
Joint DNN Partitioning and Resource Allocation
for Multiple Machine Learning-based Mobile

Applications at the Network Edge
Cheng-Yu Cheng∗, Robert Gazda†, Hang Liu∗

∗Dept. of Electrical Engineering & Computer Science, The Catholic University of America, Washington, DC, USA
†InterDigital Communications, Inc., Conshohocken, PA, USA

Email: {chengc, liuh}@cua.edu, robert.gazda@interdigital.com

Abstract—As a core technique of machine learning, deep
neural networks (DNNs) have been extensively used in today’s
mobile applications. However, users’ mobile devices (MDs) have
limited capabilities to execute computation-intensive DNN in-
ference operations and meet the latency constraints. Offloading
part of DNN computations to edge servers (ESs) in a mobile
edge computing (MEC) network can mitigate these challenges.
However, prior studies on offloading either overlook the varying
computation demands and output data sizes for different layers
of neural networks or only consider split DNN offloading based
on a single user or a single ES. Driven by the question of how to
partition multiple parallel DNN inferences and offload multiple
partitioned DNN processes in a multi-user multi-ES network,
in this paper, we design a distributed scheme that jointly
optimizes user-ES association, DNN layer-level partitioning,
computing and wireless communication resource allocation,
and offloading. Specifically, MDs and ESs make decisions to
maximize their own utilities based on a multi-leader multi-
follower Stackelberg game by leveraging DNN layer character-
istics and taking account of multi-server heterogeneous network
environments, computation load, and available resources. The
evaluation results show that the proposed joint optimization
scheme can significantly improve the performance of DNN
inferences, compared to the commonly used benchmarks.

Index Terms—Mobile Edge Computing, Deep Neural Net-
work, Partitioning, Association, Resource Allocation, Offload-
ing.

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) are
increasingly popular, and deep neural networks (DNNs) are
the core techniques for AI and ML. DNNs have been widely
used in mobile applications, e.g., image/video recognition,
augmented reality (AR)/virtual reality (VR), robot percep-
tion, video games, sensor data mining, and anomaly detec-
tion. Many DNN-based applications require stringent quality
of service (QoS), such as low latency and high accuracy.
On the other hand, DNN model execution is computation-
intensive and power-consuming, and users’ mobile devices
(MDs) usually have certain limitations in computing capa-
bility and energy consumption. For example, AlexNet [1],
VGG-16 [2] and GoogleNet [3] require 724M, 15.5G, and
1.43G multiply-add computations (MACs), respectively, for
a typical image classification task. Therefore, many AI/ML
applications intend to offload the DNN inference processing
tasks from MDs to mobile edge computing (MEC) servers co-
located at the base stations and/or remote cloud data centers.

For example, interactive AR/VR processing can be conducted
at a MEC edge server (ES), and then the rendered images
and related data are transmitted and shown to the user on his
mobile device. However, the MEC- and cloud-based DNN
task offloading approach requires significant amounts of data
to be sent to edge/cloud servers over wireless networks
and puts heavy computational pressure on the servers under
situations with many users and heavy demands. Thus, it needs
to take into account the available network bandwidth, mobile
device and server computation capacity, and communication
and computing latency requirements.

DNN consists of multiple connected layers of neurons.
There are varying computation complexities and output data
sizes for different layers of neural networks. A DNN in-
ference operation can be appropriately partitioned based on
its layer structure between the MD and edge/cloud server.
The MD executes the inference up to a specific DNN layer
and sends the intermediate data to a server. The server runs
through the remaining DNN layers, which is able to offload
the computation-intensive parts to the server [4], [5]. The
computation and data rate requirements may thus be reduced
at the MD and the latency performance can be improved,
compared to the entire execution on either device or server
side.

However, the performance of split DNN operations de-
pends on its layer-level characteristics (computation com-
plexities and intermediate output data sizes), the DNN task
demands, the computation capabilities of mobile devices and
servers, as well as network environments. For example, in
a video recognition application using a convolutional neural
network (CNN) model, the intermediate data size transferred
from one CNN layer to the next may change a lot, thus
the required network bandwidth is related to the model split
point as well as the video frame rate and resolution. The
required computation cycles for different DNN layers and
the available resources at the MDs and servers also vary and
affect the processing time of split DNN operations. The chal-
lenges are to determine the optimal DNN partitioning point
and offload the appropriate part of DNN computation tasks
from MDs to ESs under dynamic DNN task demands and
network environments, especially when there are multiple
mobile users and multiple servers to perform multiple DNN
operations in a MEC network.

Substantial research has been conducted on task offloading
and resource allocation for MEC [6]–[8]. However, those
works mainly considered general computational task offload-
ing problems, where the whole tasks or a portion of data bits
belonging to a task were offloaded from mobile devices to
edge servers for processing, but the DNN layer characteristics
and layer-level partitioning were not considered. There are
a few recent studies that specifically address DNN layer
partitioning. The mechanisms to profile the computation time
and output data size of DNN layers in real-time have been
proposed [9], [10]. There were a number of works to design
the schemes to decide the best DNN partitioning point and
computation offloading strategy for different applications,
such as image/video recognition, mobile AR/VR, and robot
control [11], [12]. Nevertheless, these previous works only
considered DNN computation partitioning based on a single
mobile device, a single DNN inference process, or a single
edge/cloud server. How to partition multiple parallel DNNs
inferences and allocate computing and communication re-
sources to offload multiple partitioned DNN processes in a
multi-user multi-ES network is still an open problem, and
it requires a different strategy to optimize overall system
performance.

In this paper, we propose a joint optimization framework of
user-ES association, DNN layer-level partitioning, offloading,
and computing and wireless communication resource allo-
cation for multiple parallel DNN inference operations with
multiple MDs and multiple ESs. Given the distributed nature
of MEC networks, we develop a distributed solution. Specif-
ically, we design a multi-leader multi-follower Stackelberg
game to model the interplay between MDs and ESs, leverag-
ing DNN layer characteristics and considering multi-server
heterogeneous network environments, computation load, and
processing power. The MDs and ESs maximize their own
utilities by making distributed optimal decisions through
the game to determine the DNN partition points, establish
association relationships, allocate radio and computing re-
sources, and orchestrate DNN computation tasks only based
on local information. The evaluation results show that the
proposed joint optimization scheme can significantly improve
the performance of DNN computation tasks, compared to the
benchmarks.

The rest of this paper is organized as follows. We describe
the system model and analyze the computation and output
data size characteristics of DNN layers in Section II. We
formulate the multi-leader multi-follower Stackelberg game
and design the joint optimization algorithms in Section III.
The performance of our work is evaluated in Section VI, and
the conclusions are summarized in Section V.

II. SYSTEM MODEL AND DNN LAYER
CHARACTERISTICS

As shown in Fig.1, we consider a densely deployed MEC
network, which consists of a set of small-cell base stations
(BS). An ES is co-located with a BS to perform edge com-
puting with low delay. Let S = {e1, e2, ..., es, ..., eS} denote
the BSs with the co-located ESs. The MEC network serves

Fig. 1: Mobile edge computing system model for multiple
partitioned DNN operations.

Fig. 2: The per-layer profiling for AlexNet.

a set of mobile devices, U = {u1, u2, ..., um, ..., uM}. MDs
run machine learning applications with DNNs. For example,
a group of visitors runs AR applications on their mobile
devices to obtain related information in a city, and a popular
algorithm, AlexNet is employed for object recognition. To
understand the characteristics of the DNN model, we have
profiled the computation time and output data size of each
AlexNet layer on a Linux machine equipped with an Intel
Core i7-8700 CPU at a clock speed of 3.2 GHz and 16
GB DDR3 memory. As shown in Fig.2, the AlexNet layers
have significantly different computation times and output data
sizes. A MD can take advantage of device and edge server
synergy to properly partition the DNN inference operations
into two portions, executing the first portion and offloading
the remaining more computation-intensive portion to the ES
for execution to improve performance.

Furthermore, we define a computing resource block (CRB)
and a radio resource block (RRB) to be the unit amount of
computing resources and communication resources that can
be allocated to a MD by an ES, respectively. Each CRB can
provide C0 CPU cycles per unit time for computation, and
each RRB is B0 bandwidth in frequency and one unit in time
for MDs to transmit data. Let ES es charge a MD to use its
CRBs and RRBs at a price of g

(c)
s per CRB and g

(r)
s per

RRB. For ease of explanation, we let a CBR be worth the
same as a RRB, that is, g(c)s = g

(r)
s . According to its DNN

computation task demand, the DNN layer characteristics, the
channel conditions to the different ESs, its own computing
resource, and the resource prices set by the different ESs,
a MD is able to choose an ES to associate with, determine
the numbers of CRBs and RRBs to purchase, and decide
how to partition the DNN layer-based operation between
the ES and itself to maximize the overall DNN computation
performance.

We first assume that a MD um is associated with and

served by an ES es, which can be represented as

xms =

{
1, MD um associated to ES es

0, Otherwise
(1)

where xms is a Boolean variable that indicates whether MD
um is associated to ES es. The ES association method will
be described in the next section. Generally, a DNN model D
contains N layers, labeled as L1, L2, ..., LN . For a layer Lj ,
∀j ∈ {1, 2, 3, ..., N}, its output data size, which is also the
input to the next layer, is Vj , and the required CPU cycles
to compute layer j is Fj . Consider that MD um partitions
the DNN model at layer αms. When um associates to es,
um will compute the first portion of the DNN model from
layer L1 to layer Lαms

. The intermediate output from layer
Lαms

will be sent to ES es, which will execute the remaining
DNN operation from layer Lαms+1 to layer LN . The service
rate of um is defined as the number of DNN tasks per unit
time when um computes the first portion of the DNN model,
which can be represented as

µ(c)
m =

Cm∑αms

j=1 Fj
(2)

where Cm is the CPU cycles per unit time that can be used
by um to perform DNN computation and

∑αms

j=1 Fj is the
total CPU cycles that are needed to compute the DNN layers
from L1 to Lαms

. In addition, the service rate for each CRB
is defined as the number of DNN tasks per unit time when
a CRB is used to process the remaining layers of the DNN
model, which can be expressed as

µ(c)
ms =

C0∑N
j=αms+1 Fj

(3)

where C0 represents the CPU cycle per unit time for each
CRB and

∑N
j=αms+1 Fj is the required CPU cycles to

compute the remaining DNN layers from Lαms+1 to layer
LN . Moreover, when um associates to es, i.e., xms = 1,
we can obtain the achievable data transmission rate for each
RRB as [13], [14]

rms = B0 log2(1 + SNRms) (4)

where SNRms =
|hms|2Pm

σ2
ms

is the channel signal-to-noise

ratio which is a function of the transmit power Pm, the noise
power σ2

ms, and the channel coefficient hms. The channel
coefficient depends on the distance between um and es as
well as the channel fading conditions. Given the output data
size Vαms

of DNN layer Lαms
, the number of tasks that can

be sent from um to es per unit time, i.e., the outgoing task
rate is

µ(r)
ms =

rms

Vαms

(5)

Real-time DNN computation tasks are delay-sensitive.
Various types of delays should be taken into consideration
in the design of DNN partitioning and resource allocation
schemes, including roundtrip transmission and computation
queuing delays. Let λm denote the arrival rate of DNN
tasks at MD um. Suppose that MD um is designated to

process the DNN layers from L1 to Lαms
, and offloads the

layers Lαms+1 - LN to ES es for processing. Following the
commonly adopted queuing delay model in [15], [16], which
can be easily extended to other models, the average sojourn
time that a DNN task spends in MD um to be processed is
then expressed as

t(c)m =
1

µ
(c)
m − λm

(6)

In addition, if MD um purchases zms RRBs to transmit the
output data of layer Lαms

to ES es, the average time that a
DNN task spends in waiting and transmission is

t(r)ms =
1

zmsµ
(r)
ms − λm

(7)

Moreover, if MD um buys yms CRBs from ES es to process
the DNN layers Lαms+1 - LN , then the average sojourn
time that a DNN task spends at ES es to be served can be
represented as

t(c)ms =
1

ymsµ
(c)
ms − λm

(8)

Therefore, the average total service delay for a DNN task,
including the time for MD um to compute the first portion
of the DNN model and send the intermediate result to ES
es, and for ES es to compute the second part of the DNN
model and send the result back to um can be expressed as

Tms = t(c)m +

S∑
s=1

xmst
(r)
ms +

S∑
s=1

xmst
(c)
ms +

S∑
s=1

xmst
(b)
ms (9)

where t
(b)
ms is the time for es to send the final DNN execution

result back to um. We assume that t
(b)
ms is a fixed value

because the size of the DNN execution result, e.g., the class
or name of a recognized object, is generally much smaller
than the output data size of intermediate DNN layers.

III. JOINT OPTIMIZATION ALGORITHM DESIGN

This section describes the algorithm design for joint opti-
mization of MD-ES association, DNN layer-level partition-
ing, offloading, and computing and radio resource allocation.
Considering the distributed nature of MEC networks, we
design distributed algorithms to allow MDs and ESs to
make decisions cooperatively. Specifically, we model the
interplay between MDs and ESs as a sequential decision-
making process and develop a joint optimization algorithm
based on the multi-leader, multi-follower Stackelberg game,
in which ESs are the leaders and set the prices for CRBs and
RRBs according to the MD demands and the prices set by
other ESs; MDs are the followers that determine which ES to
associate, how many RRBs and CRBs to purchase, and how
to partition the DNN operation based on the prices set by the
different ESs, the channel conditions to the different ESs, its
own capability to compute DNN tasks, and the arrival rate of
its DNN tasks. Each player, i.e., each of the MDs and ESs
maximizes its own utility through the game.

As MDs in the network pay ESs for services, the utility
of MD um can be denoted as the reward received from the

DNN computation tasks it processes minus the incurred cost
of service delay and payment to the ES es, which can be
expressed as follows.

Um(xms, αms, yms, zms) = γmλm − δmTms−

ωm[
S∑

s=1

xms(ymsg
(c)
s + zmsg

(r)
s)]

(10)

where γm is the reward that um can obtain for the unit
task rate it handles. δm and ωm are the weight factors
indicating the importance of task service delay and payment,
respectively, in the utility function of MD um. Moreover, as
an ES in the network provides resources in terms of CRBs
and RRBs, the utility of ES es can be expressed as the income
received from selling resource blocks minus the increment
of various costs such as energy consumption, operation and
equipment costs, etc., which can be denoted as

Us(g
(c)
s , g(r)s) =

M∑
m=1

xms(ymsg
(c)
s + zmsg

(r)
s)−

M∑
m=1

xms(ymsf
(c)
s + zmsf

(r)
s)

(11)

where f
(c)
s is the increment of cost per CRB, and f

(r)
s is the

increment of the cost per RRB. Each of MDs and ESs aims
to achieve its maximal utility, that is,

max
{xms,αms,yms,zms}

Um,m = 1, 2, ...,M.

max
{g(c)

s ,g
(r)
s }

Us, s = 1, 2, ..., S.
(12)

We exploit a multi-leader and multi-follower game [17],
[18] and develop an algorithm for the MDs and ESs to
achieve the above objective in a distributed way. As shown in
Algorithm 1, all ESs, es, ∀s ∈ {1, 2, 3, ..., S} firstly set the
initial price for CRBs and RRBs to max g

(c)
s and max g

(r)
s

respectively, which is a very high price so that no MDs um,
∀m ∈ {1, 2, 3, ...,M} would choose to offload their DNN
tasks to any of the ESs es. The ESs then start sequentially
adjusting down their prices step-by-step to attract the MDs.
Given the prices of the CRBs and RRBs set by the ESs,
each MD would determine the ES to associate, the DNN
layer partition point, and the amount of CRBs and RRBs to
purchase to achieve its maximal utility. Specifically, as there
are no close-form expressions for the layer-level computing
time and output data size of DNNs, we build a DNN partition
table that includes the required computation cycles and output
data size for different DNN partition points based on the
DNN profile [9]. A MD um chooses an ES es and calculates
the DNN layer partition point αms and the amounts of CRBs
and RRBs to purchase from the corresponding ES that yield
the highest utility value according to (10) and the DNN
partition table. It records the calculated results for every ES,
including the DNN layer-level partition point, the amounts
of CRBs and RRBs to purchase, and the obtained utility
value. The MD then determines a combination of the ES
to associate, the DNN partition point, and the amounts of

CRBs and RRBs that achieve the overall maximal utility,
which represents its best response to the prices of CRBs and
RRBs set by the ESs. It sends the request to the ES it intends
to associate.

Algorithm 1 Algorithm for multi-leader multi-follower
Stackelberg game

1: Initially, each ES es, ∀s ∈ {1, 2, 3, ..., S} sets the price
for CRB = max g

(c)
s and the price for RRB = max g

(r)
s ,

which is a very high price so that no MD um chooses
to offload the DNN tasks to the ES

2: Each MD um builds a DNN partition table based on the
DNN profile

3: while at least one ES es adjusts its price do
4: for MD um do
5: while choose an ES es, ∀s ∈ {1, 2, 3, ..., S} do
6: MD um calculates the DNN layer partition point

αms and the amounts of CRBs and RRBs to
purchase from ES es that yield the highest utility
value according to (10) and the DNN partition
table

7: records the calculation results for each ES
8: end while
9: MD um determines a combination of the ES to

associate, the DNN layer partition point, and the
amounts of the CRBs and RRBs to purchase that
achieves the overall maximal utility

10: sends the request to the ES to associate
11: end for
12: for ES es do
13: Calculate its own utility based on eq (11) and the

total number of CRBs and RRBs purchased by the
associated MDs

14: if Us(g
(c)
s +∆i, g

(r)
s +∆i) > Us then

15: new g
(c)
s = min{max g

(c)
s , g

(c)
s +∆i}

16: new g
(r)
s = min{max g

(r)
s , g

(r)
s +∆i}

17: else
18: if Us(g

(c)
s −∆i, g

(r)
s −∆i) > Us then

19: new g
(c)
s = max{0, g

(c)
s −∆i}

20: new g
(r)
s = max{0, g

(r)
s −∆i}

21: else
22: new g

(c)
s = g

(c)
s

23: new g
(r)
s = g

(r)
s

24: end if
25: end if
26: end for
27: for ES es do
28: Each ES es update the price for g

(c)
s = new g

(c)
s

and g
(r)
s = new g

(r)
s

29: end for
30: end while

The ESs set their prices of CRBs and RRBs based on an
iterative algorithm [16]. They update their prices in sequence
for each round of iterations. An ES tries to decrease or
increase its price by a fixed amount each time and then

calculates its utility according to (11), which depends on
the behaviors of the MDs and other ESs. If the action (i.e.,
increasing or decreasing the price) increases the utility of the
ES, it would perform the action correspondingly to update
the price in the next round. Otherwise, it would keep its price.
The ESs will announce the updated prices to the MDs. On
the other hand, the MDs will recalculate the ES association,
the partition point, and the amount of CRBs and RRBs to
purchase once receiving the price updates. The above process
continues until all ESs stop changing their prices, i.e., the
increase for the utility due to the price change is less than a
preset threshold.

IV. EVALUATION RESULTS

In this section, we present the evaluation results to show
the performance of the proposed joint association, DNN
layer-level partitioning, offloading, and resource allocation
optimization scheme. We also compare the performance of
our proposed scheme with three different benchmarks:

a) User-only scheme: A MD itself computes all layers
of the DNN processing tasks without purchasing any CRB
and RRB from any ES, in other words, no edge server
association and DNN layer partitioning are performed for
this benchmark scheme.

b) Edge-only scheme: All layers of the DNN processing
tasks are offloaded to an associated ES for computation. That
is, only the edge server association is performed and no DNN
layer partitioning is executed.

c) Heuristic scheme: Each MD is associated to the ES
with the association method based on the SNR of the co-
located base station as in [12], and then only the DNN layer
partitioning and offloading is applied.

For the first experiment, we introduced 20 MDs and 2 ESs
randomly distributed in a circular area with a radius of 50
m. In addition, we consider that the MDs can run different
machine learning applications with different DNN models.
In the experiment, a MD may choose to run one of the three
DNN models randomly, the AlexNet DNN model described
in Section II, the speech recognition model, and the facial
recognition model described in [9]. The ESs will support all
the models. We assume that a mechanism as in [10] can
be used to profile the DNN layer-level computation time
and output data size. This paper focuses on determining MD
association, resource allocation, and DNN partitioning point
of multiple DNN operations. We first evaluate the average
utility of the MDs and ESs when the average task arrival
rates at the MDs change. As shown in Fig. 3a, the proposed
scheme improves the average utility of the MDs, compared
to all the benchmark schemes. This is because our scheme
adjusts association, resource allocation, and DNN partition
point to achieve joint optimization. The average MD utility
increases as the average user task arrival rate increases and
the MDs process more workload. The increasing rate is high
at the beginning and slows down as the average task arrival
rate becomes large. The reason is that when more workload
is presented at the MDs, they need to purchase more CRBs
and RRBs from the ESs, which results in a lower MD utility

(a)

(b)
Fig. 3: The average utility of the MDs (a) and the average
utility of the ESs (b) versus the average user task arrival rate.

due to the payment to the ESs. Additionally, for the user-
only scheme, the MDs can handle the workload at a low
task arrival rate, however, the MD won’t be able to handle
the DNN tasks all by itself and the utility becomes zero due
to overloading when the task arrival rate is greater than a
threshold, 10 tasks per unit time with this setting.

Furthermore, we can observe in Fig. 3b that our proposed
scheme also performs better than the benchmarks in terms
of the average utility of the ESs due to joint optimization of
association, resource allocation, and DNN partitioning point
and offloading. In addition, the average utility of the ESs
increases and then flats out as the average task arrival rate
becomes large. The reason is that an ES has a limited number
of CRBs and RRBs. After all the available CRBs and RRBs
of ESs are allocated to their associated MDs, the ESs can
increase their utility only by increasing the price of the CRBs
and RRBs, but the impact of price increase to the ES utility
would decrease since the MDs purchase fewer resources due
to a high price. For the user-only scheme, the utility of the
ESs is zero because the users will not offload their DNN
processing tasks to the ESs.

For the second experiment, we fixed the average task
arrival rate to 5 tasks per unit time for each MD and evaluated
the average utility of the MDs and ESs as the number of
MDs changed. As shown in Fig.4a, we can see that the
average utility of the MDs for our proposed joint optimization
scheme is higher than those of the benchmarks. In addition,
as the number of MDs increases, the average utility of the

(a)

(b)
Fig. 4: The average utility of the MDs (a) and the average
utility of the ESs (b) versus the number of MDs.

MDs increases at the beginning and becomes flat. This is
because more MDs compete for the resources, causing higher
resource prices, especially after the ESs allocate all their
available CRBs and RRBs to the MDs. The MDs will get less
amount of CRBs and RRBs at the same amount of payment,
reducing the utility value. In Fig.4b, we evaluate the average
utility of the ESs as the number of the MDs changes. Once
again, the proposed scheme outperforms the benchmarks
in terms of the average ES utility by jointly optimizing
association, resource allocation, and DNN partitioning point.
The average ES utility first increases at a high rate, and
then the increasing rate slows down as the number of MDs
becomes large. As discussed before, this is because the ESs
can lease more resources to MDs at the beginning to increase
their utility, but after they have allocated all their resources
to the MDs, they could only increase the price to obtain a
higher utility, which is less effective.

V. CONCLUSIONS

This work proposes a joint optimization framework that
partitions multiple DNN-based machine learning inference
processes, determines the association of mobile devices to
edge servers, and allocates computing and wireless commu-
nication resources for offloading part of DNN computations
from multiple MDs to multiple ESs in a mobile edge comput-
ing network. A multi-leader multi-follower Stackelberg game
is designed, which allows MDs and ESs to make distributed
decisions to maximize their own utilities by leveraging the
computation complexity and output data size characteristics

of different DNN layers and taking into consideration com-
putation load, available resources, and multi-server hetero-
geneous network environments. The evaluation results show
that the proposed scheme can improve the utility of both
MDs and ESs, compared to the benchmarks, especially when
the DNN task arrival rates are high or the number of MDs
increases.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the
ACM, vol. 60, no. 6, pp. 84–90, 2017.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv Preprint arXiv:1409.1556,
2020.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–9, 2015.

[4] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[5] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “Coedge:
Cooperative dnn inference with adaptive workload partitioning over
heterogeneous edge devices,” IEEE/ACM Transactions on Networking,
vol. 29, no. 2, pp. 595–608, 2021.

[6] Z. Ding, J. Xu, O. A. Dobre, and H. V. Poor, “Joint power and time
allocation for noma–mec offloading,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 6, pp. 6207–6211, 2019.

[7] S. Xia, Z. Yao, Y. Li, and S. Mao, “Online distributed offloading and
computing resource management with energy harvesting for heteroge-
neous mec-enabled iot,” IEEE Transactions on Wireless Communica-
tions, vol. 20, no. 10, pp. 6743–6757, 2021.

[8] W.-B. Sun, J. Xie, X. Yang, L. Wang, and W.-X. Meng, “Efficient
computation offloading and resource allocation scheme for oppor-
tunistic access fog-cloud computing networks,” IEEE Transactions on
Cognitive Communications and Networking, vol. 9, no. 2, pp. 521–533,
2023.

[9] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Computer Architecture News,
vol. 45, no. 1, pp. 615–629, 2017.

[10] B. Zhang, T. Xiang, H. Zhang, T. Li, S. Zhu, and J. Gu, “Dynamic dnn
decomposition for lossless synergistic inference,” in 2021 IEEE 41st
International Conference on Distributed Computing Systems Work-
shops (ICDCSW), pp. 13–20, 2021.

[11] X. Chen, M. Li, H. Zhong, Y. Ma, and C.-H. Hsu, “Dnnoff: offloading
dnn-based intelligent iot applications in mobile edge computing,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 4, pp. 2820–2829,
2022.

[12] P. Ren, X. Qiao, Y. Huang, L. Liu, C. Pu, and S. Dustdar, “Fine-grained
elastic partitioning for distributed dnn towards mobile web ar services
in the 5g era,” IEEE Transactions on Services Computing, vol. 15,
no. 6, pp. 3260–3274, 2022.

[13] L. Ahlin, J. Zander, and S. Ben Slimane, Principles of wireless
communications. Studentlitteratur, 2006.

[14] A. Khalili, A. Ashikhmin, and H. Yang, “Cell-free massive mimo
with low-complexity hybrid beamforming,” in ICC 2022 - IEEE
International Conference on Communications, 2022.

[15] C. Newell, Applications of queueing theory, vol. 4. Springer Science
& Business Media, 2013.

[16] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing
resource allocation in three-tier iot fog networks: A joint optimization
approach combining stackelberg game and matching,” IEEE Internet
of Things Journal, vol. 4, no. 5, pp. 1204–1215, 2017.

[17] J. Chen, Q. Wu, Y. Xu, N. Qi, T. Fang, L. Jia, and C. Dong, “A multi-
leader multi-follower stackelberg game for coalition-based uav mec
networks,” IEEE Wireless Communications Letters, vol. 10, no. 11,
pp. 2350–2354, 2021.

[18] J. Patel and K. M, “Game theoretic approach for electric vehicles
charging solution: A study of the interplay between time, price and
location,” in 2023 IEEE 8th International Conference for Convergence
in Technology (I2CT), 2023.

