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Abstract

Causal discovery is crucial for causal inference
in observational studies, as it can enable the iden-
tification of valid adjustment sets (VAS) for un-
biased effect estimation. However, global causal
discovery is notoriously hard in the nonparametric
setting, with exponential time and sample com-
plexity in the worst case. To address this, we
propose local discovery by partitioning (LDP):
a local causal discovery method that is tailored
for downstream inference tasks without requiring
parametric and pretreatment assumptions. LDP is
a constraint-based procedure that returns a VAS
for an exposure-outcome pair under latent con-
founding, given sufficient conditions. The total
number of independence tests performed is worst-
case quadratic with respect to the cardinality of
the variable set. Asymptotic theoretical guaran-
tees are numerically validated on synthetic graphs.
Adjustment sets from LDP yield less biased and
more precise average treatment effect estimates
than baseline discovery algorithms, with LDP out-
performing on confounder recall, runtime, and test
count for VAS discovery. Notably, LDP ran at least
1300× faster than baselines on a benchmark.

1 INTRODUCTION

Uncertainty surrounding the true causal structure of obser-
vational data is a central challenge in causal inference. Un-
biased causal effect estimation requires that certain variable
types are omitted from covariate adjustment (e.g., colliders),
while others are retained (e.g., confounders) [Schisterman
et al., 2009, Lu et al., 2021, Holmberg and Andersen, 2022].
However, the identification of such variables can be chal-
lenging when the structural causal model is unknown, as is
often true in practice. When domain knowledge is limited,

Ground truth PC (n = 10k)

Figure 1: For sample sizes n ≤ 10k, classic constraint-based
algorithm PC fails to causally partition the data with respect
to {X,Y } (e.g., by misidentifying confounder Z1 and in-
strument Z5). Data generating process is linear-Gaussian
(Fisher-z tests; α = 0.005). See Figure A.1 for details.

causal discovery offers a powerful solution by automating
the identification of critical variables and providing valid
adjustment sets (VAS) for downstream inference.

We consider the set of causal discovery methods that do
not require parametric assumptions on the data generating
process for the identifiability of causal relations, increasing
their reliability in real-world settings (e.g., healthcare). We
therefore restrict our attention to constraint-based discovery,
avoiding the standard parametric assumptions of functional
causal models [Shimizu et al., 2006, Hoyer et al., 2008,
Zhang and Hyvarinen, 2009, Rolland et al., 2022, Montagna
et al., 2023] and restrictive assumptions on variable vari-
ances [Gao et al., 2020]. Despite asymptotic guarantees on
correctness, the practicality of global constraint-based dis-
covery is limited by the high sample and time complexity of
running many conditional independence (CI) tests [Aliferis
et al., 2010, Zhang et al., 2011, Schlüter, 2014, Zarebavani
et al., 2020, Hagedorn et al., 2022, Braun et al., 2022]. As
shown in Figures 1 and A.1–A.3, classic constraint-based
methods like PC and FCI [Spirtes et al., 2000] can also
display finite sample failure modes for VAS discovery, even
with reasonably large sample sizes.

Increasingly, attention is shifting toward local discovery
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methods that only learn relationships that are causally rele-
vant to target variables of interest [Gupta et al., 2023, Cai
et al., 2023, Dai et al., 2024]. However, existing local dis-
covery methods that are tailored for VAS identification gen-
erally require that all variables are pretreatment (i.e., non-
descendants of the exposure) [Entner et al., 2013, Cheng
et al., 2023b]. This strong graphical assumption heavily
simplifies the automated covariate selection problem, but is
difficult to reliably verify in real-world data.

To address the challenges posed by existing global and
local methods, we propose local discovery by partition-
ing (LDP): a local causal discovery algorithm designed for
downstream inference tasks that does not assume pretreat-
ment nor require parametric assumptions on the underlying
data generating process. We approach this problem through
the lens of causal partitioning, where variables are system-
atically subsetted according to their causal relation to an
exposure-outcome pair. LDP returns a VAS under the back-
door criterion in worst-case polynomial time. Once a VAS is
identified, conditional exchangeability holds, allowing the
user to choose their preferred inference method to obtain un-
biased effect estimates. In addition to VAS discovery, LDP
identifies other variable types that can facilitate inference
(e.g., instrumental variables [Imbens, 2014]) or statistical
efficiency (e.g., causes of outcome [Brookhart et al., 2006]).

Contributions We introduce a taxonomy of eight exhaus-
tive and mutually exclusive causal partitions that are uni-
versal properties of any arbitrary dataset with respect to an
exposure-outcome pair. We then propose a polynomial-time
procedure for leveraging these partitions to obtain a VAS
under the backdoor criterion. LDP improves on the prac-
ticality of causal discovery in the context of downstream
inference, owing to the following properties.

• Time efficiency: LDP only conducts tests that are
needed for learning a VAS. The total number of in-
dependence tests performed is worst-case quadratic
with respect to total variables, versus exponential for
common baselines. On a community benchmark, LDP
ran 1400× to 2500× faster than PC.

• Sample efficiency: The majority of CI tests defined
in Algorithm 1 use conditioning sets of size one or
two, contributing to more favorable sample efficiency
relative to experimental baselines.

• Flexibility: LDP does not require parametric assump-
tions over the data generating process and does not
assume the magnitude of the exposure-outcome effect
(which may be null). We replace the pretreatment as-
sumption with a milder, verifiable condition.

Organization The remainder of this paper is organized as
follows. Section 2 describes preliminaries for causal graph-
ical modeling, and Section 3 describes the universal parti-
tioning taxonomy. Section 4 introduces LDP and establishes

that LDP returns a VAS for the true DAG under causal in-
sufficiency, if a specific CI criterion is passed by at least
one variable in the observed data. Section 5 compares LDP
to existing works that do and do not assume pretreatment.
In Section 6, we numerically evaluate LDP and establish
that LDP achieves low runtimes and high sample efficiency
when compared with existing causal discovery methods.
Results demonstrate that VAS from LDP yield less biased
and more precise average treatment effect estimates than
baselines. Source code is available on GitHub.1

2 PRELIMINARIES

Univariate random variables are denoted by uppercase let-
ters (e.g., X). Sets or multivariate random variables are
denoted by bold uppercase (e.g., Z), and graphs by cal-
ligraphic letters (e.g., G). Let X,Y,Z denote continuous
or discrete random variables representing an exposure, an
outcome, and a variable set of unknown causal structure,
respectively. Let GXY Z be the graph induced by {X,Y,Z}.
Sample sizes are denoted by n and large values are abbrevi-
ated (e.g., n = 1000→ n = 1k.)

We restrict our attention to the set of causal graphs that
are directed and acyclic.2 We assume the common causal
Markov condition and faithfulness [Spirtes et al., 2000].3

We define active and inactive paths in GXY Z based on the
concept of d-separation.4

Definition 2.1 (D-separation, Spirtes et al. 2000). Nodes V
and V ′ in arbitrary causal DAG G are d-separated given node
set D (where {V, V ′} /∈ D) when there is no undirected
path between V and V ′ that is active relative to D.

Definition 2.2 (Active paths, Spirtes et al. 2000). An undi-
rected path is considered active relative to a node set D
if every node on this path is active relative to D. A node
V ∈ G is active on a path relative to D if

1. V /∈ D is not a collider,
2. V ∈ D is a collider, or
3. V /∈ D is a collider and at least one of its descendants

is in D.

We take an inactive path to be one that does not meet Defi-
nition 2.2 (e.g., due to existence of a collider /∈ D on that
path). As the definitions of active and inactive are with re-
spect to D, we assume D = ∅ unless otherwise stated. We
classify active paths between two nodes {Z,Z ′} following

1https://github.com/jmaasch/ldp
2Refer to Pearl [2009] for an introduction to graphical models.
3This ensures that the CI relations entailed by the joint distri-

bution p(X,Y,Z) precisely match those implied by the Markov
condition applied to GXY Z (i.e., p(X,Y,Z) and GXY Z are faithful
to each other).

4Note that these definitions consider both the directed path and
its corresponding undirected path, ignoring directionality.

https://github.com/jmaasch/ldp
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Figure 2: All potential acyclic triples that can be induced by X , Y , and a single Z when paths are restricted to a length of 1.

from Table 2: 1) Z → · · · → Z ′, 2) Z ← · · · ← Z ′, or 3)
Z ← · · ·Z ′′ · · · → Z ′, where Z ′′ denotes a third node.

We say that causal association flows from exposure X
to outcome Y through directed paths X → · · · → Y .
Non-causal association between X and Y due to a com-
mon cause also presents as statistical dependency, per Re-
ichenbach’s common cause principle [Peters et al., 2017].
Such common causes lie along backdoor paths for {X,Y }
(X ← · · ·Z · · · → Y ).

Definition 2.3 (Backdoor path, Pearl 2009). Any non-causal
path between exposure X and outcome Y with an edge
pointing into X (· · · → X).

We define valid adjustment with respect to the backdoor cri-
terion, which enables conditional ignorability or conditional
exchangeability for causal effect estimation in observational
data: i.e., confounding bias is eliminated by achieving condi-
tional independence between exposure X and the potential
outcomes of Y [VanderWeele and Shpitser, 2013].

Definition 2.4 (Valid adjustment under the backdoor cri-
terion, Pearl 2009). Let AXY be an adjustment set for
{X,Y } that does not contain {X,Y }. AXY is valid if

1. AXY contains no descendants of X and
2. AXY blocks all backdoor paths for X and Y .

Definition 2.5 (Confounder, VanderWeele and Shpitser
2013). A confounder for a variable pair {X,Y } is a vari-
able Z for which there exists a variable set S (which may
be empty) such that the effect of X on Y is unconfounded
given {Z,S} but not given any proper subset of {Z,S}.

3 CAUSAL PARTITIONS OF Z

We approach the problem of local discovery for downstream
inference through the lens of causal partitioning, where
variables are systematically subsetted according to their
causal relation to the exposure and outcome. We establish
an exhaustive taxonomy of eight disjoint partitions in Ta-
ble 1. These partitions are not assumptions on the true DAG.
Rather, they are universal properties of any ground truth
DAG with respect to a chosen exposure-outcome pair. Thus,
a true unique partitioning exists for any directed acyclic data
generating process (though some partitions may be empty).
In this work, we argue that these fundamental properties can
be conveniently leveraged for efficient algorithm design.

In the next theorem, we establish that each variable Z ∈ Z
belongs to a single ground truth partition.

X Y
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Figure 3: Given X and Y , we can project any ground truth
DAG onto a reduced 10-node DAG where nodes represent
partition sets (which may be empty), arrows signify both
adjacencies and indirect active paths (one or more), and
inter-partition relations are abstracted away. The dashed
edge suggests a possible null relation. Conditioning on Z1

blocks all backdoor paths for {X,Y }.

Theorem 3.1. The eight partitions defined in Table 1 are
exhaustive and mutually exclusive, such that any variable Z
falls uniquely under one partition category.

Intuition. The intuition behind this taxonomy is reflected
in the eight triple graphs in Figure 2, where X is assumed
to cause Y and all paths are restricted to length one. These
triples are exhaustive and mutually exclusive, and arise from
simple enumeration of the three possible relations that one
variable can take with respect to another: cause, effect, or
neither. We generalize this intuition to the setting of arbitrary
cardinality and indirect active paths, where the primitive re-
lations of cause, effect, and neither map to the more complex
relational combinations enumerated in Tables 2 and 3 (e.g.,
ancestor, non-ancestor, descendant, and non-descendant).

Proof. To prove Theorem 3.1, we define every type of active
path from a candidate Z ∈ Z to X or Y that can possibly
arise in the ground truth graph (Table 2). These can be
direct adjacencies or indirect active paths of arbitrary length.
Table 3 expresses every possible combination of path types
that can coincide for a single Z. The mutual exclusivity of
partitions follows from the fact that each cell of Table 3
contains a single partition, such that the pattern of allowable
active path types from Z to X and Y is unique for each
partition. Exhaustivity follows from the fact that every cell
in Table 3 that does not violate acyclicity contains a partition,
such that all possible combinations are represented.

Some partitions coincide with existing terminology while
others do not. Z1 approximately maps to confounder [Van-



Exhaustive and Mutually Exclusive Causal Partitions

Z1 Confounders and their proxies: Non-descendants of X that lie on an active backdoor path between X and Y (Definition
2.5), and their proxies (Definition B.8).

Z2 Colliders and their proxies: Non-ancestors of {X,Y } with at least one active path to X not mediated by Y and at least
one active path to Y not mediated by X .

Z3 Mediators and their proxies: Descendants of X that are ancestors of Y , and their proxies (Definition B.8).
Z4 Non-descendants of Y that are marginally dependent on Y but marginally independent of X (Definition B.3).
Z5 Instruments and their proxies: Non-descendants of X whose causal effect on Y is fully mediated by X , and that share

no confounders with Y (Definitions B.1 and B.8).
Z6 Descendants of Y where all active paths shared with X are mediated by Y .
Z7 Descendants of X where all active paths shared with Y are mediated by X .
Z8 All nodes that share no active paths with X nor Y .

Table 1: Partitions are formally defined by the path combinations enumerated in Table 3.

TYPE ACTIVE PATH RELATIVE TO X ACTIVE PATH RELATIVE TO Y
1 None (or none that do not pass through Y ). None (or none that do not pass through X).
2 Z → · · · → X path(s) and no other types. Z → · · · → Y path(s) not passing through X and no other types.
3 X → · · · → Z path(s) not passing through Y and no other types. Y → · · · → Z path(s) and no other types.
4 Z ← . . . Z ′ · · · → X path(s) and no other types. Z ← . . . Z ′ · · · → Y path(s) and no other types.
5 Type 2 path(s) and Type 4 path(s). Type 2 path(s) and Type 4 path(s).
6 Type 3 path(s) and Type 4 path(s). Type 3 path(s) and Type 4 path(s).

Table 2: Exhaustive enumeration of the types of active paths of arbitrary length that can lie between any variable Z and
{X,Y }. In confounded paths, Z ′ denotes an additional variable in Z that may or may not belong to the same partition as Z.
Note that some path types cannot coincide for a single Z, as they would induce a cycle.

PATH TYPES RELATIVE TO X

TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5 TYPE 6

R
E

L
A

T
IV

E
T

O
Y TYPE 1 Z8 Z5 Z7 Z5 Z5 Z7

TYPE 2 Z4 Z1 Z3 Z1 Z1 Z3

TYPE 3 Z6 ∅ Z2 Z2 ∅ Z2

TYPE 4 Z4 Z1 Z2 Z2∈M3
Z1 Z2

TYPE 5 Z4 Z1 Z3 Z1 Z1∈B3
Z3

TYPE 6 Z6 ∅ Z2 Z2 ∅ Z2

Table 3: Permissible combinations of active path types relative to X and Y . Cells contain partitions that can participate in the
given combination. The empty set (∅) indicates that this combination of active path types is forbidden under the acyclicity
constraint. Subscript M3 denotes an M-collider, while subscript B3 denotes a butterfly-type confounder (Figure E.1).

derWeele and Shpitser, 2013], Z2 to collider, Z3 to me-
diator, Z4 to pure prognostic variable [Hahn and Herren,
2022], and Z5 to instrumental variable [Lousdal, 2018]. To
our knowledge, {Z6,Z7,Z8} do not coincide with existing
terms in the causal inference literature. Further attention
is given to defining Z4 and Z5 in Appendix B, given their
role in the identifiability conditions of LDP (Section 4.1).
Proxy variables are also further defined in Appendix B.
When referring to multiple partitions collectively, e.g., Z5

and Z7, we use notation of the form Z5,7. When referring
to a subpartition that is descended from or adjacent to a
specific variable, we use notation of the form Z2∈de(X) and

Z2∈adj(X), respectively.5

Within a single partition, there can be arbitrarily many active
paths among its members (e.g., Z1 → · · · → Z ′

1). Across
partitions, active paths can exist in arbitrary DAGs as long
as they comply with acyclicity and the patterns in Table 3.

Definition 3.2 (Inter-partition active path). Any active path
that is shared by at least two partitions, is not fully medi-
ated by X and/or Y , and complies with acyclicity and the
combination of path types allowable in Table 3.

An example of an inter-partition active path that cannot exist

5An example of Z2/∈de(X) and Z2/∈adj(X) is M3 in Fig. E.1.



is Z4 → · · · → Z5, as such a path violates the definitions of
these partitions (Table 3, Appendix B). When we assemble
all partitions into a single DAG, reduce active paths with
{X,Y } to length-1 arrows, and abstract away inter-partition
active paths, we obtain the projection in Figure 3.

Algorithm 1 Local Discovery by Partitioning (LDP)

input X , Y , Z, independence test, significance level α
output (1) VAS, if identifiable; (2) partition labels (as in-

termediate results)

1: Copy Z′ ← Z
2: for all Z ∈ Z′ do

▷ STEP 1: TEST FOR Z8

3: if X ⊥⊥ Z and Y ⊥⊥ Z then Z ∈ Z8

▷ STEP 2: TEST FOR Z4

4: else if X ⊥⊥ Z and X ⊥̸⊥ Z|Y then Z ∈ Z4

▷ STEP 3: TEST FOR Z5,7

5: else if Y ⊥̸⊥ Z and Y ⊥⊥ Z|X then Z ∈ Z5,7

6: Z′ ← Z′ \ Z4 ∪ Z5,7 ∪ Z8

▷ STEP 4: TEST FOR ZPOST

7: if |Z4| > 0 then
8: for all Z ∈ Z′ do
9: if ∃ Z4 ∈ Z4: Z ⊥̸⊥ Z4 or Z ⊥⊥ Z4|X ∪ Y then

Z ∈ ZPOST

10: Z′ ← Z′ \ ZPOST

▷ STEP 5: TEST FOR ZMIX

11: for all Z ∈ Z′ do
12: if Y ⊥̸⊥ Z and Y ⊥⊥ Z|X ∪ Z′ \ Z then
13: Z ∈ Z1,2,3,5 ∈ ZMIX

14: Z′ ← Z′ \ ZMIX

▷ STEP 6: SPLIT ZMIX BETWEEN Z1,5, Z7 , ZPOST

15: ZMIX ← ZMIX ∪ Z5,7

16: if |ZMIX| > 0 and |Z′| > 0 then
17: for all Z ∈ Z′ do
18: if ∃ ZMIX ∈ ZMIX: ZMIX ⊥⊥ Z and ZMIX ⊥̸⊥ Z|X

then
19: Z ∈ Z1, ZMIX ∈ Z1,5 /∈ ZMIX

20: else Z ∈ ZPOST

21: for all ZMIX ∈ ZMIX do
22: if ∃ Z1,5 ∈ Z1,5: Z1,5 ⊥⊥ ZMIX then ZMIX ∈ Z1

23: else ZMIX ∈ ZPOST

24: if |Z1,5 ∪ Z1| > 0 then Z7 ← Z5,7

▷ STEP 7: FINALIZE Z1 AND Z5

25: if |Z1,5| > 0 and |Z1| > 0 then
26: for all Z1,5 ∈ Z1,5 do
27: if ∃ Z1 ∈ Z1: Z1,5 ⊥̸⊥ Z1 then Z1,5 ∈ Z1

28: else Z1,5 ∈ Z5

▷ STEP 8: TEST FOR VAS (Z5 CRITERION)
29: if ∃ Z5 ∈ Z5: Z5 ⊥⊥ Y |X ∪ Z1 then VAS← Z1

30: else VAS← {not identifiable}

31: {not identifiable}← Z /∈ Z1,Z4,Z5,Z7,Z8,ZPOST

32: return VAS and intermediate partition results

4 LOCAL DISCOVERY BY
PARTITIONING

The pseudocode for LDP is expressed in Algorithm 1.
Proofs of correctness are given in Appendix D.1. Given
an exposure-outcome pair {X,Y } and variable set Z, LDP
causally partitions Z in service of identifying a VAS under
the backdoor criterion. LDP raises a warning if a VAS is
not identifiable, as assessed using the Z5 criterion (Defini-
tion 4.3; Line 29 of Algorithm 1). A visual schematic for
the learning process of Algorithm 1 is provided in Figure
4. Note that the correctness of certain intermediate results
identified by LDP requires more stringent identifiability
conditions than VAS discovery, as discussed in Remark 4.1.

Remark 4.1 (LDP is foremost a VAS discovery method, not
a partition labeling method). LDP outputs partition labels
as intermediate results en route to identifying a VAS. As
intermediate results, LDP labels 1) five unique causal par-
titions (Z1, Z4, Z5, Z7, and Z8), and 2) a superset ZPOST,
which aggregates the remaining three post-treatment parti-
tions (Z2, Z3, and Z6). While the sufficient conditions for
guaranteeing correct partition labels for Z4, Z7, and Z8 are
very lax (Theorem 4.6), sufficient conditions for correctly
labeling the remaining partitions are significantly stronger
than for VAS discovery (Section 4.1). For use of predicted
partition labels outside VAS selection, we urge caution in
interpreting the results. Thus, guaranteed partition label cor-
rectness for Z1, Z2, Z3, and Z5 in arbitrary DAGs is a key
limitation and an area for future work.

High-Level Overview Here, we describe the basic logic
of Algorithm 1 in plain English. Note that the partition
labels assigned by Algorithm 1 assume that the sufficient
conditions described in Section 4.1 are satisfied.

Step 1 Z8 discovered with knowledge of {X,Y, Z} only.
Step 2 Z4 discovered with knowledge of {X,Y, Z} only.
Step 3 Z7 discovered with knowledge of {X,Y, Z} only.

Z5 will also be discovered if |Z1| = 0.
Step 4 A fraction of ZPOST is discovered, providing com-

plete knowledge of Z6 and partial knowledge of
Z2 and Z3. This step leverages prior knowledge of
Z4 that was obtained programmatically at Step 2.

Step 5 ZMIX is temporarily aggregated, providing partial
knowledge of Z1, Z2, Z3, and Z5. ZMIX is a tran-
sient superset that is used to differentiate Z1 and
Z5 from ZPOST in Step 6.

Step 6 Knowledge of ZPOST is complete. ZMIX is fully
disaggregated, providing final partition labels for
some members and moving others to superset Z1,5.
At this stage, we also finalize our knowledge of Z7.
By Line 19, all members of Z5 have been placed in
Z1,5. By Line 22, members of Z1 that are adjacent
to Y have been uniquely identified.

Step 7 Z1 and Z5 are fully disentangled. This step tests
whether a member of superset Z1,5 is marginally
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Figure 4: Each step of Algorithm 1 reveals additional information about the partitions of Z without requiring LDP to learn
the full causal graph. Nodes that are fully colored are fully discovered, partial coloring denotes partial knowledge, and no
coloring denotes no knowledge.

dependent on known members of Z1. All previ-
ously known members of Z1 are adjacent to Y . Z1

that are left to be discovered are those with indi-
rect active paths to Y . In any arbitrary DAG, no
Z5 ∈ Z5 will ever be dependent on a Z1 ∈ Z1 that
is adjacent to Y . However, all Z1 are marginally
dependent on at least one Z1 ∈ Z1 adjacent to Y .

Step 8 The algorithm concludes by testing the Z5 crite-
rion, which indicates whether a VAS was discov-
ered and raises a warning when failed.

Time Complexity We report Big O complexity in terms
of total independence tests performed, as is conventional
for constraint-based causal discovery [Spirtes et al., 2000,
Tsamardinos et al., 2006]. The first for-loop (Steps 1–3)
requires a linear number of tests in O(|Z|), where Step 1
caches all marginal test results for every candidate relative
to {X,Y }. Step 4 requires O(|Z|2) tests. Step 5 requires
O(|Z|) and Step 6 requires O(|Z|2). Step 7 requires no tests,
as it uses cached test results. Step 8 requires O(|Z|) tests.
Thus, total tests performed is in O(|Z|2). Empirical results
with an oracle corroborate asymptotic analyses (Figure 5).

Sample Complexity The sample complexity of LDP will
be dictated by the user-selected independence test. In lieu
of a formal complexity analysis, we provide some statistical
intuition for the efficiency of LDP. It is generally assumed
that lower order CI relations (i.e., those with smaller con-
ditioning sets) are inferred more reliably than higher order
relations under finite samples [Spirtes et al., 2000]. For
example, conditional mutual information (CMI) has been
shown to require an exponential number of samples in the
cardinality of the conditioning set [Kubkowski et al., 2021].
For a conditioning set of size 10 and a power of at least 0.5,
CMI can require a sample size of approximately n = 30k
[Kubkowski et al., 2021]. Even if all variables in this condi-
tioning set have just three discrete states, it is possible that
only a subset of the 310 possible states will be instantiated in
sample sizes representative of real-world data [Spirtes et al.,
2000]. Therefore, LDP was designed under the intuition
that lower order CI tests provide more favorable sample
complexity. The maximum conditioning set size for Line
12 is O(|Z1,2,3,5|) and for the Z5 criterion is O(|Z1|). All
other conditioning sets are cardinality one or two. Limited

empirical comparisons by sample size (Figures 6, 7, A.1,
A.2) and conditioning set size (Appendix G.1) are provided.

LDP for VAS Selection Under Multiple Criteria LDP
flexibly facilitates VAS selection under multiple popular the-
oretical criteria (Appendix C). As LDP returns Z1, Z4, and
Z5, LDP can be used as an automated preprocessing step
for VAS selection under the common cause criterion (which
retains only Z1), the disjunctive cause criterion (which re-
tains {Z1,Z4,Z5}) [VanderWeele and Shpitser, 2011], and
the outcome criterion (which retains {Z1,Z4}) [Brookhart
et al., 2006], all of which yield VAS under the backdoor
criterion and the generalized adjustment criterion [Perkovic
et al., 2015]. However, we recommend caution if adjusting
for Z5, as adjusting for instruments can amplify bias or
introduce new bias [Pearl, 2012b]. We discuss notions of
optimal and minimal adjustment sets in Appendix C.

4.1 IDENTIFIABILITY CONDITIONS

Here, we describe two separate sets of sufficient conditions
for the identifiability of 1) a VAS for the true DAG and 2)
correct partition labels, which are provided as intermediate
results by LDP. Notably, we show that a VAS is identifiable
under causal insufficiency if a specific CI criterion is met
by at least one variable (Line 29 of Algorithm 1). All theo-
retical results are for the asymptotic regime and assume an
independence oracle.

Assumptions We assume the causal Markov condition,
faithfulness, and acyclicity. Variables are not assumed to
be exclusively pretreatment and we do not place sparsity
constraints on the true graph. We do not make assumptions
about the distributional forms of variables nor the functional
forms of their causal relations. While user-specified indepen-
dence tests might impose their own parametric assumptions,
nonparametric tests are recommended when the data gener-
ating process is unknown (e.g., Gretton et al. 2005, 2007,
Zhang et al. 2011, Runge 2018).

The Exposure-Outcome Pair The only prior knowledge
of GXY Z that is required by LDP concerns the exposure-
outcome relationship. While the causal effect of X on Y



Figure 5: Total tests performed under an independence ora-
cle (top) and mean runtime over 100 replicates (bottom) as
the cardinality of Z increases, with 95% confidence intervals
in shaded regions. Each DAG resembles Figure 3 with equal
cardinality per partition ([1, 10]). Results are reported for
LDP and PC. LDECC and MB-by-MB curves overlapped
with PC, with PC outperforming. Exponential, quadratic,
x log2(x), and linear curves (in tests and milliseconds) serve
as comparison. Table G.1 reports raw data.

can be of arbitrary strength or null, we assume that 1) X
and Y are marginally dependent and 2) Y cannot be a direct
nor indirect cause of X due to the acyclicity assumption.
All proofs and experiments assume univariate X and Y .

Sufficient Conditions for VAS Identification A VAS 1)
contains no descendants of X and 2) blocks all backdoor
paths for {X,Y } (Definiton 2.4). Theorem 4.5 shows that
the VAS returned by LDP meets both criteria given the
following sufficient (but not necessary) graphical conditions.

C1 The existence of at least one observed member of Z4.
C2 The existence of at least one observed member of Z5,

such that all Z1 are marginally independent of at least
one observed Z5 ∈ Z5.

C1 is testable at Line 7 of Algorithm 1 and C2 is testable
in Steps 7 and 8. C1 guarantees that all backdoor paths will
be blocked by the conditioning set in Step 5 of Algorithm 1
(X∪Z′\Z), which is used to discover Z5. C2 guarantees that
LDP identifies the Z1 needed to ensure a VAS, and enables
the Z5 criterion to be tested (Definition 4.3). We note that
C1 and C2 can be intuitively checked by reasoning whether
multiple causes of X and Y exist in the dataset. While
the existence of multiple causes does not guarantee that
these conditions will hold, the absence of multiple causes
indicates that LDP might not be suitable. Verifying C1 does

not require C2 nor causal sufficiency (Theorem 4.6) and
replaces the strong pretreatment assumption in the covariate
selection literature. C1 is discussed further in Remark 4.7.

With respect to preventing descendants of X from entering
the adjustment set, we present Lemma 4.2.

Lemma 4.2. LDP does not place descendants of X in Z1

under Conditions C1 and C2.

Additionally, LDP provides an internal test that indicates
whether an adjustment set blocks all backdoor paths.

Definition 4.3 (Z5 criterion). If there exists a Z5 ∈ Z5 that
is d-separable from Y given X and Z1 (Z5 ⊥⊥ Y |X ∪ Z1),
we say that the Z5 criterion is passed.

Lemma 4.4 (Passing the Z5 criterion is a valid indicator that
Z1 blocks all backdoor paths). If the Z5 criterion is passed,
then the Z1 recovered by LDP is asymptotically guaranteed
to block all backdoor paths for X and Y .

Theorem 4.5 (LDP returns a VAS for {X,Y } under the
backdoor criterion). Following from Lemmas 4.2 and 4.4, if
the Z5 criterion is passed, then the Z1 returned by LDP is
a VAS for {X,Y }.

All proofs are provided in Appendix D.2. We numerically
validate Theorem 4.5 in Section 6.

Sufficient Conditions for Correct Partition Labels As
we show in Theorem 4.6, Conditions C1 and C2 are not
required to correctly label Z4, Z7, and Z8.

Theorem 4.6. Partitions Z4, Z7, and Z8 are guaranteed to
be correctly labeled by LDP in random structures without
C1 and C2, even in the presence of latent confounding.

Intuition. Theorem 4.6 follows from the fact that tests
for Z4, Z7, and Z8 rely only on knowledge of {X,Y } and
candidate Z. This is in contrast to Step 5, for example, which
relies on access to additional variables in the true graph for
correctness. Full proof is provided in Appendix D.3.

We note that LDP correctly labels partitions Z1, Z2, Z3,
and Z5 under additional conditions C3 and C4. Given suffi-
cient (but not necessary) conditions C1–C4, Theorem D.1
states that LDP correctly labels the causal partitions of Z as
intermediate results en route to identifying a VAS (proof in
Appendix D.1). Recall that C3 and C4 are not needed for
identifying a VAS, nor partitions Z4, Z7, and Z8. Further,
Section 6 provides empirical examples where C3 and C4
are violated with no impact on partition label accuracy for
Z1, Z2, Z3, and Z5.

Remark 4.7 (Weakening the pretreatment assumption with
Condition C1). We argue that the common pretreatment
requirement assumes away the problem of confounder (Z1)
and instrument (Z5) identification via a priori exclusion of



{Z2∈de(X),Z3,Z6,Z7}. We introduce Condition C1 based
on the intuition that assuming the presence of at least one
verifiable representative from a single partition (Z4) is more
moderate than assuming the complete absence of multiple
partitions, which may not be verifiable. We argue that C1
is a verifiable assumption, as we show that the correct iden-
tification of Z4 is robust to latent confounding in arbitrary
DAGs (Theorem 4.6). Note that C1 is not necessary when
Z contains no colliders (or, more strongly, when Z is pre-
treatment), nor when the Z5 criterion is passed (indicating
that backdoor paths for {X,Y } were closed despite failure
to test for colliders; Lemma 4.4).

5 COMPARISON TO PRIOR METHODS

Global Causal Discovery While global methods can the-
oretically identify the partitions of Z, LDP was explicitly
designed to circumvent common drawbacks. The local ap-
proach of LDP avoids costly combinatorial optimization,
guaranteeing worst-case polynomial test totals without spar-
sity constraints (at the expense of graphical assumptions C1
and C2). Further, the asymptotic guarantees of nonparamet-
ric global discovery can fail even on simple structures under
small to moderately large samples, which are common in
practice (Figures A.1–A.3). LDP addresses sample com-
plexity by favoring lower order CI tests relative to global
constraint-based methods [Spirtes et al., 2000].

Local Discovery Around Target Variables The chal-
lenges of global discovery can be mitigated by local methods
that infer relevant substructures around a target (or targets)
of interest. Most local methods for causal ancestor discovery,
confounder discovery, or related tasks impose strong graph-
ical assumptions that require prior knowledge. The most
common of these assumptions requires that input variables
are non-descendants of the target (e.g., the pretreatment as-
sumption in the exposure-outcome context) [De Luna et al.,
2011, Entner et al., 2013, Häggström et al., 2015, Shortreed
and Ertefaie, 2017, Tian et al., 2018, Gultchin et al., 2020,
Soleymani et al., 2022, Shah et al., 2022, Cai et al., 2023].
We argue that excluding the existence of colliders, media-
tors, and other descendants of the exposure overly simplifies
the problem of identifying instruments, confounders, and
other variables that are useful for downstream inference.

Automated Covariate Selection for Pretreatment Z Ent-
ner et al. [2013], Gultchin et al. [2020], Shah et al. [2022],
Cheng et al. [2023b], and Cheng et al. [2023a] assume the
existence of anchor or auxiliary variables, which can re-
semble Z1 or Z5. Thus, this assumption plays a similar role
to Condition C2 and Lemma 4.4. With the exception of
Cheng et al. [2023a], these methods require pretreatment Z,
a strong assumption that we significantly weaken by intro-
ducing Condition C1. While Cheng et al. [2023b] require
that auxiliary variables were identified prior to confounder

discovery, LDP discovers the variables needed to satisfy
Conditions C1 and C2 end-to-end. The continuous opti-
mization approach taken by Gultchin et al. [2020] requires
parametric assumptions, while LDP does not.

We should emphasize that these methods are designed for
VAS discovery alone, sometimes combined with causal ef-
fect estimation end-to-end. LDP, on the other hand, is a local
discovery procedure for partitioning Z while guaranteeing
a VAS. Thus, unlike prior methods, LDP can be used to
satisfy multiple covariate selection criteria (Section 4) or to
assist with tasks beyond valid adjustment (e.g., discovering
instruments and their proxies, causes of outcome, etc.).

Automated Covariate Selection for Arbitrary Z Like
LDP, concurrent work by Cheng et al. [2023a] avoids the
pretreatment assumption. However, it is not a local method
as it calls an existing variant of FCI [Colombo et al., 2012],
a global discovery algorithm. Lemma 4.4 bears similarity to
Theorem 1 in Cheng et al. [2023a], in which they prove that
an analogous CI relation indicates the existence of VAS in
partial ancestral graphs with hidden variables.

6 EXPERIMENTAL RESULTS

We numerically validate LDP on custom synthetic DAGs
and the MILDEW benchmark from the bnlearn Bayesian
Network Repository (Figure E.3) [Scutari, 2010].6 For all
simulated DAGs, structural equations are reported in Tables
G.2 and G.3 and graphs are visualized in Appendix E. Ex-
perimental data generation is described in Appendix F. We
experimentally validate LDP for VAS discovery in causally
sufficient Z and in the presence of latent confounding. Ad-
ditionally, we probe 1) partition label correctness and 2) the
quality of adjustment sets (AXY ) returned by each method
with respect to average treatment effect (ATE) estimation.

Baseline Discovery Methods All baselines are constraint-
based and do not assume pretreatment. PC and FCI are
global discovery algorithms with asymptotic theoretical
guarantees and worst-case exponential time complexity
with respect to node count [Spirtes et al., 2000]. Two local
methods were also selected for comparison. MB-by-MB
[Wang et al., 2014] and Local Discovery Using Eager Col-
lider Checks (LDECC) [Gupta et al., 2023] take distinct
approaches to inferring the local structure around a target
node. While MB-by-MB is exponential-time, LDECC is
provably polynomial-time for certain categories of graphs
and exponential for others. Further description of these al-
gorithms and how they were evaluated is in Appendix F. To
illustrate the strengths and weaknesses of all baselines, VAS
were evaluated under the common cause criterion (CCC)
[Guo et al., 2022] and disjunctive cause criterion (DCC)
[VanderWeele and Shpitser, 2011] (Appendix C).

6https://www.bnlearn.com/bnrepository/

https://www.bnlearn.com/bnrepository/


MILDEW (FIGURE E.3)

LINEAR-GAUSSIAN 10-NODE DAG (FIGURE 3)

Figure 6: Baselines on MILDEW (|Z| = 31) and a linear-Gaussian DAG (|Z| = 8) (Tables G.8, G.9). Independence was
determined with chi-square tests for MILDEW (α = 0.001) and Fisher-z tests for the linear-Gaussian DAG (α = 0.01).
Results were averaged over 10 and 100 replicates per sample size for MILDEW and the linear-Gaussian DAG, respectively
(95% confidence intervals in shaded regions). Precision and recall for Z1 identification were computed per adjustment set.

Partition Accuracy We measure partition accuracy as the
percentage of partition labels that are consistent with ground
truth. Results on the 10-node DAG with one variable per
partition (Figure 3) indicate that LDP correctly partitions
Z under continuous, discrete, linear, and nonlinear data
generating processes (Figure G.1, Tables G.4, G.5). Figure
G.1 supports the claim that LDP is agnostic to the strength
of the direct effect of X on Y , as results are unharmed when
X is not adjacent to Y . Though LDP is not guaranteed to
correctly partition when inter-partition active paths exist,
we demonstrate that LDP is robust to certain violations of
this condition (Tables G.6, G.7, G.10): LDP provides high
partition accuracies on the MILDEW benchmark (≥ 90%
accuracy; Figure G.2) and synthetic DAGs when Z2 shares
active paths with Z4, Z5, and Z6 (Figures E.1, E.2, E.5).

6.1 VAS UNDER CAUSAL SUFFICIENCY

We compare adjustment set quality across baselines for two
graphs with small Z1 (Figure 6): the MILDEW benchmark
(|Z| = 31; |Z1| = 2) and a linear-Gaussian DAG (|Z| =
8; |Z1| = 1). Quality was measured in terms of Z1 precision
and recall in AXY , percent of AXY that were valid, total
tests performed, runtime, and ATE MSE (when ground truth
was available). Results indicate that LDP provides superior
sample, statistical, and time efficiency relative to baselines.

LDP outperformed on Z1 recall (Figure 6.A, 6.F top), test
count (6.D), and runtime (6.E). Notably, LDP ran 1400×
to 2500× faster than PC across sample sizes for MILDEW,
with comparable gains relative to local baselines (Table G.8).

High Z1 recall for LDP is reflective of its ability to detect
Z1 that are not adjacent to either X nor Y , unlike local
baselines. As expected, LDP displayed superior Z1 preci-
sion under the CCC but was comparable to other methods
when Z4 and Z5 were intentionally retained under the DCC
(6.B, 6.G). Only LDP consistently returned a VAS for the
linear-Gaussian DAG under the CCC and DCC (6.H). Fur-
thermore, AXY from LDP provided less biased and more
precise ATE estimates (6.I, 6.J). Highly biased ATE esti-
mates using AXY from PC is linked to a propensity to
include extraneous variables (Figure G.3). Low ATE vari-
ance for LDP implies favorable statistical efficiency relative
to baselines. Further, LDP achieves consistently high VAS
quality at smaller sample sizes than baselines, implying
greater sample efficiency.

Additionally, we illustrate a known failure mode of LDP
partition labeling that still results in VAS (Figure E.4; |Z| =
14; |Z1| = 7). In a complex backdoor path, a Z1 adjacent to
Y is marginally dependent on a Z4 and will be mislabeled
as ZPOST. Further, a Z2 that is 1) a non-descendant of X
and 2) conditionally independent of {X,Y } given Z1 is
guaranteed to be placed in Z1. Despite these mislabelings,
LDP returned a VAS for 99% of 100 replicates (sample size
n = 5k). Figure E.4 describes further details.

6.2 VAS DISCOVERY WITH LATENT VARIABLES

With the Z5 criterion (Line 29 of Algorithm 1; Definition
4.3), LDP helps the user to manage uncertainty about the
quality of the returned adjustment set. To numerically val-



LATENT VAS EXISTS Z5 CRIT % VALID

B1 ∈ Z1 ✓ ✓ 100
B2 ∈ Z1 ✓ ✓ 99
Z4a ∈ Z4 ✓ ✓ 99
M2 ∈ Z4 ✓ ✓ 100
Z5a ∈ Z5 ✓ ✓ 99
M1 ∈ Z5 ✓ ✓ 100
Z1 ∈ Z1 ✗ ✗ 0
B3 ∈ Z1 ✗ ✗ 0

Table 4: Numerical validation of Theorem 4.5 on an 18-node
ground truth DAG with latent variables (Figures 7, E.5).
For 100 replicates where each variable was left unobserved
(LATENT), we report whether a VAS for the ground truth
DAG exists in Z (VAS EXISTS), whether the Z5 criterion
passed (Z5 CRIT), and the percent of predicted adjustment
sets that were valid with respect to the ground truth DAG (%
VALID). Additional information is provided in Table G.10.

True (Z5a latent) FCI (n = 50k)

Figure 7: FCI failed to identify a VAS on DAGs with linear
causal functions and Bernoulli noise (true Z1 in red; 5/5
replicates consistent with the predicted DAG at right). Addi-
tional results for PC and FCI are reported in Figure A.3.

idate the asymptotic guarantees of this criterion and The-
orem 4.5, we ran LDP with an independence oracle on
causally insufficient structures. The ground truth DAG con-
tained a butterfly structure, M-structure, and inter-partition
active paths (Figures 7, E.5; |Z| = 18; |Z1| = 4). All
combinations of common causes (up to size three) were
iteratively dropped from the observed data. Hidden con-
founders were in Z1, Z4, and Z5 and induced latent con-
founding between {X,Y }, {X,Z1}, {Y,Z1}, {X,Z2},
{Y,Z2}, {Y,Z4}, and {X,Z5}. Partition Z2 shared active
paths with Z4, Z5, and Z6.

For all eight structures with one latent variable, we observed
100% concordance between LDP passing the Z5 criterion,
whether a VAS for the true DAG existed in Z, and whether
LDP returned a VAS. For the 84 structures with two to
three latent variables, we saw 100% concordance between
whether the Z5 criterion was passed and whether LDP re-
turned a VAS. In all instances (6%) where a VAS existed
in Z and LDP failed to return a VAS, both parents of the
M-collider were latent. As expected, such a M-collider was
treated as Z1. In all such cases, LDP raised a warning that

the Z5 criterion was failed and a VAS was not identified.
These results suggest that the Z5 criterion is a valid indicator
for whether the Z1 returned by LDP is a VAS and, further,
whether it induces M-bias [Ding and Miratrix, 2014].

To probe finite sample performance, we ran LDP on linear
categorical instantiations of Figure E.5 (n = 50k; chi-square
tests; α = 0.001). We tested 100 replicates per latently
confounded structure. Among 600 instances for which a
VAS of the ground truth DAG existed in Z, LDP returned a
VAS for 99.5% (95% CI [99.1, 99.9]; Table 4). If at least one
parent in the M-structure was observed in Z, the collider was
not placed in Z1 and LDP returned a VAS without M-bias
(200/200 replicates).

In contrast, PC and FCI demonstrate finite sample failure
modes on the same causal structure (Figures 7, A.3). Though
PC and FCI return a VAS when provided with an oracle,
both algorithms fail to provide VAS for discrete and contin-
uous data samples (Figure A.3). In particular, these methods
display a high false negative rate on true confounder Z1.

7 LIMITATIONS AND FUTURE WORK

The performance of LDP will be constrained by the ac-
curacy, runtime, and sample complexity of the chosen in-
dependence test. While LDP does not make innate para-
metric assumptions, the user should be cautious if opting
for parametric independence tests. We provide asymptotic
theoretical guarantees, which future work could extend to
probabilistic guarantees under finite samples.

As causal discovery is notoriously impractical in many set-
tings, this work attempts to highlight the benefits of ap-
proaches that are tailored for specific use cases. Under a
tailored approach, prior knowledge of the problem space
can improve performance relative to generalized global dis-
covery (e.g., in time and sample efficiency).

In this work, we propose a performant local discovery algo-
rithm for VAS discovery, at the expense of Conditions C1
and C2. These graphical conditions restrict the space over
which LDP provides informative results. We hope to see
performant local discovery solutions to the covariate selec-
tion problem that do not assume pretreatment yet do not rely
on the presence of Z4 and Z5. In particular, the efficient
differentiation of confounders, mediators, and colliders in
random graphs is a challenging problem that we hope future
research will address.
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APPENDIX

A MOTIVATING EXAMPLES: COMPARISON TO GLOBAL CAUSAL DISCOVERY

Ground truth PC (n = 10k) LDP (n = 10k)

Figure A.1: Mean independence tests performed, mean runtime (seconds), and percent of adjustment sets that were valid for
the experiments described in Figure 1. Values were averaged over 25 replicates per sample size for a linear-Gaussian DAG
(Fisher-z tests; α = 0.005). Error bars represent 95% confidence intervals. Experiments used the PC implementation by
Kalisch and Buhlmann [2007]. Note that LDP does not infer the relations between members of Z, hence only the paths to X
and Y are visualized (abstracted as length-1).

Figure A.2: A ground truth DAG with M-structure versus the DAGs inferred by LDP, PC [Spirtes et al., 2000], and
FCI [Spirtes et al., 2000] (left to right). Causal mechanisms were linear and noise was Bernoulli (n = 5k; chi-square
independence tests). Only LDP partitioned the variables correctly and returned a valid adjustment set (VAS). LDP returned a
VAS at n = 1k, FCI at n = 10k, and PC at n > 10k. Note that LDP does not infer the relations between members of Z,
hence only the paths to X and Y are visualized (abstracted as length-1). Dotted edges indicate that LDP could not distinguish
Z2 from Z6, which is expected behavior on this structure. Variables M1 ∈ Z5, M2 ∈ Z4, and M3 ∈ Z2. Experiments use
the PC implementation from [Kalisch and Buhlmann, 2007] and the FCI implementation from causal-learn.

https://causal-learn.readthedocs.io/


A. True graph (Z5a latent; Z1 in red) B. FCI with oracle C. PC with oracle

D. FCI (discrete; n = 50k) E. FCI (discrete; n = 50k) F. FCI (discrete; n = 50k)

G. FCI (continuous; n = 50k) H. PC (continuous; n = 50k) I. PC (continuous; n = 50k)

Figure A.3: Failure modes of PC and FCI for causal partitioning under finite samples. Though PC and FCI return a valid
adjustment set (VAS) when provided with an oracle (B, C), both algorithms fail to provide VAS for discrete and continuous
data samples. Though the correlation coefficient for X and Z1 was moderate for all examples (∈ [0.25, 0.36]) and both
parametric and nonparametric (mutual information) tests demonstrated marginal dependence, neither algorithm could
reliably detect the edge between X and Z1 (D, E). Even when FCI inferred edges between Z1, X , and Y (F), the bidirected
edges Y ↔ Z1 ↔ X imply that Z1 is an M-collider, not a confounder. Unreliable results might be attributable to cascading
errors due to the ordering of tests [Colombo and Maathuis, 2014]. Discrete data (D–F) feature linear causal mechanisms
and Bernoulli noise (chi-square tests; α = 0.001). Continuous data (G–I) feature linear causal mechanisms and Gaussian
noise (Fisher-z tests; α = 0.001). Varying α did not improve causal partitioning. LDP successfully identified a VAS for both
discrete and continuous instantiations. Graphs produced with dodiscover (B, C, I) and causal-learn (D–H).

B CAUSAL PARTITIONS: EXTENDED DEFINITIONS

B.1 PARTITION Z5: INSTRUMENTAL VARIABLES AND THEIR PROXIES

X Y

Z5 Z1

A: Instrument Z5.

X Y

Z5 Z1

U

B: Proxy instrument Z5.

Figure B.1: Z5 encompasses (A) instruments that are causal for X and (B) proxy instruments that are descended from
confounders U ∈ Z5 (i.e., common causes of proxy instruments and X) [Hernán and Robins, 2006].

Instrumental variable methods have been used heavily in econometrics [Imbens, 2014] and epidemiology [Hernán and
Robins, 2006, Labrecque and Swanson, 2018] for causal effect estimation in the presence of latent confounding. The

https://www.pywhy.org/dodiscover/dev/index.html
https://causal-learn.readthedocs.io/en/latest/index.html


present work explores an additional way to relate instrumental variables to the problem of confounding, where the marginal
independence between some instrument-confounder pairs is exploited to detect confounders in unknown causal structures.
We define an instrument as any variable that meets the criteria enumerated in Definition B.1. We then claim Proposition B.2
about the relations among Z1 and Z5, as a theoretical basis for sufficient condition C2. Proof of Proposition B.2 follows
from Propositions B.5 and B.7.

Definition B.1 (Instrumental variable, Lousdal [2018]). Any instrument meets the following criteria:

1. Relevance assumption: The instrument is causal for exposure X .
2. Exclusion restriction: The effect of the instrument on outcome Y is fully mediated by X .
3. Exchangeability assumption: The instrument and Y do not share a common cause.

Proposition B.2. Any instrument (or proxy) Z5 ∈ Z5 will meet the following criteria with respect to at least one confounder
(or proxy) Z1 ∈ Z1 on every backdoor path in GXY Z.

1. Z5 and Z1 are marginally independent.
2. Z5 and Z1 are conditionally dependent given X .

B.2 PARTITION Z4

To our knowledge, partition Z4 has been significantly less characterized and less utilized in the causal inference literature
than confounders (Z1), colliders (Z2), mediators (Z3), and instrumental variables (Z5). Limited reference has been made to
members of this partition under the term pure prognostic variables [Hahn and Herren, 2022]. We elaborate on our definition
of Z4 below.

Definition B.3 (Partition Z4). Partition Z4 encompasses all non-descendants of Y that are marginally dependent on Y but
marginally independent of X (Table 1). Given this definition, we observe that any Z4 ∈ Z4 participates in a v-structure
X · · · → Y ← · · ·Z4. This implies the following:

1. X cannot share active paths with any Z4. Thus, X can share no common causes with any Z4.
2. Z4 is conditionally dependent on X given Y . This implicitly requires that the X and Y under consideration are

marginally dependent (an assumption made in Section 4.1), though they may not be directly adjacent in GXY Z.

B.3 ADDITIONAL PROPOSITIONS ON Z4 AND Z5

Here, we introduce several propositions that describe the properties of Z4 and Z5 in relation to each other and to Z1. Let P
be a backdoor path in GXY Z.

Proposition B.4. If a Z4 ∈ Z4 shares an active path with any Z1 ∈ Z1 on P such that Z4 ⊥̸⊥ Z1, that Z4 must form a
v-structure Z4 · · · → Z1 ← · · ·Z ′

1, where Z ′
1 lies between Z1 and X on P . If not, Z4 would share an active path with X ,

which violates the definition of Z4 (Definition B.3). In Figure B.2 (right-hand DAG), examples include Z4 → Z3
1 ← Z2

1 and
Z4 → Z3

1 ← Z5
1 . Together with Definition B.3, this proposition implies that no Z4 will ever be marginally dependent on a

Z1 that is directly adjacent to X .

Proposition B.5. If a Z5 ∈ Z5 shares an active path with any Z1 ∈ Z1 on P such that Z5 ⊥̸⊥ Z1, that Z5 must form a
v-structure Z5 · · · → Z1 ← · · ·Z ′

1, where Z ′
1 lies between Z1 and Y on P . If not, Z5 would share an active path with Y ,

which violates the definition of Z5 (Definition B.1). In Figure B.2 (right-hand DAG), examples include Z5 → Z1
1 ← Z2

1 and
Z5 → Z1

1 ← Z4
1 . Together with Definition B.1, this proposition implies that no Z5 will ever be marginally dependent on a

Z1 that is directly adjacent to Y .

Proposition B.6 (A single Z1 ∈ Z1 cannot be a collider for a Z4 ∈ Z4 and a Z5 ∈ Z5). If a single Z1 was a collider for Z4

and Z5, then Z4 would share an active path with X and Z5 would share an active path with Y , violating the definitions of
these partitions.

Next, we introduce the concepts of root-Z1 and collider-Z1. We observe that every backdoor path features a Z1 that acts as
a root node for that path: i.e., it is a common cause for {X,Y } and all Z1 that are its descendants on the paths to X and Y .
In Figure B.2, {Z1

1 , Z
3
1 , Z

6
1} are roots for backdoor paths in the left-hand DAG while {Z2

1 , Z
4
1 , Z

5
1} are roots for backdoor

paths in the right-hand DAG. When multiple backdoor paths in GXY Z overlap (i.e., share subpaths), some Z1 can behave as



colliders for two parents in Z1. In Figure B.2, {Z2
1 , Z

4
1} are collider-Z1 on overlapping backdoor paths in the left-hand

DAG while {Z1
1 , Z

2
1 , Z

3
1} are collider-Z1 for backdoor paths in the right-hand DAG. Note that node Z2

1 in the right-hand
DAG simultaneously behaves as a root-Z1 and a collider-Z1 for different backdoor paths. Thus, Z2

1 is not a true root in the
classical graph theory sense of having no parents.

Proposition B.7 (The root-Z1 of a backdoor path will never be marginally dependent on a Z4 nor a Z5). As all root-Z1 are
causal for both X and Y , marginal dependence on either a Z4 or a Z5 would violate Propositions B.4, B.5, and B.6.

X Y

Z1
1

Z3
1

Z2
3Z1

3

Z6
1

Z5
1 Z7

1

Z4
1Z2

1

Z5 Z4

Z6Z7

causal path forbidden

X Y

Z1
2

Z2
1

Z2
2

Z4
1 Z5

1

Z3
1Z1

1

Z5 Z4

Z6Z7

Figure B.2: Two DAGs that exemplify the behavior of LDP for valid adjustment set detection in the presence of inter-partition
active paths. All red nodes will be placed in Z1 by LDP. All confounders for {X,Y } that are colored green will be mislabeled
due to their marginal dependence on Z4 or Z5.
Left: Variables Z1

1 , Z3
1 and Z6

1 will be placed in Z1. Despite their marginal dependence on the only Z5 in this structure, Z2
1

and Z5
1 will never be placed in ZPOST due to the presence of Z1

1 , as Z2
1 ⊥⊥ Z1

1 and Z5
1 ⊥⊥ Z1

1 . Together, the confounders
highlighted in red ({Z1

1 , Z
2
1 , Z

3
1 , Z

5
1 , Z

6
1}) constitute a valid adjustment set that blocks all backdoor paths and contains no

descendents of X . No causal path of either directionality is permissible between Z5
1 and Z7

1 , as it would induce an active
path from Z4 to X or from Z5 to Y not mediated by X . If this path were to contain a confounder analogous to Z3

1 , this
would be permissible and this node would be placed in Z1 by LDP.
Right: This DAG contains a modified butterfly structure, which will be partially retained in Z1 ({Z2

1 , Z
4
1 , Z

5
1}) while still

blocking all backdoor paths. As there is only one Z5 in this structure and no backdoor path whose members are marginally
independent of Z1

1 , this confounder will be mislabeled as ZPOST at Step 6. This DAG also illustrates a case where a member
of Z2 (Z2

2 ) is placed in Z1. Inclusion of Z2
2 does not violate the validity of the adjustment set returned by LDP, as this node

is not a descendent of X and additionally adjusting for {Z2
1 , Z

4
1 , Z

5
1} prevents collider bias.

B.4 PROXY VARIABLES

Multiple causal partitions defined in this work include notions of proxy variables. These proxies are conceptually related
to previously described proxy variables in the causal literature, though they may depart in some ways. Firstly, the path
types enumerated in Table 2 allow for proxies of confounders to be classified as Z1. A descendant proxy can act as a noisy
stand-in for its respective confounder [Pearl, 2012a], and adjusting for this proxy when the confounder is unobserved can
theoretically reduce confounding bias (though this is not guaranteed for all cases) [VanderWeele, 2019]. Likewise, proxy
instruments are a notable variable type in the instrumental variable literature that falls under our definition of Z5 (Figure
B.1). We generalize the notion of a proxy here to refer to any member of Z1 that does not lie on a backdoor path (and thus
cannot fully block it), as well as the analogue for Z2 and Z3. For the purposes of this work, the proxy and the variable that
it proxies will generally both be observed, though the literature explores cases where the proxied variable is unobserved
[Wang and Blei, 2021].

Definition B.8 (Proxy variables in Z1, Z2, and Z3). A proxy variable for Z1, Z2, or Z3 is a member of these partitions that
is an ancestor or descendant of another member of its respective partition, such that the proxy is not strictly a confounder,



X Y

Z1b Z1cZ1a

X Y

Z2b Z2cZ8

X Y

Z3b Z3cZ4

Figure B.3: Example proxy variables for Z1, Z2, and Z3. All Z∗a and Z∗c are proxies for the corresponding Z∗b.

mediator, or collider, but still satisfies the allowable path types for its respective partition (as defined in Table 3). This
includes members of Z3 that are not directly on mediator chains but are descended from Z3 that lie on mediator chains,
members of Z1 that are not on backdoor paths but are ancestral to Z1 on backdoor paths, etc. (Figure B.3).

C COVARIATE SELECTION CRITERIA

Popular Criteria For Valid Adjustment The notion of valid adjustment is contingent on the causal quantity of interest. In
this work, we consider valid adjustment with respect to total effect estimation. Pearl’s backdoor path criterion dictates that a
valid adjustment set contains no descendants of the exposure and blocks all backdoor paths (Definition 2.4) [Pearl, 1995].
Additional covariate selection criteria have been proposed, which are consistent with the backdoor criterion but provide
additional guidance. The common cause criterion advocates controlling only for confounders (∈ Z1), and is popular in
practice [Guo et al., 2022]. The pretreatment criterion controls for all measured baseline variables, an approach previously
defended by Donald Rubin [Rubin, 2008, Guo et al., 2022]. This approach is at risk of overadjustment [Schisterman et al.,
2009, Lu et al., 2021] as it could allow instruments (Z5) and M-structure colliders (M3 ∈ Z2; Figure E.1) to be included
in the adjustment set (see Pearl 2012b, Ding and Miratrix 2014 for discussions of when this may be problematic). The
disjunctive cause criterion is an intermediate approach between the common cause and pretreatment criteria [VanderWeele
and Shpitser, 2011]. This criterion retains covariates that are causal for exposure, outcome, or both (i.e., Z1, Z4, and
Z5). Adjusting only for Z1 and Z4 has also been advocated for propensity score models [Brookhart et al., 2006], as 1)
unnecessarily adjusting for Z5 raises risks of variance inflation and bias amplification while 2) adjusting for Z4 can improve
causal estimate precision without impacting bias. We refer to this approach as the outcome criterion. The generalized
adjustment criterion [Perkovic et al., 2015] extends the generalized backdoor criterion [Maathuis and Colombo, 2015] to
provide a unified criterion for necessary and sufficient adjustment sets that applies to DAGs, maximum ancestral graphs
(MAGs), completed partially directed acyclic graphs (CPDAGs), and partial ancestral graphs (PAGs).

Optimality and Minimality LDP returns the entire discovered Z1 and does not explicitly infer optimal nor minimal
valid adjustment sets. LDP solves a local causal discovery problem and not an inference problem, and the notion of
optimality is only well-defined for a particular estimator of the target parameter. However, LDP can be applied as an efficient
preprocessing step for algorithms that return optimal and minimal adjustment sets but require prior graphical knowledge.
Commonly, optimality is defined in terms of minimizing the asymptotic variance of causal estimates [Runge, 2021]. It has
been shown that constraining the outcome by adjusting for Z4 in a propensity score model can decrease average treatment
effect variance [Brookhart et al., 2006]. Since LDP discovers Z4 by design, it can be used for this objective.



D PROOFS

In the following proofs, we assume that all assumptions and sufficient conditions defined in Section 4.1 are met unless it is
explicitly stated that they can be weakened or dropped.

D.1 PARTITION CORRECTNESS OF ALGORITHM 1

Per Theorem 4.6, LDP correctly labels partitions Z4, Z7, and Z8 without conditions C1 and C2, even in the presence of
latent confounding. To correctly label every member of partitions Z1, Z2, Z3, and Z5, we assume the following sufficient
(but not necessary) conditions: C1, C2, C3, and C4.

C3 The absence of inter-partition active paths (Definition 3.2).
C4 Causal sufficiency in GXY Z.

Note that C3 and C4 are not needed for VAS discovery. Given C3, all of Z2 (if any exist) will be marginally dependent
on Z4 and will be identifiable by LDP. The second statement of C2 is trivially satisfied when C3 is satisfied (as Z5 shares
no active paths with Z1 is this setting) but is significant when C3 is violated. We demonstrate robustness of partition label
correctness to specific violations of C3 in Tables G.6, G.10. Correctness under violations of C4 is described in Section 6.2,
Appendix D.3, and Appendix D.2.

Given these sufficient (but not necessary) conditions, we obtain Theorem D.1.

Theorem D.1 (Partition correctness of Algorithm 1). Given the sufficient conditions described above, Algorithm 1 is
guaranteed to output a correct partition of Z as defined in Table 1.

Proof of Theorem D.1 follows from proofs of Lemmas D.2–D.9, which prove correctness for each step of Algorithm 1
sequentially. In footnotes, we acknowledge certain partitioning behaviors that occur when condition C3 is violated. However,
these acknowledgements are non-exhaustive.

Lemma D.2 (Step 1 of Algorithm 1). X ⊥⊥ Z ∧ Y ⊥⊥ Z ⇐⇒ Z ∈ Z8.

Proof. Step 1 of Algorithm 1 correctly identifies Z8. This subset of Z is the most trivial to identify, as it is does not share an
active path with either exposure nor outcome in GXY Z. By definition, any Z8 ∈ Z8 is marginally independent of X and
marginally independent of Y . Additionally, no candidate Z ∈ Z \Z8 is marginally independent of both X and Y . Thus, any
Z ∈ Z satisfying X ⊥⊥ Z ∧ Y ⊥⊥ Z belongs to Z8 and can be removed from further consideration.

Lemma D.3 (Step 2 of Algorithm 1). X ⊥⊥ Z ∧X ⊥̸⊥ Z|Y ⇐⇒ Z ∈ Z4.

Proof. Step 2 of Algorithm 1 correctly identifies Z4.7 Variables in Z4 share an active path with outcome Y in GXY Z but not
exposure X . For any Z4 ∈ Z4, this results in a v-structure X · · · → Y ← · · ·Z4.8 By definition, all such v-structures entail
X ⊥⊥ Z4 ∧X ⊥̸⊥ Z4|Y . Besides Z4, only Z8 is marginally independent of X . However, Z8 is not conditionally dependent
on X given Y . Thus, no subset of Z entails X ⊥⊥ Z ∧ X ⊥̸⊥ Z|Y except Z4. Any variable passing the test in Step 2 is
unambiguously a member of Z4. Further, Z4 is correctly identified for downstream use in Step 4 to identify ZPOST.

Lemma D.4 (Step 3 of Algorithm 1). Y ⊥̸⊥ Z ∧ Y ⊥⊥ Z|X ⇐⇒ Z ∈ Z5,7.

Proof. Step 3 of Algorithm 1 correctly identifies Z5,7. We prove both directions of the bidirectional statement by direct proof.
This test will be passed under two conditions: 1) Z ∈ Z7 for any arbitrary GXY Z and 2) Z ∈ Z5 when GXY Z when Z1 is
the empty set (i.e., there are no backdoor paths for X and Y ). Thus, this test will capture all Z7 under any circumstances
but will additionally capture Z5 only when GXY Z is structured such that exposure X blocks all backdoor paths from Z5

to outcome Y . Further, no subset of Z will pass the test in Step 3 but Z5,7. Partitions Z1, Z2, Z3, Z4, and Z6 are parents
or effects of Y and thus X cannot block the flow of association between these partitions and Y . Z8 will not pass this test
either, as it is not marginally dependent on Y . Therefore, Y ⊥̸⊥ Z ∧ Y ⊥⊥ Z|X if and only if Z is in Z5,7. Further, if Z1 is
nonempty when LDP terminates, it can be concluded that variables passing this test are only Z7 (Line 24, Algorithm 1).

7See Appendix D.3 for proof of the identifiability of Z4 under latent confounding.
8Note that this requires X and Y to be marginally dependent, an assumption made in Section 4.1. X ⊥̸⊥ Y is true when at least one of

the following conditions is true: 1) X is a direct cause of Y , 2) X is an indirect cause of Y through mediators in Z3, and/or 3) X and Y
share confounders in Z1.



Lemma D.5 (Step 4 of Algorithm 1). Given execution of prior steps in Algorithm 1, ∃ Z4 ∈ Z4 : Z ⊥̸⊥ Z4 or Z ⊥⊥
Z4|X ∪ Y ⇐⇒ Z ∈ Z2,3,6 ∈ ZPOST.

Proof. Step 4 of Algorithm 1 correctly identifies Z2,3,6 ∈ ZPOST. This test exploits prior knowledge of Z4 to identify all of
Z2 and Z6 in any arbitrary GXY Z meeting sufficient conditions C3–C4. Under condition C3, no Z3 will pass this test by the
same logic that {Z1,Z5} will not (as proven below).9 Note that Z4, Z7, and Z8 have already been identified and removed
from further consideration. Thus, this test must correctly identify Z2 and Z6 and must not incorrectly label these partitions
as Z1 or Z5. We demonstrate correctness by direct proof of both directions of the bidirectional statement.

Under the assumption that X and Y are marginally dependent (Section 4.1), any Z ∈ Z1 ∪ Z5 will form a v-structure
Z4 · · · → Y ← · · ·Z, but members of Z2 ∪ Z6 will not (Figure 3). Such a v-structure implies that Z ⊥⊥ Z4 and
Z ⊥̸⊥ Z4|X ∪ Y . As we seek to identify candidates Z that do not induce such a v-structure, we logically negate these
independence statements to test for Z2 and Z6. According to De Morgan’s Laws, the negation of a conjunction is the
disjunction of the negations. This yields the logical equivalence

¬ [(Z ⊥⊥ Z4) ∧ (Z ⊥̸⊥ Z4|X ∪ Y )] ≡ (Z ⊥̸⊥ Z4) ∨ (Z ⊥⊥ Z4|X ∪ Y ). Per De Morgan’s Laws. (1)

Thus, when Z ⊥̸⊥ Z4 or Z ⊥⊥ Z4|X ∪ Y is true, we will identify Z2 ∪Z6 but not Z1 ∪Z5. Likewise, when Z ∈ Z2 ∪Z6, a
v-structure Z4 → Y ← Z will never arise and thus Z ⊥̸⊥ Z4 or Z ⊥⊥ Z4|X ∪ Y .

To support Lemmas D.7-D.9, we introduce Proposition D.6.

Proposition D.6. For any Z1 ∈ Z1 that has an indirect active path to outcome Y , there must exist another Z1 that is
directly adjacent to Y . This extends analogously to indirect active paths between Z1 and X .

Lemma D.7 (Step 5 of Algorithm 1). Given execution of prior steps in Algorithm 1, if Y ⊥̸⊥ Z ∧ Y ⊥⊥ Z|X ∪Z′ \Z then
Z ∈ Z1,2,3,5 ∈ ZMIX, and all backdoor paths between ZMIX and Y are blocked by X and the members of Z that have not
yet been labeled.

Proof. Step 5 of Algorithm 1 correctly identifies ZMIX. Here, will assume that Z5 was not yet discovered at Step 3. We will
prove that the conditioning set used in Step 5 correctly blocks all backdoor paths between ZMIX and Y . Given sufficient
conditions C1–C4, Z2, Z4, Z6, and Z8 have been previously identified and removed from further consideration.10 Thus,
we assume that only Z1, Z3, and Z5 are remaining in Z′. By conditioning on X ∪ Z′ \ Z, backdoor paths for {X,Y } are
blocked due to the inclusion of all Z1 ∈ Z′. Thus, conditioning on X ∪ Z′ \ Z blocks all causal and non-causal association
between Z and Y . For all Z ∈ Z5, Y ⊥⊥ Z|X ∪ Z′ \ Z. For any Z ∈ Z1 or Z ∈ Z3 that is not directly adjacent to Y ,
Y ⊥⊥ Z|X ∪ Z′ \ Z. All members of Z1 and Z3 that are adjacent to Y will proceed to be identified at Step 6. Thus, ZMIX

will consist of Z5, a fraction of Z1 (which may be the empty set), and a fraction of Z3 (which may be the empty set).

Lemma D.8 (Step 6 of Algorithm 1). Let ZMIX = ZMIX ∪ Z5,7. Given execution of prior steps in Algorithm 1, if
∃ ZMIX ∈ ZMIX such that ZMIX ⊥⊥ Z and ZMIX ⊥̸⊥ Z|X then Z ∈ Z1 and ZMIX ∈ Z1,5. Else, Z ∈ ZPOST. After execution of
these tests, we loop through the remaining ZMIX again. If ∃ Z1,5 ∈ Z1,5 such that Z1,5 ⊥⊥ ZMIX and Z1,5 ⊥̸⊥ ZMIX|X , then
ZMIX ∈ Z1. Else, ZMIX ∈ ZPOST.

Proof. Step 6 of Algorithm 1 correctly differentiates Z1, Z1,5, Z7, and ZPOST. This step relies on prior knowledge of ZMIX,
which is gained programmatically through Steps 3 and 5. Under sufficient conditions C1–C4, ZMIX initially contains Z5 and
the members of Z1 and Z3 that are not adjacent to Y . At Step 6, we begin by unioning ZMIX with Z5,7 as a safeguard in
case any member of Z5 was lumped with Z7 at Step 3.

Step 6 exploits the presence of v-structures Z · · · → X ← · · ·Z1 in GXY Z. For any GXY Z (even when sufficient conditions
are not met), the variables that can form such a v-structure with a Z1 ∈ Z1 are 1) a Z5 ∈ Z5 or 2) another Z1 ∈ Z1 that
does not share an active path with the first.

9If sufficient condition C3 is violated, a Z3 may be captured at this step if it is marginally dependent on any Z4. Further, this violation
can cause Step 4 to miss members of Z2 that are not descendants of Y (as discussed throughout Section D.2).

10If sufficient condition C3 is violated, members of Z2 that were not marginally dependent on any Z4 ∈ Z4 (and thus not identified
at Step 4) could be placed in ZMIX at Step 5 instead. We prove in Section D.2 that the presence of Z2 in ZMIX does not undermine the
validity of the adjustment set returned by Algorithm 1.



First, we prove the first phase of Step 6. Under sufficient condition C3, Z5 · · · → X ← · · ·Z1 for all {Z1,Z5}. This means
that all of Z5 is marginally independent of Z1, but is conditionally dependent on Z1 given X . As described in sufficient
condition C2, the existence of at least two non-overlapping backdoor paths in GXY Z can also enable some Z1 to form a
v-structure at X with another member of Z1. Thus, when a v-structure ZMIX · · · → X ← · · ·Z is detected, then Z must be
in Z1 and ZMIX must be in Z1,5. By extension, ZMIX is not in ZPOST nor Z7, and can be removed from the latter if it had
been placed there at Step 3. Else, Z must be in ZPOST.

Finally, we prove the second phase of Step 6. Variables still in ZMIX must be tested to distinguish the remaining members in
Z1 from those in ZPOST. Any ground truth member of Z1 that remains in ZMIX at this point must be marginally dependent
on all previously discovered members of Z1, otherwise these would have already been placed in Z1,5. By this point, all of
Z5 is now contained in Z1,5. Under sufficient condition C3, Z1 ⊥⊥ Z5 but ZPOST ⊥̸⊥ Z5. Thus, testing ZMIX against Z1,5 for
marginal independence will differentiate the remaining Z1 ∈ ZMIX from the remaining ZPOST ∈ ZMIX.

Lemma D.9 (Step 7 of Algorithm 1). Given execution of prior steps in Algorithm 1, if ∃ Z1 ∈ Z1 and Z1,5 ∈ Z1,5 such
that Z1,5 ⊥̸⊥ Z1, then Z1,5 ∈ Z1. Else, Z1,5 ∈ Z5.

Proof. Step 7 of Algorithm 1 correctly differentiates Z1 from Z5. This step handles cases exemplified by node B1 in
the butterfly structure of Figure E.1, which can have arbitrarily long, indirect, yet active paths to Y . During Step 5, the
conditioning set X ∪ Z′ \ Z contains all Z1, among other variables. For a B1-type confounder, this conditioning set blocks
all backdoor paths to Y , triggering the test to label the node as a member of ZMIX. To detect such a case, observe that
B1-type confounders have marginal dependence on the subset of Z1 that was discovered at Step 6. All Z1 ∈ Z1 previously
discovered at Step 6 are directly adjacent to Y . Under sufficient condition C3, all of Z5 is marginally independent of Z1.
Even when sufficient condition C3 is violated, no member of Z5 will ever be dependent on a Z1 that is directly adjacent to
Y . Therefore, any member of Z1,5 that is marginally dependent on at least one member of Z1 discovered at Step 6 must be
in Z1. If such marginal dependence is not detected between a given Z1,5 and any member of Z1 discovered at Step 6, then
Z1,5 ∈ Z5 instead.

D.2 VAS UNDER LATENT CONFOUNDING

Here we prove Theorem 4.5, which states that LDP returns VAS when Conditions C1, C2, and the Z5 criterion (Definition
4.3) are satisfied.

Recall the definition of a VAS under the backdoor criterion (Definition 2.4). Let AXY be an adjustment set for {X,Y } that
does not contain {X,Y }. We say that AXY is valid if

Item 1 AXY contains no descendants of X; and
Item 2 AXY blocks all backdoor paths for X and Y [Pearl, 2009].

The set AXY returned by LDP is synonymous with partition Z1. To prove Theorem 4.5, we must prove that both Item 1 and
Item 2 always hold for the Z1 returned by Algorithm 1 under sufficient conditions.

To prove Item 1, we prove Lemma 4.2 with the help of Proposition D.10.

Proposition D.10. If two variables are marginally or conditionally dependent and the conditioning set remains unchanged,
the addition of a new active path in GXY Z cannot render them independent.

Proof. Intuition for proof of Lemma 4.2 follows from the fact that all descendants of X are marginally dependent on all of
Z1 and all of Z5 by definition, and will be placed in ZPOST by Step 6 or earlier. This marginal dependence is detectable even
if the descendants of X are latently confounded, and cannot be negated by inter-partition active paths (Proposition D.10). As
any causal path from X to Y features an edge out of X (X → · · · ), this also guarantees that no causal path from X to Y
will be blocked by the Z1 returned by LDP.

To prove Item 2, we prove Lemma 4.4 and show that the Z5 criterion is a valid indicator that backdoor paths are blocked by
the recovered Z1.

Proof. This lemma states that the discovery of at least one Z5 ∈ Z5 that is d-separable from Y given X ∪ Z1 indicates that
all backdoor paths for {X,Y } are blocked. Recall the definition of Z5: non-descendants of X whose causal effects on Y are
fully mediated by X , and that share no confounders with Y . If Z1 is the empty set, then Z5 is definitionally d-separable



from Y given X . When Z1 is non-empty, conditioning on X opens backdoor paths for {X,Y } through Z1. These backdoor
paths can only be reblocked by adjusting for a sufficient subset of Z1. If the Z1 observed in Z do not block all backdoor
paths for X and Y in the true underlying graph, then Z5 will not be d-separable from Y given X and the recovered Z1.
Thus, the Z5 criterion will be passed only if the recovered Z1 block all backdoor paths for X and Y .

D.3 PARTITION CORRECTNESS IN ARBITRARY DAGS UNDER LATENT CONFOUNDING

Here we prove Theorem 4.6, which implies that the identification of Z4, Z7, and Z8 does not require Conditions C1–C4.

Proof. As shown in Lemmas D.2, D.3, and D.4, the following bidirectional statements define Z4, Z7, and Z8.

X ⊥⊥ Z ∧ Y ⊥⊥ Z ⇐⇒ Z ∈ Z8 Definition of causal partition Z8 (Step 1).
X ⊥⊥ Z ∧X ⊥̸⊥ Z|Y ⇐⇒ Z ∈ Z4 Definition of causal partition Z4 (Step 2).
Y ⊥̸⊥ Z ∧ Y ⊥⊥ Z|X ⇐⇒ Z ∈ Z5,7 Definition of Z7 in all structures and Z5 when |Z1| = 0 (Step 3).

These statements are fundamental properties of Z4, Z7, and Z8 in all DAGs, irrespective of the inter-partition active paths in
which they participate. For Z5, the conditional independence relations in Step 3 define this partition only when Z1 is the
empty set. Thus, these statements both precisely define partitions Z4, Z7, and Z8 in arbitrary structures and are also the
statistical tests used to detect them. Further, these tests rely only on knowledge of {X,Y, Z}, and no other variables. Thus,
failure to observe variables other than Z in the ground truth graph have no impact on the outcome of these tests. This is
in contrast to Step 5, for example, which relies on access to additional variables in the true graph for correctness. Thus,
identification of Z4, Z7, and Z8 is robust to latent confounding and inter-partition active paths, and relies only on knowledge
of {X,Y, Z} in arbitrary structures. These facts render C1–C4 unnecessary. Note that when Z1 is the empty set in the true
graph, Z5 and Z7 are not differentiated by LDP and remain in the same superset. Nevertheless, this superset is guaranteed to
be correctly labeled.



E GRAPHS FOR EXPERIMENTAL VALIDATION
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Figure E.1: M-structures and butterfly structures [Ding and Miratrix, 2014]. Ten-node DAG plus M-structure (left) and
ten-node DAG plus butterfly structure (right). Note that M1 ∈ Z5, M2 ∈ Z4, M3 ∈ Z2, and {B1,B2,B3} ∈ Z1.
Performance of LDP on these structures is reported in Table G.6.

X Y

Z2

Z1
3 Z2

3
Z6Z7

Z5 Z4

Z1

M1 M2

M3

B1 B2

B3

Z8

Figure E.2: Seventeen-node DAG with M-structure, butterfly structure, and mediator chain. Note that M1 ∈ Z5, M2 ∈ Z4,
M3 ∈ Z2, and {B1, B2, B3} ∈ Z1. Nodes highlighted in red ({Z1, B1, B2, B3}) represent all confounders for {X,Y }.
Performance of LDP on this structure is reported in Table G.7.



Figure E.3: The complete ground truth MILDEW DAG [Jensen and Jensen, 1996] obtained from bnlearn [Scutari, 2010].
The ground truth DAG contains 35 nodes, 46 edges, and 540150 parameters. The average Markov blanket size, average
degree, and maximum in-degree are 4.57, 2.63, and 3, respectively. Inference and evaluation omit variables DM_1 and
FOTO_1 due to independence test challenges with LDP, MB-by-MB, and LDECC, including those described in Section G.1
for MB-by-MB and LDECC (which were made more severe by inclusion of these nodes). Performance on this structure is
reported in Figure 6 an Table G.8.

https://www.bnlearn.com/bnrepository/
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Figure E.4: A complex backdoor path illustrates a known failure mode of LDP partition labeling that is still successful for
valid adjustment set identification. In theory, all nodes highlighted in red will be placed in Z1 by LDP. Even though Z2

1 is
adjacent to the only instrument in this DAG, this confounder will be discoverable due to its marginal independence with Z1

1 .
Due to its marginal dependence on Z4, confounder Z3

1 will be mislabeled and placed in ZPOST by LDP. This mislabeling
persists even under infinite data. Due to its marginal independence with Z4, collider Z2

2 will be mislabeled and placed in Z1.
Despite these mislabelings, the red node set constitutes a valid adjustment set. LDP returned a valid adjustment set for this
structure for 99% (99/100) of replicates at n = 5k samples and 98% (98/100) of replicates at n = 10k samples. Noise was
hypergeometric and causal mechanisms were quadratic (chi-square independence test; α = 0.001).
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Figure E.5: An 18-node DAG with a butterfly structure, M-structure, and inter-partition active paths. Members of Z1 are
pictured in red, Z2 in pink, Z4 in yellow, and Z5 in green. This structure was used to experimentally demonstrate the
robustness of LDP to latent confounding, where one to three nodes with a dashed perimeter were dropped per iteration.
Results are reported in Section 6 and Table G.10.



F EXPERIMENTAL DESIGN

F.1 EXPERIMENTAL DATA

Synthetic DAGs Theoretical guarantees were validated for four causally sufficient DAG structures (Figures 3, E.1, E.2,
E.4) and one structure with hidden variables (Figure E.5). In the discrete data simulations, we used 12 data generating
processes for the 10-node DAG (Figure 3), four processes for both 13-node DAGs (Figure E.1), and two processes for the
17-node DAG (Figure E.2). Causal mechanisms were linear and nonlinear. Six linear-continuous data generating processes
were simulated for the 10-node DAG (Figure 3).

MILDEW Benchmark The MILDEW network models fungicide use against powdery mildew in winter wheat [Jensen and
Jensen, 1996]. We selected one exposure-outcome pair (MIKRO_1→ MELDUG_2) that meets sufficient conditions for LDP.
All variables are categorical. Z contains 31 nodes in {Z1,Z2,Z4,Z5,Z8}, with a low proportion of confounders (|Z1| = 2)
and high proportion of colliders (|Z2| = 14). Data were sampled using the bnlearn R package [Scutari, 2010]. Figure E.3
further describes the DAG used for inference and evaluation.

F.2 BASELINE METHODS

PC Algorithm PC is a classic global causal discovery algorithm that provides asymptotic theoretical guarantees [Spirtes
et al., 2000]. It assumes causal Markov, faithfulness, and causal sufficiency and returns a MEC. The worst-case time
complexity for PC is exponential in the number of nodes, as demonstrated in Figure 5. Experiments use the implementation
by Kalisch and Buhlmann [2007]11, unless otherwise noted.

MB-by-MB MB-by-MB [Wang et al., 2014] infers the local structure around a target node to distinguish parents from
children. It sequentially learns Markov blankets (MBs) and the local structures within these, starting from the target node,
moving to its neighbors, and so on. It terminates when the parents and children of the target are discovered or if it is not
possible to distinguish them, returning the induced completed partially directed acyclic graph (CPDAG) over the target and
its neighbors. Experiments use an implementation that combines IAMB [Tsamardinos et al., 2003, Fig. 2] and PC for every
sequential step. Like PC, time complexity is worst-case exponential in node count.

Local Discovery using Eager Collider Checks (LDECC) LDECC [Gupta et al., 2023] is a local discovery algorithm
that infers the induced CPDAG over a given target node and its neighbors. Unlike MB-by-MB, LDECC does not proceed
sequentially and runs conditional independence tests in a similar order as PC, leveraging discovered unshielded colliders to
immediately orient the edges around the target node. LDECC is provably polynomial-time for certain categories of DAGs,
but exponential for others.

Baseline Evaluation Let AXY be any adjustment set for {X,Y } returned by a method in this study. Let ACC := {Z1} and
ADC := {Z1,Z4,Z5} be valid adjustment sets for {X,Y } under the common cause criterion (CCC) and disjunctive cause
criterion (DCC), respectively [VanderWeele and Shpitser, 2011]. For PC, ACC := ancestors(X) ∩ ancestors(Y ) = {Z1},
and ADC := {ancestors(X) ∪ ancestors(Y ) \ descendants(X)} = {Z1,Z4,Z5}, where ancestors and descendants hold
for all members of the MEC. As MB-by-MB and LDECC only return the direct parents and children of a single target, we
run these baselines with X and Y as separate targets and cache intermediate results to prevent redundant independence
testing. ADC := {parents(X) ∪ parents(Y ) \ children(X)} = Z′

1 ∪ Z4 ∪ Z5, where Z′
1 is directly adjacent to X , Y , or

both (but not neither). ACC := {parents(X) ∩ parents(Y )}, i.e., all confounders directly adjacent to both X and Y . Thus,
ACC under LDECC and MB-by-MB are not guaranteed to block all backdoor paths.

11https://github.com/keiichishima/pcalg

https://github.com/keiichishima/pcalg


G EXPERIMENTAL RESULTS

Mean Runtime (seconds) Tests Per Run

|Z| |Z−| LDP:|Z|2 LDP LDECC MB-BY-MB PC LDP LDECC MB-BY-MB PC
8 1 0.781 0.0143 (0.0121-0.0165) 0.1144 (0.1098-0.119) 0.1205 (0.1163-0.1247) 0.076 (0.0734-0.0787) 50 641 513.6 (513.2-514.1) 508
16 2 0.500 0.0299 (0.0287-0.0311) 7.011 (6.7783-7.2437) 9.3711 (9.0831-9.6591) 8.7598 (8.5028-9.0169) 128 23344.3 (23331.9-23356.7) 29687.5 (29675.4-29699.5) 29556
24 3 0.406 0.0410 (0.0399-0.0421) - - - 234 - - -
32 4 0.359 0.0587 (0.0574-0.0600) - - - 368 - - -
40 5 0.331 0.0838 (0.0827-0.0849) - - - 530 - - -
48 6 0.313 0.1230 (0.1215-0.1245) - - - 720 - - -
56 7 0.299 0.1492 (0.1476-0.1509) - - - 938 - - -
64 8 0.289 0.2016 (0.1963-0.2070) - - - 1184 - - -
72 9 0.281 0.2495 (0.2458-0.2533) - - - 1458 - - -
80 10 0.275 0.2836 (0.2784-0.2887) - - - 1760 - - -

Table G.1: Mean runtime and total independence tests performed per DAG as cardinality of Z (|Z|) increases. Values are
averaged over 100 replicates for DAGs analogous to Figure 3 (sample size n = 1k each), with 95% confidence intervals
in parentheses. All data generating processes feature hypergeometric noise with quadratic causal mechanisms (structural
equation in Table G.2). Independence was determined by an oracle. Cardinality of each partition is reported as |Z−|. The
ratio of true total tests for LDP to expected quadratic count is reported as LDP:|Z|2. Baselines were only evaluated up to
|Z| = 16 due to very high test counts. All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7.
Growth curves are plotted in Figure 5.

DAG STRUCTURE CAUSAL MECHANISM NOISE DISTRIBUTION X → Y STRUCTURAL EQUATION

10-node (Figure 3) Linear Bernoulli True Vi = ⌊(0.3 ∗ sum(Pai))⌋+ ϵi
10-node (Figure 3) Linear Bernoulli False Vi = ⌊(0.45 ∗ sum(Pai))⌋+ ϵi
10-node (Figure 3) Linear Hypergeometric True Vi = ⌊(0.3 ∗ sum(Pai))⌋+ ϵi
10-node (Figure 3) Linear Hypergeometric False Vi = ⌊(0.45 ∗ sum(Pai))⌋+ ϵi
10-node (Figure 3) Quadratic Bernoulli True Vi = ⌊(−1.4 ∗ sum(Pai)

2)⌋+ ϵi
10-node (Figure 3) Quadratic Bernoulli False Vi = ⌊(−1.4 ∗ sum(Pai)

2)⌋+ ϵi
10-node (Figure 3) Quadratic Hypergeometric True Vi = ⌊(0.4 ∗ sum(Pai)

2)⌋+ ϵi
10-node (Figure 3) Quadratic Hypergeometric False Vi = ⌊(0.4 ∗ sum(Pai)

2)⌋+ ϵi
10-node (Figure 3) Cube root Bernoulli True Vi = ⌊(1.2 ∗ 3

√
(Pai))⌋+ ϵi

10-node (Figure 3) Cube root Bernoulli False Vi = ⌊(1.2 ∗ 3
√
(Pai))⌋+ ϵi

10-node (Figure 3) Cube root Hypergeometric True Vi = ⌊(0.7 ∗ 3
√
(Pai))⌋+ ϵi

10-node (Figure 3) Cube root Hypergeometric False Vi = ⌊(0.7 ∗ 3
√
(Pai))⌋+ ϵi

13-node with M (Figure E.1) Linear Bernoulli True Vi = ⌊(1.5 ∗ sum(Pai))⌋+ ϵi
13-node with M (Figure E.1) Quadratic Hypergeometric True Vi = ⌊(1.5 ∗ sum(Pai)

2)⌋+ ϵi
13-node with butterfly (Figure E.1) Linear Bernoulli True Vi = ⌊(1.9 ∗ sum(Pai))⌋+ ϵi
13-node with butterfly (Figure E.1) Quadratic Hypergeometric True Vi = ⌊(2.8 ∗ sum(Pai)

2)⌋+ ϵi
18-node with latent confounding (Figure E.5) Linear Bernoulli True Vi = ⌊(1.3 ∗ sum(Pai))⌋+ ϵi

Table G.2: Structural equations for all discrete synthetic data generating processes. Vi denotes a random variable, Pai
denotes the set of its direct causal parents, and ϵi denotes the random noise term associated with it. Fixed coefficients range
across structural equations ([−1.4, 2.8]) to simulate varying effect sizes.

DAG STRUCTURE EXPERIMENT CAUSAL MECHANISM NOISE DISTRIBUTION X → Y STRUCTURAL EQUATION

10-node (Figure 3) Figure G.1 Linear Gaussian True Vi =
∑

(r ∗Pai) + ϵi
10-node (Figure 3) Figure G.1 Linear Gaussian False Vi =

∑
(r ∗Pai) + ϵi

10-node (Figure 3) Figure G.1 Linear Uniform True Vi =
∑

(r ∗Pai) + ϵi
10-node (Figure 3) Figure G.1 Linear Uniform False Vi =

∑
(r ∗Pai) + ϵi

10-node (Figure 3) Figure G.1 Linear Exponential True Vi =
∑

(r ∗Pai) + ϵi
10-node (Figure 3) Figure G.1 Linear Exponential False Vi =

∑
(r ∗Pai) + ϵi

10-node (Figure 3) Figure 6 Linear Gaussian True Vi =
∑

(c ∗Pai) + ϵi

Table G.3: Structural equations for all continuous synthetic data generating processes. Vi denotes a random variable, Pai
the set of its direct causal parents, and ϵi the random noise term. Coefficient r is selected uniformly at random from the
interval [1.0, 3.0). For the experiments reported in Figure 6, coefficient c is 1.0 for all parents except for X when causal for
Y , in which case c = 2.75. For this DAG, the total effect of X on Y is 3.75, as the direct effect is 2.75 and the indirect
effect through Z3 is 1.0.



Figure G.1: Partition label accuracy of LDP on a 10-node DAG with one node per partition (Figure 3). Accuracy is averaged
over 100 DAGs (i.e., 800 variables total, excluding exposure-outcome pairs), with 95% confidence intervals in shaded
regions. Independence was determined by chi-square tests for discrete data and Fisher-z for continuous data, both with
α = 0.001. Tables G.4 and G.5 report raw data.



10-node graph with bernoulli noise

LINEAR QUADRATIC CUBE ROOT

n X → Y X ̸→ Y X → Y X ̸→ Y X → Y X ̸→ Y
100 21.4 (20.1-22.6) 16.4 (15.2-17.5) 36.4 (34.9-37.8) 34.8 (33.7-35.8) 25.8 (24.1-27.4) 20.2 (18.7-21.8)
500 58.8 (55.2-62.3) 67.0 (62.7-71.3) 92.0 (89.7-94.3) 59.5 (54.5-64.5) 65.2 (62.0-68.5) 74.4 (71.6-77.1)
1k 86.1 (83.6-88.6) 89.2 (86.5-92.0) 99.8 (99.3-100) 99.2 (98.2-100) 97.2 (95.8-98.7) 98.0 (96.7-99.3)
5k 99.9 (99.6-100) 99.9 (99.6-100) 100 (100-100) 100 (100-100) 99.9 (99.6-100) 99.8 (99.3-100)
10k 100 (100-100) 99.9 (99.6-100) 100 (100-100) 100 (100-100) 99.6 (99.1-100) 99.9 (99.6-100)

10-node graph with hypergeometric noise

LINEAR QUADRATIC CUBE ROOT

n X → Y X ̸→ Y X → Y X ̸→ Y X → Y X ̸→ Y
100 20.4 (18.8-22.0) 15.6 (14.3-17.0) 31.2 (29.9-32.6) 31.4 (29.9-32.9) 23.0 (21.7-24.3) 18.4 (16.9-19.8)
500 68.1 (64.7-71.6) 43.1 (39.5-46.7) 85.5 (82.7-88.3) 83.0 (80.7-85.3) 70.6 (67.7-73.5) 56.9 (54.5-59.2)
1k 92.4 (90.1-94.6) 78.5 (74.7-82.3) 97.8 (96.3-99.2) 98.5 (97.2-99.8) 95.5 (94.3-96.7) 87.6 (84.9-90.3)
5k 100 (100-100) 98.9 (97.9-99.8) 99.2 (98.0-100) 100 (100-100) 99.2 (98.5-100) 100 (100-100)
10k 99.9 (99.6-100) 99.8 (99.4-100) 99.8 (99.4-100) 100 (100-100) 99.8 (99.3-100) 100 (100-100)

Table G.4: Partition label accuracy of Algorithm 1 on a 10-node DAG (Figure 3) across discrete noise distributions, linear
and nonlinar causal mechanisms, and sample sizes (n). All DAGs feature one node per partition (Z1 − Z8). Reported values
are partition label accuracy averaged over 100 DAGs (i.e., 800 variables total, excluding all exposure-outcome pairs). The
95% confidence interval is reported in parentheses. Data generating processes where X is a direct cause of Y are denoted
by X → Y , with X ̸→ Y denoting no direct causal effect of X on Y . Independence was determined by chi-square tests
(α = 0.001). All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7.

10-node graph with continuous noise

GAUSSIAN | LINEAR UNIFORM | LINEAR EXPONENTIAL | LINEAR

n X → Y X ̸→ Y X → Y X ̸→ Y X → Y X ̸→ Y
100 64.8 (60.7-68.8) 66.5 (63.0-70.0) 65.5 (61.4-69.6) 67.9 (64.6-71.1) 61.0 (56.9-65.1) 63.6 (60.2-67.0)
500 96.1 (94.4-97.8) 94.6 (92.8-96.5) 97.8 (96.6-98.9) 94.2 (92.2-96.3) 95.2 (93.5-97.0) 93.6 (91.3-95.9)
1k 99.2 (98.7-99.8) 98.5 (97.5-99.5) 99.0 (98.3-99.7) 98.8 (97.8-99.7) 99.8 (99.4-100) 98.5 (97.4-99.6)
5k 100 (100-100) 99.9 (99.6-100) 99.6 (98.9-100) 99.8 (99.3-100) 99.5 (98.7-100) 99.9 (99.6-100)
10k 99.9 (99.6-100) 99.9 (99.6-100) 100 (100-100) 100 (100-100) 100 (100-100) 100 (100-100)

Table G.5: Partition label accuracy of Algorithm 1 on a 10-node DAG (Figure 3) across continuous noise distributions,
linear causal mechanisms, and sample sizes (n). All DAGs feature one node per partition (Z1 − Z8). Reported values are
partition label accuracy averaged over 100 DAGs (i.e., 800 variables total, excluding all exposure-outcome pairs). The
95% confidence interval is reported in parentheses. Data generating processes where X is a direct cause of Y are denoted
by X → Y , with X ̸→ Y denoting no direct causal effect of X on Y . Independence was determined by Fisher-z tests
(α = 0.001). All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7.



M-Structure

BERNOULLI | LINEAR HYPERGEOMETRIC | QUADRATIC

n Z ACC Z1 PREC Z1 REC Z ACC Z1 PREC Z1 REC

500 73.5 (71.0-76.0) 26.2 (17.6-34.9) 27.0 (18.3-35.7) 75.3 (73.8-76.8) 16.0 (8.8-23.2) 16.0 (8.8-23.2)
1k 92.1 (90.4-93.8) 90.0 (84.1-95.9) 90.0 (84.1-95.9) 87.3 (85.8-88.7) 94.0 (89.3-98.7) 94.0 (89.3-98.7)
5k 97.1 (96.0-98.2) 97.0 (93.6-100) 97.0 (93.6-100) 99.8 (99.6-100) 100 (100-100) 100 (100-100)
10k 99.7 (99.4-100) 100 (100-100) 100 (100-100) 100 (100-100) 100 (100-100) 100 (100-100)

Butterfly Structure

BERNOULLI | LINEAR HYPERGEOMETRIC | QUADRATIC

n Z ACC Z1 PREC Z1 REC Z ACC Z1 PREC Z1 REC

1k 60.4 (57.5-63.2) 16.8 (9.6-24.0) 12.5 (6.6-18.4) 61.5 (58.9-64.0) 28.9 (20.1-37.7) 16.0 (10.3-21.7)
2.5k 98.8 (97.1-100) 98.0 (95.2-100) 98.0 (95.2-100 99.9 (99.7-100) 100 (100-100) 100 (100-100)
5k 98.9 (97.4-100) 99.0 (97.0-100) 98.2 (95.8-100) 99.9 (99.7-100) 100 (100-100) 100 (100-100)
10k 99.7 (99.4-100) 100 (100-100) 99.2 (98.4-100) 99.8 (99.5-100) 100 (100-100) 99.5 (98.5-100)

Table G.6: Performance of Algorithm 1 on 13-node DAGs containing an M-structure structure or butterfly structure (Figure
E.1) across noise distributions, causal mechanisms, and sample sizes (n). In all DAGs, exposure X is a direct cause of
outcome Y . Metrics reported are accuracy of all labels (Z ACC), mean precision for partition Z1 (Z1 PRE), and mean
recall for partition Z1 (Z1 REC). The 95% confidence interval is reported in parentheses. Independence was determined by
chi-square tests with α = 0.001. All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7.

Graph with m-structure, butterfly structure, and indirect mediators

BERNOULLI | LINEAR HYPERGEOMETRIC | QUADRATIC

n Z ACC Z1 PREC Z1 REC Z ACC Z1 PREC Z1 REC

5k 60.2 (59.0-61.4) 48.8 (38.9-58.6) 16.8 (12.4-21.1) 72.7 (70.2-75.3) 93.5 (88.7-98.3) 57.8 (51.4-64.1)
10k 85.8 (82.2-89.4) 66.5 (57.4-75.6) 66.2 (57.1-75.4) 97.9 (96.5-99.2) 96.9 (93.8-99.9) 97.0 (94.0-100.0)
15k 97.9 (96.5-99.2) 96.3 (93.3-99.4) 96.8 (93.6-99.9) 98.0 (96.7-99.3) 96.3 (93.3-99.4) 97.2 (94.3-100)
20k 98.7 (97.6-99.9) 97.4 (94.6-100) 98.0 (95.2-100) 98.7 (98.0-99.4) 99.1 (98.1-100.0) 99.5 (98.8-100)

Table G.7: Performance of Algorithm 1 on a 17-node DAG featuring an M-structure, butterfly structure, and mediator chain
(Figure E.2). Data generating processes represent various discrete noise distributions, linear and nonlinar causal mechanisms,
and sample sizes (n). Exposure X is a direct cause of outcome Y for all DAGs. Reported values are averaged over 100
DAGs. Metrics reported are mean accuracy of all labels (Z ACC), mean precision for partition Z1 (Z1 PRE), and mean
recall for partition Z1 (Z1 REC). The 95% confidence interval is reported in parentheses. Independence was determined by
chi-square tests with α = 0.005. All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7.



Common Cause Criterion
Valid Adjustment Set Confounder Precision Confounder Recall

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
25k 0.8 0.7 0.0 0.0 80.00 (53.87-100) 35.00 (20.03-49.97) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 80.00 (53.87-100) 35.00 (20.03-49.97) 0.0 (0.0-0.0) 0.0 (0.0-0.0)
50k 0.7 1.0 0.0 0.0 76.67 (50.81-100) 50.00 (50.00-50.00) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 80.00 (53.87-100) 50.00 (50.00-50.00) 0.0 (0.0-0.0) 0.0 (0.0-0.0)
75k 0.9 0.4 0.0 0.0 90.00 (80.02-99.98) 20.00 (4.00-36.00) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 100 (100-100) 20.00 (4.00-36.00) 0.0 (0.0-0.0) 0.0 (0.0-0.0)

Disjunctive Cause Criterion
Valid Adjustment Set Confounder Precision Confounder Recall

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
25k 0.8 0.9 0.3 0.9 38.00 (25.33-50.67) 22.50 (17.60-27.40) 33.33 (8.03-58.64) 34.17 (24.91-43.42) 80.00 (53.87-100) 45.00 (35.20-54.80) 25.00 (8.67-41.33) 45.00 (35.20-54.80)
50k 0.7 1.0 0.2 0.7 36.33 (23.92-48.75) 26.67 (24.49-28.84) 10.00 (0-23.07) 23.33 (11.71-34.96) 80.00 (53.87-100) 60.00 (46.93-73.07) 10.00 (0-23.07) 35.00 (20.03-49.97)
75k 0.9 1.0 0.0 0.4 45.00 (41.73-48.27) 25.83 (24.2-27.47) 8.33 (0-19.03) 29.05 (12.20-45.90) 100 (100-100) 50.00 (50.00-50.00) 12.50 (0-28.54) 35.71 (17.64-53.79)

Both Criteria
Independence Tests Runtime (seconds)

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
25k 142.9 (141.5-144.3) 3021.9 (2975.2-3068.6) 2784.1 (2118.4-3449.8) 823.7 (610.1-1037.3) 0.065 (0.061-0.069) 92.08 (90.351-93.81) 99.485 (78.085-120.885) 86.292 (51.39-121.193)
50k 146.9 (145.2-148.6) 3841.9 (3761.2-3922.6) 4405 (3734.8-5075.2) 1146.6 (660.5-1632.7) 0.109 (0.101-0.116) 243.973 (237.472-250.474) 310.255 (262.338-358.172) 263.322 (145.116-381.528)
75k 148.6 (147.3-149.9) 4307.9 (4225.9-4389.9) 4615.2 (4049.2-5181.3) 1567.3 (881.9-2252.7) 0.162 (0.145-0.178) 415.874 (398.714-433.035) 473.107 (408.198-538.016) 582.672 (306.342-859.001)

Table G.8: Baseline comparison on the MILDEW benchmark from bnlearn [Scutari, 2010], with MIKRO_1 as exposure
and MELDUG_2 as outcome. Independence was determined by chi-square independence tests with α = 0.005. Both the
common cause criterion and disjunctive cause criterion were considered. Values are reported for 10 replicate DAGs with
95% confidence intervals in parentheses. Sample size is denoted by n. Adjustment set quality was measured by fraction
that are valid under the backdoor criterion, confounder precision per adjustment set, and confounder recall per adjustment
set. The method proposed in this work is highlighted in yellow. The most performant values per metric are bolded. All
experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7. Results are visualized in Figure 6.

Common Cause Criterion
Valid Adjustment Set Average Treatment Effect (ATE) ATE Mean Squared Error

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
1k 0.93 0.00 0.03 0.10 3.77 (3.75-3.79) 3.58 (3.38-3.77) 3.88 (3.71-4.05) 3.97 (3.86-4.08) 0.0096 1.0509 0.7817 0.3703
2.5k 0.96 0.00 0.02 0.30 3.76 (3.75-3.78) 2.5 (2.14-2.87) 4.08 (4.07-4.09) 3.97 (3.93-4.01) 0.0053 4.9982 0.1088 0.0817
5k 0.96 0.03 0.04 0.60 3.76 (3.75-3.77) 1.09 (0.78-1.4) 4.07 (4.05-4.08) 3.87 (3.83-3.9) 0.0046 9.5287 0.1054 0.0473
7.5k 0.97 0.11 0.14 0.73 3.76 (3.75-3.77) 1 (0.72-1.27) 4.04 (4.01-4.06) 3.83 (3.8-3.86) 0.0037 9.5009 0.0950 0.0325

Confounder Precision Confounder Recall Adjustment Set Cardinality

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
1k 93 (87.97-98.03) 13.17 (8.88-17.45) 3 (0-6.36) 10 (4.09-15.91) 93 (87.97-98.03) 27 (18.25-35.75) 3 (0-6.36) 10 (4.09-15.91) 0.9 (0.9-1) 0.6 (0.4-0.7) 0.1 (0-0.1) 0.1 (0.1-0.2)
2.5k 96 (92.14-99.86) 16.83 (12.34-21.32) 2 (0-4.76) 30 (20.97-39.03) 96 (92.14-99.86) 36 (26.54-45.46) 2 (0-4.76) 30 (20.97-39.03) 1 (0.9-1) 1 (0.8-1.2) 0 (0-0) 0.3 (0.2-0.4)
5k 96 (92.14-99.86) 27.33 (23.19-31.48) 4 (0.14-7.86) 60 (50.35-69.65) 96 (92.14-99.86) 70 (60.97-79.03) 4 (0.14-7.86) 60 (50.35-69.65) 1 (0.9-1) 2.2 (2-2.4) 0 (0-0.1) 0.6 (0.5-0.7)
7.5k 97 (93.64-100) 34.08 (30.81-37.36) 14 (7.16-20.84) 73 (64.25-81.75) 97 (93.64-100) 90 (84.09-95.91) 14 (7.16-20.84) 73 (64.25-81.75) 1 (0.9-1) 2.7 (2.5-2.9) 0.1 (0.1-0.2) 0.7 (0.7-0.8)

Disjunctive Cause Criterion
Valid Adjustment Set Average Treatment Effect (ATE) ATE Mean Squared Error

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
1k 0.93 0.0 0.09 0.02 3.77 (3.76-3.79) 0.87 (0.6-1.14) 1.41 (1.15-1.67) 1.05 (0.77-1.34) 0.0091 10.2090 7.1930 9.3487
2.5k 0.96 0.0 0.11 0.08 3.76 (3.75-3.78) 0.28 (0.23-0.33) 1.31 (1.11-1.51) 1.34 (1.07-1.61) 0.0055 12.0875 6.9627 7.6885
5k 0.96 0.0 0.14 0.32 3.76 (3.75-3.78) 0.4 (0.29-0.52) 2.09 (1.79-2.38) 2.34 (2.07-2.62) 0.0050 11.5372 5.0590 3.9600
7.5k 0.97 0.03 0.31 0.48 3.76 (3.75-3.77) 0.6 (0.43-0.77) 2.52 (2.22-2.81) 2.75 (2.49-3.01) 0.0037 10.6568 3.8045 2.7495

Confounder Precision Confounder Recall Adjustment Set Cardinality

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
1k 31.83 (29.97-33.7) 27.08 (24.77-29.4) 23.4 (19.08-27.72) 30.83 (27.95-33.72) 93 (87.97-98.03) 85 (77.97-92.03) 61 (51.39-70.61) 87 (80.38-93.62) 2.8 (2.7-2.9) 2.7 (2.5-2.9) 2.4 (2.2-2.6) 2.6 (2.3-2.8)
2.5k 32.33 (30.95-33.71) 30.43 (29.51-31.36) 17.83 (11.86-23.8) 40.33 (37.88-42.79) 96 (92.14-99.86) 100 (100-100) 31 (21.89-40.11) 99 (97.04-100) 2.9 (2.8-3) 3.4 (3.3-3.5) 1.5 (1.4-1.7) 2.6 (2.5-2.7)
5k 32.17 (30.83-33.5) 27.5 (26.46-28.54) 12.5 (7.41-17.59) 40.92 (38.57-43.26) 96 (92.14-99.86) 99 (97.04-100) 23 (14.71-31.29) 98 (95.24-100) 2.9 (2.8-3) 3.7 (3.5-3.8) 1.2 (1-1.3) 2.5 (2.4-2.6)
7.5k 32.5 (31.33-33.67) 27.63 (26.49-28.77) 19.5 (15.05-23.95) 40.5 (38.56-42.44) 97 (93.64-100) 100 (100-100) 46 (36.18-55.82) 99 (97.04-100) 2.9 (2.9-3) 3.8 (3.6-3.9) 1.5 (1.3-1.7) 2.6 (2.4-2.7)

Table G.9: Average treatment effect (ATE) estimation with adjustment sets identified by LDP, PC, LDECC, and MB-
by-MB for a 10-node linear-Gaussian DAG (Figure 3). Both the common cause criterion (CCC) and disjunctive cause
criterion (DCC) were considered. Values are reported for 100 replicate DAGs with 95% confidence intervals in parentheses.
Independence was determined by Fisher-z tests with α = 0.01. Adjustment set quality was measured by fraction that are
valid under the backdoor criterion, ATE (ground truth = 3.75), ATE mean squared error, confounder precision per adjustment
set, confounder recall per adjustment set, and cardinality of the adjustment set (ground truth is 1 under the CCC and 3 under
the DCC). The method proposed in this work is highlighted in yellow. The most performant values per metric are bolded.
All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7. Results are visualized in Figure 6.



Figure G.2: LDP partition accuracy on the MILDEW benchmark. Mean accuracy was computed for 10 replicate samples
from the ground truth DAG using bnlearn [Scutari, 2010]. We measure partition accuracy as the percent of partition
labels that are consistent with ground truth. Independence was determined by chi-square tests (α = 0.005). Shaded regions
represent the 95% confidence interval. All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7.

Figure G.3: Adjustment set cardinality for the linear-Gaussian DAG described in Figure 6. The true adjustment set cardinality
is one under the common cause criterion and three under the disjunctive cause criterion.



LATENT VAS EXISTS Z5 CRIT % VALID Z ACC Z1 PREC Z1 REC

B1 ✓ ✓ 100 99.00 (98.53-99.47) 99.50 (98.81-100.0) 100.0 (100.0-100.0)
B2 ✓ ✓ 99 99.13 (98.56-99.71) 98.77 (97.55-99.98) 99.67 (99.01-100.0)
Z4a ✓ ✓ 99 98.80 (98.17-99.43) 99.22 (98.32-100.0) 99.75 (99.26-100.0)
M2 ✓ ✓ 100 87.07 (86.46-87.68) 68.67 (67.11-70.23) 100.0 (100.0-100.0)
Z5a ✓ ✓ 99 98.53 (97.63-99.44) 98.40 (96.34-100.0) 98.75 (96.73-100.0)
M1 ✓ ✓ 100 98.87 (98.34-99.39) 99.47 (98.71-100.0) 100.0 (100.0-100.0)
Z1 ✗ ✗ 0 84.40 (82.97-85.83) 68.92 (64.91-72.92) 91.67 (86.3-97.03)
B3 ✗ ✗ 0 73.33 (73.15-73.52) 41.30 (40.64-41.96) 67.00 (66.35-67.65)

Table G.10: Results for numerical validation of Theorem 4.5 on an 18-node ground truth DAG with latent variables (Figures
7, E.5). Values are means over 100 replicates with 95% confidence intervals in parentheses. For each variable dropped from
the observed Z (LATENT), we report whether a VAS for the ground truth DAG exists in Z (VAS EXISTS), whether the Z5

criterion passed (Z5 CRIT), the percent of adjustment sets inferred by LDP that were valid with respect to the ground truth
DAG (% VALID), partition label accuracy (Z ACC), precision for partition Z1 (Z1 PREC), and recall for partition Z1 (Z1

REC). Causal mechanisms were linear and noise was Bernoulli (n = 50k; chi-square tests; α = 0.001).

G.1 IMPACTS OF CONDITIONING SET SIZE

Local baselines faced challenges with chi-square independence tests on MILDEW for n ≥ 75k. LDECC errored out on
2/10 and 10/10 replicates at n = 75k and n = 100k, respectively, while MB-by-MB could not return results for 3/10 and
9/10. Independence test failures persisted even with resampling from the ground truth DAG, and are likely due to large
conditioning sets resulting in low or no samples for some groups during binning. While the maximum conditioning set
size for LDP on MILDEW was 4, this was 17 for LDECC and 19 for MB-by-MB. Similar sample complexity challenges
likely explain our empirical observation that LDP returns VAS for simple discrete DAGs with significantly fewer samples
(n = 1k) than FCI (n = 10k) and PC (n > 10k), as the latter methods require many more higher-order independence tests
(Figure A.2) [Spirtes et al., 2000].
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