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Abstract

Spurious correlations arise when irrelevant
patterns in input data are mistakenly asso-
ciated with labels, compromising the gener-
alizability of machine learning models. While
these models may be confident during the
training stage, they often falter in real-world
testing scenarios due to the shift of these
misleading correlations. Current solutions
to this problem typically involve altering
the correlations or regularizing latent rep-
resentations. However, while these meth-
ods show promise in experiments, a rigor-
ous theoretical understanding of their effec-
tiveness and the underlying factors of spuri-
ous correlations is lacking. In this work, we
provide a comprehensive theoretical analysis,
supported by empirical evidence, to under-
stand the intricacies of spurious correlations.
Drawing on our proposed theorems, we inves-
tigate the behaviors of classifiers when con-
fronted with spurious features, and present
our findings on how various factors influence
these correlations and their impact on model
performances, including the Mahalanobis dis-
tance of groups, and training/testing spuri-
ous correlation ratios. Additionally, by align-
ing empirical outcomes with our theoreti-
cal discoveries, we highlight the feasibility
of assessing the degree of separability of in-
tertwined real-world features. This research
paves the way for a nuanced comprehension
of spurious correlations, laying a solid theo-
retical groundwork that promises to steer fu-
ture endeavors toward crafting more potent
mitigation techniques.
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1 INTRODUCTION

With the rapidly increasing computational power,
modern machine learning studies have achieved great
success. Complex deep models, benefitting from this
surge, are capable of extracting refined and structural
features from complicated training data (Bengio et al.,
2017). Their power has led to massive deployment
across a spectrum of applications, from autonomous
vehicles (Janai et al., 2020) to critical medical imaging
analysis (Litjens et al., 2017; Saab et al., 2022), etc.
Given the wide applications, the reliability of these
models becomes paramount, especially in these high-
stakes areas. However, when trained with limited data,
the performance of these deep models is significantly
influenced by the distribution shift between the train-
ing and testing distributions (Bishop and Nasrabadi,
2006; LeCun et al., 2015; Wang and Deng, 2018; Zhou
et al., 2022; Wang et al., 2022).

While distribution shifts present various challenges,
one particularly pervasive issue is the spurious corre-
lation. It arises when there exists correlation between
non-causal features with causal features. A model
trained on such features is likely to rely on these non-
causal features in the data that seem to correlate with
the desired output. For example, in image recognition
tasks, it is not uncommon for the models be deceived
by the correlation between the background and the pri-
mary subject (Beery et al., 2018). If a dataset consis-
tently shows waterbirds with water as the background,
the model will start to associate the water background
with waterbirds. Beyond object recognition, natural
language processing (NLP) models can be misled by
nuances like negations and vagueness (Williams et al.,
2017; Gururangan et al., 2018). In facial recognition,
there is a risk of the model inadvertently focusing on
demographic features rather than the intended char-
acteristics (Liu et al., 2015a, 2021; Ming et al., 2022).
Such dependencies not only compromise accuracy in
the testing scenario, but also raise great concerns re-
garding safety and fairness in real-world applications
(Wang et al., 2022; Van de Poel and Royakkers, 2023).
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(a) Waterbird dataset (b) Testing Accuracy

Figure 1: The demonstration of the (a) waterbird dataset and (b) the empirical results and our theoretical results
on the waterbird data with respect to the change of the correlation ratio across different models.

In the context of studies of spurious correlation, there
are two types of features. An invariant feature is
assumed to be perfectly correlated with the ground
truth labeling, and the models are expected to rely on
these features for accurate predictions. Conversely, a
spurious feature is correlated with the label (i.e. the
invariant feature) in the training data but independent
from it in the testing scenarios. To illustrate, consider
the waterbird dataset (Sagawa et al., 2019). As shown
in fig. 1 (a), here the invariant feature determines
whether the bird is a waterbird or a landbird, while
the spurious feature refers to whether the background
is water or land. Assuming that the only distribution
shift from the training scenario to the testing scenario
is the correlation shift, the decline in performance
can be attributed to P(spurious feature!=label) =
1− P(spurious feature==label), which is the spu-
rious correlation ratio in the training data. In
essence, a training dataset with a spurious correlation
ratio distant from 0.5 is likely to result in poorer per-
formance when tested on unbiased data.

Spurious correlations introduce two factors into the
training data that affect the models, from both the
statistical and the geometric aspects (Nagarajan et al.,
2020). Naturally, to mitigate the issue caused by the
spurious correlation, existing methods can be roughly
aligned with the two aspects. From a statistical point
of view, the spurious correlation can be mitigated by
altering the correlation ratio. Since the ratio is directly
determined by the number of samples in each group,
the intuitive and straightforward way is to change cor-
relation ratio by changing the number of data samples
from each group. As an alternative, various meth-
ods are proposed to mitigate this issue by reweight-

ing/resampling schemes (such as concentrating more
on the worst-group data) in training (Buda et al., 2018;
Duchi et al., 2019; Sagawa et al., 2019; Nam et al.,
2020; Liu et al., 2021). On the other hand, in the
geometric aspect, recent studies also reveal that the
separability of the invariant feature and the spurious
feature also significantly affect the robustness of the
trained model (Geirhos et al., 2020; Shah et al., 2020;
Shi et al., 2022). However, since separability of features
is an abstract concept compared to the correlation ra-
tio, this aspect is paid less attention to in the study of
spurious correlation problems or related algorithms.

Although the two categories of methods are intuitive
and direct, the rigorous analyses on how the two as-
pects quantitatively affect the data distribution and
the trained models are lacking. For example, it is al-
ready well-known that the testing scenario can achieve
improved performance when the spurious correlation
decreases since the training and testing distributions
become more similar (Bishop and Nasrabadi, 2006;
LeCun et al., 2015). However, it remains unknown
to what extent can the change in the correlation ra-
tio affect the model’s performance over unbiased data
quantitatively. As shown in fig. 1 (b), across differ-
ent models, the testing performance changes consis-
tently w.r.t. the change of the spurious correlation ra-
tio P(spurious feature!=label), following a similar
trend. It can be observed that the performance first
has a boosting increase, and then reaches the plateau
very quickly. This nonlinearity suggests that the initial
value of the correlation ratio can also significantly im-
pact the extent of performance improvement after the
ratio is altered. Although noticed before as the statis-
tical skews (Nagarajan et al., 2020), the studies on the
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influence of the ratio rely on the training steps, and do
not provide comprehensive understandings. Instead,
we derive analytical studies through the influence of
the correlation ratio on the Bayesian optimal classifier
and propose tight bounds of the ratio dynamics. The
results hold even for DNNs and real datasets such as
waterbird. Our theoretical results (green curves) can
estimate the empirically trend (red curves) precisely.

As for the geometric properties of the spurious cor-
relation, Nagarajan et al. (2020) use the max-margin
classifier to bound the scalar weight of the spurious
feature. In this work, we delve deeper into this as-
pect, and propose analytical form to characterize the
reliance of the Bayesian optimal classifier on the spu-
rious feature. The results also theoretically inspire a
simple regularization term that changes the separabil-
ity of the penultimate-layer embedding of the data.
This essentially corresponds to the feature alignment
in the domain generalization problem. Unlike the
reweighting schemes, it does not require any manip-
ulation to the correlation ratio, but can still improve
the group robustness of the models and is comparable
to the state-of-the-art algorithm Group-DRO (Sagawa
et al., 2019). This is a verification of the importance
of the overlooked factors in spurious correlations. The
implementation of the experiments is open source in
GitHub. Our contribution can be summarized as fol-
lows:

• We theoretically study the two factors spurious,
correlation ratio and feature separability, that af-
fect the model performance.

• From our theorem, we can quantitatively measure
the effect of the two factors in model performance.
The theorems are also applicable to generalized
real-world applications.

• In terms of spurious correlation ratio, we propose
an approach to quantitatively estimate model per-
formance w.r.t. the change of ratio on real data.

• In terms of feature separability, we verify the re-
sults with a regularization technique that does not
require any reweighting schemes but can still im-
prove the group robustness of the models to the
level of the state-of-the-art (SOTA) Group-DRO.

The structure of this paper is organized as follows.
Related work is reviewed in section 2. We set up as-
sumptions and present theoretical results in section 3.
All proofs can be found in the appendix. Then we in-
troduce for the experiments in section 4. Experimental
results are presented in section 5. The significance and
limitations are discussed in section 6.

2 RELATED WORK

While we carry out theoretical studies that quantify
the factors of spurious features: the correlation ratio
and the feature properties, there are other works that
offer insightful results of the two factors.

The Correlation Ratio. As the straightforward fac-
tor of spurious correlations, most of the methods are
essentially focused on this. Resampling methods ei-
ther oversample the minor groups or undersample the
major groups (Japkowicz and Stephen, 2002; He and
Garcia, 2009; Buda et al., 2018; Byrd and Lipton,
2019). Reweighting methods, on the other hand, as-
sign different weights to samples of certain properties
(Duchi et al., 2019; Sagawa et al., 2019; Nam et al.,
2020; Liu et al., 2021; Ahmed et al., 2021; Zhou et al.,
2021). The effect of the correlation ratio is also stud-
ied through controllable ratio (Sagawa et al., 2020;
Kirichenko et al., 2022; Zhang et al., 2022).

Feature Properties. Different from the work that
focuses on the correlation ratio, the feature proper-
ties are much less studied in the spurious correlation
problems. Cao et al. (2019) point out that not only
changing the correlation ratio, but also regularization
over the model can lead to performance improvement.
Shah et al. (2020) show that DNNs have a tendency to
rely on extremely simple features. Sagawa et al. (2020)
identify the signal-to-noise ratio as one of the major
properties of spurious correlation. Shi et al. (2022) ar-
gue that the feature representations of unsupervised
learning can outperform supervised models in an ex-
treme correlation ratio. Kirichenko et al. (2022) intro-
duce the concept of “core features”, which are always
learned even by the models that underperform minor-
ity groups. Ming et al. (2022) assume the invariant and
spurious features are linearly combined as the input
representation and develop the optimal classifier theo-
retically. This is also similar to the alignment of latent
features in domain generalization problems (Muandet
et al., 2013; Erfani et al., 2016; Ghifary et al., 2016;
Hu et al., 2020; Jin et al., 2020). However, this as-
pect is not sufficiently explored in handling spurious
correlation problems.

3 ANALYSIS ON TWO FACTORS

3.1 Problem Setup

LetD = X×Y denote the dataset, where X ⊂ Rd is de-
termined by the combination of N independent high-
level feature representation z = (z1, z2, · · · , zN ) ∈
Z ⊆ Rp through the bijection Φ : Z → X . The
dimension of N features are pn|Nn=1 respectively, s.t.∑N

n=1 pn = p. The feature attributions are defined as

https://github.com/yipei-wang/spurious_feature_mahalanobis
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a ∈ A ⊆ {−1, 1}N . Then the mean of each group is de-
fined by µa = [a1µ

T
1 , · · · , aNµT

N ]T ∈ Rp. For example,
when N = 3,a = [1, 1,−1], then µa = [µT

1 ,µ
T
2 ,−µT

3 ],
indicating that the 1st and 2nd features positive while
the third one is negative. Let ta ∈ {0, 1}N be the in-
dicator s.t. ta,n = 1{an=1}. We have y ≡ a1 since the
invariant feature is consistent with the label. Conven-
tionally, we assume that in the latent representation
z, the features are Gaussian mixtures and orthogonal
(Nagarajan et al., 2020; Sagawa et al., 2020; Yao et al.,
2022; Idrissi et al., 2022; Ming et al., 2022):

y ∼Uniform{−1, 1} (1)

zn|y ∼P(an = y)N (y · µn|Σn)+

P(an ̸= y)N (−y · µn|Σn)
(2)

where µn,Σn are the mean and covariance terms of
corresponding features, such that ∥µn∥ > 0,Σn ≻ 0.
We denote by Σ = diag(Σ1, · · · ,ΣN ) ∈ the covari-
ance matrix of the entire latent representation, and
naturally Σ ≻ 0. Besides, let αn = P(an = y|y =
1) = P(an = 1|y = 1), βn = P(an = y|y = −1) =
P(an = −1|y = −1) denote the correlation ratios in
the positive and negative classes. WLOG, we assume
that the first feature is the invariant feature, and thus
α1 = β1 = 1. For example, in the waterbird dataset
demonstrated in fig. 1(a), N = 2 and the invariant
feature z1 (that is, zinv) refers to the taxa of birds
as in {waterbird, landbird}, while z2 (i.e. zspur)
refers to the habitats shown in the background as in
{water, land}.

According to the symmetry, WLOG, we assume that
αn, βn ≥ 0.5, ∀n ≤ N . αn, βn → 1 indicates a high
correlation between y and zn, while αn, βn → 0.5 in-
dicates a low correlation. Over the latent space Z×Y ,
We consider linear classifiers defined by ŷ = wTz.

3.2 Bounding the Performance Shift

As shown in fig. 1 (b), there is a potential consistent
trend of model performance with respect to the cor-
relation ratio P(an = y). When the correlation ratio
changes, both the amount of the ratio shift and the
original ratio have significant influence to the perfor-
mance. Therefore, we study this universal trend ana-
lytically for how it is affected, starting by determining
the Bayesian optimal classifier. We first have

Lemma 1. (Accuracy) Given the parameters Θ =
(µ,Σ,α,β), the accuracy of the classifier w is

A(w; Θ) =
1

2

(
1 +

∑
a∈{±1}N

γaerf
( µT

aw√
2wTΣw

))
(3)

where γa =
(∏N

n=1[α
ta,n
n (1 − αn)

(1−ta,n)] +∏N
n=1[β

ta,n
n (1− βn)

(1−ta,n)]
)
/2

Figure 2: The relation between the reliance τ on the
spurious feature and the correlation ratio ζ. Note that
this is symmetric w.r.t. ζ = 0.5, where τ = 0.

The proof is presented in appendix A. This demon-
strates how the accuracy of the classifier w is affected
by the data distributions Θ, through (i) the spurious
correlation ratios determined by α,β and (ii) the sepa-
rability through µ,Σ. Let w∗ = argmaxw∈Rp A(w; Θ)
denote the Bayesian optimal classifier w.r.t. the train-
ing data. We then prove in appendix B that it satisfies

Lemma 2. The Bayesian optimal classifier w∗ =
[(w∗

1)
T , · · · , (w∗

N )T ]T given Θ = (µ,Σ,γ) can be writ-
ten as w∗

i = ηciΣ
−1
i µi, i = 1, · · · , N , such that

cn =
∑

a∈{±1}N

an=1

(γa − γ−a) exp
(
−

(
∑N

n=1 ta,ncnmn)
2

2
∑N

n=1 c
2
nmn

)

where η > 0 is a positive constant that determines the
norm of the classifier. And here mn = µT

nΣ
−1µn > 0

is the Mahalanobis distance of the n-th feature.

The Mahalanobis distance mn defines the separability
of the groups, and is independent of the spurious cor-
relation ratio. Larger mn indicates higher separability
of the feature zn. Furthermore, the spurious correla-
tions z2,··· ,N are independent, we thus focus on the
scenario where there’s one spurious feature (N = 2).
The analysis generalizes to other spurious features au-
tomatically. When N = 2, α1 = β1 = 1, (1 − α1) =
(1 − β1) = 0. Thus γa is simplified to γ(+1,+1) =
(1 ·α2+1 ·β2)/2 =: ζ, γ(+1,−1) = (1 · (1−α2)+1 · (1−
β2))/2 = 1−ζ, γ(−1,−1) = γ(−1,+1) = (0+0)/2 = 0. In
the 4 groups, we omit “1” and denote attributions by
++,+−,−+,−− for simplications. Then γa is simpli-
fied as γ−− = γ−+ = 0, γ+− = 1 − ζ, γ++ = ζ. where

ζ =
αspur+βspur

2 is the average correlation ratio of the
entire dataset. We can then prove that

Corollary 2.1. Given m,Z,Y, ζ, let η = 1/cinv, τ =
cspurη = cspur/cinv, then the optimal classifier is de-
noted by w∗

inv = Σ−1
invµinv,w

∗
spur = τΣ−1

spurµspur.
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From lemma 2, the extent to which the optimal classi-
fier relies on the spurious feature can be quantified
by ∥w∗

spur∥/∥w∗
inv∥ = τ∥Σ−1

spurµspur∥/∥Σ−1
invµinv∥ =

τ · const. Therefore, it is desired that τ to be small.
In fact, the relation between the optimal classifier’s
reliance on the spurious feature and the spurious cor-
relation can be quantified by the following Corollary.

Corollary 2.2. (informal) (i) When mspur < minv +
4
√
minv + 1 + 4, ∃g ∈ C1 s.t. τ = g(ζ), and g is

monotonically increasing. (ii) When mspur ≥ minv +
4
√
minv + 1 + 4, τ is monotonically increasing w.r.t.

ζ when ζ is not very close to 1 or 0. There can be
multiple optimal classifiers when ζ is close to 1 or 0.

As visualized in fig. 2, the relation between the op-
timal classifier’s reliance on the spurious feature and
the ratio ζ of the data is affected by the threshold (red
curve). When the spurious correlation is not severe,
there is a unique optimal classifier given minv,mspur, ζ.
However, as ζ ≈ 0, 1, the classifier becomes unstable,
resulting in multiple optimal classifiers. This is be-
cause when the spurious correlation is very strong, and
yet the spurious feature is very easy to separate (e.g.
the presence of watermark, different colors, etc.), the
classifier can either rely on the invariant feature or the
spurious feature to achieve equivalent optimality in the
training phase. Such instability suggests that it is im-
portant to study the influence of correlation change
with different original ratio ζ.

With the optimal classifier w∗ available, it’s perfor-
mance can be obtained by substituting it back to
lemma 1. Besides, the performance on the testing data
where the original spurious correlation does not hold
can be obtained through w∗. To avoid ambiguity, we
use ζtr, ζte to denote the correlation ratio of the train-
ing/testing data. From eq. (9), we thus have the fol-
lowing expression of the classifier’s performance.

Lemma 3. (Optimal Accuracy.) Let ζtr, ζte be the
correlation ratios in the training and testing data. And
let the minv,mspur be the Mahalanobis distance of the
invariant and spurious features and satisfy mspur <
minv + 4

√
minv + 1+ 4. Then the training and testing

accuracy of the optimal classifier can be written as:

A(ζtr) =
1

2

[
1 + ζtrR

(
g(ζtr)

)
+ r

(
g(ζtr)

)]
A(ζte; ζtr) =

1

2

[
1 + ζteR

(
g(ζtr)

)
+ r

(
g(ζtr)

)] (4)

where



R(τ) =erf(
minv + τmspur√
2(minv + τ2mspur)

)

− erf(
minv − τmspur√
2(minv + τ2mspur)

)

r(y) =erf(
minv − τmspur√
2(minv + τ2mspur)

)

From the formulae of the training and testing accu-
racy, it can be noticed that under certain constraints
of minv,mspur, the testing accuracy can be written as a
continuously differentiable function of ζtr. Therefore,
with the goal of quantifying how the shift of spuri-
ous correlation ratio (ζtr) influences the model perfor-
mance, we propose the following theorem.

Theorem 4. Given the Mahalanobis distances of the
two features minv,mspur > 0 such that mspur < minv+
4
√
minv + 1+4, and the training correlations ζtr, ζ

′
tr ∈

(0, 1), the performance shift over the testing set with
correlation ratio ζte ∈ (0, 1) is bounded by

|A(ζte; ζtr)−A(ζte; ζ
′
tr)|

≤ mspur

2
√
2πminv

M

ζ(1− ζ)
(ζte + 2)|ζtr − ζ ′tr|

(5)

where ζ is between ζtr, ζ
′
tr and M > 0 is a constant.

The detailed proof is presented in appendix F.

Quantitative effect of correlation ratio. In theo-
rem 4, we show an important conclusion that when the
change of the correlation δ = |ζ ′tr − ζtr| in the training
set is small, the upper bound is related to the location
ζ ∈ (ζtr, ζ

′
tr). Taking the limitation δ → 0 and letting

ζte = 0.5, | ∂A
∂ζtr

| ≤ 5mspur

4
√
2πminv

M
ζtr(1−ζtr)

. Therefore, the

testing performance shift is bounded to be as small
when ζtr approaches 0.5 – the shift is constant. But
the shift is affected by ζtr significantly near 0, 1 since
the upperbound→ ∞ as ζtr → 0, 1. This is also consis-
tent with the experimental results shown in fig. 1. In
section 5.1, we further verify that such consistency is
not only qualitative, but also quantitative. As a result,
when adding samples at the plateau (i.e., ζtr → 0.5)
of the curve, the effectiveness is marginal. This result
serves as a guideline for deciding the expense of miti-
gating spurious correlation problems. On the opposite,
adding samples before reaching the plateau improves
the model performance significantly.

In addition, according to the formula of the training
accuracy shown in eq. (4), testing accuracy A(ζte; ζtr)
is linear w.r.t. ζte. Although when z2 is the spurious
feature, ζte is fixed as 0.5, this observation can still
be interesting for general distribution shift problems.
More specifically, we have the following corollary.

Corollary 4.1. (i) When N = 2, the testing accuracy
shift linearly w.r.t. ζte. (ii) For general N , the testing
accuracy is multi-linear with the ratios of all features.

3.3 Separability of Features

Now that the spurious correlation does not hold in the
testing scenario, a model w = [wT

1 wT
2 ]

T is considered
robust to the correlation shift when the model relies
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(a) minv = 2,mspur = 5, A ≈ 52.8% (b) minv = 5,mspur = 5, A ≈ 82.7% (c) minv = 5,mspur = 2, A ≈ 97.0%

Figure 3: The demonstration of the effectiveness of changing separability on the synthetic data. It is assumed
that ζtr = 0.999, and ζte = 0.5 across three scenarios, where only minv,mspur are changed. A denotes the testing
accuracy, which increases from 52.8% to 82.7% and finally 97.0% from (a) to (c). Higher minv,mspur indicate
higher separability of the corresponding features.

more on the invariant feature than spurious feature. In
the prediction is ŷ = (w∗)Tz = (w∗

1)
Tz1 + (w∗

2)
Tz2,

the contributions of the spurious and the invariant fea-
tures are Ez∈Z(w

∗
i )

Tzi = (w∗
i )

Tµi, i = 1, 2. Hence the
instability to the spurious correlation is quantified by

L(w∗) =
(w∗

2)
Tµ2

(w∗
1)

Tµ1
=

c2mspur

c1minv
= τ

mspur

minv
(6)

However, note that τ is dependent on minv,mspur,
hence the relationship between L(w) and minv,mspur

is not trivial. In fact, we have the following results

Theorem 5. (i) When mspur < minv +4
√
minv + 1+

4, τ
m1

decreases monotonically with respect to m1.

(ii) When mspur ≤ 2(
√
minv + 1 + 2), τm2 increases

monotonically with respect to m2.

We prove this in appendix G. This result suggests that
larger minv (more separable invariant feature) always
leads to more robust classifiers. On the other hand,
counterintuitively, the robustness is only guaranteed
to decrease as the spurious feature becomes less sepa-
rable when mspur is not too large. Similar as discussed
in corollary 2.2, when the spurious feature is much
more separable, the optimal classifier becomes unsta-
ble and hard to justify when the correlation ratio is
also high. The empirical results on synthetic data are
demonstrated in fig. 3. When increasing minv or de-
creasing mspur, the resulting classifier is more robust
to the correlation shift in the testing data. Further
experiments of the separability of real data and DNNs
are presented in section 5.2.

Real Data and DNNs. While the conclusion in
theorem 5 is established with Gaussian assumptions,
the orthogonality assumption can be imposed through
the mapping Φ(x) = z of the input data. Inspired by
the theoretical results, we apply a direct approach to
bridge the theoretical results and the application on
real-world data and DNNs by feature alignment. To
our best knowledge, such feature alignment trick, di-
rect as it is, however, is not a common approach in

handling spurious correlations. Re-weighting schemes
are usually preferred. Specifically, we propose a regu-
larization method to improve the robustness of models
by manipulating only the separability of the data.

Let X = X++ ∪X+− ∪X−+ ∪X−− ∈ R|X|×d be the
training data, consisting of 4 groups. A model is de-
fined as ŷ = σ(Φ(x)Tw), where Φ : Rd → Rp is the
backbone and σ is the sigmoid activation. Note that
estimating and regularizing the inverse of the covari-
ance matrices are computationally expensive in prac-
tice. Therefore, instead of regularizing minv,mspur, we
simplify the regularization term to

Lreg =
∥µspur∥
∥µinv∥

=
∥µ+

spur − µ−
spur∥

∥µ+
inv − µ−

inv∥
(7)

where µ+
inv,spur represents the average of the means of

the groups where ainv,spur = 1, and µ−
inv,spur represents

that for groups where ainv,spur = −1. For instance

µ+
inv =(Ex∈X++

Φ(x) + Ex∈X+−Φ(x))/2

µ−
inv =(Ex∈X−+

Φ(x) + Ex∈X−−Φ(x))/2.
(8)

The objective is defined as minΦ,w{Lcls+Lreg} where
Lcls is the classification loss. And the optimization is
implemented batch-wise. The experiments are carried
out to validate effectiveness in section 5.2.

4 DATASETS

To construct spurious correlations, we modify exist-
ing datasets including simple datasets MNIST (LeCun
et al., 1998), Fashion-MNIST (FMNIST) (Xiao et al.,
2017) for linear models, and complex datasets CIFAR-
10 (Krizhevsky et al., 2009), Caltech-UCSD Birds-200-
2011 (CUB) (Wah et al., 2011), Places (Zhou et al.,
2017) for DNNs. Inspired by Dominoes (Shah et al.,
2020; Pagliardini et al., 2022) we concatenate images
from the opposite class as the spurious feature. In
this way, it can be justified in advance that the sepa-
rability of the invariant and spurious features should
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(a) FMNIST+Linear (b) waterbird-ζ+ResNet (c) CIFAR-con+ResNet (d) CIFAR-water+ResNet

(e) MNIST(35)+Linear (f) waterbird-ζ+VGG (g) CIFAR-con+VGG (h) CIFAR-water+VGG

Figure 4: Accuracy trend w.r.t. the ratio ζtr. Red solid curves show the raw testing accuracy, while green
dashed curves show the estimated results based on our theorems. The axis is set as 1− ζtr to have a right-to-left
trend. The results show that our theorem-based estimation closely matches the actual accuracy trend across
multiple datasets and models.

be equivalent. This is applied to MNIST, FMNIST,
and CIFAR-10. In order to also study the difference
of artificial spurious features, we add a watermarks in
CIFAR-10, where a 4 × 4 back square is attached in
the bottom right corner of the image. We also follow
(Sagawa et al., 2019) to construct waterbird, where
birds from CUB-200 are divided into water birds and
land birds. They are cropped and attached over water
and land background scenes from Places. To balance
the two classes and augment the data, we re-sample
the waterbird images and resize the birds to 15% per-
cent of the entire image and randomly rotate them by
[−15◦, 15◦]. The resulting dataset is named waterbird-
ζ as in all datasets, the correlation ratio ζ is control-
lable. We also include a subset of CelebA (Liu et al.,
2015b). The informative features are the hair colors
and the spurious features are the gender of the subject.
Given correlation ratio ζ, we fix seeds and randomly
generate the largest subset that satisfies the group re-
lations.

We conducted binary classification on two sub-classes
of the MNIST, FMNIST, and CIFAR-10 datasets. The
first two classes of FMNIST and CIFAR-10 are taken
into consideration without selection, which are “top
vs. trouser” and “airplane vs automobile”. As for
MNIST, the sub-classes are 3 vs 5 and 5 vs 81 since
distinguishing between 0, 1 digit images can be too
trivial. Samples from the datasets are demonstrated

1These are the most indistinguishable pairs in MNIST

in the appendix H. The input of MNIST and FMNIST
is of size 1568. CIFAR-concate is of size 6 × 32 × 32.
CIFAR-watermark is of size 3×32×32. And the input
of waterbirds and CelebA is resized to 3 × 128× 128.

5 EXPERIMENTS

In this section, we conduct various experiments to
demonstrate that, although the theoretical results are
proposed under constraints, they possess the capac-
ity to generalize to real data and DNNs. MNIST and
FMNIST are tested with linear models and others are
tested with DNNs. The experiments are implemented
using Intel Core i9-9960X CPU @ 3.10GHz, paired
with Quadro RTX 6000 GPUs.

5.1 Estimating the Accuracy Shift – Using
the Correlation Ratio

We let ζtr vary in [0.5, 1]. Models are imple-
mented using sklearn and PyTorch. VGG-16 (Si-
monyan and Zisserman, 2014), ResNet-18 (He et al.,
2016), and AlexNet (Krizhevsky, 2014) are tested.
DNNs are optimized using the SGD solver with
lr=1e-3,momentum=0.9,weight decay=5e-4 for 200
epochs. In order to demonstrate our theoretical re-
sults generalize to complex scenarios, we estimate the
accuracy trend of complex models on real data.

Note that from eqs. (4) and (5), the testing accuracy
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Figure 5: The testing accuracy of the origin (red), separability regularization (blue), and Group-DRO (green).
The light-colored regions are the min-max error region of 10 rounds of experiments, seeds from 0 to 9.
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is determined by the separability minv,mspur of fea-
tures and the correlation ratio ζtr. Therefore, given
the estimated m̂1, m̂2, the accuracy will be determined
solely by the ratio ζtr. Although minv and mspur are
unknown for real data, it is feasible to estimate the
separability by indicators m̂1, m̂2 from the data accu-
racy given the initial ζtr values that are near 1, and
then m̂1, m̂2 are used to estimate the accuracy with
other values of ζtr (that are close to 0.5). The sep-
arability indicators are estimated at ζ1tr = 0.9, 0.999.
The experiments are repeated 10 times with seeds 0
to 9. And the estimations are shown in fig. 4. Please
refer to appendix I for the detailed algorithm and the
results for AlexNet and MNIST-5 vs 8. For the re-
sults of VGG-16, AlexNet, and MNIST. Results show
that the estimation of the accuracy trend w.r.t. ζtr lo-
cates very close to the average accuracy in 10 rounds.
This suggests that (i) Even for non-linear models and
complicated real datasets, the testing accuracy is still
highly dependent on the separability of features and
the training correlation ratio, and that (ii) The trend
of testing accuracy follows the theoretical results.

The result serves as guidelines for dataset construc-
tion and augmentations – given a highly biased dataset
with the initial testing accuracy, we can estimate the
accuracy improvement resulting from adding a specific
number of samples to balance the data.

5.2 Separability vs Correlation Ratio– Using
the Separability

The theoretical insights show that both the initial ra-
tio in the training data and the separability of the
features affect the models’ robustness toward the cor-
relation shift. However, existing work always focuses
on schemes that mitigate the correlation ratio of the
training data, while the separability is paid little atten-
tion to. In section 3.3, it is established that increasing
the separability of the invariant features and decreas-
ing the separability of the spurious features can both
improve the robustness of the classifier towards corre-
lation shift when there exists a spurious correlation.

We then compare the results of the feature align-
ment regularization (blue) in eq. (7) with the raw
accuracy (red) and the SOTA reweighting method
Group-DRO (green), which is implemented precisely
following the original implementation 2 Still, exper-
iments are carried out on CIFAR-concate, CIFAR-
watermark, waterbird-ζ and CelebA using the three
DNNs. The results are shown in fig. 5. It can be
found that, although implemented with completely dif-

2Group-DRO is implemented following the official re-
lease, which is licensed under the MIT License (Copyright
(c) 2022 The authors).

ferent schemes, both feature alignment and Group-
DRO manage to improve the models’ robustness to the
spurious correlation. It should be noticed that since
the size of the CIFAR-concate and CIFAR-watermark
datasets is much smaller than that of waterbird-ζ,
the CIFAR-related results are not as smooth. Espe-
cially, when ζtr → 1, the minor groups are almost
empty, making the optimization difficult. The results
demonstrate that the separability of features should
be paid more attention when resolving spurious corre-
lation problems.

6 CONCLUSIONS

In conclusion, this study provides a comprehensive
theoretical analysis of the factors of the spurious cor-
relation problem and their impact on machine learn-
ing models. We theoretically study the two critical
factors affecting the model performance in the test-
ing distribution: the correlation ratio and the feature
separability. Our research quantitatively underscores
how the correlation ratio in the training dataset and
its changes influence the model’s performance. It is
also revealed that the change in the separability of the
data can affect the model performance when the cor-
relation ratio remains invariant. For the correlation
ratio, we propose a method for estimating model per-
formance concerning correlation ratio changes, which
has proven effective on real data under both linear and
non-linear models. To improve feature separability, we
introduced a simple regularization term that enhances
model robustness without the need for reweighting
schemes based on the theoretical analysis. It is ad-
mitted that the proposed regularization technique is
defined as simple as possible to primarily validate the-
oretical findings. Our study suggests that regulariza-
tion techniques and reweighting schemes can both im-
prove the robustness. Therefore, it would be inter-
esting for future work to dive deeper to develop more
sophisticated techniques that combine regularization
and reweighting together. These efforts could further
strengthen the handling of spurious correlations in ma-
chine learning studies
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Supplementary Materials

A Proof of Lemma 1.

Lemma 1. (Accuracy) Given the parameters Θ = (µ,Σ,α,β), the accuracy of the classifier w is

A(w; Θ) =
1

2

(
1 +

∑
a∈{±1}N

γaerf
( µT

aw√
2wTΣw

))
(9)

where γa =
(∏N

n=1[α
ta,n
n (1− αn)

(1−ta,n)] +
∏N

n=1[β
ta,n
n (1− βn)

(1−ta,n)]
)
/2.

Proof. Considering the combination, there are 2N groups, which are denoted by a ∈ {±1}N . Depending on the
corresponding group, the mean of the entire latent representation is denoted as

µa =


a1µ1

a2µ2

...
aNµN

 (10)

where ta,n = 1 when an = 1 and ta,n = 0 when an = −1. Note that as the attribution of the informative feature,
a1 is equivalent to y. Besides, the correlation ratio satisfies that α1 = β1 = 1. Then the joint distribution of the
data conditioned on y can be written as

p(z|y = 1) =
N∏

n=1

p(zn|y = 1) = p(z1|y = 1)
N∏

n=2

p(zn|y = 1)

=
1√

(2π)d|Σ|

∑
a2···aN∈{0,1}

{[ N∏
n=2

αta,n
n (1− αn)

(1−ta,n)
]
exp

(
− 1

2
(z − µa)

TΣ−1(z − µa)
T
)} (11)

p(z|y = −1) =
N∏

n=1

p(zn|y = −1) = p(z1|y = −1)
N∏

n=2

p(zn|y = −1)

=
1√

(2π)d|Σ|

∑
a2···aN∈{0,1}

{[ N∏
n=2

βta,n
n (1− βn)

(1−ta,n)
]
exp

(
− 1

2
(z + µa)

TΣ−1(z + µa)
T
)} (12)

Note that y ∼ Uniform{−1, 1}, hence TN+FP = TP+FN, and the accuracy is the average of the recall and the
true negative rate. Let Ω(z) = {w|wTz > 0} be the half-space of the positive prediction. Then the recall can
be computed as∫

Ω(w)

1√
(2π)d|Σ|

∑
a2···aN∈{0,1}

{[ N∏
n=2

αta,n
n (1− αn)

(1−ta,n)
]
exp

(
− 1

2
(z − µa)

TΣ−1(z − µa)
T
)}

=
1

2

∑
a2···aN∈{0,1}

{[ N∏
n=2

αta,n
n (1− αn)

(1−ta,n)
](

1− erf(− µT
aw√

2wTΣw
)
)}

=
1

2

(
1 +

∑
a2···aN∈{0,1}

[ N∏
n=2

αta,n
n (1− αn)

(1−ta,n)
]
erf(

µT
aw√

2wTΣw
)

)
(13)
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Similarly, the true negative rate can be written as

∫
Rd\Ω(w)

p(z|y = −1)dz =
1

2

(
1 +

∑
a2···aN∈{0,1}

[ N∏
n=1

βta,n
n (1− βn)

(1−ta,n)
]
erf(

µT
aw√

2wTΣw
)

)
(14)

Then as the average, the accuracy is

A(w;µ,Σ,α,β) =
1

2

(∫
Ω(w)

p(z|y = 1)dz +

∫
Rd\Ω(w)

p(z|y = −1)dz
)

=
1

2

(
1 +

∑
a∈{±1}N

γaerf
( µT

aw√
2wTΣw

)) (15)

where γa =

[∏N
n=1 α

ta,n
n (1−αn)

(1−ta,n)
]
+
[∏N

n=1 β
ta,n
n (1−βn)

(1−ta,n)
]

2 .□

B Proof of Lemma 2.

Lemma 2. The Bayesian optimal classifier w∗ = [(w∗
1)

T , · · · , (w∗
N )T ]T given Θ = (µ,Σ,γ) can be written as

w∗
i = ηciΣ

−1
i µi, i = 1, · · · , N , such that

cn =
∑

a∈{±1}N

an=1

(γa − γ−a) exp
(
−

(
∑N

n=1 ta,ncnmn)
2

2
∑N

n=1 c
2
nmn

)

where η > 0 is a positive constant that determines the norm of the classifier. And here mn = µT
nΣ

−1µn > 0 is
the Mahalanobis distance of the n-th feature.

proof. In order to maximize A(w), the stationary point can be computed by ∇wA(w) = 0

0 =∇wA(w) =
1

2
∇w

( ∑
a∈{±1}N

γaerf
( µT

aw√
2wTΣw

))
(16)

=
1√
π

ΣwwT − (wTΣw)I

(wTΣw)3/2

∑
a∈{±1}N

{
γa exp

(
− (µT

aw)2

2wTΣw

)
µa

}
(17)

It suffices to solve ΣwwTq = (wTΣw)q, where

q =
∑

a∈{±1}N

{
γa exp

(
− (µT

aw)2

2wTΣw

)
µa

}
(18)

can be seen as the weighted summation of all µa. Note that q is an eigenvector of the 1-rank matrix ΣwwT .
Therefore, the eigenvector q is colinear with Σw. That is, ΣwwT (Σw) = Σw(wTΣw). So ∃η ∈ R s.t. Σw = ηq,
which can be written in detail asw1

...
wN

 = η
∑

a∈{±1}N

γa exp
(
−

(
∑N

n=1 anµ
Twn)

2

2wTΣw

) a1Σ
−1
1 µ1

...
aNΣ−1

N µN

 =: η

 c1Σ
−1
1 µ1

...
cNΣ−1

N µN

 (19)
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Substituting wn = ηcnΣ
−1
n µn back, we have

ck =
∑

a∈{±1}N

γaak exp
(
−

(
∑N

n=1 anµ
Twn)

2

2wTΣw

)
(20)

=
∑

a∈{±1}N

γaak exp
(
−

(
∑N

n=1 anµ
T cnΣ

−1
n µnη)

2

2
∑N

n=1(cnΣ
−1
n µnη)TΣn(cnΣ

−1
n µnη)

)
(21)

=
∑

a∈{±1}N

γaak exp
(
−

(
∑N

n=1 ancnmn)
2

2
∑N

n=1 c
2
nmn

)
(22)

=
∑

a∈{±1}N ,ak=1

(γa − γ−a) exp
(
− 1

2

(
∑N

n=1 ancnmn)
2∑N

n=1 c
2
nmn

)
(23)

and hence prove the statement.□

C Proof of Corollary 2.1

Corollary 2.1 Given m,Z,Y, ζ, let η = 1/cinv, τ = cspurη = cspur/cinv, then the optimal classifier is denoted
by w∗

inv = Σ−1
invµinv,w

∗
spur = τΣ−1

spurµspur.

proof. When N = 2, we denote the subscripts 1,2 by inv,spur for clarity. Note that w∗
inv = cinvηΣ

−1
invµinv,w

∗
spur =

cspurηΣ
−1
spurµspur. Let η = 1/cinv, and τ = cspur/cinv, then w∗

inv = Σ−1
invµinv,w

∗
spur = τΣ−1

spurµspur.□

D Proof of Corollary 2.2

Corollary 2.2 (informal) (i) Whenmspur < minv+4
√
minv + 1+4, ∃g ∈ C1 s.t. τ = g(ζ), and g is monotonically

increasing. (ii) When mspur ≥ minv + 4
√
minv + 1 + 4, τ is monotonically increasing w.r.t. ζ when ζ is not very

close to 1 or 0. There can be multiple optimal classifiers when ζ is close to 1 or 0.

proof. We first show the existence of g(ζ) ∈ C1.

When N = 2, the expression for c can be written as
cinv =ζ exp

(
− 1

2

(cinvminv + cspurmspur)
2

c2invminv + c2spurmspur

)
+ (1− ζ) exp

(
− 1

2

(cinvminv − cspurmspur)
2

c2invminv + c2spurmspur

)
cspur =ζ exp

(
− 1

2

(cinvminv + cspurmspur)
2

c2invminv + c2spurmspur

)
− (1− ζ) exp

(
− 1

2

(cinvminv − cspurmspur)
2

c2invminv + c2spurmspur

) (24)

Recall we defined that τ = cspur/cinv, then

τ =
ζ exp

(
− 1

2
(cinvminv+cspurmspur)

2

c2invminv+c2spurmspur

)
− (1− ζ) exp

(
− 1

2
(cinvminv−cspurmspur)

2

c2invminv+c2spurmspur

)
ζ exp

(
− 1

2
(cinvminv+cspurmspur)2

c2invminv+c2spurmspur

)
+ (1− ζ) exp

(
− 1

2
(cinvminv−cspurmspur)2

c2invminv+c2spurmspur

) (25)

= tanh
( log ζ − log(1− ζ)

2
− minvmspurτ

minv +mspurτ2
)

(26)

Let ω = log ζ−log(1−ζ)
2 , and ϕ(ω, τ) = tanh(ω − minvmspurτ

minv+mspurτ2 ) − τ . Then the solutions form a curve ϕ(ω, τ) = 0.

Consider the partial derivative w.r.t. τ as

∂ϕ

∂τ
=

minvmspur(mspurτ
2 −minv)sech

2(ω − minvmspurτ
minv+mspurτ2 )

(minv +mspurτ2)2
− 1 = 0 (27)

where sech2(ω − minvmspurτ
minv+mspurτ2 ) = 1− tanh2(ω − minvmspurτ

minv+mspurτ2 ) = 1− τ2 ∈ (0, 1). Substitute this back, we have

minvmspur(mspurτ
2 −minv)(1− τ2) = (minv +mspurτ

2)2 (28)
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It can be solved by

τ1,2 =

√
minv(minv +mspur − 2±

√
(minv −mspur)2 − 8(minv +mspur))

2mspur(1 +minv)
, τ1 < τ2 (29)

In order for this to be valid, the area of minv,mspur can be obtained by solving

(minv −mspur)
2 > 8(minv +mspur)

minv +mspur − 2 >
√
(minv −mspur)2 − 8(minv +mspur)

(minv +mspur − 2)minvmspur ±
√
m2

invm
2
spur((minv −mspur)2 − 8(minv +mspur))

2m2
spur(1 +minv)

minv(minv +mspur − 2±
√
(minv −mspur)2 − 8(minv +mspur))

2mspur(1 +minv)
< 1

minv,mspur > 0

(30)

And the resulting feasible area for minv,mspur is

(minv,mspur) ∈ (0,∞)× (minv + 4
√
minv + 1 + 4,∞) (31)

Hence when mspur < minv + 4
√
minv + 1 + 4, ∂ϕ

∂τ ̸= 0. By the implicit function theorem, there exists a function

such that cspur/cinv = τ = ginv(ω). Let g be defined by g(ζ) = ginv(
log ζ−log(1−ζ)

2 ) = cspur/cinv = cspur/η. Then
w∗

spur = g(ζ)Σ−1
spurµspur.

E Formalized Discussion on the relationship between minv,mspur

Corollary 2.3.1 Given m,Z,Y defined above, if mspur = minv + 4
√
minv + 1 + 4, then w∗ is still uniquely

determined by ζ, through continuous function g, but g(ζ) is not differentiable at ζ∗, 1− ζ∗, where

ζ∗ =
1

2

(
1 + tanh

(
arctanh

(√ minv(minv + 2
√
minv + 1 + 1)

(1 +minv)(minv + 4
√
minv + 1 + 4)

)
+

(minv + 1)(minv + 4
√
minv + 1 + 4)

2(minv +
√
minv + 1 + 1)

)) (32)

proof. Since τ = tanh(ω − minvmspurτ
minv+mspurτ2 ), ω can be written as

ω = arctanh(τ) +
minvmspurτ

minv +mspurτ2
(33)

On the other hand, the function g(ζ) is not differentiable at ζ∗ where ∂ϕ
∂τ = 0. And since mspur = minv +

4
√
minv + 1 + 4

τ =

√
minv(minv +mspur − 2)

2mspur(1 +minv)
=

√
minv(minv + 2

√
minv + 1 + 1)

(minv + 4
√
minv + 1 + 4)(1 +minv)

(34)

Substituting this back results in

ω = arctanh
(√ minv(minv + 2

√
minv + 1 + 1)

(1 +minv)(minv + 4
√
minv + 1 + 4)

)
+

(minv + 1)(minv + 4
√
minv + 1 + 4)

2(minv +
√
minv + 1 + 1)

)
(35)

Note that ζ = 1
2 (1 + tanh(ω)), we have the statement proved.

It can be easily found that ζ∗ is monotonically increasing with minv, and ζ∗ > ζ∗minv=0 = (1+tanh(2))/2 ≈ 0.9820,
which is already very highly correlated. Besides, in practice, the informative features need to be basically
separable, resulting in even larger ζ. As a result, for most of the scenarios where ζ ∈ (1−ζ∗, ζ∗), there’s a unique
classifier w. In the extreme case, however, multiple classifiers can achieve the optimal classifier at the same time.
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Corollary 2.3.2 Given m,Z,Y defined above, if mspur > minv + 4
√
minv + 1 + 4, then (i) w∗ is uniquely

determined by ζ in (0, 1 − ζ∗2 ) ∪ (1 − ζ∗inv, ζ
∗
inv) ∪ (ζ∗2 , 1). (ii) When ζ ∈ (1 − ζ∗2 , 1 − ζ∗inv) ∪ (ζ∗inv, ζ

∗
2 ), there are

three optimal classifiers, where ζ∗1,2 = (tanh(arctanh(τ∗1,2) +
minvmspur

minv+mspurτ2
1,2

) + 1)/2 and

τ∗1,2 =

√
minv(minv +mspur − 2±

√
(minv −mspur)2 − 8(minv +mspur))

2mspur(1 +minv)
, τ1 < τ2 (36)

(iii) The three classifiers are achieved by g(ζ∗inv) ∈ (0, τ∗inv), g(ζ
∗
2 ) ∈ (τ∗inv, τ

∗
2 ), g(ζ

∗
3 ) ∈ (τ∗2 , 1), respectively.

proof. Note that ω = arctanh(τ) +
minvmspurτ

minv+mspurτ2 , thus we can see that ω is monotonically increasing in (0, τ1) ∪
(τ2, 1), and monotonically decreasing in (τ1, τ2), where τ1,2 are the roots in appendix D. As a consequence, given
ω > 0, there is only one possible τ (i.e. only one classifier) if ω ∈ (0, ω2) ∪ (ω1, 1), and there are three possible
τ (i.e. three different optimal classifiers) when ω ∈ (ω2, ω1). Here ω1,2 = arctanh(τ1,2) +

minvmspurτ1,2
minv+mspurτ2

1,2
. Since

ζ and ω are 1-to-1 mapped, we have ζ∗1,2 = (tanh(ω1,2) + 1)/2 = (tanh(arctanh(τ∗1,2) +
minvmspur

minv+mspurτ2
1,2

) + 1)/2.

Finally, from appendix D, the two roots of τ are

τ1,2 =

√
minv(minv +mspur − 2±

√
(minv −mspur)2 − 8(minv +mspur))

2mspur(1 +minv)
, τ1 < τ2 (37)

Counterintuitively, these results suggest that when the spurious features are a lot more separable compared
to the informative features, and highly correlated to the labels at the same time, the optimal models can be
achieved by either 3 different ratios between the weights of informative features and spurious features. Here,

since µ,Σ are fixed, ∥w2∥
∥winv∥ = g(ζ∗i ) · Const, i = 1, 2, 3. And ideally, it is expected that the ratio ∥w2∥

∥winv∥ to be

smaller, indicating that the informative features are made sufficient use of. In (1 − ζ∗inv, ζ
∗
inv), the informative

features are dominant in the model decisions. As ζ keeps increasing/decreasing to ζ ∈ (1−ζ∗2 , 1−ζ∗inv)∪(ζ∗inv, ζ
∗
2 ),

the spurious feature is much more separable than the informative feature, but the correlation to the labeling is
not perfect, resulting three possible optimal models that rely on the informative/spurious features differently.
Finally, when ζ ∈ (0, 1− ζ∗2 ) ∪ (ζ∗2 , 1), the spurious feature becomes dominant in the decision process, since the
spurious correlation is close to 1 and the spurious feature is more separable.

F Proof of Lemma 3. and Theorem 4.

Lemma 3. (Optimal Accuracy.) Let ζtr, ζte be the correlation ratios in the training and testing data. And
let the minv,mspur be the Mahalanobis distance of the invariant and spurious features and satisfy mspur <
minv + 4

√
minv + 1 + 4. Then the training and testing accuracy of the optimal classifier can be written as:

A(ζtr) =
1

2

[
1 + ζtrR

(
g(ζtr)

)
+ r

(
g(ζtr)

)]
A(ζte; ζtr) =

1

2

[
1 + ζteR

(
g(ζtr)

)
+ r

(
g(ζtr)

)] (38)

where


R(τ) =erf(

minv + τmspur√
2(minv + τ2mspur)

)− erf(
minv − τmspur√
2(minv + τ2mspur)

)

r(y) =erf(
minv − τmspur√
2(minv + τ2mspur)

)

proof. From appendix A, the general form of the training and testing accuracy can be written as
A(γtr) =

1

2

(
1 +

∑
a∈{±1}N

γtr
a erf

( µT
aw

∗√
2(w∗)TΣw∗

))

A(γte; γtr) =
1

2

(
1 +

∑
a∈{±1}N

γte
a erf

( µT
aw

∗√
2(w∗)TΣw∗

)) (39)
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where w∗ is the optimal classifier w.r.t. the training correlation γtr. When N = 2 and αinv = βinv = 1, we have

γ(0,0) =
(1− αinv)(1− α2) + (1− βinv)(1− β2)

2
= 0

γ(1,0) =
αinv(1− α2) + βinv(1− β2)

2
= 1− α2 + β2

2
=: 1− ζ

γ(0,1) =
(1− αinv)α2 + (1− βinv)β2

2
= 0

γ(1,1) =
αinvα2 + βinvβ2

2
=: ζ

(40)

Note that the optimal classifier can be written as w∗
inv = Σ−1

invµinv,w
∗
inv = τΣ−1

2 µspur. Substituting the classifier
and the ratio back by τ and ζ, we have the training accuracy formula as

A(ζtr) =
1

2

(
1 + (1− ζtr)erf(

minv − τmspur√
2(minv + τ2mspur)

) + ζtrerf(
minv + τmspur√
2(minv + τ2mspur)

)
)

(41)

=
1

2

(
1 + ζtr

(
erf(

minv + τmspur√
2(minv + τ2mspur)

)− erf(
minv − τmspur√
2(minv + τ2mspur)

)
)

(42)

+ erf(
minv − τmspur√
2(minv + τ2mspur)

)
)

(43)

=
1

2
(1 + ζtrR(g(ζtr)) + r(g(ζtr))) (44)

Similarly, the formula of the testing accuracy is

A(ζte; ζtr) =
1

2
(1 + ζteR(g(ζtr)) + r(g(ζtr))) (45)

Here R, r are the functions defined in the statement of the lemma.□

Theorem 4. Given the Mahalanobis distances of the two features minv,mspur > 0 such that mspur < minv +
4
√
minv + 1 + 4, and the training correlations ζtr, ζ

′
tr ∈ (0, 1), the performance shift over the testing set with

correlation ratio ζte ∈ (0, 1) is bounded by

|A(ζte; ζtr)−A(ζte; ζ
′
tr)| ≤

mspur

2
√
2πminv

M

ζ(1− ζ)
(ζte + 2)|ζtr − ζ ′tr| (46)

where ζ is between ζtr, ζ
′
tr and M > 0 is a constant.

proof. When mspur < minv + 4
√
minv + 1 + 4, by implicit function, we have g ∈ Cinfty s.t. g(ω) = τ for ∀ω ∈ R

and the derivative is

dτ

dω
(ω0, τ0) =−

∂ϕ
∂x (ω0, τ0)
∂ϕ
∂τ (ω0, τ0)

= −
sech2(ω − minvmspur

minv+mspurτ2 )

minvmspur(mspurτ2−minv)sech2(ω− minvmspur

minv+mspurτ2 )

(minv+mspurτ2)2 − 1

(47)

=
(minv +mspurτ

2)2(1− τ2)

(minv +mspurτ2)2 −minvmspur(mspurτ2 −minv)(1− τ2)
(48)

=
4m2

spur(
minv

2mspur
+ τ2

2 )( minv

2mspur
+ τ2

2 )(1− τ2)

m2
spur(1 +minv)τ4 +minvmspur(2−minv −mspur)τ2 +m2

inv(1 +m2
spur)

(49)

≤
4m2

spur

( minv
2mspur

+ τ2

2 +
minv

2mspur
+ τ2

2 +1−τ2

3

)3
m2

invm
2
spur(8(minv+mspur)−(minv−mspur)2)

4m2
spur(1+minv)

(50)

=
16(minv +mspur)

3(minv + 1)

27m2
invmspur(8(minv +mspur)− (minv −mspur)2)

=: M (51)
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Therefore

|φ′(ζ)| = | dτ
dω

dω

dζ
| = M |dω

dζ
| = M

2ζ(1− ζ)
(52)

On the other hand, note that it is imposed that τ ∈ (−1, 1). Then for R(τ) = erf(
minv+τmspur√
2(minv+τ2mspur)

) −

erf(
minv−τmspur√
2(minv+τ2mspur)

), we have

|R′(τ)| = 2√
π

∣∣∣ exp (− (
minv + τmspur√
2(minv +mspurτ2)

)2
) minvmspur(τ − 1)√

2(minv +mspurτ2)3/2
− (53)

exp
(
− (

minv − τmspur√
2(minv +mspurτ2)

)2
) minvmspur(τ + 1)√

2(minv +mspurτ2)3/2

∣∣∣ (54)

≤
√
2√
π

(
| minvmspur(τ − 1)

(minv +mspurτ2)3/2
|+ | minvmspur(τ + 1)

(minv +mspurτ2)3/2
|
)

(55)

=

√
2

π

minvmspur

(minv +mspurτ2)3/2
(
|τ − 1|+ |τ + 1|

)
(56)

=

√
2

π

minvmspur

(minv +mspurτ2)3/2
≤

√
2

π

minvmspur

m
3/2
inv

= mspur

√
2

πminv
(57)

and similarly

|r′(τ)| = 2√
π

∣∣∣ exp (− (
minv − τmspur√
2(minv +mspurτ2)

)2
) minvmspur(τ + 1)√

2(minv +mspurτ2)3/2

∣∣∣ (58)

≤
√

2

π

∣∣∣ minvmspur(τ + 1)

(minv +mspurτ2)3/2

∣∣∣ ≤ 2mspur

√
2

πminv
(59)

Finally, the accuracy shift can be written as

|A(ζte; ζtr)−A(ζte; ζ
′
tr)| (60)

=|1
2
(1 + ζteR(φ(ζtr)) + r(φ(ζtr)))−

1

2
(1 + ζteR(φ(ζ ′tr)) + r(φ(ζ ′tr)))| (61)

=|ζte
2
(R(φ(ζtr))−R(φ(ζ ′tr))) +

1

2
(r(φ(ζtr))− r(φ(ζ ′tr)))| (62)

≤ζte
2
|R(φ(ζtr))−R(φ(ζ ′tr))|+

1

2
|r(φ(ζtr))− r(φ(ζ ′tr))| (63)

≤ζte
2
ξRξφ,1|ζtr − ζ ′tr|+

1

2
ξrξφ,2|ζtr − ζ ′tr| (64)

≤
(ζte
2

·mspur

√
2

πminv
· M

2ζ(1− ζ)
+mspur

√
2

πminv
· M

2ζ(1− ζ)

)
|ζtr − ζ ′tr| (65)

=
mspur

2
√
2πminv

M

ζ(1− ζ)
(ζte + 2)|ζtr − ζ ′tr| (66)

G Proof of Theorem 5.

Theorem. 5 (i) When mspur < minv + 4
√
minv + 1 + 4, τ

m1
decreases monotonically with respect to m1. (ii)

When mspur ≤ 2(
√
minv + 1 + 2), τm2 increases monotonically with respect to m2.

proof. Since we only consider the scenario where ζ > 0.5, which means ω > 0. By symmetry, τ ≥ 0. (i) It suffices
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to show that dτ
dminv

< 0. Since mspur < minv + 4
√
minv + 1 + 4, from appendix D, we know that |∂ϕ∂τ | > 0. Thus

dτ

dminv
=−

−
m2

spurτ
3sech2(ω− minvmspurτ

minv+mspurτ2 )

(minv+mspurτ2)2

minvmspur(mspurτ2−minv)sech2(ω− minvmspur

minv+mspurτ2 )

(minv+mspurτ2)2 − 1

(67)

=
m2

spurτ
3sech2(ω − minvmspurτ

minv+mspurτ2 )

minvmspur(mspurτ2 −minv)sech
2(ω − minvmspur

minv+mspurτ2 )− (minv +mspurτ2)2
(68)

where the numerator is positive, and the denominator can be written as

minvmspur(mspurτ
2 −minv)sech

2(ω − minvmspur

minv +mspurτ2
)− (minv +mspurτ

2)2 (69)

=minvmspur(mspurτ
2 −minv)(1− τ2)− (minv +mspurτ

2)2 (70)

where the discriminant is

∆ = (minv −mspur)
2 − 8(minv +mspur) < 0 (71)

Therefore, the determinant is negative, resulting in dτ
dminv

< 0.

(ii) Similarly, we can write dτ
dmspur

as

dτ

dmspur
=−

−
m2

invτsech
2(ω− minvmspurτ

minv+mspurτ2 )

(minv+mspurτ2)2

minvmspur(mspurτ2−minv)sech2(ω− minvmspur

minv+mspurτ2 )

(minv+mspurτ2)2 − 1

(72)

=
m2

invτsech
2(ω − minvmspurτ

minv+mspurτ2 )

minvmspur(mspurτ2 −minv)sech
2(ω − minvmspur

minv+mspurτ2 )− (minv +mspurτ2)2
(73)

=
m2

invτ(1− τ2)

minvmspur(mspurτ2 −minv)(1− τ2)− (minv +mspurτ2)2
> 0 (74)

Hence

dτmspur

dmspur
=τ +

dτ

dmspur
mspur (75)

=τ +
m2

invmspurτ(1− τ2)

minvmspur(mspurτ2 −minv)(1− τ2)− (minv +mspurτ2)2
(76)

=
m2

invmspurτ(1− τ2) + τ(minvmspur(mspurτ
2 −minv)(1− τ2)− (minv +mspurτ

2)2)

minvmspur(mspurτ2 −minv)(1− τ2)− (minv +mspurτ2)2
(77)

where the denominator is negative. And the numerator can be written as

num =m2
invmspurτ(1− τ2) + τ(minvmspur(mspurτ

2 −minv)(1− τ2)− (minv +mspurτ
2)2) (78)

=minvmspurτ(1− τ2)[minv + (mspurτ
2 −minv)]− τ(minv +mspurτ

2)2 (79)

=τ
[
minvm

2
spurτ

2(1− τ2)− (minv +mspurτ
2)2

]
(80)

Therefore, it can be found that the roots of num are (τ = 0 is trivial)

τ =

√√√√minvmspur((mspur − 2)±
√
m2

spur − 4mspur − 4minv)

2(minv + 1)m2
spur

(81)

Thus when mspur ∈ (0, 2(
√
minv + 1 + 1)], ∆ ≤ 0, num ≤ 0, and hence

dτmspur

dmspur
≥ 0.
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Table 1: The averaged accuracy over ζtrs: [0.999, 0.998, 0.995, 0.99, 0.98, 0.95, 0.9, 0.8] and 10
rounds.

Dataset Model Oringin Regularization Group-DRO

waterbird-ζ
ResNet 65.46% ± 9.54% 68.69% ± 10.69% 66.15% ± 10.05%
VGG 68.70% ± 10.73% 72.54% ± 11.47% 70.70% ± 10.49%

AlexNet 60.62% ± 6.62% 61.61% ± 7.80% 60.88% ± 6.76%

CIFAR-concate
ResNet 72.80% ± 2.60% 76.37% ± 3.91% 76.35% ± 4.75%
VGG 83.13% ± 8.25% 86.59% ± 5.74% 86.08% ± 7.57%

AlexNet 77.83% ± 5.27% 81.97% ± 6.22% 80.88% ± 5.76%

CIFAR-watermark
ResNet 91.98% ± 1.16% 93.20% ± 1.24% 92.34% ± 1.82%
VGG 91.77% ± 4.36% 94.98% ± 3.13% 94.26% ± 3.40%

AlexNet 80.73% ± 8.18% 88.97% ± 3.85% 83.87% ± 7.57%

CelebA
ResNet 96.45% ± 1.98% 98.39% ± 0.81% 97.91% ± 1.10%
VGG 96.72% ± 1.93% 98.60% ± 0.62% 98.21% ± 0.87%

AlexNet 96.68% ± 1.46% 98.20% ± 0.75% 97.88% ± 0.85%

H Datasets

The datasets that are used in the experiments are demonstrated in fig. 6. In the concatenation datasets
(a)(b)(c)(d), the upper block represents the informative feature zinv, which is strictly related to the ground
truth label. And the lower block represents the informative feature z2. For the watermark dataset (e), the
informative feature zinv is the original image, while the spurious feature z2 is the presence of the black square
watermark at the bottom right corner. As for the waterbird-ζ dataset (f), the informative feature is the taxa of
the birds while the spurious feature is the background habitats. The subset version of CelebA. As shown in (g).

I The Algorithm for Estimating the Trend of Testing Accuracy w.r.t. the Ratio

Note that from the theorems, the testing accuracy A is decided by minv,mspur and ζtr through eqs. (4) and (5).
Therefore, now that the Mahalanobis distances minv,mspur are unknown for the model, they can be estimated
using two ratio-accuracy pairs (ζ1tr, A1), (ζ

2
tr, A2). The corresponding pseudo-Mahalanobis distances m̂inv, m̂spur

can be estimated as parts of the roots (minv,mspur, τ1, τ2) of the system



F1(minv,mspur, τ1, τ2) = erf
( minv +mspurτ1√

2(minv +mspurτ21

)
+ erf

( minv −mspurτ1√
2(minv +mspurτ21

)
− 4A1 + 2 = 0

F2(minv,mspur, τ1, τ2) = τ1 − tanh
(1
2
log(

ζ1tr
1− ζ1tr

)− minvmspurτ1
minv +mspurτ21

)
= 0

F3(minv,mspur, τ1, τ2) = erf
( minv +mspurτ2√

2(minv +mspurτ21

)
+ erf

( minv −mspurτ2√
2(minv +mspurτ21

)
− 4A2 + 2 = 0

F4(minv,mspur, τ1, τ2) = τ2 − tanh
(1
2
log(

ζ1tr
1− ζ1tr

)− minvmspurτ2
minv +mspurτ22

)
= 0

(82)

In experiments, this is solved using the scipy toolkit to minimize
∑4

i=1 F
2
i . Afterwards, the pseudo-Mahalanobis

distances m̂inv, m̂spur can be substitute back to eqs. (4) and (5) to predict the testing accuracy with given ζtrs.
The part of experimental results is already shown in the main manuscript due to the space limit. Here we
demonstrate the results of all tested models and datasets in fig. 7. The first column (a)(e)(i) contains MNIST
and FMNIST datasets with linear models. The 2nd-4th rows contain the results with the datasets waterbird-ζ,
CIFAR-concate, and CIFAR-watermark respectively. It can be found that the prediction fits the experimental
trends of the testing accuracy in all cases except for AlexNet & waterbird-ζ. We deduce that this is due to the
limited expressiveness of AlexNet.
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(a) MNIST-3 vs 5 (b) MNIST-5 vs 8

(c) Fashion-MNIST (d) CIFAR-concate

(e) CIFAR-watermark (f) waterbird-ζ

(g) CelebA

Figure 6: A demonstration of the figures of the datasets that are tested. Samples of groups ++, +−, −+, and
++ are shown for each dataset. In the concatenation data, the upper blocks are the informative features, and the
lower blocks are the spurious features. In the watermark dataset, the object car vs airplane is the informative
feature, while the presence of the watermark in the bottom right corner is the spurious feature. And in the
waterbird-ζ dataset, the taxa of the birds is the informative feature, and the habitat shown in the background is
the spurious one. Finally, in the CelebA dataset, the hair color black vs. blonde is the informative feature while
the gender male vs. female is the spurious feature.
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(a) FMNIST+Linear (b) waterbird-ζ+ResNet (c) CIFAR-con+ResNet (d) CIFAR-water+ResNet

(e) MNIST(35)+Linear (f) waterbird-ζ+VGG (g) CIFAR-con+VGG (h) CIFAR-water+VGG

(i) MNIST(58)+Linear (j) waterbird-ζ+AlexNet (k) CIFAR-con+AlexNet (l) CIFAR-water+AlexNet

Figure 7: Accuracy trend w.r.t. the correlation ratio ζtr. Red solid curves show raw testing accuracy, while green
dashed curves show the estimated results based on our theorems. The axis is set as 1− ζtr to have a right-to-left
trend. The results show that our theorem-based estimation closely matches the actual accuracy trend across
multiple datasets and models.

J Supplementary Analysis of the Regularization over the Separability

Tabular Results. As shown in the main manuscript, the effectiveness of the regularization is tested over a list
of ζtrs defined as [0.999, 0.998, 0.995, 0.99, 0.98, 0.95, 0.9, 0.8]. The averaged accuracy over tested
ζtrains is also demonstrated in table 1. Results demonstrate the fact that the regularization over separability is
capable of effectively mitigating the spurious correlation problem.

Remarks. It should be noticed that the spurious correlation problem harms the testing accuracy by overfitting
the correlation in the training distribution. Therefore, if the training loss is not minimized (i.e. the training
accuracy is still low), the testing accuracy can be higher than the final testing accuracy. That is, with the training
process, the training accuracy will increase monotonically, while the testing accuracy increases first, and then
decreases when the overfitting happens. Therefore, before the training accuracy approaches 1, there are unstable
states where testing accuracy is higher than the accuracy when the training is finalized. Such improvement in
the testing accuracy is due to such early stops (before overfitting). In order to avoid these scenarios, and to show
the effectiveness of the regularization, we visualize and analyze the detailed training process to demonstrate that
the regularization indeed improves the models’ robustness even under the overfitting. The training details of the
first round (seed = 0) on waterbird-ζ are shown in figs. 8 and 9.

The first column demonstrates the training accuracy and the testing accuracy of origin (Origin), regularization
(Reg), and Group-DRO (G-DRO). This demonstrates that all models reach the finalized state where the training
accuracy converges to 1. As can be found around the 20th-30th iteration, there are bumps in the testing accuracy
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corresponding to the overfitting phenomena.

The second column shows the regularization loss-training epochs trend, which is recorded for origin and Group-
DRO, too. It shows that (i) even without the regularization, optimized models have the tendency to increase
the separability between informative feature groups while decreasing the separability between spurious feature
groups. This validates the proposed regularization term. (ii) the regularization method achieves the lowest
regularization loss among the three models. (iii) Comparing the regularization loss of the original model (red
curves in the second column) and the testing accuracy of the original model (red curves in the first column), we
can see that their trends correspond. The small bumps in the regularization loss cause small drops in the testing
accuracy around corresponding iterations (around the 20th-30th).

The third column shows the results of testing accuracy vs classification loss. At the same level of classification
loss, it is expected that they are of the same level of overfitting. And we can see that the regularization does not
prevent the classification loss from dropping in the training process. Instead, it actually improves the separability
even when overfitting occurs.

At last, the fourth column shows the results of testing accuracy vs regularization loss. The proposed regularization
achieves the lowest regularization loss. Moreover, when ζtr is close to 1 (which are the difficult extreme cases),
accuracy decreases less w.r.t. the decrease of the regularization loss for the proposed method.
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(a) ζtr = 0.99

(b) ζtr = 0.98

(c) ζtr = 0.95

(d) ζtr = 0.9

(e) ζtr = 0.8

Figure 8: The training details of the first round (seed=0) of the waterbird-ζ dataset with ResNet-18. The
four columns are (i) (training/testing)Accuracy-Epochs; (ii) Regularization Loss-Epochs; (iii) Testing Accuracy-
Classification Loss; (iv) Testing Accuracy-Regularization Loss.
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(a) ζtr = 0.99

(b) ζtr = 0.98

(c) ζtr = 0.95

(d) ζtr = 0.9

(e) ζtr = 0.8

Figure 9: The training details of the first round (seed=0) of the waterbird-ζ dataset with ResNet-18. The
four columns are (i) (training/testing)Accuracy-Epochs; (ii) Regularization Loss-Epochs; (iii) Testing Accuracy-
Classification Loss; (iv) Testing Accuracy-Regularization Loss.
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