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Abstract—Monitoring high-dimensional streaming data has
a wide range of applications in science, engineering, and in-
dustry. In this work, we propose an efficient and robust se-
quential change-point detection algorithm for monitoring high-
dimensional streaming data. It has two components. At the
local level, we adopt a window-limited nonparametric Shiryaev-
Roberts (WL-NPSR) statistic for detecting potential distribution
changes at each dimension of the streaming data. At the global
level, we fuse local WL-NPSR statistics together to construct
a global monitoring statistic via quantile filtering and sum-
shrinkage functions. Theoretical analysis and extensive numerical
experiments demonstrate the efficiency and robustness of our
proposed algorithm.

I. INTRODUCTION

The explosive growth of high-dimensional data has become
a hallmark of the modern information era. Real-time mon-
itoring of high-dimensional data streams extends its reach
across a multitude of domains like traffic networks, multistage
manufacturing, epidemic surveillance, etc. A key objective
in monitoring streaming data is to detect undesirable events
as soon as possible, which can be uncovered through the
distribution of data. From the statistical point of view, this can
be modeled as the sequential change-point detection problem.
Specifically, in a system, suppose one observes K-dimensional
random vectors over time, whose distributions might change
at some unknown time. The objective is to utilize the observed
data to raise an alarm as quickly as possible if a change occurs
while controlling the false alarm rate if there is no change.
There are two approaches to developing efficient global

monitoring algorithms. The first one is to model the joint
distributions of the K-dimensional random vectors under the
pre- and post-change hypotheses, and then use the corre-
sponding likelihood ratios to raise a global alarm, see [1]–
[3]. While this approach often yields theoretically efficient
procedures under parametric models, it is computationally
infeasible when K is large, not to mention the difficulty of
specifying the joint distributions of high-dimensional data.
The second approach is to monitor each local dimension
individually and then combine local detection statistics to
form a global monitoring statistic. By doing so, the difficult
problem of monitoring K-dimensional data is reduced to the
easier problem of monitoring K one-dimensional local data
simultaneously, which turns out to be able to balance the
tradeoff between computational and statistical efficiency when

the local data are independent or weakly dependent, see [4]–
[7]. Here we will focus on the second approach.
In this paper, we propose a window-limited nonparametric

Shiryaev-Roberts (WL-NPSR) algorithm for monitoring high-
dimensional data. At the global level, we propose a novel
global monitoring statistic that combines the sum-shrinkage
technique in [8] with the clever idea of quantiles filtering
in [6]. Utilizing sum-shrinkage and quantiles enables more
flexibility and robustness when facing different model as-
sumptions or post-change scenarios. At the local level, we
extend and modify a nonparametric Shiryaev-Roberts (SR)
statistic for univariate data. Recall that many classical pro-
cedures have been developed for monitoring univariate data in
the literature, including Shewhart Chart, CUSUM procedure,
Shiryaev-Roberts procedure, EWMA chart, Scan Statistics,
Generalized Likelihood Ratio (GLR) under the parametric
models, see [9]–[14]; for nonparametric methods, rich research
has also been done, often under the assumption that the post-
change distribution is stochastically larger or smaller than
the pre-change distribution, see [15]–[19]. We take advantage
of such extensive literature to develop robust univariate se-
quential change-point detection statistics that are based on
the likelihood ratios of sequential ranks, which can detect
both stochastically larger and smaller post-change distributions
simultaneously.
The rest of the paper is organized as follows. In Section II,

we present the problem formulation and briefly conduct the
literature review. In Section III, we propose our monitoring
algorithm and provide its theoretical properties. In IV, numer-
ical experiments are conducted to illustrate the performance of
our proposed algorithm. Technical proofs and more simulation
studies are included in the Appendix.

II. PROBLEM FORMULATION AND LITERATURE REVIEW

We present problem formulations and a brief literature re-
view in this section. This section is split into three subsections.
Subsection II-A includes the mathematical formulation of the
sequential change-point detection problem of monitoring high-
dimensional data, and Subsection II-B reviews the parametric
and nonparametric Shiryave-Roberts statistics for univariate
processes. In subsection II-C we review the sum-shrinkage
technique in [8] and quantiles filtering in [6] when constructing
global monitoring statistics.



A. Mathematical Formulation

Suppose that we are monitoring a system with K data
streams. Denote by Xk,t the observation from the kth local
data stream at time t for k = 1, . . . ,K and t = 1, 2 . . . .
Observations are assumed to be independent both among and
within data streams. Initially, local data {Xk,t} are i.i.d with
the probability density function (pdf) gk,0, which is assumed
to be symmetrical about 0. At some unknown time point
⌫ 2 {1, 2, . . . }, an undesirable event occurs and changes
the pdf of the kth data stream to be gk,1. We do not know
how many and which data streams have changes in their
distributions. Denote the pre- and post-change cumulative
distribution function (cdf) as Gk,0 and Gk,1, respectively. The
actual parametric forms of Gk,0 and Gk,1 are unknown, and
the post-change distribution can be stochastically larger or
smaller than the pre-change distribution. Denote by j and

j the probability measure and expectation when the change
happens at ⌫ = j, and denote the same by 1 and 1 when
there is no change.
In sequential change-point detection problems, a statisti-

cal procedure or algorithm is defined as an integer-valued
stopping time T with respect to the observation sequence
{Xk,t : k = 1, . . . ,K, t = 1, 2, . . . }. On the one hand, when
there is no change, one would prefer to monitor the data as
long as possible without interruptions. Mathematically, this is
equivalent to having the stopping time T to be stochastically
large under 1, and it is standard to formally state this as
the false alarm constraint of the form

1(T ) � A, (1)

where A is a pre-specified constant. On the other hand, once
a change occurs, one wants to raise an alarm as quickly
as possible or wants the stopping time T to have a small
detection delay, defined by (T � ⌫ + 1)+, under ⌫ . There
are several standard ways to define expected detection delay
under the minimax formulations. One is under the conditional
expectation, see Lorden [20] or Pollak [21], e.g., DPOL(T ) =
sup1⌫<1 ⌫(T � ⌫ + 1|T � ⌫). The other is through the
marginal/unconditional distribution, defined in Lai [14],

DLAI(T ) = ⌫(T � ⌫ + 1)+. (2)

Here we adopt Lai’s unconditional detection delay DLAI(T ) in
(2) for theoretical and numerical analyses, as it is still open
problems to investigate the theoretical properties under Lorden
or Pollak’s detection delay criteria that needs to address the
conditional performance under the rare events.

B. Shiryaev-Roberts Statistic

In the simplest sequential change-point detection problem of
monitoring i.i.d univariate data {Xt} whose distribution might
change from g0 to g1, the well-known Shiryaev-Roberts (SR)
procedure is defined as the stopping time TSR = inf{t : Rt �
A}, where the SR statistic Rt is given by

Rt =
tX

j=1

⇤t
j where ⇤t

j =
tY

i=j

g1(Xi)

g0(Xi)
. (3)

This procedure has a natural Bayesian interpretation that
the candidate change time ⌫ occurs uniformly over j =
1, 2, · · · , t. It was shown in [21], [22] that the SR proce-
dure is asymptotically optimal under Pollak’s detection delay
DPOL(T ) subject to the false alarm constraint in (1), as the
lower bound A goes to infinity.
A nonparametric Shiryaev-Roberts (NPSR) detection pro-

cedure is proposed by [15]. The key technique in NPSR is
to compute the likelihood ratios of signs and signed-ranks
induced by observations under pre-specified distributions.
To be more specific, at each time step t, two-dimensional
summary statistics Zt

i := (
Pt

j=1 {|Xj ||Xi|}, {Xi>0}) for
each i = 1, . . . , t are recorded. This follows the well-known
Wilcoxon’s signed-rank tests when testing whether the differ-
ence of two paired samples is symmetric about 0 or not. Next,
two hypothesized working distributions are pre-specified, one
for pre-change and the other for post-change:

f0(x) =
1

2
exp {�|x|} (4)

f1(x) = pa exp(�ax) {x�0} + qb exp(bx) {x<0}.

For any continuous-valued data X that is symmetrical about
0, we consider the monotonic transformation

Q(x) := (1� 2 {x>0}) log
�
2� 2G0(|x|)) (5)

on it. It is straightforward to show that the transformed data
Q(X) will have the hypothesized working distribution f0 in
(4) while preserving the same summary statistics Zt

i which
are based on signs and orderings. The positive parameters
a, b, p, q = 1 � p in (4) are tuning parameters that can
be chosen to resemble the true post-change distribution of
the transformed data Q(X). Finally, the NPSR computes the
likelihood ratio of two-dimensional vectors Zt

i , i = 1, . . . , t
under hypothesized working distributions when the change
occurs at the time ⌫ = j, i.e., ⇤t

j in the SR statistics (3)
is replaced by

⇤t
j(Z

t
1, . . . , Z

t
t ) :=

⌫=j(Zt
1, . . . , Z

t
t )

1(Zt
1, . . . , Z

t
t )

. (6)

This nonparametric likelihood ratio has a closed form for any
finite sequence of samples. It was shown in [15] that the NPSR
is robust and efficient, though it is computationally expensive.

C. Sum-Shrinkage Method and Quantiles filtering

Motivated by communications in sensor networks, Liu et al.
[8] introduce the sum-shrinkage technique to construct global
monitoring statistic

Gt =
KX

k=1

hk(Wk,t), (7)

where Wk,t is the local detection statistic. There are
many choices for the shrinkage function hk such as hard-
thresholding hk(x) = x {x>bk} or soft-thresholding hk(x) =
max{x� bk, 0} for some constant bk. The shrinkage transfor-
mations play the role of increasing signal-to-noise by filtering
out those in-control local data streams and only gathering



information from likely out-of-control data streams. Unfor-
tunately, it is highly non-trivial to choose a suitable constant
filtering parameter bk that works well in a general context.
To develop a robust global monitoring statistic and get around
the challenges of choosing the parameter bk’s, Li [6] proposes
an adaptive global monitoring statistic that can automatically
adjust to different post-change scenarios. The main idea is
to utilize the quantiles of local detection statistics under the
pre-change hypothesis, and then compare them with the order
statistics of observed local detection statistics. In particular,
the corresponding global monitoring statistic is defined as

Gt =
KX

k=1

�
W(k),t � q(k),t

�2
{W(k),t>q(k),t}, (8)

where q(k),t is the (k�0.75)/(K�0.5) quantile of the local de-
tection statistics Wk,t under the pre-change hypothesis, which
can be either theoretically derived or numerically simulated.

III. OUR PROPOSED ALGORITHM

We are now ready to present our proposed robust algorithm
for monitoring high-dimensional streaming data. This section
includes three components. In Subsection III-A we develop
a window-limited version of the NPSR that is robust and
computationally efficient. In subsection III-B we combine the
sum-shrinkage technique with quantile-filtering to construct
a novel global monitoring statistic that is efficient under our
context. Due to page limits, brief theoretical properties are
summarized in Subsection III-C without proofs.

A. Local Detection Statistics

We propose to extend the NPSR by choosing two sets
of tuning parameters in (4), (a+, b+, p+) and (a�, b�, p�)
for detecting stochastically larger and smaller local changes,
respectively. As shown in [15], the general requirements would
be 0  a+  1  b+ < 1, a+ < b+ and p+a+ � q+b+,
whereas 0  b�  1  a� < 1, a� > b� and
p�a�  q�b�. Under symmetric cases, one can choose
p+ = 1� p�, a+ = b� and b+ = a�.

In addition, to reduce the computational burden in (6), we
apply a window-limited approach where only observations
from a sliding window of fixed length will be considered.
Denote the fixed window length with `. That is, we only utilize
the window-limited data X(t�`)++1, · · · , Xt to compute the
two-dimensional summary statistics

Z`,t
i :=

� t^X̀

j=1

{|Xj+(t�`)+ ||Xi+(t�`)+ |}, {Xi+(t�`)+>0}
�

(9)
for i = 1, . . . , t ^ `. Then we compute the likelihood ratio
⇤t
j(Z

`,t
1 , . . . , Z`,t

t^`) using formula (6).
Define by ⇤+,t

j and ⇤�,t
j the nonparametric likelihood

ratios computed by (6) with (a+, b+, p+) and (a�, b�, p�),
respectively. Also define by R+

t and R�
t the corresponding

NPSR statistics in (3). Then our proposed local detection
statistic is defined as.

R`
t := max{R+

t , R
�
t }, (10)

where superscript ` is used to emphasize the window length.
It is natural to apply R`

t in (10) to all K local data streams,
thereby yielding K local detection statistics R`

1,t, . . . , R
`
K,t at

each time t. When the dimension K is large, unfortunately,
there are often too many ties in these local detection statis-
tics, and thus we propose to follow the multi-armed bandit
problems to introduce randomness to break ties. To be more
specific, let Uk,t

i.i.d⇠ Uniform[0, 1] and denote that

Rk,t := R`
k,t + Uk,t (11)

for k = 1, . . . ,K. It turns out that adding jitters will stabilize
the performance of our proposed algorithm in the initial time
steps while having little effects for the large time steps.

B. Global Monitoring Statistics

At time t, with the observed K local statistics in (11) after
adding jitters, denote byR(1),t  . . .R(K),t the corresponding
order statistics. We combine the sum-shrinkage technique in
[8] with quantile filtering in [6] to define our global monitoring
statistic as

Gt =
KX

k=1

|R(k),t � q(k),t| {R(k),t>q(k),t}, (12)

where q(k),t is the k/K quantile of R(k),t to be discussed a
little bit later. In our context, our experiences show that the
L1 norm in (12) will yield better performance than the L2

norm in (8). Part of the reason is probably that we adopt the
SR statistic, which is on the likelihood ratio scale, whereas Li
[6] considers the CUSUM statistics in (12) which is on the
log-likelihood ratio scale.
Our proposed Window-Limited Nonparametric Shiryaev-

Roberts algorithm raises a global alarm at the time

TG
A = inf{t � 1 : Gt � A}. (13)

Let us now discuss how to derive the pre-change quantiles
q(k),t, k = 1, . . . ,K. Theoretically, this is very challenging;
but fortunately, it is straightforward to compute them numer-
ically via Monte Carlo simulations. To be more concrete, we
generate t ^ ` independent local raw data X⇤

1 , . . . , X
⇤
t^` from

any given distributions symmetric at 0, e.g., standard normal,
also sample U⇤

1 , . . . , U
⇤
t^` from Uniform[0, 1], and then use

them to compute the local detection statisticsRk,t in (11). This
process is repeated B times so that we get B realizations. Then
we take the k/K sample quantile q̂(k),t from these B realiza-
tions to approximate the quantiles q(k),t, for k = 1, . . . ,K.
It is useful to highlight that the quantile calculation step can
be conducted offline, and only needs to be done once. This
means that the corresponding computation burden or memory
requirement is marginal for online monitoring.

C. Theoretical Properties

In this subsection, we present some theoretical properties of
our proposed algorithm.
The following lemma demonstrates that different parts

R+
t , R

�
t of the local detection statistics R`

t in (10) will play



different roles when facing stochastically larger or smaller
post-change distributions, which is due to the monotonicity
of the window-limited likelihood ratio ⇤t

k in (6).
Lemma 1: Denote Rt(x1, . . . , xt) as the nonparametric SRs

computed on samples x1, . . . , xt. Let  +, � be functions
such that  +(x)  x   �(x). For any i  t, if 0  a 
1  b and pa � qb,

Rt(x1, . . . , xi�1, 
+(xi), . . . , 

+(xt))

Rt(x1, . . . , xt)

Rt(x1, . . . , xi�1, 
�(xi), . . . , 

�(xt)).

(14)

If 0  b  1  a < 1 and qb  pa, the above inequalities
will all be reversed.
By Lemma 1, when G1(x)  G0(x), i.e., when the post-

change distribution is stochastically larger than the pre-change
distribution, if we set  +(x) = G�1

0 (G1(x)), then the value
of R+

t will likely increase and R�
t will likely decrease as

compared to their null pre-change values; the conclusions
will reverse when the post-change distribution is stochastically
smaller than the pre-change distribution.
Next, we present the performance of our proposed algorithm

when the dimension K = 1 with full data, i.e., ` = 1, and
the corresponding stopping time is denoted as TA. Recall that
f1, f0 are Laplace densities given in Subsection II-B, g1(x) is
the (unknown) true post-change density function, and Q is the
transformation in (5).
Lemma 2: Suppose under 1, the i.i.d observations

X1, X2, . . . follow some continuous distribution symmetrical
about 0. Then

1{TA} � A� 1

2
(15)

and there exists a constant C such that

lim
A!1

1{TA}
A

 C. (16)

Moreover, when the Kullback–Leibler divergence

DQ =

Z
g1(x) log

f1(Q(x))

f0(Q(x))
dx, (17)

is finite and positive, we have

lim
A!1

lim sup
k!1

k{(TA � k + 1)+}
log(A)

 D�1
Q . (18)

The proof of Lemma 2 is based on a non-trivial modi-
fication of those proofs in [15] by taking into account of
two-sided tests in (10) and added jetters in (10). Note that
the constant C in (16) can be explicitly characterized as
C = min{1/a+, 1/b�} > 1 if p+a+ _ q+b+  1/2 and
p�a� _ q�b�  1/2.
Finally, we are ready to present the performance of our

proposed algorithm under the general dimension K and finite
window length `. The following theorem provides a rough
lower bound for the average run length to the false alarm.
Theorem 1: Assume A > K. Then

lim inf
l!1

1{TG
A } � A�K

2K
. (19)

Combining Lemma 2 and Theorem 1 along with the de-
tection delay technique in [23], when log(A) � log(K),
our proposed algorithm TG

A has efficient detection delays
under Lai’s unconditional definition in (18). With this said,
unfortunately, it remains an open problem to investigate the
detection delays under Lorden’s or Pollak’s definitions, which
involve the conditional detection delays under rare events.

IV. NUMERICAL EXPERIMENTS

In this section, we present the results of our numerical
studies to illustrate the performance of our proposed algorithm.
Our simulation settings are as follows. There areK = 100 data
streams in the system and nc 2 {100, 80, 50, 20, 10, 8, 5, 3, 1}
of them might have location shifts � at the time ⌫ = 51. When
the system is in-control, data stream {Xk,t} follows N(0,1) if
its index k is odd, otherwise it follows standardized T(2.5).
We consider two sub-cases:
1) Equal magnitudes: {Xk,t}, k  dnc/2e have location

shifts � = 1; {Xk,t}, dnc/2e+1  k  nc have location
shifts � = �1.

2) Mixed magnitudes: {Xk,t}, k  dnc/2e have location
shifts of magnitude |�1| = 0.5; {Xk,t}, dnc/2e + 1 
k  nc have location shifts of magnitude |�2| = 1. For
the same magnitude of |�i|, i = 1, 2, half of them are
positive and the rest are negative.

When nc = 1, only {X1,t} will have a location shift of 1
in the first case or 0.5 in the second case. For the purpose
of comparison, besides the proposed algorithm TG

A in (13),
we also consider three alternatives: TL in (8) with sample
quantiles, Tsum = inf{t :

P
k Rk,t � A} and Tmax = inf{t :

maxk Rk,t � A}. The average run length to false alarm
(ARL0) of all algorithms are set to be 1000, and threshold
As of algorithms are obtained by Monte Carlo simulations
to satisfy this ARL0 constraint. In particular, the threshold
A values for these four algorithms, TG

A , TL, Tsum, Tmax, are
chosen to be 10515.49, 75773623.25, 116444.61, 115250.06,
respectively. All results are estimated from 2500 simulation
runs and standard errors are reported in parenthesis. The
average detection delay is estimated by the sample mean of
(T � ⌫ + 1)+, where T is the stopping time and the change-
point ⌫ is set to be ⌫ = 51.
The remainder of this section contains two subsections.

In Subsection IV-A we discuss the choice of parameters. In
Subsection IV-B we report the simulation results.

A. Choice of Parameters in Our Proposed Algorithm

As in [15], by Lemma 2, we choose post-change parameters
(a±, b±, p±) to maximize DQ in (17). Specifically, by taking
partial derivatives of (17) with respect to p, a, b we will have

p = 1�G1(0),

a =
p

�
R1
0 g1(x) log(2� 2G0(x))dx

,

b =
p� 1

R 0
�1 g1(x) log(2� 2G0(�x))dx

.

(20)



TABLE I
AVERAGE DETECTION DELAY FOR K = 100 DATA STREAMS.

Shift
Case nc TG

A TL Tsum Tmax

1)

1 34.80(0.46) 35.26(0.47) 30.41(0.37) 30.63(0.38)
3 13.85(0.10) 14.09(0.10) 15.25(0.11) 16.00(0.12)
5 10.57(0.06) 11.11(0.07) 12.70(0.07) 13.50(0.08)
8 8.36(0.05) 9.11(0.05) 10.86(0.06) 11.87(0.06)
10 7.69(0.04) 8.54(0.04) 10.38(0.05) 11.52(0.06)
20 6.01(0.03) 7.03(0.04) 8.73(0.04) 10.24(0.05)
50 4.41(0.02) 5.72(0.03) 7.07(0.03) 9.00(0.04)
80 3.71(0.02) 5.08(0.02) 6.27(0.03) 8.30(0.04)
100 3.45(0.02) 4.82(0.02) 5.93(0.03) 8.08(0.04)

2)

1 238.4(4.24) 241.3(4.23) 226.3(4.00) 232.0(4.08)
3 23.39(0.24) 24.02(0.25) 24.63(0.24) 25.48(0.25)
5 14.47(0.11) 14.84(0.11) 15.89(0.13) 16.45(0.13)
8 10.36(0.06) 10.98(0.07) 12.80(0.07) 13.43(0.08)
10 9.29(0.05) 10.08(0.05) 11.67(0.06) 12.63(0.07)
20 7.20(0.04) 8.31(0.04) 10.08(0.05) 11.32(0.06)
50 5.19(0.02) 6.59(0.03) 8.07(0.04) 9.76(0.05)
80 4.38(0.02) 5.83(0.03) 7.14(0.03) 9.16(0.05)
100 4.02(0.02) 5.53(0.03) 6.82(0.03) 8.83(0.04)

For simplicity, we take G0 to be standard normal, use G+
1 as

N(1, 1) to compute (a+, b+, p+), G�
1 as N(�1, 1) to compute

(a�, b�, p�). Then by numerical integration, p+ = 1� p� =
0.8413, a+ = b� = 0.531, b+ = a� = 1.703. Moreover, for
computationally simplicity, we choose the window length ` =
30 for our proposed algorithm TG

A here, although our extensive
numerical experiences suggest that the window length ` =
50 or ` = 100 also yield similar results. Thus we use these
parameters for all the numerical experiments below.

B. Detection Delay

Table I summarizes the expected detection delays along with
the standard errors for our proposed algorithm TG

A with the
window length ` = 30 as well as three baseline alternatives. It
is clear from the table that our proposed algorithm, TG

A , yields
the smallest detection delays in almost all situations, except
when only one local stream is affected. This is consistent with
our intuition. Note that our local statistics will not accumulate
all temporal information since they only utilize the most
recent ` observations. When ` is fixed and t > `, we are
testing whether the most recent ` samples come from a fixed
distribution. If there is only one data stream having a small
change, the type-II error can be large and it will be difficult
to test out the deviation from the pre-change distribution. This
explains why all algorithms using the proposed local statistics
(11) would yield large detection delays when there is only one
data stream having a 0.5 location shift.
It is also interesting to note that the analog global statistic

in (8), using squared difference, always yields slightly larger
detection delay than TG

A . Thus using L1-norm to fuse all local
detection statistics seems to be more efficient as compared to
the L2-norm.
A very surprising phenomenon is that for the SR-type local

detection statistics, the “SUM" rule appears to yield smaller
detection delay than the “MAX" rule in all of our numerical
setting. This seems to different from extensive existing re-
search that the “SUM" rule of local CUSUM statistics would

yield larger detection delays than the "MAX" rule when the
number of affected number is small, see [4], [6], [8].
At the high-level, such disparity might be because while SR

and CUSUM local statistics yield similar stopping times when
monitoring one-dimensional data, their properties after fusing
at the global level are compleltley different! In particualr,
the SR statistic Rk,t is in the likelihood scale, whereas
the CUSUM statistics Wk,t is in the log-likelihood scale.
Below we sketch a high-level explanation to clarify such
inconsistency. Indeed, in the sequential change-point detection
literature, we would treat Wk,t ⇡ log(Rk,t), or equivalently,
Rk,t ⇡ exp(Wk,t). In particular, if the k-th local stream
is affected under the post-change hypothesis, Wk,t grows at
the rate of Ikd whereas Rk,t grows at the rate of exp(Ikd)
as the detection delay d ! 1. Assume there are nc � 2
affected local streams, and without loss of generality, the
first nc local streams are affected with signal-to-noise ratios
in the decreasing order: I1 > I2 > · · · > Inc . When the
local CUSUM statistics are the building blocks, the asymptotic
ratios of the detection delays of the “MAX" and “SUM" rules
would be Pnc

k=1 Ikd

max1knc Ikd
= 1 +

Pnc

k=2 Ik
I1

> 1, (21)

which is consistent with the literature that the “SUM" and
“MAX" algorithms have very different asymptotic properties
when the local CUSUM statistics are used.
Meanwhile, when the local SR statistics are used as building

blocks, the corresponding ratio would become
Pnc

k=1 exp(Ikd)

max1knc exp(Ikd)
= 1 +

ncX

k=2

e(Ik�I1)d ! 1 (22)

as d ! 1. In other words, we might expect that
PK

k=1 Rk,t

has similar asymptotic properties as max1kK Rk,t =
exp(max1kK Wk,t). While we provide some asymptotic
arguments, it is still an open problem to investigate the finite-
sample properties of the "SUM" or "MAX" rules on the local
SR-type statistics, also see [24] for similar observations of
fusing local SR statistics in different contexts.

V. CONCLUDING REMARKS

We proposed an algorithm for monitoring high-dimensional
streaming data by fusing local two-sided nonparametric SR
statistics into efficient a global monitoring statistic via sum-
shrinkage and quantile-filtering. The resulting algorithm is ro-
bust to model assumptions and yields satisfactory performance
in detection delays. A key tuning parameter is the window
length `, which deserved further finite-sample analysis, so as
to balance the tradeoff between the computational efficiency
and statistical efficiency.
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