
Top-L Most Influential Community Detection Over

Social Networks

Nan Zhang

East China Normal University

Shanghai, China

51255902058@stu.ecnu.edu.cn

Yutong Ye

East China Normal University

Shanghai, China

52205902007@stu.ecnu.edu.cn

Xiang Lian

Kent State University

Kent, United States

xlian@kent.edu

Mingsong Chen

East China Normal University

Shanghai, China

mschen@sei.ecnu.edu.cn

AbstractÐIn many real-world applications such as social
network analysis and online marketing/advertising, community
detection is a fundamental task to identify communities (sub-
graphs) in social networks with high structural cohesiveness.
While previous works focus on detecting communities alone,
they do not consider the collective influences of users in these
communities on other user nodes in social networks. Inspired by
this, in this paper, we investigate the influence propagation from
some seed communities and their influential effects that result in
the influenced communities. We propose a novel problem, named
Top-L most Influential Community DEtection (TopL-ICDE) over
social networks, which aims to retrieve top-L seed communities
with the highest influences, having high structural cohesiveness,
and containing user-specified query keywords. To efficiently
tackle the TopL-ICDE problem, we design effective pruning
strategies to filter out false alarms of seed communities and
propose an effective index mechanism to facilitate efficient Top-L
community retrieval. We develop an efficient TopL-ICDE answer-
ing algorithm by traversing the index and applying our proposed
pruning strategies. We also formulate and tackle a variant of
TopL-ICDE, named diversified top-L most influential community
detection (DTopL-ICDE), which returns a set of L diversified
communities with the highest diversity score (i.e., collaborative
influences by L communities). We prove that DTopL-ICDE is
NP-hard, and propose an efficient greedy algorithm with our
designed diversity score pruning. Through extensive experiments,
we verify the efficiency and effectiveness of our proposed TopL-
ICDE and DTopL-ICDE approaches over real/synthetic social
networks under various parameter settings.

Index TermsÐTop-L Most Influential Community Detection,
Diversified Top-L Most Influential Community Detection

I. INTRODUCTION

Recently, the community detection (CD) has gained signif-

icant attention as a fundamental task in various real-world

applications, such as online marketing/advertising [1]±[3],

friend recommendation [4], and social network analysis [5].

Many previous works [6]±[9] usually focused on identify-

ing communities only (i.e., subgraphs) with high structural

cohesiveness in social networks. However, they overlooked

the collective influences that communities may exert on other

users (e.g., family members, or friends) within social networks,

which play a significant role in Word-Of-Mouth effects.

In this paper, we will formulate and tackle a novel problem

called top-L most influential community detection over social

networks (TopL-ICDE). This TopL-ICDE problem aims to

detect top-L communities of people from social networks

who have specific interests (e.g., sports, movies, traveling),

0.7

0.7
0.8

0.8
0.7

0.5
0.5

0.7
0.8

0.9

0.7

0.8
0.7

0.8
0.6

0.7
0.6

0.6
0.8

0.7
0.9

0.6
0.5

0.9
0.7

0.7
0.7

𝒗𝟏 𝒗𝟐
𝒗𝟑

𝒗𝟒𝒗𝟓
0.8

influential community 𝒈𝑰𝒏𝒇

𝒗𝟔 𝒗𝟕
𝒗𝟖

𝒗𝟗
𝒗𝟏𝟎𝒗𝟏𝟏

seed community 𝒈
0.70.7

DTop2-ICDE seed communities

(a) social network G

User Keyword Set𝒗𝟏 {Movies, Books}𝒗𝟐 {Movies, Food}𝒗𝟑 {Movies, Jewelry}𝒗𝟒 {Movies, Crafts}𝑣5 {Movies, Health}𝑣6 {Health, Wellness}𝑣7 {Books, Movies}𝑣8 {Home Decor, Movies}𝑣9 {Movies, Books}𝑣10 {Cosmetics, Skincare}𝑣11 {Jewelry, Movies}

(b) keyword sets of vertices

Fig. 1. An example of the TopL-ICDE problem over social network.

not only with close social relationships (i.e., forming dense

subgraphs with highly connected users) but also with high

impacts/influences on other users in social networks.

Below, we give a motivating example of our TopL-ICDE

problem in real applications of online advertising/marketing.
Example 1 (Online Advertising and Marketing over Social

Networks) In real applications of online advertising and

marketing, a sales manager wants to find several communities

of users on social networks who might be interested in buying

a new product. Intuitively, people in the same communities

who know each other should share a sufficient number of

common friends within communities, so that they are more

likely to purchase the product together via group buying (e.g.,

on Groupon [10]). What is more, after such community users

receive group buying coupons/discounts, the sales manager

wants these users to maximally influence other users on social

networks via their posts/recommendations. In this case, the

sales manager needs to perform the TopL-ICDE operator to

find some seed communities with the highest influences on

social networks (also considering those influenced users).

Figure 1 illustrates an example of a social network, G,

which contains user vertices like v1 ∼ v5, and directed edges

(e.g., edge ev1,v2) representing the relationships (e.g., friend,

colleague, or family) between two users (e.g., v1 and v2). As

illustrated in Figure 1(a), each edge has two influence weights

between two vertices, for example, directed edge ev1,v2
has the

weight 0.8, indicating the influence from user v1 to user v2.

Moreover, as depicted in Figure 1(b), each user is associated

with a set of keywords that represent one’s favorite product

categories (e.g., {Movies,Books} for user v1).

To achieve good online advertising/marketing effects, one

potential seed community, g, is shown in Figure 1(a) (i.e., inner

solid circle), where users in g are all interested in ºMoviesº,

with high structural connectivity (i.e., any two users in g
are friends and also share two other common friends), and

have the highest influences on other user nodes in a larger

influenced community gInf (i.e., outer dashed ellipse, as shown

in Figure 1(a)). ■

Inspired by the example above, in this paper, we consider

the TopL-ICDE problem, which obtains L groups of highly

connected users (called seed communities) containing some

query keywords (e.g., shopping preferences or preferred prod-

ucts) and with the highest influences (ranks) on other users.

The resulting L communities are potential customer groups

for effective advertising/marketing with high influences to

promote new products in social networks.

Formally, we will first define a seed community g in social

networks as a structurally dense subgraph (under the semantics

of (k, r)-truss [11], [12]), where any two connected users

in g must have at least (k − 2) common friends (i.e., be

contained in ≥ (k − 2) triangle motifs, indicating stable user

relationships), users in g are close to a center vertex (i.e.,

within r hops), and each individual vertex in g contains at

least one query keyword. Then, we will consider the influenced

communities under an influence propagation model from seed

communities, which are ranked by influential scores of seed

communities. Our TopL-ICDE problem aims to retrieve top-L
seed communities with the highest ranks.

Due to the large scale of social networks and the complex-

ities of retrieving communities under various constraints, it

is rather challenging to efficiently and effectively tackle the

TopL-ICDE problem over big social networks. Furthermore,

since many parameters like query keywords or thresholds

(e.g., influential score, radius, and support) are online specified

by users, it is not clear how to enable efficient TopL-ICDE

processing with ad-hoc constraints (or query predicates).

In order to efficiently tackle the TopL-ICDE problem,

in this paper, we propose a two-phase general framework

for TopL-ICDE processing, which consists of offline pre-

computation and online TopL-ICDE processing phases. In

particular, we will present effective pruning mechanisms (w.r.t

query keywords, radius, edge support, and influential scores)

to safely filter out false alarms of candidate seed communities

and reduce the TopL-ICDE problem search space. Moreover,

we will design an effective indexing mechanism to facilitate

our proposed pruning strategies and develop an efficient TopL-

ICDE processing algorithm via index traversal.

Furthermore, we also consider a variant of TopL-ICDE,

namely diversified top-L most influential community detec-

tion over social networks (DTopL-ICDE), which retrieves a

set of L diversified communities with the highest diversity

score. Different from TopL-ICDE that returns L individual

communities (each of which can be a candidate community

for online marketing/advertising), DTopL-ICDE obtains one

set of L diversified communities that collaboratively influence

other users with the highest diversity score (i.e., considering

the overlaps of their influenced communities).

In Example 1 (Figure 1), if a sales manager wants to

enhance the promotion effect of advertising to L seed commu-

TABLE I
SYMBOLS AND DESCRIPTIONS

Symbol Description

G a social network

V (G) a set of n vertices vi
E(G) a set of edges e(u, v)
g (or gi) a seed community (subgraph)

pu,v a propagation probability that user u activates its neighbor v

gInf (or g
Inf
i

) the influenced community of a seed community g (or gi)

hop(vi, r) a subgraph centered at vertex vi and with radius r

vi.W a set of keywords that user vi is interested in

vi.BV a bit vector with the hashed keywords in vi.W

σ(g) the influential score of the influenced community gInf

Q a set of query keywords

Q.BV a bit vector with the hashed query keywords in Q

k the support threshold in k-truss for seed communities

sup(eu,v) the support of edge eu,v

rmax the maximum possible radius of seed communities

r the user-specified radius of seed communities

θ the influence threshold

nities, we need to consider those users influenced by more than

one seed community. Since users usually buy the product once

only, we would like to reduce the overlaps of L influenced

communities and maximize the influential effect (i.e., the

diversity score). In this case, we can issue the DTopL-ICDE

variant to obtain L diversified communities. In Figure 1(a), for

L = 2, subgraphs {v3, v4, v5} and {v2, v8, v9} are two DTop2-

ICDE seed communities (with only one influenced user v1).

We prove that the DTopL-ICDE problem is NP-hard, and

develop an approximation greedy algorithm to process the

DTopL-ICDE query efficiently.

We make the following major contributions in this paper:

1) We formally define the problem of the top-L most influ-

ential community detection over social networks (TopL-

ICDE) and its variant DTopL-ICDE in Section II.

2) We design a two-phase framework to efficiently tackle

the TopL-ICDE problem in Section III.

3) We propose effective pruning strategies to reduce the

TopL-ICDE search space in Section IV.

4) We devise offline pre-computation and indexing mech-

anisms in Section V to facilitate effective pruning and

an efficient TopL-ICDE algorithm to retrieve community

answers in Section VI.

5) We prove that DTopL-ICDE is NP-hard, and develop an

efficient DTopL-ICDE processing algorithm to retrieve

diversified community answers in Section VII.

6) We demonstrate through extensive experiments the effi-

ciency and effectiveness of our TopL-ICDE processing

approach over real/synthetic graphs in Section VIII.

Section IX reviews previous works on community

search/detection, influence maximization, and influential / di-

versified community. Finally, Section X concludes this paper.

II. PROBLEM DEFINITION

Section II-A formally defines the data model for social

networks. Section II-B gives the definition of the information

propagation model over social networks. Finally, Section II-C

provides the definition of our problems.

A. Social Networks

First, we model a social network by an attributed, undi-

rected, and weighted graph as follows.

Definition 1 (Social Network, G) A social network G is a

connected graph represented by a triple (V (G), E(G),Φ(G)),
where V (G) and E(G) are the sets of vertices and edges in

G, respectively, and Φ(G) is a mapping function: V (G) ×
V (G) → E(G). Each vertex vi has a keyword set vi.W , and

each edge eu,v ∈ E(G) is associated with a weight pu,v , which

indicates the probability that user u activates user v.

In Definition 1, the keyword set vi.W , e.g.,

{movies, sports, · · · }, denotes the topics that user vi is

interested in.

B. Information Propagation Model

To describe the influence spread over social networks G,

we utilize the maximum influence arborescence (MIA) model

[13]. Given a specific path from u to v (i.e., a non-cyclic user

sequence), denoted as Pu,v = ⟨u = u1, u2, . . . , um = v⟩, the

propagation probability, pp(Pu,v), of path Pu,v is given by:

pp(Pu,v) =

m−1
∏

i=1

pui,ui+1
. (1)

where pui,ui+1
is the weight of edge eui,ui+1

on path Pu,v .

In Eq. (1), we give the probability of the influence propa-

gation between two user vertices via a specific path Pu,v in

G. In reality, there are multiple possible paths from u to v.

Thus, the MIA model uses the maximum influence path (MIP)

[13], denoted as MIPu,v , to evaluate the influence propagation

from u to v. The MIP is defined as a path with the highest

propagation probability below:

MIPu,v = argmax
Pu,v

pp(Pu,v). (2)

This way, the user-to-user propagation probability,

upp(u, v), for all paths between users u and v is defined by:

upp(u, v) = pp(MIPu,v). (3)

The problem of computing the influence spread σ(S) is

known to be NP-hard [13], and existing algorithms [14], [15]

can achieve an approximation factor of (1− 1/e+ ε), where

e is the natural constant and ε > 0.

C. Our TopL-ICDE Problem

Seed Community. We first give the definition of the seed

community in social networks G below.

Definition 2 (Seed Community, g) Given a social network G,

a center vertex vq , an integer support k, the maximum radius,

r, of seed communities, and a set, Q, of query keywords, a

seed community, g, is a connected subgraph of G (denoted as

g ⊆ G), such that:

• vq ∈ V (g);
• for any vertex vl ∈ V (g), we have dist(vq, vl) ≤ r;

• g is a k-truss [16], and;

• for any vertex vl∈V (g), its keyword set vl.W must con-

tain at least one query keyword in Q (i.e., vl.W ∩Q ̸= ∅),

where dist(x, y) is the shortest path distance between x and

y in subgraph g.

The seed community g (given in Definition 2) is a connected

subgraph that is 1) centered at vq , 2) with a maximum radius

r, 3) being a k-truss, and, 4) with each vertex vl containing at

least one query keyword in Q. Here, g is a k-truss subgraph

[16], if any edge in g is contained in at least (k−2) triangles.

In real applications of online marketing and advertising, the

seed community usually contains strongly connected users,

who are provided with coupons/discounts of products to

maximally influence other users.

Influenced Community. The influenced community, gInf , is

a subgraph influenced by a seed community g. Based on the

MIA model, we define the community-to-user propagation

probability from seed community g to a vertex v as:

cpp(g, v) =

{

max∀u∈V (g){upp(u, v)}, v /∈ V (g);

1, v ∈ V (g).
(4)

We use cpp(g, v) to compute the maximum possible influ-

ence (e.g., posts, tweets) from one of the users in the seed

community g to user v through some paths. Then, we provide

the definition of the influenced community gInf below.

Definition 3 (Influenced Community, gInf) Given a social

network G, a seed community g, and an influence threshold θ
(∈ [0, 1)), the influenced community, gInf , of g is a subgraph

of G, where each vertex v in V (gInf) satisfies the condition

that cpp(g, v) ≥ θ.

The Influential Score of the Seed Community. To evaluate

the propagation effect from a seed community g to its influ-

enced community gInf , we give the definition of the influential

score, σ(g), for the influenced community gInf :

σ(g) =
∑

v∈V (gInf)

cpp(g, v). (5)

The influential score σ(g) (given in Eq. (5)) sums up all the

community-to-user propagation probabilities cpp(g, v) from g
to vertices v in the influenced community gInf . Intuitively,

high influential score σ(g) indicates that the seed community

g may influence either a few users v with high community-to-

user propagation probabilities cpp(g, v), or many users v even

with low cpp(g, v) values.

The Problem of Top-L Most Influential Community De-

tection Over Social Networks. We are now ready to define

the problem of detecting top-L communities with the highest

influences.

Definition 4 (Top-L Most Influential Community Detection

Over Social Networks, TopL-ICDE) Given a social network

G, a positive integer L, a threshold θ, a support, k, of the

trusses, the maximum radius, r, of seed communities, and

a set, Q, of query keywords, the problem of top-L most

influential community detection over social networks (TopL-

ICDE) retrieves L seed communities gi, such that:

• gi satisfy the constraints of seed communities (as given

in Definition 2), and;

• these L seed communities gi have the influenced commu-

nities, gInfi , with the highest influential scores σ(gi),

where σ(gi) is given by Eq. (5).

A Variant of TopL-ICDE (Diversified Top-L Most Influ-

ential Community Detection Over Social Networks). In

Definition 4, the TopL-ICDE problem returns L individual

seed communities with the highest influences. Note that, these

L individual communities may influence the same users (i.e.,

with high overlaps of the influenced users). In order to achieve

higher user impacts, in this paper, we also consider a variant

of TopL-ICDE, namely diversified top-L most influential com-

munity detection over social networks (DTopL-ICDE), which

obtains a set of L diversified communities with the highest

collaborative influences on other users.

Given a set, S, of communities, we formally define its

diversity score, D(S), to evaluate the collective influence of

communities in S on other users:

D(S) =
∑

∀v∈V (G)

max
∀g∈S

{cpp(g, v)}. (6)

The diversity score in Eq. (6) sums up the maximum pos-

sible community-to-user propagation probabilities, cpp(g, v),
from any community g in S to the influenced users v.

Intuitively, a higher diversity score indicates higher impacts

from communities in S.

For simplicity, we use ∆Dgi(S) to represent the increment

of the diversity score for adding the subgraph gi to set S, i.e.,

∆Dgi(S) = D(S ∪ {gi})−D(S).
Next, we define our DTopL-ICDE problem which returns L

diversified seed communities with the highest diversity score

(i.e., collaborative influences on other users).

Definition 5 (Diversified Top-L Most Influential Community

Detection Over Social Networks, DTopL-ICDE) Given a

social network G, a positive integer L, a threshold θ, a

support, k, of the trusses, the maximum radius, r, of seed

communities, and a set, Q, of query keywords, the problem

of diversified top-L most influential community detection over

social networks (DTopL-ICDE) retrieves a set, S of L seed

communities gi, such that:

• gi satisfy the constraints of seed communities (as given

in Definition 2), and;

• the set S of L seed communities gi has the highest

diversity score D(S) (as given by Eq. (6)).

Intuitively, the DTopL-ICDE problem (given in Definition

5) finds a set, S, of L communities that have the highest

collaborative influence, that is, the diversity score D(S) in

Eq. (6), which is defined as the summed influence from

communities g in S to the influenced users.

Challenges. A straightforward method to tackle the TopL-

ICDE problem is to first obtain all possible seed communities

(subgraphs) of the data graph G, then check the constraints of

these seed communities, and finally rank these seed commu-

nities based on their influential scores. Similarly, for DTopL-

ICDE, we can also compute the diversity score for any

combination of L communities, and choose a set of size L
with the highest diversity score. However, such straightforward

methods are quite inefficient, especially for large-scale social

networks, due to the high costs of the constraint checking

over an exponential number of possible seed communities (or

community combinations), as well as the costly computation of

influence/diversity scores (as given in Eqs. (5) and (6)). Thus,

the processing of the TopL-ICDE problem (and its variant

DTopL-ICDE) raises up the efficiency and scalability issues

for detecting (diversified) top-L most influential communities

over large-scale social networks.

III. OUR TOPL-ICDE PROCESSING FRAMEWORK

Algorithm 1 presents our framework to efficiently answer

TopL-ICDE queries, which consists of two phases, i.e., offline

pre-computation and online TopL-ICDE processing phases.

In the offline pre-computation phase, we pre-process the

social network graph based on pre-computing data (e.g.,

influential score bounds) to facilitate online query answering

and constructing an index over these pre-computed data. In

particular, for each vertex vi in data graph G, we first hash

its associated keyword set vi.W into a bit vector vi.BV (lines

1-2). Then, for each r-radius subgraph hop(vi, r) centered at

vertex vi and with a radius r ∈ [1, rmax], we offline pre-

compute data (e.g., support/influence bounds) to facilitate the

pruning (lines 3-5). Next, we construct a tree index I over the

pre-computed data (line 6).

In the online TopL-ICDE processing phase, for each query,

we traverse the index I to efficiently retrieve candidate seed

communities, by integrating our proposed effective pruning

strategies (i.e., keyword, support, radius, and influential score)

(lines 7-8). Finally, we refine these candidate seed communi-

ties by computing their actual influential scores, and return the

top-L most influential communities with the highest influential

scores (line 9).

Discussions on the DTopL-ICDE Framework. We will

discuss the DTopL-ICDE framework later in Section VII,

which follows the TopL-ICDE framework but applies specif-

ically designed pruning/refinement techniques to retrieve L
diversified communities (i.e., DTopL-ICDE query answers).

IV. PRUNING STRATEGIES

In this section, we present effective pruning strategies to

reduce the TopL-ICDE problem search space in our framework

(line 8 of Algorithm 1). Due to space limitations, in subse-

quent discussions, we will omit proofs of all the lemmas,

which can be found in our technical report [17].

A. Keyword Pruning

In this subsection, we first provide an effective keyword

pruning method. From Definition 2, any vertex in the seed

community g must contain at least one query keyword in Q.

Thus, our keyword pruning method filters out those candidate

subgraphs g containing some vertices without query keywords.

Lemma 1 (Keyword Pruning) Given a set, Q, of query

keywords and a candidate subgraph g, subgraph g can be

Algorithm 1: The TopL-ICDE Process Framework

Input: i) a social network G; ii) a set, Q, of query keywords; iii)
the support, k, of the truss for each seed community; iv) the
maximum radius, r, of seed communities; v) the influence
threshold θ, and; vi) integer parameter L

Output: a set, S, of top-L seed communities
// offline pre-computation phase

1 for each vi ∈ V (G) do

2 hash keywords in vi.W into a bit vector vi.BV ;
3 for r = 1 to rmax do

4 extract r-hop subgraph hop(vi, r) of vertex vi;
5 offline pre-compute data, vi.R, w.r.t. the support upper

bound ub sup(·) and influence upper bound Inf ub for
subgraph hop(vi, r);

6 build a tree index I over graph G with pre-computed data as
aggregates;

// online TopL-ICDE processing phase

7 for each TopL-ICDE query do

8 traverse the tree index I by applying keyword, support, radius,
and influential score pruning strategies to retrieve candidate
seed communities;

9 refine candidate seed communities to obtain top-L seed
communities with the highest influential scores;

safely pruned, if there exists at least one vertex vi ∈ V (g)
such that: vi.W ∩ Q = ∅ holds, where vi.W is the keyword

set associated with vertex vi.

B. Support Pruning

According to Definition 2, the seed community g should

be a k-truss [16], that is, the support sup(eu,v) of each edge

eu,v ∈ E(g) (defined as the number of triangles that contain

edge eu,v in the seed community g) must be at least (k − 2).
Assume that we can offline obtain an upper bound,

ub sup(eu,v), of the support sup(eu,v) on edge eu,v in g.

Then, we have the following lemma to discard those candidate

seed communities g containing some edges with low support.

Lemma 2 (Support Pruning) Given a seed community g and

a parameter k, subgraph g can be safely pruned if there exists

an edge eu,v ∈ E(g) satisfying ub sup(eu,v) < (k − 2).

Discussions on How to Obtain the Support Upper Bound

ub sup(eu,v). To enable the support pruning, we need to

calculate the support upper bound ub sup(eu,v) of edge eu,v
in a seed community g. Since the seed community g is a

subgraph of the data graph G, the support of edge eu,v in g
is thus smaller than or equal to that in G (in other words, the

number of triangles containing eu,v in g is less than or equal

to that in G). Therefore, we can use the edge support in the

data graph G (or any supergraph of g) as the support upper

bound ub sup(eu,v) of edge eu,v .

C. Radius Pruning

From Definition 4, the maximum radii, r, of seed communi-

ties are online specified by users, which limits the shortest path

distance between the center vertex and any other vertices to

be not more than r. We provide the following pruning lemma

with respect to radius r. If a subgraph g (centered at vertex

vi) has a radius greater than r, it violates the radius constraint

of the seed community.

Lemma 3 (Radius Pruning) Given a subgraph g (centered

at vertex vi) and the maximum radius, r, of seed communities,

subgraph g can be safely pruned, if there exists a vertex vl ∈
V (g) such that dist(vi, vl) > r, where function dist(x, y)
outputs the number of hops between vertices x and y in g.

This radius pruning method enables offline pre-computation

by extracting subgraphs for any possible radius r ∈ [1, rmax],
that is, hop(vi, r). In other words, those vertices with distance

to vertex vi greater than radius r can be safely ignored, so we

only need to focus on r-hop subgraphs hop(vi, r).

D. Influential Score Pruning

Next, we discuss the influential score pruning method

below, which filters out those seed communities with low

influential scores.

Lemma 4 (Influential Score Pruning) Assume that we have

obtained L seed communities gi so far, and let σL be the

smallest influential score among these L seed communities

gi. Any subgraph g can be safely pruned, if it holds that

ub σ(g) ≤ σL, where ub σ(g) is the upper bound of the

influential score σ(g).

Discussions on How to Obtain the Upper Bound ub σ(g)
of the Influential Score. Based on Eq. (5), the influential

score σ(g) of seed community g is given by summing up

the community-to-user propagation probabilities cpp(g, v), for

v ∈ gInf , where cpp(g, v) ≥ θ. Since threshold θ is online

specified by the user, we can offline pre-select m thresholds

θ1, θ2, ..., and θm (assuming θ1 < θ2 < ... < θm), and pre-

calculate the influential scores σz(g) w.r.t. thresholds θz (for

1 ≤ z ≤ m). Given an online threshold θ, if θ ∈ [θz, θz+1)
holds, we will use σz(g) as the influential score upper bound

ub σ(g), where σz(g) is the influential score of g using

threshold θz .

V. OFFLINE PRE-COMPUTATION AND INDEXING

In this section, we discuss how to offline pre-compute data

for social networks to facilitate effective pruning in Section

V-A, and construct indexes over these pre-computed data to

help with online TopL-ICDE processing in Section V-B.

A. Offline Pre-Computed Data for TopL-ICDE Processing

In order to facilitate online TopL-ICDE processing, we

perform offline pre-computations over data graph G and obtain

some aggregate information of potential seed communities,

which can be used for our proposed pruning strategies to

reduce the problem search space. Specifically, for each vertex

vi ∈ V (G), we first hash the keyword set vi.W into a bit

vector vi.BV of size B. Each edge eu,v is associated with the

edge support upper bound ub sup(eu,v) in rmax-hop subgraph

hop(vi, rmax) (i.e., a pair of (vi, ub sup(eu,v)). Next, we use

the radius pruning (as given in Lemma 3) to enable offline

pre-computations of r-hop subgraphs. In particular, starting

from each vertex vi, we traverse the data graph G in a

breadth-first manner (i.e., BFS), and obtain r-hop subgraphs,

hop(vi, r), centered at vi with radii r ∈ [1, rmax]. For each

r-hop subgraph, we calculate and store aggregates in a list

vi.R, in the form (vi.BVr, vi.ub supr, [(σz, θz)]) as follows:

• a bit vector, vi.BVr, which is obtained by hashing all

keywords in the keyword sets vl.W of vertices vl in the

r-hop subgraph hop(vi, r) into a position in the bit vector

(i.e., vi.BVr =
∨

∀vl∈V (hop(vi,r))
vl.BV);

• an upper bound, vi.ub supr, of all support

bounds ub sup(eu,v) for edges eu,v in the r-

hop subgraph hop(vi, r) (i.e., vi.ub supr =
max∀eu,v∈E(hop(vi,r)) ub sup(eu,v)), and;

• m pairs of influential score upper bounds and influence

thresholds (σz(hop(vi, r)), θz) (for 1 ≤ z ≤ m).

More details of the aggregates are provided below:

The Computation of Keyword Bit Vectors vi.BVr: We first

obtain the keyword bit vector vi.BV of size B for each vertex

vi ∈ V (G), and then compute the one, vi.BVr, for r-hop

subgraph hop(vi, r). Specifically, for each vertex vi, we first

initialize all bits in a vector vi.BV with zeros. Then, for each

keyword w in the keyword set vi.W , we use a hashing function

f(w) that maps a keyword w to an integer between [0, B− 1]
and set the f(w)-th bit position to 1 (i.e., vi.BV [f(w)] =
1). Next, for all vertices vl in r-hop subgraph hop(vi, r), we

perform a bit-OR operator over their bit vectors vl.BV . That

is, we have vi.BVr =
∨

∀vl∈V (hop(vi,r))
vl.BV .

The Computation of Support Upper Bounds vi.ub supr:

For each radius r ∈ [1, rmax], we compute a support upper

bound vi.ub supr as follows. We first calculate the support up-

per bound, ub sup(eu,v), for each edge eu,v in the rmax-hop

subgraph hop(vi, rmax). Then, the maximum ub sup(eu,v)
among all edges in hop(vi, rmax) is selected as the support

upper bound vi.ub supr.

The Computation of Influential Score Upper Bounds

σz(hop(vi, r)) (w.r.t. θz): Since seed communities g are

subgraphs of some r-hop subgraphs hop(vi, r), as given in

Eq. (5), the influential score σz(hop(vi, r)) (w.r.t. influence

threshold θz) must be greater than or equal to σz(g) and is

thus an influential score upper bound. In other words, we

overestimate the influence of a seed community g inside r-

hop subgraph hop(vi, r), by assuming that g = hop(vi, r).
To calculate the influential score σz(hop(vi, r)), we first

start from each r-hop subgraph hop(vi, r) (= g) and then

expand hop(vi, r) to obtain its influenced community gInf via

a graph traversal. A vertex u is included in gInf , if it holds

that cpp(g, u) ≥ θz , where cpp(g, u) is given by Eq. (4). The

graph traversal algorithm terminates, when cpp(g, u) < θz
holds. Finally, we use Eq. (5) to calculate the influential score

σz(hop(vi, r)) of the expanded graph (w.r.t., θz).

Offline Computation Algorithm: Algorithm 2 illustrates the

epseudo code of offline data pre-computation in the data

graph G that can facilitate online TopL-ICDE processing. In

particular, for each vertex vi ∈ V (G), all the keywords of

the keyword set vi.W are hashed into a bit vector vi.BV and

stored in a list vi.R (lines 1-3). Then, we compute the support

for each edge eu,v in hop(vi, rmax) and use the maximum one

as the support upper bound ub sup(eu,v) for the edge eu,v
(lines 4-5). Next, for each vertex vi and pre-selected radius r

Algorithm 2: Offline Pre-Computation

Input: i) a social network G; ii) the maximum value of radius
rmax; iii) m influence thresholds {θ1, θ2, . . . , θm};

Output: pre-computed data vi.R for each vertex vi;
1 for each vi ∈ V (G) do

// keyword bit vectors

2 hash all keywords in the keyword set vi.W into a bit vector
vi.BV ;

3 vi.R = {vi.BV };
// edge support upper bounds

4 for each eu,v ∈ E(hop(vi, rmax)) do

5 compute edge support upper bounds ub sup(eu,v) w.r.t.
hop(vi, rmax);

6 for each vi ∈ V (G) do

7 for each r = 1 to rmax do

8 vi.BVr =
∨

∀vl∈V (hop(vi,r))
vl.BV ;

9 vi.ub supr = max∀eu,v∈E(hop(vi,r))
ub sup(eu,v);

// influential score upper bounds

10 for each θz ∈ {θ1, θ2, . . . , θm} do
11 σz(hop(vi, r)) =

calculate influence(hop(vi, r), θz);
12 add (σz(hop(vi, r)), θz) to vi.R;

13 add vi.BVr and vi.ub supr to vi.R;

14 return vi.R;

ranging from 1 to rmax, we calculate the pre-computed data

for subgraph hop(vi, r), including keyword bit vector vi.BVr

(lines 6-8), edge support upper bound vi.ub supr (line 9), and

upper bound of influential score σz(hop(vi, r)) w.r.t. θz (lines

10-11). All these pre-computed data are added to the list vi.R
(lines 12-13), which is returned as the output (line 14).

Complexity Analysis: For Algorithm 2, the time complexity

is given by O(|V (G)| · (|W | + avg degrmax + rmax · ((B +
1)avg degr−1+m · ((|E(ginfr)|+ |V (ginfr)|)log|V (ginfr)|)))),
where avg deg denote the average number of vertex degree

and ginfr is the subgraph containing the influenced users from

hop(vi, r). The space complexity is O(|V (G)| + |E(G)| +
|V (G)| · rmax · (B + 2m + 1)). Please see the detailed

descriptions for Algorithm 2 in our technical report [17].

B. Indexing Mechanism

In this subsection, we illustrate the details of building a tree

index, I, over pre-computed data of social networks G, which

can be used for performing online TopL-ICDE processing.

The Data Structure of Index I: We will construct a hierar-

chical tree index, I, over social networks G, where each index

node N contains multiple entries Ni, each corresponding to a

subgraph of G.

Specifically, the tree index I contains two types of nodes,

leaf and non-leaf nodes.

Leaf Nodes: Each leaf node N in index I contains multiple

vertices vi ∈ V (G). Each vertex vi is associated with the

following pre-computed data in vi.R (w.r.t. each possible

radius r ∈ [1, rmax]).

• a keyword bit vector vi.BVr;

• edge support upper bound vi.ub supr, and;

• m pairs of influential score upper bounds and influence

thresholds (σz(hop(vi, r)), θz).

Non-Leaf Nodes: Each non-leaf node N in index I has multi-

ple index entries, each of which, Ni, is associated with the fol-

lowing aggregate data below (w.r.t. each radius r ∈ [1, rmax]).

• an aggregated keyword bit vector Ni.BVr =
∨

∀vl∈Ni
vl.BVr;

• the maximum edge support upper bound Ni.ub supr =
max∀vl∈Ni

vl.ub supr;

• m pairs, (Ni.σz, θz), of maximum influential score

upper bounds and influence thresholds (for Ni.σz =
max∀vl∈Ni

σz(hop(vl, r))), and;

• a pointer, Ni.ptr, pointing to a child node.

Index Construction: To construct the tree index I, we sorted

all vertices by their average of ub supr and σz and recursively

divided sorted vertices array into partitions of the similar sizes,

and then obtain index nodes on different levels of the tree

index. Then, we associate each index entry in non-leaf nodes

(or each vertex in leaf nodes) with its corresponding aggregates

(or pre-computed data).

Complexity Analysis: The time complexity of our tree index

construction is given by O((γ⌈logγ |V (G)|⌉+1 − 1)/(γ − 1)),
where γ is the average fanout of each non-leaf node N .

The space complexity is given by O(rmax · (B + 2m + γ) ·
((γ⌈logγ |V (G)|⌉ − 1)/(γ − 1)) + |V (G)| · (B + 2m)). Due to

space limitations, please refer to our technical report [17] for

the detailed description.

VI. ONLINE TOPL-ICDE PROCESSING

For the online TopL-ICDE processing phase (see Algorithm

1), we utilize the constructed tree indexes to conduct the TopL-

ICDE processing, by integrating our effective pruning strate-

gies and returning top-L most influential seed communities.

A. Index Pruning

In this subsection, we provide effective pruning heuristics

on index nodes, which can filter out all candidate seed commu-

nities under index nodes. Proofs of lemmas are omitted here

due to space limitations.

Keyword Pruning for Index Entries: We utilize the aggre-

gated keyword bit vector, Ni.BVr, of an index entry Ni, and

discard an index entry Ni if none of r-hop subgraphs under

Ni contain some keyword in the query keyword set Q.

Lemma 5 (Index-Level Keyword Pruning) Given an index

entry Ni and a set, Q, of query keywords, entry Ni can be

safely pruned, if it holds that Ni.BVr ∧ Q.BV = 0, where

Q.BV is a bit vector hashed from the query keyword set Q.

Support Pruning for Index Entries: We next use the support

parameter k in the k-truss constraint (as given in Definition 2)

to prune an index entry Ni with low edge supports.

Lemma 6 (Index-Level Support Pruning) Given an index

entry Ni and a support parameter k, entry Ni can be safely

pruned, if it holds that Ni.ub supr < k, where Ni.ub supr
is the maximum edge support upper bound in all r-hop

subgraphs under Ni.

Influential Score Pruning for Index Entries: Since the

TopL-ICDE problem finds L seed communities with the high-

est influential scores, we can employ the following pruning

Algorithm 3: Online TopL-ICDE Processing

Input: i) a social network G; ii) a set, Q, of query keywords; iii)
the support, k, of the truss for each seed community; iv) the
maximum radius, r, of seed communities; v) the influence
threshold θ ∈ [θz , θz+1); vi) an integer parameter L, and;
vii) a tree index I over G

Output: a set, S, of top-L most influential communities
// initialization

1 hash all keywords in the query keyword set Q into a query bit
vector Q.BV ;

2 initialize a maximum heap H in the form of (N, key);
3 insert (root(I), 0) into heap H;
4 S = ∅; cnt = 0; σL = −∞;
// index traversal

5 while H is not empty do

6 (N, key) = de-heap(H);
7 if key ≤ σL then

8 terminate the loop;

9 if N is a leaf node then
10 for each vertex vi ∈ N do

11 if r-hop subgraph hop(vi, r) cannot be pruned by

Lemma 1, 2, or 4 then

12 obtain seed communities g ⊆ hop(vi, r)
satisfying the constraints;

13 compute influential score σ(g) =
calculate influence(g, θ);

14 if cnt < L then
15 add (g, σ(g)) to S;
16 cnt = cnt+ 1;
17 if cnt = L then

18 set σL to the smallest influential score
in S;

19 else

20 if σ(g) > σL then

21 add (g, σ(g)) to S;
22 remove a candidate seed community

with the lowest influential score from
S;

23 update influence threshold σL;

24 else // N is a non-leaf node

25 for each entry Ni ∈ N do

26 if Ni cannot be pruned by Lemma 5, 6, or 7 then

27 insert entry (Ni, Ni.σz) into heap H;

28 return S;

lemma to rule out an index entry Ni whose influential score

upper bound lower than that of L candidate seed communities

we have seen so far.

Lemma 7 (Index-Level Influential Score Pruning) Assume

that we have obtained L candidate seed communities with the

smallest influential score σL. Given an index entry Ni and

an influence threshold θ ∈ [θz, θz+1), entry Ni can be safely

pruned, if it holds that Ni.σz ≤ σL.

B. TopL-ICDE Processing Algorithm

Algorithm 3 gives the pseudo-code to answer a TopL-ICDE

query over a social network G via the index I. Specifically, the

algorithm first initializes some data structure/variables (lines

1-4), then traverses the index I (lines 5-27), and finally returns

actual TopL-ICDE query answers (line 28).

Initialization: Given a query keyword set Q, we first hash

all the keywords in Q into a query bit vector Q.BV (line

1). Then, we use a maximum heap H to traverse the index,

which contains heap entries in the form of (N, key), where

N is an index node and key is the key of node N (defined as

maximum influential score upper bound N.σz , mentioned in

Section V-B). Intuitively, if a node N has a higher influential

score upper bound, it is more likely that N contains seed

communities with high influential scores (ranks). We thus

always use the maximum heap H to access nodes with higher

influential scores earlier. We initialize heap H by inserting the

index root in the form (root(I), 0) (lines 2-3). In addition,

we use a result set, S, to store candidate seed communities

(initialized with an empty set) whose entries are in the form

of (g, σ(g)), a variable cnt (initially set to 0) to record the size

of set S, and an influence threshold σL (w.r.t. S, initialized to

−∞) (line 4).

Index Traversal: Next, we employ the maximum heap H to

traverse the index I (lines 5-27). Each time we pop out an

entry (N, key) with node N and the maximum key, key, in

the heap (lines 5-6). If key is not greater than the smallest

influential score, σL, among L seed communities in S, then

all entries in heap H have influential score upper bounds not

greater than σL. Therefore, we can safely prune the remaining

(unvisited) entries in the heap and terminate the index traversal

(lines 7-8). When we encounter a leaf node N , we consider

r-hop subgraphs hop(vi, r) for all vertices vi under node N
(lines 9-10). Then, we apply the community-level pruning

strategies, keyword pruning, support pruning, and influential

score pruning. If an r-hop subgraph hop(vi, r) cannot be

pruned, we obtain seed communities, g, within hop(vi, r) that

satisfy the constraints given in Definition 2 and compute their

accurate influential scores σ(g) w.r.t. threshold θ, by invoking

the function calculate influence(g, θ) (lines 11-13). Then,

we will update the result set S with g, by considering the

following two cases.

Case 1: If the size, cnt, of set S is less than L, a new entry

(g, σ(g)) will be added to S (lines 14-16). If the set size cnt
reaches L, we will set σL to the smallest influential score in

S (lines 17-18).

Case 2: If the size, cnt, of set S is equal to L and the

influential score σ(g) is greater than σL, we will add the

new entry (g, σ(g)) to S, and remove a seed community with

the lowest influential score from S (lines 19-22). Accordingly,

threshold σL will be updated with the new set S (line 23).

On the other hand, when we visit a non-leaf node N , for

each child entry Ni ∈ N , we will apply the index-level pruning

strategies, including index-level keyword pruning, index-level

support pruning, and index-level influential score pruning

(lines 24-26). If Ni cannot be pruned, we insert a heap entry

(Ni, Ni.σz) into heap H for further investigation (line 27).

Finally, after the index traversal, we return actual TopL-

ICDE query answers in S (line 28).

Discussions on the Influential Score Calculation Function

calculate influence(g, θ): To calculate the influential score

(via Eqs. (4) and (5)), we need to obtain the influenced

community gInf from seed community g, whose process is

similar to the single-source shortest path algorithm. We will

first compute 1-hop neighbors, vk, of boundary vertices in seed

community g, and include vk (satisfying cpp(g, vk) ≥ θ) in the

influenced community gInf . Then, each time we expand one

hop from the current influenced community gInf , by adding

to gInf new vertices vnew if it holds that cpp(g, vnew) ≥
θ, where cpp(g, vnew) = max∀u∈V (gInf){upp(u, vnew)} =
max∀u∈V (gInf){cpp(g, u) · pu,vnew

}.

TopL-ICDE Complexity Analysis: The time complexity of

Algorithm 3 is given by O(
∑h

j=1 f
h−j+1 ·(1−PP (j))+fh+1 ·

(1− PP (0)) · nr · (|E(gInf |+ |V (gInf)|)log|V (gInf)|)). Due

to space limitations, please refer to our technical report [17]

for detailed descriptions.

VII. ONLINE DIVERSIFIED TOPL-ICDE PROCESSING

In this section, we discuss how to efficiently tackle the

TopL-ICDE variant, that is, the DTopL-ICDE problem.

A. NP-Hardness of the DTopL-ICDE Problem

First, we prove the NP-hardness of our DTopL-ICDE prob-

lem (given in Definition 5) in the following lemma.

Lemma 8 The DTopL-ICDE problem is NP-hard.

To prove Lemma 8 (i.e., DTopL-ICDE is NP-hard), we can

reduce a known NP-hard problem, the Maximum Coverage

problem [18], to our DTopL-ICDE problem. Please refer to

the details of the proof in our technical report [17].

B. The Greedy Algorithm for DTopL-ICDE Processing

Due to its NP-hardness (as given by Lemma 8), our DTopL-

ICDE problem is not tractable. Therefore, alternatively, we

will propose a greedy algorithm to process the DTopL-ICDE

query with an approximation bound.

A Framework for the DTopL-ICDE Greedy Algorithm.

Our greedy algorithm has two steps. First, we invoke online

TopL-ICDE processing algorithm (Algorithm 3) to obtain a

set, T , of top-(nL) candidate communities with the highest

influence scores, where n (> 1) is a user-specified parameter.

Intuitively, communities with high influences are more likely

to contribute to the DTopL-ICDE community set S with high

diversity scores.

Next, we will identify L out of these (nL) candidate

communities in T with high diversity score (forming a set

S of size L). To achieve this, we give a naive method

of our greedy algorithm without any pruning, denoted as

Greedy WoP, as follows. Given (nL) candidate communities

with the highest influence scores in a set T , we first add the

candidate community g in T with the highest influence to S
(removing g from T). Then, each time we select one candidate

community g ∈ T with the highest diversity score increment

∆g(S), among all communities in T , and move g from T to

S. This process repeats until L communities are added to S.

Effective Pruning Strategy w.r.t. Diversity Score. In the

greedy algorithm without any pruning Greedy WoP, we have

to check all the nL candidate communities in T , compute their

diversity score increments ∆gm(S), and select the one with the

highest diversity score increment, which is quite costly with

the time complexity O(nL2).
To reduce the search space, we will propose an effective

diversity score pruning method, which can avoid scanning all

communities in T in each round (i.e., those communities with

low diversity score increments can be safely pruned).

Before introducing our pruning strategy, we will first give

two properties of the diversity score D(S) below:

• Monotonicity: given two subgraph sets S and S′, satis-

fying that S′ ⊆ S, it holds that D(S′) ≤ D(S), and;

• Submodularity: given two subgraph sets S and S′ and

a subgraph g, satisfying that S′ ⊆ S and g /∈ S′, it holds

that D(S′ ∪ {g}) −D(S′) ≥ D(S ∪ {g}) −D(S) (i.e.,

∆Dg(S
′) ≥ ∆Dg(S)).

By utilizing the two properties above, we have the following

pruning lemma:

Lemma 9 (Diversity Score Pruning) Assume that we have a

set, T , of candidate seed communities g, and a set, S, of the

currently selected DTopL-ICDE answers. Given a subset S′ ⊆
S and a subgraph g ∈ T with the diversity score increment

∆Dg(S), any subgraph gm ∈ T can be safely pruned, if it

holds that ub ∆Dgm(S) < ∆Dg(S), where ub ∆Dgm(S) is

an upper bound of the diversity score increment ∆Dgm(S)
(which can equal to either ∆Dgm(S′) or σ(gm)).

The DTopL-ICDE Greedy Algorithm with Pruning,

Greedy WP. Algorithm 4 shows the pseudo-code to handle

the online DTopL-ICDE query over a given social network

G. Specifically, the algorithm invokes online TopL-ICDE

processing algorithm (i.e., Algorithm 3) to obtain a set, T , of

nL candidate communities with the highest influences (line

1), then refines the set T to obtain L communities with the

highest diversity score (lines 2-15), and finally returns the

actual DTopL-ICDE answers (line 16).

Initialization: Specifically, after obtaining nL candidate

communities via Algorithm 3 (line 1), we initialize a maximum

heap, H, that stores entries in the form (g, keyg), where g
is a seed community and keyg is the key of the heap entry

(defined as the upper bound, ub ∆Dg(S), of the diversity

score increment) (line 2). For each candidate community

g ∈ T , we set its round number, g.round, to 0, and the upper

bound σ(g) of the diversity score increment in this round.

Then, we insert entries (g, σ(g)) into heap H for refinement

(lines 3-5). We also maintain an initially empty answer set S,

and set initial round number, round, to 0 (line 6).

Candidate Community Refinement: To refine candidate

communities in heap H, each time we pop out an entry

(g, ub ∆Dg(S)) from H with the maximum key (line 8), and

check whether or not the key ub ∆Dg(S) is computed at this

round (i.e., g.round = round), considering the following two

cases (lines 9-15):

Case 1: If g.round = round holds, it indicates that g is the

one with the highest diversity score increment in the current

round, round (as proved by Lemma 9). Thus, g will be added

to the DTopL-ICDE answer set S and round is increased by

1 (lines 9-11).

Case 2: If g.round ̸= round holds (line 12), the entry key,

ub ∆Dg(S), is outdated, which is equal to ∆Dg(S
′) (S′ ⊆

S). Thus, we will re-compute the diversity score increment,

Algorithm 4: Online DTopL-ICDE Processing

Input: i) a social network G; ii) a set, Q, of query keywords; iii)
the support, k, of the truss for each seed community; iv) the
maximum radius, r, of seed communities; v) the influence
threshold θ ∈ [θz , θz+1); vi) two integer parameters n and
L, and; vii) a tree index I over G

Output: a set, S, of diversified top-L most influential communities
// obtain (nL) DTopL-ICDE candidates

1 invoke online TopL-ICDE processing algorithm (Algorithm 3) to
obtain a set, T , of top-(nL) most influential seed communities;

// refine candidates via Greedy WP
2 initialize a maximum heap H with entries in the form of (g, keyg);
3 for each candidate seed community g ∈ T do

4 set g.round = 0;
5 insert (g, σ(g)) into heap H;

6 S = ∅, round = 0;
7 while |S| < L do

8 (g, ub ∆Dg(S)) = de-heap(H);
9 if g.round = round then

10 add g to S;
11 round = round+ 1;
12 else
13 compute the increment of the diversity score

∆Dg(S) = D(S ∪ {g})−D(S);
14 g.round = round;
15 insert (g,∆Dg(S)) into heap H;

16 return S;

∆Dg(S), w.r.t. the current answer set S, update g.round with

round, and insert (g,∆Dg(S)) back into H (lines 13-15).

After picking L candidates from H to S, the algorithm

terminates the loop (line 7) and returns S as DTopL-ICDE

answers (line 16).

DTopL-ICDE Complexity Analysis: The time complexity

of Algorithm 4 is given by O
(

∑L

k=1(nL− k + 1) · (1−

DPP (k)) · |
⋃

g∈T V (gInf)|
)

. Due to space limitations, please

refer to our technical report [17] for detailed descriptions.

Approximation Ratio Analysis: From [14], for a function

following monotonicity and submodularity properties, the ap-

proximate greedy algorithm has a (1 − 1/e) approximation

guarantee. Moreover, we can prove that our greedy algorithm

has a ϵ · (1− 1/e) approximation guarantee, where 0 < ϵ ≤ 1.

Lemma 10 The online DTopL-ICDE processing algorithm

can process the DTopL-ICDE query approximately within

better than a factor of ϵ · (1− 1/e), where 0 < ϵ ≤ 1.

VIII. EXPERIMENTAL EVALUATION

A. Experimental Settings

We tested the performance of our TopL-ICDE processing

approach (i.e., Algorithm 3) on both real and synthetic graphs.

Real-World Graphs: We used two real-world graphs, DBLP

and Amazon, similar to previous works [19]±[21], whose

statistics are depicted in Table II. DBLP is a bibliographical

network, in which two authors are connected if they co-

authored at least one paper, whereas Amazon is an Also Bought

network where two products are connected if they are co-

purchased by customers.

Synthetic Graphs: For synthetic social networks, we generate

Newman±Watts±Strogatz small-world graphs G [22]. Specif-

ically, we first produce a ring with size |V (G)|, and then

TABLE II
STATISTICS OF REAL-WORLD GRAPH DATA SETS DBLP AND Amazon.

Social Networks |V (G)| |E(G)|

DBLP 317,080 1,049,866

Amazon 334,863 925,872

TABLE III
PARAMETER SETTINGS.

Parameters Values

support, k, of truss structure 3, 4, 5

radius r 1, 2, 3

size, L, of query result set 2, 3, 5, 8, 10

the size, |V (G)|, of data graph G 10K, 25K, 50K, 100K, 250K,
500K, 1M

parameter, n, for DTopL-ICDE 2, 3, 5, 8, 10

connect each vertex with its m nearest neighbors in the ring.

Next, for each resulting edge eu,v , with probability µ, we

add a new edge eu,w between u and a random vertex w.

Here, we set m = 6 and µ = 0.167. For each vertex, we

also randomly produce a keyword set vi.W from the keyword

domain Σ, following Uniform, Gaussian, or Zipf distribution,

and obtain three synthetic graphs, denoted as Uni, Gau, and

Zipf, respectively. For each edge eu,v in graph G, we randomly

generate a value within the interval [0.5, 0.6) as the edge

weight pu,v . The propagation probabilities can be computed

based on the MIA model (Section II-B).

In our experiments, we randomly select |Q| keywords from

the keyword domain Σ and form a query keyword set Q.

Competitor: To our best knowledge, no prior works studied

the TopL-ICDE problem and its variant DTopL-ICDE problem

by considering highly connected k-truss communities with

user-specified keywords and high (collective) influences on

other users. Thus, for TopL-ICDE, we use a baseline method,

named ATindex, which applies the state-of-the-art (k, d)-truss

community search algorithm [23]. Specifically, ATindex offline

pre-computes and indexes the trussness on vertices and edges.

Then, it online filters out vertices with trussness less than k via

the index, extracts r-hop subgraphs (satisfying the keyword

constraints w.r.t. Q) centered at the remaining vertices, and

obtains maximal k-truss within r-hop subgraphs. After that,

ATindex computes influential scores of these k-truss subgraphs

and returns L communities with the highest influential scores.

For DTopL-ICDE, we compare our approach (using

Greedy WP) with Greedy WoP and Optimal methods.

Greedy WoP is the greedy algorithm without pruning men-

tioned in Section II-C, whereas Optimal computes the diversity

score for each possible combination of seed communities and

selects the one with the maximum diversity score.

Measures: To evaluate the efficiency of our TopL-ICDE

approach, we report the wall clock time, which is the time

cost to online retrieve TopL-ICDE answers via the index

(Algorithm 3). For DTopL-ICDE, we report the wall clock

time and accuracy (defined as the ratio of the diversity score

of our method to that of the optimal method).

Parameters Settings: Table III depicts the parameter settings,

where default values are in bold. Each time we vary the values

of one parameter, while other parameters are set to their default

DBLPAmazon Uni Gau Zipf
10
0

10
1

10
2

10
3

10
4

10
5

w
a
ll

 c
lo

ck
 t

im
e

(s
ec

)

data sets

 TopL-ICDE

 ATindex

Fig. 2. TopL-ICDE performance on real/synthetic graph data.

3 4 5
0

2

4

6

8

10

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

k

 Uni
 Gau
 Zipf

(a) truss support param. k

1 2 3
0

2

4

6

8

10

12

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

r

 Uni
 Gau
 Zipf

(b) radius r

2 4 6 8 10
0

2

4

6

8

10

w
al

l c
lo

ck
 ti

m
e

(s
ec

)
L

 Uni
 Gau
 Zipf

(c) query result size L

10K 25K 50K 100K 250K 1M
0.1

1

10

100

1000

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

 Uni
 Gau
 Zipf

(d) data graph size |V (G)|

Fig. 3. The robustness evaluation of the TopL-ICDE performance.

values. We ran all the experiments on the machines with

Intel(R) Core(TM) i9-10900K 3.70GHz CPU, Ubuntu 20.04

OS, and 32 GB memory. All algorithms were implemented in

Python and executed with Python 3.11 interpreter.

Research Questions: We conduct extensive experiments to

evaluate our TopL-ICDE and DTopL-ICDE approaches and

answer the following four research questions (RQs):

RQ1 (Efficiency): Can our proposed approaches efficiently

process TopL-ICDE and DTopL-ICDE queries?

RQ2 (Effectiveness): Can our proposed pruning strategies

effectively filter out candidate communities during TopL-

ICDE query processing?

RQ3 (Meaningfulness): Are the resulting TopL-ICDE com-

munities useful for real-world applications?

RQ4 (Accuracy): Can our proposed approach achieve high

accuracy of DTopL-ICDE query answers?

B. TopL-ICDE Performance Evaluation

The TopL-ICDE Efficiency (RQ1): Figure 2 compares the

performance of our TopL-ICDE approach with that of ATindex

over real and synthetic graphs, in terms of the wall clock

time, where we set all parameters to their default values

in Table III. Note that, for DBLP, since the time cost of

ATindex is extremely high, we sample 0.5% center vertices

from original graph data without replacement and estimate the

total time as ts
0.005 = 200 · ts, where ts is the average time per

sample. The experimental results show that our TopL-ICDE

approach outperforms ATindex by more than one order of

magnitude, which confirms the efficiency of our TopL-ICDE

algorithm on real/synthetic graphs.

D B L P A m a z o n U ni G a u Zi pf
1 0

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

of

pr

u
ne

d
c
o

m
m
u
ni

ti
es

d at a s ets

 k e y w o r d p r u ni n g

 k e y w o r d + s u p p o rt p r u ni n g

 k e y w o r d + s u p p o rt + s c o r e p r u ni n g

(a) pruning power

DBLP Amazon Uni Gau Zipf100

101

102

103

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

data sets

 keyword pruning
 keyword + support pruning
 keyword + support + score pruning

(b) time cost

Fig. 4. The ablation study of the TopL-ICDE performance.

(a) TopL-ICDE (σ(g) = 344.31,
974 possibly influenced nodes)

`｀.
0 �

(b) k-core (σ(g) = 239.81,
646 possibly influenced nodes)

Fig. 5. The influenced communities from TopL-ICDE vs. k-core (k = 4).

To evaluate the robustness of our TopL-ICDE approach,

in subsequent experiments, we will vary different parameters

(e.g., k, r, L, and |V (G)|) on synthetic graphs. Due to

space limitations, for the effect of other parameters (e.g.,

θ,|Q|,|vi.W |, and |Σ|), please refer to our technical report [17].

Effect of Truss Support Parameter k: Figure 3(a) illustrates

the performance of our TopL-ICDE approach, where the

support parameter of the truss k = 3, 4, and 5, and default

values are used for other parameters. The time cost is generally

not very sensitive to k values, since edge supports are similar

in all the three synthetic graphs. When k = 5, however, no

candidate communities can be detected, and thus time costs

on the three graphs are similar (but trends are different from

cases of k = 3, 4). For different k values, wall clock times of

our TopL-ICDE approach remain low (i.e., 3.61 ∼ 5.95 sec).
Effect of Radius r: Figure 3(b) illustrates the experimental

results of our TopL-ICDE approach for different radii r
of seed communities, where r = 1, 2, and 3 and other

parameters are by default. A larger radius r leads to larger

seed communities to filter and refine, which incurs higher time

costs, as confirmed by the figure. Nonetheless, the time cost

remains small (i.e., 1.12 ∼ 10.83 sec) for different r values.

Effect of the Size, L, of Query Result Set: Figure 3(c)

presents the performance of our TopL-ICDE approach with

different sizes, L, of query result set, where L varies from

2 to 10 and default values are used for other parameters.

Intuitively, the larger L, the more communities must be

processed. Despite that, the time cost of TopL-ICDE remains

low (i.e., 2.44 ∼ 6.18 sec) for different L values.

Effect of the Graph Size |V (G)|: Figure 3(d) tests the scal-

ability of our TopL-ICDE approach with different social

network sizes, |V (G)|, from 10K to 1M , where default values

are assigned to other parameters. In the figure, when the graph

size |V (G)| becomes larger, the wall clock time smoothly

increases (i.e., from 0.51 sec to 255.62 sec for |V (G)| from

10K to 1M , respectively), which confirms the scalability of

our TopL-ICDE algorithm for large network sizes.

Ablation Study (RQ2): We conduct an ablation study over

real/synthetic graphs to evaluate the effectiveness of our pro-

posed pruning strategies, where all parameters are set to their

default values. We tested different combinations by adding one

more pruning method each time: (1) keyword pruning only,

(2) keyword + support pruning, and (3) keyword + support

+ score pruning. Figure 4(a) examines the number of pruned

candidate communities, whereas Figure 4(b) shows the time

cost for different pruning combinations. From experimental

results, we can see that with more pruning methods, the

number of pruned communities increases by about an order

of magnitude, and the wall clock time decreases. Especially,

the third influential score pruning method can significantly

prune more candidate communities (in addition to the first

two pruning methods) and result in the lowest time cost.

Case Study (RQ3): To evaluate the usefulness of our TopL-

ICDE results, we conduct a case study to compare the in-

fluences of our TopL-ICDE seed community with that of k-

core [24] over Amazon. Figure 5(a) shows our Top1-ICDE

community with 4 users ((4, 2)-truss), whereas Figure 5(b)

illustrates 5 users in 4-core community, where the (red) star

point in both subfigures represent the same center vertex. The

figures show that our Top1-ICDE community has an influential

score σ(g) = 344.31 with 974 possibly influenced users

(blue points). In contrast, the 4-core has more seed users, but

with a lower influential score σ(g) = 239.81 and a smaller

number of possibly influenced users (i.e., 646). This confirms

the usefulness of our TopL-ICDE problem to obtain seed

communities with high influences for real-world applications

such as online advertising/marketing.

C. DTopL-ICDE Performance Evaluation

The DTopL-ICDE Efficiency (RQ1): Figure 6(a) compares

the performance of our DTopL-ICDE approach (i.e., Top(nL)-

ICDE+Greedy WP), Top(nL)-ICDE+Greedy WoP, and

the Optimal algorithm over real and synthetic graphs, in terms

of the wall clock time, where all parameters are set to their

default values in Table III. We can find that DTopL-ICDE

outperforms Optimal by at least three orders of magnitude.

Below, we evaluate the robustness of DTopL-ICDE with

different parameters (e.g., n, L, |V (G)|) on synthetic graphs.

Effect of the Size, L, of Query Result Set: Figure 6(b)

shows the experimental results of our DTopL-ICDE approach

for different sizes, L, of query result set, by varying L from 2
to 10 and default values are used for other parameters. Larger

L values lead to lower influential score bound σ(nL), and

thus more candidate communities to be retrieved and refined,

which incur higher time costs. For various L values, the time

cost of DTopL-ICDE remains low (i.e., 2.72 ∼ 6.39 sec).

Effect of Parameter n: Figure 6(c) shows the performance

of our DTopL-ICDE approach, where n varies from 2 to 10
and other parameters are set to their default values. With

increasing n, lower influential score bound σ(nL) is used,

DBLP Amazon Uni Gau Zipf
10

� �

10
� �

10
1

10
4

10
7

10
10

10
13

10
16

w
a

ll
 c

lo
ck

 t
im

e
(s

ec
)

data sets

 Greedy_WP

 Greedy_WoP

 Optimal

 Top(nL)-ICDE

(a) time cost vs. graphs

2 3 5 8 10
0

2

4

6

8

10

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

L

 Uni
 Gau
 Zipf

(b) query result size L

2 3 5 8 10
0

2

4

6

8

10

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

n

 Uni
 Gau
 Zipf

(c) parameter n

10K 25K 50K 100K250K500K 1M
0.1

1

10

100

1000

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

 Uni
 Gau
 Zipf

(d) graph size |V (G)|

1 0.99971 0.99863

Uni Gau Zipf
0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

data sets

 Top(nL)-ICDE+Greedy_WP

(e) accuracy vs. graphs

Fig. 6. The DTopL-ICDE performance evaluation.

resulting in higher time costs. Nevertheless, the wall clock time

remains small (i.e., 2.72 ∼ 6.28 sec) for various n values.

Effect of the Graph Size |V (G)|: Figure 6(d) reports the

performance of our DTopL-ICDE approach with different

social-network sizes, |V (G)|, from 10K to 1M and default

values are used for other parameters. Intuitively, the larger

|V (G)|, the more communities that must be processed, which

incurs smoothly increasing time costs (i.e., 0.9 ∼ 278.18 sec).
The DTopL-ICDE Accuracy (RQ4): We test the experiments

on small-scale graphs (|V (G)| = 1K, 3 keywords per ver-

tices, and |Σ| = 20) following Uniform, Gaussian, and Zipf

distributions, and report the accuracy of our DTopL-ICDE

approach (i.e., the diversity score ratio of our approach to

Optimal) in Figure 6(e). The results indicate that our DTopL-

ICDE accuracy is very close to 100% (i.e., 99.863% ∼ 100%).

IX. RELATED WORK

Community Search/Detection: Prior works proposed many

community semantics based on different structural cohesive-

ness, such as the minimum degree [25], k-core [24], k-clique

[26], and (k, d)-truss [12], [23]. In contrast, our TopL-ICDE

problem retrieves not only highly connected seed communities

but also those with the highest influences and containing

query keywords in social networks, which is more challenging.

On the other hand, previous works on community detection

retrieved all communities by considering link information

only [27], [28]. More recent works used clustering techniques

to detect communities [29]±[31]. However, these works did

not require structural constraints of community answers or

consider the impact of the influenced communities, which is

the focus of our TopL-ICDE problem.

Influence Maximization: Previous works on the influence

maximization (IM) problem [14] over social networks [13],

[32]±[35] usually obtain arbitrary individual users from social

networks with the maximum influence on other users, where

independent cascade (IC) and linear threshold (LT) models

[14] were used to capture influence propagation. However,

most solutions to the IM problem do not assume strong

social relationships among selected seed users. In contrast, our

TopL-ICDE requires seed communities to be connected, have

high structural cohesiveness, and cover some query keywords,

which is more challenging.

Influential Community: There are some recent works [19],

[36], [37] on finding the most influential community over

social networks. These works considered different graph data

models such as uncertain graphs [19] and heterogeneous infor-

mation networks [37] and influential community semantics like

kr-clique [36], (k, η)-influential community, and (k,P)-core

[37]. Moreover, they ignored the interests of users (represented

by keywords) in communities. With different graph models

and influential community semantics, our TopL-ICDE problem

uses a certain, undirected graph data model with the MIA

model for the influence propagation and aims to retrieve top-

L influential communities (rather than all communities) under

different community semantics of structural, keyword-aware,

and influential score ranking.

Diversified Subgraphs: There are several existing works

that consider retrieving the diversified subgraphs. For exam-

ple, Yang et al. [38] studied the top-k diversified subgraph

problem, which returns a set of up to k subgraphs that are

isomorphic to a given query graph, and cover the largest

number of vertices. Some prior works [39], [40] studied the

structural diversity search problem in graphs, which obtains

vertex(es) with the highest structural diversities (defined as #
of connected components in the 1-hop subgraph of a vertex).

Chowdhary et al. [41] aimed to search for a community that is

structure-cohesive (i.e., with the minimum number of vertices)

and attribute-diversified (i.e., with the maximum number of at-

tribute labels in vertices). The aforementioned works either did

not consider the cohesiveness and/or influences of the returned

subgraphs, or focused on node-/attribute-level diversity (rather

than community-level diversity). Thus, with different problem

definitions, we cannot directly use techniques proposed in

these works to solve our DTopL-ICDE problem.

X. CONCLUSIONS

In this paper, we propose a novel TopL-ICDE problem,

which retrieves top-L communities from social networks with

the highest influential scores.We provide effective pruning

strategies to rule out false alarms of candidate communities

and design an index to facilitate an efficient TopL-ICDE pro-

cessing algorithm. We also formulate and tackle an NP-hard

TopL-ICDE variant, DTopL-ICDE, by proposing a greedy al-

gorithm with effective pruning strategies. Experimental results

on real/synthetic graphs confirm the good performance of our

proposed TopL-ICDE and DTopL-ICDE approaches.

ACKNOWLEDGEMENTS

This work was supported by Natural Science Foundation

of China (62272170), Natural Science Foundation (NSF CCF-

2217104), and Shanghai International Joint Lab of Trustworthy

Intelligent Software (22510750100). Mingsong Chen is the

corresponding author.

REFERENCES

[1] W. Chen, C. Wang, and Y. Wang, ªScalable influence maximization for
prevalent viral marketing in large-scale social networks,º in Proceedings

of the International Conference on Knowledge Discovery and Data

Mining (SIGKDD), 2010, pp. 1029±1038.
[2] Y. Tang, Y. Shi, and X. Xiao, ªInfluence maximization in near-linear

time: A martingale approach,º in Proceedings of the International

Conference on Management of Data (SIGMOD), 2015, pp. 1539±1554.
[3] S. Tu and S. Neumann, ªA viral marketing-based model for opinion

dynamics in online social networks,º in Proceedings of the ACM Web

Conference 2022, 2022, pp. 1570±1578.
[4] X. Song, J. Lian, H. Huang, M. Wu, H. Jin, and X. Xie, ªFriend recom-

mendations with self-rescaling graph neural networks,º in Proceedings

of the 28th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining, 2022, pp. 3909±3919.
[5] J. Fan, J. Qiu, Y. Li, Q. Meng, D. Zhang, G. Li, K.-L. Tan, and X. Du,

ªOCTOPUS: An Online Topic-Aware Influence Analysis System for
Social Networks,º in 2018 IEEE 34th International Conference on Data

Engineering (ICDE), Apr. 2018, pp. 1569±1572.
[6] K. Wang, S. Wang, X. Cao, and L. Qin, ªEfficient Radius-Bounded

Community Search in Geo-Social Networks,º IEEE Transactions on

Knowledge and Data Engineering, vol. 34, no. 9, pp. 4186±4200, Sep.
2022.

[7] Q. Liu, M. Zhao, X. Huang, J. Xu, and Y. Gao, ªTruss-based Community
Search over Large Directed Graphs,º in Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data, May 2020,
pp. 2183±2197.

[8] L. Sun, X. Huang, R.-H. Li, B. Choi, and J. Xu, ªIndex-based intimate-
core community search in large weighted graphs,º IEEE Transactions

on Knowledge and Data Engineering, vol. 34, no. 9, pp. 4313±4327,
2020.

[9] B. Liu, F. Zhang, W. Zhang, X. Lin, and Y. Zhang, ªEfficient community
search with size constraint,º in 2021 IEEE 37th International Conference

on Data Engineering (ICDE). IEEE, 2021, pp. 97±108.
[10] C.-Y. Wang, Y. Chen, and K. R. Liu, ªGame-theoretic cross social media

analytic: How yelp ratings affect deal selection on groupon?º IEEE

Transactions on Knowledge and Data Engineering, vol. 30, no. 5, pp.
908±921, 2017.

[11] X. Huang and L. V. S. Lakshmanan, ªAttribute-Driven Community
Search,º VLDB-2017, vol. 10, no. 9, pp. 949±960, 2017.

[12] A. Al-Baghdadi and X. Lian, ªTopic-based community search over
spatial-social networks,º Proceedings of the VLDB Endowment, vol. 13,
no. 12, pp. 2104±2117, Aug. 2020.

[13] W. Chen, C. Wang, and Y. Wang, ªScalable influence maximization for
prevalent viral marketing in large-scale social networks,º in Proceedings

of the International Conference on Knowledge Discovery and Data

Mining (SIGKDD), ser. KDD ’10, Jul. 2010, pp. 1029±1038.
[14] D. Kempe, J. Kleinberg, and ÂE. Tardos, ªMaximizing the spread of

influence through a social network,º in Proceedings of the Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, Aug. 2003, pp. 137±146.
[15] U. Feige, ªA threshold of ln n for approximating set cover,º Journal of

the ACM, vol. 45, no. 4, pp. 634±652, Jul. 1998.
[16] J. Cohen, ªTrusses: Cohesive subgraphs for social network analysis,º

National security agency technical report, vol. 16, no. 3.1, 2008.
[17] N. Zhang, Y. Ye, X. Lian, and M. Chen, ªTop-L Most Influential

Community Detection Over Social Networks (Technical Report),º Nov.
2023. [Online]. Available: https://arxiv.org/abs/2311.13162

[18] U. Feige, ªA threshold of ln n for approximating set cover (preliminary
version),º in STOC-96, ser. STOC ’96, Jul. 1996, pp. 314±318.

[19] W. Luo, X. Zhou, K. Li, Y. Gao, and K. Li, ªEfficient Influential
Community Search in Large Uncertain Graphs,º IEEE Transactions on

Knowledge and Data Engineering, vol. 35, no. 4, pp. 3779±3793, Apr.
2023.

[20] Y. Zhou, Y. Fang, W. Luo, and Y. Ye, ªInfluential Community Search
over Large Heterogeneous Information Networks,º Proceedings of the

VLDB Endowment, vol. 16, no. 8, pp. 2047±2060, Apr. 2023.
[21] S. Chen, J. Fan, G. Li, J. Feng, K.-l. Tan, and J. Tang, ªOnline topic-

aware influence maximization,º Proceedings of the VLDB Endowment,
vol. 8, no. 6, pp. 666±677, Feb. 2015.

[22] M. E. J. Newman and D. J. Watts, ªRenormalization group analysis of
the small-world network model,º Physics Letters A, vol. 263, no. 4, pp.
341±346, Dec. 1999.

[23] X. Huang and L. V. S. Lakshmanan, ªAttribute-driven community
search,º Proceedings of the VLDB Endowment, vol. 10, no. 9, pp. 949±
960, May 2017.

[24] M. Sozio and A. Gionis, ªThe community-search problem and how
to plan a successful cocktail party,º in Proceedings of the 16th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, ser. KDD ’10, Jul. 2010, pp. 939±948.
[25] W. Cui, Y. Xiao, H. Wang, and W. Wang, ªLocal search of communities

in large graphs,º in Proceedings of the 2014 ACM SIGMOD Interna-

tional Conference on Management of Data, ser. SIGMOD ’14, Jun.
2014, pp. 991±1002.

[26] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, ªOnline search of
overlapping communities,º in Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data, ser. SIGMOD ’13,
Jun. 2013, pp. 277±288.

[27] M. E. Newman and M. Girvan, ªFinding and evaluating community
structure in networks,º Physical Review E, vol. 69, no. 2, p. 026113,
2004.

[28] S. Fortunato, ªCommunity detection in graphs,º Physics reports, vol.
486, no. 3-5, pp. 75±174, 2010.

[29] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng, ªA model-based
approach to attributed graph clustering,º in Proceedings of International

Conference on Management of Data (SIGMOD), 2012, pp. 505±516.
[30] A. Conte, T. De Matteis, D. De Sensi, R. Grossi, A. Marino, and

L. Versari, ªD2k: scalable community detection in massive networks via
small-diameter k-plexes,º in Proceedings of ACM SIGKDD Conference

on Knowledge Discovery and Data Mining (KDD), 2018, pp. 1272±
1281.

[31] N. Veldt, D. F. Gleich, and A. Wirth, ªA Correlation Clustering Frame-
work for Community Detection,º in Proceedings of the 2018 World Wide

Web Conference, ser. WWW ’18. Republic and Canton of Geneva,
CHE: International World Wide Web Conferences Steering Committee,
Apr. 2018, pp. 439±448.

[32] J. Tang, X. Tang, X. Xiao, and J. Yuan, ªOnline processing algorithms
for influence maximization,º in Proceedings of the 2018 International

Conference on Management of Data, 2018, pp. 991±1005.
[33] N. Ohsaka, ªThe solution distribution of influence maximization: A

high-level experimental study on three algorithmic approaches,º in
Proceedings of the 2020 ACM SIGMOD international conference on

management of data, 2020, pp. 2151±2166.
[34] J. Ali, M. Babaei, A. Chakraborty, B. Mirzasoleiman, K. P. Gummadi,

and A. Singla, ªOn the Fairness of Time-Critical Influence Maximization
in Social Networks,º IEEE Transactions on Knowledge and Data

Engineering, vol. 35, no. 3, pp. 2875±2886, Mar. 2023.
[35] D. Li, J. Liu, J. Jeon, S. Hong, T. Le, D. Lee, and N. Park, ªLarge-scale

data-driven airline market influence maximization,º in Proceedings of

ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD), 2021, pp. 914±924.
[36] J. Li, X. Wang, K. Deng, X. Yang, T. Sellis, and J. X. Yu, ªMost

influential community search over large social networks,º in 2017 IEEE

33rd international conference on data engineering (ICDE). IEEE, 2017,
pp. 871±882.

[37] Y. Zhou, Y. Fang, W. Luo, and Y. Ye, ªInfluential Community Search
over Large Heterogeneous Information Networks,º Proceedings of the

VLDB Endowment, vol. 16, no. 8, pp. 2047±2060, Apr. 2023.
[38] Z. Yang, A. W.-C. Fu, and R. Liu, ªDiversified Top-k Subgraph Querying

in a Large Graph,º in Proceedings of the International Conference on

Management of Data (SIGMOD), ser. SIGMOD ’16, Jun. 2016, pp.
1167±1182.

[39] X. Huang, H. Cheng, R.-H. Li, L. Qin, and J. X. Yu, ªTop-K structural
diversity search in large networks,º The VLDB Journal, vol. 24, no. 3,
pp. 319±343, Jun. 2015.

[40] C.-H. Tai, P. S. Yu, D.-N. Yang, and M.-S. Chen, ªStructural Diversity
for Resisting Community Identification in Published Social Networks,º
IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 1,
pp. 235±252, Jan. 2014.

[41] A. A. Chowdhary, C. Liu, L. Chen, R. Zhou, and Y. Yang, ªFinding
attribute diversified community over large attributed networks,º World

Wide Web, vol. 25, no. 2, pp. 569±607, Mar. 2022.

	Introduction
	Problem Definition
	Social Networks
	Information Propagation Model
	 Our TopL-ICDE Problem

	Our TopL-ICDE Processing Framework
	Pruning Strategies
	Keyword Pruning
	Support Pruning
	Radius Pruning
	Influential Score Pruning

	Offline Pre-Computation and Indexing
	Offline Pre-Computed Data for TopL-ICDE Processing
	Indexing Mechanism

	Online TopL-ICDE Processing
	Index Pruning
	TopL-ICDE Processing Algorithm

	Online Diversified TopL-ICDE Processing
	NP-Hardness of the DTopL-ICDE Problem
	The Greedy Algorithm for DTopL-ICDE Processing

	Experimental Evaluation
	Experimental Settings
	TopL-ICDE Performance Evaluation
	DTopL-ICDE Performance Evaluation

	Related Work
	Conclusions
	References

