5 subtasks.■

In fact, arbitrary partitioning can be exploited to build the SIB-tree only if it can produce equal-

sized partitions 𝑆1, 𝑆2, . . . , and 𝑆𝑛 . Any such a partitioning can obtained by performing the graph

reordering and ordered partitioning. More specifically, we derive the vertex ID assignment rule

𝜙 : Z→ Z, where for each vertex 𝑢’s ID 𝑢.𝐼𝐷 ∈ 𝑆𝑖 it holds that 𝜙 (𝑢) = 𝑤 · (𝑖 − 1) + |{𝑣 ∈ 𝑆𝑖 |𝑣 .𝐼𝐷 ≤
𝑢.𝐼𝐷}|. We can find that {𝜙 (𝑣) |𝑣 ∈ 𝑆𝑖 } = { 𝑗 ∈ Z|𝑤 · (𝑖 − 1) < 𝑗 ≤ 𝑤 · 𝑖}. In other words, if we

conduct the ordered partitioning according to new vertex IDs, the vertices contained in any 𝑆𝑖 will

still be contained in the same partition. Hence, the new partitioning results are equivalent to the

original partitions.

In this section, we aim to develop a novel graph reordering method to optimize the performance

of the proposed HERO approach. As discussed in Section 4.3, the time complexity of Algorithm 2

is bounded by the size of the SIB-tree as each vertex in the SIB-tree will be traversed at most once.

Thus, the objective for the graph reordering task is to minimize the total size of the SIB-tree
for all vertices 𝑣 in the graph 𝐺 = (𝑉 , 𝐸). This target serves as a starting point in our approach
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Fig. 6. A motivating example of the reordering.

and can be mathematically formulated as follows:

minL(𝐺) =
∑︁
𝑣∈𝑉
|𝑇 (N (𝑣)) |, (3)

where |𝑇 (N (𝑣)) | is the size of the SIB-tree 𝑇 (N (𝑣)). For simplicity, we would like to abbreviate

𝑇 (N (𝑣)) as 𝑇 (𝑣). Please note that the SIB-tree of the set which contains a single element 𝑣 is

denoted as 𝑇 ({𝑣}). Thus, the abbreviation will not lead to ambiguity.

Although we can consider different graph orders that lead to distinct SIB-trees and different

intersection performance, it is computationally expensive to determine the optimal graph order

(e.g., if we construct an SIB-tree for each graph order). To address this problem, we propose a

hierarchical balanced graph partitioning (HBGP) strategy, which helps us compute the size of the

SIB-tree index without constructing it. Next, we first introduce the definition of HBGP in Section 5.1.

Then, we will describe how to compute the size of the SIB-tree index through HBGP, followed by

the hardness analysis in Section 5.2. Finally, we develop an efficient heuristic algorithm to solve

the HBGP problem in Section 5.3.

5.1 Hierarchical Balanced Graph Partitioning
Balanced Graph Partitioning: Given a graph 𝐺 = (𝑉 , 𝐸) and an integer 𝑛, the classical balanced
graph partitioning (BGP) problem asks to split the vertices𝑉 into 𝑛 disjoint and equal-sized subsets

𝑃1, . . . , 𝑃𝑛 such that the edge cut is minimized, where the edge cut is the number of the edges whose

two vertices belong to different subsets [2]. The BGP is known as an NP-complete problem [2].

In BGP, the optimization target is to minimize the number of crossing edges, which can be

reformulated as:

1

2

𝑛∑︁
𝑖=1

∑︁
𝑢∈𝑃𝑖

��{𝑣 ∈ N (𝑢) |𝑣 ∉ 𝑃𝑖 }
�� = 1

2

𝑛∑︁
𝑖=1

∑︁
𝑢∈𝑃𝑖

��N(𝑢) \ 𝑃𝑖 ��. (4)

By denoting the cost of a subset 𝑃𝑖 as

cost(𝑃𝑖 ) =
1

2

∑︁
𝑢∈𝑃𝑖

��N(𝑢) \ 𝑃𝑖 ��, (5)
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Algorithm 3: General Greedy Paradigm for BGP

Input: Graph 𝐺 = (𝑉 , 𝐸), number of partitions 𝑛

Output: The partition result P.
1 𝑤 ← ⌈ |𝑉 |

𝑛
⌉

2 Initialize 𝑃1, . . . , 𝑃𝑛 as ∅
3 𝐶 ← 𝑉

4 for 𝑖 = 1 to 𝑛 do
5 while |𝑃𝑖 | < 𝑤 do
6 if 𝑃𝑖 = ∅ then
7 𝑢 ← Random pick from 𝐶

8 else
9 𝑢 ← arg min𝑢∈𝐶 cost(𝑃𝑖 ∪ {𝑢})

10 𝐶 ← 𝐶 \ {𝑢}
11 𝑃𝑖 ← 𝑃𝑖 ∪ {𝑢}

12 return P

we can rewrite the cost function of BGP as a general form

L(P) =
𝑛∑︁
𝑖=1

cost(𝑃𝑖 ), (6)

where P = {𝑃1, . . . , 𝑃𝑛}. Therefore, by defining different partitioning costs, it is easy to derive a

wide class of generalized BGP. Note that we say the partitioning cost satisfies the locality if the

cost of a partition is determined only by itself and is independent of other partitions, such that

the cost of a partition can be computed during the construction procedure. Thus, the generalized

BGP can be approximately solved by using a general greedy paradigm, as shown in Algorithm 3.

It sequentially constructs the subsets following the greedy heuristic. Each subset 𝑃𝑖 is initialized

as an empty set (line 2), and a candidate set 𝐶 is initialized as 𝑉 (line 3). The construction of each

subset 𝑃𝑖 is an iterative procedure (lines 5- 11). In each iteration, a vertex in the candidate set 𝐶 is

selected (line 9) and inserted into the subset (line 11), such that the cost of the subset after insertion

is maximized. Meanwhile, the vertex will be removed from the candidate set 𝐶 once it has been

selected (line 10).

Hierarchical Balanced Graph Partitioning: The graph partitioning problems above just divide

the vertices through a unified granularity, however, it is required to partition the graph hierarchically

in some cases. The hierarchy can be comprehended from two different perspectives. The first one is

from top-down, that is, first dividing the graph into coarse-grained partitions and then dividing each

partition into finer-grained partitions recursively. The second one is from bottom-up, that is, first

dividing the graph into fine-grained partitions and then merging the partitions into coarser-grained

partitions recursively. The partitioning result of HBGP is a balanced tree, where each node refers

to a subset of the vertices, i.e., the union of the subsets referred to by its child nodes.

Definition 5.2 (Hierarchical Balanced graph partitioning problem, HBGP). Given a graph 𝐺 =

(𝑉 , 𝐸) and a width parameter 𝑤 , a ℎ-level HBGP aims at partitioning 𝑉 into ℎ groups of subsets

P = {{𝑃𝑙𝑖 }
𝑛𝑙
𝑖=1
}ℎ
𝑙=1

, such that

(1) 𝑛1 = ⌈ |𝑉 |𝑤 ⌉. For 𝑙 = 2 to ℎ, 𝑛𝑙 = ⌈𝑛𝑙−1

𝑤
⌉.
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(2) For 𝑙 = 1 to ℎ, {𝑃𝑙𝑖 }
𝑛𝑙
𝑖=1

is a group of disjoint subsets of |𝑉 |, where each subset 𝑃𝑙𝑖 has no more

than𝑤 · 𝑗 vertices.
(3) For 𝑙 = 2 to ℎ, each subset in {𝑃𝑙𝑖 }

𝑛𝑙
𝑖=1

is the union of𝑤 subsets in {𝑃𝑙−1

𝑖 }
𝑛𝑙−1

𝑖=1
at most.

(4) The total costL(P) = ∑ℎ
𝑙=1

∑𝑛𝑙
𝑖=1

cost(𝑃𝑙𝑖 ) is minimized, where cost(𝑃𝑙𝑖 ) is defined as |
⋃

𝑢∈𝑃𝑙
𝑖
N(𝑢) |.

Similar to the BGP, it is convenient to represent a result of HBGP by reordering the graph. That

is, for each subset 𝑃𝑙𝑖 , we always assign the ID of its vertices from 1 +𝑤𝑑+1− 𝑗 · (𝑖 − 1) to𝑤𝑑+1− 𝑗 · 𝑖 .

5.2 Computing SIB-Tree Size via HBGP
Given a hierarchical partitioning P, we can build a bipartite graph B = (B𝑙 ,B𝑟 , 𝐸B) as follows.
For each vertex 𝑢 in 𝐺 , it will be contained in the left part B𝑙 . While for each subset 𝑃𝑙𝑖 in P, we
abstract it as a vertex in the right part B𝑟 . For each pair of vertices (𝑢, 𝑃𝑙𝑖 ), we add an edge between

them if and only if the intersection of the corresponding subset 𝑃𝑙𝑖 and N(𝑢) is non-empty. Let

𝑇 𝑙
𝑖 (𝑢) ∈ 𝑇 (𝑢) denote that there exists a node in the 𝑙-th layer of SIB-tree 𝑇 (𝑢) such that its base

value equals 𝑖 .

Lemma 5.3. Given a graph 𝐺 = (𝑉 , 𝐸), a hierarchical partitioning P and the corresponding
bipartite graph 𝐴 = (B𝑙 ,B𝑟 , 𝐸B), for each 𝑢 ∈ B𝑙 and 𝑝𝑙𝑖 ∈ B𝑟 , it holds that (𝑢, 𝑝𝑙𝑖 ) ∈ 𝐸B if and only
if 𝑇 𝑙

𝑖 (𝑢) ∈ 𝑇 (𝑢).

Proof. We just give a proof sketch of mathematical induction. For each 𝑇 𝑙
𝑖 (𝑢) ∈ 𝑇 (𝑢), the target

is to prove that N(𝑢) contains at least one vertex in the 𝑃𝑙𝑖 . It is trivial for 𝑙 = 1. For the case

𝑙 ≥ 2, the key idea lies in that 𝑇 𝑙
𝑖 (𝑢) ∈ 𝑇 (𝑢) is equivalent to 𝑇 𝑙−1

𝑖′ ∈ 𝑇 (𝑢) for at least one of the
𝑤 (𝑖−1) < 𝑖′ ≤ 𝑤𝑖 . Then, combining the proved case of 𝑙−1, the correctness of case 𝑙 is achieved. □

Theorem 5.4. Given a graph order, the optimization target L(𝐺) defined in Equation (3) is equiva-
lent to the cost of HBGP induced by the order. That is,

L(𝐺) =
∑︁
𝑣∈𝑉
|𝑇 (𝑣) | = L(P) =

ℎ∑︁
𝑙=1

𝑛𝑙∑︁
𝑖=1

��� ⋃
𝑢∈𝑃𝑙

𝑖

N(𝑢)
���. (7)

Proof. The proof can be achieved by counting the edges in the bipartite graph B in two different

ways, i.e., summing up the degrees of all vertices in the left and right parts. Lemma 5.3 implies that

the sum of degrees of the left part equals L(𝐺). According to the definition of edges in B, the sum
of degrees of the right part equals L(P). Hence, the theorem is proved. □

Theorem 5.4 implies that optimizing the graph ordering is as difficult as solving the HBGP

problem. which is NP-hard as shown next.

Theorem 5.5. The hierarchical graph partitioning problem cannot be solved in polynomial time
unless P = NP.

Proof. The proof can be achieved by reducing from the 3-partition problem, which is known

as an NP-complete problem [13], to the HBGP problem. For each 3-partition problem instance 𝑃1,

we can construct a corresponding HBGP instance 𝑃2. Then, determining whether 𝑃1 has feasible

solutions or not according to the solution of 𝑃2 will be given, and its correctness will be proved. In

this way, we can prove that HBGP is not easier than the 3-partition problem, which implies that

HBGP is NP. □

Due to space limitations, we will provide complete proofs of lemmas/theorems in a technical report
after the paper publication (for the double-blind reason) and omit them here.
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Algorithm 4: Greedy Algorithm for HBGP

Input: Graph 𝐺 = (𝑉 , 𝐸), word length𝑤

Output: The hierarchical balanced graph partitions P.
1 ℎ ← ⌈ |𝑉 |

𝑤
⌉, 𝑛1 ← 1

2 for 𝑖 = 2 to ℎ do
3 𝑛𝑖 ← ⌈ |𝑉 |𝑤𝑑+1−𝑖 ⌉
4 for 𝑙 = 1 to 𝑛𝑖−1 do
5 left← 𝑤 ( 𝑗 − 1) + 1

6 right← min(𝑤 𝑗, 𝑛𝑖 )
7 Reorder (left, right,𝑤𝑑+1−𝑖 )

8 Function Reorder(left, right,𝑤 ):
9 𝐶 ← {𝑣 ∈ 𝑉 |left ≤ 𝑂𝐼𝐷 [𝑣] < right}

10 𝑃 ← ∅
11 for 𝑢 = left to right do
12 if 𝑃 = ∅ then
13 𝑣 ← arg max𝑣∈𝐶 deg(𝑣)
14 else
15 𝑣 ← arg min𝑣∈𝐶 cost(𝑃 ∪ {𝑣})
16 𝑂𝐼𝐷 [𝑢] ← 𝑣

17 𝑃 ← 𝑃 ∪ {𝑣}, 𝐶 ← 𝐶 \ {𝑣}
18 if |𝑃 | = 𝑤 then
19 𝑃 ← ∅

5.3 Heuristic Algorithm
Since the hierarchical balanced graph partitioning problem is intractable, we propose an efficient

greedy heuristic algorithm. Based on the HBGP definition, a naive heuristic idea is to divide the

HBGP problem into several BGP problems and solve them orderly, either top-down or bottom-up. In

this paper, we adopt the top-down heuristic. The reason behind this is that the top-down heuristic

prioritizes minimizing the number of high-level nodes in the SIB-tree. Consequently, space pruning

is more likely to occur at the high-level intersection subtasks. The pseudocode of the heuristic

algorithm is outlined in Algorithm 4, where the cost function in Line 15 is defined as

cost(𝑃) =
���⋃
𝑢∈𝑃
N(𝑢)

���. (8)

For the procedure Reorder(left, right,𝑤), we would like to store the set of candidate vertices𝐶 in a

heap. Hence, each greedy selection (Line 13 and Line 15 in Algorithm 4) equals popping an element

from the heap. The time complexity of a pop operation is O(log |𝐶 |). However, for each vertex 𝑣

which is still in the heap, we need to update the cost(𝑃 ∪ {𝑣}) according to the Equation (8) such

that we can correctly pop the next element. The fact is that the update procedure dominates the

time complexity of Algorithm 4. Consequently, we need to design an efficient way for the update.

Consider line 15 in Algorithm 4, an equivalent way to make the greedy selection is computing

the increment of the cost. That is, by denoting Δ(𝑣 |𝑃) = cost(𝑃 ∪ {𝑣}) − cost(𝑃), we can easily
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have

arg min

𝑣∈𝐶
cost(𝑃 ∪ {𝑣}) = arg min

𝑣∈𝐶
Δ(𝑣 |𝑃). (9)

To demonstrate the advantage of using Δ(𝑣 |𝑃) for update, we would like to rewrite it at first. Let

N(𝑃) denote⋃𝑝∈𝑃 N(𝑝). We have

Δ(𝑣 |𝑃) = cost(𝑃 ∪ {𝑣}) − cost(𝑃)
=
��N(𝑃) ∪ N (𝑣)�� − ��N(𝑃)��

=
��N(𝑣) \ N (𝑃)��. (10)

Then we compare the difference between Δ(𝑣 |𝑃) and Δ(𝑣 |𝑃 ∪ {𝑢}). According to the Equation (10),

we have Δ(𝑣 |𝑃) ≥ Δ(𝑣 |𝑃 ∪ {𝑢}).
Δ(𝑣 |𝑃) − Δ(𝑣 |𝑃 ∪ {𝑢})

=

���N(𝑣) \ N (𝑃)��� − ���N(𝑣) \ (N(𝑃) ∪ N (𝑢)) ���
=

���N(𝑣) ∩ (
N(𝑢) \ N (𝑃)

) ���. (11)

Equation (11) presents a direct and efficient update paradigm. It involves traversing the neighbors

of each vertex in N(𝑢) \ N (𝑃). Throughout this traversal, we keep track of the occurrence count

for each vertex.

6 EXPERIMENTAL STUDY
6.1 Experimental Setting
Datasets. We use ten real graph datasets from SNAP [21] and KONECT [18] to evaluate the

proposed SIB-tree based intersection method. Detailed statistics of graph datasets are listed in

Table 1.

Tasks. We evaluate the SIB-tree based intersection method through the following three tasks.

(1) How does the SIB-tree based intersection accelerate the set intersection operation?

(2) How does the SIB-tree based intersection accelerate the graph algorithms that take the set

intersection operation as a built-in block?

(3) How do different graph orders influence the performance of SIB-tree based intersection?

Competitors.We compare our proposed approach, denoted as SIB, with the following set intersec-

tion competitors over graphs.

(1) Merge intersection [12] is a classic method that scans to merge both sets at the same time;

(2) Roaring bitmap [6] is a compressed bitmap method, which is widely used in the database

field;

(3) QFilter [14] is the state-of-the-art SIMD-based set intersection method, and;

(4) Range [31] is an efficient approach that adopts a reducing-merging framework.

Offline cost. Note that, all the competitors (except for the merge intersection) together with our

SIB method are index-based approaches. We report the offline computation cost of these methods

(i.e., the time of building the index for all vertices in a given graph) in Table 2. It shows that the

SIB method is the most efficient for the index construction on most graphs (except for graphs TW,

WG, CY, and SP). Furthermore, the space cost of these methods is also reported in Table 2. In the

following subsections, we will focus on the online cost (instead of the offline cost).

Reproducibility. All experiments are conducted on a Linux Server equipped with Intel(R) Xeon(R)

CPU E5-2640 @ 2.60GHz and 128G RAM. All algorithms used in the experiments are implemented
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Table 1. Statistics about graphs used in the experiments, where |𝑉 |, |𝐸 |, and ¯𝑑 denote the number of vertices,
edges, and the average degree, respectively.

Graph Short Name |V| |E| d̄
Twitter TW 81,306 1,768,149 43.5

Gplus GP 107,614 13,673,453 254.1

web-BerkStan WB 685,230 7,600,595 22.2

web-Google WG 875,713 5,105,039 11.7

com-Youtube CY 1,134,890 2,987,624 5.3

soc-pokec SP 1,632,803 30,622,564 37.5

as-skitter AS 1,696,415 11,095,298 13.1

Flickr-links FL 1,715,254 15,551,250 18.1

Wiki-Talk WT 2,394,385 5,021,410 4.2

LiveJournal LJ 3,997,962 34,681,189 17.3

Table 2. Offline performance of 4 methods for constructing indices on 10 graphs, including both time cost
and space cost.

Method TW GP WG CY WB FL AS SP LJ WT

Time

(ms)

Roaring 325 628 1,663 1,032 746 2,116 2,606 5,687 13,305 1,460

QFilter 265 2,354 747 587 1,173 2,996 2,128 5,220 8,890 834

Range 42,524 1,734,520 269,423 392,762 3,174,943 2,478,530 3,216,431 3,645,284 12,308,925 5,487,410

SIB 279 379 2,120 976 259 1,389 1,070 8,150 4,716 634

Space

(MB)

Roaring 6 48 37 59 28 103 95 205 427 57

QFilter 8 84 66 37 35 162 99 319 479 59

Range 11 94 27 36 53 125 91 176 342 45
SIB 12 67 105 85 54 277 221 622 1,135 162

in C++ and compiled by GCC v7.3.0 with -O3 option. Anonymous source code and data are available

at: https://anonymous.4open.science/ r/HEROFramework-126E/ .

6.2 Accelerating Set Intersections
Following the previous research [31], we use two groups of query sets for global intersection and

local intersection for each graph. The global intersection group contains 100, 00 pairs of randomly

selected vertices to compute their common neighbors. The local intersection group contains 10, 000

pairs of randomly selected adjacent vertices to compute common neighbors. The results of global

intersection and local intersection are presented in Figure 7 and Table 3.

Speedup of our approach. To evaluate the performance of the proposed SIB method, we compare it

with the merge intersection and three state-of-the-art algorithms, that is, the compressed bitmap

method Roaring [6], the SIMD-based method QFilter [14], and the reducing-merging method

Range [31]. We report the speedups compared to the merge intersection as shown in Figure 7,

where the elapsed time of the merge intersection is taken as the baseline with speedup=1.0x. We

find that the SIB method consistently outperforms three baselines on 8 of 10 graphs for both global

intersection and local intersection tasks. Specifically, on the graph web-BerkStan, the SIB method

achieves significant speedups, up to 181.00x and 83.33x on global and local intersection tasks,

respectively. Averaged on 10 graphs, the SIB method accelerates the global and local intersection

tasks by 26.50x and 16.17x, respectively. We show the running time of the merge intersection

algorithm in Table 4 (the columns “GI” and “LI” refer to global and local intersections, respectively).

The running time of other algorithms can be easily inferred through the corresponding speedups.
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(a) Global Intersection (b) Local Intersection

Fig. 7. Speedup on global and local intersections.

Table 3. Number of comparisons (×10
6) involved in the merge intersection and our proposed SIB method,

when performing the global intersection and local intersection tasks on 10 graphs.

Task Method TW GP WG CY WB FL AS SP LJ WT

Global Intersection

Merge 18.7 121.3 47.8 47.8 170.0 123.7 163.7 19.9 79.9 141.9

SIB 0.9 8.0 5.7 2.1 0.2 8.2 1.6 1.5 7.3 9.5

Local Intersection

Merge 10.6 79.6 27.4 22.3 155.7 79.8 134.3 15.1 47.5 13.4

SIB 0.4 2.6 0.3 0.3 0.2 2.4 0.2 0.4 1.2 0.4

Table 4. The running time of each task on 10 graphs, using the merge intersection method. “–” indicates that
the algorithm fails to complete within 10 days.

Graph GI(ms) LI(ms) TC(ms) MC(s) SL(s)
TW 47 21 682 216 177

GP 665 236 58,289 – 190,856

WG 263 32 1312 19 143

CY 98 32 2,447 22 438

WB 181 250 28,506 842 4,274

FL 389 130 49,627 – 84,087

AS 274 141 39,583 1,699 5,699

SP 72 27 10,337 71 1,503

LJ 249 73 26,780 – 9,414

WT 439 33 4,257 1,856 2,560

The number of comparisons. Table 3 reports how many comparisons each intersection method

demands on the global and local intersection tasks. For the merge intersection method, one com-

parison just refers to comparing a pair of vertices. For our proposed SIB method, one comparison

refers to invoking the boolean AND operator once. Although the specific comparison operations

are different, we find that there is a significant gap in the number of comparisons. For both global

intersection and local intersection tasks, the merge intersection takes 10x-100x comparisons more

than our proposed SIB, which may explain why the SIB method is much faster than the merge

intersection method.

6.3 Accelerating Graph Algorithms
In this section, we evaluate the performance of SIB method through three graph algorithms, that

is triangle counting (TC), maximal clique enumeration (MC), and subgraph listing (SL). For each

task, we report the speedups compared with the merge intersection method, where the merge

intersection is taken as the baseline with speedup= 1.0x.
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(a) Speedups on TC task (b) Speedups on MC task (c) Speedups on SL task

Fig. 8. Speedups over the merge method in downstream tasks TC, MC, and SL.

Table 5. Overall speedups over merge method on 10 graphs.

Task Method Average Maximum Median Minimum

TC

Roaring 10.82 72.35 2.56 0.84

QFilter 12.45 48.15 5.65 1.54
Range 4.84 31.64 1.54 0.73

SIB 14.23 88.80 4.53 1.27

MC

Roaring 6.59 40.08 1.09 0.35

QFilter 14.14 75.24 3.68 1.70
Range 2.55 7.28 1.56 0.86

SIB 10.23 50.51 4.63 1.09

SL

Roaring 3.50 11.20 2.20 0.94

QFilter 3.70 11.47 2.55 1.33

Range 1.25 1.60 1.23 1.07

SIB 4.26 14.73 2.99 1.35

Detailed speedups on each graph. Figure 8 illustrates the detailed performance of speedups on each

graph. Our proposed SIB approach achieves remarkable speedups in most cases. In all 3 tasks, SIB

consistently obtains higher speedups than Range on 10 graphs. Similarly, SIB outperforms Roaring

in most cases (except for the SL task on GP, FL, and WT). Even if our SIB approach does not utilize

any SIMD instruction, it is still competitive compared to the SIMD-based SOTA QFilter. Our SIB

approach outperforms QFilter on 10 graphs in the SL task. In the TC task, it also outperforms

QFilter on TW, GP, and WB. While in the MC task, QFilter exhibits marginal superiority on most

graphs (except for TW).

Overall speedups on each task. In addition, we present four overall statistics of speedups, namely

the average, maximum, median, and minimum speedups, in Table 5. With respect to the average

speedup, our SIB approach obtains 14.23x and 4.26x in TC and SL tasks, respectively, which

outperforms all the competitors. In the MC task, its average speedup also reaches 10.23x, only

less than QFilter (14.14x). As for the median speedup, which is more robust than the average,

our SIB approach performs better than all the competitors in MC and SL tasks (4.63x and 2.99x),

and achieves a second best in the TC task (4.53x). The maximum/minimum speedup is used to

characterize the performance of each method in the best/worst cases. Our SIB approach obtains the

best maximum speedups in TC and SL tasks (88.80x and 14.73x) and the best minimum speedup in

the SL task (1.35x). As for the maximum (minimum) speedup in the MC (TC and MC) task, our

SIB approach reaches the second best (50.51x, 1.27x and 1.09x), less than QFilter (75.24x, 1.54x and

1.70x).
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(a) Size reduction of SIB-tree index compared with
the original order

(b) Speedups of SIB with different orderings on
triangle counting task

(c) Speedups of SIB with different orderings on
maximal clique task

(d) Speedups of SIB with different orderings on
subgraph listing task

Fig. 9. Effect of graph orderings.

6.4 Evaluating Different Graph Orderings
In this section, we explore how different graph orderings benefit the SIB approach. In addition to

the proposed ordering HBGP, we adopt 6 existing graph orderings, including the original order,

BFSR [3], DFS [26], Hybrid [1], MLOGGAPA [11], and SlashBurn [22] as competitors, since they

are often used for the graph set intersection in previous studies like QFilter [14] and Range [31].

We report the performance of the ordering through two metrics, that is, the size of the SIB-tree

index and the speedup of SIB method on TC, MC, and SL algorithms. Note it is extremely expensive

to enumerate MC on the whole graph, we enumerate MC on 1% vertices for each graph in this

section.

Effect on the size of SIB-tree. The size information of the SIB-tree index is depicted in Figure 9(a).

For simplicity of comparison, we scale the data by the size of the SIB-tree index in original order.

We first consider the size of the SIB-tree index, which evaluates how well the ordering solves the

graph reorder problem proposed in Section 5. As shown in Figure 9(a), our proposed HBGP-based

ordering always constructs the SIB-tree index with minimal size among all the compared graph

orderings. We also find that the performance of each order becomes pretty similar when the average

degree of the graph is small. This phenomenon is intuitive because the small degree implies a

corresponding small optimization space.

Effect on the speedups. As for the speedups of three graph algorithms, we report each ordering’s

average speedup over 10 graphs in Table 6. For detailed speedup on each graph, the results are shown

in Figures 9(b), 9(c), and 9(d), respectively. Since the final target of reordering the graph is to improve

the performance of SIB method, we then focus on the speedups brought by different orderings.

According to the average speedups shown in Table 6, our proposed HBGP-based ordering beats all

the ordering baselines in the TC and MC tasks. As for the SL task, our proposed HBGP ordering

performs second only to the MLOGGAPA ordering. More specifically, the HBGP-based ordering

performs the best on all 10 graph datasets in the TC task. Similarly, except for the MLOGGAPA
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Table 6. Average speedups over merge method on 10 graphs.

Ordering TC MC SL
Original 16.01 10.13 4.38

BFSR 14.09 14.26 4.45

DFS 16.34 17.03 5.92

Hybrid 12.54 21.09 4.82

MLOGGAPA 14.90 8.08 22.03
SlashBurn 13.73 9.63 4.86

HBGP 25.90 26.52 10.41

ordering, the HBGP-based ordering beats other ordering baselines on most of the graphs (8 of 10)

in the SL task.

We notice that besides the intersection method, the ordering itself also influences the execution

of all three tasks. To reduce this impact, we ensure that the times of intersection operations called

in the TC or SL task using different graph orderings are consistent across each graph. However, this

guarantee fails in the MC task, which may explain why the corresponding performance is irregular.

7 RELATEDWORK
Set Intersection Acceleration: As we have mentioned before, existing researches about accel-

erating set intersection operation focus on how to leverage the SIMD hardware instructions for

parallelism. Works such as SIMDShuffling and SIMDGalloping [19] directly equip the scalar. and

galloping search algorithm with SIMD instructions, respectively. HieraInter [23] includes three

algorithms for SIMD based merge intersection, which differ only in precision (8-bit, 16-bit and

32-bit). The BMiss [16] also improves the merge intersection method using SIMD instruction,

meanwhile reduces the branch mispredictions. The graph processing engine EmptyHeaded [1]

integrates both SIMDShuffling and SIMDGalloping algorithms and selects the better one at the

run time. Roaring [6] is a widely used type of compressed bitmap index, and the corresponding

library CRoaring [20] provides vectorized algorithms to compute union, intersection, difference,

which supports the SIMD acceleration. The QFilter [14] is a two-level intersection method, which

handles the high-level and low-level subtasks using SIMD based merge and bitmap intersection,

respectively.

Graph Reordering: The graph reordering is a widely used technique for the graph compression,

which reassigns vertex identifiers [3, 11, 13, 22, 26]. BFSR ordering [3] is a compact representation

for separable graph, which reorders the vertices by building a separator tree recursively. DFS

ordering [26] directly assigns vertices following the depth-first traversal. Hybrid ordering [1] first

rearranges the graph by BFS. Then, vertices are sorted in descending order of the degree, where

vertices with equal degree retain their BFS ordering. MLOGGAPA ordering [11] optimizes the

logarithmic gaps of vertices in the same neighbor heuristically. Slashburn method [22] reorders

the graph by iteratively removing hub vertices, such that its adjacency matrix consists of a few

nonzero blocks.

8 CONCLUSION
In this paper, we focus on accelerating the set intersection operator on the graph data without

the help of SIMD hardware instructions. We first propose the multi-level intersection framework,

which recursively separates the set intersection task into small-sized subtasks and solves them

independently. Then, we propose the SIB-tree index, which allow us to solve each subtask in the
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multi-level intersection framework using bitmap and boolean AND operation. Consequently, the

intersection algorithm can totally get rid of the merge intersection framework.
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