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Abstract—In this paper, we consider the quickest detection
problem in high-dimensional streaming data, where the unknown
regression coefficients might change at some unknown time. We
propose a quickest detection algorithm based on the implicit
regularization algorithm via gradient descent, and provide theo-
retical guarantees on the average run length to false alarm and
detection delay. Numerical studies are conducted to validate the
theoretical results.

I. INTRODUCTION

In this paper, we tackle the problem of detecting changes in
high-dimensional linear regression models - one of the most
fundamental predictive models. Our approach is inspired by
recent research on (deep) neural networks, where optimization
algorithms such as (stochastic) gradient descent hold implicit
regularization properties, see [1], [2], etc. By treating linear
regression models as two-layers neural networks, we develop
efficient implicit regularization-based quickest detection for
linear regression models. To the best of our knowledge, this is
the first to apply implicit regularization in the text of quickest
detection, and our ideas can be easily extended to the context
of monitoring other advanced predictive machine learning or
artificial intelligent algorithms.

To be specific, we assume that we observe a sequence
{(yt, Xt)}t∈Z+

⊂ Rm × Rm×p over time t ∈ Z+ which can
be modeled as

yt = Xtβt + ϵt, (1)

where βt ∈ Rp is a p-dimensional vector. The system is ini-
tially in control and the parameter vector takes a constant value
βt = β0. At some unknown time ν ∈ Z+, an event occurs and
changes the regression coefficient vector to β1 ∈ Rp, β1 ̸= β0.
In the literature, such time ν is often called the “change point”.
The primary goal is to develop an efficient algorithm to raise
an alarm as quickly as possible once it occurs at change point
ν based on the observed data sequence {(yt, Xt)}t∈Z+

.
Research on online/sequential monitoring of change points

in high-dimensional linear model has been studied in the
statistical and engineering literature, e.g., [3], [4], but most
through explicit regularization methods such as LASSO pro-
posed in [5]. For instance, [6] developed a LASSO-based
multivariate statistical process control (SPC) methodology.
[7] developed residual-based detection statistics via LASSO
estimator. Here we take a different approach by adopting the

implicit regularization method, which might allow us to handle
more complicated models or algorithms.

The rest of the paper is organized as follows: in Section
II we formulate the problem and review the implicit regular-
ization methods in linear regression model. In Section III we
propose the general algorithm and the efficient implementation
via implicit regularization. In Section IV we develop the
theoretical properties of the proposed algorithm and in Section
V we conduct several numerical studies to validate our results.
Finally in Section VI we provide some technical details.

II. PROBLEM FORMULATION AND BACKGROUND

A. Mathematical Formulation

Assume that we observe a sequence of data streams
{(yt, Xt)}t∈Z+

⊂ Rm × Rm×p from model (1), where the
noise vector ϵt ∈ Rm ∼ N(0, σ2I), and the regression
coefficient βt change from a pre-specified vector β0 to an
unknown vector β∗ ̸= β0 at some unknown change point ν,
i.e.

βt =

{
β0, t ≤ ν,

β∗, t > ν.
(2)

The known value of β0 is reasonable in many applications such
as the quality control in manufacturing engineering. Without
loss of generality, we assume β0 = 0 since we can monitor
yt −Xtβ0 instead of yt.

We consider the random design case, where each component
(Xt)i,j of the matrix Xt is assumed to be independent and
identically distributed random variables with the standard
Gaussian distribution (i.e., (Xt)i,j ∼ N(0, 1)), for all i =
1, · · · ,m, j = 1, · · · , p and t = 1, · · · , . In addition, we
assume that the change is entrywise sparse, and define the
sparsity s∗ = ∥β∗ − β0∥0 , where ∥ · ∥0 denotes the L0 norm.

Our goal is to develop an efficient algorithm to detect the
change based on the observed data {(yt, Xt)}t∈Z+

as quickly
as possible. An algorithm for quickest detection problem can
be characterized by a stopping time T with respect to the
observed data sequence, where T = n means that we raise a
global alarm at time n. Denote by Pν and Eν the probability
measure and expectation when change occurs at time t. Denote
by P∞ and E∞ the probability measure and expectation when
there are no changes, or equivalently, when the change occurs
at time ∞. Motivated by [8], the detection delay of a stopping



time T can be evaluated by the following worst case detection
delay conditioned on T > ν:

D(T ) = sup
ν≥1

Eν [T − ν | T > ν], (3)

subject to the average run length (ARL) to false alarm control:

E∞[T ] ≥ γ, (4)

for some pre-specified γ > 1.
Had we known the true value of the post-change vector β∗,

the problem can be solved via classical CUSUM procedure
in Page [9]. Mathematically, denote by fXβ∗ as the proba-
bility density function (pdf) of N(Xβ∗, σ2I), we define the
following detection statistics:

Wt = max

{
Wt−1 + log(

fXtβ∗(yt)

f0(yt)
), 0

}
, (5)

for t ≥ 1 with W0 = 0. The corresponding CUSUM stopping
time is then defined as

TCUSUM = inf{t > 0 : Wt ≥ A}, (6)

for some pre-specified constant A > 0.
When the post-change regression coefficient β∗ is unknown,

an intuitive idea would be to construct an estimator β̂t based
on the historical data and plug it into the standard CUSUM
statistics in (5) for detection. However, there are two main
challenges: (1) the subset of data to be used for the estimation
is unclear. Due to the unknown change point ν, the data
used might be a mixture model from pre-change and post-
change scenarios. This results in a potentially large bias of
estimators and detection delay. (2) Efficient and accurate
estimators remain unclear. We therefore review two signal
recovery methods in high-dimensional linear regression model
in the next subsection.

B. Review of Signal Recovery Methods in Linear Models

Consider data (y,X) = (yt, Xt) ⊂ Rm × Rm×p generated
from model (1). A standard approach when p does not diverge
with m is to estimate β∗ via least squares estimators (LSE),
which aims to find β that minimizes the residual sum squares
(RSS). The optimization problem can be efficiently solved via
the gradient descent algorithm.

In the high-dimensional scenario when p is diverging with
m, many efficient algorithms have been developed, such as
Lasso proposed in [5]. Researchers recently find out that
combining the over-parametrization with gradient descent can
lead to a sparse solution that achieves the minimax rate, which
is also known as the implicit regularization algorithm in linear
models, see [10], and [11].

To be more specific, for any vector β ∈ Rp, we over-
parameterize β by two vectors u, v ∈ Rp :

β = u ◦ u− v ◦ v,

where ◦ is the Hadamard product that denotes the pointwise
multiplication. Denote by ∥·∥2 the L2 norm, the RSS becomes

L(u, v) =
1

m
∥X(u ◦ u− v ◦ v)− y∥22 , (7)

under the over-parameterization. We then apply the gradient
descent algorithm to (7) to recursively update u and v by

βℓ = uℓ ◦ uℓ − vℓ ◦ vℓ,

uℓ+1 = uℓ − 4η uℓ ◦
[
1

n
X⊤ {Xβℓ − y}

]
,

vℓ+1 = vℓ + 4η vℓ ◦
[
1

n
X⊤{Xβℓ − y}

]
.

for ℓ = 1, · · · , Lmax, where Lmax is the pre-specified maxi-
mum iteration number. The estimator can then be written as
β̂ = uLmax

◦uLmax
−vLmax

◦vLmax
. Here the gradient descent

is initialized by u0,i, v0,i ∼ Unif[−α, α] for some α > 0
and i = 1, · · · , p. Parameters including step size η, iteration
number Lmax, and magnitude α need to be properly selected
to ensure the optimal rate of implicit regularization algorithm
in high-dimensional linear models.

III. IMPLICIT REGULARIZATION-BASED QUICKEST
DETECTION

Our proposed stopping time TIR contains three key compo-
nents: the estimators β̂t, the monitoring statistics Wt, and the
candidate change point M(t). At a high level, for each time
instant t, we construct the estimators β̂t based on the data
between the candidate change point M(t) and the current time
t. Then we update the statistics Wt based on β̂t and choose to
re-set or keep the candidate change point M(t) based on the
value of Wt. For the better presentation, we define the three
components separately in three subsections.

A. Estimators β̂t

Let us begin with the construction of the estimator β̂t of the
true coefficient β∗. At each time t, if the candidate change
point M(t) = t − 1, we directly set β̂t = 0 ∈ Rp, which
is exactly the value of pre-change coefficient. Otherwise if
M(t) < t − 1, we consider the time window between the
candidate change point M(t) and current time t: [M(t) +
1, t−1]. Denote by yM(t)+1,t−1, XM(t)+1,t−1 the aggregation
of the observed data in this time window:

yM(t)+1,t−1 = [y⊤M(t)+1, · · · , y
⊤
t−1]

⊤,

XM(t)+1,t−1 = [X⊤
M(t)+1, · · · , X

⊤
t−1]

⊤.
(8)

We define the proposed estimator β̂t in three steps:
1) We introduce six tuning parameters: α0, η0, cL > 0 for

the implementation of implicit regularization algorithm,
and s, c, C > 0 for the truncation of the estimator.

2) we implement the implicit regularization algorithm in
(8) to the aggregated data (yM(t)+1,t−1, XM(t)+1,t−1)

to obtain an initial estimator β̃t with the initial value
αt, step size ηt and the maximum iteration number Lt

defined in:

αt =
α0√

t−M(t)− 1
,

ηt = η0,

Lt =
cL(t−M(t)− 1)1/4

ηtσ
√

log p/m
log

1

αt
.



3) We adjust the estimator β̃t to obtain the final estimator
β̂t by truncating the s largest components of β̃t with
lower threshold c and upper threshold C, and setting
the remaining p − s components to 0. Mathematically,
if we denote by Ŝt ⊂ {1, · · · , p} the index of s largest
components at time t, then

(β̂t)i = 0, if i /∈ Ŝt,

(β̂t)i = min
{
Cσ,max{cσ, (β̃t)i}

}
, if (β̃t)i > 0, i ∈ Ŝt,

(β̂t)i = min{−cσ,max{−Cσ, (β̃t)i}}, if β̃t,i < 0, i ∈ Ŝt.

The details on the selection of parameters α0, η0, c, C, cL will
be postponed to Section IV.

B. Monitoring Statistics Wt

With the estimator β̂t, we are able to plug it into the
CUSUM statistics in (5) for detection. For better illustration,
we define the monitoring statistics Wt in two steps. Firstly, we
define an initial statistics W̃t based on the classical CUSUM
update for the detection of change point:

W̃t = max

{
Wt−1 + log

fXtβ̂t
(yt)

f0(yt)
, 0

}
.

If W̃t ≥ A for some threshold A > 0 that will be defined
later, we directly set Wt = W̃t. If W̃t < A, we need to
check the amount of data that are used for detection. For this
purpose, we introduce a new tuning parameter q = q(A). If
the length of the time window [M(t) + 1, t − 1] is too long
(i.e., t−M(t)−1 ≥ q), we discard these data, re-set Wt back
to 0 and restart the estimation. If t −M(t) − 1 < q, we still
set Wt = W̃t. To be mathematically rigorous, we define

Wt =

{
W̃t, if t−M(t)− 1 < qA or W̃t ≥ A,

0, if t−M(t)− 1 ≥ qA and W̃t < A.
(9)

C. Candidate change point M(t)

With the defined monitoring statistics Wt in (9), let us define
the candidate change point M(t+1) for the next time instant
t+ 1. If Wt > 0, which indicates the possible existence of a
change point, we keep the candidate change point as it is. If
Wt = 0, we reset M(t + 1) back to the current time t. This
is to say,

M(t+ 1) =

{
t, if Wt = 0,

M(t), if Wt > 0.
(10)

We raise a global alarm at the stopping time TIR

TIR = inf{t > 0 : Wt ≥ A}, (11)

Note that the threshold A > 0 is the same as A used for the
definition of monitoring statistics, and is selected to satisfy the
ARL to false alarm constraint in (4). Our proposed algorithm
can be described as follows.

Algorithm 1 Implicit-Regularization-Based Quickest Detec-
tion in High-Dimensional Linear Model.

1: Choose suitable magnitude α, step size η, tuning param-
eters s, S, cL, q and threshold A.

2: Initialize W0 = 0,M(1) = 0
3: while t > 0 do
4: Observe data (yt, Xt).
5: Obtain historical data yM(t)+1,t−1, XM(t)+1,t−1.

6: Obtain the estimator β̂t.
7: Update the monitoring statistics Wt.
8: if Wt ≥ A then
9: Raise an alarm.

10: else if Wt < A then
11: Update the candidate change point M(t+ 1).
12: end if
13: t = t+ 1
14: end while

IV. THEORETICAL PROPERTIES

In this section, we establish the theoretical guarantees
for our proposed stopping time TIR in (11). We begin by
establishing a choice of the threshold A that guarantees that
the ARL to false alarm constraint in (4) is met.

Lemma 4.1: For any constraint γ > 1, if the threshold A ≥
log γ, then we have that

E∞[TIR] ≥ γ. (12)

We are now ready to analyze the detection delay relationship
of TIR. The main challenge here as compared to the analysis in
standard linear regression model without change points is how
to characterize the value of candidate change point M(ν+1).
If M(ν + 1) < ν, the estimator β̂t for t > ν is biased before
the reset of candidate change point due to the fact that the
data in the time-window [M(t) + 1, t − 1] is a mixture of
both pre-change and post-change data. Under such scenario,
a low percentage of pre-change data in the time-window is
crucial to the accuracy of the estimation. Furthermore, the
dependence between the value of M(ν+1) and the condition
TIR > ν brings additional challenge to the theoretical analysis.
To tackle this issue, we have the following lemma on M(ν+1).

Lemma 4.2: For any n = 1, 2, · · · ,

Pν [ν −M(ν + 1) ≥ n | TIR > ν] ≤ c1 exp(−c2n). (13)

for some constants c1, c2 > 0.
Lemma 4.2 shows that ν−M(ν+1) has an exponential tail

bound, which means that with large probability, the candidate
change point M(ν + 1) will be close to the change point ν
and ensures the low percentage of pre-change data during the
estimation for t > ν.

Define the following Kullback-Leibler divergence of the
post-change versus the pre-change distribution:

I(β∗) = EXt [Eyt [log
fXtβ∗(yt)

f0(yt)
]],



where yt, Xt are generated from model (1) with βt = β∗.
We have the following theorem on the detection delay of our
proposed stopping time TIR.

Theorem 4.3: If the tuning parameters for the implicit
regularization algorithm α0, η0, cL, c, C, s, q satisfy:

α0 ≤ min{ 1

5p2
, 1,

1

2

√
β∗
min,

2
cL

σ
√

log p
m

3(β∗
maxσ)

2
}, (14)

η0 ≤ 1

20β∗
max

, cL ≤ c3, (15)

|β∗
min| ≥ cσ, |β∗

max| ≤ Cσ, s ≥ s∗, (16)
q = c5e

c4A, (17)

for some constant c3 > 0, 0 < c4 < 1/2, c5 > 0. the detection
delay of our proposed algorithm is bounded by:

D[TIR] ≤
A

I(β∗)
+

C1m

I(β∗)

√
D[TIR] +

C2

√
A/I(β∗)

I(β∗)
+ C3.

(18)
for any m ≥ C4 log p and some constant C1, C2, C3, C4 not
related to m, γ, p.

To help better understand Theorem 4.3, here we add a few
remarks.

1) By letting A = log γ in relationship (18), we conclude
that the detection delay of our proposed algorithm TIR

mainly consists of two parts: (1) the standard delay term
log γ/I(β∗) in change point analysis, (2) the additional
term O(m

√
D[TIR]/I(β

∗)) which results from the in-
formation loss during the estimation of the unknown
coefficient.

2) When the number of observations per time step m ≪
log γ, our proposed stopping time TIR is first-order
asymptotically optimal in the sense of minimizing de-
tection delay for each and every β∗ in the region
defined in Theorem 4.3. This is because it asymptotically
attains the lower bound of the CUSUM procedure in
(6) that knows the true value of β∗. Unfortunately if
m ≥ O(log γ), this conclusion no longer holds as the
additional term plays a non-negligible role in the delay.

3) Our proposed algorithm included seven tuning param-
eters. The two most important parameters are α0, η0
which determines the performance of implicit regu-
larization algorithm when estimating the post-change
regression coefficient β∗. The other five parameters
c, C, s, q, cL are introduced for theoretical analysis and
has insignificant impact in the numerical studies. In our
paper, we select α0 = 0.001, η0 = 0.1, c = 0, C =
∞, s = p, q = +∞, cL = 1.

4) We would like to comment on the computational com-
plexity of our algorithm. At each time t, the compu-
tational complexity of TIR is O (mpLt) , and this is
comparable to that of the explicit regularization methods
such as LASSO. In addition, the memory requirement of
our proposed method is mp(t−M(t)−1). We conjecture
that t−M(t)−1 can be reduced to O(1) by recursively
estimating β∗, which will be investigated elsewhere.

V. NUMERICAL RESULTS

In this section, we conduct Monte Carlo simulation studies
to validate our theoretical results. The dimension is set to p =
1000. Assume the pre-change coefficient β0 = 0 and the post-
change coefficient β∗ = [1, 1, 1, 1, 0, · · · , 0]⊤.

Two baseline methods are considered:
• TCUSUM : β̂t = β∗ for all t, which is unrealistic in real-

world application since it assumes the true post-change
coefficients are given.

• T̃ : β̂t = b = [b, · · · , b]⊤. Here b is chosen to be b = 4/p,
so as to maximize the Kullback information number

Eβ∗ [log(fXtb
(yt)/f0(yt))] =

m

2σ2

(
∥β∗∥22 − ∥β∗ − b∥22

)
=

m

2σ2

(
4− 4(b− 1)2 − (p− 4)b2

)
For the fairness of comparison, only the estimators β̂t at

each time t are different for TIR, T̃ , while the construction
of statistics and the detection policy remains the same.

The detailed settings are presented as follows:
• m = 20, p = 200, 400, σ = 1.
• γ = 1000, 2000, 5000, 10000, 20000.
• α0 = 0.001, η0 = 0.1.
• c = 0, C = +∞, cL = 1, s = p, qA = ∞.

γ TIR TCUSUM T̃
1000 3.165±0.038 1.002±0.001 15.484±0.185
2000 3.201±0.039 1.003±0.001 16.503±0.189
5000 3.250±0.039 1.004±0.001 17.789±0.195

10,000 3.287±0.039 1.005±0.001 18.746±0.198
20,000 3.323±0.039 1.007±0.001 19.710±0.202

TABLE I
DETECTION DELAY OF T, TCUSUM, T̃ FOR p = 200

γ TIR TCUSUM T̃
1000 4.089±0.049 1.002±0.001 26.765±0.273
2000 4.147±0.049 1.003±0.001 28.460±0.277
5000 4.204±0.049 1.005±0.001 30.675±0.282

10,000 4.248±0.049 1.006±0.001 32.321±0.285
20,000 4.289±0.049 1.008±0.001 34.028±0.289

TABLE II
DETECTION DELAY OF T, TCUSUM, T̃ FOR p = 400

For each γ and TIR, TCUSUM, T̃ , we first use the bisection
method to find suitable threshold A to attain the false alarm
constraint, and then simulate the detection delay under the
special scenario when ν = 0. All results are based on 10,000
Monte Carlo simulations.

From Table I, TCUSUM performs the best, which is con-
sistent with the optimality of CUSUM when the true post-
change parameters are completely specified. However, this is
infeasible in practice. In addition, our proposed stopping time
TIR has a better detection delay performance than T̃ for all
scenarios, which shows the effectiveness of the estimation of
the unknown parameters.

VI. TECHNICAL DETAILS

In this section, we provide the complete proof for Lemma
4.1 and a high-level sketch of the proof for Theorem 4.3. More
technical details are attached in the supplementary material.



Proof of Lemma 4.1:
Denote by fµ(x) the probability density function (pdf) of

Gaussian distribution with mean µ and covariance matrix σ2I.
Consider the statistics Mt :

Mt =
t∑

n=1

t∏
r=n

fXrβ̂r
(yr)

f0(yr)
.

We state that Mt ≥ exp(Wt). This is because

Wt ≤ max
n=1,··· ,t

t∑
r=n

log
fXrβ̂r

(yr)

f0(yr)
,

and thus

exp(Wt) ≤ max
n=1,··· ,t

exp(
t∑

r=n

log
fXrβ̂r

(yr)

f0(yr)
),

= max
n=1,··· ,t

t∏
r=n

fXrβ̂r
(yr)

f0(yr)

≤
t∑

n=1

t∏
r=n

fXrβ̂r
(yr)

f0(yr)
= Mt.

We then consider the stopping time

TM = inf{t > 0 : Mt ≥ exp(A)},

and based on the fact that Mt ≥ exp(Wt) for all t, it is then
clear that

TM ≤ TIR.

It is worth mentioning that if we denote by Ft the filtration
generated by the observed data sequence, i.e.

Ft := σ(y1, · · · , yt, X1, · · · , Xt),

then our proposed estimator β̂t is Ft−1-adapted. It is easily
seen that {Mt − t} is a martingale sequence under P∞, with
respect to the filtration {Ft : t ∈ N}. To see this, note that β̂t

is Ft−1-adapted, we have that

E∞[Mt − t|Ft−1] = Mt−1 + 1− t = Mt−1 − (t− 1).

Applying the optional sampling theorem obtains that

E∞[TIR] ≥ E∞[TM ] = E∞[MTM
] ≥ γ.

Sketch of Proof for Theorem 4.3:
The key idea in proving detection delay relationship (18) is

to decompose our proposed stopping time TIR into a series of
sequential test. For this purpose, let us start with the simpler
scenario when change occurs at time ν = 0. Under such
case, all observed data (yt, Xt)Z+ are under the post-change
scenario, in the sense that yt = Xtβ

∗ + ϵt for all t.
We define the following sequential test T :

T = inf{t > 0 or t = q : St =
t∑

n=1

log
fXnβ̂n

(yn)

f0(yn)
/∈ (0, A)},

(19)

where β̂n = 0 ∈ Rp for n = 1, and for general n ≥ 2, β̂n is
obtained by first applying the implicit regularization algorithm
to the data (y1:n−1, X1:n−1).

y1,n−1 = [y⊤1 , · · · , y⊤n−1]
⊤, X1,n−1 = [X⊤

1 , · · · , X⊤
n−1]

⊤,

and then truncating the estimator obtained by implicit regular-
ization. It is easily seen that our proposed stopping time TIR

under ν = 0 can be written as:

TIR = T1 + · · ·+ Tw,

where sequential tests {Ti}i=1,2,··· have the same distribution
as sequential test (19) and w is the first time when the statistics
in the sequential test (19) crosses the upper threshold A. We
then have:

E0[TIR | TIR > 0] = E0[TIR]

= E0[T1 + · · ·+ Tw]

=
∞∑
i=1

E0[Ti]P0(w ≥ i)

=
E0[T ]

P0(ST ≥ A)
.

We conclude that to bound the detection delay of our proposed
stopping time TIR when change occurs at time ν = 0, it
suffices to study E0[T ] and P0(ST ≥ A) under P0.

For the scenario when change occurs at general change point
ν ≥ 1, the proof becomes much more complicated. The main
challenge is that the estimator after the change-time might be
constructed based on a mixture of pre-change and post-change
data. For this purpose, we consider the following sequential
test:

T(k) = inf{t− k, t ≥ k + 1 : S̃t =
t∑

n=k+1

log
fXnβ̂n,σ2I(yn)

f0,σ2I(yn)

/∈(−Wk, A−Wk) or t−M(k + 1) = qA},
(20)

where Wk is the value of detection statistics at change-time k
and M(k+1) is the candidate change time at time k+1. The
detection delay for this general scenario can be bounded via
the analysis of T(k) and E0[TIR | TIR > 0]. Due to the page
limit, the complete proof will be presented elsewhere.
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