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Abstract 
 

NOAA’s Alaska Fisheries Science Center’s (AFSC) Ecosystems and Fisheries-Oceanography 
Coordinated Investigations (EcoFOCI) program has collected spring ichthyoplankton abundance data in 
the Gulf of Alaska since 1981. Collections were made nearly annually until 2011 when sampling was 
reduced to only odd years. This dataset is used to better understand population recruitment of major 
fish species in the GOA and provides early warning of potential year-class strength to inform fisheries 
management. However, gaps in the time series during even years have made it more difficult to 
interpret the interannual variability of ichthyoplankton abundance in such a dynamic ecosystem. Recent 
collaboration with the Northern Gulf of Alaska Long Term Ecological Research (NGA LTER) program has 
allowed for additional spring sampling of ichthyoplankton in the GOA annually since 2018. Larval fish 
data collected by the NGA LTER were combined with EcoFOCI data and used to estimate abundance in 
years when EcoFOCI had no field presence in the GOA. Five taxa were determined to be suitable for this 
approach based on their percent occurrence in both surveys. A generalized additive model (GAM) was 
fit to ichthyoplankton data from 1981 to 2022 collected by both EcoFOCI and NGA LTER and used to 
predict larval abundances in 2018, 2020, and 2022. For each species, models with two different error 
distributions were compared and shown to produce similar predictions of larval abundance. This report 
provides a model framework for predicting interannual larval fish abundance while controlling for 
differences in sampling methodologies, timing, and location, and identifies a subset of taxa for which 
this framework is currently appropriate. As additional years of concurrent sampling are added in future, 
this approach has the potential to improve our understanding of interannual variation in 
ichthyoplankton dynamics and provide more comprehensive indicators for ecosystem-based fisheries 
management. 
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Introduction 
 

The Gulf of Alaska (GOA) is a highly productive ecosystem which supports many commercially 
and ecologically important fish. NOAA’s Alaska Fisheries Science Center is responsible for monitoring 
and providing management advice for these important fisheries. Ecosystem indicators, including climate 
indices, biomass of prey and predator communities, and socioeconomic conditions are an important 
component to assessing the status of a stock and informing set catch limits through ecosystem-based 
fisheries management (Zador et al. 2017). Larval fish abundances serve as a valuable indicator of the 
potential recruitment strength for a given year class (Bailey et al. 2012). The larval stage is particularly 
sensitive to environmental changes; thus, changes in the population abundance, distribution, and 
phenology can provide insight into current spawning, habitat, and forage conditions (Boeing and Duffy-
Anderson 2008, Asch 2015, Auth et al. 2018, Rogers and Dougherty 2019, Nielsen et al. 2021, Rogers  
et al. 2021). Tracking abundances of larval fish allows for early insight into the potential future status of 
a stock and has been used to inform catch limits (Litzow et al. 2022).  

The Ecosystem and Fisheries-Oceanography Coordinated Investigations (EcoFOCI) team at NOAA 
conducts regular monitoring of spring ichthyoplankton communities in the Gulf of Alaska during May - 
June. Larval fish abundances in the Gulf of Alaska peak during the spring bloom when phytoplankton and 
zooplankton biomass are high and the continental shelf provides important habitat for many species 
(Doyle et al. 2019). The EcoFOCI ichthyoplankton survey was historically designed to target the spring 
peak in larval fish abundance with particular focus on the commercially important walleye pollock 
(Gadus chalcogrammus). Despite the initial focus on walleye pollock, all larval fish are identified and 
enumerated within a sample, providing a rich dataset on interannual ichthyoplankton abundances for 
many important fish species in the Gulf of Alaska region (Matarese et al. 2003). Time series of larval 
abundance have been estimated for a subset of 12 commercially and ecologically important taxa and 
contributed as indicators to annual Ecosystem Status Reports (ESRs; Rogers and Axler 2023). 

Samples are collected primarily in the western Gulf of Alaska with the most consistent sampling 
occurring in Shelikof Strait (Fig. 1), one of the primary spawning grounds of walleye pollock. EcoFOCI has 
collected and processed ichthyoplankton samples since 1981. Collections were made annually from 
1990 until 2011 when the program was reduced to sampling every other year. Gaps in the time series 
have made it more difficult to interpret the temporal variability of ichthyoplankton abundance 
particularly in recent years which have experienced increasing environmental variability and marine 
heatwave events (Nielsen et al. 2021, Suryan et al. 2021, Ren et al. 2023). In years without sampling, a 
lack of observations prevents detecting early warning signals of failed recruitment or large-scale 
ecosystem shifts. 

Recent collaboration with the Northern Gulf of Alaska Long Term Ecological Research (NGA 
LTER) program has allowed for additional collections of ichthyoplankton. The NGA LTER was established 
in 2018 as a part of a network of 30 NSF-funded long-term ecological research programs and one of four 
pelagic-focused programs. It builds off over 30 years of prior timeseries collections in the Gulf of Alaska. 
The NGA LTER began collecting additional ichthyoplankton samples during their annual spring cruise in 
collaboration with EcoFOCI. Despite the difference in timing and location of collections between the 
NGA LTER and EcoFOCI, NGA LTER collections could potentially be used to predict larval fish abundances 
in years without EcoFOCI sampling and help inform interannual patterns in abundance during sampling 
gaps. In this study, we investigated model-based approaches for combining the EcoFOCI and NGA LTER 
ichthyoplankton datasets to estimate time-series of larval fish abundance for a subset of commercially 
and ecologically important species in the Gulf of Alaska. 
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Methods 
 

Ichthyoplankton Collections 
 

EcoFOCI has collected ichthyoplankton samples from the Western Gulf of Alaska between May 
and June since 1981 (Fig. 2). Sample locations span the western Gulf of Alaska shelf with the area 
between Shelikof Strait and the Shumagin Islands being most consistently sampled (Fig. 1). Sample 
coverage varied by year (Table 2; Fig. 3). Samples were taken annually between 1990 and 2011, after 
which sampling was reduced to every other year on odd years (Table 2). A 60 cm diameter bongo net 
equipped with either 333 or 505 µm mesh nets was towed obliquely from 100 m depth, or 10 m off 
bottom, to the surface (Table 1). Larval catch has been shown to be comparable between the two mesh 
sizes (Boeing and Duffy-Anderson 2008). Collections were made during both night and day as 
ichthyoplankton are assumed to remain in the upper 100 m (Brodeur and Rugen 1994). Samples were 
preserved in 5% formalin, identified to the lowest taxonomic level at the Plankton Sorting and 
Identification Center in Szczecin, Poland, and verified by taxonomic experts at the Alaska Fisheries 
Science Center. Larval catch is reported as the number per 10 m2 sea surface area.  

The NGA LTER began collecting ichthyoplankton annually for EcoFOCI in 2018 (Table 2). Samples 
are collected each spring between April and May along three core cross-shelf transects in the NGA LTER 
study region (Figs. 1, 2). Additional stations were sampled as time permitted (Fig. 3). Either a 60 cm 
bongo net or a 0.25 m2 Hydro-Bios MultiNet with a drogue net were towed obliquely from 200 m depth, 
or 5 m above bottom, to the surface at night. Both net systems were equipped with 505 µm mesh nets 
(Table 1). Samples were preserved in 10% formalin and identification was carried out following EcoFOCI 
protocols as described above. 

A total of 4,823 spring ichthyoplankton collections were made over 35 years between 1981 and 
2022. The number, timing, and location of collections varied by year, with EcoFOCI and NGA LTER 
making an average of 146 ± 64 and 30 ± 9 collections per year, respectively (Table 2, Fig. 3). On average, 
EcoFOCI collections were made 26 days later than NGA LTER collections (Fig. 2). The majority of EcoFOCI 
sample locations were on the continental shelf with a bottom depth shallower than 500 m, whereas 
NGA LTER samples transected the shelf with some samples over the continental slope. 2019 and 2021 
are the only years sampled by both EcoFOCI and NGA LTER in the same year.  
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Figure 1.-- Map of the Gulf of Alaska sample region. Color indicates the number of samples collected by 

EcoFOCI within the hexagonal grid from 1981 to 2022. NGA LTER sample locations are 
marked by points and main transect lines are labeled. The 1,000 m isobath contours are 
drawn in gray. Black polygon outline indicates the region used to generate predicted 
abundances.  

 
 
Table 1. -- Summary of collection conditions for EcoFOCI and NGA LTER. 
 

Group Equipment Mesh 
Size 

Max Tow 
Depth 

Bottom 
Depth 

Time of 
Tow 

Longitude 
Range 

Date 
Range 

EcoFOCI 60 cm 
Bongo Net 

333 or 
505 µm 

100 m 18 – 3580 m 
(avg = 179 m) 

Day and 
Night 

146.50 to 
168.00°W 

6 May to 
6 June 

NGA 
LTER 

60 cm 
Bongo Net 

or 
0.25 m2 
Mulitnet 

505 µm 
 

200 m 
 

35 – 4548 m 
(avg = 830 m) 

Night 143.89 to 
151.59°W 

20 April to 
10 May 
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Figure 2. -- Boxplot of dates sampled for EcoFOCI and NGA LTER. 
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Figure 3. -- Map of ichthyoplankton sample locations per year. Colors indicate EcoFOCI (orange) or NGA 

LTER (purple) sampling. 
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Table 2. -- Number of samples collected per year for EcoFOCI and NGA LTER since 1981.  
Year EcoFOCI NGA 

LTER 
1981 130 0 

1982 61 0 

1983 69 0 

1984 0 0 

1985 185 0 

1986 0 0 

1987 50 0 

1988 0 0 

1989 0 0 

1990 133 0 

1991 96 0 

1992 137 0 

1993 113 0 

1994 139 0 

1995 98 0 

1996 130 0 

1997 100 0 

1998 130 0 

1999 314 0 

2000 141 0 

2001 147 0 

2002 137 0 

Year EcoFOCI NGA 
LTER 

2003 114 0 

2004 193 0 

2005 187 0 

2006 175 0 

2007 130 0 

2008 94 0 

2009 152 0 

2010 163 0 

2011 66 0 

2012 0 0 

2013 226 0 

2014 0 0 

2015 281 0 

2016 0 0 

2017 266 0 

2018 0 32 

2019 232 35 

2020 0 15 

2021 84 32 

2022 0 36 

Total 4,673 150 
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Larval Catch Models 
 
Generalized additive models (GAM) were used to estimate interannual patterns in larval fish 

abundance and control for differences in spatial sampling and methodologies between EcoFOCI and 
NGA LTER collections. Species included in EcoFOCI’s ESR contributions were considered for this model 
approach due to their high abundance and importance in the Gulf of Alaska. These included Pacific sand 
lance (Ammodytes personatus), arrowtooth flounder (Atheresthes stomias), ronquils (Bathymaster spp.), 
walleye pollock (Gadus chalcogrammus), Pacific cod (Gadus macrocephalus), flathead sole 
(Hippoglossoides elassodon), Pacific halibut (Hippoglossus stenolepis), southern rock sole (Lepidopsetta 
bilineata), northern rock sole (Lepidopsetta polyxystra), starry flounder (Platichthys stellatus), rockfish 
(Sebastes spp.), and northern lampfish (Stenobrachius spp). Due to low occurrence in NGA LTER 
samples, some species were deemed unsuitable for model generated predictions. Species not present in 
at least 30% of NGA LTER samples were eliminated. Years with no catch for a given species at any 
location were excluded from the model for a given species. To account for the highly zero-inflated data 
structure, two types of models were tested, which differed in their approach to handling zeros.  

First, a Tweedie distribution with a log-link was selected for its ability to model continuous data 
with a point mass at 0 (Dunn and Smyth 2018). The Tweedie power parameter was estimated within 
the model. For each species, two alternative Tweedie models were fit. The first modeled catch per  
10 m2 (CPUE) as a function of Year (as a factor) and a two-dimensional spatial smoothers (Easting, 
Northing). Longitude and latitude coordinates were converted to UTM zone 5 coordinates prior to 
input into the model. The second model contained an additional term for research Group (EcoFOCI or 
NGA LTER) to further account for differences in collection methods and timing (Equation 1). Model 
comparison using AIC showed that, for most species, the inclusion of a research group term resulted in 
a better fit. All models discussed hereafter include a research Group fixed effect (Equation 1). Models 
with terms for day of year, sample net, time of day, and maximum tow depth were not considered due 
to collinearity and were assumed to be accounted for in the group term. No interaction terms between 
Year, Group, and spatial smooth were included due to limited data overlap: 
 

𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 𝑠𝑠(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺.                 Eq. 1 
 

The second model distribution used was a two-part hurdle model (also known as a delta model), 
selected for its flexibility to model extra zeros separate from positive catch data. First, larval presence 
and absence (pi) was modeled with a binomial distribution with a logit link (Equation 2). Then non-zero 
CPUE (µi) was modeled with a Gamma log-link distribution (Equation 3). Models were parameterized as 
described for the Tweedie model (Equation 1). All models were constructed using the mgcv package 
(v1.9.0; Wood 2017) and visualized with the gratia (v0.8.1; Simpson 2023) package in R (v4.3.1; R core 
team 2023):   
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖) =  𝑠𝑠(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺     Eq. 2 
𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑖𝑖) =  𝑠𝑠(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺.     Eq. 3 

 
Log likelihood and AIC values for the Tweedie and Hurdle models were used to compare model 

fit (Zhen et al. 2018). For the Hurdle model, log likelihood was calculated as the sum of the log 
likelihoods from the binomial and nonzero parts (McDowell 2003). AIC was then calculated as AIC =  
-2logL + 2p where logL is the log likelihood and p is the sum of the model degrees of freedom. 
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Predicted Abundances 
 
A prediction grid with 12 km spacing was generated for the region typically reported in ESRs 

between Shelikof Strait and the Shumagin islands (Fig. 1, polygon). For each model type, CPUE was 
predicted at each point within the prediction grid for every sampled year, including years when only 
NGA LTER stations were sampled. The Group factor was set to EcoFOCI. For the hurdle model, binomial 
and nonzero model predictions were multiplied to generate an overall predicted CPUE for each point on 
the grid. To create a timeseries, predicted abundances for the grid were then averaged per year. Two-
sided nonparametric bootstrapped 95% confidence intervals were generated for annual predicted CPUE. 
Data was resampled randomly with replacement then used to generate predicted abundances for 1,000 
replicates. Confidence intervals were calculated using the bootstrap percentile method. For the hurdle 
model, random resampling resulted in all positive data for a given year being dropped for some 
replicates, leading to an error. In this case, the larval catch value for one random sample in that year was 
replaced with a pseudocount of 0.001-- representing a near-zero value while allowing the function to 
proceed without error. Bootstrapped confidence intervals were generated using the boot package in R 
(v1.3.28.1; Canty and Ripley 2022, Davison and Hinkley 1997). 
 

Model Prediction Testing 
 

Two years (2019 and 2021) were sampled by both EcoFOCI and the NGA LTER. To test the 
model’s ability to predict abundances for EcoFOCI samples based on NGA LTER collections, all models 
were refit leaving out either 2019 or 2021 EcoFOCI data and compared to the full model. New predicted 
values were calculated for CPUE as described above. Root mean squared error (RMSE) was calculated 
between the predictions generated by leaving out 2019 or 2021 and the full model predictions for that 
year. RMSE was calculated for both Tweedie and Gamma Hurdle models of each species to assess which 
model type performed better when removing a year of data per species. 
 

Results 
 

Of the 12 species included in ESRs, 5 were present in at least 30% of NGA LTER samples and thus 
were modeled (arrowtooth flounder, northern lampfish, Pacific sand lance, rockfish, and walleye 
pollock). The other seven species were not modeled due to a lack of presence in NGA LTER collections 
and thus low confidence in the model’s predictive capabilities for that species (Table 3). Of the five 
species, walleye pollock was the most ubiquitous with presence in 83% of EcoFOCI samples and 65% of 
NGA LTER samples. Pacific sand lance also had a higher percent occurrence in EcoFOCI collections. 
Arrowtooth flounder, rockfish, and northern lampfish had higher percent occurrence in NGA LTER 
samples (Table 3).  
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Table 3. -- Percentage of samples a species is present for EcoFOCI and NGA LTER collections. Model 
predicted abundances were calculated for species with percent occurrence greater than 30% 
in NGA LTER samples (bolded). 

  % Occurrence 
Common Name Scientific Name EcoFOCI NGA LTER 

Pacific sand lance Ammodytes personatus 71.5 36.7 
Arrowtooth flounder Atheresthes stomias 19.9 46.7 
Ronquils Bathymaster spp. 59.7 4.7 
Walleye pollock Gadus chalcogrammus 82.8 64.7 
Pacific cod Gadus macrocephalus 43.8 9.3 
Flathead sole Hippoglossoides elassodon 75.0 20.0 
Pacific halibut Hippoglossus stenolepis 9.3 8.0 
Southern rock sole Lepidopsetta bilineata 27.4 12.0 
Northern rock sole Lepidopsetta polyxystra 32.5 8.7 
Starry flounder Platichthys stellatus 17.5 3.3 
Rockfish Sebastes spp. 43.1 72.0 
Northern lampfish Stenobrachius spp. 38.8 56.7 

 
 

Pacific sand lance, arrowtooth flounder, and northern lampfish were best modeled by the 
Tweedie distribution, as indicated by a lower AIC value (Table 4). Conversely, walleye pollock and 
rockfish were best modeled by the Gamma Hurdle model (Table 4). However, model estimates were 
very similar between Tweedie and Gamma Hurdle models. Both Tweedie and Gamma Hurdle model 
residuals were inspected and deemed acceptable. 

Partial effects for the two-dimensional smoother displayed similar spatial patterns in abundance 
(Figs. 4-6).  Arrowtooth flounder, northern lampfish, and rockfish had higher presence and abundances 
off shelf. Additionally, northern lampfish and rockfish showed higher abundances on the shelf near the 
Seward line transect. Walleye pollock and Pacific sand lance had higher larval catch on shelf with 
walleye pollock more abundant in the Shelikof Strait region and Pacific sand lance more abundant 
nearshore. It is important to note that the spatial smoother does not purely represent spatial patterns in 
larval catch between NGA LTER and EcoFOCI due to the spatial collinearity with sample timing and 
methodological differences. Thus, patterns represented by the spatial smoother reflect the combined 
impact of spatial and temporal patterns on larval abundance, making it a useful approach for controlling 
for differences in larval catch as a result of both spatial distributions and methodological differences. 
  



10 
 

Table 4. -- Log likelihood and associated degrees of freedom (df), Akaike information criterion (AIC), and 
root mean squared error (RMSE) for Tweedie and Gamma Hurdle models for each species. The 
model with the lowest AIC and RMSE error per species is highlighted in gray indicating better 
model fit. 

 
 Log Likelihood AIC RMSE 

Species Tweedie Hurdle Tweedie Hurdle Tweedie Hurdle 
Arrowtooth 
flounder 

-5845.79 
(df=64.8) 

-5807.65 
(df=125.1) 

11821.18 11865.58 6.01 7.20 

Northern 
lampfish 

-9696.77 
(df=65.4) 

-9771.13 
(df=123.7) 

19524.35 19789.68 10.92 11.67 

Pacific sand 
lance 

-19022.88 
(df=65.6) 

-19293.49 
(df=124.9) 

38176.92 38836.86 105.12 98.98 

Rockfish -13698.74 
(df=65.8) 

-13487.92 
(df=126.4) 

27529.07 27228.58 52.74 28.49 

Walleye pollock -26480.93 
(df=65.7) 

-26160.88 
(df=126.7) 

53093.25 52575.22 143.86 73.85 
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Figure 4. -- Tweedie model two-dimensional spatial smoother partial effects. Positive values indicate 

CPUE greater than average and negative values indicate CPUE lower than average. 
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Figure 5. -- Gamma Hurdle binomial model two-dimensional spatial smoother partial effects. Positive 

values indicate higher than average likelihood of positive catch and negative values indicate 
lower than average likelihood of positive catch.  
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Figure 6. -- Non-zero Gamma Hurdle model two-dimensional spatial smoother partial effects. Positive 

values indicate higher than average CPUE when larvae are present and negative values 
indicate lower than average CPUE when larvae are present. 
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Figure 7. -- Model predicted catch per unit effort (CPUE; Larvae per 10 m2) per year per species. Data are 

plotted on the log10 scale. Gamma Hurdle model predictions are plotted in black and 
Tweedie model predictions are plotted in pink. Nonparametric bootstrapped 95% confidence 
intervals are represented by shading and error bars. Black × and pink + symbols indicate 
predictions for Hurdle and Tweedie models, respectively, based on the removal of 2019 or 
2021 EcoFOCI data. 
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There is substantial overlap of model predicted CPUE and associated confidence intervals 
between Tweedie and Gamma Hurdle models (Fig. 7). Each species showed high interannual variability, 
often exceeding one order of magnitude difference. Conversely, variability within a year was typically 
smaller. Years predicted solely based on NGA LTER collections have larger confidence intervals than 
other years. Additionally, for some species, some years have particularly large confidence intervals due 
to lower sample sizes or restricted spatial coverage. Over the sample period, walleye pollock has the 
highest predicted CPUE, Pacific sand lance and rockfish have intermediate CPUE, and arrowtooth 
flounder and northern lampfish have the lowest CPUE. 

Model predictions for 2019 and 2021 generated based on models built without 2019 or 2021 
EcoFOCI data, respectively, did not fall within the 95% confidence intervals of the full model predictions 
(Fig. 7). The exception is rockfish with 2021 EcoFOCI data removed. For walleye pollock and Pacific sand 
lance, predictions were typically lower for models with 2019 EcoFOCI data removed and higher for 
models built without 2021 data compared to the full model. The opposite pattern is true for arrowtooth 
flounder, northern lampfish, and rockfish (Fig. 7). In most cases, the Tweedie and Gamma Hurdle model 
performed similarly with the removal of EcoFOCI data. Arrowtooth flounder and northern lampfish had 
lower RMSE with the Tweedie model, whereas Pacific sand lance, walleye pollock, and rockfish had 
lower RMSE with the Gamma Hurdle model (Table 4). Preference for Tweedie or Gamma Hurdle model 
distributions based on RMSE was not uniform across modeled species for the current model framework 
and available data. 

 

Discussion 
 
The aim of this analysis was to utilize annual ichthyoplankton collections made by the NGA LTER 

program to predict larval fish abundances during years which EcoFOCI did not make collections. Here, 
we outline a simple model framework for predicting annual abundances of five key fish species in the 
Gulf of Alaska based on NGA LTER collections while controlling for spatial, temporal, and methodological 
differences in sample collections. Although this method is currently limited to two years of overlapping 
data, it provides a framework for continuing to predict abundances as future sample data becomes 
available with potential for extension to other important species.  

Due to the NGA LTER’s earlier collection timing, this method works best for species with earlier 
life history phenologies. Spawning and hatching occurs prior to March for the five species included, 
allowing for accumulation of larvae leading up to the early NGA LTER collections. Conversely, for the 
excluded species, spawning does not occur until April and peaks later (Doyle et al. 2019). Thus, NGA 
LTER collections are likely too early to collect consistent numbers of these species. The exception is the 
winter spawned Hippoglossus stenolepis, which is generally patchy and present in low numbers.  

Data collected east of the Cook Inlet was generated by the NGA LTER (with the exception of 
1985, 1999, and 2015 when EcoFOCI sampling extended farther east) and subject to differences in 
methodologies and earlier sample timing (Fig. 3). Thus, patterns in the two-dimensional smoother 
across these regions reflect not only spatial patterns in larval abundance, but also potential changes due 
to differential sample timing and collection methods. It is important to not interpret the two-
dimensional partial effects purely as a spatial term even though it is defined mathematically as such. For 
example, Sebastes spp., and Stenobrachius spp. show a region of higher abundances that crosses the 
shelf near the Seward Line (Fig. 7). This may represent a true spatial pattern reflective of the transport 
of deep-spawned larvae onto the shelf via the Amatuli Trough (Doyle et al. 2019). However, this cannot 
be separated from the confounding impact of the NGA LTER’s earlier sample timing and potential 
increase in catchability due to the deeper tow depth and use of the Multinet on the Seward Line. 
Additionally, the two-dimensional smooth parameter was not allowed to fluctuate per year and 
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therefore assumes that these patterns remain constant over time. The addition of the research group 
parameter to the model framework adds additional flexibility to account for differences between NGA 
LTER and EcoFOCI collections.   

For each species, predicted CPUE had high interannual variability over the sample period, often 
exceeding one order of magnitude (Fig. 7). Conversely, the prediction error due to variability across 
sampling locations and time frames was typically smaller. In some cases, restricted sampling range and 
sample quantity resulted in some years with low percent occurrence for some species and large 
confidence intervals. For example, fewer samples were taken in 1987 and restricted to the shelf 
resulting in low catch of arrowtooth flounder which is more abundant offshore. Likewise, sample 
collection was greatly reduced in 2020 with only 15 samples collected due to the COVID-19 pandemic 
(Fig. 3, Table 2). In these years, bootstrapped confidence intervals are large due to the higher probability 
of random resampling selecting data with a CPUE of zero (Fig. 7). However, overall, the greater 
interannual variability in comparison to spatial and within-year variability makes this modeling approach 
useful to approximate annual larval catch from NGA LTER collections despite differences in sampling 
location and timing.  

Model predictions for both the Tweedie and Gamma Hurdle models estimated similar absolute 
CPUE, relative interannual patterns, and confidence intervals (Fig. 7). Models using Tweedie and Gamma 
Hurdle methods have been recommended previously on Bering Sea and Gulf of Alaska bottom trawl fish 
abundance time series and shown to produce similar scale estimates to each other. Moreover, Tweedie 
and Gamma Hurdle GAMs were shown to produce similar absolute values to the design-based indices 
used compared to inverse Gaussian or lognormal distributions (Thorson et al. 2021). While the absolute 
abundance of larval fish in the EcoFOCI sample region is unknown for 2018, 2020, and 2022, both model 
types produce similar CPUE predictions relative to the surrounding sampled years. Predicting the 
absolute CPUE could be useful; however, correctly modeling relative interannual changes in CPUE was 
the primary purpose in our analysis.  

Models were subjected to rigorous testing by leaving out EcoFOCI data for one year of 
overlapping sampling and regenerating model predicted abundances for that year on the reduced 
dataset. Resulting CPUE predictions did not fall within the 95% confidence intervals of the full model, 
illustrating the model’s sensitivity to the removal of data. Based on RMSE calculations, the Gamma 
Hurdle model performed better on the reduced data set for Pacific sand lance, rockfish, and walleye 
pollock. Conversely, the Tweedie model performed better on arrowtooth flounder and northern 
lampfish. Because the current dataset only contains two years that were sampled concurrently by 
EcoFOCI and the NGA LTER (2019 and 2021), the removal of one year resulted in models being 
constructed with only one year of overlap. It is expected that the addition of more years of overlapping 
sampling in the future will help stabilize model predictions and enhance its reliability. It is unclear how 
the addition of more data will impact the selection between Tweedie or Gamma Hurdle models. 

For walleye pollock in particular, larval abundance estimates have been used as an early 
indicator of potential year-class strength (Bailey et al. 2012, Litzow et al. 2022). However, recent time-
series gaps have limited the utility of this indicator for informing the stock assessment for walleye 
pollock (Shotwell et al. 2019). Despite the limited data in 2018, 2020, and 2022, relative patterns in 
model-predicted CPUE for those years are consistent with eventual recruitment strength as estimated in 
the stock assessment model (Monnahan et al. 2023). In the assessment model, which estimates 
recruitment strength based on survey and fishery catches of walleye pollock aged 1 and older, recent 
strong year classes have been 2017, 2018, and 2020, while 2015, 2019, 2021 and 2022 were estimated 
to be weak. This corresponds to years with relatively high and low model-estimated larval abundances 
(Fig. 7). This suggests that even with limited sampling that occurs outside the typical time range and 
geographic area of the EcoFOCI survey, the NGA LTER survey provides useful estimates of relative 
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abundance when modeled in this way. In the future, a combined time series can be contributed to the 
Ecosystem and Socioeconomic Profile for this stock (Shotwell et al. 2019). 

Current and future climate changes are expected to impact ecosystems and fisheries production 
and there is an increasing need for ecosystem monitoring. Moreover, climate change is expected to 
increase environmental variability and frequency of extreme events like marine heatwaves, 
necessitating frequent sampling efforts to capture variability on shorter time scales (Ren et al. 2023). 
Nonetheless, limitations to funding and ship time often curtail the scope and frequency of sampling 
efforts, thereby increasing the importance of partnerships to fill in information and data gaps. Thus, 
development of quantitative methodology for combining data sources across multiple sampling 
platforms and drawing inferences becomes necessary. This report provides a simple model framework 
for predicting interannual larval fish abundance while controlling for differences in sampling 
methodologies, timing, and location, and identifies a subset of taxa for which this framework is currently 
appropriate. As additional years of concurrent sampling are added in future, this approach has the 
potential to improve our understanding of interannual variation in ichthyoplankton dynamics and 
provide more comprehensive indicators for ecosystem-based fisheries management. 
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