HERO: A Hierarchical Set Partitioning and Join Framework
for Speeding up the Set Intersection Over Graphs

BOYU YANG, School of Data Science, Fudan University, China

WEIGUO ZHENG?, School of Data Science, Fudan University, China
XIANG LIAN, Department of Computer Science, Kent State University, USA
YUZHENG CALI, School of Data Science, Fudan University, China

X. SEAN. WANG, School of Computer Science, Fudan University, China

As one of the most primitive operators in graph algorithms, such as the triangle counting, maximal clique
enumeration, and subgraph listing, a set intersection operator returns common vertices between any two
given sets of vertices in data graphs. It is therefore very important to accelerate the set intersection, which
will benefit a bunch of tasks that take it as a built-in block. Existing works on the set intersection usually
followed the merge intersection or galloping-search framework, and most optimization research focused on
how to leverage the SIMD hardware instructions. In this paper, we propose a novel multi-level set intersection
framework, namely hierarchical set partitioning and join (HERO), by using our well-designed set intersection
bitmap tree (SIB-tree) index, which is independent of SIMD instructions and completely orthogonal to the merge
intersection framework. We recursively decompose the set intersection task into small-sized subtasks and
solve each subtask using bitmap and boolean AND operations. To sufficiently achieve the acceleration brought
by our proposed intersection approach, we formulate a graph reordering problem, prove its NP-hardness,
and then develop a heuristic algorithm to tackle this problem. Extensive experiments on real-world graphs
have been conducted to confirm the efficiency and effectiveness of our HERO approach. The speedup over
classic merge intersection achieves up to 188x and 176x for triangle counting and maximal clique enumeration,
respectively.

CCS Concepts: » Theory of computation — Graph algorithms analysis.
Additional Key Words and Phrases: Set intersection over graphs, hierarchical set partitioning and join

ACM Reference Format:

Boyu Yang, Weiguo Zheng, Xiang Lian, Yuzheng Cai, and X. Sean. Wang. 2024. HERO: A Hierarchical Set
Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs. Proc. ACM Manag. Data 2,
1 (SIGMOD), Article 29 (February 2024), 25 pages. https://doi.org/10.1145/3639284

1 INTRODUCTION

In a wide spectrum of real-world applications such as social network analysis [7, 25], friend
recommendation [4, 15, 17], and community search/detection [9, 28, 29], a set intersection problem,
which obtains common elements between any two sets, has been one of the most fundamental and

*Corresponding Author: zhengweiguo@fudan.edu.cn

Authors’ addresses: Boyu Yang, yangby19@fudan.edu.cn, School of Data Science, Fudan University, Shanghai, China, 200433;
Weiguo Zheng, zhengweiguo@fudan.edu.cn, School of Data Science, Fudan University, Shanghai, China, 200433; Xiang
Lian, Department of Computer Science, Kent State University, Kent, Ohio, USA, xlian@kent.edu; Yuzheng Cai, School of
Data Science, Fudan University, Shanghai, China; X. Sean. Wang, School of Computer Science, Fudan University, Shanghai,
China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/2-ART29

https://doi.org/10.1145/3639284

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

https://doi.org/10.1145/3639284
https://doi.org/10.1145/3639284

29:2 Boyu Yang et al.

N(uy) = {v3, V4, V5, V7,9, V22 } N (uz) = {v3, v10, V11, V17, V18, V24}

N(u) NN (uy) =7

Fig. 1. An example of the friend recommendation in a social network G.

important operators in graph algorithms/tasks such as the triangle counting [8, 27], maximal clique
enumeration [5], and subgraph listing [24, 30].

1.1 Motivation Example

Below, we give a motivation example of the friend recommendation in social networks.

Example 1.1 (Friend Recommendation in Social Networks). Consider an example of social network,
G, in Figure 1, where each vertex is a user and each edge between two vertices indicates the friend
relationship between the two users. One important function on the social network platform (e.g.,
Twitter or Facebook) is to help users find and connect their friends. Intuitively, if two users have
many common friends on social networks, they are more likely to know each other in reality.
Therefore, in this case, we need to obtain a set of common friends between these two users and
recommend them to add each other as friends (if this set is large).

Figure 1 illustrates two users u; and u; who are not connected in social network G, where their 1-
hop neighbor sets are given by N (u1) = {vs, v4, vs, 07, 09, v22} and N (uz) = {v3, 019, V11, V17, V18, V24 },
respectively. To find their common friends, we need to conduct the set intersection operator,
N (u1) NN (uz), between their 1-hop neighbor sets, and obtain common friends (i.e., {v3} in this
example). []

Due to the large scale of social networks G in Example 1, in the worst case, there are quadratic
pairs of user vertices (or set intersections) that need to be checked. Therefore, it is rather important,
yet challenging, to optimize the cost of performing each set intersection operator, which inspires
our work in this paper.

1.2 Existing Methods and Limitations

Existing works on the set intersection [14, 16, 23] follows a widely-used framework, the merge
intersection, which assumes two sorted sets A and B (w.l.o.g. in the ascending order) and scans
to merge both lists at the same time. The time complexity of this merge intersection method is
O(|A]+|B|) in the worst case, where |A| and | B| are the numbers of elements in A and B, respectively.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:3

Another classic approach to perform the set intersection is the galloping search [10]. Let us
assume that |A| < |B|. For each element u in A, the galloping search determines whether u is
contained in B by using a binary search. The time complexity of this method is O(|A|log |B|),
thereby it is more efficient when |A| < |B| holds.

A bunch of algorithms have been developed powered by SIMD [1, 14, 16]. For example, QFilter
[14] improves the merge intersection by leveraging the SIMD instructions and a proposed byte-
checking filter. However, due to the variability in available SIMD support across different processor
architectures, the SIMD instruction sets are architecture-specific, leading to the inconvenience
of implementing algorithms. In the worst-case scenario, some processors may not have SIMD
instructions at all, making the SIMD-based algorithms even unable to work. Recently, a reducing-
merging framework [31] has been devised to enhance the performance of merge intersection.
The basic idea is to reduce the input sets as much as possible before conducting intersection. The
corresponding time cost is O (log |A| +log |B|+|A’|+|B’|), where A’ and B’ refer to subsets retrieved
from A and B with range code reduction, respectively. The reducing-merging framework highly
depends on the reducing performance, however, it remains an open problem to maximize the
reducing ability.

Although advanced techniques such as SIMD [14] and set reduction [31] have been proposed to
boost the set intersection task, they all take merge intersection or galloping-search paradigms as
the backbone. In contrast, we focus on the following question: Can we develop a novel and more
powerful framework to make set intersections on graphs even faster in practice?

1.3 Our Contributions

In order to speed up the intersection A N B between two sets A and B, in this paper, we design a
novel multi-level set intersection framework, namely hierarchical set partitioning and join (HERO),
which consists of offline set decomposition and online set intersection stages. The intuition behind
our HERO framework is to decompose the task of the set intersection into several intersection
subtasks with smaller subsets and avoid the computation cost if one of the two subsets to intersect
in subtasks is empty.

Specifically, in the offline set decomposition phase, we divide the universal set into disjoint
partitions and project each set A (or B) onto these partitions (called set partitioning), leading to
projected subsets. Then, we take the IDs of non-empty (projected) subsets and form a new partition
ID set. We recursively project this new partition ID set into partition ID subsets. This way, we can
offline build a hierarchical structure of (element or partition ID) subsets for the original set A (or B).

In the online set intersection phase, we will start from the top of the hierarchical structures
for sets A and B to perform the join over partition ID sets (called partition ID join). Then, we can
traverse hierarchical structures of A and B to the next-level (sub)set intersection, based on the
partition IDs in the join results, in a recursive top-down manner.

Under the HERO framework, we also propose an effective index, namely set intersection bitmap
tree (SIB-tree) for the set intersection in the graph. We notice that the bitwise operators, supported
by most computers, enable bit-level parallel comparisons, implying a great potential to accelerate
the set intersection task. To the end, it is necessary to represent each set using a bitmap where each
bit denotes whether or not a vertex appears in the set. However, maintaining bitmaps for sets of
neighbors for all the vertices results in the overhead O(|V|?), which is impractical for large-scale
graphs. Moreover, due to the size limit of an operand register (namely word length), the bitwise
operators (such as boolean AND operation) on over-width bitmaps cannot be completed by a
single instruction. To handle the problems, we construct the SIB-tree, that is, plugging the bitwise
operators into the HERO framework by decomposing the original set intersection into small-sized

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

29:4 Boyu Yang et al.

Level 2 [sup, = {1,2,3,8}] [supg = {1,4,6,8}] sup, Nsupg = {1,2,3,8} N {1,4,6,8}
Level 2 ={L8)
ﬂ Obtain Support Sets (Partition IDs) ﬁ /' \
Levet1 |0 151 [719] 2]
A 4 A, Ag B, B, B, B Level 1 [ANB; ={1}n {12} = (1}] [AgN By = {22} {24} =0]
ﬁ Non-empty Subset Projections ﬁ ﬂ ﬂ
n (1121001715] Final Resu[t[AnB={1}ug={1}]
et 4 Set B
(a) Decomposition Stage (offline) (b) Intersection Stage (online)

Fig. 2. An example of two-level set intersection.

subtasks such that each subtask can be efficiently solved by a single instruction. The SIB-tree can
facilitate the multi-level set intersection efficiently.

In fact, many different SIB-trees can be built based on distinct set partitionings, and thus affect the
intersection performance. We find that any particular set partitioning can be achieved by applying
the graph reorder technique. Therefore, we formulate a novel graph reordering task and develop
an efficient heuristic algorithm to optimize the performance of our proposed HERO approach, by
minimizing the total size of the SIB-tree for all vertices in the graph.

In summary, we make the following contributions in this paper.

(1) A novel set intersection framework: We propose a novel hierarchical set partitioning and
join (HERO) framework in Section 3 that decomposes the set intersection task into small-sized
subtasks and filters out unnecessary comparisons.

(2) A well-designed index for the set intersection: We build an effective set intersection bitmap
tree (SIB-tree) index for set intersection in the graph in Section 4, which can support efficient
accomplishment of (sub)set intersection (sub)tasks via boolean AND operations over bitmaps.

(3) Graph ordering optimization: We formulate a novel graph reordering problem and propose
a heuristic algorithm to optimize the performance of the proposed HERO approach in Section 5.

(4) Remarkable empirical studies: We have conducted extensive experiments in Section 6 to
evaluate the proposed HERO approach. The results show that the speedup of our approach over
the classic merge intersection achieves up to 188x and 176x for triangle counting and maximal
clique enumeration, respectively.

2 PROBLEM DEFINITION

In this section, we formally define several concepts used for the set intersection problem.
Set Over the Graph. A graph is denoted as G = (V, E), where V and E represent the sets of vertices
and edges, respectively. We define a (vertex) set in the graph G below.

Definition 2.1 (Set in the Graph). Given a graph G = (V, E), a set A in the graph refers to a subset
of V,ie,ACV.

One example of the set A in graph G can be a set of neighbors of a vertex u € V. In this paper,
we assume that each vertex u is assigned with a unique integer ID, and all vertices in a set A in
graph G are sorted (e.g., in ascending order).

Set Intersection Problem. Next, we define the set intersection over the graph as follows.

Definition 2.2 (Set Intersection in the Graph). Given two sets A and B in the graph G, the set
intersection task returns a set, A N B, of common vertices between two sets A and B, i.e., ANB =
{ueV|ueAAucB}

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:5

As discussed above, two classical methods, merge intersection and galloping search, can be used
to handle the set intersection problem in graphs. However, they often fail to fully leverage the
intrinsic relationships among vertices, which can be improved. For instance, the merge intersection
often involves unnecessary comparisons, leading to inefficiency. Furthermore, due to the limitation
of comparing only one pair of elements per machine instruction, they are unable to fully exploit
parallel advantages offered by bit-level computations. To address these limitations, we develop
a novel HERO framework, which effectively filters out unnecessary comparisons and seamlessly
integrates efficient boolean AND operations.

3 THE HIERARCHICAL SET PARTITIONING AND JOIN FRAMEWORK

In Section 3.1, we introduce a two-level intersection method that decomposes set intersection into
two subtasks of intersection to be performed in two stages. We then expand the two-level method
to a multi-level intersection framework by recursively abstracting set intersection to a higher-level
task in Section 3.2.

3.1 Set Partitioning and Join

Set Partitioning: Let S be a universal set that contains all possible elements in the domain of
set elements (e.g., all the vertex IDs in the graph). Given a positive integer n, our two-level set
partitioning and join approach partitions the universal set S into n disjoint subsets S;, Sa, ..., and
Sn. We also call such subsets, S;, space partitions of the set S, where i is the partition ID of the subset
Si.

Definition 3.1 (Subset Projection). Given a set A C S and a subset S; of S, the subset projection, A;,
of A over S; contains common vertices between A and S;, i.e., A; = AN S;.

Problem Reduction Based on the Set Partitioning: Given any two sets A C S and B C S to be
intersected, it holds that:

n

AmB:(AmBmS):U(AmBmS,-)

i=1

- O(Amsi) n O(ani)
= O(Ai N B;), (1)

where A; and B; (for 1 < i < n) are the subsets projected from A and B onto the partition S;,
respectively, that is, A; = AN S; and B; = BN S;.

Note that, when A; = 0 or B; = () holds, we have A; N B; = (0. Therefore, in this case, we can
actually avoid the set intersection cost of the i-th subtask A; N B, if either A; or B; is empty.
Partition ID Join: Based on the observation above, we can record whether or not subsets A; (or
B;) are empty, by keeping their partition IDs i in a so-called support set defined below (i.e., partition
ID set) Sup, (or Supy) if A; (or B;) are not empty. Then, we can join the two support sets Sup, and
Supy to obtain a list of subset pairs (or partition IDs) that need to perform the actual set intersection
(i.e., subtasks).

Below we give the definition of the support set.

Definition 3.2 (Support Set). Given two sets A and B to be intersected, their support sets, Sup , and
Supg, over the space partition S, S, ..., S, of the universal set S are defined as Sup, = {i | A; #

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

29:6 Boyu Yang et al.

10 comparisons _
R 6 comparisons
A

1141451719 1(22|122]122(22 11213888
Level 2 | ys | vs | vs | vs | vs | vs

vs|vs|vs|vs|vs|vs|vs|vs|vs|Vs
114144618

1]121(10(10|10]|10(10|17|18(24
- Level 1

1 22 |1
\A \A] '
1 24
ﬂ—/

Result= {1} 2 comparisons

(a) Merge Intersection (b) Partitioning and Join Framework

Fig. 3. Comparing costs of merge intersection with two-level set partitioning and join intersection

0,for 1 < i < n} and Supg = {i | B; # 0,for 1 < i < n}, where A; and B; are subset projections for
A and B over S;, respectively.

Further Problem Reduction Based on the Partition ID Join: By using the concept of the support set

(as given in Definition 3.2), we can rewrite the set intersection task in Equation (1) as:

ANB= U (A; N By). @)
i€(Sup,NSupg)

Two-Level Intersection (Set Partitioning and Join): From Equation (2), we can: 1) first conduct
the partition ID join, Sup, N Supy, over the two support sets (Level 2, partition ID join), and 2)
then perform the set intersection, A; N B;, only on those non-empty subsets A; and B; (Level 1,
subset intersection), where partition IDs i are in the join result Sup, N Supg. The above two steps
exactly correspond to two levels of set intersection join, respectively.

In summary, our principle is that the original task of the set intersection is decomposed into smaller
subtasks of set intersections on two levels. We will later discuss in Section 3.2 how to generalize this
principle to that of multiple levels in a hierarchical structure.

Example 3.3. Assume that we have a universal set S = {v € Z|1 < v < 27}, which can be
partitioned into 9 disjoint subsets, S; ~ S, where S; ={v € S |3(i—1) <o < 3i}for1 <i <09.

Given two sets A = {1,4,5,7,9,22} and B = {1, 2,10, 17, 18,24}, as shown in Figure 2(a), we first
compute subset projections, A;, of A over 9 partitions S;. That is, we have A; = {1}, A, = {4,5},
As = {7,9}, and Ag = {22} (note: other subsets A; = 0 for i # 1, 2, 3, 8). Similarly, for set B, we have
non-empty subset projections B; = {1, 2}, By = {10}, Bs = {17, 18}, and Bg = {24}.

Hence, the support set of A is Sup, = {1, 2, 3, 8}, whereas that of B is Supg = {1, 4, 6, 8}.

In order to do the set intersection task A N B, as illustrated in Figure 2(b), we first compute the
support set intersection Sup 4, N Supg = {1, 8} on the support set level (Level 2), and then perform
the intersection of subsets for those partition IDs appearing in Sup, N Supy (i.e., 1-st and 8-th
partitions), that is, AN B = Uje (153 (Ai N B;) = (A1 N By) U (Ag N Bg) = {1} U O = {1} (Level 1).m

Superiority of Two-Level Set Partitioning and Join: We illustrate the superiority of the two-level
set intersection join mentioned above, by using Example 3.3. Figure 3 shows the computation costs
of merge intersection [12] and our two-level set intersection frameworks, where each line segment
represents one comparison between two elements in the sets. We can see that our framework

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:7

2 _ 2 _
Level 3 (sup? = {1,3}] [supp = {1,2,3}] Level 3 supa 1 supg = (1,3} 1 {1,2.3)
Obtain Support Sets (Partition IDs) 1] = (; 3}
Level 2 7\
4 4 B} B} B}
{ Non-empty Subset Projections i Level 2 AinBf={1}n{12} ’ ‘ A3n B3 ={8}n{8} ’
={1 ={8}
supj = [1[2]3 8] supy = [1]4]6]s]
[Obtain Support Sets (Partition IDs)
Lever1 | [719] Level 1 [A%nB%:{l}n{‘l,Z}:[l}] [A;nB;:{zz}n{zM:o]
4 4 43 4 Bi Bi By B
] Non-empty Subset Projections |/ ﬂ ﬂ
(LG [T2 [ioi7[is[a] pina R AnB=(muo=(1 |
Set 4 Set B
(a) Decomposition Stage (offline) (b) Intersection Stage (online)

Fig. 4. An example of the Hierarchical Set Partitioning and Join (HERO) framework

only takes 8 (=6+2) comparisons, which is lower than 10 comparisons of the merge intersection
algorithm. This is because the set intersection over some partitions (e.g., Partitions 2, 3, 4, and 6)
can be avoided, and thus their computation costs can be saved.

From Figure 3, we can see that the major cost of our two-level set partitioning and join is now
on Level 2 (i.e., 6 out of 8). It inspires us to further reduce the cost on this support set level, by
introducing hierarchical set partitioning and join in the next section.

3.2 The Hierarchical Set Partitioning and Join (HERO) Framework

In this section, we generalize our idea of set intersection partitioning and join (as mentioned in
Section 3.1) from two levels to multiple levels in a hierarchical structure. Algorithm 1 shows our
hierarchical set partitioning and join (HERO) framework for the set intersection operator. It has
two stages, i.e., offline set decomposition (lines 1-8) and online set intersection stages (lines 9-13).
Offline Set Decomposition: Given a set intersection task AN B, we consider an h-level intersection
framework. Specifically, similar to the two-level case discussed in Section 3.1, on Level 1, we
decompose the universal set S into n; disjoint partitions S}, S}, ..., and S} , and obtain projected
subsets {A]}7!, and {B}}7, from sets A and B, respectively. For ease of presentation, we use the
superscript to denote the level number.

Then, on Level 2, we maintain two support sets, Supi‘ and Sup}s, containing partition IDs of non-
empty projected subsets A} and B}. The universal set on this level becomes §* = {j € Z|1 < j < ny}.
In order to enable the intersection between support sets, Sup}a N Sup}g, similar to Level 1, we
recursively divide the new universal set into at most n;, partitions S2, Sg, ..,and Sflz, and project
Sup), and Sup}, onto these partitions, leading to A? and B, where A? = Sup, N S? and B? = SupNS?
(for 1 < i < ny).

In general, on Level [(2 < [< h), we maintain two support sets Sup, " and Supk !, containing
partition IDs of non-empty projected subsets Ag_l and Bg_l. The universal set in this level should
be S' = {j € Z|1 < j < n;_;} and we divide it into n; partitions Si, Sé, ...,and S,l”. The support
sets Supi‘_l and Supg1 will be projected onto these partitions, leading to the projected subsets Ag
and Bg, where Aﬁ = Supf‘_1 N Sf and Bg = Supfg_1 N Sf (for1 <i < my).

Online Set Intersection: In contrast to the offline set decomposition, the online set intersection
operates following a top-down paradigm. Initially, R? is calculated directly by intersecting the two
support sets, Supi" N Supg, (line 8). The filtering result R determines which subsets in the I-th
level subtasks need to be joined, where I ranges from h to 1. That is, for any element i in R we

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

29:8 Boyu Yang et al.

Algorithm 1: The Hierarchical Set Partitioning and Join (HERO) Framework
Input: a universal set S, set A, set B, and level h
Output: the intersection result R= AN B
// offline set decomposition
1 Initialize S' as S, Sup!} as A, Sup; as B
2 forl=1tohdo
3 S{, e, Sf” « partition the universal set St into n; disjoint subsets
a | Al Al —Project (Sup! ! {SI}}]
5 Bi,.‘.,Bl «—Project (SupB 1,{51}
6 Sl+1<—{1€Z|1§1Snl}
7 | Sup, « {i e S* AL # 0}, Supl, « {i € S"!|B! + 0}

// online set intersection

8 RM Supg N Supl’;
9 forl=htoldo
1 | R —Join (R, {A}T 1 (B}
11 return R°
// Details of the invoked procedure
12 Procedure Project(X, {Z;})

13 fori=1tondo

14 L Xi — Zi nx

15 | return {X;}i,

16 Procedure Join (R, {X;}7 , {V;}1,)
17 R «0

18 fori e Rdo

19 | R« R Ulntersect(X;Y;)
20 | returnR’

need to solve the subtask Intersection(Aﬁ, Bg) and add the results into R'~!, while other subtasks
can be safely skipped (lines 17-19). The above process also holds for I = 1, where the R'™! (i.e., R)
denotes result of A N B. The involved procedure Intersection(X, Y) is used to complete the subtask
of computing the intersection between two sets X and Y. Notice that any particular algorithm for
set intersection, such as the merge intersection, can be applied.

Example 3.4. Following the settings of S, A, B, and the space partition of S in Example 3.3, we
can easily have the following results.

e Supl, ={1,2,3,8} and Supy, = {1,4,6,8};

o A} ={1},A} = {4,5}, A} = {7,9}, A} = {22}, and A] = 0 for any [¢ Sup},.

o 31 {1,2}, Bl {10}, 31 = {17, 18} By = {24}, andBl 0 for any [¢ Supy,.
To deal with the support set intersection of Sup, and Supy, we define the 2nd level space partition
as $% = {1,2,3}, S = {4,5,6} and S? = {7, 8,9}, where the new universal setis {i € Z|1 < i < 9}.
Then, as illustrated in Figure 4(a), we project the support set Sup? , and Sup! p into the partitions,
and the non-empty projections should be A? = {1,2,3}, A = {8}, Bi={1}, B = {4,6} and B = {8}.
Correspondingly, the support set should be Sup? = {1, 3} and SupB = {1 2,3}. With the above

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:9

4B}
[201]n [111]= 101
7\

A3nB}| | A3nB3

l l

aingt) [AtnBi

Bitmap Tree
Structure

AL AL Al Ag

(a) Set A = {1,4,5,7,9,22} (b) Set B ={1,2,10,17,18,24} (c) Set Intersection

Fig. 5. An example of the SIB-tree index and intersection method. (a) The SIB-tree structure of set A; (b) The
SIB-tree structure of set B; (c) The intersection procedure using the SIB-tree structure.

pre-computation, we can execute the multi-layer intersection as follows, which is also illustrated
in Figure 4(b).

(1) R? = SupIZA N Supf3 ={1,3}

@) R = Upere (420 B?) = (A2 N BY) U (420 B) = (1.8);

(3) ANB=Ujcp (A] NB}) = (A] N B}) U (A3 N B) = {1}. [

Time Complexity. The complexity of online set intersection in our HERO framework is highly
related to a particular algorithm used in the subtask Intersection(-, -). Assume that the complexity
of procedure Intersection(A, B) is O(f(]Al, |B|)), where |A| and |B| are the size of sets A and B,
respectively. The complexity of hierarchical online set intersection comprises of the cost of all the

subtasks involved, i.e., O(Zf’=1 DicRrh f(|A§|, |B€|) +f(|SupZ|, |Sup}é|)).

4 BITMAP-BASED SET INTERSECTION
4.1 Set Intersection Using Boolean AND Over Bitmaps

In the HERO framework (as illustrated in Algorithm 1), one of the most fundamental and important
operators is the subset intersections in subtasks (i.e., join two subsets to obtain their common
elements). While we can plug in any existing set intersection method, in this paper, we use bitmap
synopses to encode subsets and apply bit AND operator to enable the subset intersection.
Bitmap: Let d be the size of the set element domain. We define the bitmap, BM(Z), for a subset Z
as follows.

Definition 4.1 (Bitmap for a Subset, BM(Z)). Given a set Z, a bitmap, BM(Z), of set Z is a bit
vector containing d bits. If there exists an element z € Z such that f(z) = pos, then BM(Z)[pos] =1
holds; otherwise, we have BM(Z)[pos] = 0, where f(z) is a hash function that maps an element z
to an integer pos within the range [0, d).

Boolean AND Over Bitmaps: Given two subsets X; and Y;, we can obtain their intersection
X; N'Y; (i.e., subtask) by using Boolean AND over their bitmaps, that is, BM(X;) A BM(Y;). Then,
we can obtain those non-zero bit positions, pos, in the bitmap AND result, and their corresponding
elements are common elements between subsets X; and Y;.

Discussions on the Advantages of Using Bitmaps for HERO:

Boolean AND operators are strictly constrained by the size of an operand register, also known
as the word length. Thus, for the universal set S of large size (i.e., large element domain size), it is
not efficient to directly perform Boolean AND operators over bitmaps of large size d. Assuming
the word length is 64 and the graph contains more than a million vertices, it implies that more
than 10,000 words are needed to encode a set using bitmaps, which leads to costly boolean AND
operations to conduct a set intersection task. There are several methods that adopt the bitmap, such

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

29:10 Boyu Yang et al.

as the compressed bitmap method Roaring [6] and the SIMD-based method QFilter [14]. However,
these methods have to conduct merge operations that perform vertex-wise comparisons during the
intersection procedure. In other words, the set intersection partially benefits from the advantage of
bitmaps (i.e., supporting bit-wise parallel comparisons).

In contrast, our HERO framework recursively decomposes the set intersection task into small-
sized subtasks, until each subtask can be efficiently handled by a single boolean AND instruction.
Hence, our HERO is scalable for the intersection over sets of large domain sizes.

4.2 SIB-Tree Structure

In this subsection, we discuss how to design a set intersection bitmap tree (SIB-tree) structure to
facilitate our proposed HERO framework for the set intersection.

Ordered Partitioning. Before introducing the details of the SIB-tree, we would like to unify the
space partitioning in a natural way at first. To sufficiently leverage the advantage of the boolean
AND operator, for subsets in varying-level space partitions, it is necessary to maintain a shared size
of w which refers to the machine’s word length. Given a universal set S', it can be simply partitioned
into n; = ["l—v;l] subsets S!, . ..,Sfll, where Sf ={jeSw-(i-1) <j<w-i}andn_; = |S!]. We
call this partitioning strategy an ordered partitioning. Clearly, the ordered partitioning is sensitive
to the element orderings, and we will discuss the impact of various orderings in Section 5.

Let us recall the offline set decomposition in the HERO framework. Subset projections are
performed from the I-th level to (j + 1)-th level recursively. It naturally produces a tree structure,
where each node represents a non-empty subset projection as shown in Figure 5. Following the
tree, we can build an SIB-tree for each set to facilitate the boolean AND operation.

Definition 4.2 (Set Intersection Bitmap Tree, SIB-tree). Given a set A, its SIB-tree is denoted by
T(A), where each node Tl.l (A) represents a non-empty subset projection Ag in a bitmap format and
contains two attributes: base value and bitmap value.

e The base value, denoted by Tl.l (A).base, is set to i, which implies that the elements of Aﬁ fall
in the range (w - (i — 1), w - i].

e The bitmap value, denoted by Tl.l (A).bit, is a w-bit bitmap whose k-th bit indicates whether
or not the element w - (i — 1) + k is involved in Aﬁ.

e The root node of the SIB-tree T(A) is Tlh (A), where h = [log,, |S|]. The h-th level universal
set S" has no more than w elements, such that the corresponding h-th level subtask can be
solved by a single boolean AND instruction.

e The nodes {T}(A)}}, constitute the leaf nodes.

e For each node Tl.l (A), its child nodes are {T!™! (A)}ueAﬁ-

It is clear that the [-th layer nodes of the SIB-tree T(A) represent the [-th level non-empty
subset projections {Aé}ieSupg . Furthermore, the base value of a node tells which subset projection
it represents in the corresponding level. Therefore, according to the HERO framework, the boolean
AND operators only occur between nodes from two SIB-trees that locate on the same level and

share the same base value.

Example 4.3. We follow the setting of S, A, B, and the space partition of S in Example 3.4. We
first consider the bottom layer of T(A). According to the Example 3.4, the non-empty 1st-level
subset projections of A are Al = {1}, A} = {4,5}, A} = {7,9}, A} = {22}. Hence, there are 4 nodes
T} (A), T} (A), T} (A), and T{ (A) in the bottom layer of T(A). The corresponding pairs of base value
and bitmap value are (1,001), (2,011), (3,101), and (8,001), respectively. We then consider the
2nd layer. The non-empty 2nd-level subset projections of A are A? = {1,2,3}, and A = {8}. Thus,
the 2nd layer nodes are TZ(A) and T?(A), together with the pairs of base value and bitmap value

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:11

(1,111), and (3, 010), respectively. The 3rd level has only one subset projection Ai’ = {1, 3}, which
refers to the root node T; (A) with the base and bitmap value (1, 101). We deliver an illustration of
T(A) in Figure 5(a). The construction of T(B) is similar, so we skip the description and just show
its illustration in Figure 5(b). u

SIB-Tree Construction: Given a set A, we construct T(A) in a bottom-up manner, progressing
layer by layer. To construct the lowest layer (leaf nodes) of T(A), it is necessary to compute subset
projections A} = AN S}, where i ranges from 1 to n;. For each non-empty subset projection A}, a
leaf node T;' (A) should be generated based on the SIB-tree definition. To establish the I-th layer of
T(A), where 2 < j < d, we need to follow the subsequent steps.

(1) Collect the base value of the nodes in the (j — 1)-th layer, where each node corresponds to a
non-empty subset projection. Thus, all the base values in this layer constitute the support set
Sup/[!

(2) Project Supi_1 into the [-th level space partitions {Sf }
{ANL.

(3) For each non-empty subset projection Af, a new node Tl.l (A) is created. For each e € Aﬁ, we set
Til (A) as the parent node of T'~'(A).

Offline Complexity: For a wide range of graph analytics algorithms, the set intersection operations
are conducted on the neighborhoods of several vertices. Therefore, we can construct an SIB-tree
for the neighbors of each vertex during the offline stage. Since the total number of leaf nodes is
no more than |E|, and the height of the SIB-tree is bounded by O(log |E|), the space complexity of
such an offline computation is bounded by O(|E| log |E|). Furthermore, each SIB-tree node will be
traversed at most once during the SIB-tree construction. Hence, the time complexity of the offline
computation is also bounded by O(|E|log |E|).

nj

i21» leading to the subset projections

4.3 SIB-Tree Based Intersection

Algorithm 2 shows how to calculate the set intersection using the SIB-tree structure in a depth-first
manner. The algorithm employs a recursive approach, utilizing a helper function that takes a pair
of vertices, denoted as (vg, vp), from T(A) and T(B) respectively, as input. These vertices share the
same base value and depth (line 4).

Helper Function: The helper function first performs a boolean AND operation on the bitmap
values of v, and v}, (lines 5-6). Then, an iterator is created based on the shared base value of v, and
vp, along with the result of the boolean AND operation (lines 15-20). The subsequent steps depend
on whether the input vertices v, and v, are leaf vertices. If they are, each element in the iterator is
directly added to the intersection result (lines 8-9). However, if they are not leaf vertices, the helper
function iterates through each element in the iterator. If the iterator is empty, it backtracks to the
last uncompleted subtask. For each element, it identifies the child vertices of v, and v, (referred to
as child, and childy, respectively) whose base value matches the given element from the iterator
(lines 12-13). Finally, the helper function recursively executes itself with child, and child, as input
parameters (line 14).

Iterator Function: A base value and a bitmap value actually encode a set given a word length
w. This iterator function is used to enumerate the elements contained in the set it encodes. The
process is depicted in Algorithm 2 (lines 15-20). More specifically, in each iteration, the minimum
element contained in the encoded set is computed by line 18, and then the bitmap value is updated
by setting the first “1” bit to “0” (line 19).

Auxiliary Functions: Algorithm 2 includes two functions that require further clarification. The

first function is FindChildNode(-). It takes a vertex v from the SIB-tree T and a query pos as inputs.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

29:12 Boyu Yang et al.

Algorithm 2: SIB-Tree Based Intersection

Input: T(A), T(B), word length w, and tree height h.
Output: the result of intersection R = AN B.

res « 0

Helper (T!(A), T!(B),res)

return res

=

Function Helper(v,, vp, res):
bit, < v,.bit, bit, < vp.bit
bit « bit, & bity,
base < v,.base
if v, and vy, are leaf vertices then
res.extend(Iterator(base, bit, w))
else
for i in Iterator (base, bit,w) do
child, «FindChildNode (v, i)
child, «FindChildNode (vp, i)
Helper (child,, childy, res)

O 0 N G e W N

=
w N =9

[
IS

15 Function Iterator(base, bit, w):

16 res «—

17 while bit > 0 do

18 res.push_back((base — 1) * w + Ffs(bit))
L bit « bit&(bit — 1)

20 return res

19

It returns a child vertex of v whose base value matches pos. The specific implementation details
of FindChildNode(-) are dependent on the structure of the SIB-tree. The second function is Ffs(-),
which is the acronym for “Find First Significant”. Taking a bitmap as the input, the Ffs(-) function
finds its lowest significant bit (i.e., the first “1” bit) and returns the corresponding index. With the
help of Ffs(-) function, we can construct an iterator to enumerate the elements contained in the set
encoded by a base value and bitmap value pair as discussed above. The GCC compiler provides
efficient implementations of Ffs(+), such as the __builtin_ffs(-) for 32-bit unsigned integers and the
__builtin_ffsl(-) for 64-bit unsigned integers.

Example 4.4. Based on the SIB-trees T(A) and T(B) constructed in Example 4.3, we illustrate how
to conduct ANB as shown in Figure 5(c). First, we input the pair of root nodes (T} (A), T} (B)) into the
helper function. The boolean AND operator is conducted on their bitmap values, i.e., 101&111 = 101.
The iterator function can help us decode the boolean AND result 101 and the base value 1 into the
set {1,3}. Hence, we need to find child node pairs (T?(A), T?(B)) and (T?(A), T?(B)), and feed them
as input into the helper function sequentially. So far, we have accomplished a complete procedure
of a helper function. The rest of the intersection process is similar.]

Time Complexity: As outlined in Algorithm 2, the time cost of the SIB-tree based intersection
mainly comes from the following three parts: (1) Computing intersection using boolean AND
operator (lines 5-6). (2) Constructing the iterator (line 9 and line 11), whose time cost depends on
the size of the iterator. (3) The invoking of FindChildNode(-) (lines 12-13) with the cost O(1). It

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:13

is easy to find that each node in the SIB-tree will be traversed once at most in the intersection
procedure. Furthermore, the times of invoking the boolean AND operator and FindChildNode(-)
procedure are both bounded by the number of nodes that are traversed in the SIB-tree based
intersection calculation. Hence, the time complexity is bounded by O(|T(A)| + |T(B)|), where
|T(A)| represents the size of T(A) (i.e., the number of nodes in T(A)). The construction of Iterator
can be divided into leaf case (line 9) and non-leaf case (line 11). For the leaf case, the union of all the
iterators equals R. Thus, the time complexity is bounded by O(|R|), where R refers to the result of
the intersection. As for the non-leaf case, it is clear that each element in the iterator corresponds to
two FindChildNode(-) procedures. Therefore, the time cost is also bounded by O(|T(A)| + |T(B)|).
In summary, the time complexity of SIB-tree based intersection is O(|T(A)| + |[T(B)| + |R|).
Discussion on On-the-fly Intersection: If the sets for intersection are given on the fly, we have to
construct the SIB-trees online. However, as long as the SIB-tree index is constructed, the subsequent
intersection calculation can be accelerated. Especially, for the sets that are frequently involved in
the intersection tasks, it will be beneficial if the corresponding SIB-trees are constructed.
Trade-off Between Online and Offline Computations. As mentioned in Section 4.2, we would
like to construct SIB-trees for the neighbors of all vertices offline if it is allowed. However, if the
offline computation resource (either time or space) is limited, there is an alternative to construct
SIB-trees only for a subset of vertices. Intuitively, vertices that are frequently involved in the graph
set intersection tasks are recommended to be selected.

5 GRAPH REORDERING

Section 4.2 recursively partitions/projects (support) sets onto subsets (partition ID subsets) by using
the ordered partitioning as the space partition. Different space partitioning/projections may lead
to different subsets, which in turn result in distinct SIB-tree performance. We find that different
orderings of graph vertices may lead to different space partitions. Therefore, our basic idea of the
graph reordering is to assign each vertex in the data graph G a new vertex ID, which equivalently
reorders those vertices and obtains a better partitioning/projection strategy for the SIB-tree.

Example 5.1. We follow the settings of S, A, and B in Example 3.4. The reorder rule is illustrated
at the top of Figure 6. Each vertex in S will be assigned a new ID, and the reordered set will be sorted
according to the new IDs. Sets A and B are {1,2,3,4,5,6} and {1,7,8,9, 10, 11} after reordering,
respectively. We also present the SIB-trees of reordered sets A and B in the Figure 6. The reordered
SIB-trees of both sets A and B contain fewer tree nodes than the original SIB-trees in Figure 5 (4 v.s.
7, and 6 v.s. 8). Furthermore, the intersection task A N B needs to handle only 3 subtasks based on
new SIB-trees, which gains a significant improvement over the original order that has 5 subtasks.m

In fact, arbitrary partitioning can be exploited to build the SIB-tree only if it can produce equal-
sized partitions Sy, Sy, .. ., and S,. Any such a partitioning can obtained by performing the graph
reordering and ordered partitioning. More specifically, we derive the vertex ID assignment rule
¢ : Z — Z, where for each vertex u’s ID u.ID € §; it holds that ¢(u) =w - (i — 1) + |{v € S;|v.ID <
u.ID}|. We can find that {¢(v)|v € S;} = {j € Z|w - (i — 1) < j £ w - i}. In other words, if we
conduct the ordered partitioning according to new vertex IDs, the vertices contained in any S; will
still be contained in the same partition. Hence, the new partitioning results are equivalent to the
original partitions.

In this section, we aim to develop a novel graph reordering method to optimize the performance
of the proposed HERO approach. As discussed in Section 4.3, the time complexity of Algorithm 2
is bounded by the size of the SIB-tree as each vertex in the SIB-tree will be traversed at most once.
Thus, the objective for the graph reordering task is to minimize the total size of the SIB-tree
for all vertices v in the graph G = (V, E). This target serves as a starting point in our approach

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

29:14 Boyu Yang et al.

Original ID 1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 2122 2324 25 26 27

I T O e A A A EEEEER

NewID 1 7 12 2 3 13 4 14 5 8 151617 1819 20 9 10 21 22 23 6 2411 25 26 27
Reordered set A= 1,2,3,4,5,6 Reordered setB = 1,7,8,9,10,11

|111|111|000§OOO§000 000:000 OOOEOOO

1 1
1 2

SIB-tree of reordered set A SIB-tree of reordered set B

Fig. 6. A motivating example of the reordering.

and can be mathematically formulated as follows:

min £(G) =) [T(N ()], 3
veV
where |T(N(v))| is the size of the SIB-tree T(N (v)). For simplicity, we would like to abbreviate
T(N(v)) as T(v). Please note that the SIB-tree of the set which contains a single element v is
denoted as T({v}). Thus, the abbreviation will not lead to ambiguity.

Although we can consider different graph orders that lead to distinct SIB-trees and different
intersection performance, it is computationally expensive to determine the optimal graph order
(e.g., if we construct an SIB-tree for each graph order). To address this problem, we propose a
hierarchical balanced graph partitioning (HBGP) strategy, which helps us compute the size of the
SIB-tree index without constructing it. Next, we first introduce the definition of HBGP in Section 5.1.
Then, we will describe how to compute the size of the SIB-tree index through HBGP, followed by
the hardness analysis in Section 5.2. Finally, we develop an efficient heuristic algorithm to solve
the HBGP problem in Section 5.3.

5.1 Hierarchical Balanced Graph Partitioning

Balanced Graph Partitioning: Given a graph G = (V, E) and an integer n, the classical balanced
graph partitioning (BGP) problem asks to split the vertices V into n disjoint and equal-sized subsets
Py, ..., P, such that the edge cut is minimized, where the edge cut is the number of the edges whose
two vertices belong to different subsets [2]. The BGP is known as an NP-complete problem [2].
In BGP, the optimization target is to minimize the number of crossing edges, which can be

reformulated as:
n

%Zn:Z|{UEN(u)|U¢Pi}|=%ZZ‘N(u)\Pi’. (4)

i=1 uePb; i=1 uePb;

By denoting the cost of a subset P; as

cost(P;) = é >IN\ P, (5)

ueP;

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:15

Algorithm 3: General Greedy Paradigm for BGP
Input: Graph G = (V, E), number of partitions n
Output: The partition result .

1w e [

2 Initialize Py,...,P, as 0
3C<V

4 fori=1tondo

5 while |P;| < w do

6 if P; = (then

7 ‘ u < Random pick from C

8 else

9 L u «— arg minyec cost(P; U {u})
10 C«—C\{u}
11 P; « P, U{u}

12 return P

we can rewrite the cost function of BGP as a general form

n

L(P) =) cost(P), ©)

i=1

where P = {Py,..., P,}. Therefore, by defining different partitioning costs, it is easy to derive a
wide class of generalized BGP. Note that we say the partitioning cost satisfies the locality if the
cost of a partition is determined only by itself and is independent of other partitions, such that
the cost of a partition can be computed during the construction procedure. Thus, the generalized
BGP can be approximately solved by using a general greedy paradigm, as shown in Algorithm 3.
It sequentially constructs the subsets following the greedy heuristic. Each subset P; is initialized
as an empty set (line 2), and a candidate set C is initialized as V (line 3). The construction of each
subset P; is an iterative procedure (lines 5- 11). In each iteration, a vertex in the candidate set C is
selected (line 9) and inserted into the subset (line 11), such that the cost of the subset after insertion
is maximized. Meanwhile, the vertex will be removed from the candidate set C once it has been
selected (line 10).

Hierarchical Balanced Graph Partitioning: The graph partitioning problems above just divide
the vertices through a unified granularity, however, it is required to partition the graph hierarchically
in some cases. The hierarchy can be comprehended from two different perspectives. The first one is
from top-down, that is, first dividing the graph into coarse-grained partitions and then dividing each
partition into finer-grained partitions recursively. The second one is from bottom-up, that is, first
dividing the graph into fine-grained partitions and then merging the partitions into coarser-grained
partitions recursively. The partitioning result of HBGP is a balanced tree, where each node refers
to a subset of the vertices, i.e., the union of the subsets referred to by its child nodes.

Definition 5.2 (Hierarchical Balanced graph partitioning problem, HBGP). Given a graph G =
(V,E) and a width parameter w, a h-level HBGP aims at partitioning V into h groups of subsets

P = {{PI}11 }" . such that

1) m = |'|LW|'|.Forl: 2to h,ny = "L,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

29:16 Boyu Yang et al.

(2) Forl=1toh, {Pl.l}?zll is a group of disjoint subsets of |V|, where each subset Pf has no more
than w - j vertices.

(3) For [= 2 to h, each subset in {Pll}:z:’1 is the union of w subsets in {Pf_l}?:lil at most.

(4) The total cost L(P) = Zflzl DI cost(Pl.l) is minimized, where cost(Pf) isdefined as | UuePf N(u)|.

Similar to the BGP, it is convenient to represent a result of HBGP by reordering the graph. That

is, for each subset Pil, we always assign the ID of its vertices from 1 + witi=J . (i—1)to wiati=j .,

5.2 Computing SIB-Tree Size via HBGP

Given a hierarchical partitioning $, we can build a bipartite graph 8 = (B}, B,, Eg) as follows.
For each vertex u in G, it will be contained in the left part ;. While for each subset Pf in P, we
abstract it as a vertex in the right part B,. For each pair of vertices (u, Pil), we add an edge between
them if and only if the intersection of the corresponding subset Pil and N (u) is non-empty. Let
Tll(u) € T(u) denote that there exists a node in the [-th layer of SIB-tree T(u) such that its base
value equals i.

LEmMMA 5.3. Given a graph G = (V,E), a hierarchical partitioning P and the corresponding
bipartite graph A = (By, B,,Eg), for eachu € By andpf. € B,, it holds that (u, pf) € Eg if and only
llel(u) € T(u).

Proor. We just give a proof sketch of mathematical induction. For each Til (u) € T(u), the target
is to prove that N'(u) contains at least one vertex in the Pf . It is trivial for [= 1. For the case
I > 2, the key idea lies in that Tl.l(u) € T(u) is equivalent to Til,‘l € T(u) for at least one of the
w(i—1) < i’ < wi. Then, combining the proved case of [-1, the correctness of case l is achieved. O

THEOREM 5.4. Given a graph order, the optimization target L(G) defined in Equation (3) is equiva-
lent to the cost of HBGP induced by the order. That is,

h n
LG = Y IT@I=L£P) =Y > | | Mw)|)

veV I=1 =1 yep!

Proor. The proof can be achieved by counting the edges in the bipartite graph B in two different
ways, i.e., summing up the degrees of all vertices in the left and right parts. Lemma 5.3 implies that
the sum of degrees of the left part equals £(G). According to the definition of edges in B, the sum
of degrees of the right part equals £(#). Hence, the theorem is proved. O

Theorem 5.4 implies that optimizing the graph ordering is as difficult as solving the HBGP
problem. which is NP-hard as shown next.

THEOREM 5.5. The hierarchical graph partitioning problem cannot be solved in polynomial time
unless P = NP.

Proor. The proof can be achieved by reducing from the 3-partition problem, which is known
as an NP-complete problem [13], to the HBGP problem. For each 3-partition problem instance P1,
we can construct a corresponding HBGP instance P2. Then, determining whether P; has feasible
solutions or not according to the solution of P2 will be given, and its correctness will be proved. In
this way, we can prove that HBGP is not easier than the 3-partition problem, which implies that
HBGP is NP. O

Due to space limitations, we will provide complete proofs of lemmas/theorems in a technical report
after the paper publication (for the double-blind reason) and omit them here.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:17

Algorithm 4: Greedy Algorithm for HBGP

Input: Graph G = (V, E), word length w

Output: The hierarchical balanced graph partitions P.
1 h« [%], ny « 1
2 fori=2tohdo

3 nj < f%

4 for!=1ton;_; do

5 left — w(j—-1)+1

6 right « min(wj, n;)

7 Reorder (left, right, wé*1=7)

8 Function Reorder(left, right, w):
9 C « {v € V|left < OID[v] < right}

10 P20

11 for u = left toright do

12 if P = () then

13 ‘ v «— arg maX,ec deg(v)

14 else

15 L v « arg min,ec cost(P U {v})
16 OID[u] « v

17 P— PU{v},C« C\ {v}

18 if |P| = w then

19 L P20

5.3 Heuristic Algorithm

Since the hierarchical balanced graph partitioning problem is intractable, we propose an efficient
greedy heuristic algorithm. Based on the HBGP definition, a naive heuristic idea is to divide the
HBGP problem into several BGP problems and solve them orderly, either top-down or bottom-up. In
this paper, we adopt the top-down heuristic. The reason behind this is that the top-down heuristic
prioritizes minimizing the number of high-level nodes in the SIB-tree. Consequently, space pruning
is more likely to occur at the high-level intersection subtasks. The pseudocode of the heuristic
algorithm is outlined in Algorithm 4, where the cost function in Line 15 is defined as

cost(P) = ’ U N(u)‘ (8)

uepP

For the procedure Reorder(left, right, w), we would like to store the set of candidate vertices C in a
heap. Hence, each greedy selection (Line 13 and Line 15 in Algorithm 4) equals popping an element
from the heap. The time complexity of a pop operation is O(log |C|). However, for each vertex v
which is still in the heap, we need to update the cost(P U {v}) according to the Equation (8) such
that we can correctly pop the next element. The fact is that the update procedure dominates the
time complexity of Algorithm 4. Consequently, we need to design an efficient way for the update.

Consider line 15 in Algorithm 4, an equivalent way to make the greedy selection is computing
the increment of the cost. That is, by denoting A(v|P) = cost(P U {v}) — cost(P), we can easily

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

29:18 Boyu Yang et al.

have

arg min cost(P U {v}) = arg min A(v|P). 9)
veC veC

To demonstrate the advantage of using A(v|P) for update, we would like to rewrite it at first. Let
N (P) denote U,ep N'(p). We have

A(v|P) = cost(P U {v}) — cost(P)
= IN(P)UN(v)| - [N(P)| (10)
= [N (0) \ N(P)].
Then we compare the difference between A(v|P) and A(v|P U {u}). According to the Equation (10),
we have A(v|P) > A(v|P U {u}).
A(o|P) = A(v|P U {u})

V@ \ NP - V@ \ (V) U N W) (1)
:’N(v) NN \N (P))\~

Equation (11) presents a direct and efficient update paradigm. It involves traversing the neighbors
of each vertex in N'(u) \ N (P). Throughout this traversal, we keep track of the occurrence count
for each vertex.

6 EXPERIMENTAL STUDY
6.1 Experimental Setting

Datasets. We use ten real graph datasets from SNAP [21] and KONECT [18] to evaluate the
proposed SIB-tree based intersection method. Detailed statistics of graph datasets are listed in
Table 1.

Tasks. We evaluate the SIB-tree based intersection method through the following three tasks.

(1) How does the SIB-tree based intersection accelerate the set intersection operation?

(2) How does the SIB-tree based intersection accelerate the graph algorithms that take the set
intersection operation as a built-in block?

(3) How do different graph orders influence the performance of SIB-tree based intersection?

Competitors. We compare our proposed approach, denoted as SIB, with the following set intersec-
tion competitors over graphs.

(1) Merge intersection [12] is a classic method that scans to merge both sets at the same time;

(2) Roaring bitmap [6] is a compressed bitmap method, which is widely used in the database
field;

(3) QFilter [14] is the state-of-the-art SIMD-based set intersection method, and;

(4) Range [31] is an efficient approach that adopts a reducing-merging framework.

Offline cost. Note that, all the competitors (except for the merge intersection) together with our
SIB method are index-based approaches. We report the offline computation cost of these methods
(i.e., the time of building the index for all vertices in a given graph) in Table 2. It shows that the
SIB method is the most efficient for the index construction on most graphs (except for graphs TW,
WG, CY, and SP). Furthermore, the space cost of these methods is also reported in Table 2. In the
following subsections, we will focus on the online cost (instead of the offline cost).

Reproducibility. All experiments are conducted on a Linux Server equipped with Intel(R) Xeon(R)
CPU E5-2640 @ 2.60GHz and 128G RAM. All algorithms used in the experiments are implemented

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:19

Table 1. Statistics about graphs used in the experiments, where |V|, |E|, and d denote the number of vertices,
edges, and the average degree, respectively.

Graph Short Name V]| |E| d
Twitter ™ 81,306 1,768,149 43.5
Gplus GP 107,614 13,673,453 254.1
web-BerkStan WB 685,230 7,600,595 22.2
web-Google WG 875,713 5,105,039 11.7
com-Youtube CY 1,134,890 2,987,624 5.3
soc-pokec SP 1,632,803 30,622,564 37.5
as-skitter AS 1,696,415 11,095,298 13.1
Flickr-links FL 1,715,254 15,551,250 18.1
Wiki-Talk WT 2,394,385 5,021,410 4.2
LiveJournal L] 3,997,962 34,681,189 17.3

Table 2. Offline performance of 4 methods for constructing indices on 10 graphs, including both time cost
and space cost.

Method ™ GP WG CY WB FL AS SP LJ WT

Roaring 325 628 1,663 1,032 746 2,116 2,606 5,687 13,305 1,460

Time QFilter 265 2,354 747 587 1,173 2,996 2,128 5,220 8,890 834
(ms) Range 42,524 | 1,734,520 | 269,423 | 392,762 | 3,174,943 | 2,478,530 | 3,216,431 | 3,645,284 | 12,308,925 | 5,487,410
SIB 279 379 2,120 976 259 1,389 1,070 8,150 4,716 634

Roaring 6 48 37 59 28 103 95 205 427 57

Space QFilter 8 84 66 37 35 162 99 319 479 59
(MB) Range 11 94 27 36 53 125 91 176 342 45
SIB 12 67 105 85 54 277 221 622 1,135 162

in C++ and compiled by GCC v7.3.0 with -O3 option. Anonymous source code and data are available
at: https://anonymous.4open.science/r/ HEROFramework-126E/.

6.2 Accelerating Set Intersections

Following the previous research [31], we use two groups of query sets for global intersection and
local intersection for each graph. The global intersection group contains 100, 00 pairs of randomly
selected vertices to compute their common neighbors. The local intersection group contains 10, 000
pairs of randomly selected adjacent vertices to compute common neighbors. The results of global
intersection and local intersection are presented in Figure 7 and Table 3.

Speedup of our approach. To evaluate the performance of the proposed SIB method, we compare it
with the merge intersection and three state-of-the-art algorithms, that is, the compressed bitmap
method Roaring [6], the SIMD-based method QFilter [14], and the reducing-merging method
Range [31]. We report the speedups compared to the merge intersection as shown in Figure 7,
where the elapsed time of the merge intersection is taken as the baseline with speedup=1.0x. We
find that the SIB method consistently outperforms three baselines on 8 of 10 graphs for both global
intersection and local intersection tasks. Specifically, on the graph web-BerkStan, the SIB method
achieves significant speedups, up to 181.00x and 83.33x on global and local intersection tasks,
respectively. Averaged on 10 graphs, the SIB method accelerates the global and local intersection
tasks by 26.50x and 16.17x, respectively. We show the running time of the merge intersection
algorithm in Table 4 (the columns “GI” and “LI” refer to global and local intersections, respectively).
The running time of other algorithms can be easily inferred through the corresponding speedups.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

https://anonymous.4open.science/r/HEROFramework-126E/

29:20 Boyu Yang et al.

181.00x 83.33x

1.0)
-
v

oy
2

Roaring
QFilter
27.40x Range
13.30x SIB

5.88x 6.12% | 6.26x 7284 554x 508y 646X

1.0)

Roaring
35.25x QFilter
Range
9.08x SiB
6.40x 6.19x

4.57; 4 4.71x
4.20x 57x 3.38x 56x

H

2
A
2

Speedup (merge
i
<

Speedup (merge

-
2

T™w GP WG CcY wB FL AS SP u wWT T™w GP WG CcY wB FL AS SP u wWT

(a) Global Intersection (b) Local Intersection
Fig. 7. Speedup on global and local intersections.

Table 3. Number of comparisons (x10°) involved in the merge intersection and our proposed SIB method,
when performing the global intersection and local intersection tasks on 10 graphs.

Task Method | TW| GP|WG| CY| WB FL| AS| SP| LJ| WT
Merge | 18.7|121.3 | 47.8 |47.8|170.0 | 123.7 | 163.7 | 19.9 | 79.9 | 141.9
SIB 09| 80| 5.7 2.1 02| 82| 16| 1.5| 73| 9.5
Merge | 10.6| 79.6 | 27.4|22.3|155.7| 79.8|134.3|15.147.5| 13.4
SIB 04| 26| 03| 03| 02| 24| 02| 04| 1.2| 0.4

Global Intersection

Local Intersection

»

Table 4. The running time of each task on 10 graphs, using the merge intersection method. “~” indicates that

the algorithm fails to complete within 10 days.

Graph GI(ms) LI(ms) TC(ms) MC(s) SL(s)
™ 47 21 682 216 177
GP 665 236 58,289 - 190,856
WG 263 32 1312 19 143
CY 98 32 2,447 22 438
WB 181 250 28,506 842 4,274
FL 389 130 49,627 - 84,087
AS 274 141 39,583 1,699 5,699
Sp 72 27 10,337 71 1,503
LJ 249 73 26,780 - 9,414
WT 439 33 4,257 1,856 2,560

The number of comparisons. Table 3 reports how many comparisons each intersection method

demands on the global and local intersection tasks. For the merge intersection method, one com-
parison just refers to comparing a pair of vertices. For our proposed SIB method, one comparison
refers to invoking the boolean AND operator once. Although the specific comparison operations
are different, we find that there is a significant gap in the number of comparisons. For both global
intersection and local intersection tasks, the merge intersection takes 10x-100x comparisons more
than our proposed SIB, which may explain why the SIB method is much faster than the merge
intersection method.

6.3 Accelerating Graph Algorithms

In this section, we evaluate the performance of SIB method through three graph algorithms, that
is triangle counting (TC), maximal clique enumeration (MC), and subgraph listing (SL). For each
task, we report the speedups compared with the merge intersection method, where the merge
intersection is taken as the baseline with speedup= 1.0x.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:21

14.73x
5051x Roaring

QFilter

Range

5.33x 5.58x SiB
3.13x

88.80x Roaring
QFilter

Range

siB

1.0)
"
i3

1.0)

Roaring
QFilter
Range

4.35x
3386 3.07x 202 SiB

=1.0)
=
<

6.26x
22.09x

=
o

4.63x

i
o

7.43x

4.74x

2.61x
6.13x 2:07x = 1.85x

3.98x 4.31x

1.98x
1.27x &324

1.30x 1.35x

1.09x

Speedup (merge

=
)

o
)

Speedup (merge
=
<

Speedup (merge

TW GP WG CY WB FL AS SP L WT TW WG CY WB AS SP T WT TW GP WG CY WB FL AS SP L WT

(a) Speedups on TC task (b) Speedups on MC task (c) Speedups on SL task

Fig. 8. Speedups over the merge method in downstream tasks TC, MC, and SL.

Table 5. Overall speedups over merge method on 10 graphs.

Task Method Average Maximum Median Minimum
Roaring 10.82 72.35 2.56 0.84

TC QFilter 12.45 48.15 5.65 1.54
Range 4.84 31.64 1.54 0.73

SIB 14.23 88.80 4.53 1.27

Roaring 6.59 40.08 1.09 0.35

MC QFilter 14.14 75.24 3.68 1.70
Range 2.55 7.28 1.56 0.86

SIB 10.23 50.51 4.63 1.09

Roaring 3.50 11.20 2.20 0.94

SL QFilter 3.70 11.47 2.55 1.33
Range 1.25 1.60 1.23 1.07

SIB 4.26 14.73 2.99 1.35

Detailed speedups on each graph. Figure 8 illustrates the detailed performance of speedups on each
graph. Our proposed SIB approach achieves remarkable speedups in most cases. In all 3 tasks, SIB
consistently obtains higher speedups than Range on 10 graphs. Similarly, SIB outperforms Roaring
in most cases (except for the SL task on GP, FL, and WT). Even if our SIB approach does not utilize
any SIMD instruction, it is still competitive compared to the SIMD-based SOTA QFilter. Our SIB
approach outperforms QFilter on 10 graphs in the SL task. In the TC task, it also outperforms
QFilter on TW, GP, and WB. While in the MC task, QFilter exhibits marginal superiority on most
graphs (except for TW).

Overall speedups on each task. In addition, we present four overall statistics of speedups, namely
the average, maximum, median, and minimum speedups, in Table 5. With respect to the average
speedup, our SIB approach obtains 14.23x and 4.26x in TC and SL tasks, respectively, which
outperforms all the competitors. In the MC task, its average speedup also reaches 10.23x, only
less than QFilter (14.14x). As for the median speedup, which is more robust than the average,
our SIB approach performs better than all the competitors in MC and SL tasks (4.63x and 2.99x),
and achieves a second best in the TC task (4.53x). The maximum/minimum speedup is used to
characterize the performance of each method in the best/worst cases. Our SIB approach obtains the
best maximum speedups in TC and SL tasks (88.80x and 14.73x) and the best minimum speedup in
the SL task (1.35x). As for the maximum (minimum) speedup in the MC (TC and MC) task, our
SIB approach reaches the second best (50.51x, 1.27x and 1.09x), less than QFilter (75.24x, 1.54x and
1.70x).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

29:22 Boyu Yang et al.

Ale BFSR MLOGGAPA [Origin__ 7 MLOGGAPA 188.55x
. DFS SlashBurn 102l BFSR SlashBum 1,

3 Hybrid HBGP N HeGP

©1.4 n Hybrid

c °

> o 21.28x

2 8

o £ 11.1x N

S0 £ .

p %101 6.4 6.96x g 7.5 6.26x
& 3 A 5 . 6
806 g A 1 e[| 233x 2.56%]

[& H L .

o _ 0

P02 10° H’ ”

: ™ GP WG [93 wB FL AS SP L WT ™ GP WG [93 WB FL AS SP L wT
() Size reduction of SIB-tree index compared with (b) Speedups of SIB with different orderings on
the original order triangle counting task

Origin 7 MLOGGAPA 176.75x 102\ Origin [MLOGGAPA
510 BFSR SlashBurn s BFSR SlashBurn
- - DFS HBGP 49.57x ~ £~ DFs HBGP

Hybrid
4 .25x

96x
11.91x 87X 11.89x

el Ll T

.
o

Hybrid
3.59x%

H ll |

(c) Speedups of SIB with different orderings on (d) Speedups of SIB with different orderings on
maximal clique task subgraph listing task

9.63x
] 6.1

L

1
wB FL AS

X

4.78x

H\

[¥] WT Y

Speedup (merge
Speedup (merge
=
2

ﬂ nl mE

Fig. 9. Effect of graph orderings.

6.4 Evaluating Different Graph Orderings

In this section, we explore how different graph orderings benefit the SIB approach. In addition to
the proposed ordering HBGP, we adopt 6 existing graph orderings, including the original order,
BFSR [3], DFS [26], Hybrid [1], MLOGGAPA [11], and SlashBurn [22] as competitors, since they
are often used for the graph set intersection in previous studies like QFilter [14] and Range [31].
We report the performance of the ordering through two metrics, that is, the size of the SIB-tree
index and the speedup of SIB method on TC, MC, and SL algorithms. Note it is extremely expensive
to enumerate MC on the whole graph, we enumerate MC on 1% vertices for each graph in this
section.

Effect on the size of SIB-tree. The size information of the SIB-tree index is depicted in Figure 9(a).
For simplicity of comparison, we scale the data by the size of the SIB-tree index in original order.
We first consider the size of the SIB-tree index, which evaluates how well the ordering solves the
graph reorder problem proposed in Section 5. As shown in Figure 9(a), our proposed HBGP-based
ordering always constructs the SIB-tree index with minimal size among all the compared graph
orderings. We also find that the performance of each order becomes pretty similar when the average
degree of the graph is small. This phenomenon is intuitive because the small degree implies a
corresponding small optimization space.

Effect on the speedups. As for the speedups of three graph algorithms, we report each ordering’s
average speedup over 10 graphs in Table 6. For detailed speedup on each graph, the results are shown
in Figures 9(b), 9(c), and 9(d), respectively. Since the final target of reordering the graph is to improve
the performance of SIB method, we then focus on the speedups brought by different orderings.
According to the average speedups shown in Table 6, our proposed HBGP-based ordering beats all
the ordering baselines in the TC and MC tasks. As for the SL task, our proposed HBGP ordering
performs second only to the MLOGGAPA ordering. More specifically, the HBGP-based ordering
performs the best on all 10 graph datasets in the TC task. Similarly, except for the MLOGGAPA

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:23

Table 6. Average speedups over merge method on 10 graphs.

Ordering TC MC SL
Original 16.01 10.13 4.38
BFSR 14.09 14.26 4.45
DFS 16.34 17.03 5.92
Hybrid 12.54 21.09 4.82
MLOGGAPA 14.90 8.08 22.03
SlashBurn 13.73 9.63 4.86
HBGP 25.90 26.52 10.41

ordering, the HBGP-based ordering beats other ordering baselines on most of the graphs (8 of 10)
in the SL task.

We notice that besides the intersection method, the ordering itself also influences the execution
of all three tasks. To reduce this impact, we ensure that the times of intersection operations called
in the TC or SL task using different graph orderings are consistent across each graph. However, this
guarantee fails in the MC task, which may explain why the corresponding performance is irregular.

7 RELATED WORK

Set Intersection Acceleration: As we have mentioned before, existing researches about accel-
erating set intersection operation focus on how to leverage the SIMD hardware instructions for
parallelism. Works such as SIMDShuffling and SIMDGalloping [19] directly equip the scalar. and
galloping search algorithm with SIMD instructions, respectively. Hieralnter [23] includes three
algorithms for SIMD based merge intersection, which differ only in precision (8-bit, 16-bit and
32-bit). The BMiss [16] also improves the merge intersection method using SIMD instruction,
meanwhile reduces the branch mispredictions. The graph processing engine EmptyHeaded [1]
integrates both SIMDShuffling and SIMDGalloping algorithms and selects the better one at the
run time. Roaring [6] is a widely used type of compressed bitmap index, and the corresponding
library CRoaring [20] provides vectorized algorithms to compute union, intersection, difference,
which supports the SIMD acceleration. The QFilter [14] is a two-level intersection method, which
handles the high-level and low-level subtasks using SIMD based merge and bitmap intersection,
respectively.

Graph Reordering: The graph reordering is a widely used technique for the graph compression,
which reassigns vertex identifiers [3, 11, 13, 22, 26]. BFSR ordering [3] is a compact representation
for separable graph, which reorders the vertices by building a separator tree recursively. DFS
ordering [26] directly assigns vertices following the depth-first traversal. Hybrid ordering [1] first
rearranges the graph by BFS. Then, vertices are sorted in descending order of the degree, where
vertices with equal degree retain their BFS ordering. MLOGGAPA ordering [11] optimizes the
logarithmic gaps of vertices in the same neighbor heuristically. Slashburn method [22] reorders
the graph by iteratively removing hub vertices, such that its adjacency matrix consists of a few
nonzero blocks.

8 CONCLUSION

In this paper, we focus on accelerating the set intersection operator on the graph data without
the help of SIMD hardware instructions. We first propose the multi-level intersection framework,
which recursively separates the set intersection task into small-sized subtasks and solves them
independently. Then, we propose the SIB-tree index, which allow us to solve each subtask in the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

29:24

Boyu Yang et al.

multi-level intersection framework using bitmap and boolean AND operation. Consequently, the
intersection algorithm can totally get rid of the merge intersection framework.

ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation of China (No. U23A20496 and

No.

62072113), Shanghai Science and Technology Innovation Action Plan (No. 21511100401), and

Natural Science Foundation (NSF CCF-2217104).

REFERENCES

(1]
(2]

[10]

[11]

[12]
[13]

[14]

[15]
[16]
[17]

[18]

ABERGER, C. R., LaMB, A, Tu, S., NOTZLI, A., OLUKOTUN, K., AND RE, C. Emptyheaded: A relational engine for graph
processing. ACM Trans. Database Syst. 42, 4 (2017), 20:1-20:44.

ANDREEV, K., AND RACKE, H. Balanced graph partitioning. In SPAA 2004: Proceedings of the Sixteenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, June 27-30, 2004, Barcelona, Spain (2004), P. B. Gibbons and
M. Adler, Eds., ACM, pp. 120-124.

BranDFORD, D. K., BLELLOCH, G. E., AND KasH, I. A. Compact representations of separable graphs. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA
(2003), ACM/SIAM, pp. 679-688.

BrRENDEL, W., HAN, F., MaRrujo, L., JIE, L., AND KorOLOVA, A. Practical privacy-preserving friend recommendations on
social networks. In Companion of the The Web Conference 2018 on The Web Conference 2018, WWW 2018, Lyon , France,
April 23-27, 2018 (2018), P. Champin, F. Gandon, M. Lalmas, and P. G. Ipeirotis, Eds., ACM, pp. 111-112.

Bron, C., AND KErBoscH, J. Finding all cliques of an undirected graph (algorithm 457). Commun. ACM 16, 9 (1973),
575-576.

CHAMBL, S., LEMIRE, D., GODIN, R., AND KASER, O. Roaring bitmap : nouveau modeéle de compression bitmap. In Actes
des 10e journées francophones sur les Entrepots de Données et I’Analyse en Ligne, EDA 2014, Vichy, France, 5-6 Juin, 2014
(2014), S. Bimonte, L. d’Orazio, and E. Negre, Eds., vol. B-10 of RNTI, Hermann-Editions, pp. 37-50.

CHANDRAN, J., AND V., M. V. A novel triangle count-based influence maximization method on social networks. Int. }.
Knowl. Syst. Sci. 12, 4 (2021), 92—-108.

CHu, S., AND CHENG, J. Triangle listing in massive networks. ACM Trans. Knowl. Discov. Data 6, 4 (2012), 17:1-17:32.
Cur, W, X140, Y., WANG, H., Lu, Y., AND WANG, W. Online search of overlapping communities. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013
(2013), K. A. Ross, D. Srivastava, and D. Papadias, Eds., ACM, pp. 277-288.

DEMAINE, E. D., LOPEZ-ORTIZ, A., AND MUNRO,]. I. Adaptive set intersections, unions, and differences. In Proceedings
of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA (2000),
D. B. Shmoys, Ed., ACM/SIAM, pp. 743-752.

DuuLIPALA, L., KaBILjo, I, KARRER, B., OTTAVIANO, G., PUPYREV, S., AND SHALITA, A. Compressing graphs and
indexes with recursive graph bisection. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016 (2016), B. Krishnapuram, M. Shah, A. J. Smola,
C. C. Aggarwal, D. Shen, and R. Rastogi, Eds., ACM, pp. 1535-1544.

DING, B., AND KONIG, A. C. Fast set intersection in memory. Proc. VLDB Endow. 4, 4 (2011), 255-266.

GAREY, M. R., AND JoHNSON, D. S. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman, 1979.

HAN, S., Zou, L., AND Yu, J. X. Speeding up set intersections in graph algorithms using SIMD instructions. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018 (2018), G. Das, C. M. Jermaine, and P. A. Bernstein, Eds., ACM, pp. 1587-1602.

Huane, M,, JiaNG, Q., Qu, Q., CHEN, L., AND CHEN, H. Information fusion oriented heterogeneous social network for
friend recommendation via community detection. Appl. Soft Comput. 114 (2022), 108103.

INoOUE, H., OHARA, M., AND TAURA, K. Faster set intersection with SIMD instructions by reducing branch mispredictions.
Proc. VLDB Endow. 8, 3 (2014), 293-304.

KANG, J., ZHANG,]., SONG, W., AND YANG, X. Friend relationships recommendation algorithm in online education
platform. In Web Information Systems and Applications - 18th International Conference, WISA 2021, Kaifeng, China,
September 24-26, 2021, Proceedings (2021), C. Xing, X. Fu, Y. Zhang, G. Zhang, and C. Borjigin, Eds., vol. 12999 of Lecture
Notes in Computer Science, Springer, pp. 592-604.

KunEais, J. KONECT: the koblenz network collection. In 22nd International World Wide Web Conference, WWW
’13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion Volume (2013), L. Carr, A. H. F. Laender, B. F. Loscio, L. King,
M. Fontoura, D. Vrandecic, L. Aroyo, J. P. M. de Oliveira, F. Lima, and E. Wilde, Eds., International World Wide Web

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

HERO: A Hierarchical Set Partitioning and Join Framework for Speeding up the Set Intersection Over Graphs 29:25

[19]
[20]
[21]
[22]

[23]

[24]

[25]
[26]
[27]
[28]
[29]

[30]
[31]

Conferences Steering Committee / ACM, pp. 1343-1350.

LEMIRE, D., BoyTsov, L., AND Kurz, N. SIMD compression and the intersection of sorted integers. Softw. Pract. Exp. 46,
6 (2016), 723-749.

LEMIRE, D., KASER, O., KUrz, N., DERI, L., O'HARA, C., SAINT-JACQUES, F., AND Ka1, G. S. Y. Roaring bitmaps: Implemen-
tation of an optimized software library. Softw. Pract. Exp. 48, 4 (2018), 867-895.

LESKOVEC, J., AND KREVL, A. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data,
June 2014.

Lim, Y., Kang, U., AND FarouTsos, C. Slashburn: Graph compression and mining beyond caveman communities. IEEE
Trans. Knowl. Data Eng. 26, 12 (2014), 3077-3089.

SCHLEGEL, B., WILLHALM, T., AND LEHNER, W. Fast sorted-set intersection using SIMD instructions. In International
Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures - ADMS 2011,
Seattle, WA, USA, September 2, 2011 (2011), R. Bordawekar and C. A. Lang, Eds., pp. 1-8.

SHAO, Y., Cul, B, CHEN, L., Ma, L., Yao, J., AND Xu, N. Parallel subgraph listing in a large-scale graph. In International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014 (2014), C. E. Dyreson, F. Li, and
M. T. Ozsu, Eds., ACM, pp. 625-636.

SHOARAN, M., AND THOMO, A. Zero-knowledge-private counting of group triangles in social networks. Comput. J. 60,
1(2017), 126-134.

SHUN, J. Shared-memory parallelism can be simple, fast, and scalable. Morgan & Claypool, 2017.

SHUN, J., AND TANGWONGsAN, K. Multicore triangle computations without tuning. In 31st IEEE International Conference
on Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015 (2015),]. Gehrke, W. Lehner, K. Shim, S. K. Cha,
and G. M. Lohman, Eds., [EEE Computer Society, pp. 149-160.

WANG, N., ZHANG, J., TaN, K., AND TUNG, A. K. H. On triangulation-based dense neighborhood graphs discovery. Proc.
VLDB Endow. 4, 2 (2010), 58-68.

Yaozu, Cul, JunQIu, L1, XINGYUAN, AND WANG. Uncovering the overlapping community structure of complex networks
by maximal cliques. Physica, A. Statistical mechanics and its applications 415 (2014), 398-406.

ZECHNER, N., AND LiNGAs, A. Efficient algorithms for subgraph listing. Algorithms 7, 2 (2014), 243-252.

ZHENG, W., YANG, Y., AND P1a0, C. Accelerating set intersections over graphs by reducing-merging. In KDD °21: The
27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021
(2021), F. Zhu, B. C. Ooi, and C. Miao, Eds., ACM, pp. 2349-2359.

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 29. Publication date: February 2024.

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	1.1 Motivation Example
	1.2 Existing Methods and Limitations
	1.3 Our Contributions

	2 Problem Definition
	3 The Hierarchical Set Partitioning and Join Framework
	3.1 Set Partitioning and Join
	3.2 The Hierarchical Set Partitioning and Join (HERO) Framework

	4 Bitmap-Based Set Intersection
	4.1 Set Intersection Using Boolean AND Over Bitmaps
	4.2 SIB-Tree Structure
	4.3 SIB-Tree Based Intersection

	5 Graph Reordering
	5.1 Hierarchical Balanced Graph Partitioning
	5.2 Computing SIB-Tree Size via HBGP
	5.3 Heuristic Algorithm

	6 Experimental Study
	6.1 Experimental Setting
	6.2 Accelerating Set Intersections
	6.3 Accelerating Graph Algorithms
	6.4 Evaluating Different Graph Orderings

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

