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Abstract

Although Federated Learning (FL) enables global model training

across clients without compromising their raw data, due to the un-

evenly distributed data among clients, existing Federated Averaging

(FedAvg)-based methods suffer from the problem of low inference

performance. Specifically, different data distributions among clients

lead to various optimization directions of local models. Aggregat-

ing local models usually results in a low-generalized global model,

which performs worse on most of the clients. To address the above

issue, inspired by the observation from a geometric perspective

that a well-generalized solution is located in a flat area rather than

a sharp area, we propose a novel and heuristic FL paradigm named

FedMR (Federated Model Recombination). The goal of FedMR is

to guide the recombined models to be trained towards a flat area.

Unlike conventional FedAvg-based methods, in FedMR, the cloud

server recombines collected local models by shuffling each layer of

them to generate multiple recombined models for local training on

clients rather than an aggregated global model. Since the area of the

flat area is larger than the sharp area, when local models are located

in different areas, recombined models have a higher probability of

locating in a flat area. When all recombined models are located in

the same flat area, they are optimized towards the same direction.

We theoretically analyze the convergence of model recombination.

Experimental results show that, compared with state-of-the-art FL

methods, FedMR can significantly improve the inference accuracy

without exposing the privacy of each client.
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1 Introduction

Federated Learning (FL) [25, 32, 40] has been widely acknowledged

as a promising means to design large-scale distributed Artificial

Intelligence (AI) applications, e.g., Artificial Intelligence of Things

(AIoT) systems [13, 37, 47], healthcare systems [2, 46], and recom-

mender systems [35, 42]. Unlike conventional Deep Learning (DL)

methods, the cloud-client architecture based FL supports the col-

laborative training of a global DL model among clients without

compromising their raw data [3]. In each FL training round, the

cloud server first dispatches the global model to its selected clients

for local training and then gathers the corresponding gradients of

trained models from clients for aggregation. In this way, clients can

train a global model without sharing data.

Although FL enables effective collaborative training among mul-

tiple clients while protecting data privacy, existing FL methods

suffer from the problem of łweight divergencež [21]. Especially

when the data on the clients are non-IID (Identically and Indepen-

dently Distributed) [1, 38], the optimal directions of local models

on clients and the aggregated global model on the cloud server

are significantly inconsistent, resulting in serious inference per-

formance degradation of the global model. To improve FL per-

formance in non-IID scenarios, various FL methods have been

studied, e.g., client grouping-based methods [45], global control
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variable-based methods [17, 22, 28], Knowledge Distillation (KD)-

based methods[30, 39, 48], and mutation-based methods [14]. The

basic ideas of these solutions are to guide the local training on

clients [17, 22] or adjust parameter weights for model aggrega-

tion [30, 48].

Although these methods are promising in alleviating the impact

of data heterogeneity, most of them adopt the well-known Feder-

ated Averaging (FedAvg)-based paradigm, which may potentially

reduce generalization performance. This is mainly because FedAvg

paradigm only aggregates the parameters of collected local mod-

els and initializes local training by clients with the same global

models. Specifically, since the data distribution among clients is

different, the optimal directions of the local models are diverse.

On the one hand, although the aggregation operation can achieve

knowledge sharing among multiple local models, it can still neglect

the specific knowledge learned by local models, which seriously

limits the inference performance of the global model. On the other

hand, since FedAvg only uses the same global model for local train-

ing, FL training inevitably results in notorious stuck-at-local-search

problems during local training. As a result, the global model based

on simple statistical averaging cannot accurately reflect both in-

dividual efforts and the potential of local models in the search for

optimal global models. Therefore, how to overcome the shortcomings

of the FedAvg-based paradigm and improve the performance of FL in

non-IID scenarios is an important challenge.

Some recent research on model training indicates that, from

the perspective of the loss landscapes of DL models, optimal solu-

tions with well generalization performance often lie in flat valleys,

while the inferior ones are always located in sharp ravines [11, 24].

Inspired by the above observation, to collaboratively train a well-

generalized model, FL needs to guide the local training towards a

more flat area. Since the direction of gradient descent is stochastic,

compared to using the same global model, using multiple global

models for local training has a greater probability that the existing

model can optimize to a flatter area. Since flat areas are usually

larger than sharp areas, intuitively, the exchange of the correspond-

ing parameters among multiple models rather than aggregation

can allow them to be displaced in the solution space. When a model

is stuck in a sharp area, the parameter exchange may make it es-

cape from the sharp area. With continuous training and parameter

exchange, when multiple models are located in the same flat area,

these models will optimize in the same direction, that is, the center

of the flat area.

Inspired by the above intuition, this paper proposes a novel FL

paradigm called FedMR (Federated Model Recombination), which

can effectively help the training of local models escape from sharp

area. Unlike FedAvg that aggregates all the collected local models in

each FL training round, FedMR randomly shuffles the parameters of

different local models within the same layers, and recombines them

to form new local models. In this way, FedMR can derive diversified

models that can effectively escape local optimal solutions for the

local training of clients. The main contributions of this paper can

be summarized as follows:

• We propose a novel FL paradigm named FedMR, which con-

tains a newly layer-wise model recombination method to

replace the traditional FedAvg-basedmodel aggregation with

the aim of improving FL inference performance.

• We introduce a two-stage training scheme for FedMR, which

combines the merits of both model recombination and ag-

gregation to accelerate the overall FL training process.

• We theoretically prove the convergence of FedMR in convex

scenarios and conduct empirical experiments to validate the

convergence of FedMR in non-convex scenarios.

• We conduct extensive experiments on various well-known

models and datasets to show both the effectiveness and com-

patibility of FedMR.

2 Related Work

To address the problem of uneven data distributions, exiting so-

lutions can be mainly classified into four categories, i.e., client

grouping-based methods, global control variable-based methods,

knowledge distillation-based methods, and mutation-based meth-

ods. The device grouping-based methods group and select clients for

aggregation based on the data similarity between clients. For ex-

ample, FedCluster [8] divides clients into multiple clusters and per-

forms multiple cycles of meta-update to boost the overall FL conver-

gence. Based on either sample size or model similarity, CluSamp [9]

groups clients to achieve a better client representativity and a re-

duced variance of client stochastic aggregation parameters in FL.

By modifying the penalty terms of loss functions during FL training,

the global control variable-based methods can be used to smooth

the FL convergence process. For example, FedProx [28] regularizes

local loss functions with the squared distance between local models

and the global model to stabilize the model convergence. Similarly,

SCAFFOLD [22] uses global control variables to correct the łclient-

driftž problem in the local training process. Knowledge Distillation

(KD)-based methods adopt soft targets generated by the łteacher

modelž to guide the training of łstudent modelsž. For example, by

leveraging a proxy dataset, Zhu et al. [48] proposed a data-free

knowledge distillation method named FedGen to address the het-

erogeneous FL problem using a built-in generator. With ensemble

distillation, FedDF [30] accelerates the FL training by training the

global model through unlabeled data on the outputs of local models.

Mutation-based methods attempt to mutate the global model to gen-

erate multiple mutated intermediate models for local training. For

example, FedMut [14] utilizes the gradients to mutate the global

model and dispatches the mutated models for local training.

Although the above methods can optimize FL performance from

different perspectives, since coarse-grained model aggregation is

performed, the inference capabilities of localmodels are still strongly

restricted. Furthermore, most of them cannot avoid non-negligible

communication and computation overheads or the risk of data

privacy exposure. In addition, many FL methods have been pro-

posed to address device heterogeneity problems. To effectively

train on devices with different hardware resources, some meth-

ods [4, 18, 20, 41] utilize heterogeneous models for local training.

To avoid stragglers caused by uneven computing capability or un-

certainty [15], existing methods [16, 44] attempt to perform a wise

client scheduling to achieve asynchronous FL training. Note that

this paper only focuses on the data heterogeneity problem.

To the best of our knowledge, FedMR is the first attempt using

model recombination rather than aggregation for FL. Since FedMR

considers the specific characteristics and efforts of local models, it
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can further mitigate the weight divergence problem, thus achieving

better inference performance than state-of-the-art FL methods.

3 Motivation

3.1 Intuition

Comparison between FedAvg and Independent Training. Fig-

ure 1 illustrates the FL training processes on the same loss landscape

using FedAvg and Independent training (Indep), respectively, where

the server of Indep just shuffles the received local models and then

randomly dispatches them to clients without aggregation. In each

subfigure, the local optima are located within the areas surrounded

by solid red lines. Note that since the upper surrounded area is

flatter than the lower surrounded area in the loss landscape, the

solutions within it will exhibit better generalization.

Local Model Global Model Local Training

(a) FedAvg (b) Independent Training

Figure 1: Training processes on the same loss landscape.

As shown in Figure 1(a), along with the training process, the

aggregated global models denoted by red circles gradually move

toward the lower sharp area with inferior solutions, though the op-

timizations of some local models head toward the upper surrounded

area with better solutions. Such biased training is mainly because

the local training starts from the same global model in each FL

round. As an alternative, due to the lack of aggregation operation,

the local models of Indep may converge in different directions as

shown in Figure 1(b). In this case, even if some local training in

Idep achieves a better solution than the one obtained by FedAvg,

due to the diversified optimization directions of local models, such

an important finding can be eclipsed by the results of other local

models. Clearly, there is a lack of mechanisms for Indep that can

guide the overall training toward such superior solutions.

Intuition of Model Recombination. Based on the Indep train-

ing results shown in Figure 1(b), Figure 2 illustrates the intuition

of our model recombination method, where the FL training starts

from the three local models (denoted by yellow diamonds in round

1) obtained in figure 1(b). At the beginning of round 1, two of the

three local models are located in the sharp ravine. In other words,

without model recombination, the training of such two local mod-

els may get stuck in the lower surrounded area. However, due to

the weight adjustment by shuffling the layers among local models,

we can find that the three recombined models (denoted by yellow

squares) are sparsely scattered in the loss landscape, which enables

the local training escape from local optima. According to [10, 43],

a small perturbation of the model weights can make it easier for

Model

Recombination

Model

Recombination

Model

Recombination

Local Model Recombined Model Local Training Model Recombination

Round 1 Round 2 Round 3

Figure 2: An example of model recombination.

local training to jump out of sharp ravines rather than flat valleys.

In other words, the recombined models are more likely to converge

toward flat valleys along the local training. For example, in the end

of round 3, we can find that all three local models are located in the

upper surrounded area, where their aggregated model has better

generalization performance than the one achieved in Figure 1(a).
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4 FedMR Approach

4.1 Overview of FedMR

Figure 3 presents the framework and workflow of FedMR, which

consists of two process, i.e., FL training process and the model

deployment process. In FL training process, unlike FedAvg-based

methods that use the same global model for local training, FedMR

adopts multiple homogeneous intermediate models for local train-

ing, where each client model is dispatched one model. Specifically,

each training round involves three specific steps as follows:

• Step 1 (Model Dispatching): The cloud server dispatches

𝐾 intermediate models to 𝐾 selected clients, respectively,

according to their indices, where 𝐾 denotes the number of

activated clients participating in each FL training round.

Note that in FedMR different clients will receive different

models for the local training.
• Step 2 (Model Upload): Once its local training is finished,

a client needs to upload the parameters of its newly updated

local model to the cloud server.
• Step 3 (Model Recombination): The cloud server decom-

poses received local models into multiple layers individually

in the same manner and conducts the random shuffling of
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Algorithm 1 Implementation of FedMR

Input: i) 𝑟𝑛𝑑 , # of training rounds; ii) 𝑆𝑐 , the set of clients; iii) 𝐾 , #

of clients participating in each FL round.

Output:𝑤𝑔𝑙𝑏 , the parameters of trained global model.

FedMR(𝑟𝑛𝑑 ,𝑆𝑑𝑒𝑣 ,𝐾 )

1: 𝐿𝑚 ← [𝑤
1
1
,𝑤2

1
, ...,𝑤𝐾

1
] // initialize model list

2: for 𝑟 = 1, ..., 𝑟𝑛𝑑 do

3: 𝐿𝑟 ← Random select 𝐾 clients from 𝑆𝑐
/*parallel for block*/

4: for 𝑖 = 1, ..., 𝐾 do

5: 𝑣𝑖𝑟+1 ←ClientUpdate(𝐿𝑚 [𝑖], 𝐿𝑟 [𝑖])

6: 𝐿𝑚 [𝑖] ← 𝑣𝑖𝑟+1
7: end for

8: [𝑤1
𝑟+1,𝑤

2
𝑟+1, ...,𝑤

𝐾
𝑟+1] ←ModelRcombine(𝐿𝑚)

9: 𝐿𝑚 ← [𝑤
1
𝑟+1,𝑤

2
𝑟+1, ...,𝑤

𝐾
𝑟+1]

10: end for

11: 𝑤𝑔𝑙𝑏 ← 1
𝐾

∑𝐾
𝑖=1𝑤

𝑖
𝑟𝑛𝑑+1

12: return𝑤𝑔𝑙𝑏

the same layers among different local models. Then, by con-

catenating layers from different sources in order, a new local

model can be reconstructed. Note that any decomposed layer

of the uploaded model will eventually be used by one and

only one of the recombined models.

In the model deployment process, the cloud server aggregates

all the intermediate models to generate a global model and deploys

the global model to all the local clients for specific tasks.

4.2 Implementation of FedMR

Algorithm 1 details the implementation of FedMR. Line 1 initializes

the model list 𝐿𝑚 , which includes 𝐾 initial models. Lines 2-10 per-

forms 𝑟𝑛𝑑 rounds of FedMR training. In each round, Line 3 selects

𝐾 random clients to participate in the model training and creates

a client list 𝐿𝑟 . Lines 4-7 conduct the local training on clients in

parallel, where Line 5 applies the local model 𝐿𝑚 [𝑖] on client 𝐿𝑟 [𝑖]

for local training by using the function ClientUpdate, and Line 6

achieves a new local model after the local training. After the cloud

server receives all the 𝐾 local models, Line 8 uses the function

ModelRcombine to recombine local models and generate 𝐾 new

local models, which are saved in 𝐿𝑚 as shown in Line 9. Finally,

Lines 11-12 will report an optimal global model that is generated

based on 𝐿𝑚 . Note that the cloud server will dispatch the global

model to all the clients for the purpose of inference rather than

local training. The following parts will detail the key components

of FedMR. Since FedMR cannot adapt to the secure aggregation

mechanism [5], to further protect privacy, we present an extended

secure recombination mechanism in Appendix B, which enables

the exchange of partial layers among clients before local training

or model uploading to ensure that the cloud server cannot directly

obtain the gradients of each local model.

4.2.1 Local Model Training. Unlike conventional FL methods that

conduct local training on clients starting from the same aggregated

model, in each training round FedMR uses different recombined

models (i.e., 𝐾 models in the model list 𝐿𝑚) for the local training
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Figure 4: Example of model aggregation and recombination

purpose. Note that, in the whole training phase, FedMR only uses

𝐾 (𝐾 ≤ |𝑆𝑐 |) models, since there are only 𝐾 devices activated in

each training round. Let𝑤𝑐𝑟 be the parameters of some model that

is dispatched to the 𝑐𝑡ℎ client in the 𝑟𝑡ℎ training round. In the 𝑟𝑡ℎ

training round, we dispatch the 𝑖𝑡ℎ model in 𝐿𝑚 to its correspond-

ing client using 𝑤
𝐿𝑟 [𝑖 ]
𝑟 = 𝐿𝑚 [𝑖]. Based on the recombined model,

FedMR conducts the local training on client 𝐿𝑟 [𝑖] as follows:

𝑣
𝐿𝑟 [𝑖 ]
𝑟+1 = 𝑤

𝐿𝑟 [𝑖 ]
𝑟 − 𝜂∇𝑓𝐿𝑟 [𝑖 ] (𝑤

𝐿𝑟 [𝑖 ]
𝑟 ),

𝑠 .𝑡 ., 𝑓𝐿𝑟 [𝑖 ] (𝑤
𝐿𝑟 [𝑖 ]
𝑟 ) =

1

|𝐷𝐿𝑟 [𝑖 ] |

|𝐷𝐿𝑟 [𝑖 ] |
∑︁

𝑗=1

ℓ (𝑤
𝐿𝑟 [𝑖 ]
𝑟 ;𝑥 𝑗 ;𝑦 𝑗 ),

where 𝑣
𝐿𝑟 [𝑖 ]
𝑟 indicates parameters of the trained local model,𝐷𝐿𝑟 [𝑖 ]

denotes the dataset of client 𝐿𝑟 [𝑖], 𝜂 is the learning rate, ℓ (·) is the

loss function, 𝑥 𝑗 is the 𝑗
𝑡ℎ sample in 𝐷𝐿𝑟 [𝑖 ] , and 𝑦 𝑗 is the label of

𝑥 𝑗 . Once the local training is finished, the client needs to upload the

parameters of its trained local model to the cloud server by updating

𝐿𝑚 using 𝐿𝑚 [𝑖] = 𝑣
𝐿𝑟 [𝑖 ]
𝑟+1 . Similar to traditional FL methods, in each

training round, FedMR needs to transmit the parameters of 2𝐾

models between the cloud server and its selected clients.

4.2.2 Model Recombination. Typically, a DL model consists of mul-

tiple layers, e.g., convolutional layers, pooling layers, and Fully

Connected (FC) layers. To simplify the description of our model

recombination method, we do not explicitly present the layer types

here. Let𝑤𝑥 = {𝑙𝑥
1
, 𝑙𝑥
2
, ..., 𝑙𝑥𝑛 } be the parameters of model 𝑥 , where

𝑙𝑥𝑖 (𝑖 ∈ [𝑛]) denotes the parameters of the 𝑖𝑡ℎ layer of model 𝑥 .

In each FL round, FedMR needs to perform model recombina-

tion based on 𝐿𝑚 to obtain new models for local training. Figure 4

presents an example of model aggregation and model recombina-

tion. When clients receive all the trained local models (i.e., 𝑚1,

𝑚2, ...,𝑚𝐾 ), the cloud server needs to decouple the layers of these

models individually. Note that since all the local models are ho-

mogeneous, the corresponding layers of the local models have the
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same structure. For example, the model 𝑚1 can be decomposed

into four layers. Assuming that the local models are with an ar-

chitecture of𝑤 , to enable recombination, FedMR then constructs

𝑛 lists, where the 𝑘𝑡ℎ (𝑘 ∈ [𝑛]) list contains all the 𝑘𝑡ℎ layers of

the models in 𝐿𝑚 . As an example shown in Figure 4(b), FedMR

constructs four lists (i.e., 𝑙𝑖𝑠𝑡1-𝑙𝑖𝑠𝑡4) for the 𝐾 models (i.e.,𝑚1-𝑚𝐾 ),

where each list consists of 𝐾 elements (i.e., 𝐾 layers with the same

index). After shuffling each list, FedMR generates |𝐿𝑚 | recombined

models based on shuffled results. For example, the top three layers

of the recombined model 𝑚′
1
come from the models 𝑚1, 𝑚2 and

𝑚𝐾 , respectively. For comparison, Figure 4(a) presents an example

of model aggregation, which aggregates the layers of each list to

generate an aggregated model. The aggregation-based methods dis-

patch the aggregated model to 𝐾 clients, while FedMR dispatches a

different recombined model to each client.

4.3 Two-Stage Training Scheme for FedMR

Although FedMR enables finer FL training, when starting from

blank models, FedMR converges more slowly than traditional FL

methods at the beginning. This is mainly because, due to the low

matching degree between layers in the recombined models, the

model recombination operation in this stage requires more local

training time to re-construct the new dependencies between layers.

To accelerate the overall convergence, we propose a two-stage

training scheme for FedMR, consisting of the aggregation-based pre-

training stage and model recombination stage. In the first stage, we

train the local models coarsely using the FedAvg-based aggregation,

which can quickly form a pre-trained global model. In the second

stage, from the pre-trained models, FedMR dispatches recombined

models to clients for local training. Due to the synergy of both FL

paradigms, the overall FedMR training time can be reduced.

4.4 Convergence Analysis

Based on the assumptions posed on the loss functions of local clients

in FedAvg [29], this subsection performs the convergence analysis

for FedMR.

Assumption 4.1. For 𝑖 ∈ {1, 2, · · · , 𝐾}, 𝑓𝑖 is L-smooth satisfying

| |∇𝑓𝑖 (𝑥) − ∇𝑓𝑖 (𝑦) | | ≤ 𝐿 | |𝑥 − 𝑦 | |.

Assumption 4.2. For 𝑖 ∈ {1, 2, · · · , 𝐾}, 𝑓𝑖 is 𝜇-strongly convex

satisfying 𝑓 (𝑥) ≥ 𝑓 (𝑦) + (𝑥 −𝑦)𝑇∇𝑓 (𝑦) +
𝜇
2
| |𝑥 −𝑦 | |2, where 𝜇 ≥ 0.

Assumption 4.3. The variance of stochastic gradients is upper

bounded by 𝜃2, and the expectation of squared norm of stochastic

gradients is upper bounded by𝐺2, i.e., E| |∇𝑓𝑘 (𝑤 ; 𝜉) − ∇𝑓𝑘 (𝑤) | |
2 ≤

𝜃2, E| |∇𝑓𝑘 (𝑤 ; 𝜉) | |
2 ≤ 𝐺2, where 𝜉 is a data batch of the 𝑘𝑡ℎ client

in the 𝑡𝑡ℎ FL round.

Based on the implementation of function ModelRecombine(·), we

derive the following two lemmas for the model recombination:

Lemma 4.4. Assume that in FedMR there are 𝐾 clients participating

in every FL training round. Let {𝑣1𝑟 , 𝑣
2
𝑟 , .., 𝑣

𝐾
𝑟 } and {𝑤

1
𝑟 ,𝑤

2
𝑟 , ..,𝑤

𝐾
𝑟 } be

the set of trained local model weights and the set of recombined model

weights generated in the (𝑟 − 1)𝑡ℎ round, respectively. Assume 𝑥 is a

vector with the same size as that of 𝑣𝑘𝑟 . We have

𝐾
∑︁

𝑘=1

𝑣𝑘𝑟 =

𝐾
∑︁

𝑘=1

𝑤𝑘𝑟 , 𝑎𝑛𝑑

𝐾
∑︁

𝑘=1

| |𝑣𝑘𝑟 − 𝑥 | |
2
=

𝐾
∑︁

𝑘=1

| |𝑤𝑘𝑟 − 𝑥 | |
2 .

We prove Theorem 1 based on Lemmas 4.4. Please refer to Ap-

pendix A for the proof. Note that different from FedAvg, Lemmas 4.4

is the key lemma for the proof of FedMR.

Theorem 1. (Convergence of FedMR) Let Assumption 4.1, 4.2, and

4.3 hold. Assume that 𝐸 is the number of SGD iterations conducted

within one FL round, model recombination is conducted at the end of

each FL round, and the whole training terminates after 𝑛 FL rounds.

Let 𝑇 = 𝑛 × 𝐸 be the total number of SGD iterations conducted so far,

and 𝜂𝑘 =
2

𝜇 (𝑇+𝛾 )
be the learning rate. We can have

E[𝑓 (𝑤𝑇 )] − 𝑓
★ ≤

𝐿

2𝜇 (𝑇 + 𝛾)
[
4𝐵

𝜇
+
𝜇 (𝛾 + 1)

2
Δ1],

where 𝐵 = 10𝐿Γ + 4(𝐸 − 1)2𝐺2,𝑤𝑇 =

∑𝐾
𝑘=1

𝑤𝑘
𝑇
.

Theorem 1 indicates that the difference between the current

loss 𝑓 (𝑤𝑇 ) and the optimal loss 𝑓 ★ is inversely related to 𝑡 . From

Theorem 1, we can find that the convergence rate of FedMR is

similar to that of FedAvg, which has been analyzed in [29].

5 Experimental Results

5.1 Experimental Settings

To evaluate the effectiveness of FedMR, we implemented FedMR on

top of a cloud-based architecture. Since it is impractical to allow all

the clients to get involved in the training processes simultaneously,

we assumed that there are only 10% of clients participating in the

local training in each FL round. To enable fair comparison, all the

investigated FL methods including FedMR set SGD optimizer with

a learning rate of 0.01 and a momentum of 0.9. For each client, we

set the batch size of local training to 50, and performed five epochs

for each local training. All the experimental results were obtained

from an Ubuntu workstation with Intel i9 CPU, 32GB memory, and

NVIDIA RTX 3080 GPU.

Baseline Method Settings.We compared the test accuracy of

FedMRwith seven baseline methods, i.e., FedAvg [32], FedProx [28],

FedGen [48], CluSamp [9], FedExP [19], FedASAM [6], and Fed-

Mut [14]. Here, FedAvg is the most classical FL method, while the

other five methods are state-of-the-art (SOTA) representations of

the four kinds of FL optimization methods introduced in the re-

lated work section. Specifically, FedProx, FedExP, and FedASAM are

global control variable-based methods, FedGen is a KD-based ap-

proach, CluSamp is a device grouping-based method, and FedMut is

a mutation-based method. For FedProx, we used a hyper-parameter

𝜇 to control the weight of its proximal term, where the best values

of 𝜇 for CIFAR-10, CIFAR-100, and FEMNISTvare 0.01, 0.001, and

0.1, respectively. For FedGen, we adopted the same server settings

in [48]. For CluSamp, the clients were clustered based on the model

gradient similarity described in [9].

Dataset Settings.We investigated the performance of our ap-

proach on three well-known datasets, i.e., CIFAR-10, CIFAR-100

[23], and FMNIST [7]. We adopted the Dirichlet distribution [12]

to control the heterogeneity of client data for both CIFAR-10 and

CIFAR-100. Here, the notation 𝐷𝑖𝑟 (𝛼) indicates a different Dirich-

let distribution controlled by 𝛼 , where a smaller 𝛼 means higher

data heterogeneity of clients. Note that, different from datasets

CIFAR-10 and CIFAR-100, the raw data of FEMNIST are naturally
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non-IID distributed. Since FEMNIST takes various kinds of data het-

erogeneity into account, we did not apply the Dirichlet distribution

on FEMNIST. For both CIFAR-10 and CIFAR-100, we assumed that

there are 100 clients in total participating in FL. For FEMNIST, we

only considered one non-IID scenario involving 180 clients, where

each client hosts more than 100 local data samples.

Model Settings. To demonstrate the pervasiveness of our ap-

proach, we developed different FedMR implementations based on

three different models (i.e., CNN, ResNet-20, VGG-16). Here, we

obtained the CNN model from [32], which consists of two convo-

lutional layers and two FC layers. When conducting FedMR based

on the CNN model, we directly applied the model recombination

for local training on it without pre-training a global model, since

CNN here only has four layers. We obtained both ResNet-20 and

VGG-16 models from Torchvision [36]. · When performing FedMR

based on ResNet-20 and VGG-16, due to the deep structure of both

models, we adopted the two-stage training scheme, where the first

stage lasts for 100 rounds to obtain a pre-trained global model.

5.2 Validation for Intuitions

Independent Training. Based on the settings presented in Sec-

tion 5.1, we conducted the experiments to evaluate the effectiveness

of each local model in Indep. The FL training is based on the ResNet-

20 model and dataset CIFAR-10, where we set 𝛼 = 0.5 for non-IID

scenarios. Figures 5 compares Indep with FedAvg from the per-

spectives of both test loss and inference accuracy. Due to the space

limitation, for Indep here we only present the results of its four

random local models (denoted by Model-1, Model-2, Model-3, and

Model-4). To enable a fair comparison with FedAvg, although there

is no aggregated global model in Indep, we considered the aggre-

gated model of all its local models for each FL round, whose results

are indicated by the notion łIndepAggrž. From Figure 5, we can

find all the local models in Indep can achieve higher accuracy and

lower loss than those of FedAvg, though their loss and accuracy

curves fluctuate more sharply. Moreover, IndepAggr exhibits much

worse performance than the other references. This is mainly be-

cause, according to the definition of Indep, each local model needs

to traverse multiple clients along with the FL training processes,

where the optimization directions of client models differ in the

corresponding loss landscape.
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Figure 5: FedAvg vs. Indep.

Model Recombination. To validate the intuition about the

impacts of model recombination as presented in Section 3, we con-

ducted three experiments on CIFAR-10 dataset using ResNet-20

model. Our goal is to figure out the following three questions: i)

by using model recombination, can all the models eventually have

the same optimization direction; ii) compared with FedAvg, can the

global model of FedMR eventually converge into a more flat solu-

tion; and iii) can the global model of FedMR eventually converge

to a more generalized solution?

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  200  400  600  800  1000 1200 1400 1600 1800 2000

S
im

ila
ri
ty

Communication Rounds

Dir(0.1)
Dir(0.5)
Dir(1.0)
IID

Figure 6: Cosine similarity of local models in FedMR.

Figure 6 presents the average cosine similarity between all the

intermediate models, taking four different client data distributions

into account. We can observe that the model similarity decreases

first and gradually increases in all the investigated IID and non-IID

scenarios. Due to the nature of Stochastic Gradient Descent (SGD)

mechanism and the data heterogeneity among clients, all local

models are optimized toward different directions at the beginning of

training. However, as the training progresses, most local models will

be located in the same flat valleys, leading to similar optimization

directions for local models. These results are consistent with our

intuition as shown in Figure 2.
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Figure 7: Comparison of loss landscapes with different FL

and client data settings.

Figure 7 compares the loss landscapes of final global models

obtained by FedAvg and FedMR with different client data settings,

respectively. We can find that, compared with FedMR counterparts,
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Figure 8: Comparison of test losses of FedAvg and FedMR

with different client data settings.

the globalmodels trained by FedAvg are located in sharper solutions,

indicating the generalization superiority of final global models

achieved by FedMR.

Figure 8 compares the test losses for the global models of FedAvg

and FedMR (without using two-stage training) within different

IID and non-IID scenarios. Note that here, the global models of

FedMR are only for the purpose of fair comparison rather than

local model initialization. Due to the superiority in generalization,

we can observe that the models trained by FedMR outperform those

by FedAvg for all four cases.

5.3 Performance Comparison

We compared the performance of our FedMR approach with seven

SOTA baselines. For datasets CIFAR-10 and CIFAR-100, we consid-

ered both IID and non-IID scenarios (with 𝛼 = 0.1, 0.5, 1.0, respec-

tively). For dataset FEMNIST, we considered its original non-IID

settings [7].

5.3.1 Comparison of Test Accuracy. Table 1 compares FedMR with

the SOTA FL methods, considering both non-IID and IID scenarios

based on three different DL models. The first two columns denote

the model type and dataset type, respectively. Note that to enable

fair comparison, we cluster the test accuracy results generated

by the FL methods based on the same type of local models. The

third column shows different distribution settings for client data,

indicating the data heterogeneity of clients. The fourth column has

eight sub-columns, which present the test accuracy information

together with its standard deviation for all the investigated FL

methods, respectively.

From Table 1, we can observe that FedMR can achieve the highest

test accuracy in all the scenarios regardless of model type, dataset

type, and data heterogeneity. For CIFAR-10 and CIFAR-100, we can

find that FedMR outperforms the seven baseline methods signifi-

cantly in both non-IID and IID scenarios. For example, when dealing

with a non-IID CIFAR-10 scenario (𝛼 = 0.1) using ResNet-20-based

models, FedMR achieves test accuracy with an average of 58.40%,

while the second highest average test accuracy obtained by FedMut

is only 50.75%. Note that the performance of FedMR on FEMNIST

is not as notable as the one on both CIFAR-10 and CIFAR-100. This

is mainly because the classification task on FEMNIST is much sim-

pler than the ones applied on datasets CIFAR-10 and CIFAR-100,

which leads to the high test accuracy of the seven baseline methods.

However, even in this case, FedMR can still achieve the best test

accuracy among all the investigated FL methods.

5.3.2 Comparison of Model Convergence. Figure 9 presents the

convergence trends of the seven FL methods (including FedMR)

on the CIFAR-100 dataset. Note that here the training of FedMR is

based on our proposed two-stage training scheme, where the first

stage uses 100 FL training rounds to achieve a pre-trained model.

Here, to enable fair comparison, the test accuracy of FedMR at some

FL training rounds is calculated by an intermediate global model,

which is an aggregated version of all the local models within that

round. The four sub-figures show the results for different data dis-

tributions of clients. This figure shows that FedMR outperforms the

other six FL methods consistently in both non-IID and IID scenarios.

This is mainly because FedMR can easily escape from the stuck-at-

local-search due to the model recombination operation in each FL

round. Moreover, due to the fine-grained training, we can observe

that the learning curves in each sub-figure are much smoother

than the ones of other FL methods. We also compared CNN- and

VGG-16-based FL methods and found similar observations.

5.4 Ablation Study

5.4.1 Impacts of Activated Clients . Figure 10 compares the learn-

ing trends between FedMR and six baselines for a non-IID scenario

(𝛼 = 0.1) with both ResNet-20 model and CIFAR-10 dataset, where

the numbers of activated clients are 5, 10, 20, 50, and 100, respec-

tively. From Figure 10, we can observe that FedMR achieves the

best inference performance for all cases. We can also observe that

too few activated clients (i.e., 𝐾 = 5) result in a degradation of the

accuracy of the global model in all the FL methods. We find that

when the number of activated clients increases, the convergence

fluctuations reduce significantly and FedMR achieves the smallest

fluctuations compared to all the baselines for all cases.

5.4.2 Impacts of Model Layer Partitioning. To show the effective-

ness of our layer-wise model recombination scheme, we evaluated

the FedMR performance using different model layer partitioning

strategies. We use łFedMR-p𝑥ž to denote that the model is divided

into ⌈ 1𝑥 ⌉ (𝑥 ∈ (0, 1.0]) segments, where the model recombination

is based on segments rather than layers. Note that FedMR does

not divide a single layer into multiple segments. Instead, in FedMR

each segment involves multiple layers (i.e., one or more layers), and

the FedMR takes the recombination over segments among different

clients. Specifically, for the 𝑗𝑡ℎ layer, it belongs to ⌈
𝑗

𝑥×𝑁 ⌉
𝑡ℎ seg-

ment. Since 𝑥 ∈ (0, 1.0], each segment contains at least one layer.

Note that 𝑥 = 1.0 indicates an extreme case, where local models are

randomly dispatched to clients without recombination.

Figure 11 presents the ablation study results on CIFAR-10 dataset

using ResNet-20-based and VGG-16-based FedMR, where the data
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Table 1: Test accuracy comparison for both non-IID and IID scenarios using three DL models

Model Datas.
Heter. Test Accuracy (%)

Set. FedAvg FedProx FedGen CluSamp FedExP FedASAM FedMut FedMR

CNN

Cifar-10

0.1 50.66 ± 1.18 50.61 ± 1.21 50.27 ± 2.03 50.24 ± 1.04 53.20 ± 1.33 48.83 ± 1.86 52.88 ± 0.59 54.63 ± 0.55

0.5 54.42 ± 0.76 54.28 ± 1.29 53.66 ± 0.68 55.07 ± 0.93 55.12 ± 0.57 52.02 ± 0.43 57.29 ± 0.61 59.81 ± 0.60

1.0 57.03 ± 0.62 56.44 ± 0.68 56.19 ± 0.54 56.16 ± 0.56 57.12 ± 0.34 55.08 ± 0.61 58.88 ± 0.47 60.77 ± 0.48

𝐼 𝐼𝐷 57.21 ± 0.27 57.00 ± 0.11 57.35 ± 0.19 58.13 ± 0.35 57.05 ± 0.15 54.60 ± 0.11 58.81 ± 0.21 63.74 ± 0.18

Cifar-100

0.1 29.12 ± 0.52 29.44 ± 0.73 26.14 ± 0.92 28.51 ± 1.14 30.43 ± 0.39 28.95 ± 0.48 31.23 ± 0.35 34.47 ± 0.54

0.5 32.41 ± 0.77 32.48 ± 0.81 29.19 ± 0.67 32.63 ± 0.60 33.12 ± 0.51 32.06 ± 0.98 34.46 ± 0.69 37.41 ± 0.30

1.0 32.66 ± 0.51 33.10 ± 0.41 29.94 ± 0.51 32.65 ± 0.48 33.32 ± 0.38 32.45 ± 0.61 35.12 ± 0.42 39.15 ± 0.30

𝐼 𝐼𝐷 32.75 ± 0.20 32.57 ± 0.21 30.95 ± 0.32 32.77 ± 0.11 32.48 ± 0.14 32.35 ± 0.29 34.49 ± 0.23 40.64 ± 0.17

FEMNIST − 82.97 ± 0.37 83.15 ± 0.41 82.35 ± 0.40 82.31 ± 0.32 83.28 ± 0.29 83.49 ± 0.27 83.62 ± 0.33 83.76 ± 0.24

ResNet-20

Cifar-10

0.1 42.14 ± 3.91 43.25 ± 3.18 44.19 ± 2.42 41.64 ± 2.04 45.18 ± 2.43 45.22 ± 4.06 50.75 ± 1.85 59.20 ± 1.22

0.5 58.70 ± 0.86 59.33 ± 0.77 60.64 ± 0.83 58.74 ± 0.82 59.74 ± 0.92 63.49 ± 1.10 63.34 ± 0.70 72.41 ± 0.17

1.0 64.33 ± 0.25 64.75 ± 0.33 64.41 ± 0.29 63.42 ± 0.45 64.48 ± 0.31 67.62 ± 0.41 68.09 ± 0.25 75.16 ± 0.31

𝐼 𝐼𝐷 65.72 ± 0.22 65.95 ± 0.23 66.31 ± 0.23 65.36 ± 0.18 65.58 ± 0.24 69.65 ± 0.10 69.77 ± 0.19 77.48 ± 0.10

Cifar-100

0.1 34.22 ± 1.01 34.52 ± 0.68 35.76 ± 1.11 33.23 ± 0.78 36.09 ± 0.71 37.31 ± 0.66 38.79 ± 0.55 44.61 ± 1.48

0.5 42.16 ± 0.43 41.37 ± 0.49 45.03 ± 0.96 41.54 ± 0.52 41.96 ± 0.56 44.29 ± 0.52 46.55 ± 0.55 54.26 ± 0.45

1.0 43.32 ± 0.38 43.00 ± 0.45 46.60 ± 0.39 43.63 ± 0.39 43.68 ± 0.23 46.74 ± 0.31 48.41 ± 0.25 55.72 ± 0.36

𝐼 𝐼𝐷 45.14 ± 0.28 45.40 ± 0.27 48.33 ± 0.25 44.76 ± 0.24 45.04 ± 0.24 48.59 ± 0.20 48.65 ± 0.17 59.24 ± 0.32

FEMNIST − 79.09 ± 0.54 78.89 ± 0.50 79.56 ± 0.34 78.75 ± 0.27 79.15 ± 0.34 81.20 ± 0.41 78.98 ± 0.45 81.27 ± 0.31

VGG-16

Cifar-10

0.1 62.28 ± 5.72 63.19 ± 5.15 65.97 ± 3.82 62.00 ± 3.19 64.78 ± 5.69 65.52 ± 4.96 69.15 ± 2.16 74.49 ± 0.92

0.5 78.82 ± 0.21 78.49 ± 0.26 78.98 ± 0.11 78.09 ± 0.48 79.30 ± 0.43 79.12 ± 0.25 80.07 ± 0.19 84.24 ± 0.37

1.0 79.53 ± 0.34 79.52 ± 0.30 80.08 ± 0.24 79.67 ± 0.45 79.76 ± 0.20 80.08 ± 0.32 80.85 ± 0.99 85.12 ± 0.13

𝐼 𝐼𝐷 79.96 ± 0.05 79.79 ± 0.07 80.13 ± 0.05 79.66 ± 0.06 79.89 ± 0.05 80.66 ± 0.09 82.20 ± 0.05 85.66 ± 0.15

Cifar-100

0.1 47.29 ± 0.96 48.02 ± 0.68 49.11 ± 1.60 47.38 ± 1.47 49.36 ± 0.55 48.78 ± 1.03 51.30 ± 1.00 55.33 ± 0.72

0.5 55.60 ± 0.55 55.45 ± 0.70 56.29 ± 0.84 54.45 ± 0.58 56.40 ± 0.47 56.73 ± 0.41 58.02 ± 0.31 65.07 ± 0.25

1.0 56.05 ± 0.45 55.75 ± 0.36 57.96 ± 0.32 55.70 ± 0.37 56.69 ± 0.25 57.46 ± 0.25 58.53 ± 0.31 65.66 ± 0.15

𝐼 𝐼𝐷 57.22 ± 0.28 56.65 ± 0.23 58.47 ± 0.16 57.33 ± 0.17 57.55 ± 0.16 57.96 ± 0.11 58.62 ± 0.08 66.33 ± 0.10

FEMNIST − 83.96 ± 0.43 84.27 ± 0.32 84.39 ± 0.28 83.64 ± 0.27 83.99 ± 0.32 84.59 ± 0.21 83.97 ± 0.57 85.36 ± 0.21
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Figure 9: Learning curves of FL methods based on ResNet-20 model for CIFAR-100 dataset.

on clients are non-IID distributed (𝛼 = 1.0). Note that all the cases

here did not use the two-stage training scheme. From this figure, we

can find that FedMR outperforms the other variants significantly.

Moreover, when the granularity of partitioning goes coarser, the

classification performance of FedMR becomes worse.

5.4.3 Two-stage Training Scheme. To demonstrate the effective-

ness of our proposed two-stage training scheme, we conducted

experiments on CIFAR-10 dataset using ResNet-20-based and VGG-

16-based FedMR, where the data on clients are non-IID distributed

(𝛼 = 1.0). Figure 12 presents the learning trends of FedMR with

five different two-stage training settings. Here, we use the nota-

tion łFedMR-𝑛ž to denote that the first stage involves 𝑛 rounds

of model aggregation-based local training to obtain a pre-trained

global model, while the remaining rounds conduct local training

based on our proposed model recombination-based method. From

Figure 12, we can observe that the two-stage training-based FedMR

methods (i.e., FedMR-50 and FedMR-100) achieve the best perfor-

mance from the perspectives of test accuracy and convergence

rate. Note that our two-stage training scheme can achieve a more

significant improvement on the case using VGG-16 model, which

has a much larger size than ResNet-20 model. This is because the
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(a) 𝐾 = 5
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(b) 𝐾 = 10
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(c) 𝐾 = 20
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(d) 𝐾 = 50
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(e) 𝐾 = 100

Figure 10: Comparison of FL methods using ResNet-20 model on CIFAR-10 dataset with 𝛼 = 0.1.
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(a) ResNet-20
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(b) VGG-16

Figure 11: Learning curves for partitioning strategies.

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0  200  400  600  800 1000 1200 1400 1600 1800 2000

A
c
c
u

ra
c
y
(%

)

Communication Rounds

FedMR-0
FedMR-50
FedMR-100
FedMR-200
FedMR-300

(a) ResNet-20

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0  100  200  300  400  500  600  700  800  900 1000

A
c
c
u

ra
c
y
(%

)

Communication Rounds

FedMR-0
FedMR-50
FedMR-100
FedMR-200
FedMR-300

(b) VGG-16

Figure 12: Learning curves for two-stage training settings.

fine-grained FedMR without the first-stage training is not good

at dealing with large-size models at the beginning of FL training,

which requires many more training rounds than the coarse-grained

aggregation-based methods to achieve a given preliminary clas-

sification accuracy target. By resorting to the two-stage training

scheme, such a slow convergence problem can be greatly mitigated.

5.5 Discussions

5.5.1 Privacy Preserving. Similar to traditional FedAvg-based FL

methods, FedMR does not require clients to send their data to the

cloud server, thus the data privacy can be mostly guaranteed by

the secure clients themselves. Since our model recombination oper-

ation breaks the dependencies between model layers and conducts

the shuffling of layers among models, in practice, it is hard for

adversaries to restore the confidential data from a fragmentary re-

combined model without knowing the sources of layers. We present

a secure recombination mechanism to avoid privacy leakage from

the cloud server. Please see Appendix B for more details. Our se-

cure recombination mechanism ensures that the cloud server only

receives recombined models from clients, which means that the

cloud server cannot restore the model of each client.

5.5.2 Limitations. As a novel FL paradigm, FedMR shows much

better inference performance than most SOTA FL methods. Al-

though this paper proposed an efficient two-stage training scheme

to accelerate the overall FL training processes, there still exist nu-

merous chances (e.g., client selection strategies, dynamic combina-

tion of model aggregation and model recombination operations)

to enable further optimization on the current version of FedMR.

Meanwhile, the current version of FedMR does not consider person-

alization [31, 33] and fairness [26, 27], two very important topics

that deserve to be studied in the future.

6 Conclusion

Due to the coarse-grained aggregation of FedAvg as well as the

uniform client model initialization, when dealing with uneven data

distribution among clients, existing Federated Learning (FL) meth-

ods greatly suffer from the problem of low inference performance.

To address this problem, this paper presented a new FL paradigm

named FedMR, which enables different layers of local models to be

trained on different clients. Since FedMR supports both fine-grained

model recombination and diversified local training initialization,

it enables effective and efficient search for superior generalized

models for all clients. Comprehensive experimental results show

both the effectiveness and pervasiveness of our proposed method

in terms of inference accuracy and convergence rate.
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A Proof of FedMR Convergence

A.1 Notations

In our FedMR approach, the global model is aggregated from all

the recombined models and all the models have the same weight.

Let 𝑡 exhibit the 𝑡𝑡ℎ SGD iteration on the local device, 𝑣 is the

intermediate variable that represents the result of SGD update after

exactly one iteration. The update of FedMR is as follows:

𝑣𝑘𝑡+1 = 𝑤
𝑘
𝑡 − 𝜂𝑡∇𝑓𝑘 (𝑤

𝑘
𝑡 , 𝜉

𝑘
𝑡 ), (1)

𝑤𝑘𝑡+1 =

{

𝑣𝑘𝑡+1, 𝑖 𝑓 𝐸 ∤ 𝑡 + 1

𝑅𝑀 (𝑣𝑘𝑡+1), 𝑖 𝑓 𝐸 | 𝑡 + 1
, (2)

where𝑤𝑘𝑡 represents the model of the 𝑘𝑡ℎ client in the 𝑡𝑡ℎ iteration.

𝑤𝑡+1 denotes the global model of the (𝑡 + 1)𝑡ℎ iteration. 𝑅𝑀 (𝑣𝑘𝑡+1)

denotes the recombined model.

Since FedMR recombines all the local models in each round and

the recombination only shuffles layers of models, the parameters of

recombined models are all from the models before recombination,

and no parameters are discarded. Therefore, when 𝐸 | 𝑡 + 1, we

can obtain the following invariants:

𝐾
∑︁

𝑘=1

𝑣𝑘𝑡+1 =

𝐾
∑︁

𝑘=1

𝑅𝑀 (𝑣𝑘𝑡+1) =

𝐾
∑︁

𝑘=1

𝑤𝑘𝑡+1, (3)

𝐾
∑︁

𝑘=1

| |𝑣𝑘𝑡+1 − 𝑥 | |
2
=

𝐾
∑︁

𝑘=1

| |𝑤𝑘𝑡+1 − 𝑥 | |
2, (4)

where𝑤𝑘𝑡 is the 𝑘𝑡ℎ recombined model in (𝑡 − 1)𝑡ℎ iteration, which

is as the local model to be dispatched to 𝑘𝑡ℎ client in 𝑡𝑡ℎ iteration,

𝑥 can any vector with the same size as 𝑣𝑘𝑡 . Similar to [34], we define

two variables 𝑣𝑡 and𝑤𝑡 :

𝑣𝑡 =
1

𝐾

𝐾
∑︁

𝑘=1

𝑣𝑘𝑡 ,𝑤𝑡 =
1

𝐾

𝑘
∑︁

𝑘=1

𝑤𝑘𝑡 . (5)

Inspired by [29], we make the following definition:

𝑔𝑘𝑡 = ∇𝑓𝑘 (𝑤
𝑘
𝑡 ; 𝜉

𝑘
𝑡 ) . (6)

A.2 Proof of Lemma 4.4

Proof. Assume 𝑣𝑘𝑡 has 𝑛 layers, we have 𝑣𝑘𝑡 = 𝐿1 ⊕ 𝐿2 ⊕ ... ⊕ 𝐿𝑛 .

Let 𝐿𝑖 = [𝑝
𝑣𝑘𝑡
(𝑖,0)

, 𝑝
𝑣𝑘𝑡
(𝑖,1)

, ..., 𝑝
𝑣𝑘𝑡
(𝑖, |𝐿𝑖 | )

], where 𝑝
𝑣𝑘𝑡
(𝑖, 𝑗 )

denotes the 𝑗𝑡ℎ

parameter of the layer 𝐿𝑖 in the model 𝑣𝑘𝑡 . We have

𝐾
∑︁

𝑘=1

| |𝑣𝑘𝑡 − 𝑥 | |
2
=

𝐾
∑︁

𝑘=1

𝑛
∑︁

𝑖=1

|𝐿𝑖 |
∑︁

𝑗=1

| |𝑝
𝑣𝑘𝑡
(𝑖, 𝑗 )
− 𝑝𝑥
(𝑖, 𝑗 )
| |2 (7)

𝐾
∑︁

𝑘=1

| |𝑤𝑘𝑡 − 𝑥 | |
2
=

𝐾
∑︁

𝑘=1

𝑛
∑︁

𝑖=1

|𝐿𝑖 |
∑︁

𝑗=1

| |𝑝
𝑤𝑘
𝑡

(𝑖, 𝑗 )
− 𝑝𝑥
(𝑖, 𝑗 )
| |2 (8)

Since model recombination only shuffles layers of models, the

parameters of recombined models are all from the models before

recombination and no parameters are discarded. We have

∀𝑖∈[1,𝑛], 𝑗∈[1, |𝐿𝑖 | ]

𝐾
∑︁

𝑘=1

𝑝
𝑣𝑘𝑡
(𝑖, 𝑗 )

=

𝐾
∑︁

𝑘=1

𝑝
𝑤𝑘
𝑡

(𝑖, 𝑗 )
(9)

∀𝑘∈[1,𝐾 ],𝑖∈[1,𝑛], 𝑗∈[1, |𝐿𝑖 | ]∃𝑞∈[1,𝐾 ] {𝑝
𝑣𝑘𝑡
(𝑖, 𝑗 )

= 𝑝
𝑤

𝑞
𝑡

(𝑖, 𝑗 )
} (10)

∀𝑘∈[1,𝐾 ],𝑖∈[1,𝑛], 𝑗∈[1, |𝐿𝑖 | ]∃𝑞∈[1,𝐾 ] {𝑝
𝑤𝑘
𝑡

(𝑖, 𝑗 )
= 𝑝

𝑣
𝑞
𝑡

(𝑖, 𝑗 )
} (11)

According to Equations 9-11, we have

𝐾
∑︁

𝑘=1

| |𝑣𝑘𝑡 − 𝑥 | |
2
=

𝐾
∑︁

𝑘=1

𝑛
∑︁

𝑖=1

|𝐿𝑖 |
∑︁

𝑗=1

| |𝑝
𝑣𝑘𝑡
(𝑖, 𝑗 )
− 𝑝𝑥
(𝑖, 𝑗 )
| |2

=

𝐾
∑︁

𝑘=1

| |𝑤𝑘𝑡 − 𝑥 | |
2

(12)

□

A.3 Key Lemmas

To facilitate the proof of our Theorem 1, inspired by [29], we can

present the following two lemmas. Note that the following proofs

are general proofs for all the multi-model-based FL approaches that

satisfy Lemma 4.4.

Lemma A.1. (Results of one step SGD). If 𝜂𝑡 ≤
1
4𝐿 , we have

E| |𝑣𝑡+1 −𝑤
★ | |2 ≤

1

𝐾

𝐾
∑︁

𝑘=1

(1 − 𝜇𝜂𝑡 ) | |𝑣
𝑘
𝑡 −𝑤

★ | |2

+
1

𝐾

𝐾
∑︁

𝑘=1

| |𝑤𝑘𝑡 −𝑤
𝑘
𝑡0
| |2 + 10𝜂2𝑡 𝐿Γ

.

Proof. According to Lemma 4.4 (i.e., Equation 3 and Equation

4), we have

| |𝑣𝑡+1 −𝑤
★ | |2 ≤

1

𝐾

𝐾
∑︁

𝑘=1

| |𝑣𝑘𝑡+1 −𝑤
★ | |2

=

1

𝐾

𝐾
∑︁

𝑘=1

( | |𝑣𝑘𝑡 −𝑤
★ | |2 − 2𝜂𝑡 ⟨𝑤

𝑘
𝑡 −𝑤

★, 𝑔𝑘𝑡 ⟩

+ 𝜂2𝑡 | |𝑔
𝑘
𝑡 | |

2)

(13)

Let 𝐵1 = −2𝜂𝑡 ⟨𝑤
𝑘
𝑡 −𝑤

★, 𝑔𝑘𝑡 ⟩ and 𝐵2 = 𝜂2𝑡
∑𝐾
𝑘=1
| |𝑔𝑘𝑡 | |

2. According

to Assumption 4.2, we have

𝐵1 ≤ −2𝜂𝑡 (𝑓𝑘 (𝑤
𝑘
𝑡 ) − 𝑓𝑘 (𝑤

★)) − 𝜇𝜂𝑡 | |𝑤
𝑘
𝑡 −𝑤

★ | |2 (14)

According to Assumption 4.1, we have

𝐵2 ≤ 2𝜂2𝑡 𝐿(𝑓𝑘 (𝑤
𝑘
𝑡 ) − 𝑓

★

𝑘
) (15)

According to Equation 14 and 15, we have

| |𝑣𝑡+1 −𝑤
★ | |2 ≤

1

𝐾

𝐾
∑︁

𝑘=1

[(1 − 𝜇𝜂𝑡 ) | |𝑣
𝑘
𝑡 −𝑤

★ | |2

− 2𝜂𝑡 (𝑓𝑘 (𝑤
𝑘
𝑡 ) − 𝑓𝑘 (𝑤

★)) + 2𝜂2𝑡 𝐿(𝑓𝑘 (𝑤
𝑘
𝑡 ) − 𝑓

★

𝑘
)]

(16)

Let 𝐶 =
1
𝐾

∑𝐾
𝑘=1
[−2𝜂𝑡 (𝑓𝑘 (𝑤

𝑘
𝑡 ) − 𝑓𝑘 (𝑤

★)) + 2𝜂2𝑡 𝐿(𝑓𝑘 (𝑤
𝑘
𝑡 ) − 𝑓

★

𝑘
)].

We have

𝐶 =

−2𝜂𝑡

𝐾

𝐾
∑︁

𝑘=1

(𝑓𝑘 (𝑤
𝑘
𝑡 ) − 𝑓𝑘 (𝑤

★)) +
2𝜂2𝑡 𝐿

𝐾

𝐾
∑︁

𝑘=1

(𝑓𝑘 (𝑤
𝑘
𝑡 ) − 𝑓

★

𝑘
)

= −
2𝜂𝑡 (1 − 𝜂𝑡𝐿)

𝐾

𝐾
∑︁

𝑘=1

(𝑓𝑘 (𝑤
𝑘
𝑡 ) − 𝑓

★) +
2𝜂2𝑡 𝐿

𝐾

𝐾
∑︁

𝑘=1

(𝑓 ★ − 𝑓 ★
𝑘
)

(17)
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Let Γ = 𝑓 ★ − 1
𝐾

∑𝐾
𝑘=1

𝑓 ★
𝑘

and 𝜙 = 2𝜂𝑡 (1 − 𝐿𝜂𝑡 ). We have

𝐶 = −
𝜙

𝐾

𝐾
∑︁

𝑘=1

(𝑓𝑘 (𝑤
𝑘
𝑡 ) − 𝑓

★) + 2𝜂2𝑡 𝐿Γ (18)

Let 𝐷 = − 1
𝐾

∑𝐾
𝑘=1
(𝑓𝑘 (𝑤

𝑘
𝑡 ) − 𝑓

★), 𝐸 | 𝑡0 and 𝑡 − 𝑡0 ≤ 𝐸. We have

𝐷 = −
1

𝐾

𝐾
∑︁

𝑘=1

(𝑓𝑘 (𝑤
𝑘
𝑡 ) − 𝑓𝑘 (𝑤

𝑘
𝑡0
) + 𝑓𝑘 (𝑤

𝑘
𝑡0
) − 𝑓 ★) (19)

By CauchyśSchwarz inequality, we have

𝐷 ≤
1

2𝐾

𝐾
∑︁

𝑘=1

(𝜂𝑡 | |∇𝑓𝑘 (𝑤
𝑘
𝑡0
) | |2 +

1

𝜂𝑡
| |𝑤𝑘𝑡 −𝑤

𝑘
𝑡0
| |2)

−
1

𝐾

𝐾
∑︁

𝑘=1

(𝑓𝑘 (𝑤
𝑘
𝑡0
) − 𝑓 ★)

≤
1

2𝐾

𝐾
∑︁

𝑘=1

[2𝜂𝑡𝐿(𝑓𝑘 (𝑤
𝑘
𝑡0
) − 𝑓 ★

𝑘
) +

1

𝜂𝑡
| |𝑤𝑘𝑡 −𝑤

𝑘
𝑡0
| |2]

−
1

𝐾

𝐾
∑︁

𝑘=1

(𝑓𝑘 (𝑤
𝑘
𝑡0
) − 𝑓 ★)

(20)

Note that since 𝜂 ≤ 1
4𝐿 , 𝜂𝑡 ≤ 𝜙 ≤ 2𝜂𝑡 and 𝜂𝑡𝐿 ≤

1
4
. According

to Equation 20, we have

𝐶 ≤
𝜙

2𝜂𝑡𝐾

𝐾
∑︁

𝑘=1

| |𝑤𝑘𝑡 −𝑤
𝑘
𝑡0
| |2 + (𝜙𝜂𝑡𝐿 + 2𝜂

2
𝑡 𝐿)Γ +

𝜙

𝐾

𝐾
∑︁

𝑘=1

(𝑓 ★ − 𝑓 ★
𝑘
)

≤
𝜙

2𝜂𝑡𝐾

𝐾
∑︁

𝑘=1

| |𝑤𝑘𝑡 −𝑤
𝑘
𝑡0
| |2 + (𝜙𝜂𝑡𝐿 + 𝜙 + 2𝜂

2
𝑡 𝐿)Γ

≤
1

𝐾

𝐾
∑︁

𝑘=1

| |𝑤𝑘𝑡 −𝑤
𝑘
𝑡0
| |2 + 10𝜂2𝑡 𝐿Γ

(21)

□

Lemma A.2. According to Equation 2, the model recombination

occurs every 𝐸 iterations. Assume that in each training round, 𝑡0 is

the first iteration and iteration 𝑡 − 𝑡0 ≤ 𝐸 − 1. Given the constraint on

learning rate from [29], we know that 𝜂𝑡 ≤ 𝜂𝑡0 ≤ 2𝜂𝑡 . It follows that

1

𝐾

𝐾
∑︁

𝑘=1

| |𝑤𝑘𝑡 −𝑤
𝑘
𝑡0
| |2 ≤ 4𝜂2𝑡 (𝐸 − 1)

2𝐺2 .

Proof.

1

𝐾

𝐾
∑︁

𝑘=1

| |𝑤𝑘𝑡 −𝑤
𝑘
𝑡0
| |2 =

1

𝐾

𝐾
∑︁

𝑘=1

| |

𝑡0+𝐸−1
∑︁

𝑡=𝑡0

𝜂𝑡∇𝑓𝑎1 (𝑤
𝑎1
𝑡 ; 𝜉

𝑎1
𝑡 ) | |

2

≤ (𝑡 − 𝑡0)

𝑡0+𝐸−1
∑︁

𝑡=𝑡0

𝜂2𝑡𝐺
2

≤ (𝐸 − 1)

𝑡0+𝐸−1
∑︁

𝑡=𝑡0

𝜂2𝑡𝐺
2

≤ 4𝜂2𝑡 (𝐸 − 1)
2𝐺2 .

□

A.4 Proof of Theorem 1

Based on Lemmas A.1 and A.2, we can prove Theorem 1 using the

proof framework of FedAvg [29]. Due to space limitations, please

refer to the proof of FedAvg [29] for the details.

B Secure Model Recombination Mechanism

To avoid the risk of privacy leakage caused by exposing gradients

or models to the cloud server, we propose a secure model recombi-

nation mechanism for FedMR, which allows the random exchange

of model layers among clients before model training or upload. As

shown in Figure 13, within a round of the secure model recombina-

tion, the update of each model (i.e.,𝑚) consists of four stages:

Stage 2: Receiving Layers

Receive

from 𝒄𝒊

Receive

from 𝒄𝒋
𝒎

Stage 3: Shuffling LayersStage 4: Model Recombination

Receive
from 𝒄𝜸

Receive

from 𝒄𝜶

Receive
from 𝒄𝜷

Receive

from 𝒄𝜹
Receive

from 𝒄𝜺

M
o
d
e
l

R
e
c
o
m
b
in
e

Send to 𝒄𝜸

Send to 𝒄𝜹

Send to 𝒄𝜺

Send to 𝒄𝜶

Send to 𝒄𝜷

R
a
n
d
o
m
ly
S
e
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c
t

L
a
y
e
rs

Send to 𝒄𝒊

Send to 𝒄𝒋

Stage 1: Sending Layers

Buffer-𝒍𝒂𝒚𝒆𝒓𝟏

Buffer-𝒍𝒂𝒚𝒆𝒓𝟐

Buffer-𝒍𝒂𝒚𝒆𝒓𝟑

Buffer-𝒍𝒂𝒚𝒆𝒓𝟒

𝒎

Figure 13: Workflow of secure model recombination.

Stage 1: Assume that the local model has 𝑙𝑒𝑛 layer. Each client

maintains a buffer for each layer. Firstly, each client randomly

selects a part of its layers and sends them to other activated clients,

while the remaining layers are saved in their corresponding buffers.

Note that a selected layer can only be sent to one client. For example,

in Figure 13, the client 𝑚 sends 𝑙𝑎𝑦𝑒𝑟2 and 𝑙𝑎𝑦𝑒𝑟4 to 𝑐𝑖 and 𝑐 𝑗 ,

respectively.

Stage 2:Once receiving a layer from another client, the receiving

client𝑚 will add the layer to its corresponding buffer. For example,

in Figure 13, the client𝑚 totally receives five layers. Besides the

retained two layers in stage 1,𝑚 now has seven layers in total in

its buffers.

Stage 3: For each layer buffer of𝑚, if there contains one element

received from a client 𝑐 in stage 2, our mechanism will randomly

select one layer in the buffer and return it back to 𝑐 . For example,

in Figure 13,𝑚 randomly returns a layer in Buffer-layer1 back to a

client 𝑐𝛾 .

Stage 4: Once receiving the returned layers from other clients,

our mechanism will recombine them with all the other layers in

the buffers to form a new model. Note that the recombined model

may significantly differ from the original model in Stage 1.

Note that each FL training round can perform multiple times

secure model recombination. Due to the randomness, it is hard

for adversaries to figure out the sources of client model layers. In

addition, the cloud server will broadcast a public key before the

secure recombination to prevent privacy leakage. By using the

public key to encrypt the model parameters of each layer, the other

clients cannot directly obtain their received parameters.
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