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Abstract

NOAA'’s Alaska Fisheries Science Center’s (AFSC) Ecosystems and Fisheries-Oceanography
Coordinated Investigations (EcoFOCI) program has collected spring ichthyoplankton abundance data in
the Gulf of Alaska since 1981. Collections were made nearly annually until 2011 when sampling was
reduced to only odd years. This dataset is used to better understand population recruitment of major
fish species in the GOA and provides early warning of potential year-class strength to inform fisheries
management. However, gaps in the time series during even years have made it more difficult to
interpret the interannual variability of ichthyoplankton abundance in such a dynamic ecosystem. Recent
collaboration with the Northern Gulf of Alaska Long Term Ecological Research (NGA LTER) program has
allowed for additional spring sampling of ichthyoplankton in the GOA annually since 2018. Larval fish
data collected by the NGA LTER were combined with EcoFOCI data and used to estimate abundance in
years when EcoFOCI had no field presence in the GOA. Five taxa were determined to be suitable for this
approach based on their percent occurrence in both surveys. A generalized additive model (GAM) was
fit to ichthyoplankton data from 1981 to 2022 collected by both EcoFOCI and NGA LTER and used to
predict larval abundances in 2018, 2020, and 2022. For each species, models with two different error
distributions were compared and shown to produce similar predictions of larval abundance. This report
provides a model framework for predicting interannual larval fish abundance while controlling for
differences in sampling methodologies, timing, and location, and identifies a subset of taxa for which
this framework is currently appropriate. As additional years of concurrent sampling are added in future,
this approach has the potential to improve our understanding of interannual variation in
ichthyoplankton dynamics and provide more comprehensive indicators for ecosystem-based fisheries
management.
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Introduction

The Gulf of Alaska (GOA) is a highly productive ecosystem which supports many commercially
and ecologically important fish. NOAA’s Alaska Fisheries Science Center is responsible for monitoring
and providing management advice for these important fisheries. Ecosystem indicators, including climate
indices, biomass of prey and predator communities, and socioeconomic conditions are an important
component to assessing the status of a stock and informing set catch limits through ecosystem-based
fisheries management (Zador et al. 2017). Larval fish abundances serve as a valuable indicator of the
potential recruitment strength for a given year class (Bailey et al. 2012). The larval stage is particularly
sensitive to environmental changes; thus, changes in the population abundance, distribution, and
phenology can provide insight into current spawning, habitat, and forage conditions (Boeing and Duffy-
Anderson 2008, Asch 2015, Auth et al. 2018, Rogers and Dougherty 2019, Nielsen et al. 2021, Rogers
et al. 2021). Tracking abundances of larval fish allows for early insight into the potential future status of
a stock and has been used to inform catch limits (Litzow et al. 2022).

The Ecosystem and Fisheries-Oceanography Coordinated Investigations (EcoFOCI) team at NOAA
conducts regular monitoring of spring ichthyoplankton communities in the Gulf of Alaska during May -
June. Larval fish abundances in the Gulf of Alaska peak during the spring bloom when phytoplankton and
zooplankton biomass are high and the continental shelf provides important habitat for many species
(Doyle et al. 2019). The EcoFOCI ichthyoplankton survey was historically designed to target the spring
peak in larval fish abundance with particular focus on the commercially important walleye pollock
(Gadus chalcogrammus). Despite the initial focus on walleye pollock, all larval fish are identified and
enumerated within a sample, providing a rich dataset on interannual ichthyoplankton abundances for
many important fish species in the Gulf of Alaska region (Matarese et al. 2003). Time series of larval
abundance have been estimated for a subset of 12 commercially and ecologically important taxa and
contributed as indicators to annual Ecosystem Status Reports (ESRs; Rogers and Axler 2023).

Samples are collected primarily in the western Gulf of Alaska with the most consistent sampling
occurring in Shelikof Strait (Fig. 1), one of the primary spawning grounds of walleye pollock. EcoFOCI has
collected and processed ichthyoplankton samples since 1981. Collections were made annually from
1990 until 2011 when the program was reduced to sampling every other year. Gaps in the time series
have made it more difficult to interpret the temporal variability of ichthyoplankton abundance
particularly in recent years which have experienced increasing environmental variability and marine
heatwave events (Nielsen et al. 2021, Suryan et al. 2021, Ren et al. 2023). In years without sampling, a
lack of observations prevents detecting early warning signals of failed recruitment or large-scale
ecosystem shifts.

Recent collaboration with the Northern Gulf of Alaska Long Term Ecological Research (NGA
LTER) program has allowed for additional collections of ichthyoplankton. The NGA LTER was established
in 2018 as a part of a network of 30 NSF-funded long-term ecological research programs and one of four
pelagic-focused programs. It builds off over 30 years of prior timeseries collections in the Gulf of Alaska.
The NGA LTER began collecting additional ichthyoplankton samples during their annual spring cruise in
collaboration with EcoFOCI. Despite the difference in timing and location of collections between the
NGA LTER and EcoFOCI, NGA LTER collections could potentially be used to predict larval fish abundances
in years without EcoFOCI sampling and help inform interannual patterns in abundance during sampling
gaps. In this study, we investigated model-based approaches for combining the EcoFOCI and NGA LTER
ichthyoplankton datasets to estimate time-series of larval fish abundance for a subset of commercially
and ecologically important species in the Gulf of Alaska.



Methods

Ichthyoplankton Collections

EcoFOCI has collected ichthyoplankton samples from the Western Gulf of Alaska between May
and June since 1981 (Fig. 2). Sample locations span the western Gulf of Alaska shelf with the area
between Shelikof Strait and the Shumagin Islands being most consistently sampled (Fig. 1). Sample
coverage varied by year (Table 2; Fig. 3). Samples were taken annually between 1990 and 2011, after
which sampling was reduced to every other year on odd years (Table 2). A 60 cm diameter bongo net
equipped with either 333 or 505 um mesh nets was towed obliquely from 100 m depth, or 10 m off
bottom, to the surface (Table 1). Larval catch has been shown to be comparable between the two mesh
sizes (Boeing and Duffy-Anderson 2008). Collections were made during both night and day as
ichthyoplankton are assumed to remain in the upper 100 m (Brodeur and Rugen 1994). Samples were
preserved in 5% formalin, identified to the lowest taxonomic level at the Plankton Sorting and
Identification Center in Szczecin, Poland, and verified by taxonomic experts at the Alaska Fisheries
Science Center. Larval catch is reported as the number per 10 m? sea surface area.

The NGA LTER began collecting ichthyoplankton annually for EcoFOCI in 2018 (Table 2). Samples
are collected each spring between April and May along three core cross-shelf transects in the NGA LTER
study region (Figs. 1, 2). Additional stations were sampled as time permitted (Fig. 3). Either a 60 cm
bongo net or a 0.25 m? Hydro-Bios MultiNet with a drogue net were towed obliquely from 200 m depth,
or 5 m above bottom, to the surface at night. Both net systems were equipped with 505 um mesh nets
(Table 1). Samples were preserved in 10% formalin and identification was carried out following EcoFOCI
protocols as described above.

A total of 4,823 spring ichthyoplankton collections were made over 35 years between 1981 and
2022. The number, timing, and location of collections varied by year, with EcoFOCI and NGA LTER
making an average of 146 + 64 and 30 + 9 collections per year, respectively (Table 2, Fig. 3). On average,
EcoFOCI collections were made 26 days later than NGA LTER collections (Fig. 2). The majority of EcoFOCI
sample locations were on the continental shelf with a bottom depth shallower than 500 m, whereas
NGA LTER samples transected the shelf with some samples over the continental slope. 2019 and 2021
are the only years sampled by both EcoFOCI and NGA LTER in the same year.
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Figure 1.-- Map of the Gulf of Alaska sample region. Color indicates the number of samples collected by
EcoFOCI within the hexagonal grid from 1981 to 2022. NGA LTER sample locations are
marked by points and main transect lines are labeled. The 1,000 m isobath contours are
drawn in gray. Black polygon outline indicates the region used to generate predicted
abundances.

Table 1. -- Summary of collection conditions for ECOFOCI and NGA LTER.

Group | Equipment Mesh Max Tow Bottom Time of Longitude Date
Size Depth Depth Tow Range Range
EcoFOCI 60cm 333 or 100 m 18 -3580m  Dayand 146.50 to 6 May to
Bongo Net 505 um (avg =179 m) Night 168.00°W 6 June
NGA 60 cm 505 um 200 m 35-4548 m Night 143.89 to 20 April to
LTER Bongo Net (avg =830 m) 151.59°W 10 May
or
0.25 m?
Mulitnet
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60
50
40
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20
10
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Figure 2. -- Boxplot of dates sampled for EcoFOCI and NGA LTER.
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Figure 3. -- Map of ichthyoplankton sample locations per year. Colors indicate EcoFOCI (orange) or NGA

LTER (purple) sampling.



Table 2. -- Number of samples collected per year for ECoFOCI and NGA LTER since 1981.

Year

EcoFOCI

NGA
LTER

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002

130
61
69
0
185

50

133
96

137
113
139
98

130
100
130
314
141
147
137

O O O O O O O O O O O 0o o o o o o o o o o o

Year

EcoFOCI

NGA
LTER

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

114
193
187
175
130
94

152
163
66

226

281

266

232

84
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Total

4,673
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Larval Catch Models

Generalized additive models (GAM) were used to estimate interannual patterns in larval fish
abundance and control for differences in spatial sampling and methodologies between EcoFOCI and
NGA LTER collections. Species included in EcoFOCI’s ESR contributions were considered for this model
approach due to their high abundance and importance in the Gulf of Alaska. These included Pacific sand
lance (Ammodytes personatus), arrowtooth flounder (Atheresthes stomias), ronquils (Bathymaster spp.),
walleye pollock (Gadus chalcogrammus), Pacific cod (Gadus macrocephalus), flathead sole
(Hippoglossoides elassodon), Pacific halibut (Hippoglossus stenolepis), southern rock sole (Lepidopsetta
bilineata), northern rock sole (Lepidopsetta polyxystra), starry flounder (Platichthys stellatus), rockfish
(Sebastes spp.), and northern lampfish (Stenobrachius spp). Due to low occurrence in NGA LTER
samples, some species were deemed unsuitable for model generated predictions. Species not present in
at least 30% of NGA LTER samples were eliminated. Years with no catch for a given species at any
location were excluded from the model for a given species. To account for the highly zero-inflated data
structure, two types of models were tested, which differed in their approach to handling zeros.

First, a Tweedie distribution with a log-link was selected for its ability to model continuous data
with a point mass at 0 (Dunn and Smyth 2018). The Tweedie power parameter was estimated within
the model. For each species, two alternative Tweedie models were fit. The first modeled catch per
10 m? (CPUE) as a function of Year (as a factor) and a two-dimensional spatial smoothers (Easting,
Northing). Longitude and latitude coordinates were converted to UTM zone 5 coordinates prior to
input into the model. The second model contained an additional term for research Group (EcoFOCI or
NGA LTER) to further account for differences in collection methods and timing (Equation 1). Model
comparison using AlC showed that, for most species, the inclusion of a research group term resulted in
a better fit. All models discussed hereafter include a research Group fixed effect (Equation 1). Models
with terms for day of year, sample net, time of day, and maximum tow depth were not considered due
to collinearity and were assumed to be accounted for in the group term. No interaction terms between
Year, Group, and spatial smooth were included due to limited data overlap:

log(CPUE) = s(Easting, Northing) + Year + Group. Eq.1

The second model distribution used was a two-part hurdle model (also known as a delta model),
selected for its flexibility to model extra zeros separate from positive catch data. First, larval presence
and absence (pi) was modeled with a binomial distribution with a logit link (Equation 2). Then non-zero
CPUE (W) was modeled with a Gamma log-link distribution (Equation 3). Models were parameterized as
described for the Tweedie model (Equation 1). All models were constructed using the mgcv package
(v1.9.0; Wood 2017) and visualized with the gratia (v0.8.1; Simpson 2023) package in R (v4.3.1; R core
team 2023):

logit(p;) = s(Easting, Northing) + Year + Group Eq. 2
log(u;) = s(Easting, Northing) + Year + Group. Eq. 3

Log likelihood and AIC values for the Tweedie and Hurdle models were used to compare model
fit (Zhen et al. 2018). For the Hurdle model, log likelihood was calculated as the sum of the log
likelihoods from the binomial and nonzero parts (McDowell 2003). AIC was then calculated as AIC =
-2logl + 2p where logl is the log likelihood and p is the sum of the model degrees of freedom.



Predicted Abundances

A prediction grid with 12 km spacing was generated for the region typically reported in ESRs
between Shelikof Strait and the Shumagin islands (Fig. 1, polygon). For each model type, CPUE was
predicted at each point within the prediction grid for every sampled year, including years when only
NGA LTER stations were sampled. The Group factor was set to EcoFOCI. For the hurdle model, binomial
and nonzero model predictions were multiplied to generate an overall predicted CPUE for each point on
the grid. To create a timeseries, predicted abundances for the grid were then averaged per year. Two-
sided nonparametric bootstrapped 95% confidence intervals were generated for annual predicted CPUE.
Data was resampled randomly with replacement then used to generate predicted abundances for 1,000
replicates. Confidence intervals were calculated using the bootstrap percentile method. For the hurdle
model, random resampling resulted in all positive data for a given year being dropped for some
replicates, leading to an error. In this case, the larval catch value for one random sample in that year was
replaced with a pseudocount of 0.001-- representing a near-zero value while allowing the function to
proceed without error. Bootstrapped confidence intervals were generated using the boot package in R
(v1.3.28.1; Canty and Ripley 2022, Davison and Hinkley 1997).

Model Prediction Testing

Two years (2019 and 2021) were sampled by both EcoFOCI and the NGA LTER. To test the
model’s ability to predict abundances for EcoFOCI samples based on NGA LTER collections, all models
were refit leaving out either 2019 or 2021 EcoFOCI data and compared to the full model. New predicted
values were calculated for CPUE as described above. Root mean squared error (RMSE) was calculated
between the predictions generated by leaving out 2019 or 2021 and the full model predictions for that
year. RMSE was calculated for both Tweedie and Gamma Hurdle models of each species to assess which
model type performed better when removing a year of data per species.

Results

Of the 12 species included in ESRs, 5 were present in at least 30% of NGA LTER samples and thus
were modeled (arrowtooth flounder, northern lampfish, Pacific sand lance, rockfish, and walleye
pollock). The other seven species were not modeled due to a lack of presence in NGA LTER collections
and thus low confidence in the model’s predictive capabilities for that species (Table 3). Of the five
species, walleye pollock was the most ubiquitous with presence in 83% of EcoFOCI samples and 65% of
NGA LTER samples. Pacific sand lance also had a higher percent occurrence in EcoFOCI collections.
Arrowtooth flounder, rockfish, and northern lampfish had higher percent occurrence in NGA LTER
samples (Table 3).



Table 3. --Percentage of samples a species is present for ECOFOCI and NGA LTER collections. Model
predicted abundances were calculated for species with percent occurrence greater than 30%
in NGA LTER samples (bolded).

% Occurrence
Common Name Scientific Name EcoFOCI NGA LTER
Pacific sand lance Ammodytes personatus 71.5 36.7
Arrowtooth flounder Atheresthes stomias 19.9 46.7
Ronquils Bathymaster spp. 59.7 4.7
Walleye pollock Gadus chalcogrammus 82.8 64.7
Pacific cod Gadus macrocephalus 43.8 9.3
Flathead sole Hippoglossoides elassodon 75.0 20.0
Pacific halibut Hippoglossus stenolepis 9.3 8.0
Southern rock sole Lepidopsetta bilineata 27.4 12.0
Northern rock sole Lepidopsetta polyxystra 32.5 8.7
Starry flounder Platichthys stellatus 17.5 33
Rockfish Sebastes spp. 43.1 72.0
Northern lampfish Stenobrachius spp. 38.8 56.7

Pacific sand lance, arrowtooth flounder, and northern lampfish were best modeled by the
Tweedie distribution, as indicated by a lower AIC value (Table 4). Conversely, walleye pollock and
rockfish were best modeled by the Gamma Hurdle model (Table 4). However, model estimates were
very similar between Tweedie and Gamma Hurdle models. Both Tweedie and Gamma Hurdle model
residuals were inspected and deemed acceptable.

Partial effects for the two-dimensional smoother displayed similar spatial patterns in abundance
(Figs. 4-6). Arrowtooth flounder, northern lampfish, and rockfish had higher presence and abundances
off shelf. Additionally, northern lampfish and rockfish showed higher abundances on the shelf near the
Seward line transect. Walleye pollock and Pacific sand lance had higher larval catch on shelf with
walleye pollock more abundant in the Shelikof Strait region and Pacific sand lance more abundant
nearshore. It is important to note that the spatial smoother does not purely represent spatial patterns in
larval catch between NGA LTER and EcoFOCI due to the spatial collinearity with sample timing and
methodological differences. Thus, patterns represented by the spatial smoother reflect the combined
impact of spatial and temporal patterns on larval abundance, making it a useful approach for controlling
for differences in larval catch as a result of both spatial distributions and methodological differences.



Table 4. --Log likelihood and associated degrees of freedom (df), Akaike information criterion (AIC), and
root mean squared error (RMSE) for Tweedie and Gamma Hurdle models for each species. The
model with the lowest AIC and RMSE error per species is highlighted in gray indicating better

model fit.
Log Likelihood AIC RMSE
Species Tweedie Hurdle Tweedie Hurdle Tweedie Hurdle
Arrowtooth -5845.79 -5807.65 11821.18 | 11865.58 | 6.01 7.20
flounder (df=64.8) (df=125.1)
Northern -9696.77 -9771.13 19524.35 | 19789.68 | 10.92 11.67
lampfish (df=65.4) (df=123.7)
Pacific sand -19022.88 -19293.49 38176.92 | 38836.86 | 105.12 98.98
lance (df=65.6) (df=124.9)
Rockfish -13698.74 -13487.92 27529.07 | 27228.58 | 52.74 28.49
(df=65.8) (df=126.4)
Walleye pollock | -26480.93 -26160.88 53093.25 | 52575.22 | 143.86 73.85
(df=65.7) (df=126.7)

10
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Figure 4. -- Tweedie model two-dimensional spatial smoother partial effects. Positive values indicate
CPUE greater than average and negative values indicate CPUE lower than average.
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Figure 5. -- Gamma Hurdle binomial model two-dimensional spatial smoother partial effects. Positive
values indicate higher than average likelihood of positive catch and negative values indicate
lower than average likelihood of positive catch.
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Figure 6. -- Non-zero Gamma Hurdle model two-dimensional spatial smoother partial effects. Positive
values indicate higher than average CPUE when larvae are present and negative values
indicate lower than average CPUE when larvae are present.
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Figure 7. -- Model predicted catch per unit effort (CPUE; Larvae per 10 m?) per year per species. Data are
plotted on the log10 scale. Gamma Hurdle model predictions are plotted in black and
Tweedie model predictions are plotted in pink. Nonparametric bootstrapped 95% confidence
intervals are represented by shading and error bars. Black x and pink + symbols indicate
predictions for Hurdle and Tweedie models, respectively, based on the removal of 2019 or
2021 EcoFOCI data.
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There is substantial overlap of model predicted CPUE and associated confidence intervals
between Tweedie and Gamma Hurdle models (Fig. 7). Each species showed high interannual variability,
often exceeding one order of magnitude difference. Conversely, variability within a year was typically
smaller. Years predicted solely based on NGA LTER collections have larger confidence intervals than
other years. Additionally, for some species, some years have particularly large confidence intervals due
to lower sample sizes or restricted spatial coverage. Over the sample period, walleye pollock has the
highest predicted CPUE, Pacific sand lance and rockfish have intermediate CPUE, and arrowtooth
flounder and northern lampfish have the lowest CPUE.

Model predictions for 2019 and 2021 generated based on models built without 2019 or 2021
EcoFOCI data, respectively, did not fall within the 95% confidence intervals of the full model predictions
(Fig. 7). The exception is rockfish with 2021 EcoFOCI data removed. For walleye pollock and Pacific sand
lance, predictions were typically lower for models with 2019 EcoFOCI data removed and higher for
models built without 2021 data compared to the full model. The opposite pattern is true for arrowtooth
flounder, northern lampfish, and rockfish (Fig. 7). In most cases, the Tweedie and Gamma Hurdle model
performed similarly with the removal of EcoFOCI data. Arrowtooth flounder and northern lampfish had
lower RMSE with the Tweedie model, whereas Pacific sand lance, walleye pollock, and rockfish had
lower RMSE with the Gamma Hurdle model (Table 4). Preference for Tweedie or Gamma Hurdle model
distributions based on RMSE was not uniform across modeled species for the current model framework
and available data.

Discussion

The aim of this analysis was to utilize annual ichthyoplankton collections made by the NGA LTER
program to predict larval fish abundances during years which EcoFOCI did not make collections. Here,
we outline a simple model framework for predicting annual abundances of five key fish species in the
Gulf of Alaska based on NGA LTER collections while controlling for spatial, temporal, and methodological
differences in sample collections. Although this method is currently limited to two years of overlapping
data, it provides a framework for continuing to predict abundances as future sample data becomes
available with potential for extension to other important species.

Due to the NGA LTER’s earlier collection timing, this method works best for species with earlier
life history phenologies. Spawning and hatching occurs prior to March for the five species included,
allowing for accumulation of larvae leading up to the early NGA LTER collections. Conversely, for the
excluded species, spawning does not occur until April and peaks later (Doyle et al. 2019). Thus, NGA
LTER collections are likely too early to collect consistent numbers of these species. The exception is the
winter spawned Hippoglossus stenolepis, which is generally patchy and present in low numbers.

Data collected east of the Cook Inlet was generated by the NGA LTER (with the exception of
1985, 1999, and 2015 when EcoFOCI sampling extended farther east) and subject to differences in
methodologies and earlier sample timing (Fig. 3). Thus, patterns in the two-dimensional smoother
across these regions reflect not only spatial patterns in larval abundance, but also potential changes due
to differential sample timing and collection methods. It is important to not interpret the two-
dimensional partial effects purely as a spatial term even though it is defined mathematically as such. For
example, Sebastes spp., and Stenobrachius spp. show a region of higher abundances that crosses the
shelf near the Seward Line (Fig. 7). This may represent a true spatial pattern reflective of the transport
of deep-spawned larvae onto the shelf via the Amatuli Trough (Doyle et al. 2019). However, this cannot
be separated from the confounding impact of the NGA LTER’s earlier sample timing and potential
increase in catchability due to the deeper tow depth and use of the Multinet on the Seward Line.
Additionally, the two-dimensional smooth parameter was not allowed to fluctuate per year and
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therefore assumes that these patterns remain constant over time. The addition of the research group
parameter to the model framework adds additional flexibility to account for differences between NGA
LTER and EcoFOCI collections.

For each species, predicted CPUE had high interannual variability over the sample period, often
exceeding one order of magnitude (Fig. 7). Conversely, the prediction error due to variability across
sampling locations and time frames was typically smaller. In some cases, restricted sampling range and
sample quantity resulted in some years with low percent occurrence for some species and large
confidence intervals. For example, fewer samples were taken in 1987 and restricted to the shelf
resulting in low catch of arrowtooth flounder which is more abundant offshore. Likewise, sample
collection was greatly reduced in 2020 with only 15 samples collected due to the COVID-19 pandemic
(Fig. 3, Table 2). In these years, bootstrapped confidence intervals are large due to the higher probability
of random resampling selecting data with a CPUE of zero (Fig. 7). However, overall, the greater
interannual variability in comparison to spatial and within-year variability makes this modeling approach
useful to approximate annual larval catch from NGA LTER collections despite differences in sampling
location and timing.

Model predictions for both the Tweedie and Gamma Hurdle models estimated similar absolute
CPUE, relative interannual patterns, and confidence intervals (Fig. 7). Models using Tweedie and Gamma
Hurdle methods have been recommended previously on Bering Sea and Gulf of Alaska bottom trawl fish
abundance time series and shown to produce similar scale estimates to each other. Moreover, Tweedie
and Gamma Hurdle GAMs were shown to produce similar absolute values to the design-based indices
used compared to inverse Gaussian or lognormal distributions (Thorson et al. 2021). While the absolute
abundance of larval fish in the EcoFOCI sample region is unknown for 2018, 2020, and 2022, both model
types produce similar CPUE predictions relative to the surrounding sampled years. Predicting the
absolute CPUE could be useful; however, correctly modeling relative interannual changes in CPUE was
the primary purpose in our analysis.

Models were subjected to rigorous testing by leaving out EcoFOCI data for one year of
overlapping sampling and regenerating model predicted abundances for that year on the reduced
dataset. Resulting CPUE predictions did not fall within the 95% confidence intervals of the full model,
illustrating the model’s sensitivity to the removal of data. Based on RMSE calculations, the Gamma
Hurdle model performed better on the reduced data set for Pacific sand lance, rockfish, and walleye
pollock. Conversely, the Tweedie model performed better on arrowtooth flounder and northern
lampfish. Because the current dataset only contains two years that were sampled concurrently by
EcoFOCI and the NGA LTER (2019 and 2021), the removal of one year resulted in models being
constructed with only one year of overlap. It is expected that the addition of more years of overlapping
sampling in the future will help stabilize model predictions and enhance its reliability. It is unclear how
the addition of more data will impact the selection between Tweedie or Gamma Hurdle models.

For walleye pollock in particular, larval abundance estimates have been used as an early
indicator of potential year-class strength (Bailey et al. 2012, Litzow et al. 2022). However, recent time-
series gaps have limited the utility of this indicator for informing the stock assessment for walleye
pollock (Shotwell et al. 2019). Despite the limited data in 2018, 2020, and 2022, relative patterns in
model-predicted CPUE for those years are consistent with eventual recruitment strength as estimated in
the stock assessment model (Monnahan et al. 2023). In the assessment model, which estimates
recruitment strength based on survey and fishery catches of walleye pollock aged 1 and older, recent
strong year classes have been 2017, 2018, and 2020, while 2015, 2019, 2021 and 2022 were estimated
to be weak. This corresponds to years with relatively high and low model-estimated larval abundances
(Fig. 7). This suggests that even with limited sampling that occurs outside the typical time range and
geographic area of the EcoFOCI survey, the NGA LTER survey provides useful estimates of relative
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abundance when modeled in this way. In the future, a combined time series can be contributed to the
Ecosystem and Socioeconomic Profile for this stock (Shotwell et al. 2019).

Current and future climate changes are expected to impact ecosystems and fisheries production
and there is an increasing need for ecosystem monitoring. Moreover, climate change is expected to
increase environmental variability and frequency of extreme events like marine heatwaves,
necessitating frequent sampling efforts to capture variability on shorter time scales (Ren et al. 2023).
Nonetheless, limitations to funding and ship time often curtail the scope and frequency of sampling
efforts, thereby increasing the importance of partnerships to fill in information and data gaps. Thus,
development of quantitative methodology for combining data sources across multiple sampling
platforms and drawing inferences becomes necessary. This report provides a simple model framework
for predicting interannual larval fish abundance while controlling for differences in sampling
methodologies, timing, and location, and identifies a subset of taxa for which this framework is currently
appropriate. As additional years of concurrent sampling are added in future, this approach has the
potential to improve our understanding of interannual variation in ichthyoplankton dynamics and
provide more comprehensive indicators for ecosystem-based fisheries management.
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