
M���: Black-Box Edge Privacy A�ack on Graph Neural Networks
Haoyu He
GraphLab

The George Washington University
haoyuhe@gwu.edu

Isaiah J. King
GraphLab

The George Washington University
iking5@gwu.edu

H. Howie Huang
GraphLab

The George Washington University
howie@gwu.edu

ABSTRACT
Graphs are ubiquitous data structures with nodes representing ob-
jects and edges representing relationships between them. Graph
Neural Networks (GNNs) have recently been proposed to study
graph-structured data, but unfortunately, are susceptible to privacy
leakage. This issue becomes more urgent as GNNs gain wide de-
ployment in many real-world settings including social network
analysis, bioinformatics, and cybersecurity. In this paper, we pro-
pose the �rst link inference attack that can compromise user data
under the most di�cult security settings, which we call M���. We
demonstrate that private edge information can be inferred by a
malicious user with a black-box approach. Extensive experiments
on six real-world datasets show our attacks conduct e�ective link
inference attacks in various scopes. Our attack achieves signi�-
cant performance improvements over the current state-of-the-art.
When targeting 2-layer Graph Convolution Networks, for inferring
edges of a single node, our attack outperforms the best existing
method by 12.0%, increasing from 83.7% to 95.7%; when inferring
edges of the entire graph, our attack achieves a 19.6% improvement,
from 67.7% to 87.3%. Our results underscore the need for counter-
measures against privacy attacks in GNNs, as they can reveal rich
information about graph structures.

KEYWORDS
Graph Neural Networks, Link Inference Attack, Privacy

1 INTRODUCTION
Graphs are ubiquitous data structures for modeling relationships.
Nodes represent discrete objects and edges represent connections
between them. Practitioners use them to model data in various
domains, such as social media graphs for recommendation [73],
biological knowledge graphs for drug repurposing [24], and text
graphs for relation extraction [45]. In recent years, researchers
have proposed Graph Neural Networks (GNNs) to leverage graph-
structured data with compelling results in many domains [64]. For
example, Uber Eats implements GraphSAGE [20] on a user-item
network to boost personalized recommendation; Google Maps de-
ploys a GNN estimator on a road network to predict the expected
time of arrival [10]; AWS applies Relational Graph Convolutional
Networks [49] to a COVID-19 knowledge graph to accelerate drug
research [58]. With so much real-world, and sometimes highly sen-
sitive data being processed by these models, it is imperative to view

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(4), 364–380
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0121

Table 1: Comparison of existing attacks whereas M��� re-
quires no prior knowledge. We list the required knowledge
for di�erent attacks. The underlined knowledge indicates
white-box access to the GNNs. (○ = required; ○ = not re-
quired)

Attack Feature/Label Embedding Spectral GNNs Gradient

Decoder [12] ○ ○ ○ ○
GraphMI [80] ○ ○ ○ ○
LSA2 [21] ○ ○ ○ ○
LinkTeller [62] ○ ○ ○ ○

M��� ○ ○ ○ ○

them as a threat vector. How might an attacker exploit them to
steal private data, and what measures can we take to stop them?

Traditional machine learning (ML) models are susceptible to
attacks that reveal sensitive information [6, 36] and GNNs are no
di�erent. As GNNs are extensively deployed in real-world systems,
privacy leakage has become a serious problem [8, 22, 60, 76, 79].
Privacy leakage of an attributed graph can be severe because, in
addition to node and edge features, the graph structure itself is at
risk. Even worse, because individual graph components possess rich
information and are related to each other an attacker may infer the
information of one component based on others [1, 18]. Additionally,
with enough preliminary information, an attacker can conduct
inference attacks to obtain sensitive and private information of
graphs [21] and models [60].

In this paper, inspired by recent works [4, 21, 30, 37, 38, 51, 62],
we consider the situation where graph data is vertically partitioned
into two parts: graph structure (edges), and node features. These
partitions are owned by di�erent data holders and anML platform is
used for training and inference. Some more recent prior works have
discussed security in the vertical partition paradigm for machine
learning generally [46, 65, 68, 69], but as it is still an emerging
�eld, fewer speci�cally consider the graph domain [4, 62]. With the
growing popularity of GNN models, many inference servers are
expanding to accommodate APIs for vertically partitioned graph
data (Amazon Neptune1, NVIDIA Triton2, etc.). Once these services
are implemented, the edge data is vulnerable to privacy leakage.
Prior works have shown that with very little knowledge about
the node features, classes, or the model, edge information can be
stolen [21, 38, 62]. We will show that even with no prior knowledge,
the model can still leak rich private information.

It is important to note that inference attacks against traditional
machine learning models [16, 38] cannot be applied to graph data,

1https://aws.amazon.com/neptune/
2https://developer.nvidia.com/nvidia-triton-inference-server

364

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0121
https://aws.amazon.com/neptune/
https://developer.nvidia.com/nvidia-triton-inference-server

M���: Black-Box Edge Privacy A�ack on Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(4)

as they are designed for Euclidean data. Additionally, existing GNN-
based link inference attacks fail to conduct e�ective attacks under
more constrained settings. We aim to attack under the hardest
possible settings. We assume that the GNN is a black-box, so the
adversary has no way of knowing any of its internal parameters,
or gradient information, only its output. This means prior works
such as GraphMI [80], which makes the adjacency matrix a learn-
able parameter and relies on the backpropagation from GNNs, and
Decoder [12], which relies on intermediate node embeddings, are
unable to attack. In a more practical setting, let us assume that
the adversary has only partial, or no node features or labels, e.g.,
users in a social network may not expose their personal informa-
tion. The attacker only has API access to the ML platform. This
makes approaches such as Link Stealing Attack-2 (LSA-2) [21],
and LinkTeller [62] infeasible, as both rely on node features. This
attack-space, “typically seen in the case of machine learning as
a service” [12, p. 78], is what we refer to as the hardest setting.
To further illustrate this, Table 1 shows the knowledge required
for an adversary under several contemporary link inference at-
tacks. It is also worth noting that Li et al. [33] has proposed a novel
link inference attack without access to the node properties (includ-
ing features and labels). However, this attack uses node injection
approach to infer the connection between existing nodes, which
involves creating new nodes and edges, and is unreasonable in our
motivating scenario where the attackers cannot access the graph
structure.

We also note that existing attacks fail to correctly identify edges
for the whole graph. Works such as LinkTeller [62] which estimate
gradients through node perturbations make the �awed assumption
that all edges propagate the same amount of information, so they
adopt a top-k strategy for predicting edges for the whole graph.
This ignores the fact that nodes with more connections receive less
information from each neighbor due to the aggregation scheme of
GNNs [17, 66], making it di�cult to detect edges in graphs with
irregular density.

To address these problems, we proposeM���, an attack that does
not rely on any knowledge of node features or the computation
during the prediction process; the attacker can only access the
inference API as a black box and view its predictions.M��� aims
to infer whether an edge exists between two nodes. Speci�cally,
M��� �rst estimates the in�uence values locally for each node, then
converts the local in�uence values into global in�uence values, so
edges can be identi�ed precisely for the whole graph. We study the
privacy leakage of the graph structure from the inference stage of
GNNs, when the graph is vertically partitioned into graph structure
and node features.

Our experimental results show thatM��� signi�cantly outper-
forms state-of-the-art attacks. When targeting 2-layer Graph Con-
volution Networks, for inferring edges of a single node (local at-
tack), our attack outperforms the best existing method by 12.0%,
increasing from 83.7% to 95.7%; when inferring edges of the entire
graph (global attack), our attack achieves a 19.6% improvement,
from 67.7% to 87.3%. The results further show that our attack can be
deployed on various GNNs. Moreover, we demonstrate thatM��� is
robust to model adaptations and defense mechanisms. Overall, we
observe that GNN predictions can leak rich private link information

Table 2: Summary of notations.

Notation Description

⌧ A graph with nodes and edges
+ Nodes in graph⌧
⇢ Edges in graph⌧
- Node features of+
. Node labels of+

3 (·, ·) Distance between nodes
�(·, ·, ·) A GNN model
5 (·, ·) An inference API derived from �

% Prediction probabilities from �
� Node representations from �
I In�uence nodes based on �
⇥ In�uence values of node pairs

even under the black-box setting, which suggests the necessity for
corresponding defensive actions.

In summary, we make the following contributions:

• Novel privacy attack.We propose the �rst link inference
attack that operates under the most di�cult security setting,
using only the inference API and no node features or model
information. This attack can e�ectively compromise edge
information in graph-structured data.

• Improved global attack. We observe that existing attacks
have limited success in conducting e�ective global attacks on
the whole graph. To overcome this limitation, we introduce
a normalization strategy that allows us to obtain globally
compatible in�uence values.

• Adaptation to constraints. We design di�erent strategies
forM��� to balance time complexity and attack performance.
We provide three strategies in total and demonstrate that
these strategies all outperform existing attacks.

• Extensive experimental evaluation.We conducted exten-
sive experiments on six real-world datasets using commonly
used GNN models. The experimental results demonstrate
the e�ectiveness of M��� from both local and global perspec-
tives, signi�cantly outperforming state-of-the-art attacks in
precision, compatibility and robustness. We also show that
existing defense mechanisms do not fully alleviate privacy
concerns. Our work highlights the need for better privacy-
preserving techniques for GNNs.

2 BACKGROUND
Notations. Let ⌧ = (+ , ⇢) represent a graph with + denoting
the nodes and ⇢ as the edge list. The element 48, 9 in the edge list
represents the existence of an edge from node E8 to E 9 . An attrib-
uted graph is a graph with associated attributes. In this paper, we
consider nodes to be associated with node features - and labels . .

We summarize the frequently used notations of this paper in
Table 2. Capital letters represent a set or a matrix, and the corre-
sponding lowercase represents a single element. Bold lowercase
represents a vector. For example, 48, 9 indicates an edge from node
E8 to E 9 ; x8 represents the node feature vector of E8 .

Graph Neural Networks. Graph Neural Networks (GNNs), �,
are machine learning models working on graph-structured data [20,

365

Proceedings on Privacy Enhancing Technologies 2024(4) Haoyu He, Isaiah J. King, and H. Howie Huang

29, 54]. They take an attributed graph as input and employ a neigh-
borhood aggregation scheme through edges to learn node repre-
sentations / for di�erent purposes. Neighborhood aggregation
is conducted in each layer of a GNN model, which can be for-
mulated into three essential steps. First, for each edge 4 9,8 , GNNs
compute a message from the representations of {E8 , E 9 } in the pre-
vious layer: m;

9,8 = M��(h;�18 ,h;�19 , 4 9,8), where hl�1i is the repre-
sentation of E8 in the (; � 1)-th layer. Second, for each node E8 ,
GNNs aggregate all the messages from E8 ’s neighbor nodes N8 :
m;
8 = A��({m;

9,8 | E 9 2 N8 }). Finally, GNNs update the representa-
tion for each node E8 from the aggregated message and its previous
representation: h;8 = U�����(m;

8 ,h
;�1
8). Speci�cally, the input rep-

resentation h08 is the node feature x8 , and the �nal representation
z8 is the representation h!8 from the last layer !.

The �nal representations are used for di�erent tasks, such as
node classi�cation [29], graph classi�cation [74], and link predic-
tion [77]. Here, we focus on the node classi�cation task. In general,
a fully connected layer takes the �nal representations and computes
the node predictions: p8 = f (FC(z8)), where f is the activation
function to normalize the input vector into probability distribu-
tions, e.g., Softmax. The prediction p8 is a vector containing the
prediction probabilities of each class.

3 PROBLEM FORMULATION
This problem is based on the vertical partition of an attributed
graph, where the graph structure and node features are distributed
to at least two data holders. During the inference process, users
with API access make requests for node predictions by sending node
features to the inference API, which uses edge data held by other
users to generate a probability vector representing the prediction
probabilities for each class. Importantly, the inference API does not
provide any information other than the corresponding predictions.
We assume users have unlimited calls to the inference API, as it
is reasonable to anticipate that either the model owner or the ML
platform would grant complete API access within the semi-trusted
user threat model. In this work, we wish to study how much of the
graph structure can be inferred by a user who has only API access
to the ML platform.

3.1 Motivating Example
Consider the scenario illustrated in Figure 1. Alice is a social media
company that holds a great deal of proprietary relational informa-
tion. She has two clients, Bob and Mallory, marketing companies
that collect user preference data. No party wishes to share their
data publicly, but they do wish to collaborate to generate better
user pro�les. To accomplish this, they use an ML platform to train
a GNN on their vertically partitioned data. The GNN model takes
as input Bob and Mallory’s node features and using Alice’s rela-
tional data, outputs predictions about those users’ shopping habits,
personality traits, etc..

Alice’s clients follow the semi-trusted user threat model; we ex-
pect each entity to be “honest, but curious”. They always securely
store data and follow the agreed-upon protocol, but they may curi-
ously infer from any information they receive [72]. Bob uses the
API as expected, recalculating user pro�les as his data is updated,
but Mallory repeatedly makes new inference requests on the same

GNN
Training

Attack

Alice Bobs

ML Platform

Mallory

Training Stage Inference Stage

Graph Structure Features &
Labels

Mallory

...

Figure 1: A motivating scenario: at the training stage, a GNN
model is trained with edge data from Alice and node data
from several clients, including Bob and Mallory, and de-
ployed on an ML platform. At the inference stage, malicious
users can infer the private graph structure via the inference
API.

nodes but sends slightly perturbed features each time. We will show
how Mallory can reconstruct a very good approximation of Alice’s
proprietary edge data using only the API responses.

Given the way that inference as a service is currently imple-
mented, it is likely that the scenario we outlined above exists in
the wild. In fact, in the documentation for Amazon Neptune they
show exactly how a customer with an API key can change node
features and get new inference results from a pretrained model–all
that is needed to implement our attack. Many marketing services
follow this model of vertically partitioned data, and indeed, there is
no shortage of such services on the AWS, Azure, or Google Cloud
marketplaces, as well as in the literature [4, 7, 40].

3.2 Threat model
Attackers’ goal. The attackers aim to infer whether an edge exists
between a pair of nodes in the target graph during the inference
stage.

Attackers’ capability.This paper focuses on the situationwhere
a holder of the inference API is an adversary. Since the holder only
has partial or no knowledge of the node features, we assume the
attackers possess only the identities of the nodes and the black-
box access to the inference API of a GNN model. The attackers
determine the connections of node pairs via consecutive API calls
and prediction analysis. The attacker may also leverage external
knowledge about the graph’s topology and the characteristics of
the nodes to improve the attack’s accuracy. To summarize, the at-
tackers’ capability includes the knowledge of node identities, the
black-box access to the inference API of GNNs, and the collections
of corresponding prediction probabilities.

3.3 M���
For simplicity, we formulate the target GNNmodel as % = �(+ , ⇢,-).
The inference API is then de�ned as 5 (+ ,-) = �(+ , ⇢,-). Given a
black-box access to the inference API, M��� aims to infer whether
there exists an edge/link between a pair of nodes. Speci�cally, for a
node pair (E8 , E 9), M��� provides an in�uence value \8, 9 indicating
the in�uence of E8 on E 9 from the inference API. For the whole

366

M���: Black-Box Edge Privacy A�ack on Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(4)

graph, we formulateM��� as

⇥ = M���(5 ,+). (1)

With the estimated edge quantity, certain edges of the target graph
can be inferred based on the in�uence values of the whole graph
⇥.

4 DESIGN DETAILS OFMAUI
4.1 Attack Overview
Figure 2 illustrates the overall work�ow of M���. Before the attacks,
M��� initializes nodes with the same random features for each node.
In practice, it is possible for attackers to create realistic node features
with knowledge such as node feature distributions and existing
node features, but we do not assume such background knowledge.
Then, M��� takes the generated node features -̃ , and perturbs
them, generating -̂ . Next, it queries the inference API 5 (·, ·) with
perturbed -̂ on certain nodes. Finally, using the di�erence between
the two API responses, it computes the in�uence values ⇥ for each
node pair {(E8 , E 9) |E8 , E 9 2 + }, which indicate the likelihood of a
connection. With estimated edge density,M��� connects node pairs
based on the in�uence values in a global attack on the whole graph.

In this section, we will show how M��� uses these in�uence
values to infer all connections to a single node E8 . Then, we will
build upon this, and show howM��� can be used to estimate every
edge in the graph.

4.2 Local Node Attack
If two nodes E8 and E 9 are at least ! + 1 (including1) hops away,
they have no in�uence on each other in an !-layer GNN model [62].
That is, a change to E8 ’s features x8 will not in�uence the model’s
prediction for E 9 , p 9 . Thus, for an !-layer GNN model, we can �nd
nodes within ! hops by feature perturbation. Let the set of in�uence
nodes, I8 denote nodes that are in�uenced by a perturbation to the
features of E8 , not including E8 itself. To infer the connections of E8 ,
we only need to consider its in�uence nodes I8 .

Intuitively, if two nodes are closer, the information of one node
will be passed to the other through more paths. In addition, the
information can reach the other node in an earlier layer, entailing a
stronger signal. Because of the neighborhood aggregation scheme,
less information from a node will be retained as it is passed to
deeper layers. In summary, two nodes within smaller distances can
propagate more information about themselves to each other, as well
as produce more in�uence on each other’s predictions. Therefore,
we measure such in�uence as an indicator to uncover connections.
If the in�uence value is bigger, it is more likely that two nodes are
connected.

Based on this intuition, we can estimate the in�uence from E 9 to
E8 by measuring the change of p8 after setting x 9 to zeros. Let -̂ be
a copy of -̃ except x̂ 9 0. We calculate the in�uence value from
E 9 to E8 as:

\8, 9 =
��58 (+ , -̃) � 58 (+ , -̂)

��
2 , (2)

where 58 (·, ·) represents the prediction of E8 and k·k2 is the !2-norm.
Di�erent from LinkTeller, we set x 9 to zeros rather than perturb it
with small values for the concern of compatibility and robustness.
For example, LinkTeller is not applicable to models with feature

normalization. We refer to E8 as the target node and E 9 as the subject
node.

The impact of graph structure cannot be ignored during GNN
computation. First, because nodes interact with each other through
neighborhood aggregation, and the computation is not linear, changes
in a target’s prediction are not guaranteed. Second, the amount
of information propagated is not necessarily proportional to the
distance between nodes; node degree has a large e�ect as well. For
example, a 2-hop densely connected subject node may propagate
more information than a 1-hop trivially connected node simply
because it has more edges sending messages.

To alleviate the �rst problem, we can estimate the in�uence
value \8, 9 , after removing the node features of E8 ’s in�uence nodes
I8 , except the subject node’s features x 9 . By doing so, only the
messages from the subject node can be passed to the target node.
To account for the second problem, we present Proposition 1 to
help improve the estimation for in�uence values in general. Our
goal is to make sure the node pairs with smaller distances obtain
larger in�uence values.

Proposition 1. If two nodes E8 and E 9 are ; (; < !) hops away, given
a GNN model of ! layers, the intersection of their in�uence nodes
+ (�) = I8 \ I9 covers their entire neighbor nodes within ! � ; hops
(excluding E8 and E 9).

P����. We use 3 (·, ·) to denote the distance between two nodes.
Let E: be a node that is not E8 or E 9 such that 3 (E8 , E:)  ! � ; and
3 (E8 , E 9) = ; , we will prove E: 2 + (�) . From the given condition,
because E: 2 I8 , we must prove E: 2 I9 . To prove E: 2 I9 , we need
to prove 3 (E 9 , E:)  !.

The distance between E 9 and E: is measured from the short-
est path between them. We consider two situations: 1) this path
contains E8 ; 2) this path does not contain E8 . In the �rst situation,

3 (E 9 , E:) = 3 (E 9 , E8) + 3 (E8 , E:)  !.

In the second situation,

3 (E 9 , E:) < 3 (E 9 , E8) + 3 (E8 , E:) < !. ⇤

For example, suppose E8 and E 9 are ; = 3 hops away and the
in�uence nodes are within ! = 5 hops. Then the intersection + (�)

covers all the 1- and 2-hop neighbors of E8 and E 9 . If the two nodes
were closer to each other, the intersection would contain a larger
range of their neighbor nodes and other nodes with smaller distance
to them.

To better distinguish the in�uence values of nodes at di�erent
distances from E8 , rather than removing the node features of all
the in�uence nodes I8 , we only set the node features - (�) of the
intersection + (�) to zeros. Through the information propagation,
if the subject node is closer to the target node, noise from a wider
range of nodes will be mitigated. This noise mitigation is signi�-
cant because for each hop the subject node is closer to the target,
and the range of neighbor nodes in + (�) grows 1-hop larger. In a
graph structure, the number of (; + 1)-hop neighbors is usually
exponentially larger than the number of ;-hop neighbors.

The process for local attacks can be found in Algorithm 1. In
summary, to attack a single target node E8 , we �rst iterate through
each E 9 2 I8 , and calculate their intersection of in�uence nodes,

367

Proceedings on Privacy Enhancing Technologies 2024(4) Haoyu He, Isaiah J. King, and H. Howie Huang

!
"

#

$

% &

!
"

#

$

% &

! " # $ % &
0
1
2
3
4
5

'

!"#$%"&%'()*$%'+),-./

!
"

#

$

% &

!
"

#

$

% &

!
"

#

$

% &
!

"

!
"

#

$

% &

!(#
!()
!("

0-%1.&,.2"'23''* Influence
Value

Estimation

Feature
Perturbation

Feature
Initialization

!(#%&!($
!(&
!(#

0-%1.&,.2"'23''*

Figure 2: The work�ow of M��� involves three steps. First, uniform features are randomly assigned to each node. Second,
in�uence values between pairs of nodes are estimated using feature perturbation. Finally, edges are identi�ed from the in�uence
values by setting an estimated density and connecting the top pairs of nodes with the largest in�uence values.

Algorithm 1: M���

Input: The inference API 5 (·, ·) ; the target nodes+ ()) ✓ +
Output: The in�uence values ⇥ (⇥̃)

1 Initialize random uniform node features -̃
2 Find all the in�uence nodes {I8 |8E8 2 + }
3 ⇥ {0}|+ ()) |⇥|+ |

4 foreach E8 2 + ()) do
5 foreach E9 2 I8 do
6 -̂ -̃

7 + (�) I8 \ I9
8 Set -̂ (�) to zeros
9 p8 58 (+ , -̂)

10 Set x̂ 9 to zeros
11 p08 58 (+ , -̂)
12 \8,9

��p8 � p08��2
13)̃ 8 =) 8/max) 8 ù global attack

+ (�) (lines 5–7). Then, we set the features for each node in the inter-
section to zeros, leaving the rest as they were randomly initialized,
and calculate the predictions p8 (lines 8–9). Next, we repeat the
process, this time with x 9 set to zeros as well to calculate p08 (lines
10–11). Finally, we calculate the in�uence value of E 9 on E8 , \8, 9 by
taking the !2-Squared distance between the di�erent predictions
(line 12). These values can be used on their own for this local attack,
or as we will show, be further analyzed to estimate the graph in
totality.

4.3 Global Graph Attack
To identify the edges for the whole graph, we cannot directly apply
the top-k strategy or a classi�cation threshold to the in�uence val-
ues ⇥. Nodes with many edges receive relatively less information
from their neighbors than those with fewer edges. This leads to
smaller in�uence values. Another challenge is that during neigh-
borhood aggregation, GNNs normalize the aggregated neighbor
information for better performance. Furthermore, the estimation
for in�uence values is based on normalized GNN predictions. As a
result, we can only compare the in�uence values for a single target
node. That is, only {\8, 9 |E 9 2 I8 } are compatible because they rep-
resent the in�uence towards E8 . Thus, for node pairs of completely
di�erent nodes, a larger in�uence value does not guarantee a higher
probability of connection.

Proposition 2. If) 8 contains nonzero values, then E8 is connected
by at least one edge.

P����. Assume E8 is not connected and there exists a node E 9 ,
which is not connected to E8 and \8, 9 < 0. Due to no connection, we
have 3 (E8 , E 9) = 1. Since \8, 9 is nonzero, according to Proposition 1,
3 (E8 , E 9)  ! which is a contradiction. Therefore, the assumption is
false. ⇤

Based on Proposition 2, we �rst �nd the member of I8 with
the greatest in�uence on E8 . We assume the node pairs with the
greatest in�uence values are connected. If the in�uence values of
the remaining node pairs are close to the greatest in�uence value,
these node pairs are more likely to be connected. Intuitively, we
can measure such closeness and connect node pairs with the closest
in�uence values to the corresponding strong in�uence values. To
globally measure the closeness, we adopt min-max normalization
to the in�uence values for each node:

)̃ 8 =
) 8 �min) 8

max) 8 �min) 8
. (3)

In practice, min) 8 = 0, so the equation is simpli�ed to)̃ 8 =
) 8/max) 8 . If the in�uence value is closer to 1, it is closer to
the corresponding strong in�uence value. Now we can globally
compare the in�uence values and connect the top-k node pairs for
the whole graph.

In real life, the attackers may estimate the edge density of a
target graph, which helps them determine the number of edges <̂
to recover. When a partial graph is accessible, the attackers can
�rst �nd the in�uence values and then estimate the threshold or
the edge density directly, according to di�erent situations. The
attackers can also guess the edge density from other accessible
datasets that belong to similar categories. For example, attackers can
use information from public social media accounts to approximate
the density of a social network.

4.4 Di�erent Estimation Strategies
E�cient strategy. Like LinkTeller, the time complexity can be
reduced by computing the outgoing in�uence \ 9,8 from node E8 ,
rather than the incoming in�uence (\8, 9). With the perturbation of
one node, the outgoing in�uence can be estimated simultaneously.
Using Equation (2), every outgoing in�uence value from E8 to I8 can
be computed with only two queries of the inference API. Our goal
is to �nd its outgoing in�uence values for a node E8 ,

�
\ 9,8 |E8 2 I8

,

without exhaustive traversal. However, as mentioned previously,
using Equation (2) only is not accurate considering the nonlinearity

368

M���: Black-Box Edge Privacy A�ack on Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(4)

Algorithm 2: M��� - E�cient
Input: The inference API 5 (·, ·) ; the nodes of a graph+ ; the

window of sampling times U , V
Output: The in�uence values ⇥ (⇥̃)

1 Initialize random uniform node features -̃
2 Find all the in�uence nodes {I8 |8E8 2 + }
3 ⇥ {0}|+ |⇥|+ |

4 foreach E8 2 + do
5 g min(max(

lp
|I8 |

m
,U), V)

6 B
lp

|I8 |
m

7 Initialize |I8 | empty lists L
8 for C 1 to g do
9 -̂ -̃

10 + (() B nodes sampled from I8
11 + (') I8 \+ (()

12 Set -̂ (() to zeros
13 % 5 (+ , -̂)
14 Set x̂8 to zeros
15 % 0 5 (+ , -̂)
16 foreach E9 2 + (') do
17 Add

���p 9 � p09
���
2
to L 9

18 foreach E9 2 I8 do
19 \ 9 ,8 mean(L 9)
20)̃ :,8 =) :,8/max) :,8 ù global attack

of GNNs and node interactions. Building upon Proposition 1, we
introduce a sampling strategy to alleviate the problems of inaccu-
rate in�uence estimation. To reduce the noise (i.e., the in�uence
from other nodes) during neighborhood aggregation, we sample
B nodes from I8 to generate the set + (() and set the node features
of E 2 + (() to zeros. Then we calculate the in�uence values of
E8 on the remaining nodes + (') = I8 \ + (() by assigning x̂8 to
zeros and applying Equation (2). Since B is �xed for each node, if
an unsampled node E 9 is closer to E8 , their intersection of in�uence
nodes + (�) will cover more sampled nodes whose features are set
to zeros. This means more noise caused by other nodes in+ (�) will
be alleviated during neighborhood aggregation. Therefore, with a
smaller distance, intuitively, more in�uence will be passed from E8
to E 9 . For better accuracy, we iterate the sampling process g times
and average the results as the �nal in�uence values for every node
pair.

The process of this e�cient strategy is summarized in Algo-
rithm 2. Here, we dynamically de�ne B and g based on the number
of in�uence nodes to alleviate the noise fairly and e�ectively for
each node. During implementation, we make sure the nodes are
evenly sampled at line 10 and no empty lists exist in L. Here, we
adopt a sampling window to constrain the number of samples. For
each target node, the amount it is sampled falls within [U, V] (line
5). The lower bound U ensures nodes with fewer in�uence nodes are
sampled enough times; the upper bound V , the maximum sampling
times for each node, ensures this strategy is e�cient.

Combined strategy. To collectively enjoy the advantages of
the original strategy and the e�cient strategy, we combine the two

Algorithm 3: M��� - Combined

Input: The inference API 5 (·, ·) ; the target nodes+ ()) ✓ + ; the
threshold to run the original M��� attack _

Output: The in�uence values ⇥ (⇥̃)
1 ⇥̃(⇢) M���(E) (5 ,+) ù Algorithm 2

2 ⇥(⇠) {0}|+ ()) |⇥|+ |

3 foreach E8 2 + ()) do
4 foreach E9 2 I8 do
5 if \̃ (⇢)

8,9 < _ then ù for directed graph

6 continue

ù the following is the same as Algorithm 1 û

7 -̂ -̃

8 + (�) I8 \ I9
9 Set -̂ (�) to zeros

10 p8 58 (+ , -̂)
11 Set x̂ 9 to zeros
12 p08 58 (+ , -̂)
13 \ (⇠)

8,9
��p8 � p08��2

strategies together. We �rst run the e�cient strategy and obtain
the normalized in�uence values ⇥(⇢) . Later, we set a threshold in
(0, 1) or top-c node pair candidates, based on which, we run the
original strategy. For a node pair (E8 , E 9) in an undirected graph,
if \ (⇢)8, 9 or \ (⇢)9,8 is bigger than the threshold or is the top-c candi-

date, its in�uence values \ ($)
8, 9 and \ ($)

9,8 will be computed using
the original strategy; otherwise, the in�uence values remain zeros.
After completing all the valid node pairs, we obtain the normalized
in�uence values ⇥($) . The ultimate in�uence values are computed
by ⇥(⇠) = ⇥(⇢) +⇥($) . Note that we do not apply another normal-
ization to ⇥(⇠) . The algorithm is presented in Algorithm 3.

Complexity analysis. The forward operation of GNNs is the
most time-consuming process in our attacks, but it is constant.
Thereby, for time complexity analysis, we consider the complexity
of GNN operation as a unit, i.e., each API query takes$ (1). Accord-
ing to Algorithms 1 to 3, each attack iteration takes exactly two
API queries.

M��� is an exhaustive attack strategy where the complete set of
in�uence nodes must be traversed for each target node. Suppose
the target graph contains = nodes and< undirected edges, and each
node is connected to 2</= edges on average. The average number
of in�uence nodes is estimated to be:

|I8 | 
!’
;=1

2</= · (2</= � 1);�1  = � 1. (4)

We assume the target node has 2</= 1-hop neighbors and each
neighbor connects to 2</= � 1 new neighbors. So there are 2</= ·
(2</= � 1);�1 nodes that can be reached by an ;-hop path from the
target node. After ; layers of GNNs, considering the interconnec-
tions, the number of in�uence nodes is no bigger than

Õ!
;=1 2</= ·

(2</= � 1);�1. The worst case is when |I8 | = = � 1. According to
Algorithm 1, the time complexity of M��� is $ (= · (2</=)!), with
the worst case being $ (=2). In this work, we only consider sparse

369

Proceedings on Privacy Enhancing Technologies 2024(4) Haoyu He, Isaiah J. King, and H. Howie Huang

Table 3: Statistics of datasets.

Dataset # nodes # edges # features # classes

Cora 2,708 5,278 1,433 7
Citeseer 3,327 4,552 3,703 6
Coauthor-CS 18,333 81,894 6,805 15
Facebook 22,470 171,002 128 4
Github 37,300 289,003 128 2
LastFM-Asia 7,624 27,806 128 18

graph structures (|I8 | ⌧ = � 1) as they are the common scenario in
the real world and more meaningful to explore [42].

Similarly, the time complexity of the e�cient strategy is$ (= · g),
where g should be signi�cantly smaller than the average number
of in�uence nodes. In Algorithm 2, the average of g by de�nition isp
|I8 |. Therefore, the time complexity is $ (= · (2</=)!/2), which

does not exceed$ (= ·V). Here, the costs of lines 16–19 can be safely
disregarded.

The time complexity of the combined strategy is not easily de-
termined, as how many node pairs are further estimated by the
original strategy depends on the threshold and the previous re-
sults. Nevertheless, a feasible threshold can be determined based on
the previous results to ensure the time complexity is substantially
reduced compared to that of the original strategy.

5 EXPERIMENT
5.1 Experimental Setup
We conduct our experiment on a server with two Intel Xeon Gold
6126 CPUs @ 2.60GHz, each of which has 12 cores and 24 threads.
The implementation in this work is available for reproduction3.

Datasets. In this work, we use six public datasets of node classi-
�cation tasks.

• Citation network: Cora and Citeseer are similar citation net-
works [70], where the nodes are documents with bag-of-
words represented by node features, and edges represent
citation links. The task is to predict the documents’ research
�elds.

• Coauthor network: Nodes in Coauther-CS [50] represent au-
thors with node features as keyword representations from
their papers. The nodes are connected if the corresponding
authors have a coauthor relationship. The classes are the
�elds of study.

• Web network: Facebook Page-page network [47] is derived
from veri�ed Facebook sites. Each node is an o�cial Face-
book page and an edge is mutual likes between pages. Node
features are encoded from site descriptions. Each site is cate-
gorized based on its content topic.

• Social network: Github [47] and LastFM-Asia [48] are similar
social networks collected from the corresponding services.
They contain nodes as users and edges as mutual follower
relationships. The node features are extracted from user
information. The task is to classify users’ occupational �elds
for Github and users’ nationalities for LastFM-Asia.

Models. We use three GNNs with di�erent structures as the
target models: a 2-layer Graph Convolutional Network (GCN) [29],
3https://github.com/iHeartGraph/Maui

a 3-layer GCN (in Appendix B), a 2-layer Graph Attention Network
(GAT) [54], and a 2-layer GraphSAGE [20]. For model training, all
the datasets are randomly split into the train, validation, and test
sets with ratios of {0.6, 0.2, 0.2}. We choose 2-layer GCNs to be our
major target model, as they are the most classic and widely used
GNNs.

All GNN models are implemented with Pytorch-Geometric [15].
Other than the GNN structures, the hyperparameters of GNNs
are uniformly set. We adopt the commonly used settings to the
hyperparameters and GNN structures. We assign the number of
units in a hidden layer to 64. We adopt ReLU as the activation
function for the hidden layers and Softmax for the output layer. To
reduce over�tting, we use dropout in each hidden layer with a rate
of 0.5. The learning rate is set to 0.01. The number of heads is 8 for
GATs.

Baselines. We compareM��� with two closely related attacks:
Link Stealing Attack-2 (LSA2) [21] and LinkTeller [62]. LinkTeller,
which also attacks vertically partitioned GNNs, assumes that the
attacker has knowledge of node features. It then makes minor per-
turbations to one node’s features and measures the e�ect on all
other nodes — they use this as that node’s in�uence value. It dif-
fers from M��� in its assumption that node features are known,
and in its assumption that one node having a strong in�uence on
another directly correlates to the likelihood of an edge between
them. Whereas, we compare in�uence values per target node, as
described in Section 4.3. We consider two strategies for LSA2: LSA2-
feat, and LSA2-post. LSA2-feat directly compares node features,
assuming that nodes with similar features will have edges in the
graph. LSA2-post compares the posteriors of features, using the
distance between GNN outputs for given nodes as the likelihood of
an edge existing between them. Both LSA2 and LinkTeller require
knowledge of the real node features and predictions. Therefore,
the baseline attacks utilize more information than M���. The base-
line attacks are implemented from the source code shared by Wu
et al. [62]. Additionally, we employ a decoder as a white-box graph
reconstruction attack [12]. Intuitively, nodes with similar embed-
dings from GNNs tend to be connected. This approach takes the
node embeddings and decodes them into an adjacency matrix with
continuous values representing the in�uence values.

Metrics. We evaluate the attack performance with average pre-
cision (AP) as the major metric. The edges in a real-world graph
are usually sparse, i.e., the positive labels of ground truth are signif-
icantly imbalanced. The target of the attackers is to infer the con-
nected node pairs, the number of which is considerably smaller than
the quantity of all the node pairs. Furthermore, the outputs of the
attackers are continuous values representing the distance/in�uence
of node pairs, so the attackers have to pick the node pairs with the
largest in�uence values as the positive predictions. In summary, we
consider AP the best option to represent the correctness of edge
inference for the following reasons: 1) the labels of ground truth are
not balanced; 2) we favor the positive predictions and the positive
ground truths; 3) the threshold for classi�cation is not determin-
istic. Speci�cally, AP is calculated as: AP =

Õ
C (R�C � R�C�1)P��C ,

where R�C represents the recall at the C-th threshold. For deeper
analysis, we also consider precision at k (p@k) and recall at k (r@k),
where we choose the top-k results and label them as positive, then
calculate the corresponding precision and recall.

370

https://github.com/iHeartGraph/Maui

M���: Black-Box Edge Privacy A�ack on Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(4)

Table 4: Performance of local attack with 2-layer GCNs. We
show the average precision (AP). Note the results on Cora
and Citeseer are deterministic, so the SD is 0.

Attack Cora Citeseer Coauthor-
CS Facebook Github LastFM-

Asia

Decoder 51.5 68.8 75.0±1.6 63.6±1.0 58.0±1.6 49.3±0.8
LSA2-post 45.2 64.2 70.6±1.0 59.1±0.6 31.2±7.2 48.1±1.3
LSA2-feat 45.6 64.3 88.6±0.8 49.6±1.0 31.2±6.5 47.0±0.6
LinkTeller 77.7 86.8 88.2±0.6 83.0±0.6 85.4±3.2 81.1±0.6
M��� 93.3 95.0 99.4±0.1 95.5±0.2 95.1±1.3 96.0±0.2

Attack Types. We evaluate the attacks on both local and global
attacks. For local attacks, the in�uence values are the original attack
outputs, speci�cally Algorithm 1 forM���. We only calculate the
in�uence values between the target nodes and their in�uence nodes
rather than for all the node pairs. As a result, the evaluation of
LSA2 and Decoder is better than what was originally reported. For
global attacks, we transfer the local in�uence values into global
in�uence values by normalization (Equation (3)). As this leads to
better performance, unless otherwise speci�ed, evaluations of the
global attacks are results with normalization. Hence, the results
we report for baseline attacks are better than the original, non-
normalized methods.

Speci�cations. In our experiments, we use entire graphs as the
target graphs for citation networks (Cora and Citeseer). For the
remaining larger datasets, for the ease of evaluation, we evaluate
the attacks on a randomly sampled subgraph containing 3,000 nodes
and repeat �ve times. We use deterministic random sampling to
ensure di�erent attacks perform on the same target subgraphs.
We report the means and the standard deviations (SDs) for these
datasets. We assume the inference API does not include feature
processing stage (e.g., feature normalization), i.e., the node features
we provide will be directly fed into the GNN model. However, only
LinkTeller is negatively a�ected by feature normalization, which
we analyze in Section 5.6.

All the attacks are performed with their corresponding capa-
bilities. For example, if node features are necessary for an attack
(such as LinkTeller), then the attack has access to node features. In
Appendix D.2, we also evaluate the performance of M��� using the
original node features.

5.2 Local Attack Evaluation
We conduct the local attack with 2-layer GCNs, obtain the AP for
each node, and report the average of each dataset in Table 4. We
observe that M��� signi�cantly outperforms the other baseline
approaches.

Our experimental results demonstrate that node similarity does
not always guarantee a connection, as evidenced by the perfor-
mance of Decoder and LSA2. LSA2, which does not consider GNN
interactions or graph properties, achieved the lowest APs overall.
This attack will fail on speci�c graphs where the connected nodes
belong to di�erent types, such as molecule graphs and bioinfor-
matics graphs [43], and synthetic graphs [75] where all the node
features are the same. In contrast, LinkTeller, which leverages node
interactions through GNN computation and estimates in�uence
using gradients, achieves the best performance among all prior

Table 5: Performance of global attack with 2-layer GCNs.

Attack Cora Citeseer Coauthor-
CS Facebook Github LastFM-

Asia

w/o
norm

Decoder 15.1 28.0 43.1±2.4 28.1±1.1 20.1±3.2 23.9±0.6
LSA2-post 15.7 34.4 49.5±2.0 27.2±1.3 5.4±2.5 22.6±1.3
LSA2-feat 22.0 36.7 74.8±3.1 20.3±1.9 6.3±2.9 22.3±1.4
LinkTeller 35.4 61.2 52.6±1.0 44.4±0.5 43.0±4.6 45.8±1.0
M��� 78.9 73.5 73.2±1.1 63.3±2.0 67.2±5.2 73.8±1.2

w/
norm

Decoder 31.3 42.3 53.0±2.7 37.2±1.7 29.4±4.1 27.8±0.7
LSA2-post 19.7 35.1 49.1±1.2 30.2±0.9 6.7±3.1 24.2±1.1
LSA2-feat 23.2 39.1 76.2±1.9 25.8±1.0 9.1±3.8 24.5±0.9
LinkTeller 62.3 73.5 75.4±1.4 67.0±0.8 62.7±9.8 65.3±0.9
M��� 87.3 84.2 96.2±0.7 85.5±0.5 83.4±3.2 87.4±0.6

works tested. However, LinkTeller does not thoroughly consider
interconnections between nodes and relies on extra knowledge of
node features, which explains why it is not the best-performing
method.

M��� is the most e�ective method; in particular,M��� outper-
forms LinkTeller by 12.0% on average. Considering we do not re-
quire extra knowledge other than the inference API, M��� greatly
improves the link inference attacks. We collectively consider the
computation process of GNNs and the graph structure for in�uence
value estimation. Moreover, we set all the node features uniformly
to prevent inaccurate inference by feature interactions. The result
demonstrates the lack of node feature knowledge does not degrade
the attack performance.

We observe that the attacks tend to perform better when the
dimension of node features and predictions is relatively large. Pre-
dictions with larger dimensions present stronger expressive power
and are more sensitive to changes in node features. Nonetheless,
while prior works fail on datasets with fewer classes, e.g., Github,
M��� remains e�ective. Thus, we conclude that GNN predictions
alone contain rich information about the graph structure, which
presents serious concerns about privacy leakage.

5.3 Global Attack Evaluation
Attack without normalization. First, we calculate the AP for
the whole graph using the same in�uence values from the local
attack. The results are collected in the upper section of Table 5.
They suggest that M��� overall still outperforms the other attacks,
but due to the lack of extra information, especially the degree of
each node, performance declines sharply compared to the local
attacks. Without enough knowledge, we cannot directly use the
local in�uence values on global attacks. Even with extra knowledge,
since the precision of local attack is not 100%, the performance
of global attack is not well guaranteed. The huge decline �rmly
indicates the incompatibility of the in�uence values from a global
perspective. Particularly, a larger in�uence value does not guarantee
a better chance of connection.

Attack with normalization. To address the above challenge,
we apply min-max normalization to the in�uence values of each
node and obtain the AP for the whole graph. To e�ectively demon-
strate the advancement of normalization, we adopt it to the baseline
methods as well. Note the original baseline methods do not contain
the normalization process. The results show that normalization
o�ers great improvements in the global attack. In Cora dataset,

371

Proceedings on Privacy Enhancing Technologies 2024(4) Haoyu He, Isaiah J. King, and H. Howie Huang

��
���� �
������� �
������� ���������� 	���

� �� ��
� ��� ��� ���
����

��

��

	�

��

���
���

� �� ��
� ��� ��� ���
����

��

	�

��

���
���
�

�

� �	 	� �	 ��� ��	 �	�
����

��

�

��

���

��������
�

� �� ��
� ��� ��� ���
����

��

	�

��

���
�
������

� �� �� �� ��� ��� ���
����

��

��

��

���
	�
��

� �	 	� �	 ��� ��	 �	�
����

��

��

�

��

���
�������
���

(a) Precision

� �� ��
� ��� ��� ���
����

�

��

��

	�

��

���

� �� ��
� ��� ��� ���
����

�

��

��

	�

��

���
�

�

� �� �� 	� ��� ��� ���
����

�

��

��

	�

���

����
���
�

� �� �� �� ��� ��� ���
����

�

��

��

��

	
�
����

� �� ��
� ��� ��� ���
����

�

��

��

	�

��

�����

� �	 	� �	 ��� ��	 �	�
����

�

��

��

�

��

�������
���

(b) Recall

Figure 3: Precision and recall at di�erent top-k. We vary the top-k ratio of the predicted edges to the real edges, ranging from
25% to 150%, then calculate the corresponding precision and recall.

normalization has improved the performance of M��� by 8.4% and
LinkTeller by 26.9%. These improvements are from the global in-
compatibility of unnormalized in�uence values, rather than the
attack performance or the lack of further knowledge.

It is expected that the performance of the global attack is lower
than that of the local attack, given the greater challenge of inferring
edges across the entire graph. Under the most di�cult setting, we
can only normalize the in�uence values to ensure global compatibil-
ity, and we assume that node pairs with the top in�uence values are
connected. We observe that this approach is less e�ective on graphs
with irregular edge density. In particular, graphs with high density
tend to have more interactions between nodes, which leads to more
globally incompatible in�uence values even after normalization,
and results in a greater decline in performance for the global attack.
With extra knowledge such as node degrees,M��� is able to achieve
better results, which we show in Appendix D.1.

Precision and recall. We vary the top-k ratio of the predicted
edges to the real edges, ranging from 25% to 150%, then calcu-
late the corresponding precision and recall. The ideal precision is
min(1, 1/:) and the recall is expected to bemin(:, 1). The precision
and recall at top-100% are considered as the attack accuracy. We
report the results in Figure 3.

In general, M��� achieves the best results and largely outper-
forms others. The results of M��� are relatively stable, especially
in the Github dataset, becauseM��� obtains the in�uence values
for every node pair individually. The graph of Github is uneven,
i.e., the subgraphs are either dense or sparse, which leads to the
unstable attack performance of other attacks. It is also evident that
methods actively using the feedback of GNNs achieve better results.
Overall, there exists a large gap between LinkTeller and LSA2-feat.

Finally, we observe that M��� is more sensitive to the correct
node pairs at the lower top-k. From 50% to 75%, the precision result
in Figure 3a is �atter than prior works, while the recall curve is

Table 6: Performance with 2-layer GATs.

Type Attack Cora Citeseer Coauthor-
CS Facebook Github LastFM-

Asia

Local

Decoder 37.8 58.7 65.0±1.2 53.1±0.8 37.4±7.8 38.2±1.2
LSA2-post 49.9 72.1 76.8±1.4 63.2±0.4 32.1±7.0 55.4±1.1
LSA2-feat 45.6 64.3 88.6±0.8 49.6±1.0 31.2±6.5 47.0±0.6
LinkTeller 81.7 88.4 91.8±0.4 82.6±1.1 92.1±0.3 83.1±0.7
M��� 97.0 95.0 99.1±0.2 94.9±0.2 98.3±0.2 97.4±0.2

Global

Decoder 18.7 28.2 36.8±1.5 23.2±1.5 11.0±4.2 15.7±0.7
LSA2-post 21.4 43.8 55.7±2.3 33.3±1.4 7.1±3.4 27.4±1.4
LSA2-feat 23.2 39.1 76.2±1.9 25.8±1.0 9.1±3.8 24.5±0.9
LinkTeller 70.8 78.0 83.4±1.0 68.3±1.6 82.6±1.1 72.7±1.0
M��� 92.6 86.7 97.3±0.6 88.2±0.4 91.9±1.1 91.9±0.7

steeper in Figure 3b. According to our assumption, 1-hop neigh-
bors with more connections tend to have larger in�uence values.
As more node pairs are discovered,M��� will primarily compare
nodes between 1-hop neighbors with fewer connections and 2-hop
neighbors that are largely connected, both of which tend to obtain
higher in�uence values than the rest.

5.4 Compatibility Evaluation
We evaluate the attacks with 2-layer GATs and 2-layer GraphSAGE
to demonstrate the compatibility of M��� with other GNNs. We
report the AP of both local attack and global attack in Tables 6
and 7.

2-layer GATs. All the attacks have maintained their perfor-
mance andM��� continues to outperform the other attacks. Com-
pared with the results of the 2-layer GCNs in Table 4, the attacks
overall achieve better results with GATs except for the Decoder,
due to the di�erent model architecture. The results of LSA2-feat
are unchanged since it only measures the similarity of node fea-
tures, which is irrelevant to GNN models. We compare the attack
performance of di�erent models mainly from the local experiments

372

M���: Black-Box Edge Privacy A�ack on Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(4)

Table 7: Performance with 2-layer GraphSAGE.

Type Attack Cora Citeseer Coauthor-
CS Facebook Github LastFM-

Asia

Local

Decoder 39.7 61.9 63.0±1.2 55.0±1.5 38.8±8.0 42.1±1.1
LSA2-post 45.8 66.2 63.4±1.4 55.3±1.2 27.4±6.0 47.5±1.4
LinkTeller 79.4 84.9 44.4±2.6 67.6±1.0 84.4±0.7 60.5±1.3
M��� 100.0 100.0 41.2±1.0 98.9±0.2 100.0±0.0 100.0±0.0

Global

Decoder 18.1 32.3 38.5±2.0 28.5±1.0 12.7±5.3 20.0±0.8
LSA2-post 18.1 36.6 40.9±1.6 27.1±0.7 6.5±3.1 22.2±1.1
LinkTeller 70.8 76.8 27.1±2.8 49.4±1.3 80.8±3.7 45.2±2.1
M��� 100.0 100.0 55.1±2.1 99.6±0.1 100.0±0.0 100.0±0.0

Model Accuracy 85.3 73.1 92.7 94.1 85.9 84.6

because the results from the local attack are calculated using the
original algorithm’s output (Algorithm 1 without global normaliza-
tion) and they re�ect the overall attack performance.

2-layer GraphSAGE.Additionally, we evaluate di�erent attacks
with 2-layer GraphSAGE (max-pooling as the aggregation method)
and report the results in Table 7. Overall, the performance drops
from attacks on other GNN architectures, while M��� still stays on
top. Nodes with smaller distances tend to receive more messages
from each other, which leads to a higher probability of retaining the
messages bymax-pooling. However, this action is non-di�erentiable
and a slight change in node features can lead to a di�erent message
sampling in each layer. This can largely damage the e�ectiveness
of LinkTeller. Max-pooling is not commonly used in GNN layers
due to information loss, but it can be e�ective as a defense. Due to
the max-pooling aggregation, information from one node may be
passed through multiple edges without critical loss, so the in�uence
of a node pair is retained. The attack performance of M��� highly
depends on node feature initialization, which may require a lot of
testing to attack GraphSAGE.

Besides GNNs with di�erent aggregation methods, we conduct
further experiments with 3-layer GCNs in Appendix B. These ex-
periments have similar results to those shown here, with M���
remaining the most e�ective attack.

5.5 Running Time Evaluation
All experiments are executed on CPUs, which process sequentially
without additional memory overhead, to ensure a fair comparison.
Our implementation strictly follows Algorithm 1, which operates
sequentially. However, a GPU implementation could concurrently
execute the for-loop in lines 5-12 of Algorithm 1 by duplicating the
graphs and running the model with all the duplications as input.
This approach might mirror simultaneous API calls in practical
applications. Nonetheless, the baseline methods we evaluate cannot
trivially be distributed. Consequently, it would be unfair to compare
the running time of our approach (which executes in parallel with
additional resources) to the running time of the baseline methods
(which execute sequentially). We report the running time of attacks
with 2-layer GCNs in Table 8. Additionally, we report the running
time to identify the in�uence nodes, which is necessary for all the
attacks. This process only requires a single execution, after which
the results can be stored for subsequent utilization. The running
time with 3-layer GCNs can be found in Appendix B. The decoder,
which is only used as a baseline for attack performance, is omitted

Table 8: Running time (in seconds) with 2-layer GCNs.

Attack Cora Citeseer Coauthor-
CS Facebook Github LastFM-

Asia

LSA2-post 13.0 14.7 11.3±0.1 11.6±0.1 22.3±14.8 18.6±2.2
LSA2-feat 12.2 14.8 12.5±0.1 11.6±0.1 19.5±10.1 15.5±0.3
LinkTeller 11.85 9.15 4.4±0.3 4.9±0.2 6.7±2.2 9.0±0.6
M��� 348.6 229.91 66.7±7.9 109.8±11.0 828.2±1280.4 212.2±21.5

I 20.7 40.4 30.5±2.2 15.8±0.1 11.4±1.0 18.8±0.9

in the run-time evaluation. The in�uence values for all the node
pairs are generated in $ (1), with only constant-time call to the
GNNs.

We observe that M��� is the most time-consuming of all the
attacks, while LinkTeller achieves the smallest running time. For the
Github dataset, there is a densely connected subgraph out of the �ve
samples in our experiment, which leads to a huge number of node
pairs forM��� to estimate. However, the huge standard deviation
(even larger than the mean value) indicates thatM��� still performs
in reasonable running time on other subgraphs, considering M���
estimates each node pair individually for better inference precision.

The time complexity of LSA2 is the same as M��� since we only
consider in�uence nodes rather than all the node pairs. However,
LSA2 only calculates the node similarity without running the GNN
model. In this experiment, the time complexity of LinkTeller is
$ (=). In each round, the attack calls the inference API once and
collects all the in�uence values of one node. The small running
time is obtained because 1) the graph is relatively small, and 2) the
in�uence nodes of target nodes are overlapped. Due to the �rst
reason, we can feed the whole graph to a GNN model and obtain
the in�uence values from one node to all. For the second reason, the
target nodes are each others’ in�uence nodes, so running LinkTeller
= times is enough to infer the edges for the whole graph. Consider
a large graph where the in�uence nodes of the target nodes are not
overlapped, the time complexity of LinkTeller will be the same as
M���. Our experiment can be considered as attack on a cluster of
connected nodes.

Considering the signi�cant advancement we have achieved with-
out the knowledge of node features, it is reasonable that we demand
more running time to estimate the in�uence values. Especially con-
sidering that in a real attack, it may not be necessary to infer the
edges for the whole graph. M��� is conducted on all the candidate
node pairs, while in practice, we can �lter out a big portion of
redundant node pairs with various strategies such as our e�cient
strategy. Additionally, the running time can be largely reduced by
using GPUs with simultaneous execution.

5.6 Robustness Evaluation
We evaluate the robustness of attacks under two defense mecha-
nisms, LapGraph [62] (proposed by LinkTeller) and our proposed
mechanism, EdgeAttn. Following the defense mechanism, we em-
ploy 2-layer GCNs as the target models in order to compare with
the previous results and obtain the results of the local attack and
the global attack. Additional details of both mechanisms can be
found in Appendix C. It is noteworthy that, although research has
been conducted to safeguard GNN privacy [78], few studies have

373

Proceedings on Privacy Enhancing Technologies 2024(4) Haoyu He, Isaiah J. King, and H. Howie Huang

Table 9: Performance with 2-layer GCNs under LapGraph.
According to the analysis from Wu et al. [62], we set n to 10.

Type Attack Cora Citeseer Coauthor-
CS Facebook Github LastFM-

Asia

Local

Decoder 45.9 57.1 63.3±1.4 55.3±0.9 49.2±1.4 44.2±1.0
LSA2-post 41.4 57.2 62.9±1.2 52.0±1.0 25.5±5.4 44.0±1.0
LinkTeller 66.8 72.9 71.7±0.7 71.5±1.0 66.7±2.2 68.9±0.8
M��� 84.5 81.5 81.7±0.9 83.0±0.6 72.5±1.3 80.6±0.8

Global

Decoder 27.6 34.5 52.9±1.7 28.6±1.4 22.1±3.1 23.9±0.7
LSA2-post 19.1 31.6 41.4±1.2 25.5±1.0 6.4±2.9 22.6±1.0
LinkTeller 51.3 58.3 53.4±1.1 51.7±1.3 39.4±4.0 50.7±0.9
M��� 77.7 71.1 69.5±1.2 66.0±0.3 50.8±0.7 67.9±0.9

Table 10: Performance with 2-layer GCNs under EdgeAttn.

Type Attack Cora Citeseer Coauthor-
CS Facebook Github LastFM-

Asia

Local

Decoder 39.2 57.9 65.2±1.3 53.0±0.9 35.5±7.7 38.5±1.2
LSA2-post 51.5 71.6 76.6±1.3 57.9±0.6 31.5±7.4 53.9±1.0
LinkTeller 36.9 57.3 62.2±1.3 51.8±0.9 37.2±8.3 40.3±0.8
M��� 78.7 86.8 93.4±0.3 56.3±0.6 86.2±3.1 88.2±0.5

Global

Decoder 18.0 28.7 37.9±1.5 24.2±1.8 10.9±3.8 16.2±0.8
LSA2-post 20.2 41.7 55.2±2.1 28.6±2.0 6.8±3.2 25.7±1.1
LinkTeller 15.1 28.2 36.9±1.7 23.9±0.8 9.7±4.5 17.4±0.8
M��� 60.8 73.8 78.2±0.8 29.0±0.7 66.3±8.1 75.2±1.4

delved into the preservation speci�cally against link inference at-
tacks. Given that privacy-preserving techniques can shield GNNs
from various types of attacks, we have opted to assess the e�ec-
tiveness of two commonly used techniques—di�erential privacy
(LapGraph) and adversarial training (EdgeAttn). Additionally, we
�nd LinkTeller can be vulnerable to model manipulations (e.g.,
adding feature normalization). The attack can be invalidated by
adding a simple layer.

LapGraph. LapGraph is an edge perturbation mechanism that
guarantees n-edge di�erential privacy (DP) [13] while preserving
the density of the target graph. LapGraph randomly perturbs the
edges of the entire dataset with a privacy budget n , before train-
ing and inference. To extend the metaphor from Section 1, Alice
�rst employs LapGraph on the original graph, then releases the
perturbed graph on the ML platform. Next, a GNN model will be
trained on the perturbed graph. At the inference stage, the same
perturbed graph is used for prediction.

In comparison with Tables 4 and 5, the results in Table 9 show
that LapGraph generally alleviates the privacy leakage against the
link inference attacks, whileM��� still outperforms other attacks.
We do not show the results of LAS2-feat because it only measures
the similarity of node features, so it is una�ected. LapGraph per-
forms the best on Github dataset because it perturbs more edges in
the dense subgraph.

These results suggest that the privacy concern is not well allevi-
ated under this defense mechanism, although the attacker cannot be
con�dent in their attack performance, as it is unclear which edges
overlap with the true data. This defense mechanism protects graph
information through input perturbation on graph structure. The
perturbation guidance is only within the input space without GNN
feedback. To maintain GNN performance, only slight perturbation

Table 11: Performance of LinkTeller when applying feature
normalization. We show [the raw AP | � AP] in each cell.

Dataset GCNs GATs

local global local global

Cora 23.4 | -54.3 9.1 | -53.2 25.8 | -55.9 10.2 | -60.6
Citeseer 42.6 | -44.2 17.1 | -56.4 43.7 | -44.7 19.0 | -59.0
Coauthor-CS 56.3±1.0 | -31.9 34.2±1.9 | -41.2 56.9±1.2 | -34.9 35.1±1.7 | -48.3
Facebook 39.1±1.0 | -43.9 15.6±0.8 | -51.4 39.3±1.6 | -43.3 15.3±0.9 | -53.0
Github 17.7±3.6 | -67.7 3.9±1.8 | -58.8 21.1±2.2 | -71.0 3.5±1.9 | -79.1
LastFM-Asia 43.1±0.9 | -38.0 16.3±0.8 | -49.0 44.0±0.7 | -39.1 16.1±0.7 | -56.6

of the graph structure is acceptable. We believe that with addi-
tional API calls, the majority of edges can be successfully identi�ed
through overlapping results. Furthermore, the graph structure from
certain datasets cannot be randomly perturbed because it contains
important information, such as chemical graphs [2], transaction
graphs [57] and provenance graphs [28] with strict rules about
edges.

If we take the perturbed graphs as ground truth, the evaluation
is considered the same as the evaluation with 2-layer GCNs, which
we show in Appendix C.

EdgeAttn. Di�erent from LapGraph, EdgeAttn is trained on
the original graph. It manipulates edge attention to prevent the
information from passing evenly to neighbor nodes. Similar to
GATs, the attention for each edge is learned through the training
process, where the edges contributing to the prediction tend to gain
more attention. We add noise to the attention values in each GNN
layer to prevent over�tting and improve the robustness.

Table 10 shows the performance of LinkTeller drops signi�cantly
under EdgeAttn. Although EdgeAttn increases the prediction sim-
ilarity between neighbor nodes, it preserves edge privacy from
attacks that require the feedback of GNNs. The performance of
M��� does not greatly decline due to the full utilization of graph
structure. It can be observed that EdgeAttn works better in rela-
tively dense graphs where edge attention plays an important role
in the predictions. For this reason, EdgeAttn successfully protects
edge privacy in Facebook dataset, but the attacks still maintain
their performance in Coauthor-CS dataset. This dataset has lower
node degrees on average, and EdgeAttn is trained on the original
graph, so it is more di�cult to hide the graph structure from M���.
However, a slight manipulation of edge attention can signi�cantly
decrease the performance of LinkTeller.

While EdgeAttn alleviates the limitations of LapGraph, privacy
is still not well protected. The condition for privacy protection is
rigid. The graphs must be dense enough to obfuscate individual
edges, and the predictions should largely rely on edge attention. In
this case, the learned edge attention can be highly imbalanced so
certain edge attention values can be too small for information to
pass through the corresponding edges.

Model Manipulation against LinkTeller. We obtain the re-
sults of LinkTeller when feature normalization is applied to the
2-layer GNNs in Table 11. The results have hugely declined from
the original. Due to LinkTeller’s gradient estimation strategy, it is
easy to be manipulated, e.g., by feature normalization. This is not
a defense mechanism but is commonly used in real life to make
sure the model parameters are well learned during training. Feature

374

M���: Black-Box Edge Privacy A�ack on Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(4)

��
�� ���

��
�� ��� ��

��
�

	�

��

�

��
���� ���� �
�

���� ���� ���

����

��
�� ���

��
�� ��� ��

��
�

��

	�

��

�

��

�� �

����
��

	��

��������

��
�� ���

��
�� ��� ��

��
�

�

��

��

	��
���

�
 ����

��
�	�� �
�

�����������

��
�� ���

��
�� ��� ��

��
�

	�

��

�

���
����

�
�� ����

��
 ���	 ����

��������

��
�� ���

��
�� ��� ��

��
�

	�

��

��

���
����

���

����

���

	�

�
��

������

��
�� ���

��
�� ��� ��

��
�

�

��

��

	��
����

�	�
 �

�
�� �
�� ����

�����������

(a) AP. The light and the dark bars represent the global and local attack performance, respectively.

��
�� ���

��
�� ��� ��

��
�

���

	��

��

�	��

���

		���

����

��
�� ���

��
�� ��� ��

��
�

��

���

���

	��

���

		���

�
	��

��������

��
�� ���

��
�� ��� ��

��
�

�

��

��

��

�	��

�����
��
�����������

��
�� ���

��
�� ��� ��

��
�

�

���

	��

��
��

���

��������

��
�� ���

��
�� �
� ��

��

�

����

	���

�
�	

�	��	
�
���

������

��
�� ���

��
�� ��� ��

��
�

��

	��

	��

��

���

	
�

	�
�

�����������

(b) Running time (in seconds). For M���(C), we present the time for M���(E) andM��� separately, and label the total running time.

Figure 4: Performance of M��� with di�erent estimation strategies.

normalization prevents LinkTeller from accurately estimating the
gradients, thus destroying its e�ectiveness. Other operations, such
as layer/batch normalization can be considered not only to improve
the performance but prevent privacy attacks like LinkTeller. How-
ever, they do not a�ect the other attacks, which indicates the urgent
need of countermeasures.

5.7 Estimation Strategy Evaluation
We follow Algorithm 2 and use dynamic sampling for the e�cient
strategy, denoted as M���(E). We set the threshold to 0.2 for the
combined strategy,M���(C), to balance the running time and attack
performance. The attacks are conducted with 2-layer GCNs. We
evaluate the estimation strategies by the attack performance and
running time. The result is reported in Figure 4.

Attack performance. We present the attack performance in
Figure 4a. In general, the results become better as the original es-
timation strategy is more involved in the computation. M���(C)
achieves better results than M���(E), while underperforming the
original M���. The use of M��� greatly improves the performance
of M���(E). Speci�cally, M���(C) improves the performance of
M���(E) by 7.4% in local attack. Other than Github dataset, the
APs M���(C) obtains are over 90%, which are more approximate
to M��� than M���(E). With relatively dense subgraphs, M���(E)
shows lower AP and high standard deviation due to the limited
sampling times g and the infeasible quantities of sampled nodes B .
Compared with Table 4, the estimation strategies overall outper-
form the baseline methods.

Running time. The running times of di�erent strategies are
shown in Figure 4b. M���(E) greatly improves the running time
in contrast to M���(C) and M���. M���(C), as a combined strategy,
outperformsM���(E) in terms of precision, and alleviates the time
cost of M���, especially with a dense graph or a deep GNN model.
The reason why the running times of M���(C) and M��� do not
di�er greatly in several datasets is that the experiment is conducted
with 2-layer GCNs and the graphs are sparse, e.g., Coathor-CS

dataset. With 3-layer GCNs,M���(C) will signi�cantly reduce the
running time for M���, and the result can be found in Appendix B.
Since this strategy is dependent onM���(E), which does not require
a long running time, we can allocate more computation to M���(E)
for better performance. That is, we can increase the sampling times
for each target node. As the performance of M���(E) is re�ned, we
can choose a higher threshold to conduct the original estimation
strategy. The other way to improve M���(C) is to use a di�erent
base method, e.g., LinkTeller. Overall, M���(C) and M��� are the
optimal choices when only a limited number of target nodes are
considered.

6 RELATEDWORK
Graph Neural Networks. Graph Neural Networks (GNNs), as
deep learning models for graph data, were �rst motivated from
recurrent neural networks and introduced by Gori et al. [19]. In-
spired by the concept, Bruna et al. [3] took a further step to adapt
the convolutional operation from grid data to graph data and de-
veloped Graph Convolutional Networks (GCNs) based on spectral
graph theory. The spectral-based GNNs were then improved by
various works [9, 29, 31]. To overcome the expensive consump-
tion of using the full adjacency matrix for spectral-based GNNs,
new, spatial-based GNNs such as GraphSAGE [20], GATs [54] and
GINs [67], which adopt the neighborhood aggregation scheme, were
developed. Building upon these models, countless works explored
GNNs’ utility for in a variety of problem domains, including node-
level [5, 41], edge-level [27, 77], and graph-level tasks [14, 74]. Other
than general node classi�cation, link prediction, and graph classi-
�cation tasks, GNNs have proven the ability to handle tasks like
graph generation [52] and graph clustering [53]. Because of their
remarkable advancement, GNNs have been widely deployed across
di�erent domains to serve our daily life: in �elds such as computer
vision [11, 34], natural language processing [71], recommendation
systems [73], and many others [24, 58].

375

Proceedings on Privacy Enhancing Technologies 2024(4) Haoyu He, Isaiah J. King, and H. Howie Huang

Privacy of GNNs.Attacks on GNNs target twomajor categories:
GNN models [51, 60] and graph data [79]. The model-targeted
attacks aim to infer the model architectures or parameters. The
private information of graph data contains not only the graph com-
ponents [80] but also the graph properties [79] (e.g., the graph size)
and training membership [12] (e.g., the nodes used for training).

Zhang et al. [76] generalize the existing privacy attacks into
three major categories: model extraction attacks, membership infer-
ence attacks, and model inversion attacks. Model extraction attacks
aim to construct a surrogate model by stealing the information
of a GNN model. Recent works [51, 60] have investigated model
extraction attacks with di�erent levels of capacities, e.g., whether
the graph structure is missing. Membership inference attacks aim to
infer whether a target component is used to train the target model,
which has been studied for node classi�cation [22, 44] and graph
classi�cation tasks [56, 59]. Model inversion attacks aim to infer
the target attributes from the corresponding outputs of GNN mod-
els, which can be further divided into reconstruction attacks and
property inference attacks. Reconstruction attacks, a.k.a. attribute
inference attacks, are mostly studied on the graph structure under
both white-box [12, 80] and black-box settings [21, 33, 62]. Includ-
ing LSA2, He et al. [21] has proposed eight Link Stealing Attacks
in total with di�erent capabilities, which include whether an attack
has access to node features, partial graph, and a shadow dataset.
Zhang et al. [79] take the initial e�ort to infer the properties of a
graph (e.g., the graph density) by its embeddings.

Although the defense against privacy attacks is not extensively
studied, there are four major techniques for privacy-preserving
GNNs [8, 78]: di�erential privacy, federated learning, and adversar-
ial privacy-preserving and latent factor disentangling. Di�erential
privacy [13] guarantees an attack cannot infer the information of
a single sample. Federated learning [4, 61] allows individuals to
train a GNN model collectively without sharing the original data.
Adversarial privacy-preserving [23, 55] prevents sensitive infor-
mation from leakage by adopting an adversarial function. Latent
factor disentangling [32] disentangles sensitive information from
the embedding space.

7 DISCUSSION
Limitations of M���. Our work primarily focuses on node clas-
si�cation tasks, but with additional knowledge, such as node em-
beddings, the attack can be adapted to a broader range of tasks,
including graph classi�cation. This adaptation involves replacing
node predictions with node embeddings, which are more expressive
and could potentially enhance performance in node classi�cation
tasks.

Compared to other attacks, there is a tradeo� between com-
putation time and attack performance inM���. To achieve better
performance without additional knowledge,M��� estimates in�u-
ence values for each individual node pair. This approach can be
computationally expensive. To address this limitation, we have de-
veloped di�erent estimation strategies to strike a balance between
time consumption and attack performance.

Another limitation of M��� is that it needs to conduct global
attacks on a subgraph to determine the existence of edges between
node pairs. The threshold for distinguishing edge existence is not

deterministic, as the in�uence values indicate the in�uence of one
node on another, rather than the probabilities of connections. This
requires attackers to collect su�cient outputs and identify node
pairs with larger in�uence values. Additionally, the knowledge of
node degrees is not available, which would eliminate the need for
a global attack.

Despite these limitations, M��� signi�cantly outperforms state-
of-the-art approaches, particularly in challenging settings. Our
experiments demonstrate that other attacks fail to achieve better
performance even with extra knowledge. To the best of our knowl-
edge, there is no task where other attacks succeed while M��� fails
under these challenging conditions.

Possible defense strategies. Possible ways to alleviate privacy
leakage include rate-limiting API access, monitoring the malicious
query behavior, and providing limited predictions for each query.
Edge-obfuscation strategies like the one proposed by Joshi and
Mishra [25] could slowM���, but would not completely mitigate
it given enough queries. In addition to the defense of the system,
malicious query detection should be addressed. Web-based attacks,
such as code injection attacks, pose a direct threat to the security
of account details.

Future works. ForM���, to make it more applicable to larger
datasets, we plan to investigate strategies that help �lter out re-
dundant node pairs and improve scalability. We leave this as future
work. This strategy can further be used on target models that output
noisy node embeddings. Based onM���, we envision that attacks
may be built against federated learning systems, where the clients
only have access to a subset of node features and graph structure,
and a client may steal private data from other clients.

Furthermore, attacks on di�erent target components (e.g., node
features) under di�erent settings are worth studying. The attacks
during the training stage are not yet well-studied for GNNs. Gra-
dients with sensitive information can cause serious privacy leak-
age [81, 82], especially in federated learning settings [39]. Finally,
we emphasize that the development of e�ective countermeasures
against privacy attacks is essential. Existing defenses are not suit-
able for certain attacks [8, 76], such as model extraction attacks.

8 CONCLUSION
In this paper, we have presentedM���, the �rst link inference at-
tack that operates under the most challenging security setting. By
leveraging the vertical partition of graph structures and node fea-
tures,M��� is capable of accurately inferring the existence of edges
between nodes using only black-box access to an inference API.
Our evaluation on six real-world datasets has demonstrated the
e�ectiveness of M��� in varying scopes, even under defense mech-
anisms. The results of this study highlight the pressing need for
new privacy-preserving techniques to defend against GNN privacy
attacks. With only API access to social media GNNs,M��� can learn
who your friends are.

ACKNOWLEDGMENTS
The authors thank anonymous reviewers for their constructive
feedback. This work was supported in part by National Science
Foundation grant 212720.

376

M���: Black-Box Edge Privacy A�ack on Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(4)

REFERENCES
[1] Michael Backes,Mathias Humbert, Jun Pang, and Yang Zhang. 2017. Walk2friends:

Inferring Social Links from Mobility Pro�les. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’17).
1943–1957.

[2] KM Borgwardt, CS Ong, S Schönauer, SV Vishwanathan, AJ Smola, and HP
Kriegel. 2005. Protein function prediction via graph kernels. Bioinformatics
(Oxford, England) 21 (2005), i47–56.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral
networks and deep locally connected networks on graphs. In 2nd International
Conference on Learning Representations, ICLR 2014.

[4] Chaochao Chen, Jun Zhou, Longfei Zheng, Huiwen Wu, Lingjuan Lyu, Jia Wu,
Bingzhe Wu, Ziqi Liu, Li Wang, and Xiaolin Zheng. 2022. Vertically Federated
Graph Neural Network for Privacy-Preserving Node Classi�cation. In Proceedings
of the Thirty-First International Joint Conference on Arti�cial Intelligence, IJCAI-22.
1959–1965.

[5] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In International Conference
on Learning Representations.

[6] Min Chen, Zhikun Zhang, TianhaoWang, Michael Backes, Mathias Humbert, and
Yang Zhang. 2021. When machine unlearning jeopardizes privacy. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
896–911.

[7] Tsz-Him Cheung, Weihang Dai, and Shuhan Li. 2021. Fedsgc: Federated simple
graph convolution for node classi�cation. In IJCAI Workshops.

[8] Enyan Dai, Tianxiang Zhao, Huaisheng Zhu, Junjie Xu, Zhimeng Guo, Hui Liu,
Jiliang Tang, and Suhang Wang. 2022. A Comprehensive Survey on Trustworthy
Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability. arXiv
preprint arXiv:2204.08570 (2022).

[9] Michaël De�errard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral �ltering. In Proceed-
ings of the 30th International Conference on Neural Information Processing Systems.
3844–3852.

[10] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester,
Luis Perez, Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, Peter W.
Battaglia, Vishal Gupta, Ang Li, Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia
Li, and Petar Velickovic. 2021. ETA Prediction with Graph Neural Networks
in Google Maps. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management (CIKM ’21). 3767–3776.

[11] Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, and Bo Dai. 2022. Revisiting
skeleton-based action recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2969–2978.

[12] Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. 2020. Quantifying privacy
leakage in graph embedding. In MobiQuitous 2020-17th EAI International Con-
ference on Mobile and Ubiquitous Systems: Computing, Networking and Services.
76–85.

[13] Cynthia Dwork. 2006. Di�erential Privacy. In 33rd International Colloquium on
Automata, Languages and Programming, part II (ICALP 2006) (Lecture Notes in
Computer Science, Vol. 4052). 1–12.

[14] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. 2019. A Fair
Comparison of Graph Neural Networks for Graph Classi�cation. In International
Conference on Learning Representations.

[15] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[16] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model Inversion
Attacks That Exploit Con�dence Information and Basic Countermeasures. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security (CCS ’15). 1322–1333.

[17] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2019.
Combining Neural Networks with Personalized PageRank for Classi�cation on
Graphs. In International Conference on Learning Representations.

[18] Neil Zhenqiang Gong and Bin Liu. 2016. You Are Who You Know and How You
Behave: Attribute Inference Attacks via Users’ Social Friends and Behaviors. In
25th USENIX Security Symposium (USENIX Security 16). 979–995.

[19] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. In Proceedings. 2005 IEEE international joint conference
on neural networks, Vol. 2. 729–734.

[20] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representa-
tion Learning on Large Graphs. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems (NIPS’17). Curran Associates Inc.,
1025–1035.

[21] Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, and Yang Zhang.
2021. Stealing Links fromGraph Neural Networks. InUSENIX Security Symposium
(USENIX Security).

[22] Xinlei He, Rui Wen, Yixin Wu, Michael Backes, Yun Shen, and Yang Zhang. 2021.
Node-level membership inference attacks against graph neural networks. arXiv

preprint arXiv:2102.05429 (2021).
[23] I-Chung Hsieh and Cheng-Te Li. 2021. NetFense: Adversarial Defenses against

Privacy Attacks on Neural Networks for Graph Data. IEEE Transactions on
Knowledge and Data Engineering (2021), 1–1.

[24] Vassilis N. Ioannidis, Xiang Song, Saurav Manchanda, Mufei Li, Xiaoqin Pan, Da
Zheng, Xia Ning, Xiangxiang Zeng, and George Karypis. 2020. DRKG - Drug
Repurposing Knowledge Graph for Covid-19. https://github.com/gnn4dr/DRKG/.

[25] Rucha Bhalchandra Joshi and Subhankar Mishra. 2022. Edge-level privacy in
Graph Neural Networks. In 18th International Workshop on Mining and Learning
with Graphs.

[26] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev.
2014. Private analysis of graph structure. ACM Transactions on Database Systems
(TODS) 39, 3 (2014), 1–33.

[27] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. 2019. Edge-
labeling graph neural network for few-shot learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 11–20.

[28] Isaiah J King, Xiaokui Shu, Jiyong Jang, Kevin Eykholt, Taesung Lee, and HHowie
Huang. 2023. EdgeTorrent: Real-time Temporal Graph Representations for Intru-
sion Detection. In Proceedings of the 26th International Symposium on Research in
Attacks, Intrusions and Defenses. 77–91.

[29] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classi�cation with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[30] Harlin Lee, Andrea L Bertozzi, Jelena Kovačević, and Yuejie Chi. 2022. Privacy-
Preserving Federated Multi-Task Linear Regression: A One-Shot Linear Mixing
Approach Inspired By Graph Regularization. In ICASSP 2022-2022 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
5947–5951.

[31] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. 2018.
Cayleynets: Graph convolutional neural networks with complex rational spectral
�lters. IEEE Transactions on Signal Processing 67, 1 (2018), 97–109.

[32] Kaiyang Li, Guangchun Luo, Yang Ye, Wei Li, Shihao Ji, and Zhipeng Cai. 2020.
Adversarial privacy-preserving graph embedding against inference attack. IEEE
Internet of Things Journal 8, 8 (2020), 6904–6915.

[33] Kailai Li, Jiawei Sun, Ruoxin Chen, Wei Ding, Kexue Yu, Jie Li, and Chentao Wu.
2023. Towards Practical Edge Inference Attacks Against Graph Neural Networks.
In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 1–5.

[34] Mengcheng Li, Liang An, Hongwen Zhang, Lianpeng Wu, Feng Chen, Tao Yu,
and Yebin Liu. 2022. Interacting attention graph for single image two-hand
reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2761–2770.

[35] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards Deeper Graph Neural
Networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD ’20). Association for Computing
Machinery, 338–348.

[36] Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang, Michael Backes,
Emiliano De Cristofaro, Mario Fritz, and Yang Zhang. 2022. ML-Doctor: Holistic
Risk Assessment of Inference Attacks Against Machine Learning Models. In 31st
USENIX Security Symposium (USENIX Security 22).

[37] Zhiwei Liu, Liangwei Yang, Ziwei Fan, Hao Peng, and Philip S Yu. 2022. Feder-
ated social recommendation with graph neural network. ACM Transactions on
Intelligent Systems and Technology (TIST) 13, 4 (2022), 1–24.

[38] Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. 2021. Feature
Inference Attack on Model Predictions in Vertical Federated Learning. In 2021
IEEE 37th International Conference on Data Engineering (ICDE). 181–192.

[39] Lingjuan Lyu, Han Yu, and Qiang Yang. 2020. Threats to federated learning: A
survey. arXiv preprint arXiv:2003.02133 (2020).

[40] Guangxu Mei, Ziyu Guo, Shijun Liu, and Li Pan. 2019. Sgnn: A graph neural
network based federated learning approach by hiding structure. In 2019 IEEE
International Conference on Big Data (Big Data). IEEE, 2560–2568.

[41] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
andMichael M Bronstein. 2017. Geometric deep learning on graphs andmanifolds
using mixture model cnns. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 5115–5124.

[42] Jacob Levy Moreno. 1934. Who shall survive? A new approach to the problem
of human interrelations. Nervous and Mental Disease Publishing, Chapter VIII.
Community Organization.

[43] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. 2020. TUDataset: A collection of benchmark datasets for
learning with graphs. In ICML 2020 Workshop on Graph Representation Learning
and Beyond (GRL+ 2020). arXiv:2007.08663

[44] Iyiola EOlatunji,WolfgangNejdl, andMegha Khosla. 2021. Membership inference
attack on graph neural networks. In 2021 Third IEEE International Conference on
Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). IEEE,
11–20.

[45] Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, and Wen-tau Yih.
2017. Cross-sentence n-ary relation extraction with graph lstms. Transactions of

377

https://github.com/gnn4dr/DRKG/
https://arxiv.org/abs/2007.08663

Proceedings on Privacy Enhancing Technologies 2024(4) Haoyu He, Isaiah J. King, and H. Howie Huang

the Association for Computational Linguistics 5 (2017), 101–115.
[46] Daniele Romanini, Adam James Hall, Pavlos Papadopoulos, Tom Titcombe, Abbas

Ismail, Tudor Cebere, Robert Sandmann, Robin Roehm, andMichael A Hoeh. 2021.
Pyvertical: A vertical federated learning framework for multi-headed splitnn.
arXiv preprint arXiv:2104.00489 (2021).

[47] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed
node embedding. Journal of Complex Networks 9, 2 (2021), cnab014.

[48] Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic Functions on Graphs:
Birds of a Feather, from Statistical Descriptors to Parametric Models. In Pro-
ceedings of the 29th ACM International Conference on Information & Knowledge
Management (CIKM ’20). 1325–1334.

[49] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. 593–607.

[50] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. Relational
Representation Learning Workshop, NeurIPS 2018 (2018).

[51] Yun Shen, Xinlei He, Yufei Han, and Yang Zhang. 2022. Model Stealing Attacks
Against Inductive Graph Neural Networks. In 2022 IEEE Symposium on Security
and Privacy (S&P). 1175–1192.

[52] Martin Simonovsky and Nikos Komodakis. 2018. Graphvae: Towards generation
of small graphs using variational autoencoders. In International conference on
arti�cial neural networks. 412–422.

[53] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. 2020.
Graph clustering with graph neural networks. arXiv preprint arXiv:2006.16904
(2020).

[54] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. International Confer-
ence on Learning Representations (2018).

[55] Binghui Wang, Jiayi Guo, Ang Li, Yiran Chen, and Hai Li. 2021. Privacy-
preserving representation learning on graphs: A mutual information perspective.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. 1667–1676.

[56] Yu Wang and Lichao Sun. 2021. Membership inference attacks on knowledge
graphs. arXiv preprint arXiv:2104.08273 (2021).

[57] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio
Bellei, Tom Robinson, and Charles E Leiserson. 2019. Anti-money laundering in
bitcoin: Experimenting with graph convolutional networks for �nancial forensics.
arXiv preprint arXiv:1908.02591 (2019).

[58] Colby Wise, Vassilis N. Ioannidis, Miguel Romero Calvo, Xiang Song, George
Price, Ninad Kulkani, Ryan Brand, Parminder Bhatia, and George Karypis. 2020.
COVID-19 knowledge graph: Accelerating information retrieval and discovery
for scienti�c literature. In AACL-IJCNLP 2020 Workshop on Integrating Structured
Knowledge and Neural Networks for NLP (KNLP).

[59] Bang Wu, Xiangwen Yang, Shirui Pan, and Xingliang Yuan. 2021. Adapting
membership inference attacks to gnn for graph classi�cation: Approaches and
implications. In 2021 IEEE International Conference on Data Mining (ICDM). IEEE,
1421–1426.

[60] Bang Wu, Xiangwen Yang, Shirui Pan, and Xingliang Yuan. 2022. Model Ex-
traction Attacks on Graph Neural Networks: Taxonomy and Realisation. In Pro-
ceedings of the 2022 ACM on Asia Conference on Computer and Communications
Security (ASIA CCS ’22). 337–350.

[61] Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. 2021.
Fedgnn: Federated graph neural network for privacy-preserving recommendation.
arXiv preprint arXiv:2102.04925 (2021).

[62] F. Wu, Y. Long, C. Zhang, and B. Li. 2022. LinkTeller: Recovering Private Edges
fromGraphNeural Networks via In�uence Analysis. In 2022 2022 IEEE Symposium
on Security and Privacy (S&P). 522–541.

[63] Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. 2020. Graph information
bottleneck. Advances in Neural Information Processing Systems 33 (2020), 20437–
20448.

[64] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24.

[65] Wensheng Xia, Ying Li, Lan Zhang, Zhonghai Wu, and Xiaoyong Yuan. 2021. A
vertical federated learning framework for horizontally partitioned labels. arXiv
preprint arXiv:2106.10056 (2021).

[66] Yiqing Xie, Sha Li, Carl Yang, Raymond Chi-Wing Wong, and Jiawei Han. 2020.
WhenDoGNNsWork: Understanding and Improving NeighborhoodAggregation.
In Proceedings of the Twenty-Ninth International Joint Conference on Arti�cial
Intelligence, IJCAI-20. 1303–1309.

[67] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[68] Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, James Joshi, and Heiko
Ludwig. 2021. Fedv: Privacy-preserving federated learning over vertically parti-
tioned data. In Proceedings of the 14th ACM Workshop on Arti�cial Intelligence
and Security. 181–192.

[69] Yang Xu, Xuexian Hu, Jianghong Wei, Hongjian Yang, and Kejia Li. 2023. VF-
CART: A communication-e�cient vertical federated framework for the CART
algorithm. Journal of King Saud University-Computer and Information Sciences
35, 1 (2023), 237–249.

[70] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting Semi-
Supervised Learning with Graph Embeddings. In Proceedings of The 33rd Interna-
tional Conference on Machine Learning, Vol. 48. 40–48.

[71] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional net-
works for text classi�cation. In Proceedings of the AAAI conference on arti�cial
intelligence, Vol. 33. 7370–7377.

[72] Haina Ye, Xinzhou Cheng, Mingqiang Yuan, Lexi Xu, Jie Gao, and Chen Cheng.
2016. A survey of security and privacy in big data. In 2016 16th international
symposium on communications and information technologies (iscit). IEEE, 268–272.

[73] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[74] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,
and Jure Leskovec. 2018. Hierarchical Graph Representation Learning with
Di�erentiable Pooling. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems (NIPS’18). 4805–4815.

[75] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. GNNExplainer: Generating Explanations for Graph Neural Networks. In
Advances in Neural Information Processing Systems, Vol. 32.

[76] He Zhang, Bang Wu, Xingliang Yuan, Shirui Pan, Hanghang Tong, and Jian Pei.
2022. Trustworthy Graph Neural Networks: Aspects, Methods and Trends. arXiv
e-prints (May 2022), arXiv:2205.07424.

[77] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural Net-
works. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems (NIPS’18). 5171–5181.

[78] Yi Zhang, Yuying Zhao, Zhaoqing Li, Xueqi Cheng, Yu Wang, Olivera Kotevska,
Philip S Yu, and Tyler Derr. 2023. A Survey on Privacy in Graph Neural Networks:
Attacks, Preservation, and Applications. arXiv preprint arXiv:2308.16375 (2023).

[79] Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang. 2022.
Inference Attacks Against Graph Neural Networks. In 31st USENIX Security
Symposium (USENIX Security 22). 4543–4560.

[80] Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chengqiang Lu, Chuanren Liu,
and Enhong Chen. 2021. GraphMI: Extracting Private Graph Data from Graph
Neural Networks. In Proceedings of the Thirtieth International Joint Conference on
Arti�cial Intelligence, IJCAI-21. 3749–3755.

[81] Junyi Zhu and Matthew B Blaschko. 2020. R-GAP: Recursive Gradient Attack on
Privacy. In International Conference on Learning Representations.

[82] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients. In
Proceedings of the 33rd International Conference on Neural Information Processing
Systems. 14774–14784.

A DETAILS OF MODEL PERFORMANCE
Table 12 shows the model performance on the six datasets. Speci�-
cally, GCN-2l(·) is a 2-layer GCN model with a defense mechanism
as the countermeasure to the attacks, which will be elaborated in
Appendix C.

Table 12: Accuracy (in percent) of GNN predictions.

Model Cora Citeseer Coauthor-
CS Facebook Github LastFM-

Asia

GCN-2l 84.3 73.0 92.6 91.1 86.5 80.5
GAT-2l 86.7 73.4 92.5 91.5 86.7 80.4
GCN-2l(LG) 82.1 71.0 90.7 85.8 84.7 77.6
GCN-2l(EA) 86.0 76.0 91.4 88.4 86.4 80.1

B PERFORMANCEWITH 3-LAYER GCNS
Due to enormous time consumption of M��� on speci�c graphs,
we instead present the results of M��� with alternative estimation
strategies. We report the attacks with 3-layer GCNs by AP and the
running time. Here, we do not consider 1-layer GNNs or deeper
GNNs. We can identify all the correct node pairs with 1-layer GNNs
simply by �nding the in�uence nodes. For deeper GNNs, the node

378

M���: Black-Box Edge Privacy A�ack on Graph Neural Networks Proceedings on Privacy Enhancing Technologies 2024(4)

Table 13: Performance with 3-layer GCNs.

Type Attack Cora Citeseer Coauthor-
CS Facebook Github LastFM-

Asia

Local

Decoder 28.9 54.0 61.2±2.6 51.1±1.9 46.3±4.6 30.8±1.1
LSA2-post 27.8 51.5 59.4±1.8 49.3±1.2 20.5±5.4 32.3±1.5
LSA2-feat 32.8 56.5 83.3±1.3 38.8±1.3 21.0±4.8 32.5±0.9
LinkTeller 77.7 85.6 85.5±0.5 79.5±1.0 81.8±1.9 82.4±0.6
M���(E) 91.7 92.5 87.3±0.4 89.4±0.9 85.1±3.3 94.0±0.1
M���(C) 93.3 97.0 96.0±0.2 96.0±0.4 92.0±2.2 96.6±0.1

Global

Decoder 11.8 24.6 34.6±3.4 24.2±2.0 21.4±6.8 13.6±0.9
LSA2-post 8.1 20.3 32.5±1.8 17.4±0.8 2.9±1.0 10.6±1.0
LSA2-feat 12.4 27.6 65.7±2.7 14.6±0.8 4.2±1.6 12.1±0.6
LinkTeller 64.1 74.4 71.6±1.0 62.2±0.8 59.9±4.0 69.4±1.3
M���(E) 86.6 85.4 75.6±0.7 82.9±0.8 60.0±10.1 91.4±0.1
M���(C) 88.5 92.4 90.3±0.4 89.9±0.6 75.5±5.2 94.6±0.1

Model Accuracy 83.1 69.8 92.1 93.7 86.8 82.2

representations face over-smoothing problems [35], leading to the
performance degradation of both GNNs and attacks.

Attack performance. From Table 13, M���(C) obtains the best
results. Compared with the results with 2-layer GNNs in Table 4,
the performance of LSA2s declines largely due to the huge increase
of in�uence nodes. The performance of LinkTeller drops slightly,
same as the �nding fromWu et al. [62]. In the global attack,M���(E)
obtains 10.3% more, and the performance of M���(C) has improved
by 7.0% in comparison with Table 5.

Running time. In Table 14, LinkTeller maintains the best results
with 3-layer GCNs. Overall,M���s require huge time consumption.
The results of M���(C)+ in Table 14 indicate the running time for the
original estimation strategy, so the total running time of M���(C) is
the sum of M���(E) andM���(C)+. Compared with Table 8, the extra
time consumption of LinkTeller with 3-layer GCNs is from the in-
creasing nonzero in�uence values, while the time complexity stays
constant. Di�erently, the time complexity of M���s rises largely
due to the increase of GNN layers, which leads to considerable
running time in practice. The other factor associated with the time
complexity of M���s is the graph density. As mentioned previously,
Github graph is uneven and contains subgraphs with large density.

Table 14: Running time (in seconds) with 3-layer GCNs.

Attack Cora Citeseer Coauthor-
CS Facebook Github LastFM-

Asia

LSA2-post 24.4 19.2 12.3±0.3 18.4±0.6 21.1±10.1 20.0±0.8
LSA2-feat 21.9 18.2 11.7±0.2 17.0±0.4 18.4±8.3 18.0±0.7
LinkTeller 28.3 15.6 7.4±1.0 9.8±0.7 7.3±2.3 16.8±0.8
M���(E) 517.9 179.4 61.4±10.4 120.5±5.4 179.0±189.5 278.2±23.5
M���(C)+ 155.9 141.6 64.8±5.6 125.6±13.7 994.6±1222.4 192.1±16.1

I 27.7 52.6 32.9±0.1 23.2±0.7 33.2±34.1 27.3±0.6

C DETAILS OF DEFENSE MECHANISM
LapGraph. Given a value of n and a randomization generator, Lap-
Graph takes a graph as input, then generates a perturbed graph
that guarantees n-edge DP. In edge DP [26], two undirected graphs
are considered neighbors if one graph can be obtained from the
other by adding or removing one edge. Thereby, edge DP defense
mechanisms operate directly on adjacency matrix. LapGraph ap-
plies a speci�c level of Laplace noise to each cell of the adjacency

Table 15: Performance with 2-layer GCNs under LapGraph,
with the perturbed graphs as ground truth.

Type Attack Cora Citeseer Coauthor-
CS Facebook Github LastFM-

Asia

Local

Decoder 48.2 63.5 76.8±1.6 63.5±0.5 61.6±2.8 48.9±0.7
LSA2-post 41.8 61.1 71.8±1.1 60.5±0.4 41.8±6.0 50.1±1.3
LSA2-feat 42.5 59.2 75.3±0.6 43.9±0.3 32.0±5.6 43.5±0.8
LinkTeller 75.5 84.7 88.5±0.8 84.4±0.6 88.3±1.8 81.0±0.4
M��� 95.2 96.3 99.5±0.1 97.1±0.3 95.9±1.0 96.3±0.4

Global

Decoder 28.1 38.6 55.0±2.6 36.5±1.1 29.8±3.0 26.9±0.5
LSA2-post 19.0 33.8 51.3±1.5 30.9±1.2 10.2±4.7 25.6±1.3
LSA2-feat 22.1 36.1 64.5±1.2 24.2±0.9 11.0±4.3 23.6±0.7
LinkTeller 60.8 72.6 76.6±1.6 69.0±1.3 69.0±6.9 66.2±1.0
M��� 90.5 89.1 97.4±0.4 88.5±0.6 85.9±1.9 89.9±1.0

matrix, based on the privacy budget. The intuition of adjacency ma-
trix perturbation is to guarantee the indistinguishability between
two neighboring adjacency matrices by adding enough noise. To
further enhance the discreteness of the adjacency matrix, LapGraph
retains only the top-) cells from the perturbed adjacency matrix
and converts it into a sparse binary matrix. Here,) represents a ran-
dom number approximated to the number of edges in the original
graph. This discrete transformation maintains sparsity, mitigating
excessive memory consumption while ensuring the compatibility
with spatial GNNs. To better control the amount of perturbation,
LapGraph adopts n-DP mechanism [13, 62]. It controls the edge
density via a small portion of the privacy budget n and applies the
remaining budget to generate the Laplace noise. The larger n is, the
less perturbation will be conducted. According to the analysis from
Wu et al. [62], we set n to 10 in our experiment to make sure the
original graph is mostly retained and the model performance does
not drop signi�cantly.

The results in Table 15 are calculated with the perturbed graphs
as the ground truth. In particular, the results of M��� are all above
95.0% in the local attack and 85.0% in the global attack. With such
information, a surrogate GNN model can be constructed.

EdgeAttn. EdgeAttn is inspired by the concept of Graph In-
formation Bottleneck (GIB) [63]. The model aims to predict with
the minimum su�cient graph structure information. We assign
imbalanced attentions to di�erent edges in each layer of GNNs to
ensure the model focuses on the most important graph structure so
as to reduce the accuracy of in�uence estimation. EdgeAttn can be
considered as GCNs with edge attention manipulator or adapted
1-head GATs, which do not perturb the original graph structure.
The attention for each edge at the ;-th layer is calculated as:

U;8, 9 = exp
⇣
[h;�18 , ;

���h;�19 , ;]a;
⌘ .

’
E9 2N8[{E8 }

exp
⇣
[h;�18 , ;

���h;�19 , ;]a;
⌘
. (5)

Di�erent from GATs, we remove the LeakyReLU function to create
imbalanced edge attentions to better protect the edge information.
Then, we apply noises to the edge attentions:

Û;8, 9 = U;8, 9 + > , (6)

where > is the noise from a uniform distribution > ⇠ * (�`, `). ` is a
hyperparameter, whichwe set to 0.05 in the experiment. The noise is

379

Proceedings on Privacy Enhancing Technologies 2024(4) Haoyu He, Isaiah J. King, and H. Howie Huang

���
 ��

"

���
��!

 #$

���
����

�$

���
���

���" ��
%�

�

��

�

��

��

	
�� 	
��
�

���

����

	

���� 	��

����
���	

� "�

���
 ��

"

���
��!

 #$

���
����

�$

���
���

���" ��
%�

�

��

�

��

��

��� ����

���
�
��

���
	��

��

���

���

��$�#��"

���
!��

#

���
��"

!$%

���
����

�%

��
���

���# ��
&�

�

��

��

�

���

���� ���

��� ��

���	

����
��

��� ����

����

�!�&%�!#���

���
!��

#

���
��"

!$%

���
����

�%

��
���

���# ��
&�

�

��

�

��

��

��	
���
	��

��	
���	

��	
	��� 	�

�
��

�

�����!!�

���"��$

�����#"%&

��������&

��!��� �$
��'��

��

�

��

��

	��

�
�� �
��

��
����

	���

��� ����

����

��

��&�'�

���
 ��

"

���
��!

 #$

���
����

�$

���
���

���" ��
%�

�

��

�

��

��

	���
	
�� 	
��

���

����

	��� �� 	��

����

��

��#$����#��

Figure 5: Precision of the global attack w/ and w/o the knowledge of node degree. The precision is calculated with top-100%
identi�ed edges. The light and the dark bars represent the result w/ and w/o the extra knowledge, respectively.

Algorithm 4: Global Attack with Node Degrees

Input: The normalized in�uence values ⇥̃; node degrees 346 (+)
Output: The inferred adjacency matrix �̂

1 Set an empty adjacency matrix �̂ for+
2 foreach E8 2 + do
3 Recover the top-(346 (E8)) edges in �̂

4 �̂ �̂ |�̂)

5 ⇥̃ ⇥̃ + ⇥̃)

6 foreach E8 2 + do
7 Sort)̃ 8 in ascending order
8 foreach (E8 , E9) 2 �̂ do
9 if

���̂8
�� > 346 (E8) and

���̂9
�� > 346 (E9) then

10 Remove (E8 , E9) and (E9 , E8) in �̂

11 Recover the top-(346 (+)) edges in �̂ according to ⇥̃

added to edge attentions from each GNN layer during both training
and inference stage. This noise perturbs the edge attention, in�u-
encing predictions within an acceptable range. Consequently, the
prediction probabilities vary slightly with each inference, thereby
protecting the edge information. During the training stage, we
introduce element-wise entropy to edge attentions of each layer
to encourage the imbalance of edge attentions. The ultimate loss
function is set to be:

!sum = !2 (%,.) + V
’

1;!
!4

⇣
U;

⌘
, (7)

where !2 is the cross-entropy, !4 is the element-wise entropy, and
V is the hyperparameter to control the imbalance of edge attentions.
We follow the same training settings in our experiment and dynam-
ically choose the value of V to ensure the model performance under
EdgeAttn is slightly better than LapGraph.

D ANALYTICAL STUDIES
D.1 Global Attack with Node Degrees
Here, we consider the node degree as extra knowledge. We present
the global attack strategy in Algorithm 4, when we know the degree
of each node. We treat the edges as directional. The �rst step is
to �nd the incoming edges of each node individually, according
to the in�uence values of node pairs and the node degrees. Then
we convert the edges into non-directional edges. The second step
is to trim the redundant edges and make sure the top-k edges are
identi�ed.

We report the global attack with the knowledge of node degrees
in Figure 5. The result is the best result the attacks can achieve in
the global attack, as the global incompatibility is mostly eliminated.
The visible dark bars in Figure 5 are the improvement for the in-
compatibility, averaging 8.6% for all and 11.2% for black-box attacks.
We conclude that if an attack performs well in the local attack, with
some extra knowledge, the whole graph will be in serious danger
of privacy leakage.

D.2 Attack with Original Node Features
We report the results of M���when using the original node features
in Table 16. The performance declines compared with using the
random initialized features. We set the same features for each node,
which alleviates the unequal prediction contribution from each
node, so that the in�uence scores largely depend on the graph
structure, speci�cally the distance between two nodes. From using
Proposition 1, we ensure that closer nodes have more in�uence on
each others’ predictions.

Table 16: Performance of M���when using the original node
features.

Dataset GCNs GATs

local global local global

Cora 81.8 69.0 85.5 78.5
Citeseer 89.4 78.5 91.8 83.7
Coauthor-CS 89.7±0.4 80.1±1.0 96.0±0.3 90.8±0.8
Facebook 78.7±0.6 61.0±0.8 85.4±0.9 74.1±1.7
Github 84.0±1.6 62.8±5.2 91.7±0.5 82.2±2.3
LastFM-Asia 80.5±0.7 61.8±1.4 86.1±0.5 79.3±1.0

380

	Abstract
	1 Introduction
	2 Background
	3 Problem Formulation
	3.1 Motivating Example
	3.2 Threat model
	3.3 Maui

	4 Design Details of Maui
	4.1 Attack Overview
	4.2 Local Node Attack
	4.3 Global Graph Attack
	4.4 Different Estimation Strategies

	5 Experiment
	5.1 Experimental Setup
	5.2 Local Attack Evaluation
	5.3 Global Attack Evaluation
	5.4 Compatibility Evaluation
	5.5 Running Time Evaluation
	5.6 Robustness Evaluation
	5.7 Estimation Strategy Evaluation

	6 Related Work
	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Details of Model Performance
	B Performance with 3-layer GCNs
	C Details of Defense Mechanism
	D Analytical studies
	D.1 Global Attack with Node Degrees
	D.2 Attack with Original Node Features

