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Abstract—In many real-world applications such as social
network analysis and online marketing/advertising, community
detection is a fundamental task to identify communities (sub-
graphs) in social networks with high structural cohesiveness.
While previous works focus on detecting communities alone,
they do not consider the collective influences of users in these
communities on other user nodes in social networks. Inspired by
this, in this paper, we investigate the influence propagation from
some seed communities and their influential effects that result in
the influenced communities. We propose a novel problem, named
Top-L most Influential Community DEtection (TopL-ICDE) over
social networks, which aims to retrieve top-L seed communities
with the highest influences, having high structural cohesiveness,
and containing user-specified query keywords. To efficiently
tackle the TopL-ICDE problem, we design effective pruning
strategies to filter out false alarms of seed communities and
propose an effective index mechanism to facilitate efficient Top- L
community retrieval. We develop an efficient Top L-ICDE answer-
ing algorithm by traversing the index and applying our proposed
pruning strategies. We also formulate and tackle a variant of
Top L-ICDE, named diversified top-L most influential community
detection (DTopL-ICDE), which returns a set of L diversified
communities with the highest diversity score (i.e., collaborative
influences by L communities). We prove that DTopL-ICDE is
NP-hard, and propose an efficient greedy algorithm with our
designed diversity score pruning. Through extensive experiments,
we verify the efficiency and effectiveness of our proposed TopL-
ICDE and DTopL-ICDE approaches over real/synthetic social
networks under various parameter settings.

Index Terms—Top-L Most Influential Community Detection,
Diversified Top-L Most Influential Community Detection

I. INTRODUCTION

Recently, the community detection (CD) has gained signif-
icant attention as a fundamental task in various real-world
applications, such as online marketing/advertising [1]-[3],
friend recommendation [4], and social network analysis [5].
Many previous works [6]-[9] usually focused on identify-
ing communities only (i.e., subgraphs) with high structural
cohesiveness in social networks. However, they overlooked
the collective influences that communities may exert on other
users (e.g., family members, or friends) within social networks,
which play a significant role in Word-Of-Mouth effects.

In this paper, we will formulate and tackle a novel problem
called top-L most influential community detection over social
networks (TopL-ICDE). This TopL-ICDE problem aims to
detect top-I. communities of people from social networks
who have specific interests (e.g., sports, movies, traveling),
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Fig. 1. An example of the TopL-ICDE problem over social network.

not only with close social relationships (i.e., forming dense
subgraphs with highly connected users) but also with high
impacts/influences on other users in social networks.

Below, we give a motivating example of our TopL-ICDE
problem in real applications of online advertising/marketing.
Example 1 (Online Advertising and Marketing over Social
Networks) In real applications of online advertising and
marketing, a sales manager wants to find several communities
of users on social networks who might be interested in buying
a new product. Intuitively, people in the same communities
who know each other should share a sufficient number of
common friends within communities, so that they are more
likely to purchase the product together via group buying (e.g.,
on Groupon [10]). What is more, after such community users
receive group buying coupons/discounts, the sales manager
wants these users to maximally influence other users on social
networks via their posts/recommendations. In this case, the
sales manager needs to perform the TopL-ICDE operator to
find some seed communities with the highest influences on
social networks (also considering those influenced users).

Figure 1 illustrates an example of a social network, G,
which contains user vertices like vi ~ vs, and directed edges
(e.g., edge ey, .,) representing the relationships (e.g., friend,
colleague, or family) between two users (e.g., v1 and v3). As
illustrated in Figure 1(a), each edge has two influence weights
between two vertices, for example, directed edge e, ., has the
weight 0.8, indicating the influence from user vy to user vs.
Moreover, as depicted in Figure 1(b), each user is associated
with a set of keywords that represent one’s favorite product
categories (e.g., { Movies, Books} for user v1).

To achieve good online advertising/marketing effects, one
potential seed community, g, is shown in Figure 1(a) (i.e., inner
solid circle), where users in g are all interested in "Movies”,



with high structural connectivity (i.e., any two users in ¢
are friends and also share two other common friends), and
have the highest influences on other user nodes in a larger
influenced community '™ (i.e., outer dashed ellipse, as shown
in Figure 1(a)). ]

Inspired by the example above, in this paper, we consider
the TopL-ICDE problem, which obtains L groups of highly
connected users (called seed communities) containing some
query keywords (e.g., shopping preferences or preferred prod-
ucts) and with the highest influences (ranks) on other users.
The resulting L. communities are potential customer groups
for effective advertising/marketing with high influences to
promote new products in social networks.

Formally, we will first define a seed community ¢ in social
networks as a structurally dense subgraph (under the semantics
of (k,r)-truss [11], [12]), where any two connected users
in ¢ must have at least (k — 2) common friends (i.e., be
contained in > (k — 2) triangle motifs, indicating stable user
relationships), users in g are close to a center vertex (i.e.,
within 7 hops), and each individual vertex in g contains at
least one query keyword. Then, we will consider the influenced
communities under an influence propagation model from seed
communities, which are ranked by influential scores of seed
communities. Our TopL-ICDE problem aims to retrieve top-L
seed communities with the highest ranks.

Due to the large scale of social networks and the complex-
ities of retrieving communities under various constraints, it
is rather challenging to efficiently and effectively tackle the
TopL-ICDE problem over big social networks. Furthermore,
since many parameters like query keywords or thresholds
(e.g., influential score, radius, and support) are online specified
by users, it is not clear how to enable efficient TopL-ICDE
processing with ad-hoc constraints (or query predicates).

In order to efficiently tackle the TopL-ICDE problem,
in this paper, we propose a two-phase general framework
for TopL-ICDE processing, which consists of offline pre-
computation and online TopL-ICDE processing phases. In
particular, we will present effective pruning mechanisms (w.r.t
query keywords, radius, edge support, and influential scores)
to safely filter out false alarms of candidate seed communities
and reduce the TopL-ICDE problem search space. Moreover,
we will design an effective indexing mechanism to facilitate
our proposed pruning strategies and develop an efficient TopL-
ICDE processing algorithm via index traversal.

Furthermore, we also consider a variant of TopL-ICDE,
namely diversified top-L most influential community detec-
tion over social networks (DTopL-ICDE), which retrieves a
set of L diversified communities with the highest diversity
score. Different from TopL-ICDE that returns L individual
communities (each of which can be a candidate community
for online marketing/advertising), DTopL-ICDE obtains one
set of L diversified communities that collaboratively influence
other users with the highest diversity score (i.e., considering
the overlaps of their influenced communities).

In Example 1 (Figure 1), if a sales manager wants to
enhance the promotion effect of advertising to L seed commu-

TABLE I
SYMBOLS AND DESCRIPTIONS

[ Symbol [ Description
G a social network
V(G) a set of n vertices v;
E(G) a set of edges e(u, v)
g (or g;) a seed community (subgraph)
P, a propagation probability that user w activates its neighbor v
gl"f (or gz.h”f) the influenced community of a seed community g (or g;)
hop(vi, 1) a subgraph centered at vertex v; and with radius r
v; . W a set of keywords that user v; is interested in
v;.BV a bit vector with the hashed keywords in v; . W
o(g) the influential score of the influenced community g™/
a set of query keywords
Q.BV a bit vector with the hashed query keywords in Q

k the support threshold in k-truss for seed communities

sup(€eqy, v) the support of edge €4, 4

Tmaz the maximum possible radius of seed communities
r the user-specified radius of seed communities

[ the influence threshold

nities, we need to consider those users influenced by more than
one seed community. Since users usually buy the product once
only, we would like to reduce the overlaps of L influenced
communities and maximize the influential effect (i.e., the
diversity score). In this case, we can issue the DTop L-ICDE
variant to obtain L diversified communities. In Figure 1(a), for
L = 2, subgraphs {vs, v4, v5} and {vs, vg,v9} are two DTop2-
ICDE seed communities (with only one influenced user vy).

We prove that the DTopL-ICDE problem is NP-hard, and
develop an approximation greedy algorithm to process the
DTopL-ICDE query efficiently.

We make the following major contributions in this paper:

1) We formally define the problem of the top-L most influ-
ential community detection over social networks (TopL-
ICDE) and its variant DTopL-ICDE in Section II.

2) We design a two-phase framework to efficiently tackle
the TopL-ICDE problem in Section III.

3) We propose effective pruning strategies to reduce the
TopL-ICDE search space in Section IV.

4) We devise offline pre-computation and indexing mech-
anisms in Section V to facilitate effective pruning and
an efficient TopL-ICDE algorithm to retrieve community
answers in Section VI.

5) We prove that DTop L-ICDE is NP-hard, and develop an
efficient DTopL-ICDE processing algorithm to retrieve
diversified community answers in Section VIL

6) We demonstrate through extensive experiments the effi-
ciency and effectiveness of our TopL-ICDE processing
approach over real/synthetic graphs in Section VIII.

Section IX reviews previous works on community
search/detection, influence maximization, and influential / di-
versified community. Finally, Section X concludes this paper.

II. PROBLEM DEFINITION

Section II-A formally defines the data model for social
networks. Section II-B gives the definition of the information
propagation model over social networks. Finally, Section II-C
provides the definition of our problems.



A. Social Networks

First, we model a social network by an attributed, undi-
rected, and weighted graph as follows.

Definition 1 (Social Network, G) A social network G is a
connected graph represented by a triple (V(G), E(G), ®(G)),
where V(G) and E(G) are the sets of vertices and edges in
G, respectively, and ®(G) is a mapping function: V(G) x
V(G) — E(G). Each vertex v; has a keyword set v;.W, and
each edge e, , € E(G) is associated with a weight p,, ., which
indicates the probability that user u activates user v.

In Definition 1, the keyword set wv;.W, e.g.,
{movies, sports,---}, denotes the topics that user v; is
interested in.

B. Information Propagation Model

To describe the influence spread over social networks G,
we utilize the maximum influence arborescence (MIA) model
[13]. Given a specific path from « to v (i.e., a non-cyclic user
sequence), denoted as P, , = (u = uj,ua,..., Uy, = v), the
propagation probability, pp(P, ), of path P, , is given by:

m—1
pp(Puv) - H pui,ui+1~ (1)
i=1

where py, u,,, is the weight of edge ey, v, , on path P, ..

In Eq. (1), we give the probability of the influence propa-
gation between two user vertices via a specific path P, , in
G. In reality, there are multiple possible paths from u to v.
Thus, the MIA model uses the maximum influence path (MIP)
[13], denoted as MIP,, ,, to evaluate the influence propagation
from v to v. The MIP is defined as a path with the highest
propagation probability below:

MIP,, , = argmaz pp(P, ). )
Py v
This way, the user-to-user propagation probability,

upp(u, v), for all paths between users u and v is defined by:

upp(u, U) = pp(M]Pu,v)- 3)

The problem of computing the influence spread o(S) is

known to be NP-hard [13], and existing algorithms [14], [15]

can achieve an approximation factor of (1 — 1/e + &), where
e is the natural constant and ¢ > 0.

C. Our TopL-ICDE Problem

Seed Community. We first give the definition of the seed
community in social networks G' below.

Definition 2 (Seed Community, g) Given a social network G,
a center vertex vq, an integer support k, the maximum radius,
r, of seed communities, and a set, Q), of query keywords, a
seed community, g, is a connected subgraph of G (denoted as
g C G), such that:

o Uq € V(g),

o for any vertex v, € V(g), we have dist(vq,v;) <r;

o gisa k-truss [16], and;

o for any vertex vi€V (g), its keyword set v;. W must con-

tain at least one query keyword in Q (i.e., v, WNQ # (),

where dist(x,y) is the shortest path distance between x and
y in subgraph g.

The seed community g (given in Definition 2) is a connected
subgraph that is 1) centered at v,, 2) with a maximum radius
r, 3) being a k-truss, and, 4) with each vertex v; containing at
least one query keyword in Q. Here, g is a k-truss subgraph
[16], if any edge in g is contained in at least (k — 2) triangles.

In real applications of online marketing and advertising, the

seed community usually contains strongly connected users,
who are provided with coupons/discounts of products to
maximally influence other users.
Influenced Community. The influenced community, '™, is
a subgraph influenced by a seed community g. Based on the
MIA model, we define the community-to-user propagation
probability from seed community g to a vertex v as:

4)

_Jmaxyuey g {upp(u,v)}, v & V(g);
cpp(g,v) = {1, v e V(g

We use cpp(g,v) to compute the maximum possible influ-
ence (e.g., posts, tweets) from one of the users in the seed
community g to user v through some paths. Then, we provide
the definition of the influenced community g™’ below.

Definition 3 (Influenced Community, g") Given a social
network G, a seed community g, and an influence threshold 0
(€ 10,1)), the influenced community, g™, of g is a subgraph
of G, where each vertex v in V(g™ satisfies the condition
that cpp(g,v) > 0.

The Influential Score of the Seed Community. To evaluate
the propagation effect from a seed community g to its influ-
enced community g™, we give the definition of the influential
score, o(g), for the influenced community g™ :

> eplg,v). )
veV (")

The influential score o(g) (given in Eq. (5)) sums up all the

community-to-user propagation probabilities c¢pp(g, v) from g
to vertices v in the influenced community ¢/*/. Intuitively,
high influential score o(g) indicates that the seed community
g may influence either a few users v with high community-to-
user propagation probabilities cpp(g, v), or many users v even
with low cpp(g,v) values.
The Problem of Top-L Most Influential Community De-
tection Over Social Networks. We are now ready to define
the problem of detecting top-L communities with the highest
influences.

o(g) =

Definition 4 (Top-L Most Influential Community Detection
Over Social Networks, Top L-ICDE) Given a social network
G, a positive integer L, a threshold 0, a support, k, of the
trusses, the maximum radius, r, of seed communities, and
a set, Q, of query keywords, the problem of top-L most
influential community detection over social networks (TopL-
ICDE) retrieves L seed communities g;, such that:

o g; satisfy the constraints of seed communities (as given

in Definition 2), and;



o these L seed communities g; have the influenced commu-
nities, gijnf , with the highest influential scores o(g;),

where o(g;) is given by Eq. (5).

A Variant of TopL-ICDE (Diversified Top-L Most Influ-
ential Community Detection Over Social Networks). In
Definition 4, the TopL-ICDE problem returns L individual
seed communities with the highest influences. Note that, these
L individual communities may influence the same users (i.e.,
with high overlaps of the influenced users). In order to achieve
higher user impacts, in this paper, we also consider a variant
of TopL-ICDE, namely diversified top-L most influential com-
munity detection over social networks (DTopL-ICDE), which
obtains a set of L diversified communities with the highest
collaborative influences on other users.

Given a set, S, of communities, we formally define its
diversity score, D(S), to evaluate the collective influence of
communities in .S on other users:

D)= > max{ep(g,v)}
voev(@) U

(6)

The diversity score in Eq. (6) sums up the maximum pos-
sible community-to-user propagation probabilities, cpp(g, v),
from any community ¢g in S to the influenced users wv.
Intuitively, a higher diversity score indicates higher impacts
from communities in S.

For simplicity, we use AD, (S) to represent the increment
of the diversity score for adding the subgraph g; to set S, i.e.,
AD,,(S) = D(S U {g;}) — D(S).

Next, we define our DTop L-ICDE problem which returns L
diversified seed communities with the highest diversity score
(i.e., collaborative influences on other users).

Definition 5 (Diversified Top-L Most Influential Community
Detection Over Social Networks, DTopL-ICDE) Given a
social network G, a positive integer L, a threshold 0, a
support, k, of the trusses, the maximum radius, r, of seed
communities, and a set, Q), of query keywords, the problem
of diversified top-L most influential community detection over
social networks (DTopL-ICDE) retrieves a set, S of L seed
communities g;, such that:

e g, satisfy the constraints of seed communities (as given
in Definition 2), and;

o the set S of L seed communities g; has the highest
diversity score D(S) (as given by Eq. (6)).

Intuitively, the DTopL-ICDE problem (given in Definition
5) finds a set, .S, of L communities that have the highest
collaborative influence, that is, the diversity score D(.S) in
Eq. (6), which is defined as the summed influence from
communities ¢ in S to the influenced users.

Challenges. A straightforward method to tackle the TopL-
ICDE problem is to first obtain all possible seed communities
(subgraphs) of the data graph G, then check the constraints of
these seed communities, and finally rank these seed commu-
nities based on their influential scores. Similarly, for DTopL-
ICDE, we can also compute the diversity score for any

combination of L communities, and choose a set of size L
with the highest diversity score. However, such straightforward
methods are quite inefficient, especially for large-scale social
networks, due to the high costs of the constraint checking
over an exponential number of possible seed communities (or
community combinations), as well as the costly computation of
influence/diversity scores (as given in Egs. (5) and (6)). Thus,
the processing of the TopL-ICDE problem (and its variant
DTopL-ICDE) raises up the efficiency and scalability issues
for detecting (diversified) top-L most influential communities
over large-scale social networks.

III. OUR ToPL-ICDE PROCESSING FRAMEWORK

Algorithm 1 presents our framework to efficiently answer
TopL-ICDE queries, which consists of two phases, i.e., offline
pre-computation and online Top L-ICDE processing phases.

In the offline pre-computation phase, we pre-process the
social network graph based on pre-computing data (e.g.,
influential score bounds) to facilitate online query answering
and constructing an index over these pre-computed data. In
particular, for each vertex v; in data graph G, we first hash
its associated keyword set v;.W into a bit vector v;. BV (lines
1-2). Then, for each r-radius subgraph hop(v;,r) centered at
vertex v; and with a radius r € [1,742), We offline pre-
compute data (e.g., support/influence bounds) to facilitate the
pruning (lines 3-5). Next, we construct a tree index Z over the
pre-computed data (line 6).

In the online TopL-ICDE processing phase, for each query,

we traverse the index Z to efficiently retrieve candidate seed
communities, by integrating our proposed effective pruning
strategies (i.e., keyword, support, radius, and influential score)
(lines 7-8). Finally, we refine these candidate seed communi-
ties by computing their actual influential scores, and return the
top-L most influential communities with the highest influential
scores (line 9).
Discussions on the DTopL-ICDE Framework. We will
discuss the DTopL-ICDE framework later in Section VII,
which follows the TopL-ICDE framework but applies specif-
ically designed pruning/refinement techniques to retrieve L
diversified communities (i.e., DTopL-ICDE query answers).

IV. PRUNING STRATEGIES

In this section, we present effective pruning strategies to
reduce the Top L-ICDE problem search space in our framework
(line 8 of Algorithm 1). Due to space limitations, in subse-
quent discussions, we will omit proofs of all the lemmas,
which can be found in our technical report [17].

A. Keyword Pruning

In this subsection, we first provide an effective keyword
pruning method. From Definition 2, any vertex in the seed
community g must contain at least one query keyword in Q).
Thus, our keyword pruning method filters out those candidate
subgraphs g containing some vertices without query keywords.

Lemma 1 (Keyword Pruning) Given a set, Q, of query
keywords and a candidate subgraph g, subgraph g can be



Algorithm 1: The TopL-ICDE Process Framework

Input: i) a social network G ii) a set, ), of query keywords; iii)
the support, k, of the truss for each seed community; iv) the
maximum radius, 7, of seed communities; v) the influence
threshold 6, and; vi) integer parameter L

Output: a set, S, of top-L seed communities

// offline pre-computation phase

1 for each v; € V(G) do

2 hash keywords in v;.W into a bit vector v;. BV

3 for r = 1 to g do
4
5

extract r-hop subgraph hop(v;,r) of vertex v;;

offline pre-compute data, v;. R, w.r.t. the support upper
bound ub_sup(-) and influence upper bound Inf,,; for
subgraph hop(v;, r);

6 build a tree index Z over graph G with pre-computed data as
aggregates;
// online TopL-ICDE processing phase

7 for each Top L-ICDE query do

8 traverse the tree index Z by applying keyword, support, radius,
and influential score pruning strategies to retrieve candidate
seed communities;

9 refine candidate seed communities to obtain top-L seed
communities with the highest influential scores;

safely pruned, if there exists at least one vertex v; € V(g)
such that: v;. W N Q = 0 holds, where v;.W is the keyword
set associated with vertex v;.

B. Support Pruning

According to Definition 2, the seed community g should
be a k-truss [16], that is, the support sup(e, ) of each edge
ey € E(g) (defined as the number of triangles that contain
edge e, , in the seed community g) must be at least (k — 2).

Assume that we can offline obtain an upper bound,
ub_sup(ey, ), of the support sup(e,.) on edge e, , in g.
Then, we have the following lemma to discard those candidate
seed communities g containing some edges with low support.

Lemma 2 (Support Pruning) Given a seed community g and
a parameter k, subgraph g can be safely pruned if there exists
an edge e, € E(g) satisfying ub_sup(ey ) < (k — 2).

Discussions on How to Obtain the Support Upper Bound
ub_sup(ey,y). To enable the support pruning, we need to
calculate the support upper bound ub_sup(e,, ) of edge e,
in a seed community g. Since the seed community g is a
subgraph of the data graph G, the support of edge e, , in g
is thus smaller than or equal to that in G (in other words, the
number of triangles containing e, , in g is less than or equal
to that in 7). Therefore, we can use the edge support in the
data graph G (or any supergraph of g) as the support upper
bound ub_sup(e, ) of edge e ..

C. Radius Pruning

From Definition 4, the maximum radii, r, of seed communi-
ties are online specified by users, which limits the shortest path
distance between the center vertex and any other vertices to
be not more than r. We provide the following pruning lemma
with respect to radius r. If a subgraph g (centered at vertex
v;) has a radius greater than r, it violates the radius constraint
of the seed community.

Lemma 3 (Radius Pruning) Given a subgraph g (centered
at vertex v;) and the maximum radius, r, of seed communities,
subgraph g can be safely pruned, if there exists a vertex v; €
V(g) such that dist(v;,v;) > r, where function dist(zx,y)
outputs the number of hops between vertices x and y in g.

This radius pruning method enables offline pre-computation
by extracting subgraphs for any possible radius r € [1, 7maz]
that is, hop(v;, r). In other words, those vertices with distance
to vertex v; greater than radius r can be safely ignored, so we
only need to focus on r-hop subgraphs hop(v;, ).

D. Influential Score Pruning

Next, we discuss the influential score pruning method
below, which filters out those seed communities with low
influential scores.

Lemma 4 (Influential Score Pruning) Assume that we have
obtained L seed communities g; so far, and let o be the
smallest influential score among these L seed communities
g;. Any subgraph g can be safely pruned, if it holds that
ub_o(g) < o, where ub_o(g) is the upper bound of the
influential score o(g).

Discussions on How to Obtain the Upper Bound ub_c(g)
of the Influential Score. Based on Eq. (5), the influential
score o(g) of seed community g is given by summing up
the community-to-user propagation probabilities cpp(g, v), for
v € g™, where cpp(g,v) > 6. Since threshold @ is online
specified by the user, we can offline pre-select m thresholds
61, 05, ..., and 6, (assuming 6; < 0y < ... < 6,,), and pre-
calculate the influential scores o,(g) w.r.t. thresholds 6, (for
1 < z < m). Given an online threshold 6, if 6 € [0,,0,,1)
holds, we will use o.(g) as the influential score upper bound
ub_o(g), where o.(g) is the influential score of g using
threshold 6.,.

V. OFFLINE PRE-COMPUTATION AND INDEXING

In this section, we discuss how to offline pre-compute data
for social networks to facilitate effective pruning in Section
V-A, and construct indexes over these pre-computed data to
help with online TopL-ICDE processing in Section V-B.

A. Offline Pre-Computed Data for Top L-ICDE Processing

In order to facilitate online TopL-ICDE processing, we
perform offline pre-computations over data graph G and obtain
some aggregate information of potential seed communities,
which can be used for our proposed pruning strategies to
reduce the problem search space. Specifically, for each vertex
v; € V(G), we first hash the keyword set v;.1V into a bit
vector v;. BV of size B. Each edge e, , is associated with the
edge support upper bound ub_sup(ey, ) in 7p,q4-hop subgraph
hop(v;, Fimag) (€., a pair of (v;, ub_sup(e,, ,)). Next, we use
the radius pruning (as given in Lemma 3) to enable offline
pre-computations of r-hop subgraphs. In particular, starting
from each vertex w;, we traverse the data graph G in a
breadth-first manner (i.e., BFS), and obtain r-hop subgraphs,
hop(v;,r), centered at v; with radii r € [1,7,4.]. For each



r-hop subgraph, we calculate and store aggregates in a list
v;. R, in the form (v;.BV,., v;.ub_sup,,[(0,,0.)]) as follows:
e a bit vector, v;.BV,., which is obtained by hashing all
keywords in the keyword sets v;.W of vertices v; in the
r-hop subgraph hop(v;,r) into a position in the bit vector
(i.e., Ui.BVT- = VVleV(hop(vi,r)) ’l}l.BV);

e an upper bound, wv;.ub_sup., of all support
bounds wub_sup(e,,) for edges e,, in the r-
hop subgraph hop(vi,r) (.e., v;.ub_sup, =

maXve, ,cE(hop(v;,r)) Ub—sup<eu,v))s and;
« m pairs of influential score upper bounds and influence
thresholds (o, (hop(v;,7)),0,) (for 1 < z < m).

More details of the aggregates are provided below:
The Computation of Keyword Bit Vectors v;. BV,.: We first
obtain the keyword bit vector v;. BV of size B for each vertex
v; € V(G), and then compute the one, v;.BV,, for r-hop
subgraph hop(v;, 7). Specifically, for each vertex v;, we first
initialize all bits in a vector v;. BV with zeros. Then, for each
keyword w in the keyword set v;. W, we use a hashing function
f(w) that maps a keyword w to an integer between [0, B — 1]
and set the f(w)-th bit position to 1 (i.e., v;. BV[f(w)] =
1). Next, for all vertices v; in r-hop subgraph hop(v;, ), we
perform a bit-OR operator over their bit vectors v;. BV. That
is, we have v,;.Bin = \/vvlev(,wp(%r)) v;.BV.
The Computation of Support Upper Bounds v;.ub_sup,:
For each radius r € [1,7mq2), We compute a support upper
bound v;.ub_sup, as follows. We first calculate the support up-
per bound, ub_sup(e, ), for each edge e, ,, in the r,,q,-hop
subgraph hop(v;, "maz). Then, the maximum ub_sup(ey )
among all edges in hop(v;, maz) is selected as the support
upper bound v;.ub_sup,.
The Computation of Influential Score Upper Bounds
o, (hop(vi,r)) (wrt. 6.): Since seed communities g are
subgraphs of some r-hop subgraphs hop(v;,r), as given in
Eq. (5), the influential score o, (hop(v;, 7)) (w.r.t. influence
threshold #.) must be greater than or equal to o,(g) and is
thus an influential score upper bound. In other words, we
overestimate the influence of a seed community g inside r-
hop subgraph hop(v;,r), by assuming that g = hop(v;, 7).

To calculate the influential score o, (hop(v;, 7)), we first
start from each r-hop subgraph hop(v;,r) (= g¢) and then
expand hop(v;,) to obtain its influenced community g/ via
a graph traversal. A vertex v is included in ¢’ if it holds
that epp(g,u) > 6,, where cpp(g,u) is given by Eq. (4). The
graph traversal algorithm terminates, when cpp(g,u) < 6,
holds. Finally, we use Eq. (5) to calculate the influential score
o (hop(v;,r)) of the expanded graph (w.r.t., 6.).
Offline Computation Algorithm: Algorithm 2 illustrates the
epseudo code of offline data pre-computation in the data
graph G that can facilitate online TopL-ICDE processing. In
particular, for each vertex v; € V(G), all the keywords of
the keyword set v;.WW are hashed into a bit vector v;. BV and
stored in a list v;. R (lines 1-3). Then, we compute the support
for each edge e, ,, in hop(v;, rmaes) and use the maximum one
as the support upper bound ub_sup(e, ) for the edge e, ,
(lines 4-5). Next, for each vertex v; and pre-selected radius r

Algorithm 2: Offline Pre-Computation

Input: i) a social network G} ii) the maximum value of radius

Pmaz; iil) m influence thresholds {61,602, ..., Om};
Output: pre-computed data v;.R for each vertex v;;
1 for each v; € V(G) do
// keyword bit vectors
2 hash all keywords in the keyword set v;.WW into a bit vector

Ui.BV;

3 v;.R={v;.BV};

// edge support upper bounds

4 for each ey, € E(hop(vi, Tmaz)) do

5 compute edge support upper bounds ub_sup(ey,») W.LL.
hOp(Ui, 7"ma;c);

6 for each v; € V(G) do

7 for each r = 1 to Tmaz do

8 ’Ui‘BVT = VVvIGV(hop(vi,r)) UL.BV;

9 v;.ub_supr = maXve,, , cE(hop(v;,r)) Uo_suP(€u,w);
// influential score upper bounds

10 for each 0, € {01,02,...,0m} do

1 oz (hop(vi,r)) =

12

calculate_influence(hop(v;, 1), 02);
add (o (hop(vi,T)),02) to vi.R;
13 | add v;.BV; and vi.ub_supr to v;.R;

14 return v;.R;

ranging from 1 to 7,,4,, We calculate the pre-computed data
for subgraph hop(v;, ), including keyword bit vector v;. BV,
(lines 6-8), edge support upper bound v;.ub_sup, (line 9), and
upper bound of influential score o, (hop(v;, 7)) w.r.t. 8, (lines
10-11). All these pre-computed data are added to the list v;.R
(lines 12-13), which is returned as the output (line 14).
Complexity Analysis: For Algorithm 2, the time complexity
is given by O(|V(G)| - (|[W] 4+ avg_deg ™" + Tz - (B +
Vavg_deg”"+m-((|E(gi™)|+ |V (g)])log|V (2)])))),
where avg_deg denote the average number of vertex degree
and g is the subgraph containing the influenced users from
hop(v;,r). The space complexity is O(|V(G)| + |E(G)| +
[V(G)| - rmax - (B + 2m + 1)). Please see the detailed
descriptions for Algorithm 2 in our technical report [17].

B. Indexing Mechanism

In this subsection, we illustrate the details of building a tree
index, Z, over pre-computed data of social networks GG, which
can be used for performing online TopL-ICDE processing.
The Data Structure of Index Z: We will construct a hierar-
chical tree index, Z, over social networks (G, where each index
node NN contains multiple entries N;, each corresponding to a
subgraph of G.

Specifically, the tree index Z contains two types of nodes,

leaf and non-leaf nodes.
Leaf Nodes: Each leaf node N in index Z contains multiple
vertices v; € V(G). Each vertex v; is associated with the
following pre-computed data in v;.R (w.r.t. each possible
radius 7 € [1, rmaz))-

« a keyword bit vector v;.BV,;

« edge support upper bound v;.ub_sup,, and;

o m pairs of influential score upper bounds and influence
thresholds (o, (hop(v;, 1)), 6.).



Non-Leaf Nodes: Each non-leaf node N in index Z has multi-
ple index entries, each of which, NV;, is associated with the fol-
lowing aggregate data below (w.r.t. each radius r € [1,7pqz])-

e« an aggregated keyword bit vector N;.BV, =
VV'L)LEN,i Ul'B‘/T;

o the maximum edge support upper bound N;.ub_sup, =
mMaxy.,, eN; U1-ub_supy;

e m pairs, (N;.0.,0.), of maximum influential score
upper bounds and influence thresholds (for N;.o0, =
maxyy,en; 0z (hop(vi,1))), and;

« a pointer, N;.ptr, pointing to a child node.

Index Construction: To construct the tree index Z, we sorted
all vertices by their average of ub_sup, and o, and recursively
divided sorted vertices array into partitions of the similar sizes,
and then obtain index nodes on different levels of the tree
index. Then, we associate each index entry in non-leaf nodes
(or each vertex in leaf nodes) with its corresponding aggregates
(or pre-computed data).

Complexity Analysis: The time complexity of our tree index
construction is given by O((y/08- IV(ON+L _ 1) /(y — 1)),
where 7 is the average fanout of each non-leaf node N.
The space complexity is given by O(rpaz - (B + 2m + ) -
(3198 VO _ 1) /(5 = 1)) + [V(G)| - (B + 2m)). Due to
space limitations, please refer to our technical report [17] for
the detailed description.

VI. ONLINE TorPL-ICDE PROCESSING

For the online TopL-ICDE processing phase (see Algorithm
1), we utilize the constructed tree indexes to conduct the TopL-
ICDE processing, by integrating our effective pruning strate-
gies and returning top-L most influential seed communities.

A. Index Pruning

In this subsection, we provide effective pruning heuristics
on index nodes, which can filter out all candidate seed commu-
nities under index nodes. Proofs of lemmas are omitted here
due to space limitations.

Keyword Pruning for Index Entries: We utilize the aggre-
gated keyword bit vector, N;.BV,., of an index entry N;, and
discard an index entry N; if none of r-hop subgraphs under
N; contain some keyword in the query keyword set Q.
Lemma 5 (Index-Level Keyword Pruning) Given an index
entry N; and a set, QQ, of query keywords, entry N; can be
safely pruned, if it holds that N;.BV,. A Q.BV = 0, where
Q.BV is a bit vector hashed from the query keyword set Q.
Support Pruning for Index Entries: We next use the support
parameter k in the k-truss constraint (as given in Definition 2)
to prune an index entry N; with low edge supports.

Lemma 6 (Index-Level Support Pruning) Given an index
entry N; and a support parameter k, entry N; can be safely
pruned, if it holds that N;.ub_sup, < k, where N;.ub_sup,
is the maximum edge support upper bound in all r-hop
subgraphs under N;.

Influential Score Pruning for Index Entries: Since the
Top L-ICDE problem finds L seed communities with the high-
est influential scores, we can employ the following pruning

Algorithm 3: Online Top L-ICDE Processing

Input: i) a social network G ii) a set, ), of query keywords; iii)
the support, k, of the truss for each seed community; iv) the
maximum radius, 7, of seed communities; v) the influence
threshold 6 € [0,,0.41); vi) an integer parameter L, and;
vii) a tree index Z over G

Output: a set, S, of top-L most influential communities

// initialization

hash all keywords in the query keyword set @) into a query bit

vector Q.BV;

2 initialize a maximum heap # in the form of (N, key);

3 insert (root(Z),0) into heap H;

4 S=0;cent=0; 01, = —o0;

// index traversal

-

s while H is not empty do

6 (N, key) = de-heap(H);

7 if key < o, then

8 | terminate the loop;

9 if N is a leaf node then

10 for each vertex v; € N do

11 if 7-hop subgraph hop(v;,r) cannot be pruned by

Lemma 1, 2, or 4 then
12 obtain seed communities g C hop(v;, )
satisfying the constraints;
13 compute influential score o(g) =
calculate_influence(g, 6);

14 if cnt < L then

15 add (g,0(g)) to S;

16 cent = ent + 1,

17 if cnt = L then

18 set oy, to the smallest influential score
in S

19 else

20 if o(g) > o, then

21 add (g,0(g)) to S;

22 remove a candidate seed community
with the lowest influential score from
S;

23 update influence threshold o, ;

24 else // N is a non-leaf node

25 for each entry N; € N do

26 if N; cannot be pruned by Lemma 5, 6, or 7 then

27 L insert entry (N;, N;.0-) into heap H;

28 return S;

lemma to rule out an index entry N; whose influential score
upper bound lower than that of L candidate seed communities
we have seen so far.

Lemma 7 (Index-Level Influential Score Pruning) Assume
that we have obtained L candidate seed communities with the
smallest influential score oy. Given an index entry N; and
an influence threshold 0 € [0,,0..1), entry N; can be safely
pruned, if it holds that N;.c, < 0.

B. TopL-ICDE Processing Algorithm

Algorithm 3 gives the pseudo-code to answer a Top L-ICDE
query over a social network G via the index Z. Specifically, the
algorithm first initializes some data structure/variables (lines
1-4), then traverses the index Z (lines 5-27), and finally returns
actual TopL-ICDE query answers (line 28).

Initialization: Given a query keyword set (), we first hash
all the keywords in () into a query bit vector QQ.BV (line
1). Then, we use a maximum heap H to traverse the index,
which contains heap entries in the form of (N, key), where



N is an index node and key is the key of node N (defined as
maximum influential score upper bound N.o,, mentioned in
Section V-B). Intuitively, if a node /N has a higher influential
score upper bound, it is more likely that N contains seed
communities with high influential scores (ranks). We thus
always use the maximum heap H to access nodes with higher
influential scores earlier. We initialize heap H by inserting the
index root in the form (root(Z),0) (lines 2-3). In addition,
we use a result set, .S, to store candidate seed communities
(initialized with an empty set) whose entries are in the form
of (g,0(g)), a variable cnt (initially set to 0) to record the size
of set .S, and an influence threshold o, (w.r.t. S, initialized to
—00) (line 4).
Index Traversal: Next, we employ the maximum heap H to
traverse the index Z (lines 5-27). Each time we pop out an
entry (N, key) with node N and the maximum key, key, in
the heap (lines 5-6). If key is not greater than the smallest
influential score, oy, among L seed communities in S, then
all entries in heap H have influential score upper bounds not
greater than o,. Therefore, we can safely prune the remaining
(unvisited) entries in the heap and terminate the index traversal
(lines 7-8). When we encounter a leaf node N, we consider
r-hop subgraphs hop(v;,r) for all vertices v; under node N
(lines 9-10). Then, we apply the community-level pruning
strategies, keyword pruning, support pruning, and influential
score pruning. If an r-hop subgraph hop(v;,r) cannot be
pruned, we obtain seed communities, g, within hop(v;, r) that
satisfy the constraints given in Definition 2 and compute their
accurate influential scores o(g) w.r.t. threshold €, by invoking
the function calculate_influence(g, §) (lines 11-13). Then,
we will update the result set S with g, by considering the
following two cases.
Case 1: If the size, cnt, of set S is less than L, a new entry
(g9,0(g)) will be added to S (lines 14-16). If the set size cnt
reaches L, we will set o, to the smallest influential score in
S (lines 17-18).
Case 2: If the size, cnt, of set S is equal to L and the
influential score o(g) is greater than oy, we will add the
new entry (g,0(g)) to S, and remove a seed community with
the lowest influential score from .S (lines 19-22). Accordingly,
threshold oy, will be updated with the new set S (line 23).
On the other hand, when we visit a non-leaf node N, for
each child entry N; € N, we will apply the index-level pruning
strategies, including index-level keyword pruning, index-level
support pruning, and index-level influential score pruning
(lines 24-26). If N; cannot be pruned, we insert a heap entry
(Ni, N;.0.) into heap H for further investigation (line 27).
Finally, after the index traversal, we return actual TopL-
ICDE query answers in S (line 28).
Discussions on the Influential Score Calculation Function
calculate_influence(g, #): To calculate the influential score
(via Egs. (4) and (5)), we need to obtain the influenced
community ¢/ from seed community g, whose process is
similar to the single-source shortest path algorithm. We will
first compute 1-hop neighbors, vy, of boundary vertices in seed
community g, and include vy, (satisfying cpp(g, vg) > 6) in the

influenced community ¢/™. Then, each time we expand one
hop from the current influenced community ¢/, by adding
to g/ new vertices vy, if it holds that cpp(g, Vnew)
6, where Cpp(gavnew) = maxvuev(gfﬂf){upp(u7Unew)}
MaXyycv (ginf) {Cpp(gv u) * Puvnew }

TopL-ICDE Complexity Analysis: The time complexity of
Algorithm 3 is given by O(Z?Zl froitl (1= ppUWy4 phtl.
(1= PPO) -7 - (|E(g™ | + |V (g")|)log|V (9" )])). Due
to space limitations, please refer to our technical report [17]
for detailed descriptions.

v

VII. ONLINE DIVERSIFIED TOPL-ICDE PROCESSING

In this section, we discuss how to efficiently tackle the
Top L-ICDE variant, that is, the DTop L-ICDE problem.

A. NP-Hardness of the DTop L-ICDE Problem

First, we prove the NP-hardness of our DTop L-ICDE prob-
lem (given in Definition 5) in the following lemma.
Lemma 8 The DTopL-ICDE problem is NP-hard.

To prove Lemma 8§ (i.e., DTopL-ICDE is NP-hard), we can
reduce a known NP-hard problem, the Maximum Coverage
problem [18], to our DTopL-ICDE problem. Please refer to
the details of the proof in our technical report [17].

B. The Greedy Algorithm for DTop L-ICDE Processing

Due to its NP-hardness (as given by Lemma 8), our DTopL-

ICDE problem is not tractable. Therefore, alternatively, we
will propose a greedy algorithm to process the DTopL-ICDE
query with an approximation bound.
A Framework for the DTopL-ICDE Greedy Algorithm.
Our greedy algorithm has two steps. First, we invoke online
Top L-ICDE processing algorithm (Algorithm 3) to obtain a
set, T, of top-(nL) candidate communities with the highest
influence scores, where n (> 1) is a user-specified parameter.
Intuitively, communities with high influences are more likely
to contribute to the DTopL-ICDE community set S with high
diversity scores.

Next, we will identify L out of these (nL) candidate
communities in 7" with high diversity score (forming a set
S of size L). To achieve this, we give a naive method
of our greedy algorithm without any pruning, denoted as
Greedy_WOoP, as follows. Given (nL) candidate communities
with the highest influence scores in a set 7', we first add the
candidate community ¢ in 7" with the highest influence to S
(removing g from T'). Then, each time we select one candidate
community g € T' with the highest diversity score increment
Ag(S’ ), among all communities in 7', and move g from 7' to
S. This process repeats until L communities are added to S.
Effective Pruning Strategy w.r.t. Diversity Score. In the
greedy algorithm without any pruning Greedy_WOoP, we have
to check all the nL candidate communities in 7', compute their
diversity score increments A, (S), and select the one with the
highest diversity score increment, which is quite costly with
the time complexity O(nL?).

To reduce the search space, we will propose an effective
diversity score pruning method, which can avoid scanning all



communities in 7" in each round (i.e., those communities with
low diversity score increments can be safely pruned).

Before introducing our pruning strategy, we will first give
two properties of the diversity score D(.S) below:

« Monotonicity: given two subgraph sets S and S’, satis-
fying that S’ C S, it holds that D(S") < D(S), and;

o Submodularity: given two subgraph sets S and S’ and
a subgraph g, satisfying that S’ C S and g ¢ 5’, it holds
that D(S" U {g}) — D(S") > D(SU {g}) — D(5) (e,
ADy(S") > ADy(S)).

By utilizing the two properties above, we have the following
pruning lemma:

Lemma 9 (Diversity Score Pruning) Assume that we have a
set, T, of candidate seed communities g, and a set, S, of the
currently selected DTop L-ICDE answers. Given a subset S’ C
S and a subgraph g € T with the diversity score increment
ADy(S), any subgraph g,, € T can be safely pruned, if it
holds that ub_AD,, (S) < ADy(S), where ub_AD,, (S) is
an upper bound of the diversity score increment ADgy, (S)
(which can equal to either AD,, (S") or o(gm)).

The DTopL-ICDE Greedy Algorithm with Pruning,
Greedy_WP. Algorithm 4 shows the pseudo-code to handle
the online DTopL-ICDE query over a given social network
G. Specifically, the algorithm invokes online TopL-ICDE
processing algorithm (i.e., Algorithm 3) to obtain a set, 7', of
nL candidate communities with the highest influences (line
1), then refines the set 1" to obtain L communities with the
highest diversity score (lines 2-15), and finally returns the
actual DTopL-ICDE answers (line 16).

Initialization: Specifically, after obtaining nL candidate
communities via Algorithm 3 (line 1), we initialize a maximum
heap, H, that stores entries in the form (g, key,), where g
is a seed community and key, is the key of the heap entry
(defined as the upper bound, ub_AD,(S), of the diversity
score increment) (line 2). For each candidate community
g € T, we set its round number, g.round, to 0, and the upper
bound o(g) of the diversity score increment in this round.
Then, we insert entries (g,0(g)) into heap H for refinement
(lines 3-5). We also maintain an initially empty answer set S,
and set initial round number, round, to 0 (line 6).

Candidate Community Refinement: To refine candidate
communities in heap A, each time we pop out an entry
(g,ub_AD,(S)) from H with the maximum key (line 8), and
check whether or not the key ub_AD,(S) is computed at this
round (i.e., g.round = round), considering the following two
cases (lines 9-15):

Case 1: If g.round = round holds, it indicates that g is the
one with the highest diversity score increment in the current
round, round (as proved by Lemma 9). Thus, g will be added
to the DTopL-ICDE answer set S and round is increased by
1 (lines 9-11).

Case 2: If g.round # round holds (line 12), the entry key,
ub_ADy(S), is outdated, which is equal to AD,(S") (S' C
S). Thus, we will re-compute the diversity score increment,

Algorithm 4: Online DTopL-ICDE Processing

Input: i) a social network G ii) a set, ), of query keywords; iii)
the support, k, of the truss for each seed community; iv) the
maximum radius, 7, of seed communities; v) the influence
threshold 6 € [0, 60.41); vi) two integer parameters n and
L, and; vii) a tree index Z over G

Output: a set, S, of diversified top-L most influential communities

// obtain (nL) DTopL-ICDE candidates

invoke online TopL-ICDE processing algorithm (Algorithm 3) to

obtain a set, T', of top-(nL) most influential seed communities;

// refine candidates via Greedy WP

2 initialize a maximum heap # with entries in the form of (g, keyg);

3 for each candidate seed community g € T' do

4

5

-

set g.round = 0;
insert (g,0(g)) into heap H,;
6 S=0, round = 0;
7 while |S| < L do
8 (g,ub_ADy(S)) = de-heap(H);
9 if g.round = round then

10 add g to S;

11 round = round + 1;

12 else

13 compute the increment of the diversity score
ADy(S) = D(SU{g}) — D(5);

14 g.round = round,

15 insert (g, ADy(S)) into heap H;

16 return S

ADy(S), w.r.t. the current answer set .S, update g.round with

round, and insert (g, ADy(S)) back into H (lines 13-15).
After picking L candidates from H to S, the algorithm

terminates the loop (line 7) and returns S as DTopL-ICDE

answers (line 16).

DTopL-ICDE Complexity Analysis: The time complexity

of Algorithm 4 is given by O (Zle(nL —k+1)-(1-

DPP®) .| Ujer V(g["f)|). Due to space limitations, please
refer to our technical report [17] for detailed descriptions.
Approximation Ratio Analysis: From [14], for a function
following monotonicity and submodularity properties, the ap-
proximate greedy algorithm has a (1 — 1/e) approximation
guarantee. Moreover, we can prove that our greedy algorithm
has a e- (1 —1/e) approximation guarantee, where 0 < € < 1.
Lemma 10 The online DTopL-ICDE processing algorithm
can process the DTopL-ICDE query approximately within
better than a factor of € - (1 — 1/e), where 0 < e < 1.

VIII. EXPERIMENTAL EVALUATION
A. Experimental Settings

We tested the performance of our TopL-ICDE processing
approach (i.e., Algorithm 3) on both real and synthetic graphs.
Real-World Graphs: We used two real-world graphs, DBLP
and Amazon, similar to previous works [19]-[21], whose
statistics are depicted in Table II. DBLP is a bibliographical
network, in which two authors are connected if they co-
authored at least one paper, whereas Amazon is an Also Bought
network where two products are connected if they are co-
purchased by customers.

Synthetic Graphs: For synthetic social networks, we generate
Newman—Watts—Strogatz small-world graphs G [22]. Specif-
ically, we first produce a ring with size |V (G)|, and then



TABLE II
STATISTICS OF REAL-WORLD GRAPH DATA SETS DBLP AND Amazon.

[ Social Networks [[ [V(G)[ [ [E(G)] ]

DBLP 317,080 1,049,866
Amazon 334,863 925,872
TABLE III
PARAMETER SETTINGS.
[ Parameters [[ Values
support, k, of truss structure 3,4,5
radius r 1,2,3
size, L, of query result set 2,3,5,8,10
the size, |V (G)|, of data graph G 10K, 25K, 50K, 100K, 250K,
500K, 1M
parameter, n, for DTop L-ICDE 2,3,5,8,10

connect each vertex with its m nearest neighbors in the ring.
Next, for each resulting edge e, ,, with probability p, we
add a new edge e, . between u and a random vertex w.
Here, we set m = 6 and p = 0.167. For each vertex, we
also randomly produce a keyword set v;.W from the keyword
domain X, following Uniform, Gaussian, or Zipf distribution,
and obtain three synthetic graphs, denoted as Uni, Gau, and
Zipf, respectively. For each edge e, ,, in graph GG, we randomly
generate a value within the interval [0.5,0.6) as the edge
weight p, ,,. The propagation probabilities can be computed
based on the MIA model (Section II-B).

In our experiments, we randomly select |Q| keywords from
the keyword domain ¥ and form a query keyword set Q).
Competitor: To our best knowledge, no prior works studied
the Top L-ICDE problem and its variant DTop L-ICDE problem
by considering highly connected k-truss communities with
user-specified keywords and high (collective) influences on
other users. Thus, for Top L-ICDE, we use a baseline method,
named ATindex, which applies the state-of-the-art (k, d)-truss
community search algorithm [23]. Specifically, AZindex offline
pre-computes and indexes the trussness on vertices and edges.
Then, it online filters out vertices with trussness less than k£ via
the index, extracts r-hop subgraphs (satisfying the keyword
constraints w.r.t. (J) centered at the remaining vertices, and
obtains maximal k-truss within r-hop subgraphs. After that,
ATindex computes influential scores of these k-truss subgraphs
and returns L communities with the highest influential scores.

For DTopL-ICDE, we compare our approach (using
Greedy WP) with Greedy_WOoP and Optimal methods.
Greedy_WOP is the greedy algorithm without pruning men-
tioned in Section II-C, whereas Optimal computes the diversity
score for each possible combination of seed communities and
selects the one with the maximum diversity score.
Measures: To evaluate the efficiency of our TopL-ICDE
approach, we report the wall clock time, which is the time
cost to online retrieve TopL-ICDE answers via the index
(Algorithm 3). For DTopL-ICDE, we report the wall clock
time and accuracy (defined as the ratio of the diversity score
of our method to that of the optimal method).

Parameters Settings: Table III depicts the parameter settings,
where default values are in bold. Each time we vary the values
of one parameter, while other parameters are set to their default
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values. We ran all the experiments on the machines with
Intel(R) Core(TM) i9-10900K 3.70GHz CPU, Ubuntu 20.04
0OS, and 32 GB memory. All algorithms were implemented in
Python and executed with Python 3.11 interpreter.

Research Questions: We conduct extensive experiments to
evaluate our TopL-ICDE and DTopL-ICDE approaches and
answer the following four research questions (RQs):

RQI1 (Efficiency): Can our proposed approaches efficiently
process TopL-ICDE and DTopL-ICDE queries?

RQ?2 (Effectiveness): Can our proposed pruning strategies
effectively filter out candidate communities during TopL-
ICDE query processing?

RQ3 (Meaningfulness): Are the resulting TopL-ICDE com-
munities useful for real-world applications?

RQ4 (Accuracy): Can our proposed approach achieve high
accuracy of DTopL-ICDE query answers?

B. TopL-ICDE Performance Evaluation

The TopL-ICDE Efficiency (RQ1): Figure 2 compares the
performance of our TopL-ICDE approach with that of ATindex
over real and synthetic graphs, in terms of the wall clock
time, where we set all parameters to their default values
in Table III. Note that, for DBLP, since the time cost of
ATindex is extremely high, we sample 0.5% center vertices
from original graph data without replacement and estimate the
total time as 0_%})5 = 200-t,, where t, is the average time per
sample. The experimental results show that our TopL-ICDE
approach outperforms ATZindex by more than one order of
magnitude, which confirms the efficiency of our TopL-ICDE
algorithm on real/synthetic graphs.
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(b) k-core (o(g) = 239.81,
646 possibly influenced nodes)

(a) TopL-ICDE (o(g) = 344.31,
974 possibly influenced nodes)

Fig. 5. The influenced communities from TopL-ICDE vs. k-core (k = 4).

To evaluate the robustness of our TopL-ICDE approach,
in subsequent experiments, we will vary different parameters
(e.g., k, r, L, and |V(G)]) on synthetic graphs. Due to
space limitations, for the effect of other parameters (e.g.,
0,|Q|,|v;.- W1, and |X|), please refer to our technical report [17].

Effect of Truss Support Parameter k: Figure 3(a) illustrates
the performance of our TopL-ICDE approach, where the
support parameter of the truss £ = 3, 4, and 5, and default
values are used for other parameters. The time cost is generally
not very sensitive to k values, since edge supports are similar
in all the three synthetic graphs. When k& = 5, however, no
candidate communities can be detected, and thus time costs
on the three graphs are similar (but trends are different from
cases of k = 3,4). For different k values, wall clock times of
our TopL-ICDE approach remain low (i.e., 3.61 ~ 5.95 sec).

Effect of Radius r: Figure 3(b) illustrates the experimental
results of our TopL-ICDE approach for different radii r
of seed communities, where » = 1, 2, and 3 and other
parameters are by default. A larger radius r leads to larger
seed communities to filter and refine, which incurs higher time
costs, as confirmed by the figure. Nonetheless, the time cost
remains small (i.e., 1.12 ~ 10.83 sec) for different r values.

Effect of the Size, L, of Query Result Set:  Figure  3(c)
presents the performance of our TopL-ICDE approach with
different sizes, L, of query result set, where L varies from
2 to 10 and default values are used for other parameters.
Intuitively, the larger L, the more communities must be
processed. Despite that, the time cost of TopL-ICDE remains
low (i.e., 2.44 ~ 6.18 sec) for different L values.

Effect of the Graph Size |V (G)|: Figure 3(d) tests the scal-
ability of our TopL-ICDE approach with different social
network sizes, |V (G)|, from 10K to 1M, where default values
are assigned to other parameters. In the figure, when the graph
size |V(G)| becomes larger, the wall clock time smoothly
increases (i.e., from 0.51 sec to 255.62 sec for |V (G)| from

10K to 1M, respectively), which confirms the scalability of
our TopL-ICDE algorithm for large network sizes.

Ablation Study (RQ2): We conduct an ablation study over
real/synthetic graphs to evaluate the effectiveness of our pro-
posed pruning strategies, where all parameters are set to their
default values. We tested different combinations by adding one
more pruning method each time: (1) keyword pruning only,
(2) keyword + support pruning, and (3) keyword + support
+ score pruning. Figure 4(a) examines the number of pruned
candidate communities, whereas Figure 4(b) shows the time
cost for different pruning combinations. From experimental
results, we can see that with more pruning methods, the
number of pruned communities increases by about an order
of magnitude, and the wall clock time decreases. Especially,
the third influential score pruning method can significantly
prune more candidate communities (in addition to the first
two pruning methods) and result in the lowest time cost.
Case Study (RQ3): To evaluate the usefulness of our TopL-
ICDE results, we conduct a case study to compare the in-
fluences of our TopL-ICDE seed community with that of k-
core [24] over Amazon. Figure 5(a) shows our Topl-ICDE
community with 4 users ((4,2)-truss), whereas Figure 5(b)
illustrates 5 users in 4-core community, where the (red) star
point in both subfigures represent the same center vertex. The
figures show that our Top1-ICDE community has an influential
score o(g) = 344.31 with 974 possibly influenced users
(blue points). In contrast, the 4-core has more seed users, but
with a lower influential score o(g) = 239.81 and a smaller
number of possibly influenced users (i.e., 646). This confirms
the usefulness of our TopL-ICDE problem to obtain seed
communities with high influences for real-world applications
such as online advertising/marketing.

C. DTopL-ICDE Performance Evaluation

The DTopL-ICDE Efficiency (RQ1): Figure 6(a) compares
the performance of our DTop L-ICDE approach (i.e., Top(nL)-
ICDE+Greedy_WP), Top(nL)-ICDE+Greedy_WoP, and
the Optimal algorithm over real and synthetic graphs, in terms
of the wall clock time, where all parameters are set to their
default values in Table III. We can find that DTopL-ICDE
outperforms Optimal by at least three orders of magnitude.
Below, we evaluate the robustness of DTopL-ICDE with
different parameters (e.g., n, L, |[V(G)|) on synthetic graphs.
Effect of the Size, L, of Query Result Set:  Figure 6(b)
shows the experimental results of our DTopL-ICDE approach
for different sizes, L, of query result set, by varying L from 2
to 10 and default values are used for other parameters. Larger
L values lead to lower influential score bound o(,r), and
thus more candidate communities to be retrieved and refined,
which incur higher time costs. For various L values, the time
cost of DTopL-ICDE remains low (i.e., 2.72 ~ 6.39 sec).
Effect of Parameter n: Figure 6(c) shows the performance
of our DTopL-ICDE approach, where n varies from 2 to 10
and other parameters are set to their default values. With
increasing n, lower influential score bound o(,r) is used,
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Fig. 6. The DTopL-ICDE performance evaluation.

resulting in higher time costs. Nevertheless, the wall clock time
remains small (i.e., 2.72 ~ 6.28 sec) for various n values.
Effect of the Graph Size |V (G)|: Figure 6(d) reports the
performance of our DTopL-ICDE approach with different
social-network sizes, |V (G)|, from 10K to 1M and default
values are used for other parameters. Intuitively, the larger
|V (G)|, the more communities that must be processed, which
incurs smoothly increasing time costs (i.e., 0.9 ~ 278.18 sec).
The DTop L-ICDE Accuracy (RQ4): We test the experiments
on small-scale graphs (|V(G)| = 1K, 3 keywords per ver-
tices, and |X| = 20) following Uniform, Gaussian, and Zipf
distributions, and report the accuracy of our DTopL-ICDE
approach (i.e., the diversity score ratio of our approach to
Optimal) in Figure 6(e). The results indicate that our DTopL-
ICDE accuracy is very close to 100% (i.e., 99.863% ~ 100%).

IX. RELATED WORK

Community Search/Detection: Prior works proposed many
community semantics based on different structural cohesive-
ness, such as the minimum degree [25], k-core [24], k-clique
[26], and (k,d)-truss [12], [23]. In contrast, our TopL-ICDE
problem retrieves not only highly connected seed communities
but also those with the highest influences and containing
query keywords in social networks, which is more challenging.
On the other hand, previous works on community detection
retrieved all communities by considering link information
only [27], [28]. More recent works used clustering techniques
to detect communities [29]-[31]. However, these works did
not require structural constraints of community answers or
consider the impact of the influenced communities, which is
the focus of our TopL-ICDE problem.

Influence Maximization: Previous works on the influence
maximization (IM) problem [14] over social networks [13],
[32]-[35] usually obtain arbitrary individual users from social
networks with the maximum influence on other users, where
independent cascade (IC) and linear threshold (LT) models
[14] were used to capture influence propagation. However,
most solutions to the IM problem do not assume strong
social relationships among selected seed users. In contrast, our
TopL-ICDE requires seed communities to be connected, have
high structural cohesiveness, and cover some query keywords,
which is more challenging.

Influential Community: There are some recent works [19],
[36], [37] on finding the most influential community over
social networks. These works considered different graph data
models such as uncertain graphs [19] and heterogeneous infor-

mation networks [37] and influential community semantics like
kr-clique [36], (k,n)-influential community, and (k, P)-core
[37]. Moreover, they ignored the interests of users (represented
by keywords) in communities. With different graph models
and influential community semantics, our Top L-ICDE problem
uses a certain, undirected graph data model with the MIA
model for the influence propagation and aims to retrieve top-
L influential communities (rather than all communities) under
different community semantics of structural, keyword-aware,
and influential score ranking.

Diversified Subgraphs: There are several existing works
that consider retrieving the diversified subgraphs. For exam-
ple, Yang et al. [38] studied the top-k diversified subgraph
problem, which returns a set of up to k subgraphs that are
isomorphic to a given query graph, and cover the largest
number of vertices. Some prior works [39], [40] studied the
structural diversity search problem in graphs, which obtains
vertex(es) with the highest structural diversities (defined as #
of connected components in the 1-hop subgraph of a vertex).
Chowdhary et al. [41] aimed to search for a community that is
structure-cohesive (i.e., with the minimum number of vertices)
and attribute-diversified (i.e., with the maximum number of at-
tribute labels in vertices). The aforementioned works either did
not consider the cohesiveness and/or influences of the returned
subgraphs, or focused on node-/attribute-level diversity (rather
than community-level diversity). Thus, with different problem
definitions, we cannot directly use techniques proposed in
these works to solve our DTopL-ICDE problem.

X. CONCLUSIONS

In this paper, we propose a novel TopL-ICDE problem,
which retrieves top-L communities from social networks with
the highest influential scores.We provide effective pruning
strategies to rule out false alarms of candidate communities
and design an index to facilitate an efficient TopL-ICDE pro-
cessing algorithm. We also formulate and tackle an NP-hard
TopL-ICDE variant, DTopL-ICDE, by proposing a greedy al-
gorithm with effective pruning strategies. Experimental results
on real/synthetic graphs confirm the good performance of our
proposed TopL-ICDE and DTopL-ICDE approaches.
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