
Received 1 March 2023; revised 26 June 2023; accepted 4 September 2023.
Date of publication 11 September 2023; date of current version 3 October 2023.

The associate editor coordinating the review of this article and approving it for publication was A. Savard.

Digital Object Identifier 10.1109/TMLCN.2023.3313988

A Deep Reinforcement Learning-Based
Resource Scheduler for Massive

MIMO Networks
QING AN 1, SANTIAGO SEGARRA 1 (Senior Member, IEEE), CHRIS DICK2,

ASHUTOSH SABHARWAL 1 (Fellow, IEEE),
AND RAHMAN DOOST-MOHAMMADY 1 (Member, IEEE)

1Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005 USA
2NVIDIA, Santa Clara, CA 95051 USA

CORRESPONDING AUTHOR: Q. AN (qa4@rice.edu)

This work was supported by the U.S. National Science Foundation under Grant CNS-1827940, Grant CNS-2016727,
Grant CNS-2120363, and Grant CNS-2106993.

ABSTRACT The large number of antennas in massive MIMO systems allows the base station to commu-
nicate with multiple users at the same time and frequency resource with multi-user beamforming. However,
highly correlated user channels could drastically impede the spectral efficiency that multi-user beamforming
can achieve. As such, it is critical for the base station to schedule a suitable group of users in each time
and frequency resource block to achieve maximum spectral efficiency while adhering to fairness constraints
among the users. In this paper, we consider the resource scheduling problem for massiveMIMO systems with
its optimal solution known to be NP-hard. Inspired by recent achievements in deep reinforcement learning
(DRL) to solve problems with large action sets, we propose SMART, a dynamic scheduler for massive
MIMO based on the state-of-the-art Soft Actor-Critic (SAC) DRL model and the K-Nearest Neighbors
(KNN) algorithm. Through comprehensive simulations using realistic massive MIMO channel models as
well as real-world datasets from channel measurement experiments, we demonstrate the effectiveness of our
proposed model in various channel conditions. Our results show that our proposed model performs very
close to the optimal proportionally fair (Opt-PF) scheduler in terms of spectral efficiency and fairness with
more than one order of magnitude lower computational complexity in medium network sizes where Opt-
PF is computationally feasible. Our results also show the feasibility and high performance of our proposed
scheduler in networks with a large number of users and resource blocks.

INDEX TERMS Massive MIMO, resource scheduling, deep reinforcement learning.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) is
one of the key technologies poised to radically

improve the spectral efficiency of the current 5G networks
and beyond. Through the use of tens or hundreds of antennas
at the base station, it can perform multi-user beamforming
to serve tens of users in the same time-frequency resource
block (RB). However, scheduling which users to serve simul-
taneously in each RB plays an important role in achieving
the large throughput gains promised by the massive MIMO
technology. Beamforming performance can be significantly
degraded if there is a substantial correlation in the wire-
less channels among the scheduled users, as this correlation

makes it challenging to effectively focus signal energy when
transmitting toward scheduled users. Similarly, separating the
signals received from multiple users becomes challenging
when their channels are correlated. In networks with high
user mobility, the channels of individual users and their
correlations with other users within each RB are rapidly fluc-
tuating. This dynamic nature of channel characteristics sub-
stantially increases the challenges associated with achieving
optimal resource scheduling for massive MIMO networks.
Specifically, fair scheduling of radio resources while max-
imizing spectral efficiency is essential in real deployments.
The formulation of the optimal Proportionally Fair (Opt-PF)
scheduling problem typically results in an integer linear

242
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 1, 2023

https://orcid.org/0009-0005-9070-9033
https://orcid.org/0000-0002-8408-9633
https://orcid.org/0000-0003-1898-5787
https://orcid.org/0000-0002-6963-033X

An et al.: DRL-Based Resource Scheduler for Massive MIMO Networks

optimization (ILP) problem with an NP-hard solution [1].
The large complexity associated with solving an ILP, when
the number of users and resource blocks is large, prohibits
designing optimal yet computationally feasible schedulers
that can work in the time-stringent 5G and beyond standards.
There is a large body of work [2], [3], [4], [5] that design
heuristics or approximation algorithms with low complexity
to optimize the spectral efficiency of the networks. However,
they either do not evaluate fairness at all or demonstrate poor
fairness. This is due to the fact that designing low-complexity
approximation algorithms for multi-objective combinatorial
optimization problems is typically hard [6].
In the field of artificial intelligence and machine learn-

ing, Markov Decision Processes (MDPs) [7] have emerged
as a powerful mathematical framework for modeling
decision-making problems under uncertainty. MDPs repre-
sent sequential decision processes as a set of states, actions,
and transition probabilities, where the goal is to find an
optimal policy that maximizes a predefined objective func-
tion, such as expected cumulative rewards. However, solv-
ing MDPs can be computationally demanding, especially
for complex problems with large state and action spaces.
To address this challenge, Deep Reinforcement Learning
(DRL) [8] has gained significant attention in recent years.
DRL combines reinforcement learning algorithms with deep
neural networks to approximate value functions or poli-
cies, enabling the handling of high-dimensional state spaces.
By leveraging the representation power of deep neural net-
works, DRL algorithms have achieved remarkable successes
in solving continuous and discrete action space problems in
various domains, including robotics [9], game playing [10],
and energy management [11]. Notably, DRL has also been
applied to solve complex combinatorial optimization tasks.
For instance, [12] has adopted DRL to solve the traveling
salesman problem, a classic combinatorial optimization prob-
lem. Similarly, [13] solves the covering salesman problem
through a DRL model. This motivates the need to explore
DRL as a potential tool to solve the optimal proportion-
ally fair resource scheduling for massive MIMO networks.
Instead of using an explicit mathematical model, decision
optimization in a wireless resource scheduler can be repre-
sented as a Markov Decision Process (MDP) whose obser-
vations and actions are guided by a well-defined reward
function. A DRL agent can then approach an optimum
MDP solution by learning from its interactions with the
wireless environment. The choice of the DRL model to
solve the resource scheduling problem is crucial in achiev-
ing high performance and scalability in terms of the num-
ber of users in real-world massive MIMO networks. In the
recent years, many DRL models for decision making in
discrete action space that fit the resource scheduling prob-
lem have been proposed. Deep Q-Network (DQN) [10],
Double DQN [14], Advantage Actor-Critic (A2C), Asyn-
chronous Advantage Actor-Critic (A3C) [15], Actor-Critic
with Experience Replay (ACER) [16], and Proximal Policy

Optimization (PPO) [17] are a few examples. However, all
these models are shown to struggle with large discrete action
spaces that are typically present in combinatorial optimiza-
tion problems, a phenomenon known as action dimensional
disaster [18]. Another class of DRL models that deal with
continuous action spaces has been used and adapted for dis-
crete action spaces in various domains. For instance, Deep
Deterministic Policy Gradient (DDPG) [19] is a popular
continuous-based DRL model used to solve a variety of deci-
sion problems with large discrete action spaces [20], includ-
ing resource scheduling in massive MIMO [21], [22]. How-
ever, DDPG is known to be very sensitive to hyper-parameter
tuning in actual training, especially in high-dimensional and
complicated tasks [23].

In this paper, we present a novel DRL framework for the
resource scheduling problem in massive MIMO networks.
The novelty of our framework is three-fold:

First, we propose a DRL-based scheduler design named
SMART, based on the recently proposed soft actor-critic
(SAC) model [24]. The SAC model has superior sample effi-
ciency by incorporating an entropy term in its value function
and automatic tuning of hyper-parameters. Therefore, it can
converge to the optimal solution in large multi-dimensional
action spaces much faster than the existing models such as
DDPG. Given that SAC is by design used for continuous
space problems, we propose to combine SAC with K-Nearest
Neighbors (KNN) algorithm to generate discrete outputs cor-
responding to user scheduling decisions in massive MIMO
networks. To achieve the scalability required for real-world
massive MIMO networks with a large number of users,
we propose a novel dimension division strategy that maps the
discrete action set for scheduling to multiple dimensions.

Second, we significantly reduce the state space and, thus,
the complexity of the proposed SMART model for massive
MIMO by using user grouping labels as the model states
instead of the raw channel state information (CSI)matrix. The
user grouping labels indicate which users have less correlated
channel vectors, hence, are more suitable to be scheduled at
the same time. This reduces the computational complexity
of the model in both training and inference by 2× without
sacrificing spectral efficiency or fairness.

Third, we demonstrate the scalability of SMART to a
large number of resource blocks consistent with 5G systems.
We demonstrate that our scheduler framework can operate
independently on different resource blocks and, at the same
time, achieve close to optimal performance.

We evaluate the effectiveness of SMART in various chan-
nel conditions in both simulated as well as real-world channel
traces through a comparison of its performance with state-
of-the-art scheduling algorithms, including heuristic-based
and DRL-based models. We comprehensively demonstrate
the effectiveness of our proposed method in achieving
near-optimal spectral efficiency while simultaneously main-
taining superior inter-user fairness very close to the Opt-
PF scheduler. We experimentally analyze the computational

VOLUME 1, 2023 243

FIGURE 1. System model.

complexity of our method and demonstrate its efficiency. We
also provide guidelines on how our proposed system can
be deployed on real-world 5G and beyond systems while
achieving the latency required for the 5G new radio (NR)
standard.

II. SYSTEM MODEL AND EXISTING WORK
A. SYSTEM MODEL
We consider a single-cell network with amassiveMIMObase
station (BS) withM antennas serving L single-antenna users
in its cell. The base station uses orthogonal frequency division
multiplexing (OFDM) and performs MU-MIMO transmis-
sion and reception to N < L users such that N ≤ M .
We consider time-division duplex (TDD) operation, where
all L users periodically send orthogonal pilot sequences to
the BS for channel estimation. We assume that the scheduler
possesses full knowledge of the channel condition of all
users associated with the BS and the channel for each user
does not change during a transmission time interval (TTI).
Subsequently, the BS selects a set of N users for data trans-
mission and reception through beamforming based on their
estimated channel and assigns their modulation schemes, and
communicates that information through the control channel.
Using their assigned modulation scheme, the selected users
will transmit their symbols at the same RB in the uplink and
receive them simultaneously in the downlink. A simplified
system model is depicted in Fig. 1. For the uplink, we con-
sider the following signal model

y = Hu+ n, (1)

where y is the M × 1 received signal vector at the BS, H
is theM × N channel matrix, and u is the N × 1 transmitted
symbols vector by the users. Additionally, n isM×1 receiver
complex noise vector with a circular Gaussian distribution,
n ∼ CN (0, σ 2I) where σ 2 is the noise variance and I is the
identity matrix. Note that, the value of N can vary in each
TTI depending on the current channel condition and it can be
bounded by a maximum value Nmax. We assume the BS uses
zero forcing (ZF) for beamforming. The BS calculates the ZF
beamformer using the estimated channel Ĥ as

W = Ĥ (ĤH Ĥ)−1. (2)

The BS then performs receive beamforming on the
received signal to estimate the transmit symbol vector x̂ as

û = WHy. (3)

For simplicity, we only consider the uplink, but the above
model is extendable to the downlink as well. The above signal
model is for a single subcarrier in an OFDM system, but the
same model applies to all subcarriers.

An RB is the smallest scheduling granularity in 5GNR,
which contains resources in the time and frequency domain.
One RB in 5G is made up of 12 consecutive subcarriers in the
frequency domain [25]. In the time domain, the composition
of RBs in 5G is more flexible and can vary between one
OFDM symbol and the entire slot (1 ms in numerology 0).
The quality of the wireless channel changes dramatically
over time, across users, and among different frequency bands.
It is shown in [26] that wireless channel capacity might
fluctuate by up to 9 times in 20 MHz LTE bandwidth with
over 100 RBs. This effect is more pronounced in 5G since it
typically has a wider bandwidth (i.e. 40 MHz to 400 MHz).
Consequently, user selection decisions will vary across RBs
due to the frequency selectivity of the channel. Thus, it is
essential to take into account resource scheduling for every
RB individually. In our design, we first focus on resource
scheduler design on a single RB and then extend to many
RBs to show the adaptability of our proposed scheduler to
5G massive MIMO networks.
Optimal Schedulers: In the literature, multiple schedulers

are defined as optimal. The rate-optimal scheduler, known as
emphOptimal Maximum Rate (Opt-MR), finds the resource
scheduling solution in each TTI that maximizes the sum rate

argmax
xtl,b

B∑
b=1

L∑
l=1

r tl,b x
t
l,b,

s.t.
L∑
l=1

x tl,b ≤ Nmax

x tl,b ∈ {0, 1} (4)

where x tl,b represents the binary selection of user l at TTI t
and RB b and r tl,b is the instantaneous rate achieved by user
l at TTI t and RB b. We calculate the instantaneous rate as
r tl,b = log2(1+SINRtl,b), where SINR

t
l,b is the received signal

to interference-plus-noise ratio from each beamformed user l
at TTI t and RB b. We consider B as the maximum number
of RBs being used in the system.

Simply maximizing the sum rate ignores the notion of
fairness where, depending on the channel conditions, some
users may never get selected. Therefore, a commonly used
scheduler, known as Optimal Proportionally Fair (Opt-PF)
scheduler, finds the resource scheduling solution that maxi-
mizes the following objective [27], [28]

argmax
xtl,b

B∑
b

L∑
l

wtl,b x
t
l,b, (5)

s.t.
L∑
l=1

x tl,b ≤ Nmax

x tl,b ∈ {0, 1}

244 VOLUME 1, 2023

An et al.: DRL-Based Resource Scheduler for Massive MIMO Networks

wtl,b =
r tl,b∑B
b ptl,b

,

ptl,b =

{
pt−1
l,b + r t−1

l,b , if x t−1
l,b = 1

pt−1
l,b , otherwise

(6)

where wtl,b denotes the weighted rate, which we calculate as
the ratio of instantaneous rate r tl,b to received rate ptl,b until
TTI t on all RBs. Normalizing the instantaneous rate with
the total received rate guarantees that all users have a fair
chance of getting selected by the scheduler even when they
are experiencing a poor channel.

Both optimization problems in (4) and (5) are NP-hard
since they can be reformulated as an Integer Linear Program-
ming (ILP) problem [29]. Specifically, we can reformat (5)
when B = 1 as the following ILP problem,

argmax
x

wT x

s.t. JL,Lx ≤ NmaxJL
x ∈ {0, 1}L (7)

where w is a vector of all users instantaneous rates, x is user
binary selection vector. Also JL,L and JL are square matrix
and vector of all ones with size L, respectively.

Solving (7) by exhaustively searching through the combi-
nations of vector x has the complexity of O(2L). Solving (4)
and (5) through an exhaustive search, when B RBs are con-
sidered, the complexity will increase to O(2LB). However,
there are approximate algorithms for the Opt-PF problem
with polynomial complexity, such as the one proposed in [28].
We discuss and evaluate an approximate algorithm in §IV
along with other benchmarks.

B. EXISTING WORK AND MOTIVATION
Recent work on resource scheduling in massive MIMO
and MU-MIMO can be classified into two general cate-
gories: heuristics schedulers, and AI-based schedulers. In this
section, we provide an overview of some of the most relevant
works in each category.

1) HEURISTICS SCHEDULER DESIGNS
Many existing MU-MIMO scheduling works provide
heuristics-based approximations to the Opt-PF scheduler [5],
[30], [31]. While they try to strike a balance between com-
plexity and performance, often their complexity does not
scale to large networks or they significantly underperform
the optimal scheduling policies.

The scheduler proposed in [31] implements a multi-phase
optimization to solve Eq. (5) in MU-MIMO settings. It nar-
rows down the exhaustive search needed for the Opt-PF
solution using some relaxations of the optimization problem.
For e.g., it decouples the user selection in different RBs.
Moreover, in each RB, it reduces the number of choices
based on the channel quality of each user before deciding
the user selection action based on the correlation of the
remaining users. Through these sub-optimal relaxations, their

method can be parallelized and efficiently implemented on
a powerful GPU, and hence can meet the stringent 5G-NR
latency constraints (i.e., nearly 1ms). Despite the low-latency
implementation,, this scheduler only scales to M = 12 and
N = 4, and as a result, it has limited scalability to mas-
sive MIMO. In [5], two heuristics-based user scheduling
algorithms are proposed and evaluated on channel datasets
collected from a dense indoor massive MIMO network with
stationary users. However, the algorithms sacrifice fairness in
favor of spectral efficiency. They are also not evaluated under
mobility scenarios. The work in [32] proposed a scheduler
for massive MIMO that schedules users with low correlation
channels in the same time slot. It first partitions users into
groups through a user grouping algorithm. The scheduler then
goes through all groups and schedules all users in each group
with a rate-fair method. As we discuss later in the paper,
this scheduling algorithm fails to work well in fast-varying
channel environments when inter-user channel correlations
are continuously changing and it is unable to fairly allocate
users across channel coherence blocks.

2) AI-BASED SCHEDULER DESIGNS
Due to the huge complexity of the optimization-based meth-
ods, several recent works [18], [21], [22], [33], [34], [35],
[36] have proposed DRL models for MIMO scheduling.
A Q-learning-based DRL resource scheduling is proposed
in [34]. It models the user scheduling problem as a Markov
Decision Process (MDP) that outperforms the round-robin
scheduler in terms of sum rate. However, the discrete DRL
models are known to have difficulty in converging in large
action sets [37]. The convergence issue is also true for more
advanced discrete DRL models, such as DQN and Double
DQN. As such, discrete DRL models have limited scalabil-
ity to a large number of users for multi-user scheduling in
massive MIMO networks. We will also demonstrate these
limitations in §IV.

The work in [21] proposes a DDPG-based user scheduler
for massive MIMO networks. Its model outputs a probability
distribution over all selectable users and chooses the most
promisingUE combinations at each TTI. However, it includes
a raw channel matrix in state space and the number of
elements in action space equals the number of UEs. Large
state and action spaces hinder its scalability. This algorithm
is extended in [22] for both user scheduling and transmit
precoding based on DDPG. It considers multiple antennas
and antenna correlation on the UE side as well. However,
their proposed scheduler has limited scalability and does not
consider the evaluation of user fairness. We implement a
DDPG-based scheduler as one of our benchmarks and discuss
its performance with respect to our proposed scheduler.

A pointer network is investigated in [18] as the actor
in an actor-critic framework to convert the combinatorial
problem in multi-user scheduling into a sequential selection
problem. However, sequential scheduling has slow infer-
ence, which makes it undesirable for latency-sensitive 5G

VOLUME 1, 2023 245

networks. Additionally, applying the model to large networks
results in a complicated network structure and a long model
update time due to the use of a raw channel matrix as the
input. This is exacerbated further by complex-valued chan-
nels, which need to be separated into real and imaginary
parts before being fed to the model. We implement a pointer
network-based DRL scheduler as a benchmark and discuss
these limitations in more detail in §IV.

3) OUR PROPOSED METHOD
We propose SMART, a massive MIMO user scheduler
based on the recently proposed soft actor-critic (SAC) DRL
model [23], [24] and the KNN algorithm [38]. SAC has
gained attraction in several real-time control problems such
as robotic locomotion [39]. SAC was originally designed to
handle continuous action spaces. However, the user schedul-
ing is a discrete decision problem where an appropriate set
of users must be selected at each TTI. The work in [40]
provides a modification of SAC for discrete action spaces, but
we find that their modification is still not suitable for large
discrete action sets as it has serious convergence issues in
large-scale networks. Inspired by the approach in [20], we use
the KNN [38] to discretize SAC to adapt it to discrete action
spaces. The basic idea is to use a continuous-based algorithm
to generate an initial or ‘‘proto’’ continuous action first. Then,
the K nearest discrete actions are found by using the KNN
algorithm. Among the K nearest discrete actions, the one with
the maximum Q value is selected. We further propose a novel
dimension division strategy that helps to scale up the size
of the combinatorial action set (i.e., number of users in the
network) and enhance model convergence capability. Using
this approach, we enable our model to dynamically select the
users to maximize system spectral efficiency and inter-user
fairness. More details are illustrated in §III-C. In contrast
to prior work, our proposed scheduler is more scalable and
performs very close to the Opt-PF solution.

III. SMART: A SCALABLE SAC-KNN-BASED MASSIVE
MIMO SCHEDULER
In this section, we first provide a brief introduction to SAC.
Subsequently, we describe the design of our proposed sched-
uler based on the SAC DRL framework. We discuss how we
discretize the output of the SAC framework by applying the
KNN algorithm and propose a dimension division strategy to
scale up the supported size of the action set. We also propose
to reduce the complexity of the framework by using the user
grouping instead of the raw channel matrix as the input to
the framework. Additionally, we discuss how we scale up the
model to support as many RBs as needed for realistic 5G
networks.

A. A PRIMER ON SAC
SAC is an off-policy Deep Reinforcement Learning (DRL)
model that employs a stochastic policy, in contrast to the
deterministic policy used in Deep Deterministic Policy Gra-
dient (DDPG). Instead of selecting the optimal action,

a stochastic policy outputs probabilities for all possible
actions. The optimal policy in SAC, defined in (8), aims
to maximize both the cumulative reward R and the policy
entropy H .

π∗
= argmax

π
E(st ,at)∼ρπ

[∑
t

R(st , at) + αH (π (·|st))

]
.

(8)

where the policy entropy H is defined as

H (π (·|st)) = −

∑
P(at |st) × log(P(at |st)) (9)

By maximizing policy entropy, SAC encourages the model
to extensively explore the action space, facilitating the dis-
covery of global optima and enhancing sample efficiency.
Moreover, SAC samples transition from replay memory to
learn from past experience, similar to other off-policy algo-
rithms like DQN [10] and Double DQN [14]. In contrast to
on-policy models such as PPO [17] and A3C [15], which
update their policies based on experiences generated by the
current policy, SAC has the ability to learn from a broader
spectrum of experiences. This characteristic enhances sample
efficiency and aids in facilitating convergence, especially in
high-dimensional action spaces as demonstrated in [24].
In general, SAC has the following two major benefits:

1) Strong exploration capability. SAC does not discard any
action, even if it is not the best one. If multiple promising
actions are found, the stochastic policy will choose them
with equal probability. This feature helps SAC explore more
and not easily get trapped in local optima. In contrast, the
deterministic policy-based algorithms, such as DDPG [19],
save the action with the highest value resulting in fewer
exploration opportunities.
2) High robustness. Most applications of RL require the
agent to perform well in the presence of disturbances in
the environment. Because of the adopted stochastic and
entropy maximizing algorithm, SAC explores as many poten-
tial actions as possible and, hence, it is able to deal with
complicated and dynamic environments (e.g., mobility sce-
narios in wireless communication), including scenarios it has
never encountered [41].

Fig. 2 shows the block diagram of the SAC framework.
Similar to any actor-critic architecture in DRL, the actor
in SAC generates a policy from which an action is drawn
based on the current state. The role of the critic is to assess
the actor’s policy and guide the actor toward the optimal
path through feedback. Unlike other actor-critic models, SAC
adjusts the Q function by a temperature coefficient (α in (8)),
which represents the weight of entropy. Furthermore, in [23],
the authors improve SAC with automatic entropy coefficient
adjustment. This method significantly reduces the burden
of manually adjusting hyper-parameters in training and sta-
bilizes its convergence. In contrast, hyper-parameter tuning
and unstable environments are still big challenges for the
majority of state-of-the-art DRL models such as DDPG [42].
Another advantage of SAC is its robustness in handling

246 VOLUME 1, 2023

An et al.: DRL-Based Resource Scheduler for Massive MIMO Networks

FIGURE 2. Soft actor-critic framework.

multi-dimensional tasks. High-dimensional tasks are gen-
erally challenging to deal with for DRL model due to a
phenomenon known as the curse of dimensionality [43].
However, due to the high sample efficiency boosted by
entropy maximization, SAC has demonstrated to perform
very well in high-dimensional tasks with up to 21 action
dimensions [24]. Specifically, SAC is demonstrated to work
well in the design of autonomous robots where the actions of
multiple parts of the robot must be decided simultaneously.
As we discuss later, we use this feature of SAC as our advan-
tage to deal with large discrete action sets in massive MIMO
user scheduling.

B. SMART SCHEDULER CORE DESIGN
In this section, we adapt the discretized SAC algorithm [23]
to formulate and build a Markov Decision Process (MDP)
model to solve the user scheduling problem in massive
MIMO networks.

1) STATE SPACE
We define the state space of user l at TTI t as slt :=

[γ lt , f
l
t , g

l
t] ∈ S := [0,F ,G], where γ lt indicates maximum

achievable spectral efficiency of user l at TTI t , f lt indicates
the total amount of transmitted data by user l up until TTI t ,
and glt is the user group label of user l at TTI t . The value
of γ lt can be calculated as the spectral efficiency of user l
in SU-MIMO, where only user l is scheduled at TTI t . The
users with the same user grouping label glt have low channel
correlation so they are preferred to be scheduled together.
We will introduce more details on the user grouping strategy
in §III-E.

2) ACTION SPACE
The action space set A consists of discrete values, encoding
the user-selection decision. We denote the action at time t
as at ∈ A. Due to its combinatorial nature, the action set
grows exponentially with the number of users in the system.

For instance, with a total of L users available, any number of
users between 1 andNmax can be scheduled at each TTI t , and
thus the total number of possible selections is

∑Nmax
i=1

(L
i

)
.

3) REWARD
Our ultimate objective for resource scheduling is to maximize
both the system’s spectral efficiency and fairness among
users. By system spectral efficiency, we refer to the sum rate
achieved by all users scheduled together at TTI t . We use a
normalized version of this quantity expressed by γ totalt . The
normalization factor is calculated as follows. We measure the
achievable rates for each user in the system if that user were
scheduled individually (SU-MIMO). We then use the sum of
theN largest rates out of the total L users as the normalization
factor. This will guarantee a value in [0, 1] which then can
be used in the reward function. To quantify fairness, we use
Jain’s fairness index (JFI) [44], which can be expressed at
each TTI t as

JFIt =

(∑L
l=1 f

t
l

)2
L

∑L
l=1

(
f tl

)2 . (10)

As such, we include the normalized spectral efficiency and
the JFI in the reward function of the MDP model. The reward
Rt achieved at TTI t can be then formulated as

Rt = βγ totalt + (1 − β)JFIt . (11)

In (11), β determines the relative importance of each item
in the reward function based on the preference of the system
operator. Note that, both items are the range [0, 1] so that
we can effectively adjust their weights in the reward function
with parameter β.

C. DISCRETE ACTION SAC DESIGN
Originally, SAC is a continuous action space model and thus,
it cannot be directly applied to the massive MIMO user
scheduling problem. There are existing discrete action space
models, such as DQN [10] and Double DQN [14], that could
potentially be used to solve the problem. But as we will show
in §IV, none of these methods can handle the large action
set in massive MIMO user scheduling. Note that, the discrete
action space set in multi-user scheduling in massive MIMO
increases exponentially as the number of users grows. For
example, with M = 64 BS antennas and L = 64 single-
antenna users, or simply a 64× 64 network size, and Nmax =

16 in each TTI, the action set size has up to
∑16

i=1
(64
i

)
≈

7 × 1014 actions.
Several recent works have attempted to solve the large

discrete action space problem by discretizing the continuous-
control-based DRL model. In this direction, [20] combines
DDPGwith KNN to solve problemswith large discrete action
sets (e.g., recommender systems and language models). More
precisely, a KNN approximation [38] is used because of its
agile search in logarithmic time. Its fundamental idea is to
first generate a so-called proto continuous action (i.e. a real

VOLUME 1, 2023 247

number in [−1, 1]) from the continuous action space DRL
model. Then, KNN is used to calculate the l2-norm between
the proto action with actions in the discrete space represented
by integer numbers corresponding to different actions, sort
them in ascending order, and pick the first K ones. Here,
K is a system hyper-parameter. Finally, after comparing the
Q values of these K discrete actions in the critic network, the
one with the highest Q value is chosen as the final action.
Similarly, we propose to augment the SACmodel with aKNN
approximation model that can map the continuous action
space to a discrete one. However, the model in [20] is shown
to be effective for tasks with up to one million actions, far
below the number of scheduling actions encountered in a
large massive MIMO network. Next, we propose an idea to
scale the feasibility of the model to much larger action sets.

D. DIMENSION DIVISION
One major drawback of mapping continuous actions to dis-
crete actions is the decision accuracy loss. The reason is that,
as the size of the discrete action set increases, the corre-
sponding distance between discrete actions in the continuous
domain will become extremely small. The precision of each
discrete action when mapped from a continuous action space
in the range [−1, 1] is equal to (1 − (−1))/2L , where 2L is
the total number of discrete actions. When this precision is
smaller than the network output precision, it will lead to deci-
sion accuracy loss. This precision loss prohibits scaling up the
size of the discrete action set. In order to improve the scalabil-
ity of our model to much larger action sets, i.e. larger number
of users, we propose a novel strategy that we call dimension
division, where we break up the action space into multiple
dimensions. As discussed in §III-A, high-dimensional tasks
are generally challenging to deal with in DRL models. But
here, we particularly rely on the strength of the SACmodel in
handlingmultiple dimensions. The difference in our approach
is that we use this strength in a multi-dimensional discrete
action space. With D dimensions, we can reduce the number
of actions in each dimension from 2L to (2L)1/D actions. As
such, mapping precision is also changed from (1− (−1))/2L

to (1− (−1))/(2L)1/D in each dimension. Based on this strat-
egy, the continuous-action DRL model will generate proto
actions in D dimensions. We apply the approximate KNN to
each proto action to generate the K nearest discrete actions
in each dimension. Finally, the critic network will pick the
discrete action with the maximum Q value to form the final
action (i.e. an integer number between 1 and 2L). This final
discrete action is then mapped to a specific user combination
from all possible combinations of L users to be scheduled.
Fig. 3 illustrates the proposed workflow. In general, to scale
up the number of supported users, it is important to strike a
balance between the number of dimensions and the size of
each dimension. In §IV, we demonstrate that the SMART
scheduler is able to perform well with a number of users as
high as L = 128 whereas DDPG is unable to converge in that
scenario.

FIGURE 3. SMART architecture.

E. USER GROUPING
Previous works on DRL-based massive MIMO schedul-
ing [18], [21] use the full channel matrix as the input to their
DRL model. The size of the channel matrix is 2 × M × L.
The factor of 2 denotes the real and imaginary components
of the channel estimate since neural networks are usually
designed and trained for real values. As the size of the system
(M ,L) increases and correspondingly the input size of the
DRL model grows, the model convergence becomes more
difficult. In order to scale up the model to support large
network sizes, the input size must be reduced. To reduce the
input size, we adopt the user grouping labels calculated from
the inter-user channel correlation matrix to guide the DRL
model.

The inter-user channel correlation matrix measures the
correlation between each pair of users in the network. Specif-
ically, it is calculated as

ci,j =

∣∣∣∣∣
〈

hi
∥hi∥2

,
hj∥∥hj∥∥2

〉∣∣∣∣∣ =

∣∣hiHhj∣∣
∥hi∥2

∥∥hj∥∥2 (12)

where hi and hj are channel vectors of user i and user j in
channel matrix H and ci,j is their channel correlation.
To reduce the complexity of the channel matrix, we adapt

a similar user grouping method with [32], as shown in

248 VOLUME 1, 2023

An et al.: DRL-Based Resource Scheduler for Massive MIMO Networks

Algorithm 1. The algorithm uses the inter-user channel cor-
relation matrix calculated through equation (12) to partition
users with low correlation into separate sets, where the parti-
tioning threshold is cth. During grouping, users in the same
group (less correlated users) are assigned the same label.
As discussed in §III-B, we only then need to assign a user
group label to each user in the state space instead of its
complete channel vector. With user grouping labels as input
of the DRL model, the state space size will be significantly
reduced. As an example, in a 64 × 64 network size, at each
TTI, the state of each user includes three variables: maximum
achievable spectral efficiency, the total amount of transmitted
data by the user, and user group label. Thus, the total state
space size is 192. However, without user grouping, the real
and imaginary parts of the raw channel matrix must be fed to
the DRLmodel separately, which leads to a state space size of
8320. Such large-scale inputs will lead to complicated neural
network structure, high computation complexity in model
updating, and excessive running time (cf. §IV-C).

Algorithm 1 User Grouping Algorithm
Input: Channel matrix at TTI t: Ht , user set L and channel

correlation threshold: cth
Output: User group set G
1: Calculate channel correlations of all UE pairs ci,j, ∀i, j ∈
L using Eq (12)

2: Initialize G = ∅

3: Let Lc = L
4: while Lc ̸= ∅ do
5: Random pick UE i ∈ Lc and add to the empty user

group Gi
6: Iteratively search in Lc to find all UEs whose channel

correlations with all existing UEs in Gi are smaller
than cth and add them to Gi

7: User group G = G ∪ {Gi}
8: Update Lc = Lc \ Gi
9: end while

10: return User group set G

F. SCHEDULING ACROSS RBs
As mentioned in §II-A, user channel quality varies signif-
icantly across RBs. Consequently, the channel correlation
among users varies across the RBs as well. This leads to
different optimal scheduling solutions for each RB. However,
the scheduling decision on each RB will affect the deci-
sion on other RBs, particularly as it relates to rate fairness.
Since the goal is to maximize both system spectral efficiency
and fairness for the whole system, as expressed in equa-
tions (4) and (5), the optimal scheduling on all RBs needs
to be jointly considered. One way to model this problem
is to have independent SMART frameworks, as described
in §III-B-§III-E, tomake decisions on each RB, with the addi-
tional modification that each framework uses the decision
from other frameworks running on other RBs to calculate the
new fairness in its state space and the new reward, akin to

FIGURE 4. Fully independent SMART (a), and multi-agent SMART
frameworks (b) for scheduling users across RBs.

the formulation of weighted rates in Eq. (5). A block diagram
of such a model is depicted in Fig. 4a. This model can be
regarded as a cooperative multi-agent DRL framework where
each SMART framework responsible for a different RB acts
as a separate agent that shares its decisions with other agents.
We refer to this overall model as SMART-MA. In SMART-
MA, agents of RBs are jointly optimized. The instantaneous
spectral efficiency of each user is aggregated from all RBs
and JFI is updated based on a global user scheduling decision
rather than an individual RB’s decision. Consequently, the
SMART agents of all RBs share the same reward function and
engage in cooperative learning. However, multi-agent DRL
models are known to be difficult to converge, especially as
the number of agents scales up [45]. We demonstrate this by
employing a multi-agent model in §IV. For fading channel
models, the inter-user channel correlation across RBs will
be largely random, and when dealing with a large number
of RBs, it is expected that the fairness across RBs will be
smoothed out. With this assumption, and given the limita-
tion of the multi-agent model, we propose to use a fully
independent model for each RB referred to as SMART-SA
and depicted in Fig. 4b. In the SMART-SA, an independent
SMART DRL model is implemented for each RB. Each RB
possesses its own distinct state space (not depicted in the dia-
gram) and generates a scheduled user set specific to that RB.
Based on the user scheduling decision made by the model,
selected users are allocated resources within the wireless
environment, and the instantaneous spectral efficiency γ total

of each scheduled user can be determined. Sequentially, the
accumulated amount of transmitted data and JFI are updated
in the respective fairness update block.

In §IV, we demonstrate the effectiveness of SMART-SA
for a large number of RBs in getting close-to-optimal results.

IV. PERFORMANCE EVALUATION
In this section, we perform a comprehensive evaluation of
our proposed scheduler design. We compare SMART with

VOLUME 1, 2023 249

multiple different schedulers with respect to their achieved
normalized spectral efficiency and JFI in various channel con-
ditions. We also provide a comparison of the computational
complexity of our DRL-based scheduler with other methods
and discuss the feasibility of our scheduler in real-time 5G
settings.

A. EXPERIMENTAL SETUP
We perform our evaluations in both simulated channels
as well as real-world channels measured with a massive
MIMO hardware platform. For simulated wireless channels,
we use the Quasi Deterministic Radio Channel Generator
(QuaDRiGa) [46] software. Specifically, we generate the 3D
Urban Micro (UMi) Line Of Sight (LOS) channel model.
We consider two channel scenarios: static and mobile. For
static channels, we consider two different modes: 1) four
user clusters, and 2) random user placement. In the mobile
scenario, the base station is positioned at the center of a
circular area with a radius of 300 meters. Users within this
circle move in various directions at different speeds, with
an average speed of 2.8 m/s. The initial positions of the
users are randomly assigned, and they will bounce back
into the area upon reaching the boundary. We describe the
experimental setup for the real-world measured channels in
§IV-C.8. We implement the system model in §II-A using
Python. In terms of modulation scheme, we adopt 16-QAM
in our wireless channel simulator and use Error Vector Mag-
nitude (EVM) of the received constellation to derive SNR as
demonstrated in [47].

TABLE 1. Simulation and training parameters.

We run our experiments on an NVIDIA DGX A100
server [48]. Both actor and critic networks implement neural
nets with two hidden fully connected layers and ReLU activa-
tion functions. We use the Adam optimizer [49] to train our
DRL model in PyTorch [50]. The most relevant parameters
used in our simulations are shown in Table 1.

B. BENCHMARKS
In order to do a thorough comparison, we implement var-
ious scheduler models as benchmarks including classical
and heuristics-based schedulers, discrete-control-based DRL
schedulers, continuous-control-based DRL schedulers, and
attention-mechanism-based RL schedulers.

1) CLASSICAL SCHEDULER
We consider Opt-PF, Opt-MR, an approximate PF (Approx-
PF) and a heuristics-based algorithm as classical sched-
ulers. Algorithms of Opt-PF and Opt-MR are introduced
in §II-A. Given the exceedingly high computational complex-
ity involved in employing optimal schedulers for large-scale
networks, we devise a variation of an approximate Propor-
tional Fairness (Approx-PF) scheduler in [28] that offers
reduced complexity from Opt-PF presented in §II-A. The
algorithmic details of this particular implementation can be
found in Algorithm 2. In this approach, we first calculate a
weighted-rate matrix similar to Opt-PF in (5) and then select
Nmax users with the highest weighted rates. Consequently,
the computational complexity is reduced significantly from
O(2L) to O(2Nmax). However, this is still too complex in
large-scale networks and thus needs to be simplified further.
Unlike the approximate scheduler described in [28], we do
not consider the individual data load of each user in our work.
Instead, we implement the user grouping in Algorithm 1 in
this user subset and select the group with the most users.
User grouping strategy helps Approx-PF to avoid schedul-
ing highly inter-correlated users, thereby improving overall
system performance and releasing the heavy complexity
to O(N 2).

As for the heuristics-based benchmark, we use the
algorithm in [32]. This algorithm groups users based on their
channel correlation and allocates power to the users in the
selected group. It then proposes to schedule the groups in a
round-robin fashion. We implement a variation of the sched-
uler proposed in [32].We assume perfect power control in our
model to enable fair comparison with the modified algorithm.
We refer to this benchmark algorithm as RR-UG. As we
demonstrate later, this algorithm, while effective in static user
scenarios, becomes ineffective in highly mobile channel sce-
narios where channel correlations are continuously changing.
We expect a similar behavior by other heuristic methods that
rely on channel correlation-based user grouping.

2) DISCRETE-CONTROL-BASED DRL SCHEDULER
There are several DRL models for discrete action spaces in
the literature. We select DQN [10] and Double DQN [14]
with Prioritized Experience Replay Buffer (PERB) [51] as
two representative discrete-control-based DRL algorithms.
The study in [16] shows a comparison of these two model
with other discrete DRL models such as ACER and A3C
and shows the superior performance and convergence of our
selected benchmarks. We implement both discrete-control-
based DRL models as benchmarks and refer to them as

250 VOLUME 1, 2023

An et al.: DRL-Based Resource Scheduler for Massive MIMO Networks

Algorithm 2 Approximate Proportional Fairness
(Approx-PF) Algorithm
Input: Resource block set B, Channel matrix of resource

block b at TTI t: Ht,b and user set L
Output: Scheduled user set on resource block b: Ub
1: Calculate weighted rate wtl,b for all L users on resource

block b at TTI t using (5)
2: Sort and select N users with the highest weighted rate on

resource block b to construct a subset of user Nb
3: Do user grouping in user subset Nb as Algorithm 1
4: Find the user group Ub with the most users as the sched-

uled user set on resource block b at TTI t
5: return Ub

PRTY-DQN and PRTY-DDQN. To balance exploration and
exploitation, we adopt the epsilon-greedy algorithm in both
models. For fair comparison against other benchmarks,
we tune the hyper-parameters so as to achieve the best pos-
sible performance [16], [17], [24]. Because of the simple
neural network structure of PRTY-DQN and PRTY-DDQN,
we adopt grid search to comprehensively identify the optimal
hyper-parameters. For PRTY-DQN, we implement 2-hidden-
layer neural networks with 32 neurons in each layer. We use
the same settings in the main network and the target network
of PRTY-DDQN. For both models, we set the same state
space, action space, and reward function as our proposed
scheduler.

3) CONTINUOUS-CONTROL-BASED DRL SCHEDULER
Similar to SAC, DDPG is also a continuous-control-based
DRL model that has been used to solve optimization prob-
lems with large action sets, e.g., on massive MIMO user
scheduling [20], [21]. To compare SAC with a DDPG-based
scheduler, we replace the SAC module in our design with
DDPG and use it as our benchmark. For fairness of com-
parison, this benchmark adopts the same dimension division
strategy as our design to generate multi-dimensional schedul-
ing actions, particularly in evaluating 64 × 64 network size.
Furthermore, we use the same state space and reward function
as well as the epsilon-greedy algorithm for this benchmark
algorithm as in our proposed scheduler.

4) ATTENTION-MECHANISM-BASED RL SCHEDULERS
We implement a pointer-network-based scheduler (PN) as
proposed in [18] in an actor-critic architecture. The PN is
used as the actor network, which consists of a long short-term
memory (LSTM)-based encoder and decoder. The critic net-
work is a multi-layer perceptron (MLP) and is trained using
stochastic gradient descent. A limitation of this model is
that the number of scheduled users needs to be fixed. Thus,
in our evaluation of the PN scheduler, we set the number of
scheduler users N to be so that M/N ≈ 4.5 which is shown
to be the near-optimal number for the ZF beamformer [52].

5) OUR PROPOSED SCHEDULER
We implement two variants for our scheduler: 1) a variant
with raw channel matrix as input that we call SMART-
Vanilla, and 2) a variant with user grouping labels as input
(as described in §III-E) that we simply call SMART.

In our evaluations, the Opt-PF scheduler serves as the
optimal benchmark for fairness while the Opt-MR scheduler
is optimal for spectral efficiency. For thoroughness, we first
rule out the discrete DRL-based scheduler, i.e. DQN and
Double DQN, due to their inability to scale to large network
sizes. Second, we compare the remaining benchmarks in a
medium 16 × 16 network size and in different channel con-
ditions. This allows comparison of the AI-based benchmarks
with Opt-PF and Opt-MR schedulers when they are still in a
computationally feasible range. Lastly, we increase the size
of the network to 64 × 64, which we consider a real-world
network size. In this network size, both Opt-PF and Opt-
MR schedulers become computationally infeasible and thus,
we only compare our proposed schedulers with PN, DDPG,
and RR-UG.

C. RESULTS
1) MODEL TRAINING AND CONVERGENCE
We trained the SMART model, in a 64 × 64 network size,
for 800 epochs with 400 iterations in each epoch. To ensure
model convergence and learning performance, we divide
8 dimensions in action space and 256 actions in the action
set of each dimension, as discussed in III-C. The training
takes about five hundred epochs which is when the DRL
model converges. During the training process, we employ the
epsilon-greedy algorithm to effectively manage the trade-off
between exploration and exploitation. This is achieved by
selecting random actions or utilizing learned actions that
yield the highest reward. The value of epsilon denotes the
probability of selecting random actions for exploration pur-
poses. Initially, we set epsilon to 1, and gradually decrease it
to zero over a span of five hundred epochs.

We also trained SMART for a 128 × 128 network. To
deal with this extremely large action set, we break it down
into 16 dimensions with 256 actions in each dimension for
sufficient decision accuracy. With these parameters, we find
that our DRL model can still converge. Conversely, all other
RL-based benchmarks, except PN, fail to converge in this
scenario. However, as we show later, the training and infer-
ence time for PN is significantly larger and its performance
in terms of fairness is inferior to our scheduler. It is impor-
tant to highlight that SMART-Vanilla cannot converge in
networks of this size either due to the excessive state space.
This observation further emphasizes the motivation behind
incorporating user grouping in SMART.

2) CONVERGENCE OF PRTY-DQN AND PRTY-DDQN
Discrete-based DRL is intuitively a suitable choice to deal
with discrete combinatorial optimization problems, such as
resource scheduling, by modeling them as MDPs. However,

VOLUME 1, 2023 251

in problems with large action sets, the discrete-based DRL
model is shown unable to converge during the training pro-
cess [18], [53], an effect known as the action dimension
disaster [18]. We also demonstrate this effect by training
PRTY-DQN and PRTY-DDQN on multiple network sizes.
Our experiments show that the largest network size that these
models could converge is 4 × 4, and Nmax = 2. In this
configuration, the size of the action set is 10.

3) PERFORMANCE COMPARISON IN VARIOUS
NETWORK SIZES
In the testing phase, we run our simulation environment for
additional 400 TTIs in the same cell and use the trainedmodel
to schedule users while recording the spectral efficiency and
the JFI values across TTIs. For a fair comparison, we use the
exact same channels generated as input to all benchmarks. It
is important to note that partial or outdated channel informa-
tion could impair the performance of the resource scheduler,
particularly in scenarios involving high-speed mobility. This
impacts any system that relies on the channel information
for scheduling decisions and thus is beyond the scope of our
work. Nevertheless, in this case, complementarymethods that
perform channel prediction based on the partial or outdated
channel information such as the ones proposed in [54], [55],
and [56] can be used to enhance the performance of the
scheduler. In the following, we provide evaluation results of
various benchmarks in multiple network sizes. In each net-
work size, we plot the average spectral efficiency and JFI over
all TTIs. We also display error bars in each plot indicating the
minimum and maximum values of results across TTIs.

4) SMALL NETWORK SIZE
We consider the 4 × 4 network configuration in a mobile
scenario, to compare the performance of PRTY-DQN and
PRTY-DDQN with our proposed scheduler.

Fig. 5 shows that PRTY-DDQN outperforms PRTY-DQN
and SMART-Vanilla on both spectral efficiency and JFI. This
is due to decision accuracy loss imposed by mapping the
SAC output from continuous space to discrete space in our
scheduler, as discussed in §III-C. However, the limitation
on the scalability of PRTY-DDQN makes it impractical to
use in real-world network sizes. mportantly, we observe that
the performance of SMART is almost the same as SMART-
Vanilla. This is an important finding since it shows using
user grouping labels as input to our model instead of the
raw channel matrix as in SMART-Vanilla simplifies neural
network structure while not impairing model performance.

5) MEDIUM NETWORK SIZE
For thorough comparison of all the other benchmarks,
we consider the case for medium 16 × 16 network size, and
Nmax = 4. We only compare the benchmarks with SMART-
Vanilla for a fair comparison with other AI-based schedulers
which use the raw channel matrix as input. To be able to
reason about the performance of each scheduler, we start

FIGURE 5. Spectral Efficiency and JFI comparison of SMART
with DQN and Double DQN in user mobility scenario and
4 × 4 network size.

with a toy network scenario where the users are static and
placed in four clusters (4-cluster). The users in each cluster
share the same scatters and experience similar small-scale
fading, and thus their channel vectors are highly correlated.
Fig. 6 shows the spectral efficiency and JFI results in the
four-cluster channel mode. It is evident from Fig. 6a that
SMART-Vanilla performs very close to Opt-PF scheduler,
which shows SMART-Vanilla is able to converge to the Opt-
PF solution almost perfectly. In terms of JFI, Fig. 6b shows
that SMART-Vanilla closely follows the Opt-PF scheduler as
well. Both schedulers underperform the Opt-MR scheduler
in terms of spectral efficiency, but the Opt-MR scheduler is
not doing well with respect to JFI as expected, since it is
only optimizing the spectral efficiency. Interestingly, Fig. 6a
also shows the DDPG-based scheduler significantly under-
perform SMART-Vanilla. That shows DDPG fails to explore
widely enough because of its sample inefficiency and there-
fore gets stuck in a local optimal. Lastly, we observe that
RR-UG achieves a good spectral efficiency and is almost
close to SMART-Vanilla. This is expected as the user group-
ing algorithm groups the users into exactly four groups based
on four clusters. Since the users do not move, RR-UG will
continue to serve each group at a time. The results also
show that SMART-Vanilla can learn the inter-user correlation
well, despite using the raw channel matrix from each user.
PN is able to achieve near-optimal spectral efficiency but
undesirable JFI. The reason is that PN can not deal with
varying state representations of the input [57]. Specifically,
sequentially selecting the users will affect the fairness in the
state space of theMDPmodel. Therefore, PN fails to optimize
the JFI, while still performing well in terms of achieved
spectral efficiency.

Figs. 7a and 7c show the normalized spectral efficiency for
random placement of static users in the cell and mobile users
moving in random directions within the cell, respectively.
In both scenarios, we observe that SMART-Vanilla still per-
forms very closely to the Opt-PF scheduler, while the DDPG
scheduler significantly underperforms SMART-Vanilla. The
PN performance also slightly drops compared to the 4-cluster
scenario. This can be attributed to the limitation of this
scheduler with respect to its predefined number of selected
users. Note that in the 4-cluster scenario, the predefined
number of scheduled users for PN is exactly the same as the

252 VOLUME 1, 2023

An et al.: DRL-Based Resource Scheduler for Massive MIMO Networks

FIGURE 6. Spectral Efficiency and JFI comparison of SMART and
existing methods in 16 × 16 network size and Nmax = 4 in
4-clusters topology.

number of users in each user group where users have very
low correlation. However, in the random placement scenario,
this condition does not necessarily hold and the number of
scheduled users by PN could be smaller or larger than the
optimal set of users. The PN performance gets worse in the
mobility scenario since user grouping is changing over time.
For instance, PN could select user sets with high correlation
in most cases.

RR-UG achieves a relatively good performance in random
placement topology, but it does not achieve the same level of
performance as in the 4-cluster channel mode. The reason is
that in the setups with random user locations, the user groups
could include a larger number of users than Nmax = 4, and
thus the groups have to be broken into smaller subgroups to
be scheduled sequentially. This impairs the performance of
RR-UG. In the mobility scenario, the performance of RR-
UG drops even more. This is due to the variations in channels
and user groupings caused by mobility in each TTI. It shows
that while RR-UG might be a favorable scheduler in static
scenarios (due to its lower computational complexity as we
show later), in the mobility scenarios, it does not perform
that well. In Figs. 7b and 7d, we see SMART-Vanilla and
DDPG achieve high fairness values. A good fairness result for
DDPG is expected as fairness is accounted for in the reward
function. Opt-MR and RR-UG do not achieve high fairness
in both scenarios. For RR-UG, the fairness drops since the
user groupings change continuously, and thus the rate fairness
cannot be met efficiently despite the time fairness due to
the Round-Robin scheduling of groups. It is evident that PN
performs very poorly with respect to JFI, as discussed earlier.

6) REAL-WORLD NETWORK SIZE
We consider a more realistic network size with a 64-antenna
massive MIMO base station1 at the center of the cell. We also
consider L = 64 connected users which is also a real-
istic number in small cells [5]. In this case, we assume
Nmax = 64 which means the scheduler can choose to
beamform to up to all 64 users in one TTI. In this network
size, the complexity of calculating the results for Opt-MR
and Opt-PF is too high. Thus, we include Approx-PF as

1Most commercial deployments of massive MIMO include 64-antenna
base stations.

FIGURE 7. Spectral Efficiency and JFI comparison of SMART and
existing methods in 16 × 16 network size and Nmax = 4 in static
random user topology (a) and (b), and user mobility scenario
(c) and (d).

a benchmark instead of Opt-PF along with the results for
SMART-Vanilla, SMART, PN, DDPG, RR-UG. As shown
in Figs. 8a and 8c, SMART-Vanilla outperforms PN, DDPG,
RR-UG, and Approx-PF. By foregoing the exhaustive search,
Approx-PF aims to reduce computational complexity. How-
ever, we can see that its performance falls short compared to
SMART. Similar to our earlier results for medium network
size, the performance of RR-UG is close to SMART-Vanilla
in static random user placement but drops significantly in the
mobility scenario. To enable DDPG to converge in this sce-
nario, we applied the dimension division presented in III-C
to its implementation. However, DDPG is unable to perform
well in multi-dimensional action sets as discussed earlier.
This explains the observation that DDPG does not perform
well in terms of spectral efficiency. As we observed in the
small and medium networks, the performance of SMART
is comparable to that of SMART-Vanilla in both channel
scenarios. It demonstrates the effectiveness of using user
grouping labels in the state space of SMART.

All schedulers, except PN, achieve high fairness in the
static random user placement scenario. In the mobility sce-
nario, the fairness for RR-UG also drops significantly due to
varying user groupings across TTIs. Here, PN has the worst
JFI for the same reason as we mentioned for the medium
network size.

7) MULTI-RB SCHEDULING PERFORMANCE
Here, we consider the multi-RB scenario and evaluate the
performance of our model presented in III-F. As discussed,
the multi-agent DRL models are generally difficult to con-
verge. In fact, our SMART-MAmodel only converged with 2
RBs (B = 2) when M = 8, L = 8, and Nmax = 4.
Thus, we use this configuration to demonstrate the efficacy
of SMART-SA, with respect to SMART-MA. Computational

VOLUME 1, 2023 253

FIGURE 8. Spectral efficiency and JFI comparison of SMART and
existing methods in 64 × 64 network size in random user
topology (a) and (b), and user mobility scenario (c) and (d).

complexities of Opt-PF and Opt-MR were also acceptable in
this configuration as presented in §II-A, and thus, we include
them in the evaluation along with RR-UG. Since we showed
the underwhelming performance of DDPG and PN in the
single-RB case, we exclude them from this evaluation. Fig. 9
shows the experiment results for B = 2. It is evident that
SMART-SA outperforms SMART-MA on spectral efficiency
but has a slightly lower JFI. The reason is that SMART-
SA tries to maximize spectral efficiency on each RB and
sacrifices fairness as opposed to SMART-MAwhich balances
the two metrics across RBs. SMART-SA performs much
better in terms of both JFI and spectral efficiency compared
to RR-UG. For B > 2, SMART-MA, Opt-PF, and Opt-MR
become infeasible. However, to demonstrate the performance
of SMART-SA, we evaluate it for B = 100 with a 64 ×

64 network size and compare it with RR-UG. The evaluation
results are shown in the simulation column of Table 2. For
the results, it is evident that a large number of RBs will not
degrade JFI in SMART-SA while still maintaining desirable
spectral efficiency. It also reaffirms our previous finding on
the low performance of RR-UG in the mobility scenario.

8) REAL-WORLD DATA EVALUATION
To evaluate our proposed scheduler in real-world environ-
ments, we conducted a massive MIMO channel measurement
experiment in an indoor setting on the Rice University cam-
pus. We used a 64-antenna RENEW [58] software-defined
massive MIMO base station and seven software-defined
clients in a large open area inside a building hall. We fixed
six of the clients in a circle, 15m away from the base station.
The seventh node was placed on a robot where we moved
the robot across the hall starting from the location of the first
client to the last. A drawing of the BS and client placements

FIGURE 9. Spectral Efficiency and JFI comparison of SMART and
existing methods in 8 × 8 network size and Nmax = 4 with 2
Resource Blocks in static random user topology (a) and (b), and
user mobility scenario (c) and (d).

FIGURE 10. Topology of the real-world indoor experiment.

are shown in Fig. 10. We moved the robot along the path
with different speeds, i.e. with 0.5m/s, 1m/s, and 2m/s. The
mobile node’s antenna was facing the base station in all the
experiments (LoS channel). We repeated the experiments to
measure both LoS and NLoS channels for the fixed clients.
In each measurement, we transmitted time-orthogonal uplink
pilots from all clients to the BS. The uplink pilots were based
on the 802.11 LTS OFDM signal, which contains 52 non-
zero subcarriers. We consider each subcarrier as an RB in our
evaluation, i.e. B = 52. Based on the collected real-world
dataset, we train and evaluate the performance of SMART in
the 64×7 MIMO configuration with 52 RBs in a slow-speed
mobility scenario.

254 VOLUME 1, 2023

An et al.: DRL-Based Resource Scheduler for Massive MIMO Networks

TABLE 2. Spectral Efficiency and JFI comparison of SMART and RR-UG with multiple RBs in simulation discussed in §IV-C.7 and with
real-world data discussed in §IV-C.8.

Using these datasets, we evaluate the performance of
SMART. Due to convergence issues and excessive com-
putational complexity of other schedulers for B > 2 as
discussed in §II-A, we are only comparing SMART-SA with
RR-UG. The results, listed in Table 2, show that RR-UG
underperforms SMART-SA in both spectral efficiency and
JFI. More importantly, SMART-SA is capable of achieving
near-optimal (i.e. about 0.996) JFI, which demonstrates the
effectiveness of SMART-SA when applied to multiple RBs.
However, we can anticipate that RR-UG performance will get
worse as the number of mobile users increases, which is con-
sistent with the results of mobility scenarios in medium and
real network size experiments. By runningAlgorithm 1 on the
datasets, we observe just one or two user groups in most TTIs.
Thus, RR-UG schedules all seven clients in one or some-
times two TTIs. Therefore, RR-UG is rather competitive as
SMART-SA here. For the purpose of showing the generality
of ourmodel, we use themodel trained on the LoS slow-speed
dataset and test it in the LoS high-speed mobility. The results
in Table 2 demonstrate the adaptability of SMART-SA to
different mobility scenarios. Compared with the slow-speed
mobility scenario, it is obvious that the performance gap
between SMART and RR-UG in the high-speed scenario is
larger. This is because a high speed makes channel condition
and inter-user channel correlation vary more quickly than
the slow speed. Faster varying inter-user channel correlation
results in quicker variations of user grouping, which makes
it challenging for RR-UG to adapt fast enough. However,
SMART is capable of dealing with this rapid change. For
comprehensiveness, we also test the trained model on NLoS
slow-speed topology. The results in Table 2 show SMART-
SA’s superiority over RR-UG and its generality in real-world
data, albeit not as good as it is in LoS high-speed.

9) COMPUTATIONAL COMPLEXITY
We measure average wall-clock time per TTI for all the
schedulers discussed in §IV-C.3. For comparison fairness,
we run all implementations on a single CPU core on the
NVIDIADGX server. The runtime values are listed in Table 3
for three network sizes considered in §IV-C.3. The results
show the runtimes of the schedulers are widely different and
they also vary with the network size. For Opt-MR and Opt-
PF, the runtime increases exponentially with the network size
and thus is not listed for network sizes beyond 16 × 16.
Even though Approx-PF is feasible in real-world size net-
works with much less complexity than Opt-PF, it still takes

TABLE 3. Wall-clock time in seconds per TTI.

about 20× times longer than SMART to execute. Regarding
other schedulers, the runtime seems to increase linearly. Both
DDPG and SMART-Vanilla show similar results. Comparing
SMART and SMART-Vanilla results show that using user
grouping labels instead of the raw channel matrix reduces the
runtime of the model up to 50%. Tuning hyper-parameters to
achieve the best performance for both SMART and SMART-
Vanilla, SMART has 3 fewer hidden layers and half the
number of neurons in each layer to remain on par with the
performance of SMART-Vanilla. However, user grouping
requires only an additional 3.5 ms in 64 × 64 network size,
a negligible portion of the total runtime. The runtime for
PN is about 1.6x and 4x running time of SMART-vanilla in
16 × 16 and 64 × 64, respectively. This is due to the fact
that pointer networks are auto-regressive and make decisions
sequentially and thus have slow inference. RR-UG shows the
smallest runtime among all, but it is not as spectrally efficient
as SMART, especially in mobility scenarios.

D. DISCUSSION AND FUTURE WORK
The results presented earlier offer good insights into the
performance and computational complexity of the proposed
SMART scheduler with respect to the existing methods.
However, an important question is whether SMART can be
deployed to operate in time-stringent 5G-NR systems. For
a realistic network size, Table 3 shows SMART takes as
much as 30 ms to run an iteration, 30× longer than one TTI
in the least time-stringent mode of 5G-NR [31]. This may
seem problematic for the adoption of SMART. To investigate
this, we run an experiment in a mobility scenario. We first
train SMART offline as before and test the trained model on
the testing dataset without online updates to the model. We
compare the spectral efficiency results for the offline trained
model with the previously presented results that include the
online updates. The results are shown in Fig. 11. We observe
that, even when we use the offline trained model with no
online updates, the performance is remarkably close to when
the model is continuously updated. The performance can get
even closer when we do updates every few tens of TTIs. This

VOLUME 1, 2023 255

FIGURE 11. Evaluation of SMART with and without a model
((online vs. offline) update in user mobility scenario and
64 × 64 network size.

finding means that we can only look into the inference time
of the model as the scheduling decision time. For 16×16 and
64 × 64 network sizes, the inference times for SMART are
5.4 and 8.7 ms. Running the model on a single GPU core
on the NVIDIA DGX A100 server reduces the inference
time values to 1.2 and 1.6 ms, respectively. The inference
runtime values can be further reduced to sub-millisecond
levels, as required in 5G-NR, by a more efficient implemen-
tation such as with CUDA [59] framework and parallelizing
the DRL model on several GPU cores. More importantly,
the reassuring performance of SMART-SA, demonstrated
in §IV-C.7, shows that we can get similar runtime values for
100s of RBs, as its architecture allows us to fully parallelize
it on different GPU cores.

Lastly, we have only considered saturated traffic for each
user. A more generic design should consider the incoming
traffic model as well as the quality of service (QoS) require-
ments, e.g. data rate and latency, for each user. Formulation
of the scheduling problem and formally solving it using
optimization techniques or heuristics-based approximation is
a difficult task. We believe AI-based methods such as the
one proposed in this paper provide a more promising avenue
for solving the generic case if enough training data exists.
We leave the design of a more comprehensive scheduler
that considers parameters in the higher layers of the net-
work such as traffic models and QoS constraints as future
work.

V. CONCLUSION
In this paper, we presented SMART, a resource scheduler for
massive MIMO networks based on the soft actor-critic DRL
model. We demonstrated the effectiveness of our scheduler
in achieving both spectral efficiency as well as fairness very
close to the optimal proportionally fair scheduler. We also
showed that our model outperforms state-of-the-art massive
MIMO schedulers in all scenarios, and particularly in mobil-
ity scenarios. We removed the need for raw channel matrices
in training our DRL model by utilizing a user grouping
algorithm based on the inter-user correlationmatrix and, thus,
we significantly reduced the complexity of our model. We
also provided guidelines as to how our scheduling model can
be deployed in time-stringent 5G-NR systems.

REFERENCES
[1] L. Li, M. Pal, and Y. R. Yang, ‘‘Proportional fairness in multi-rate wire-

less LANs,’’ in Proc. IEEE INFOCOM 27th Conf. Comput. Commun.,
Apr. 2008, pp. 1004–1012.

[2] S. Huang, H. Yin, J. Wu, and V. C.M. Leung, ‘‘User selection for multiuser
MIMO downlink with zero-forcing beamforming,’’ IEEE Trans. Veh. Tech-
nol., vol. 62, no. 7, pp. 3084–3097, Sep. 2013.

[3] K. Ko and J. Lee, ‘‘Multiuser MIMO user selection based on chordal
distance,’’ IEEE Trans. Commun., vol. 60, no. 3, pp. 649–654, Mar. 2012.

[4] N. Prasad, H. Zhang, H. Zhu, and S. Rangarajan, ‘‘Multiuser scheduling
in the 3GPP LTE cellular uplink,’’ IEEE Trans. Mobile Comput., vol. 13,
no. 1, pp. 130–145, Jan. 2014.

[5] C.-M. Chen, Q. Wang, A. Gaber, A. P. Guevara, and S. Pollin, ‘‘User
scheduling and antenna topology in dense massive MIMO networks: An
experimental study,’’ IEEE Trans. Wireless Commun., vol. 19, no. 9,
pp. 6210–6223, Sep. 2020.

[6] A. Chassein, M. Goerigk, A. Kasperski, and P. Zieliński, ‘‘Approximating
combinatorial optimization problems with the ordered weighted averaging
criterion,’’ Eur. J. Oper. Res., vol. 286, no. 3, pp. 828–838, Nov. 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0377221720303520

[7] R. Bellman, ‘‘A Markovian decision process,’’ Indiana Univ. Math. J.,
vol. 6, no. 4, pp. 679–684, 1957. [Online]. Available: http://www.jstor.
org/stable/24900506

[8] V. Mnih et al., ‘‘Human-level control through deep reinforcement
learning,’’ Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015, doi:
10.1038/nature14236.

[9] A. Dargazany, ‘‘DRL: Deep reinforcement learning for intelligent robot
control—Concept, literature, and future,’’ 2021, arXiv:2105.13806.

[10] V. Mnih et al., ‘‘Playing Atari with deep reinforcement learning,’’ 2013,
arXiv:1312.5602.

[11] P. Lissa, C. Deane, M. Schukat, F. Seri, M. Keane, and E. Barrett, ‘‘Deep
reinforcement learning for home energy management system control,’’
Energy AI, vol. 3, Mar. 2021, Art. no. 100043.

[12] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, ‘‘Neural combina-
torial optimization with reinforcement learning,’’ 2016, arXiv:1611.09940.

[13] K. Li, T. Zhang, R. Wang, Y. Wang, Y. Han, and L. Wang, ‘‘Deep
reinforcement learning for combinatorial optimization: Covering sales-
man problems,’’ IEEE Trans. Cybern., vol. 52, no. 12, pp. 13142–13155,
Dec. 2022.

[14] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning with
double Q-learning,’’ in Proc. AAAI Conf. Artif. Intell., vol. 30, no. 1, 2016,
pp. 1–13.

[15] V. Mnih et al., ‘‘Asynchronous methods for deep reinforcement learning,’’
2016, arXiv:1602.01783.

[16] Z. Wang et al., ‘‘Sample efficient actor-critic with experience replay,’’
2017, arXiv:1611.01224.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proxi-
mal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[18] L. Chen, F. Sun, K. Li, R. Chen, Y. Yang, and J. Wang, ‘‘Deep reinforce-
ment learning for resource allocation in massive MIMO,’’ in Proc. 29th
Eur. Signal Process. Conf. (EUSIPCO), Aug. 2021, pp. 1611–1615.

[19] T. P. Lillicrap et al., ‘‘Continuous control with deep reinforcement learn-
ing,’’ 2015, arXiv:1509.02971.

[20] G. Dulac-Arnold et al., ‘‘Deep reinforcement learning in large discrete
action spaces,’’ 2015, arXiv:1512.07679.

[21] X. Guo et al., ‘‘A novel user selectionmassiveMIMO scheduling algorithm
via real time DDPG,’’ in Proc. GLOBECOM IEEEGlobal Commun. Conf.,
Dec. 2020, pp. 1–6.

[22] H. Chen et al., ‘‘Joint user scheduling and transmit precoder selection based
on DDPG for uplink multi-user MIMO systems,’’ in Proc. IEEE 94th Veh.
Technol. Conf. (VTC-Fall), Sep. 2021, pp. 1–5.

[23] T. Haarnoja et al., ‘‘Soft actor-critic algorithms and applications,’’ 2018,
arXiv:1812.05905.

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,’’ 2018, arXiv:1801.01290.

[25] 5G NR Physical Channels and Modulation (3GPP TS 38.211 Ver-
sion 16.2.0 Release 16). Accessed: Feb. 13, 2023. [Online]. Avail-
able: https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/16.02.
00_60/ts_138211v160200p.pdf

256 VOLUME 1, 2023

http://dx.doi.org/10.1038/nature14236

An et al.: DRL-Based Resource Scheduler for Massive MIMO Networks

[26] Y. Chen, R. Yao, H. Hassanieh, and R. Mittal, ‘‘Channel-aware 5G RAN
slicing with customizable schedulers,’’ in Proc. USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2023, pp. 1767–1782.

[27] V. Lau, ‘‘Proportional fair space-time scheduling for wireless communica-
tions,’’ IEEE Trans. Commun., vol. 53, no. 8, pp. 1353–1360, Aug. 2005.

[28] P. R. M., M. R., A. Kumar, and K. Kuchi, ‘‘Downlink resource allocation
for 5G-NRmassiveMIMO systems,’’ in Proc. Nat. Conf. Commun. (NCC),
Jul. 2021, pp. 1–6.

[29] C. Blair, ‘‘Theory of linear and integer programming (Alexander
Schrijver),’’ SIAM Rev., vol. 30, no. 2, pp. 325–326, Jun. 1988, doi:
10.1137/1030065.

[30] H. Liu, H. Gao, S. Yang, and T. Lv, ‘‘Low-complexity downlink user
selection for massive MIMO systems,’’ IEEE Syst. J., vol. 11, no. 2,
pp. 1072–1083, Jun. 2017.

[31] Y. Chen, Y. Wu, Y. T. Hou, and W. Lou, ‘‘MCore: Achieving sub-
millisecond scheduling for 5G MU-MIMO systems,’’ in Proc. IEEE
INFOCOM Conf. Comput. Commun., May 2021, pp. 1–10.

[32] H. Yang, ‘‘User scheduling in massive MIMO,’’ in Proc. IEEE 19th Int.
Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Jun. 2018,
pp. 1–5.

[33] J. Shi, W. Wang, J. Wang, and X. Gao, ‘‘Machine learning assisted user-
scheduling method for massive MIMO system,’’ in Proc. 10th Int. Conf.
Wireless Commun. Signal Process. (WCSP), Oct. 2018, pp. 1–6.

[34] G. Bu and J. Jiang, ‘‘Reinforcement learning-based user scheduling and
resource allocation for massive MU-MIMO system,’’ in Proc. IEEE/CIC
Int. Conf. Commun. China (ICCC), Aug. 2019, pp. 641–646.

[35] V. H. L. Lopes et al., ‘‘Deep reinforcement learning-based scheduling for
multiband massive MIMO,’’ IEEE Access, vol. 10, pp. 125509–125525,
2022.

[36] C.-W. Huang, I. Althamary, Y.-C. Chou, H.-Y. Chen, and C.-F. Chou,
‘‘A DRL-based automated algorithm selection framework for cross-layer
QoS-aware scheduling and antenna allocation inmassiveMIMO systems,’’
IEEE Access, vol. 11, pp. 13243–13256, 2023.

[37] Z. Zhao, Y. Liang, and X. Jin, ‘‘Handling large-scale action space in deep Q
network,’’ in Proc. Int. Conf. Artif. Intell. Big Data (ICAIBD), May 2018,
pp. 93–96.

[38] M. Muja and D. G. Lowe, ‘‘Scalable nearest neighbor algorithms for high
dimensional data,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 11,
pp. 2227–2240, Nov. 2014.

[39] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine, ‘‘Learning
to walk via deep reinforcement learning,’’ 2018, arXiv:1812.11103.

[40] P. Christodoulou, ‘‘Soft actor-critic for discrete action settings,’’ 2019,
arXiv:1910.07207.

[41] B. Eysenbach and S. Levine, ‘‘Maximum entropy RL (provably) solves
some robust RL problems,’’ 2021, arXiv:2103.06257.

[42] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
‘‘Deep reinforcement learning that matters,’’ in Proc. AAAI Conf. Artif.
Intell., vol. 32, no. 1, 2018, pp. 3207–3214.

[43] X. Hao et al., ‘‘Breaking the curse of dimensionality in multiagent
state space: A unified agent permutation framework,’’ 2022, arXiv:2203.
05285.

[44] R. Jain, D. Chiu, and W. Hawe, ‘‘A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems,’’ 1998,
arXiv:cs/9809099.

[45] L. Busoniu, R. Babuska, and B. De Schutter, ‘‘A comprehensive survey of
multi-agent reinforcement learning,’’ IEEE Trans. Syst. Man, Cybern. C,
Appl. Rev., vol. 38, no. 2, pp. 156–172, Mar. 2008.

[46] S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, ‘‘QuaDRiGa: A 3-D
multi-cell channel model with time evolution for enabling virtual field
trials,’’ IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3242–3256,
Jun. 2014.

[47] R. Shafik, M. Rahman, A. Islam, and N. Ashraf, ‘‘On the error vector
magnitude as a performance metric and comparative analysis,’’ in Proc.
Int. Conf. Emerg. Technol., Nov. 2006, pp. 27–31.

[48] NVIDIA DGX Station A100. Accessed: Jul. 27, 2022. [Online]. Available:
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-
station/nvidia-dgx-station-a100-datasheet.pdf

[49] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[50] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance
deep learning library,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 32, H. Wallach and H. Larochelle and A. Beygelzimer and
F. d’Alché-Buc and E. Fox and R. Garnett, Eds. Curran Associates,
2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performancedeep-learning-
library.pdf

[51] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ 2016, arXiv:1511.05952.

[52] E. Björnson, E. G. Larsson, and T. L. Marzetta, ‘‘Massive MIMO: Ten
myths and one critical question,’’ IEEE Commun. Mag., vol. 54, no. 2,
pp. 114–123, Feb. 2016.

[53] T. V. de Wiele, D. Warde-Farley, A. Mnih, and V. Mnih, ‘‘Q-learning in
enormous action spaces via amortized approximate maximization,’’ 2020,
arXiv:2001.08116.

[54] C. Wu, X. Yi, Y. Zhu, W. Wang, L. You, and X. Gao, ‘‘Channel pre-
diction in high-mobility massive MIMO: From spatio-temporal autore-
gression to deep learning,’’ IEEE J. Sel. Areas Commun., vol. 39, no. 7,
pp. 1915–1930, Jul. 2021.

[55] Y. Han, S. Jin, C.-K. Wen, and X. Ma, ‘‘Channel estimation for extremely
large-scalemassiveMIMO systems,’’ IEEEWireless Commun. Lett., vol. 9,
no. 5, pp. 633–637, May 2020.

[56] C.-J. Chun, J.-M. Kang, and I.-M. Kim, ‘‘Deep learning-based channel
estimation for massive MIMO systems,’’ IEEE Wireless Commun. Lett.,
vol. 8, no. 4, pp. 1228–1231, Aug. 2019.

[57] M. Nazari, A. Oroojlooy, L. V. Snyder, and M. Takác, ‘‘Rein-
forcement learning for solving the vehicle routing problem,’’ 2018,
arXiv:1802.04240.

[58] R. Doost-Mohammady et al., ‘‘RENEW: Programmable and observable
massive MIMO networks,’’ in Proc. 52nd Asilomar Conf. Signals, Syst.,
Comput., Oct. 2018, pp. 1654–1658.

[59] Cuda Toolkit Documentation. Accessed: Aug. 1, 2022. [Online]. Available:
https://docs.nvidia.com/cuda/

VOLUME 1, 2023 257

http://dx.doi.org/10.1137/1030065

