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Abstract

Although Federated Learning (FL) enables global model training
across clients without compromising their raw data, due to the un-
evenly distributed data among clients, existing Federated Averaging
(FedAvg)-based methods suffer from the problem of low inference
performance. Specifically, different data distributions among clients
lead to various optimization directions of local models. Aggregat-
ing local models usually results in a low-generalized global model,
which performs worse on most of the clients. To address the above
issue, inspired by the observation from a geometric perspective
that a well-generalized solution is located in a flat area rather than
a sharp area, we propose a novel and heuristic FL paradigm named
FedMR (Federated Model Recombination). The goal of FedMR is
to guide the recombined models to be trained towards a flat area.
Unlike conventional FedAvg-based methods, in FedMR, the cloud
server recombines collected local models by shuffling each layer of
them to generate multiple recombined models for local training on
clients rather than an aggregated global model. Since the area of the
flat area is larger than the sharp area, when local models are located
in different areas, recombined models have a higher probability of
locating in a flat area. When all recombined models are located in
the same flat area, they are optimized towards the same direction.
We theoretically analyze the convergence of model recombination.
Experimental results show that, compared with state-of-the-art FL
methods, FedMR can significantly improve the inference accuracy
without exposing the privacy of each client.
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1 Introduction

Federated Learning (FL) [25, 32, 40] has been widely acknowledged
as a promising means to design large-scale distributed Artificial
Intelligence (AI) applications, e.g., Artificial Intelligence of Things
(AIoT) systems [13, 37, 47], healthcare systems [2, 46], and recom-
mender systems [35, 42]. Unlike conventional Deep Learning (DL)
methods, the cloud-client architecture based FL supports the col-
laborative training of a global DL model among clients without
compromising their raw data [3]. In each FL training round, the
cloud server first dispatches the global model to its selected clients
for local training and then gathers the corresponding gradients of
trained models from clients for aggregation. In this way, clients can
train a global model without sharing data.

Although FL enables effective collaborative training among mul-
tiple clients while protecting data privacy, existing FL methods
suffer from the problem of “weight divergence” [21]. Especially
when the data on the clients are non-IID (Identically and Indepen-
dently Distributed) [1, 38], the optimal directions of local models
on clients and the aggregated global model on the cloud server
are significantly inconsistent, resulting in serious inference per-
formance degradation of the global model. To improve FL per-
formance in non-IID scenarios, various FL methods have been
studied, e.g., client grouping-based methods [45], global control
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variable-based methods [17, 22, 28], Knowledge Distillation (KD)-
based methods[30, 39, 48], and mutation-based methods [14]. The
basic ideas of these solutions are to guide the local training on
clients [17, 22] or adjust parameter weights for model aggrega-
tion [30, 48].

Although these methods are promising in alleviating the impact
of data heterogeneity, most of them adopt the well-known Feder-
ated Averaging (FedAvg)-based paradigm, which may potentially
reduce generalization performance. This is mainly because FedAvg
paradigm only aggregates the parameters of collected local mod-
els and initializes local training by clients with the same global
models. Specifically, since the data distribution among clients is
different, the optimal directions of the local models are diverse.
On the one hand, although the aggregation operation can achieve
knowledge sharing among multiple local models, it can still neglect
the specific knowledge learned by local models, which seriously
limits the inference performance of the global model. On the other
hand, since FedAvg only uses the same global model for local train-
ing, FL training inevitably results in notorious stuck-at-local-search
problems during local training. As a result, the global model based
on simple statistical averaging cannot accurately reflect both in-
dividual efforts and the potential of local models in the search for
optimal global models. Therefore, how to overcome the shortcomings
of the FedAvg-based paradigm and improve the performance of FL in
non-IID scenarios is an important challenge.

Some recent research on model training indicates that, from
the perspective of the loss landscapes of DL models, optimal solu-
tions with well generalization performance often lie in flat valleys,
while the inferior ones are always located in sharp ravines [11, 24].
Inspired by the above observation, to collaboratively train a well-
generalized model, FL needs to guide the local training towards a
more flat area. Since the direction of gradient descent is stochastic,
compared to using the same global model, using multiple global
models for local training has a greater probability that the existing
model can optimize to a flatter area. Since flat areas are usually
larger than sharp areas, intuitively, the exchange of the correspond-
ing parameters among multiple models rather than aggregation
can allow them to be displaced in the solution space. When a model
is stuck in a sharp area, the parameter exchange may make it es-
cape from the sharp area. With continuous training and parameter
exchange, when multiple models are located in the same flat area,
these models will optimize in the same direction, that is, the center
of the flat area.

Inspired by the above intuition, this paper proposes a novel FL
paradigm called FedMR (Federated Model Recombination), which
can effectively help the training of local models escape from sharp
area. Unlike FedAvg that aggregates all the collected local models in
each FL training round, FedMR randomly shuffles the parameters of
different local models within the same layers, and recombines them
to form new local models. In this way, FedMR can derive diversified
models that can effectively escape local optimal solutions for the
local training of clients. The main contributions of this paper can
be summarized as follows:

e We propose a novel FL paradigm named FedMR, which con-
tains a newly layer-wise model recombination method to
replace the traditional FedAvg-based model aggregation with
the aim of improving FL inference performance.
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e We introduce a two-stage training scheme for FedMR, which
combines the merits of both model recombination and ag-
gregation to accelerate the overall FL training process.

e We theoretically prove the convergence of FedMR in convex
scenarios and conduct empirical experiments to validate the
convergence of FedMR in non-convex scenarios.

e We conduct extensive experiments on various well-known
models and datasets to show both the effectiveness and com-
patibility of FedMR.

2 Related Work

To address the problem of uneven data distributions, exiting so-
lutions can be mainly classified into four categories, i.e., client
grouping-based methods, global control variable-based methods,
knowledge distillation-based methods, and mutation-based meth-
ods. The device grouping-based methods group and select clients for
aggregation based on the data similarity between clients. For ex-
ample, FedCluster [8] divides clients into multiple clusters and per-
forms multiple cycles of meta-update to boost the overall FL conver-
gence. Based on either sample size or model similarity, CluSamp [9]
groups clients to achieve a better client representativity and a re-
duced variance of client stochastic aggregation parameters in FL.
By modifying the penalty terms of loss functions during FL training,
the global control variable-based methods can be used to smooth
the FL convergence process. For example, FedProx [28] regularizes
local loss functions with the squared distance between local models
and the global model to stabilize the model convergence. Similarly,
SCAFFOLD [22] uses global control variables to correct the “client-
drift” problem in the local training process. Knowledge Distillation
(KD)-based methods adopt soft targets generated by the “teacher
model” to guide the training of “student models”. For example, by
leveraging a proxy dataset, Zhu et al. [48] proposed a data-free
knowledge distillation method named FedGen to address the het-
erogeneous FL problem using a built-in generator. With ensemble
distillation, FedDF [30] accelerates the FL training by training the
global model through unlabeled data on the outputs of local models.
Mutation-based methods attempt to mutate the global model to gen-
erate multiple mutated intermediate models for local training. For
example, FedMut [14] utilizes the gradients to mutate the global
model and dispatches the mutated models for local training.

Although the above methods can optimize FL performance from
different perspectives, since coarse-grained model aggregation is
performed, the inference capabilities of local models are still strongly
restricted. Furthermore, most of them cannot avoid non-negligible
communication and computation overheads or the risk of data
privacy exposure. In addition, many FL methods have been pro-
posed to address device heterogeneity problems. To effectively
train on devices with different hardware resources, some meth-
ods [4, 18, 20, 41] utilize heterogeneous models for local training.
To avoid stragglers caused by uneven computing capability or un-
certainty [15], existing methods [16, 44] attempt to perform a wise
client scheduling to achieve asynchronous FL training. Note that
this paper only focuses on the data heterogeneity problem.

To the best of our knowledge, FedMR is the first attempt using
model recombination rather than aggregation for FL. Since FedMR
considers the specific characteristics and efforts of local models, it
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can further mitigate the weight divergence problem, thus achieving
better inference performance than state-of-the-art FL methods.

3 Motivation

3.1 Intuition

Comparison between FedAvg and Independent Training. Fig-
ure 1 illustrates the FL training processes on the same loss landscape
using FedAvg and Independent training (Indep), respectively, where
the server of Indep just shuffles the received local models and then
randomly dispatches them to clients without aggregation. In each
subfigure, the local optima are located within the areas surrounded
by solid red lines. Note that since the upper surrounded area is
flatter than the lower surrounded area in the loss landscape, the
solutions within it will exhibit better generalization.

. Global Model —> Local Training |

| 0 Local Model

(a) FedAvg (b) Independent Training

Figure 1: Training processes on the same loss landscape.

As shown in Figure 1(a), along with the training process, the
aggregated global models denoted by red circles gradually move
toward the lower sharp area with inferior solutions, though the op-
timizations of some local models head toward the upper surrounded
area with better solutions. Such biased training is mainly because
the local training starts from the same global model in each FL
round. As an alternative, due to the lack of aggregation operation,
the local models of Indep may converge in different directions as
shown in Figure 1(b). In this case, even if some local training in
Idep achieves a better solution than the one obtained by FedAvg,
due to the diversified optimization directions of local models, such
an important finding can be eclipsed by the results of other local
models. Clearly, there is a lack of mechanisms for Indep that can
guide the overall training toward such superior solutions.

Intuition of Model Recombination. Based on the Indep train-
ing results shown in Figure 1(b), Figure 2 illustrates the intuition
of our model recombination method, where the FL training starts
from the three local models (denoted by yellow diamonds in round
1) obtained in figure 1(b). At the beginning of round 1, two of the
three local models are located in the sharp ravine. In other words,
without model recombination, the training of such two local mod-
els may get stuck in the lower surrounded area. However, due to
the weight adjustment by shuffling the layers among local models,
we can find that the three recombined models (denoted by yellow
squares) are sparsely scattered in the loss landscape, which enables
the local training escape from local optima. According to [10, 43],
a small perturbation of the model weights can make it easier for
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| 4@ Local Model D Recombined Model —> Local Training = > Model Recombination |

Round 1 Round 2 Round 3

Figure 2: An example of model recombination.

local training to jump out of sharp ravines rather than flat valleys.
In other words, the recombined models are more likely to converge
toward flat valleys along the local training. For example, in the end
of round 3, we can find that all three local models are located in the
upper surrounded area, where their aggregated model has better
generalization performance than the one achieved in Figure 1(a).

FL Training Process

,,,,,,,,,,,,,,,,,,,,,,,,, CloudServer 1| oo
Recombined Models i ® Model f ] ! Model |

! Recombination | : ‘

Local Model Local Model
Client 1 Client 2

Local Clients

: Model 3
i Deployment |

Figure 3: Our FedMR approach

4 FedMR Approach

4.1 Overview of FedMR

Figure 3 presents the framework and workflow of FedMR, which
consists of two process, i.e., FL training process and the model
deployment process. In FL training process, unlike FedAvg-based
methods that use the same global model for local training, FedMR
adopts multiple homogeneous intermediate models for local train-
ing, where each client model is dispatched one model. Specifically,
each training round involves three specific steps as follows:

e Step 1 (Model Dispatching): The cloud server dispatches
K intermediate models to K selected clients, respectively,
according to their indices, where K denotes the number of
activated clients participating in each FL training round.
Note that in FedMR different clients will receive different
models for the local training.

e Step 2 (Model Upload): Once its local training is finished,
a client needs to upload the parameters of its newly updated
local model to the cloud server.

e Step 3 (Model Recombination): The cloud server decom-
poses received local models into multiple layers individually
in the same manner and conducts the random shuffling of
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Algorithm 1 Implementation of FedMR

Input: i) rnd, # of training rounds; ii) S, the set of clients; iii) K, #
of clients participating in each FL round.

Output: w9t the parameters of trained global model.
FedMR(rnd,S.,.K)

1: Ly — [wll,wf, wf] // initialize model list

2: forr=1, .. rnd do
3: L, « Random select K clients from S,

/*parallel for block*/

4 fori=1,.. Kdo
5 ol <—CligntUpdate(Lm[i],Lr[i])
6: Ln[i] & 0,4
7. end for
8: [wiﬂ,wfﬂ, wﬁl] «—ModelRcombine(Ly,)
9: Ly « [wiﬂ,wfﬂ, e wﬁl]
10: end for
1b 1 vK i
1w wi = VL w0

12: return w9'b

the same layers among different local models. Then, by con-
catenating layers from different sources in order, a new local
model can be reconstructed. Note that any decomposed layer
of the uploaded model will eventually be used by one and
only one of the recombined models.

In the model deployment process, the cloud server aggregates
all the intermediate models to generate a global model and deploys
the global model to all the local clients for specific tasks.

4.2 Implementation of FedMR

Algorithm 1 details the implementation of FedMR. Line 1 initializes
the model list L,,, which includes K initial models. Lines 2-10 per-
forms rnd rounds of FedMR training. In each round, Line 3 selects
K random clients to participate in the model training and creates
a client list L,. Lines 4-7 conduct the local training on clients in
parallel, where Line 5 applies the local model L, [i] on client L, [i]
for local training by using the function ClientUpdate, and Line 6
achieves a new local model after the local training. After the cloud
server receives all the K local models, Line 8 uses the function
ModelRcombine to recombine local models and generate K new
local models, which are saved in L;, as shown in Line 9. Finally,
Lines 11-12 will report an optimal global model that is generated
based on Ly,. Note that the cloud server will dispatch the global
model to all the clients for the purpose of inference rather than
local training. The following parts will detail the key components
of FedMR. Since FedMR cannot adapt to the secure aggregation
mechanism [5], to further protect privacy, we present an extended
secure recombination mechanism in Appendix B, which enables
the exchange of partial layers among clients before local training
or model uploading to ensure that the cloud server cannot directly
obtain the gradients of each local model.

4.2.1 Local Model Training. Unlike conventional FL methods that
conduct local training on clients starting from the same aggregated
model, in each training round FedMR uses different recombined
models (i.e., K models in the model list Ly,) for the local training
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Figure 4: Example of model aggregation and recombination

purpose. Note that, in the whole training phase, FedMR only uses
K (K < |S¢|) models, since there are only K devices activated in
each training round. Let wf be the parameters of some model that
is dispatched to the c? h client in the rt* training round. In the rth
training round, we dispatch the i*" model in Ly, to its correspond-
ing client using wr’[i] = L [i]. Based on the recombined model,
FedMR conducts the local training on client L, [i] as follows:

L[i L [i L, [i
Ur+£l] =wr - NV L, (i) (wr [1]),
|Dp, 111

L.[i 1 L.[i
st fr, 101 (wr llJ) = £(w, [l]?xj;yj)’

D, 4]

J=1

where vf’ li] indicates parameters of the trained local model, Dy, [;]

denotes the dataset of client L, [i], 5 is the learning rate, £(-) is the
loss function, x; is the j*h sample in Dy, 1i]> and y; is the label of
xj. Once the local training is finished, the client needs to upload the
parameters of its trained local model to the cloud server by updating
Ly using Ly, [i] = ufi”, Similar to traditional FL methods, in each
training round, FedMR needs to transmit the parameters of 2K
models between the cloud server and its selected clients.

4.2.2  Model Recombination. Typically, a DL model consists of mul-
tiple layers, e.g., convolutional layers, pooling layers, and Fully
Connected (FC) layers. To simplify the description of our model
recombination method, we do not explicitly present the layer types
here. Let wy = {I{, I, ..., I } be the parameters of model x, where
I¥ (i € [n]) denotes the parameters of the ith layer of model x.

In each FL round, FedMR needs to perform model recombina-
tion based on L, to obtain new models for local training. Figure 4
presents an example of model aggregation and model recombina-
tion. When clients receive all the trained local models (i.e., my,
my, ..., mg), the cloud server needs to decouple the layers of these
models individually. Note that since all the local models are ho-
mogeneous, the corresponding layers of the local models have the
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same structure. For example, the model m; can be decomposed
into four layers. Assuming that the local models are with an ar-
chitecture of w, to enable recombination, FedMR then constructs
n lists, where the k" (k € [n]) list contains all the k" layers of
the models in Ly,. As an example shown in Figure 4(b), FedMR
constructs four lists (i.e., list;-list4) for the K models (i.e., mi-mg),
where each list consists of K elements (i.e., K layers with the same
index). After shuffling each list, FedMR generates |Lp,| recombined
models based on shuffled results. For example, the top three layers
of the recombined model m’1 come from the models my, my and
mg, respectively. For comparison, Figure 4(a) presents an example
of model aggregation, which aggregates the layers of each list to
generate an aggregated model. The aggregation-based methods dis-
patch the aggregated model to K clients, while FedMR dispatches a
different recombined model to each client.

4.3 Two-Stage Training Scheme for FedMR

Although FedMR enables finer FL training, when starting from
blank models, FedMR converges more slowly than traditional FL
methods at the beginning. This is mainly because, due to the low
matching degree between layers in the recombined models, the
model recombination operation in this stage requires more local
training time to re-construct the new dependencies between layers.
To accelerate the overall convergence, we propose a two-stage
training scheme for FedMR, consisting of the aggregation-based pre-
training stage and model recombination stage. In the first stage, we
train the local models coarsely using the FedAvg-based aggregation,
which can quickly form a pre-trained global model. In the second
stage, from the pre-trained models, FedMR dispatches recombined
models to clients for local training. Due to the synergy of both FL
paradigms, the overall FedMR training time can be reduced.

4.4 Convergence Analysis

Based on the assumptions posed on the loss functions of local clients
in FedAvg [29], this subsection performs the convergence analysis
for FedMR.

Assumption 4.1. Fori € {1,2,---,K}, fj is L-smooth satisfying
[IVfi(x) = Vi)l < Lllx - yl|.

Assumption 4.2. Fori € {1,2,---,K}, f; is p-strongly convex
satisfying f(x) > f(y) + (x—9)TVf(y) + %Hx —y||%, where y > 0.
Assumption 4.3. The variance of stochastic gradients is upper
bounded by 6?2, and the expectation of squared norm of stochastic
gradients is upper bounded by G2, i.e., E||V fi.(w; &) = Vfir(w)||? <
02, B||V fi. (w; §)]12 < G2, where £ is a data batch of the k" client
in the ' FL round.

Based on the implementation of function ModelRecombine(-), we
derive the following two lemmas for the model recombination:

Lemma 4.4. Assume that in FedMR there are K clients participating
in every FL training round. Let {0}, 02, ., 0K} and {w}, w2, ., wK} be
the set of trained local model weights and the set of recombined model
weights generated in the (r — 1)'" round, respectively. Assume x is a
vector with the same size as that of k. We have

K

K K K

k k k_ 2 k_ 12

E oy = g wy, and E oy —x[|” = § [lwy = xI[*.
k=1 k=1 =1

k=1
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We prove Theorem 1 based on Lemmas 4.4. Please refer to Ap-
pendix A for the proof. Note that different from FedAvg, Lemmas 4.4
is the key lemma for the proof of FedMR.

Theorem 1. (Convergence of FedMR) Let Assumption 4.1, 4.2, and
4.3 hold. Assume that E is the number of SGD iterations conducted
within one FL round, model recombination is conducted at the end of
each FL round, and the whole training terminates after n FL rounds.
Let T = n X E be the total number of SGD iterations conducted so far,
- _ 2 :
andny = T be the learning rate. We can have
L 4B u(y+1)

< —[—+ A,
2u(T+y) p 2

E[f(wr)] - f*

where B = 10LT + 4(E — 1)%G%, wr = 2115:1 wéﬂ

Theorem 1 indicates that the difference between the current
loss f(wr) and the optimal loss f* is inversely related to ¢. From
Theorem 1, we can find that the convergence rate of FedMR is
similar to that of FedAvg, which has been analyzed in [29].

5 Experimental Results

5.1 Experimental Settings

To evaluate the effectiveness of FedMR, we implemented FedMR on
top of a cloud-based architecture. Since it is impractical to allow all
the clients to get involved in the training processes simultaneously,
we assumed that there are only 10% of clients participating in the
local training in each FL round. To enable fair comparison, all the
investigated FL methods including FedMR set SGD optimizer with
a learning rate of 0.01 and a momentum of 0.9. For each client, we
set the batch size of local training to 50, and performed five epochs
for each local training. All the experimental results were obtained
from an Ubuntu workstation with Intel i9 CPU, 32GB memory, and
NVIDIA RTX 3080 GPU.

Baseline Method Settings. We compared the test accuracy of
FedMR with seven baseline methods, i.e., FedAvg [32], FedProx [28],
FedGen [48], CluSamp [9], FedExP [19], FedASAM [6], and Fed-
Mut [14]. Here, FedAvg is the most classical FL method, while the
other five methods are state-of-the-art (SOTA) representations of
the four kinds of FL optimization methods introduced in the re-
lated work section. Specifically, FedProx, FedExP, and FedASAM are
global control variable-based methods, FedGen is a KD-based ap-
proach, CluSamp is a device grouping-based method, and FedMut is
a mutation-based method. For FedProx, we used a hyper-parameter
1 to control the weight of its proximal term, where the best values
of u for CIFAR-10, CIFAR-100, and FEMNISTvare 0.01, 0.001, and
0.1, respectively. For FedGen, we adopted the same server settings
in [48]. For CluSamp, the clients were clustered based on the model
gradient similarity described in [9].

Dataset Settings. We investigated the performance of our ap-
proach on three well-known datasets, i.e., CIFAR-10, CIFAR-100
[23], and FMNIST [7]. We adopted the Dirichlet distribution [12]
to control the heterogeneity of client data for both CIFAR-10 and
CIFAR-100. Here, the notation Dir(«) indicates a different Dirich-
let distribution controlled by a, where a smaller &« means higher
data heterogeneity of clients. Note that, different from datasets
CIFAR-10 and CIFAR-100, the raw data of FEMNIST are naturally
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non-IID distributed. Since FEMNIST takes various kinds of data het-
erogeneity into account, we did not apply the Dirichlet distribution
on FEMNIST. For both CIFAR-10 and CIFAR-100, we assumed that
there are 100 clients in total participating in FL. For FEMNIST, we
only considered one non-IID scenario involving 180 clients, where
each client hosts more than 100 local data samples.

Model Settings. To demonstrate the pervasiveness of our ap-
proach, we developed different FedMR implementations based on
three different models (i.e., CNN, ResNet-20, VGG-16). Here, we
obtained the CNN model from [32], which consists of two convo-
lutional layers and two FC layers. When conducting FedMR based
on the CNN model, we directly applied the model recombination
for local training on it without pre-training a global model, since
CNN here only has four layers. We obtained both ResNet-20 and
VGG-16 models from Torchvision [36]. - When performing FedMR
based on ResNet-20 and VGG-16, due to the deep structure of both
models, we adopted the two-stage training scheme, where the first
stage lasts for 100 rounds to obtain a pre-trained global model.

5.2 Validation for Intuitions

Independent Training. Based on the settings presented in Sec-
tion 5.1, we conducted the experiments to evaluate the effectiveness
of each local model in Indep. The FL training is based on the ResNet-
20 model and dataset CIFAR-10, where we set o = 0.5 for non-IID
scenarios. Figures 5 compares Indep with FedAvg from the per-
spectives of both test loss and inference accuracy. Due to the space
limitation, for Indep here we only present the results of its four
random local models (denoted by Model-1, Model-2, Model-3, and
Model-4). To enable a fair comparison with FedAvg, although there
is no aggregated global model in Indep, we considered the aggre-
gated model of all its local models for each FL round, whose results
are indicated by the notion “IndepAggr”. From Figure 5, we can
find all the local models in Indep can achieve higher accuracy and
lower loss than those of FedAvg, though their loss and accuracy
curves fluctuate more sharply. Moreover, IndepAggr exhibits much
worse performance than the other references. This is mainly be-
cause, according to the definition of Indep, each local model needs
to traverse multiple clients along with the FL training processes,
where the optimization directions of client models differ in the
corresponding loss landscape.
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Figure 5: FedAvg vs. Indep.

Model Recombination. To validate the intuition about the
impacts of model recombination as presented in Section 3, we con-
ducted three experiments on CIFAR-10 dataset using ResNet-20
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model. Our goal is to figure out the following three questions: i)
by using model recombination, can all the models eventually have
the same optimization direction; ii) compared with FedAvg, can the
global model of FedMR eventually converge into a more flat solu-
tion; and iii) can the global model of FedMR eventually converge
to a more generalized solution?

!
!
098} el
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E - iy
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Communication Rounds

Figure 6: Cosine similarity of local models in FedMR.

Figure 6 presents the average cosine similarity between all the
intermediate models, taking four different client data distributions
into account. We can observe that the model similarity decreases
first and gradually increases in all the investigated IID and non-IID
scenarios. Due to the nature of Stochastic Gradient Descent (SGD)
mechanism and the data heterogeneity among clients, all local
models are optimized toward different directions at the beginning of
training. However, as the training progresses, most local models will
be located in the same flat valleys, leading to similar optimization
directions for local models. These results are consistent with our
intuition as shown in Figure 2.
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Figure 7: Comparison of loss landscapes with different FL
and client data settings.

Figure 7 compares the loss landscapes of final global models
obtained by FedAvg and FedMR with different client data settings,
respectively. We can find that, compared with FedMR counterparts,
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Figure 8: Comparison of test losses of FedAvg and FedMR
with different client data settings.

the global models trained by Fed Avg are located in sharper solutions,
indicating the generalization superiority of final global models
achieved by FedMR.

Figure 8 compares the test losses for the global models of FedAvg
and FedMR (without using two-stage training) within different
IID and non-IID scenarios. Note that here, the global models of
FedMR are only for the purpose of fair comparison rather than
local model initialization. Due to the superiority in generalization,
we can observe that the models trained by FedMR outperform those
by FedAvg for all four cases.

5.3 Performance Comparison

We compared the performance of our FedMR approach with seven
SOTA baselines. For datasets CIFAR-10 and CIFAR-100, we consid-
ered both IID and non-IID scenarios (with a = 0.1, 0.5, 1.0, respec-
tively). For dataset FEMNIST, we considered its original non-IID
settings [7].

5.3.1 Comparison of Test Accuracy. Table 1 compares FedMR with
the SOTA FL methods, considering both non-IID and IID scenarios
based on three different DL models. The first two columns denote
the model type and dataset type, respectively. Note that to enable
fair comparison, we cluster the test accuracy results generated
by the FL methods based on the same type of local models. The
third column shows different distribution settings for client data,
indicating the data heterogeneity of clients. The fourth column has
eight sub-columns, which present the test accuracy information
together with its standard deviation for all the investigated FL
methods, respectively.

From Table 1, we can observe that FedMR can achieve the highest
test accuracy in all the scenarios regardless of model type, dataset
type, and data heterogeneity. For CIFAR-10 and CIFAR-100, we can
find that FedMR outperforms the seven baseline methods signifi-
cantly in both non-IID and IID scenarios. For example, when dealing
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with a non-IID CIFAR-10 scenario (@ = 0.1) using ResNet-20-based
models, FedMR achieves test accuracy with an average of 58.40%,
while the second highest average test accuracy obtained by FedMut
is only 50.75%. Note that the performance of FedMR on FEMNIST
is not as notable as the one on both CIFAR-10 and CIFAR-100. This
is mainly because the classification task on FEMNIST is much sim-
pler than the ones applied on datasets CIFAR-10 and CIFAR-100,
which leads to the high test accuracy of the seven baseline methods.
However, even in this case, FedMR can still achieve the best test
accuracy among all the investigated FL methods.

5.3.2  Comparison of Model Convergence. Figure 9 presents the
convergence trends of the seven FL methods (including FedMR)
on the CIFAR-100 dataset. Note that here the training of FedMR is
based on our proposed two-stage training scheme, where the first
stage uses 100 FL training rounds to achieve a pre-trained model.
Here, to enable fair comparison, the test accuracy of FedMR at some
FL training rounds is calculated by an intermediate global model,
which is an aggregated version of all the local models within that
round. The four sub-figures show the results for different data dis-
tributions of clients. This figure shows that FedMR outperforms the
other six FL methods consistently in both non-IID and IID scenarios.
This is mainly because FedMR can easily escape from the stuck-at-
local-search due to the model recombination operation in each FL
round. Moreover, due to the fine-grained training, we can observe
that the learning curves in each sub-figure are much smoother
than the ones of other FL methods. We also compared CNN- and
VGG-16-based FL methods and found similar observations.

5.4 Ablation Study

5.4.1 Impacts of Activated Clients . Figure 10 compares the learn-
ing trends between FedMR and six baselines for a non-IID scenario
(a = 0.1) with both ResNet-20 model and CIFAR-10 dataset, where
the numbers of activated clients are 5, 10, 20, 50, and 100, respec-
tively. From Figure 10, we can observe that FedMR achieves the
best inference performance for all cases. We can also observe that
too few activated clients (i.e., K = 5) result in a degradation of the
accuracy of the global model in all the FL methods. We find that
when the number of activated clients increases, the convergence
fluctuations reduce significantly and FedMR achieves the smallest
fluctuations compared to all the baselines for all cases.

5.4.2  Impacts of Model Layer Partitioning. To show the effective-
ness of our layer-wise model recombination scheme, we evaluated
the FedMR performance using different model layer partitioning
strategies. We use “FedMR-px” to denote that the model is divided
into |'%'| (x € (0,1.0]) segments, where the model recombination
is based on segments rather than layers. Note that FedMR does
not divide a single layer into multiple segments. Instead, in FedMR
each segment involves multiple layers (i.e., one or more layers), and
the FedMR takes the recombination over segments among different
clients. Specifically, for the j layer, it belongs to [xiNVh seg-
ment. Since x € (0, 1.0], each segment contains at least one layer.
Note that x = 1.0 indicates an extreme case, where local models are
randomly dispatched to clients without recombination.

Figure 11 presents the ablation study results on CIFAR-10 dataset
using ResNet-20-based and VGG-16-based FedMR, where the data
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Table 1: Test accuracy comparison for both non-IID and IID scenarios using three DL models

Heter.

Model Datas.

Test Accuracy (%)

Set.

FedAvg [ FedProx [ FedGen [ CluSamp [ FedExP [FedASAM[ FedMut [ FedMR

0.1
0.5
1.0
11D

50.66 +1.18
54.42 £ 0.76
57.03 £ 0.62
57.21£0.27

50.61 £ 1.21
54.28 £1.29
56.44 + 0.68
57.00 £0.11

Cifar-10

50.27 £2.03
53.66 + 0.68
56.19 £ 0.54
57.35+£0.19

50.24 £ 1.04
55.07 £ 0.93
56.16 £ 0.56
58.13 £0.35

53.20 £ 1.33
55.12 £ 0.57
57.12 £ 0.34
57.05£0.15

48.83 +£1.86
52.02 +£0.43
55.08 £ 0.61
54.60 £ 0.11

52.88 £0.59
57.29 + 0.61
58.88 + 0.47
58.81 +0.21

54.63 £ 0.55
59.81 £ 0.60
60.77 £ 0.48
63.74+0.18

CNN 0.1
0.5
1.0

IID

29.12 £ 0.52
32.41£0.77
32.66 £ 0.51
32.75 £ 0.20

29.44 £ 0.73
32.48 +£0.81
33.10 £ 0.41
32.57 £0.21

Cifar-100

26.14 £ 0.92
29.19 £ 0.67
29.94 + 0.51
30.95 £ 0.32

28.51 £ 1.14
32.63 £ 0.60
32.65 £ 0.48
32.77 £0.11

30.43 £ 0.39
33.12 £ 0.51
33.32 £0.38
32.48 £0.14

28.95+0.48
32.06 +£0.98
32.45 £ 0.61
32.35+£0.29

31.23 £ 0.35
34.46 + 0.69
35.12 £ 0.42
34.49 + 0.23

34.47 £ 0.54
37.41 £ 0.30
39.15 £ 0.30
40.64 + 0.17

FEMNIST| - [82.97 +0.37|83.15 + 0.41

82.35+0.40

82.31 £0.32

83.28 +£0.29|83.49 £ 0.27|83.62 + 0.33183.76 + 0.24

0.1
0.5
1.0
11D

42.14 £ 3.91
58.70 + 0.86
64.33 £0.25
65.72 £ 0.22

43.25+3.18
59.33 £0.77
64.75 £ 0.33
65.95+0.23

Cifar-10

44.19 £ 2.42
60.64 £ 0.83
64.41 +£0.29
66.31 +£0.23

41.64 £ 2.04
58.74 £ 0.82
63.42 £ 0.45
65.36 +£0.18

45.18 £ 2.43
59.74 £ 0.92
64.48 + 0.31
65.58 +£0.24

45.22 + 4.06
63.49 £1.10
67.62 £ 0.41
69.65 £ 0.10

50.75 + 1.85
63.34 £ 0.70
68.09 + 0.25
69.77 £ 0.19

59.20 +£1.22
72.41 £0.17
75.16 £ 0.31
77.48 £0.10

ResNet-20 0.1
0.5
1.0

11D

34.22 +1.01
42.16 £0.43
43.32+0.38
45.14 £0.28

34.52 £ 0.68
41.37 £ 0.49
43.00 = 0.45
45.40 £ 0.27

35.76 + 1
Cifar-100

11
45.03 £0.96
46.60 + 0.39
48.33 £0.25

33.23£0.78
41.54 £ 0.52
43.63 = 0.39
44.76 +£ 0.24

36.09 £0.71
41.96 £ 0.56
43.68 +£0.23
45.04 £0.24

37.31 £ 0.66
44.29 +0.52
46.74 + 0.31
48.59 +£0.20

44.61 +1.48
54.26 + 0.45
55.72 £ 0.36
59.24 + 0.32

38.79 £ 0.55
46.55 + 0.55
48.41 + 0.25
48.65 £ 0.17

FEMNIST 79.09 + 0.54|78.89 + 0.50

79.56 + 0.34

78.75 £ 0.27

79.15 + 0.34|81.20 + 0.41|78.98 + 0.45|81.27 + 0.31

0.1
0.5
1.0
IID

62.28 £5.72
78.82 £0.21
79.53 £ 0.34
79.96 + 0.05

63.19 £5.15
78.49 £0.26
79.52 £0.30
79.79 £ 0.07

Cifar-10

65.97 +£3.82
78.98 £0.11
80.08 £ 0.24
80.13 £ 0.05

62.00 +3.19
78.09 +0.48
79.67 £ 0.45
79.66 £ 0.06

64.78 £ 5.69
79.30 £ 0.43
79.76 £ 0.20
79.89 £ 0.05

65.52 +4.96
79.12 £ 0.25
80.08 £ 0.32
80.66 + 0.09

74.49 £ 0.92
84.24 + 0.37
85.12 £ 0.13
85.66 £ 0.15

69.15 + 2.16
80.07 +0.19
80.85 + 0.99
82.20 + 0.05

VGG-16 0.1
0.5
1.0

IID

47.29 £ 0.96
55.60 + 0.55
56.05 + 0.45
57.22 £0.28

48.02 + 0.68
55.45+£0.70
55.75 £ 0.36
56.65 + 0.23

4911 +1
Cifar-100

.60
56.29 + 0.84
57.96 + 0.32
58.47 £0.16

47.38 +1.47
54.45 £ 0.58
55.70 £ 0.37
57.33 £0.17

49.36 + 0.55
56.40 + 0.47
56.69 + 0.25
57.55+£0.16

48.78 £ 1.03
56.73 £ 0.41
57.46 £ 0.25
57.96 £ 0.11

51.30 + 1.00
58.02 + 0.31
58.53 + 0.31
58.62 + 0.08

55.33+0.72
65.07 £ 0.25
65.66 + 0.15
66.33 +0.10

FEMNIST 83.96 +£0.43|84.27 £ 0.32

84.39 £ 0.28

83.64 £ 0.27

83.99 £0.32|84.59 + 0.21|83.97 + 0.57|85.36 + 0.21
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Figure 9: Learning curves of FL methods based on ResNet-20 model for CIFAR-100 dataset.

on clients are non-IID distributed (& = 1.0). Note that all the cases
here did not use the two-stage training scheme. From this figure, we
can find that FedMR outperforms the other variants significantly.
Moreover, when the granularity of partitioning goes coarser, the
classification performance of FedMR becomes worse.

5.4.3 Two-stage Training Scheme. To demonstrate the effective-
ness of our proposed two-stage training scheme, we conducted
experiments on CIFAR-10 dataset using ResNet-20-based and VGG-
16-based FedMR, where the data on clients are non-IID distributed
(a = 1.0). Figure 12 presents the learning trends of FedMR with

five different two-stage training settings. Here, we use the nota-
tion “FedMR-n” to denote that the first stage involves n rounds
of model aggregation-based local training to obtain a pre-trained
global model, while the remaining rounds conduct local training
based on our proposed model recombination-based method. From
Figure 12, we can observe that the two-stage training-based FedMR
methods (i.e., FedMR-50 and FedMR-100) achieve the best perfor-
mance from the perspectives of test accuracy and convergence
rate. Note that our two-stage training scheme can achieve a more
significant improvement on the case using VGG-16 model, which
has a much larger size than ResNet-20 model. This is because the
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Figure 12: Learning curves for two-stage training settings.

fine-grained FedMR without the first-stage training is not good
at dealing with large-size models at the beginning of FL training,
which requires many more training rounds than the coarse-grained
aggregation-based methods to achieve a given preliminary clas-
sification accuracy target. By resorting to the two-stage training
scheme, such a slow convergence problem can be greatly mitigated.

5.5 Discussions

5.5.1 Privacy Preserving. Similar to traditional FedAvg-based FL
methods, FedMR does not require clients to send their data to the
cloud server, thus the data privacy can be mostly guaranteed by
the secure clients themselves. Since our model recombination oper-
ation breaks the dependencies between model layers and conducts
the shuffling of layers among models, in practice, it is hard for
adversaries to restore the confidential data from a fragmentary re-
combined model without knowing the sources of layers. We present
a secure recombination mechanism to avoid privacy leakage from
the cloud server. Please see Appendix B for more details. Our se-
cure recombination mechanism ensures that the cloud server only

receives recombined models from clients, which means that the
cloud server cannot restore the model of each client.

5.5.2  Limitations. As a novel FL paradigm, FedMR shows much
better inference performance than most SOTA FL methods. Al-
though this paper proposed an efficient two-stage training scheme
to accelerate the overall FL training processes, there still exist nu-
merous chances (e.g., client selection strategies, dynamic combina-
tion of model aggregation and model recombination operations)
to enable further optimization on the current version of FedMR.
Meanwhile, the current version of FedMR does not consider person-
alization [31, 33] and fairness [26, 27], two very important topics
that deserve to be studied in the future.

6 Conclusion

Due to the coarse-grained aggregation of FedAvg as well as the
uniform client model initialization, when dealing with uneven data
distribution among clients, existing Federated Learning (FL) meth-
ods greatly suffer from the problem of low inference performance.
To address this problem, this paper presented a new FL paradigm
named FedMR, which enables different layers of local models to be
trained on different clients. Since FedMR supports both fine-grained
model recombination and diversified local training initialization,
it enables effective and efficient search for superior generalized
models for all clients. Comprehensive experimental results show
both the effectiveness and pervasiveness of our proposed method
in terms of inference accuracy and convergence rate.
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Is Aggregation the Only Choice? Federated Learning via Layer-wise Model Recombination

A Proof of FedMR Convergence

A.1 Notations

In our FedMR approach, the global model is aggregated from all
the recombined models and all the models have the same weight.
Let t exhibit the t*# SGD iteration on the local device, v is the
intermediate variable that represents the result of SGD update after
exactly one iteration. The update of FedMR is as follows:

of g = wE = eV fie(wf, &), (1)
K fH, if Eft+1 @
17 RM(GK), if Eft+1”

where wt represents the model of the k*” client in the t/ iteration.
w41 denotes the global model of the (¢ + l)th iteration. RM (v
denotes the recombined model.

Since FedMR recombines all the local models in each round and
the recombination only shuffles layers of models, the parameters of
recombined models are all from the models before recombination,
and no parameters are discarded. Therefore, when E | t+ 1, we
can obtain the following invariants:
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where wf is the k" recombined model in (¢ — 1)!" iteration, which

is as the local model to be dispatched to k" client in ¢*” iteration,
x can any vector with the same size as vlt< . Similar to [34], we define
two variables v; and w;:

1< 1<
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Inspired by [29], we make the following definition:
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A.2 Proof of Lemma 4.4
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Since model recombination only shuffles layers of models, the
parameters of recombined models are all from the models before
recombination and no parameters are discarded. We have
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According to Equations 9-11, we have
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A.3 Key Lemmas

To facilitate the proof of our Theorem 1, inspired by [29], we can
present the following two lemmas. Note that the following proofs
are general proofs for all the multi-model-based FL approaches that
satisfy Lemma 4.4.

Lemma A.1. (Results of one step SGD). If n; < 7, we have

ar’
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ProoF. According to Lemma 4.4 (i.e., Equation 3 and Equation
4), we have
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to Assumption 4.2, we have
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By Cauchy-Schwarz inequality, we have
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Note that since n < E’ e < ¢ < 2n and L < 711. According
to Equation 20, we have
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Lemma A.2. According to Equation 2, the model recombination
occurs every E iterations. Assume that in each training round, to is
the first iteration and iteration t — ty < E — 1. Given the constraint on
learning rate from [29], we know that n; < ny, < 2n;. It follows that
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A.4 Proof of Theorem 1

Based on Lemmas A.1 and A.2, we can prove Theorem 1 using the
proof framework of FedAvg [29]. Due to space limitations, please
refer to the proof of FedAvg [29] for the details.

B Secure Model Recombination Mechanism

To avoid the risk of privacy leakage caused by exposing gradients
or models to the cloud server, we propose a secure model recombi-
nation mechanism for FedMR, which allows the random exchange
of model layers among clients before model training or upload. As
shown in Figure 13, within a round of the secure model recombina-
tion, the update of each model (i.e., m) consists of four stages:

O O
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Stage 3: Shuffling Layers

Figure 13: Workflow of secure model recombination.

Stage 1: Assume that the local model has len layer. Each client
maintains a buffer for each layer. Firstly, each client randomly
selects a part of its layers and sends them to other activated clients,
while the remaining layers are saved in their corresponding buffers.
Note that a selected layer can only be sent to one client. For example,
in Figure 13, the client m sends layer; and layery to c; and cj,
respectively.

Stage 2: Once receiving a layer from another client, the receiving
client m will add the layer to its corresponding buffer. For example,
in Figure 13, the client m totally receives five layers. Besides the
retained two layers in stage 1, m now has seven layers in total in
its buffers.

Stage 3: For each layer buffer of m, if there contains one element
received from a client c in stage 2, our mechanism will randomly
select one layer in the buffer and return it back to c. For example,
in Figure 13, m randomly returns a layer in Buffer-layer1 back to a
client ¢} .

Stage 4: Once receiving the returned layers from other clients,
our mechanism will recombine them with all the other layers in
the buffers to form a new model. Note that the recombined model
may significantly differ from the original model in Stage 1.

Note that each FL training round can perform multiple times
secure model recombination. Due to the randomness, it is hard
for adversaries to figure out the sources of client model layers. In
addition, the cloud server will broadcast a public key before the
secure recombination to prevent privacy leakage. By using the
public key to encrypt the model parameters of each layer, the other
clients cannot directly obtain their received parameters.
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