
Journal of Artificial Intelligence Research 80 (2024) 1-15 Submitted 08/2023; published 08/2024

Decision-Focused Learning: Foundations, State of the Art,
Benchmark and Future Opportunities

Jayanta Mandi ⇤
jayanta.mandi@kuleuven.be

KU Leuven, Belgium

James Kotary †
jk4pn@virginia.edu

University of Virginia, USA

Senne Berden senne.berden@kuleuven.be

KU Leuven, Belgium

Maxime Mulamba maxime.mulamba@vub.be

Vrije Universiteit Brussel, Belgium

Vı́ctor Bucarey victor.bucarey@uoh.cl

Universidad de O’Higgins, Chile

Tias Guns tias.guns@kuleuven.be

KU Leuven, Belgium

Ferdinando Fioretto fioretto@virginia.edu

University of Virginia, USA

Abstract

Decision-focused learning (DFL) is an emerging paradigm that integrates machine
learning (ML) and constrained optimization to enhance decision quality by training ML
models in an end-to-end system. This approach shows significant potential to revolutionize
combinatorial decision-making in real-world applications that operate under uncertainty,
where estimating unknown parameters within decision models is a major challenge. This
paper presents a comprehensive review of DFL, providing an in-depth analysis of both
gradient-based and gradient-free techniques used to combine ML and constrained opti-
mization. It evaluates the strengths and limitations of these techniques and includes an
extensive empirical evaluation of eleven methods across seven problems. The survey also
o↵ers insights into recent advancements and future research directions in DFL.

1. Introduction

Real-world applications frequently confront the task of decision-making under uncertainty,
such as planning the shortest route in a city, determining optimal power generation sched-
ules, or managing investment portfolios (Sahinidis, 2004; Liu & Liu, 2009; Kim, Lewis, &
White, 2005; Hu, Wang, & Gooi, 2016; Delage & Ye, 2010; Garlappi, Uppal, & Wang, 2006).
In such scenarios, estimating unknown parameters often poses a significant challenge.

Machine Learning (ML) and Constrained Optimization (CO) serve as two key tools
for these complex problems. ML models estimate uncertain quantities, while CO models
optimize objectives within constrained spaces. This sequential process, commonly referred

∗. JM was a�liated to Vrije Universiteit Brussel, Belgium during the submision of this article.
†. JM and JK should both be considered first authors.

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Feature  
variables

Machine Learning  
Model

Predicted  
parameters

Constrained  
Optimization

Optimal  
decisions

z ⇠ Z

<latexit sha1_base64="HflygiNE7VyR5b35XMwYB9aH27k=">AAAC7HicfVHNjtMwEHbD3xL+unDgwCWiQkIIVXHadMttJfbABbFIdHdFElWOM+1aazuR7QDFyltwQ5yQOMEj8CC8DU6bA91dMZI1n76Z+Tw/ecWZNmH4p+dduXrt+o2dm/6t23fu3uvv3j/SZa0ozGjJS3WSEw2cSZgZZjicVAqIyDkc52cv2/jxB1CalfKdWVWQCbKUbMEoMY6a9x+mubCfmyDVTASpIOaUEm7fN/P+IByGawsuAtyBAerscL7b+50WJa0FSEM50TrBYWUyS5RhlEPjp7WGitAzsoTEQUkE6MyuJ2iCJ44pgkWp3JMmWLP/VlgitF6J3GW2PerzsZa8NJaLy+ikNotpZpmsagOSbv5f1DwwZdBuKSiYAmr4ygFCFXMjBPSUKEKN26XvpxI+0lIIIgubKiiaBGe+tem670Qt88yGw8loOnkRPm+XFk/3Ri3AYRyNmgFumm2JnNew0diWCOMJxrGrjP AojrED8TiMomkr4bo4ALdpBa/deG8qUMSU6plNiVoK8qmxnf9fGpObNOfdwfH5814ER9EQj4fjt+PB/kF3+h30CD1GTxFGe2gfvUKHaIYoatB39BP98qT3xfvqfduker2u5gHaMu/HX7zw5q0=</latexit>

m�

<latexit sha1_base64="drjjp41YqyoGSYsGCepyMhpAzcU=">AAAC5HicfVHNbtQwEPaGvxJ+uoUjl4gVEkJoFWc32+VWiR64IIrEtpWSaOU4k9Rq7ES2Q7uy8gbcECckTvAYPAhvg7ObA9tWjGTNp29mPs9PWpdMad//M3Bu3b5z997OfffBw0ePd4d7T45V1UgKC1qVlTxNiYKSCVhopks4rSUQnpZwkp6/7eInn0EqVolPelVDwkkhWM4o0ZZaDnf50sQpN3HFoSBtuxyO/LG/Nu86wD0Yod6OlnuD33FW0YaD0LQkSkXYr3ViiNSMltC6caOgJvScFBBZKAgHlZh15633wjKZl1fSPqG9NftvhSFcqRVPbSYn+kxdjXXkjbGU30RHjc7niWGibjQIuvk/b0pPV163HS9jEqguVxYQKpkdwaNnRBKq7Q5dNxZwQSvOichMLCFrI5y4xsTrviNZpInxx7PJfPbGf90tLZzvTzqA/TCYtCPcttsSadnARmNbwg9nGIe2MsCTMMQWhF M/COadhO3iEOymJby3432oQRJdyVcmJrLg5LI1vf9fGhObNOvtwfHV814Hx8EYT8fTj9PRwWF/+h30DD1HLxFG++gAvUNHaIEoatB39BP9cnLni/PV+bZJdQZ9zVO0Zc6Pv6YC458=</latexit>

ĉ

<latexit sha1_base64="beq0tbWr+J4Hn2PYfyz17nQUX54=">AAAC33icfVFLbxMxEHaWV1kebeHIZUWEhBCK7E02DbdK9MAFUSTSVtpdVV5nkli1vSvbC0TWnrkhTkic4I/wQ/g3eJM9kLZiJGs+fTPzeR5FJbixGP/pBTdu3rp9Z+dueO/+g4e7e/uPTkxZawZTVopSnxXUgOAKppZbAWeVBioLAafFxes2fvoRtOGl+mBXFeSSLhSfc0atp7JsSa3LCulY05zv9fEAry26CkgH+qiz4/P93u9sVrJagrJMUGNSgiubO6otZwKaMKsNVJRd0AWkHioqweRu3XQTPfPMLJqX2j9lozX7b4Wj0piVLHympHZpLsda8tpYIa+j09rOJ7njqqotKLb5f16LyJZRu5hoxjUwK1YeUKa5HyFiS6ops359YZgp+MRKKamauUzDrElJHjqXrftO9aLIHR6Mh5PxK/yyXVoyORi2gOAkHjZ90jTbEoWoYaOxLYGTMSGJr4zJMEmIB8kIx/GklfBdHIHftIa3frx3FWhqS/3CZVQvJP3cuM7/L42rTZr3/uDk8nmvgpN4QEaD0ftR//CoO/0OeoKeoueIoAN0iN6gYzRFDFXoO/qJfgU0+BJ8Db5tUoNeV/MYbVnw4y+eMOIb</latexit>

x�(ĉ)

<latexit sha1_base64="05i4gvgSZ59Wp6XZ3UjdVnFba4Y=">AAAC73icfVHNbtNAEN64/BTzl8INLhYRUkEo8jpxGm6V6IELokikrWSbaL2eJKt612Z3XRqtLPEW3BAnJE7wAjwIb8M68YG0FSOt5tM3M9/OT1rmTGnf/9Nxtq5dv3Fz+5Z7+87de/e7Ow+OVFFJChNa5IU8SYmCnAmYaKZzOCklEJ7mcJyevmrix2cgFSvEe70sIeFkLtiMUaItNe0+ilNuzusPsdJE7sYLok3D0Lp+Nu32/L6/Mu8ywC3oodYOpzud33FW0IqD0DQnSkXYL3ViiNSM5lC7caWgJPSUzCGyUBAOKjGrIWrvqWUyb1ZI+4T2Vuy/FYZwpZY8tZmc6IW6GGvIK2Mpv4qOKj0bJ4aJstIg6Pr/WZV7uvCaRXkZk0B1vrSAUMnsCB5dEEmotut03VjAJ1pwTkRmYglZHeHENSZe9R3JeZoYvz8ajEcv/RfN0sLx3qAB2A+DQd3Ddb0pkeYVrDU2JfxwhHFoKwM8CENsQTj0g2DcSNguDsBuWsIbO97bEiTRhXxuYiLnnJzXpvX/S2NinWa9PTi+eN7L4Cjo42F/+G7Y2z9oT7+NHqMnaBdhtIf20Wt0iCaIos/oO/qJfjkfnS/OV+fbOtXptDUP0YY5P/4Cy4zoOA==</latexit>

argmin
x�F

f(x, ĉ)

<latexit sha1_base64="Mgzl6PqUD89+r+eWerVy7hnogVo=">AAADCXicfVHdahNBFJ5s/anxL62X3gwGoUoJO0k2jXcFi3gjVjBtIbuE2clJMnRmdpmZ1YZhn8A38C28E0EQvNI38G2c3eTCtMUDw/n4znfOnJ80F9zYMPzTCLZu3Lx1e/tO8+69+w8etnZ2T0xWaAYjlolMn6XUgOAKRpZbAWe5BipTAafp+csqfvoBtOGZem+XOSSSzhWfcUatpyatfkz1XHI1cXEq8QWOucKxpHbBqMCvSjzbq/l9HC+orTWsfDZptcNOWBu+CsgatNHajic7je/xNGOFBGWZoMaMSZjbxFFtORNQNuPCQE7ZOZ3D2ENFJZjE1eOV+KlnpniWaf+UxTX7b4aj0pilTL2y6txcjlXktbFUXkePCzsbJo6rvLCg2Or/WSGwzXC1QjzlGpgVSw8o09yPgNmCasqsX3SzGSv4yDIpqZq6WMO0HJOk6Vxc9z3W8zRxYWfQGw5ehPvV0qLhQa8CJIy6vbJNynKzRCoKWNXYLBFGA0Iin9klvSgiHkT9sNsdViV8F0fgN63hjR/vbQ6a2kw/d/W16UXp1v5/Mq5WMu/9wcnl814FJ90O6Xf67/rtw6P16bfRY/QE7SGCDtAheo2O0Qgx9Bn9QL/Q7+BT8CX4GnxbSYPGOucR2rDg51/HcvDt</latexit>

5

10

15

20

3 6 9 12

Predictive analytics Prescriptive analytics

Figure 1: Decision-making under uncertainty involves both predictive and prescriptive an-
alytics. In the predictive stage, the uncertain parameters are predicted from the features
using an ML model. In the prescriptive stage, a decision is prescribed by solving a CO
problem using the predicted parameters.

to as predictive and prescriptive modeling, as illustrated in Figure 1, is prevalent in fields
like operations research and business analytics (den Hertog & Postek, 2016). For instance,
in portfolio management, the prediction stage forecasts asset returns, while the prescriptive
phase optimizes returns based on these predictions. The terminology Predict-Then-Optimize
problem will be used in this survey paper to refer to the problem setting where the uncertain
parameter has to be predicted first, followed by solving the CO problem using the predicted
parameter to make a decision.

A commonly adopted approach to tackle Predict-Then-Optimize problems involves han-
dling these two stages—prediction and optimization—separately and independently. This
“two-stage” process first involves training an ML model to create a mapping between ob-
served features and the relevant parameters of a CO problem. Subsequently, and indepen-
dently, a specialized optimization algorithm is used to solve the decision problem, which is
specified by the predicted problem parameters. The underlying assumption in this method-
ology is that superior predictions would lead to precise predictive models and consequently,
high-quality decisions. Indeed, if the predictions of the parameters were perfectly accurate,
they would enable the correct specification of CO models which can be solved to yield fully
optimal decisions. However, ML models often fall short of perfect accuracy, leading to
suboptimal decisions due to propagated prediction errors. Thus, in many applications, the
predictive and prescriptive modelings are not isolated but rather, deeply interconnected,
and hence should ideally be modeled jointly.

This is the goal of the decision-focused learning (DFL) paradigm, which directly
trains the ML model to make predictions that lead to good decisions. In other words,
DFL integrates prediction and optimization in an end-to-end system trained to optimize a
criterion (i.e., a loss function) that is based on the resulting decisions.

Since many ML models, including neural networks (NNs), are trained via gradient-based
optimization, the gradients of the loss must be backpropagated through each constituent
operation of the model. In DFL, the loss function is dependent on the solution of the
CO problem, thus the CO solver is embedded as a component of the ML model. In this
integration of prediction and optimization, a key challenge is di↵erentiating through the
optimization problem. An additional challenge arises from decision models operating on
discrete variables, which produce discontinuous mappings and hinder gradient-based learn-

100

Decision-Focused Learning: A Survey

ing. Hence, examining smooth surrogate models for these discrete mappings, along with
their di↵erentiation, becomes crucial. These two challenges are the core emphasis and
central focal points in DFL.

This survey paper presents a comprehensive overview of decision-focused learning and
makes several key contributions. First, to navigate the complex methodologies developed
in recent years, the survey di↵erentiates gradient-based DFL methodologies from ‘gradient-
free’ methodologies, which do not rely on computing gradients for learning. Given their
compatibility with neural networks, which are the predominant ML architectures, there
has been a greater focus on gradient-based DFL methods. To facilitate a comprehensive
understanding of this field, we propose categorizing gradient-based learning methods into
four distinct classes: (1) analytical di↵erentiation of optimization mappings, (2) analytical
smoothing of optimization mappings, (3) smoothing by random perturbations, and (4)
di↵erentiation of surrogate loss functions. This categorization, illustrated in Figure 4 lower
in the paper, serves as a framework for comprehending and organizing various gradient-
based DFL methodologies.

In the second part, this paper compiles a selection of problem-specific DFL models,
making them publicly available to facilitate broader access and usage. As part of that,
we benchmark the performance of the various methods on seven distinct problems. This
provides an opportunity for comparative understanding and assists in identifying the relative
strengths and weaknesses of each approach. The code and data used in the benchmarking
are accessible through https://github.com/PredOpt/predopt-benchmarks. Finally, this
survey looks forward and discusses open challenges and o↵ering an outlook on potential
future directions in the field of DFL.

Positioning with respect to other overview papers. With the growing interest of
the operations research (OR) and artificial intelligence (AI) communities in integrating ML
and CO, various survey, review, and tutorial papers have emerged. Mǐsić and Perakis (2020)
provide applications of Predict-Then-Optimize problems in various fields of OR, but o↵er
limited discussion on DFL methodologies. DFL is also a part of a short review article by
Kotary, Fioretto, Van Hentenryck, and Wilder (2021), where the primary focus is on recent
developments in di↵erentiable optimization to integrate CO problems into neural network
architectures. The tutorial by Qi and Shen (2022) introduces the notion of DFL to the OR
community and discusses methods that fall under our category of di↵erentiating surrogate
loss functions below. The PyEPO library (Tang & Khalil, 2023b) o↵ers a common code
base and an implementation of a selected number of DFL techniques, along with a common
interface for benchmarking on various datasets. Tang and Khalil (2023b) also provide an
overview of the DFL techniques implemented in the library, but o↵er limited discussion on
the broader literature of existing DFL techniques. Finally the recent survey by Sadana,
Chenreddy, Delage, Forel, Frejinger, and Vidal (2024), which appeared online concurrently
with the submission of this article, proposes the umbrella term of contextual stochastic
optimization and discusses three families of techniques namely decision rule optimization,
sequential learning and (stochastic) optimization and integrated learning and (stochastic)
optimization; with DFL belonging to the latter.

In contrast, our survey o↵ers a distinct perspective by adopting an ML oriented overview
that extensively surveys gradient-based and gradient-free DFL techniques for Predict-Then-

101

https://github.com/PredOpt/predopt-benchmarks

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Optimize problems, where uncertain parameters appear in the objective function of the CO
problems. The proposed categorization of gradient-based DFL techniques into four classes
allows for a systematic discussion and comparison of the di↵erent methods. Moreover, this
article stands out as an experimental survey by performing comparative evaluations of some
widely-used DFL techniques on benchmark problems; thereby highlighting the feasibility of
implementing, comparing and deploying practical DFL methods. The aim of this dual focus
is to enhance understanding of both specific DFL techniques while also showing empirical
insights into their e↵ectiveness across various applications.

Paper organization. Following this introduction, the paper is structured as follows.
Preliminary concepts are discussed in Section 2, which introduces the problem setting and
explains the challenges in implementing DFL. The subsequent Section 3 o↵ers a compre-
hensive review of existing gradient-free and gradient-based DFL methodologies for handling
these challenges, further categorizing the gradient-based methodologies into four distinct
classes. Section 4 presents interesting real-world examples of DFL applications. Section 5
brings forth seven benchmark DFL tasks from public datasets, with a comparative evalua-
tion of eleven DFL techniques. Finally, the survey paper concludes by providing a discourse
on the current challenges and possible future directions in DFL research.

2. Preliminaries

This section presents an overview of the problem setting, along with preliminary concepts
and essential terminology. Then, the central modeling challenges are discussed, setting
the stage for a review of current methodologies in the design and implementation of DFL.
Throughout the survey paper, vectors are denoted by boldface lowercase letters, such as x,
while scalar components within the vector x are represented with a subscript i, denoting the
ith item within x as xi. Similarly, the vectors 1 and 0 symbolize the vector of all-ones and
all-zeros, respectively. Moreover, I denotes an identity matrix of appropriate dimension.

2.1 Problem Setting

In operations research and business analytics, decisions are often quantitatively modeled
using CO problems. In many real-world applications, it happens that some parameters
of the CO problem are uncertain and must be inferred from contextual data (hereafter
referred to as features). The settings considered in this survey paper involve estimating
those parameters through predictive inferences made by ML models, and subsequently, the
final decisions are modeled as the solution to the CO problems based on those inferences.
In this setting, the decision-making processes can be described by parametric CO problems,
defined as,

x?(c) = argmin
x

f(x, c) (1a)

s.t. g(x, c)  0 (1b)

h(x, c) = 0. (1c)

The goal of the CO problem above is to find a solution x?(c) 2 Rn (n being the dimension
of the decision variable x), which minimizes the objective function f , subject to equality

102

Decision-Focused Learning: A Survey

and inequality constraints as defined by the functions h and g. This parametric problem
formulation defines x?(c) as a function of the parameters c 2 Rm.

CO problems can be categorized in terms of the forms taken by the functions defining
their objectives (1a) and constraints (1b-1c). These forms also determine important prop-
erties of the optimization mapping c ! x?(c), when viewed as a function from problem
parameters to optimal solutions, such as its continuity, di↵erentiability, and injectivity.

In this survey paper, it is assumed that the constraints are fully known prior to solving,
i.e., h(x, c) = h(x) and g(x, c) = g(x), indicating the constraints do not depend on the
parameter c, which is uncertain. Rather the dependence on c is restricted solely to the
objective function. This is the setting considered by almost all existing works surveyed.
While it is also possible to consider uncertainty in the constraints, this leads to the possibility
of predicting parameters that lead to solutions that are infeasible with respect to the ground-
truth parameters. The learning problem has not yet been well-defined in this setting (unless
a recourse action to correct infeasible solutions is used (Hu, Lee, & Lee, 2023c, 2023a)). For
this reason, in the following sections, only f is assumed to depend on c, so that g(x)  0
and h(x) = 0 are satisfied for all outputs of the decision model. For notational convenience,
the feasible region of the CO problem in (1), will be denoted by F (i.e., x 2 F if and only
if g(x)  0 and h(x) = 0).

If the true parameters c are known exactly, the corresponding ‘true’ optimal decisions
may be computed by solving (1). In such scenarios, x?(c) will be referred to as the full-
information optimal decisions (Bertsimas & Kallus, 2020). This paper, instead, considers
problems where the parameters c are unknown but can be estimated as a function of ob-
served features z. The problem of estimating c falls under the category of supervised ML
problems. In this setting, a set of past observation pairs {(zi, ci)}Ni=1 is available as a train-
ing dataset, D, and used to train an ML model m! (with trainable ML parameters !), so
that parameter predictions take the form ĉ = m!(z). Then, a decision x?(ĉ) can be made
based on the predicted parameters. x?(ĉ) is referred to as a prescriptive decision. The
overall learning goal is to optimize the set of prescriptive decisions made over a distribution
of features z ⇠ Z, with respect to some evaluation criterion on those decisions. Thus, while
the ML model m! is trained to predict ĉ, its performance is evaluated based on x?(ĉ).
This paper uses the terminology Predict-Then-Optimize problem to refer to the problem of
predicting ĉ, to improve the evaluation of x?(ĉ).

2.2 Learning Paradigms

The defining challenge of the Predict-Then-Optimize problem setting is the gap in modeling
between the prediction and the optimization components: while m! is trained to predict ĉ,
it is evaluated based on the subsequently computed x?(ĉ). Standard ML approaches, based
on the empirical risk minimization (ERM) (Vapnik, 1999), use standard loss functions
L, such as mean squared error or cross-entropy, in order to learn to predict ĉ = m!(z).
The learning is supervised by by the ground-truth c. However, in principle, for Predict-
Then-Optimize problems, it is desirable to train m! to make predictions ĉ that optimize
the evaluation criterion on x?(ĉ) directly. This distinction motivates the definition of two
alternative learning paradigms for Predict-Then-Optimize problems.

103

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Prediction-focused learning (PFL). A straightforward approach to this supervised
ML problem is to train the model to generate accurate parameter predictions ĉ with respect
to ground-truth values c. This paper introduces the term prediction-focused learning to refer
to this approach (also called two-stage learning (Wilder, Dilkina, & Tambe, 2019a)) because
the model is trained with a focus on the accuracy of the parameter predictions preceding
the decision model. Here, the training is agnostic of the downstream CO problem. At the
time of making the decision, the pre-trained model’s predictions ĉ are passed to the CO
solvers which solve (1) to return x?(ĉ). Typical ML losses, such as the mean squared error
(MSE) or binary cross entropy (BCE), are used to train the prediction model in this case.

MSE (ĉ, c) =
1

N
kc� ĉk2 (2)

Such loss functions, like Eq. (2), which measure the prediction error of ĉ with respect to c,
are referred to as prediction losses. Algorithm 1 illustrates PFL with MSE loss.

Decision-focused learning (DFL). By contrast, in decision-focused learning, the ML
model is trained to optimize the evaluation criteria which measure the quality of the result-
ing decisions. As the decisions are realized after the optimization stage, this requires the
integration of prediction and optimization components, into a composite framework which
produces full decisions. From this point of view, generating the predicted parameters ĉ is
an intermediary step of the integrated approach, and the accuracy of ĉ is not the primary
focus in training. The focus, rather, is on the error incurred after optimization. A measure
of error with respect to the integrated model’s prescriptive decisions, when used as a loss
function for training, is henceforth referred to as a task loss. The essential di↵erence from
the aforementioned prediction loss is that it measures the error in x?(ĉ), rather than in ĉ.

The objective value achieved by using the predicted x?(ĉ) is generally suboptimal with
respect to the true objective parameters c. Often, the end goal is to generate predictions
ĉ with an optimal solution x?(ĉ) whose objective value in practice (i.e., f(x?(ĉ), c)) comes
close to the full-information optimal value f(x?(c), c). In such cases, a salient notion of task
loss is the regret, defined as the di↵erence between the full-information optimal objective
value and the objective value realized by the prescriptive decision. Equivalently, it is the
magnitude of suboptimality of the decision x?(ĉ) with respect to the optimal solution x?(c)
under ground-truth parameters c:

Regret (x?(ĉ), c) = f(x?(ĉ), c)� f(x?(c), c) (3)

Note that minimizing regret is equivalent to minimizing the value of f(x?(ĉ), c), since the
term f(x?(c), c) is constant with respect to the prediction model. While regret may be
considered the quintessential example of a task loss, other task losses can arise in practice.
For example, when the ground-truth target data are observed in terms of decision values
x?, rather than parameter values c, they may be targeted using the typical training loss
functions such as MSE (x?(ĉ),x?).

Relationship between prediction and task losses. As previously mentioned, an ML
model is trained without considering the downstream CO problem in prediction-focused
learning for Predict-Then-Optimize tasks; still the ML model is evaluated at test time on
the basis of its resulting CO problem solutions. This is based on an underlying assumption

104

Decision-Focused Learning: A Survey

that generating accurate predictions with respect to a standard prediction loss will result
in good prescriptive decisions. Note that zero prediction loss always implies zero task loss,
since ĉ = c implies x?(ĉ) = x?(c). However, in practice, it is impossible to learn an ML
model that makes no prediction error on any sample. The model error can only be minimized
in one metric, and the minimization of the prediction error and the resulting decision error
do not in general coincide (Demirović, Stuckey, Bailey, Chan, Leckie, Ramamohanarao,
& Guns, 2019). Furthermore, the prediction loss and the task loss are, in general, not
continuously related. These principles are illustrated by the following example.

Example. The shortcomings of training with respect to prediction errors can be illus-
trated with a simple CO problem. For this illustration, consider a knapsack problem
(Pisinger & Toth, 1998). The objective of the knapsack problem is to select a maximal-value
subset from an overall set of items, each having its own value and unit weight, subject to a
capacity constraint, which imposes that the number of selected items cannot be higher than
the capacity C. This knapsack problem with unit weights can be formulated as follows:

x?(c) = argmax
x2{0,1}

c>x s.t.

X

i

xi  C (4)

In a Predict-Then-Optimize variant of this knapsack problem, the item weights and
knapsack capacity are known, but the item values are unknown and must be predicted
using observed features. The ground-truth item value c implies the ground-truth solution
x?(c). Overestimating the values of the items that are chosen in x?(c) (or underestimating
the values of the items that are not chosen) increases the prediction error. Note that these
kind of prediction errors, even if they are high, do not a↵ect the solution, and thus do not
a↵ect the task loss either. On the other hand, even low prediction errors for some item
values may change the solution, a↵ecting the task loss. That is why after a certain point,
reducing prediction errors does not decrease task loss, and sometimes may increase it. DFL
aims to address this shortcoming of PFL: by minimizing the task loss directly, prediction
errors are implicitly traded o↵ on the basis of how they a↵ect the resulting decision errors.

The discrepancy between the prediction loss and the task loss has been exemplified in
Figure 2 for a very simple knapsack problem with only two items. For this illustration,
assume that both the items are of unit weights and the capacity of the knapsack is one, i.e.,
only one of the two items can be selected. The true values of the first and second items are
2.5 and 3 respectively. The point (2.5, 3), marked with Q, represents the true item values. In
this case the true solution is (0, 1), which corresponds to selecting only the second item. It
is evident that any prediction in the blue shaded region leads to this solution. For instance,
the point (1.5, 3), marked with :, corresponds to predicting 1.5 and 3 as values of the two
items respectively and this results in selecting the second item. On the other hand, the
point (2.5, 2), marked with 6, triggers the wrong solution (1, 0), although the squared error
values of : and 6 are identical. Also, note that overestimating the value of the second item
does not change the solution. For instance, the point (1.5, 4), marked with s, corresponds
to overestimating the value of the second item to 4 while keeping the value of the first item
the same as the point in :. This point is positioned directly above the point in : and still
stays in the blue-shaded region. Similarly, the point (0.5, 3), marked with t, results from
underestimating the value of the first item and is in the blue shaded region too. Although

105

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Value of Item 1

V
al

u
e

of
It

em
2

Figure 2: An illustrative numerical example with a knapsack problem with two items to
exemplify the discrepancy between prediction error and regret. The figure illustrates that
two points can have the same prediction error but di↵erent regret. Furthermore, it demon-
strates that overestimating the values of the selected items or underestimating the values
of the items that are left out does not change the solution, and thus does not increase the
regret, even though the prediction error does increase.

these two points have higher values of squared error than the point marked with 6, they
trigger the right solution, resulting in zero regret.

Empirical risk minimization and bilevel form of DFL. The minimization of either
the expected prediction loss in PFL or the expected task loss in DFL, can be expressed as
an Empirical Risk Minimisation (ERM) problem over a training dataset D ⌘ {(zi, ci)}Ni=1.
The desired objective of training is to learn a model, m!, that minimizes the expected loss.
However, as the joint probability distribution of (z, c) is often unknown, ERM minimizes
the empirical loss instead, i.e., ERM minimizes the average loss, calculated over D.

Note that ERM typically involves making a point prediction ĉ to minimize expected
loss. However, besides point predictions, it is also possible to estimate the distribution
of ĉ. The advantage of distributional estimation is that it allows the decision-maker to
consider extreme cases of the parameter distribution, leading to more robust decisions.
However, minimizing distributionally robust loss (Levy, Carmon, Duchi, & Sidford, 2020)
is inherently more challenging than ERM, even for standard ML problems. As a result,
most of the surveyed works focus on minimizing expected task loss in DFL. Hence, learning
techniques for minimizing expected task loss are the main focus in this survey paper.

The respective ERM problems below assume the use of the MSE and regret loss functions
for PFL and DFL respectively, but the principles described here hold for a wide range of
alternative loss functions. PFL, by minimizing the prediction error with respect to the

106

Decision-Focused Learning: A Survey

ground-truth parameters directly, takes the form of a standard regression problem:

min
!

1

N

NX

i=1

km!(zi)� cik
2, (5)

which is an instance of unconstrained optimization. In the case of DFL, it is natural to
view the ERM as a bilevel optimization problem:

min
!

1

N

NX

i=1

⇣
f(x?(ĉi), ci)� f(x?(ci), ci)

⌘
(6a)

s.t. ĉi = m!(zi); x?(ĉi) = argmin
x2F

f(x, ĉi) (6b)

The outer-level problem (6a) minimizes task loss on the training set while the inner-level
problem (6b) computes the mapping c ! x?(c). Solving (6) is computationally more
challenging than solving (5) in the prediction-focused paradigm. In both cases, optimization
by stochastic gradient descent (SGD) is the preferred method for training neural networks.

Algorithms 1 and 2 compare the gradient descent training schemes for PFL and DFL.
Algorithm 1 is a standard application of gradient descent, in which the derivatives of Line
6 are generally well-defined and can be computed straightforwardly (typically by automatic
di↵erentiation (Baydin, Pearlmutter, Radul, & Siskind, 2018)). Line 7 of Algorithm 2 shows
that direct di↵erentiation of the mapping c ! x?(c) can be used to form the overall task

loss gradient dL
d! , by providing the required chain rule term dx?(ĉ)

dĉ . However, this di↵eren-
tiation is nontrivial as the mapping itself lacks a closed-form representation. Furthermore,
many interesting and practical optimization problems are inherently nondi↵erentiable and
even discontinuous as functions of their parameters, precluding the direct application of
Algorithm 2 to optimize (6) by gradient descent. The following subsections review the
main challenges of implementing Algorithm 2.

2.3 Challenges to Implement Decision-Focused Learning

Di↵erentiation of CO mappings. When considering gradient-based learning techniques,
one needs to minimize the task loss by backpropagating the error over it. Hence, the par-
tial derivatives of the task loss with respect to the prediction model parameters ! must
be computed to carry out the parameter update at Line 7 of Algorithm 2. Since the task
loss L is a function of x?(ĉ), the gradient of L with respect to ! can be expressed in the
following terms by using the chain rule of di↵erentiation:

dL(x?(ĉ), c)

d!
=

dL(x?(ĉ), c)

dx?(ĉ)

dx?(ĉ)

dĉ

dĉ

d!
(7)

The first term in the right side of (7), can be computed directly as L(x?(ĉ), c) is typically
a di↵erentiable function of x?(ĉ). A deep learning library (such as PyTorch (Paszke, Gross,
Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, et al., 2019)) computes
the last term by representing the neural network as a computational graph and applying
automatic di↵erentiation (autodi↵) in the reverse mode (Baydin et al., 2018). However,

the second term, dx?(ĉ)
dĉ , may be nontrivial to compute given the presence of two major

107

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

ML Model Constrained Optimization Task loss

Training data

z

<latexit sha1_base64="/ZiqfwC7h3kmqLrq7JaIb0yHQX8=">AAAC2XicfVFLb9QwEPaGVwmvFo5cIlZICKFVnN1st7dK9MAFUSR2WymJKseZ3bq1nch2oIuVAzfECYkT/Bd+CP8GZzcHtq0YyZpP38x8nkdecaZNGP7peTdu3rp9Z+uuf+/+g4ePtncez3RZKwpTWvJSHedEA2cSpoYZDseVAiJyDkf5+es2fvQRlGal/GCWFWSCLCSbM0qMo2ZpLuzn5mS7Hw7ClQVXAe5AH3V2eLLT+50WJa0FSEM50TrBYWUyS5RhlEPjp7WGitBzsoDEQUkE6Myu2m2C544pgnmp3JMmWLH/VlgitF6K3GUKYk715VhLXhvLxXV0Upv5JLNMVrUBSdf/z2semDJoVxIUTAE1fOkAoYq5EQJ6ShShxi3O91MJn2gpBJGFTRUUTYIz39p01XeiFnlmw8F4OBnvha/apcWT3WELcBhHw6aPm2ZTIuc1rDU2JcJ4jHHsKiM8jGPsQDwKo2jSSrguDsBtWsFbN967ChQxpXppU6IWglw0tvP/S2Nynea8Ozi+fN6rYBYN8Ggwej/q7x90p99CT9Ez9AJhtIv20Rt0iKaIojP0Hf1Ev7zE++J99b6tU71eV/MEbZj34y+cVN9l</latexit>

c, x�(c)

<latexit sha1_base64="lmevM1o8rcAUGL4NzbVwkx5RsaQ=">AAAC8XicfVFLb9NAEN6YVzGvFI5wsIiQCqoirxOn4VaJHrggikTaSraJ1utJuqp3be2uodHKF/4FN8QJiRPc+SH8G9axD6StGGk1n76Z+XYeaZkzpX3/T8+5dv3GzVtbt907d+/df9DffnikikpSmNEiL+RJShTkTMBMM53DSSmB8DSH4/TsVRM//ghSsUK816sSEk6Wgi0YJdpS8/6TOOWG1rte48/rD7HSRO605PN5f+AP/bV5lwHuwAB1djjf7v2Os4JWHISmOVEqwn6pE0OkZjSH2o0rBSWhZ2QJkYWCcFCJWY9Re88sk3mLQtontLdm/60whCu14qnN5ESfqouxhrwylvKr6KjSi2limCgrDYK2/y+q3NOF16zKy5gEqvOVBYRKZkfw6CmRhGq7UNeNBXyiBedEZCaWkNURTlxj4nXfkVymifGHk9F08tLfbZYWTvdGDcB+GIzqAa7rTYk0r6DV2JTwwwnGoa0M8CgMsQXh2A+CaSNhuzgAu2kJb+x4b0uQRBfyhYmJXHJyXpvO/y+NiTbNentwfPG8l8FRMMTj4fjdeLB/0J1+Cz1GT9EOwmgP7aPX6BDNEEWf0Xf0E/1ylPPF+ep8a1OdXlfzCG2Y8+MvwxjojQ==</latexit>

z

<latexit sha1_base64="/ZiqfwC7h3kmqLrq7JaIb0yHQX8=">AAAC2XicfVFLb9QwEPaGVwmvFo5cIlZICKFVnN1st7dK9MAFUSR2WymJKseZ3bq1nch2oIuVAzfECYkT/Bd+CP8GZzcHtq0YyZpP38x8nkdecaZNGP7peTdu3rp9Z+uuf+/+g4ePtncez3RZKwpTWvJSHedEA2cSpoYZDseVAiJyDkf5+es2fvQRlGal/GCWFWSCLCSbM0qMo2ZpLuzn5mS7Hw7ClQVXAe5AH3V2eLLT+50WJa0FSEM50TrBYWUyS5RhlEPjp7WGitBzsoDEQUkE6Myu2m2C544pgnmp3JMmWLH/VlgitF6K3GUKYk715VhLXhvLxXV0Upv5JLNMVrUBSdf/z2semDJoVxIUTAE1fOkAoYq5EQJ6ShShxi3O91MJn2gpBJGFTRUUTYIz39p01XeiFnlmw8F4OBnvha/apcWT3WELcBhHw6aPm2ZTIuc1rDU2JcJ4jHHsKiM8jGPsQDwKo2jSSrguDsBtWsFbN967ChQxpXppU6IWglw0tvP/S2Nynea8Ozi+fN6rYBYN8Ggwej/q7x90p99CT9Ez9AJhtIv20Rt0iKaIojP0Hf1Ev7zE++J99b6tU71eV/MEbZj34y+cVN9l</latexit>

dL(x�(ĉ), c)

dĉ

<latexit sha1_base64="GPrg2slS9/IKzLuFLyhWRa4aoXM=">AAADH3icfVHLbhMxFHWGVwmPprBkYxEhBVRF40kmDbtKdIEQiCKRtlI8RB6Pk1gde0a2BxpZ/hj+gB9gzQ6xQuoKPgVPEgnSVlzJ8tE59177npuWOdcmDM8bwbXrN27e2rrdvHP33v3t1s6DI11UirIRLfJCnaREs5xLNjLc5OykVIyINGfH6emLWj/+yJTmhXxvFiVLBJlJPuWUGE9NWq/wVBFqYQaxIGZOSW5fuw7EqbBn7gPWhijYwXNirKcgdU93l5oHzvqavwJ0k1Y77IbLgJcBWoM2WMfhZKfxFWcFrQSThuZE6zEKS5NYogynOXNNXGlWEnpKZmzsoSSC6cQuh3bwiWcyOC2UP9LAJftvhSVC64VIfWY9mb6o1eSVWiquoseVmQ4Ty2VZGSbp6v1plUNTwNpYmHHFqMkXHhCquB8B0jnx5hpvf7OJJftECyGIzCxWLHNjlDStxct/j9UsTWzYHfSGg+fhbm1aPNzr1QCFcdRzbeTcZos0r9iqx2aLMB4gFPvKCPXiGHkQ98MoGtYt/C8OmHdasTd+vLclU8QU6pnFRM0EOXN2ff8vjctVmr/9wtHF9V4GR1EX9bv9d/32/sF69VvgEXgMOgCBPbAPXoJDMAIUfAE/wS/wO/gcfAu+Bz9WqUFjXfMQbERw/gdv9PqM</latexit>

x�(ĉ) = argmin
x�F

f(x, ĉ)

<latexit sha1_base64="RGDBvRPfdJ8raagAuAqluzJIg3g=">AAADJnicfVHLbhMxFHWGVwmvFJZsLCKkgKponGTSsECqRIXYIFqJtJXiIfI4TmLV9oxsT5vImv/hD1jxC+wQYoHECn4DzySLpq24knWPzn343nuSTHBjw/BnLbhx89btO1t36/fuP3j4qLH9+MikuaZsSFOR6pOEGCa4YkPLrWAnmWZEJoIdJ6dvyvjxGdOGp+qjXWYslmSm+JRTYj01bhziRLpF8QkbS3QLz4l1noG0eAFfQ0z0THI1rqgFxFxBLImdUyLc26KA01YV2IEX68aNZtgOK4NXAVqDJljbwXi79hVPUppLpiwVxJgRCjMbO6Itp4IVdZwblhF6SmZs5KEikpnYVbsX8LlnJnCaav+UhRV7scIRacxSJj6zHN1cjpXktbFEXkePcjsdxI6rLLdM0dX/01xAm8LyvnDCNaNWLD0gVHO/AqRzogm1XoV6HSt2TlMpiZo4rNmkGKG47hyu5h7pWRK7sN3vDvqvwp3yaNFgt1sCFEadbtFERbHZIhE5W/XYbBFGfYQiX9lB3ShCHkS9sNMZlC38FPvMX1qz9369DxnTxKb6pavkJovCrf3/0rhapXnvBUeX5b0Kjjpt1Gv3DnvNvf219FvgKXgGWgCBXbAH3oEDMAQUfAG/wB/wN/gcfAu+Bz9WqUFtXfMEbFjw+x+j0P0D</latexit>

dx�(ĉ)

dĉ

<latexit sha1_base64="V5WBvDAjgUAT/dNfiAQLVBVBVsQ=">AAADMHicfVHLjtMwFHXDayiP6cCSjUWFNCBU2Xm06W4kZsEGMUh0ZqQkVI7rttHESWQ7MJXln2LPgr+AFWKFxAr+ACctgo4GrmT56Nzrc33vSas8kwqhzx3nytVr12/s3Ozeun3n7m5v796xLGtB2YSWeSlOUyJZnhVsojKVs9NKMMLTnJ2kZ8+a/MlbJmRWFq/VqmIJJ4sim2eUKEtNe5GOW5FILNJEo0GA8HjoPUUDZMMbWeAGaBx6Jp4LQvUMxinX5+ZNLBUR+/GSKG0ZSM1jA5vsH8KYaa+PBuNwiPwQNoKh53lw3cL1IW5bINQHmzia7nU+xLOS1pwViuZEygijSiWaCJXRnJluXEtWEXpGFiyysCCcyUS3Axj4yDIzOC+FPYWCLfv3C024lCue2kpO1FJezDXkpbmUX0ZHtZqHic6KqlasoOv+8zqHqoTNpuEsE4yqfGUBoSKzI0C6JHaLyvrR7cYFe0dLzkkx07FgMxPhpKsv2DH0wuEYtXYE4aj1BaPA9UwfG7MtkeY1W2tsS6BgiHHQGIm9IMAWBD5y3bCRsL84ZHbTgr2w472smCCqFE90TMSCk3OjN/f/yrJiXWZva/hvV+G/wbE7wP7Af+X3Dw431u+AB+Ah2AcYjMABeA6OwARQ8BF8Az/AT+e988n54nxdlzqdzZv7YCuc778APkb+7w==</latexit>

ĉ

<latexit sha1_base64="beq0tbWr+J4Hn2PYfyz17nQUX54=">AAAC33icfVFLbxMxEHaWV1kebeHIZUWEhBCK7E02DbdK9MAFUSTSVtpdVV5nkli1vSvbC0TWnrkhTkic4I/wQ/g3eJM9kLZiJGs+fTPzeR5FJbixGP/pBTdu3rp9Z+dueO/+g4e7e/uPTkxZawZTVopSnxXUgOAKppZbAWeVBioLAafFxes2fvoRtOGl+mBXFeSSLhSfc0atp7JsSa3LCulY05zv9fEAry26CkgH+qiz4/P93u9sVrJagrJMUGNSgiubO6otZwKaMKsNVJRd0AWkHioqweRu3XQTPfPMLJqX2j9lozX7b4Wj0piVLHympHZpLsda8tpYIa+j09rOJ7njqqotKLb5f16LyJZRu5hoxjUwK1YeUKa5HyFiS6ops359YZgp+MRKKamauUzDrElJHjqXrftO9aLIHR6Mh5PxK/yyXVoyORi2gOAkHjZ90jTbEoWoYaOxLYGTMSGJr4zJMEmIB8kIx/GklfBdHIHftIa3frx3FWhqS/3CZVQvJP3cuM7/L42rTZr3/uDk8nmvgpN4QEaD0ftR//CoO/0OeoKeoueIoAN0iN6gYzRFDFXoO/qJfgU0+BJ8Db5tUoNeV/MYbVnw4y+eMOIb</latexit>

dL(x�(ĉ), c)

d x�(ĉ)

<latexit sha1_base64="JWyisA1rGsEhKSgKf+IXoC92sP8=">AAADV3icfVHRihMxFM20utaqa+s+KPgSLEKVUiZtp1vfFtwHHxRXsLsLzVgymbQdNpkZkoy7JeTF//JD9g/8C820FWy7eCHkcO659+bmRDlPlPb9W69SvXf/4EHtYf3R4yeHTxvNZ+cqKyRlY5rxTF5GRDGepGysE83ZZS4ZERFnF9HV+zJ/8Z1JlWTpV73MWSjIPE1mCSXaUdPGD4NXTSZyHoXG7/qr6OwBi2eSUANjiAXRC0q4+WjbEEfC3NhvWGkiYRsviDaOgtS+6axyDlgT486WcEtn7bTR+jsF7gO0AS2wibNp0/uJ44wWgqWacqLUBPm5Dg2ROqGc2TouFMsJvSJzNnEwJYKp0Kz2tPC1Y2I4y6Q7qYYr9t8KQ4RSSxE5Zbmp2s2V5J25SNxFTwo9G4UmSfNCs5Su588KDnUGS0NgnEhGNV86QKhM3AqQLoj7bO1sq9dxyq5pJgRJY4Mli+0EhXWz49qwPxq+W5sVjI77JUB+0OvbFrJ2u0XEC7busWN8MEQocJU91A8C5EAw8Hu9UdnCveKUuZ+W7JNb73POJNGZfGswkXNBbqzZ3P+TJela5m5nONq1dx+c97po0B18GbROTjfW18BL8Aq0AQLH4AR8AGdgDCj45R16z70XldvK7+pBtbaWVrxNzRHYimrzDxc7B8k=</latexit>

L(x�(ĉ), c)

<latexit sha1_base64="PQbBcif5Q30KzbFnEtWrCMGq6l4=">AAADBXicfVHLbhMxFHWmPEp4NC1LNhYRUkBVZE8yadhVogsWIIpE2kqZIfI4TmLV9oxsDzSyZs0f8BfsECsQK/gH/gZPMgvSVlzJukfn3nt8H2kuuLEI/WkEWzdu3rq9fad59979Bzut3b0TkxWashHNRKbPUmKY4IqNLLeCneWaEZkKdpqev6jipx+YNjxT7+wyZ4kkc8VnnBLrqUkLxZLYBSXCvSo7ME6luyjfx8YSDTvxgljnKUjLp/urmAeTVht10crgVYBr0Aa1HU92Gz/iaUYLyZSlghgzxii3iSPacipY2YwLw3JCz8mcjT1URDKTuNVoJXzimSmcZdo/ZeGK/bfCEWnMUqY+sxrEXI5V5LWxVF5Hjws7GyaOq7ywTNH1/7NCQJvBan1wyjWjViw9IFRzPwKkC6IJtX7JzWas2EeaSUnU1MWaTcsxTprOxau+x3qeJg51B73h4Dnar5YWDQ96FcAoCntlG5flpkQqCrbW2JRA0QDjyFeGuBdF2IOoj8JwWEn4Lo6Y37Rmr/14b3Kmic30MxcTPZfkonS1/18aV+s07/3B8eXzXgUnYRf3u/23/fbhUX36bfAIPAYdgMEBOAQvwTEYAQo+g+/gF/gdfAq+BF+Db+vUoFHXPAQbFvz8C1UX8Bk=</latexit>

Backward pass
Forward pass

x�(ĉ)

<latexit sha1_base64="wei64auXZFhLljDrmST++5aInSg=">AAAC7nicfVHNbtNAEN64/BTz07ScEBeLCKkgFHmdOA23SvTABVEk0layTbReT5JVvWtrdw2NVhZvwQ1xQuIET8CD8DasEx9IWzHSaj59M/Pt/KRlzpT2/T8dZ+vGzVu3t++4d+/df7DT3d07UUUlKUxokRfyLCUKciZgopnO4ayUQHiaw2l6/qqJn34EqVgh3utlCQknc8FmjBJtqWn3UZxyc1F/iJUmcj9eEG0s49H62bTb8/v+yryrALegh1o7nu52fsdZQSsOQtOcKBVhv9SJIVIzmkPtxpWCktBzMofIQkE4qMSsZqi9p5bJvFkh7RPaW7H/VhjClVry1GZyohfqcqwhr42l/Do6qvRsnBgmykqDoOv/Z1Xu6cJr9uRlTALV+dICQiWzI3h0QSSh2m7TdWMBn2jBORGZiSVkdYQT15h41Xck52li/P5oMB699F80SwvHB4MGYD8MBnUP1/WmRJpXsNbYlPDDEcahrQzwIAyxBeHQD4JxI2G7OAK7aQlv7HhvS5BEF/K5iYmcc3JRm9b/L42JdZr19uD48nmvgpOgj4f94bth7/CoPf02eoyeoH2E0QE6RK/RMZogij6j7+gn+uWUzhfnq/Ntnep02pqHaMOcH38Bi3DnVg==</latexit>

Figure 3: In decision-focused learning, the neural network model is trained to minimize the
task loss

challenges: (1) The mapping ĉ ! x?(ĉ), as defined by the solution to an optimization
problem, lacks a closed form which can be di↵erentiated directly, and (2) for many inter-
esting and useful optimization models, the mapping is nondi↵erentiable in some points, and
has zero-valued gradients in others, precluding the straightforward use of gradient descent.
As shown in the next subsection, even the class of linear programming problems, widely
used in decision modeling, is a↵ected by both issues. Section 3 details the various existing
approaches aimed at overcoming these challenges.

Algorithm 1 Gradient-descent in
prediction-focused learning
Input: training data D⌘
{(zi, ci)}Ni=1
Hyperparams: ↵- learning rate

1: Initialize !.
2: for each epoch do
3: for each instance (z, c) do
4: ĉ = m!(z)
5: L = (ĉ� c)2

6: ! ! � ↵dL
dĉ

dĉ
d!

7: end for
8: end for

Algorithm 2 Gradient-descent in decision-
focused learning with regret as task loss

Input: F , training data D ⌘ {(zi, ci,x?(ci)}Ni=1;
Hyperparams: ↵- learning rate

1: Initialize !.
2: for each epoch do
3: for each instance (z, c,x?(c)) do
4: ĉ = m!(z)
5: x?(ĉ) = argminx2F f(x, ĉ)
6: L = f(x?(ĉ), c)� f(x?(c), c)

7: ! ! � ↵ dL
dx?(ĉ)

dx?(ĉ)
dĉ

dĉ
d!

8: end for
9: end for

Computational cost. Another major challenge in DFL is the computational resources
required to train the integrated prediction and optimization model. Note that Line 5 in
Algorithm 2 evaluates x?(ĉ). This requires solving and di↵erentiating the underlying CO
problem for each observed data sample, in each epoch. This imposes a significant compu-
tational cost even when dealing with small-scale and e�ciently solvable CO problems, but
can become an impediment in the case of large and (NP-)hard optimization problems.

108

Decision-Focused Learning: A Survey

2.4 Optimization Problem Forms

The e↵ectiveness of solving an optimization problem depends on the specific forms of the
objective and constraint functions. Considerable e↵ort has been made to develop e�cient
algorithms for certain optimization forms. Below, the readers are provided an overview of
the key and widely utilized types of optimization problem formulations.

2.4.1 Convex Optimization

In convex optimization problems, a convex objective function is to be optimized over a
convex feasible space. This class of problems is distinguished by the guarantee that any
locally optimal solution is also globally optimal (Boyd & Vandenberghe, 2014). Since many
optimization problems converge provably to local minima, convex problems are considered
to be reliably and e�ciently solvable as opposed to nonconvex problems. Despite this, con-
vex optimization mappings still impose significant computational overhead on Algorithm 2
since most convex optimizations are orders of magnitude more complex than conventional
neural network layers (Amos & Kolter, 2017). Like all parametric optimization problems,
convex ones are implicitly defined mappings from parameters to optimal solutions, lack-
ing a closed form that can be di↵erentiated directly. However as detailed in Section 3.1.1,
they can be canonicalized to a standard form, which facilitates automation of their solution
and backpropagation by a single standardized procedure (Agrawal, Amos, Barratt, Boyd,
Diamond, & Kolter, 2019a).

The class of convex problems is broad enough to include some that yield mappings x?(ĉ)
that are di↵erentiable everywhere, and some that do not. The linear programs, which are
convex and form nondi↵erentiable mappings with respect to their objective parameters, are
notable examples of the latter case and are discussed next.

2.4.2 Linear Programming

Linear Programs (LPs) are convex optimization problems whose objective and constraints
are composed of a�ne functions. These programs are predominant as decision models
in operations research, and have endless industrial applications since the allocation and
transfer of resources is typically modeled by linear relationships between variables (Bazaraa,
Jarvis, & Sherali, 2008). The parametric LPs considered in this survey paper take the
following form:

x?(c) = argmin
x

c>x (8a)

s.t. Ax = b (8b)

x � 0 (8c)

Compared to other classes of convex problems, LPs admit e�cient solution methods, even
for large-scale problems (Bazaraa et al., 2008; Ignizio & Cavalier, 1994). From a DFL stand-
point, however, LPs pose a challenge, because the mapping c! x?(c) is nondi↵erentiable.
Although the derivatives of mapping (8) are defined almost everywhere, they provide no
useful information for gradient descent training. To see this, first note the well-known fact
that a linear program always takes its optimal value at a vertex of its feasible set (Bazaraa
et al., 2008). Since the number of vertices in any such set is finite, (8) maps a continuous

109

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

parameter space to a discrete set of solutions. As such, it is a piecewise constant mapping.
Therefore its derivatives are zero almost everywhere, and undefined elsewhere. Prevalent
strategies for incorporating linear programs in DFL thus typically rely on di↵erentiating
smooth approximations to the LP, as detailed in Section 3.1.2.

Many OR problems, such as the allocation and planning of resources, can be modeled as
LPs. Also many prototypical problems in algorithm design (e.g., sorting and top-k selection)
can be formulated as LPs with continuous variables, despite admitting only discrete integer
solutions, by relying on the total unimodularity of the constraint matrices (Bazaraa et al.,
2008). In what follows, some examples of machine learning models of LPs and how they
might occur in a Predict-Then-Optimize context are given.

Shortest paths. Given a directed graph with a given start and end node, the goal in the
shortest path problem is to find a sequence of arcs of minimal total length that con-
nects the start and the end node. The decision variables are binary indicators of each
edge’s inclusion in the path. The linear constraints ensure [0, 1] bounds on each indica-
tor, as well as flow balance through each node. These flow balance constraints capture
that, except for the start and end node, each node has as many incoming selected arcs
as outgoing selected arcs. For the start node, there is one additional outgoing selected
arc, and for the end node, there is one more incoming selected arc. The parameters
in the linear objective represent the arc lengths. In many realistic settings—as well as
in several common DFL benchmarks (Elmachtoub & Grigas, 2022; Pogančić, Paulus,
Musil, Martius, & Rolinek, 2020)—these are unknown, requiring them to be predicted
before a shortest path can be computed. This motivating example captures the realis-
tic setting in which the shortest route between two locations has to be computed, but
in which the road traversal times are uncertain (due to unknown tra�c conditions, for
example), but can be predicted from known features (such as day of the week, time
of day and weather conditions).

Bipartite matching. Given a bipartite graph with weighted arcs, where the weights are
unknown and must be predicted, the task is to choose a subset of arcs so that each node
is involved in at most one selected arc, maximizing the total weight. The variables lie
in [0, 1] indicating the inclusion of each edge and the weights are the objective param-
eters. The constraints ensure that each node is involved at most once in a selected arc.
With a complete bipartite graph, matchings can be construed as permutations, which
can be employed in tasks such as learning to rank (Kotary, Fioretto, Van Hentenryck,
& Zhu, 2022).

Sorting and Ranking. The sorting of any list of predicted values can be posed as a
linear program over a feasible region whose vertices correspond to all of the possible
permutations of the list. The related ranking, or argsort problem assigns to any length-
n list a permutation of sequential integers [n] which sorts the list. By smoothing
the linear program, these basic operations can be di↵erentiated and backpropagated
(Blondel, Teboul, Berthet, & Djolonga, 2020).

Top-k selection. Given a set of items and item values that must be predicted, the task is
to choose the subset of size k with the largest total value in selected items. In addition
to [0, 1] bounds on the indicator variables, a single linear constraint ensures that the

110

Decision-Focused Learning: A Survey

selected item indicators sum to k. A prevalent example can be found in multilabel
classification (Amos, Koltun, & Kolter, 2019; Martins & Astudillo, 2016).

Computing the maximum. This is a special case of top-k selection where k = 1. When
the LP’s objective is regularized with the entropy term H(x) = x> logx, the mapping
from predicted values to optimal solutions is equivalent to a softmax function (Agrawal
et al., 2019a).

Max-flow/ min-cut. Given a network with predefined source and sink nodes, and pre-
dicted flow capacities on each arc, the task is to find the maximum flow rate that
can be channeled from source to sink. Here the predicted flow capacities occupy the
right-hand side of the linear constraints, which is not in line with the DFL problem
formulation introduced in subsection 2.1. However, in the min-cut problem—which
is the dual linear program of the max-flow problem—the flow capacities are the pa-
rameters in the objective function. The max-flow problem can thus be cast as an
equivalent min-cut problem allowing DFL techniques to predict the flow capacities.

2.4.3 Integer Linear Programming

Integer Linear Programs (ILPs) are another mainstay in OR and AI research. ILPs di↵er
from LPs in that the decision variables x are restricted to integer values, i.e., x 2 Zk where
Zk is the set of integral vectors of appropriate dimensions. Like LPs, ILPs are challenging to
use in DFL because they yield discontinuous, nondi↵erentiable mappings. Computationally
however, they are more challenging due to their NP-hard complexity, which may preclude
the exact computation of the mapping ĉ ! x?(ĉ) at each step of Algorithm 2. Their
di↵erentiation is also significantly more challenging, since the discontinuity of their feasible
regions prevents many smoothing techniques that can be applied in DFL with LPs.

The following examples include ILPs in Predict-Then-Optimize problems.

Knapsack. The knapsack problem (4), discussed earlier, has been used to compose bench-
mark problems in several papers about DFL (Mandi, Demirović, Stuckey, & Guns,
2020; Mandi & Guns, 2020; Demirović et al., 2019). Given are weights of a set of
items, as well as a capacity. The items also have associated values, which have to
be predicted from features. The optimization task involves selecting a subset of the
items that maximizes the value of the selected items, whilst ensuring that the sum of
the associated weights does not exceed the capacity.

Travelling salesperson problem. In the travelling salesperson problem, the list of cities,
and the distances between each pair of cities, is given. The goal is to find a path
of minimal length that visits each city exactly once. In the Predict-Then-Optimize
setting, the distances between the cities first have to be predicted (Pogančić et al.,
2020) from observable empirical data.

Combinatorial portfolio optimization. Portfolio optimization involves making optimal
investment decisions across a range of financial assets. In the combinatorial Predict-
Then-Optimize variant, the decisions are discrete, and must be made on the basis
of the predicted next period’s increase in the value of several assets (Ferber, Wilder,
Dilkina, & Tambe, 2020).

111

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Diverse bipartite matching. Diverse bipartite matching problems are similar to the bi-
partite matching problems described in 2.4.2, but are subject to additional diversity
constraints (Ferber et al., 2020; Mulamba, Mandi, Diligenti, Lombardi, Bucarey, &
Guns, 2021; Mandi, Bucarey, Tchomba, & Guns, 2022). In this variant, edges have
additional properties. The diversity constraints enforce lower and upper bounds on
the proportion of edges selected with a certain property. These changes preclude
an LP formulation, by breaking the total unimodularity property possessed by the
standard bipartite matching LP.

Energy-cost aware scheduling. Energy-cost aware scheduling involves scheduling a set
of tasks across a set of machines minimizing the overall energy cost involved. As
future energy costs are unknown, they first have to be predicted (Mandi et al., 2020).

2.4.4 Integer Nonlinear Programming

In integer nonlinear programming, variables are defined over an integer domain whiles
the objective function and/or the constraints are nonlinear. Performing DFL on integer
nonlinear programs faces similar challenges as in performing DFL on ILPs: their implicitly
defined mappings x?(ĉ) result in zero-valued gradients almost everywhere. Additionally,
because of their nonlinear nature, many of the techniques developed for DFL with ILPs,
which assume linearity, do not directly translate to integer nonlinear programs (Elmachtoub
& Grigas, 2022; Pogančić et al., 2020). To the best of our knowledge, no DFL technique has
specifically been developed for or tested on integer nonlinear programs. The most closely
related work is (Ferber, Huang, Zha, Schubert, Steiner, Dilkina, & Tian, 2023b), which
employs approximate ILP surrogates for integer nonlinear programs, which are then used
to compose a DFL training procedure using known techniques for di↵erentiation through
the ILP surrogate model.

3. Review of Decision-focused Learning Methodologies

Gradient-based learning is a popular learning approach in ML, and likewise, gradient-based
DFL techniques have been extensively studied, with the added benefit that (deep) neural
networks can be used as the underlying ML model. However, other ML frameworks, such
as tree-based methods or search-based methods, do not require gradients at all and can
side-step the issue of zero-valued gradients altogether. Hence, DFL methodologies can be
classified into two broad categories: I. Gradient-based DFL, and II. Gradient-free DFL.
First, gradient-based DFL will be surveyed, followed by gradient-free DFL.

3.1 Review of Gradient-based DFL Methodologies

This subsection will describe several DFL techniques which address the challenge of di↵er-
entiating an optimization mapping for DFL in gradient-based training. In essence, di↵er-
ent approaches propose di↵erent smoothed surrogate approximations of dx?(ĉ)

dĉ or dL(x?(ĉ))
dĉ ,

which is used for backpropagation. This paper proposes the first categorization of existing
gradient-based DFL techniques into the following four distinct classes:

112

Decision-Focused Learning: A Survey

Objective
Function

Constraint
Functions

Decision
Variables

CO
Solver

Analytical

Di↵erentiation

of Optimization

Mappings

Strictly Convex Convex Continuous Primal-Dual
Solver

Analytical

Smoothing of

Optimization

Mappings

Linear Linear Continuous/
Discrete

Primal-Dual
Solver

Smoothing

by Random

Perturbations

Linear in the
Predicted
Parameter

Not limited to
specific form

Continuous/
Discrete

Solver
agnostic

Di↵erentiation

of Surrogate

Loss Functions

Linear in the
Predicted
Parameter

Not limited to
specific form

Continuous/
Discrete

Solver
agnostic

Utilize

Figure 4: An overview of gradient-based DFL methodologies categorized into four classes.

Analytical Di↵erentiation of Optimization Mappings: Techniques in this category
aim to compute exact derivatives for backpropagation by di↵erentiating the optimality
conditions for certain optimization problem forms, for which the derivative exists and
is non-zero.

Analytical Smoothing of Optimization Mappings: These approaches deal with com-
binatorial optimization problems (for which the analytical derivatives are zero almost
everywhere) by performing smoothing of combinatorial optimization problems, which
results in approximate problems that can be di↵erentiated analytically.

Smoothing by Random Perturbations: Techniques under this category utilize implicit
regularization through perturbations, constructing smooth approximations of opti-
mization mappings.

Di↵erentiation of Surrogate Loss Functions: Techniques under this category propose
surrogate loss functions of specific task loss such as regret. These surrogate losses
reflect the quality of the decisions and they provide easy-to-compute gradients or
subgradients for gradient-based training.

Figure 4 presents key characteristics of these four methodology classes, highlighting the
types of problems that can be addressed within each class. Next, each category is thoroughly
described.

113

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

3.1.1 Analytical Differentiation of Optimization Mappings

As discussed before, di↵erentiating through parametric CO problems comes with two main
challenges. First, since CO problems are complex, implicitly defined mappings from pa-
rameters to solutions; computing the derivatives is not straightforward. Second, since some
CO problems result in piecewise-constant mappings, their derivatives are zero almost ev-
erywhere, and do not exist elsewhere.

This subsection pertains to CO problems for which the second challenge does not ap-
ply, i.e., problems that are smooth mappings. For these problems, all that is required to
implement DFL is direct di↵erentiation of the mapping in Eq. (1).

Di↵erentiating unconstrained relaxations. An early work discussing di↵erentiation
through constrained argmin problems in the context of machine learning is (Gould, Fer-
nando, Cherian, Anderson, Cruz, & Guo, 2016). It first proposes a technique to di↵erentiate
the argmin of a smooth, unconstrained convex function. When V (c) = argminx f(c,x), it
can be shown that when all second derivatives of f exist,

dV (c)

dc
= �

fcx(c, V (c))

fxx(c, V (c))
(9)

where fcx is the second partial derivative of f with respect to c followed by x. This follows
from implicit di↵erentiation of the first-order optimality conditions

d

dx
f(c, V (c)) = 0 (10)

with respect to c, and rearranging terms. Here the variables c are the optimization problem’s
defining parameters, and the variables x are the decision variables.

This technique is then extended to find approximate derivatives to constrained opti-
mization problems with inequality constraints gi(c,x)  0, by first relaxing the problem to
an unconstrained problem, by means of the log-barrier function

F (c,x) = f(c,x)� µ
MinX

i

log(�gi(c,x)) (11)

where Min is the number of inequality constraints. Then argminx F (c,x) is di↵erentiated
with respect to c for some choice of the scaling factor µ. Since this approach relies on
approximations and requires hyperparameter tuning for the factor µ, subsequent works
focus on di↵erentiating CO problems directly via their own global conditions for optimality,
as discussed next.

Di↵erentiating KKT conditions of quadratic programs More recent approaches are
based on di↵erentiating the optimality conditions of a CO problem directly, i.e., without
first converting it to an unconstrained problem. Consider an optimization problem and its
optimal solution:

x? = argmin
x

f(x) (12a)

s.t. g(x)  0 (12b)

h(x) = 0 (12c)

114

Decision-Focused Learning: A Survey

and assume that f , g and h are di↵erentiable functions of x. The Karush–Kuhn–Tucker
(KKT) conditions are a set of equations expressing optimality conditions for a solution x?

of problem (12) (Boyd & Vandenberghe, 2014):

rf(x?) +
X

i

wirhi(x
?) +

X

j

ujrgj(x
?) = 0 (13a)

gj(x
?)  0 8j (13b)

hi(x
?) = 0 8i (13c)

uj � 0 8j (13d)

ujgj(x
?) = 0 8j (13e)

OptNet is a framework developed by Amos and Kolter (2017) to di↵erentiate through
optimization mappings that are convex quadratic programs (QPs) by di↵erentiating through
these KKT conditions. In convex quadratic programs, the objective f is a convex quadratic
function and the constraint functions g, h are linear over a continuous domain. In the most
general case, each of f , g and h are dependent on a distinct set of parameters, in addition
to the optimization variable x:

f(c, Q,x) =
1

2
x>Qx + c>x (14a)

h(A,b,x) = Ax� b (14b)

g(R, s,x) = Rx� s (14c)

When x 2 Rn and the number of inequality and equality constraints are Min and Meq,
respectively, a QP problem is specified by parameters Q 2 Rn⇥n, c 2 Rn, R 2 Rn⇥Min , s 2
RMin , A 2 Rn⇥Meq , and b 2 RMeq . The optimal solution x? can be implicitly di↵erentiated
with respect to each of the parameters (Q, c, R, s, A,b), by directly di↵erentiating the KKT
conditions of optimality (13). This produces a linear system of equations, which can be
solved for the desired gradients dx?

dc . Later, Konishi and Fukunaga (2021) extended the
technique of Amos and Kolter (2017), by also computing the QP problem’s second order
derivatives. This enables training with gradient boosting models, which require the gradient
as well as the Hessian matrix of the loss.

Di↵erentiating optimality conditions of conic programs. Another class of problems
with a parametric canonical form are the conic programs, which take the form:

x?(A,b, c) = argmin
x

c>x (15a)

s.t. Ax� b 2 K (15b)

where K is a nonempty, closed, convex cone.
A framework for di↵erentiating the mapping (15) for any K is proposed by Agrawal,

Barratt, Boyd, Busseti, and Moursi (2019b), which starts by forming the homogeneous self-
dual embedding of (15), whose parameters form an askew-symmetric block matrix composed
of A, b, and c. Following the technique proposed by Busseti, Moursi, and Boyd (2019),
the solution to this embedding is expressed as the problem of finding a zero of a mapping

115

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

containing a skew-symmetric linear function and projections onto the cone K and its dual.
The zero-value of this function is implicitly di↵erentiated, in a similar manner to the KKT
conditions of a quadratic program (Amos & Kolter, 2017). The overall mapping (15) is
viewed as the composition of a function that maps (A,b, c) onto the skew-symmetric pa-
rameter space of the self-dual embedding, the rootfinding problem that produces a solution
to the embedding, and a transformation back to a solution of the primal and dual problems.
The overall derivative is found by a chain rule applied over this composition.

Subsequent work by Agrawal et al. (2019a) leverages the above-described di↵erentiation
of cone programs to develop a more general di↵erentiable convex optimization solver—
cvxpylayers. It is well known that conic programs of the form (15) can provide canonical
representations of convex programs (Nemirovski, 2007). The approach described by Agrawal
et al. (2019a) is based on this principle; that a large class of parametric convex optimization
problems can be recast as equivalent parametric cone programs, with an appropriate choice
of the cone K. A major benefit of this representation is that it allows a convex program to
be separated with respect to its defining parameters (A,b, c) and its structure K, allowing
a generic procedure to be applied for solving and di↵erentiating the transformed problem
with respect to A, b and c.

To transform convex programs to cone programs (15), the framework of Grant and Boyd
(2008) is utilized, which is based on two related concepts. First is the notion of disciplined
convex programming, which assists the automation of cone transforms by imposing a set
of rules or conventions on how convex programs can be represented. Second is the notion
of graph implementations, which represent functions as optimization problems over their
epigraphs, for the purpose of generically representing optimization problems and assisting
conversion between equivalent forms. The associated software system called cvx allows for
disciplined convex programs to be converted to cone programs via their graph implementa-
tions. Subsequently, the transformed problem is solved using conic optimization algorithms,
and its optimal solution is converted to a solution of the original disciplined convex program.
Di↵erentiation is performed through each operation and combined by the chain rule. The
transformation of parameters between respective problem forms, and the solution recovery
step, are di↵erentiable by virtue of being a�ne mappings (Agrawal et al., 2019a). The
intermediate conic program is di↵erentiated via the methods of Agrawal et al. (2019b).

Solver unrolling and fixed-point di↵erentiation. While the methods described above
for di↵erentiation through CO problems are generic and applicable to broad classes of
problems, other practical techniques have been proven e↵ective and even advantageous
in some cases. A common strategy is that of solver unrolling, in which the solution to
(1) is found by executing an iterative optimization method on the computational graph
of its preceding predictive model. The optimization mapping (1) is then backpropagated
simply by automatic di↵erentiation through each step of the algorithm, thus avoiding the
need to explicitly model dx?(c)

dc (Domke, 2012). While this approach leads to accurate
backpropagation in many cases, it su↵ers disadvantages in e�ciency due to the memory
and computational resources required to store and apply backpropagation over the entire
computational graph of an algorithm that requires many iterations (Amos & Kolter, 2017).
A comprehensive survey of algorithm unrolling in image processing applications is provided
by Monga, Li, and Eldar (2021).

116

Decision-Focused Learning: A Survey

Another way in which a specific solution algorithm may provide gradients though a cor-
responding optimization mapping, is by implicit di↵erentiation of its fixed-point conditions.
Suppose that the solver iterations

xt+1(c) = U(xt(c), c) (16)

converge as t!1 to a solution x?(c) of the problem (1), then the fixed-point conditions

x?(c) = U(x?(c), c) (17)

are satisfied. Assuming the existence of all derivatives on an open set containing c to satisfy
the implicit function theorem, it follows by implicit di↵erentiation with respect to c that

(I� �)
dx?

dc
= , (18)

which is a linear system to be solved for dx?

dc , in terms of � = dU
dx? (x?(c), c), = dU

dc (x?(c), c)
and identity matrix I.
The relationship between unrolling and di↵erentiation of the fixed-point conditions is stud-
ied by Kotary, Dinh, and Fioretto (2023b), showing that backpropagation of (1) by unrolling
(16) is equivalent to solving the linear system (18) by fixed-point iteration. The convergence
rate of the backward pass in unrolling is determined by that of solving the linear system
(18) in such a manner, and can be calculated in terms of the spectral radius of �.

Discussion. In contrast to most other di↵erentiable optimization methods surveyed in
this survey paper, the analytical approaches in this subsection allow for the backpropagation
of coe�cients that specify the constraints as well as the objective function. For example,
Amos and Kolter (2017) propose parametric quadratic programming layers whose linear
objective parameters are predicted by previous layers, and whose constraints are learned
through the layer’s own embedded parameters. This is distinct from most cases of DFL, in
which the CO problems have fixed constraints and no trainable parameters of their own.

Furthermore, the techniques surveyed in this subsection are aimed at computing the
exact gradients of parametric optimization mappings. However, many applications of DFL
contain optimization mappings that are discontinuous and piecewise-constant. Such map-
pings, including parametric linear programs (8), have gradients that are zero almost every-
where and thus do not supply useful descent directions for SGD training. Therefore, the
techniques of this subsection are often applied after regularizing the problem analytically
with smooth functions, as detailed in the next subsection.

3.1.2 Analytical Smoothing of Optimization Mappings

To di↵erentiate through combinatorial optimization problems, the optimization mapping
first has to be smoothed. While techniques such as noise-based gradient estimation (sur-
veyed in Section 3.1.3) provide smoothing and di↵erentiation simultaneously, analytical
di↵erentiation first incorporates smooth analytical terms in the optimization problem’s for-
mulation, and then analytically di↵erentiates the resulting optimization problem using the
techniques discussed in Section 3.1.1.

117

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Analytical smoothing of linear programs. Note that while an LP problem is convex
and has continuous variables, only a finite number of its feasible solutions can potentially
be optimal. These points coincide with the vertices of its feasible polytope (Bazaraa et al.,
2008). Therefore the mapping x?(ĉ) in (8), as a function of ĉ, is discontinuous and piecewise
constant, and thus requires smoothing before it can be di↵erentiated through. An approach
to do so was presented in Wilder et al. (2019a), which proposes to augment the linear
LP objective function with the Euclidean norm of its decision variables, so that the new
objective takes the following form

x?(c) = argmin
x

c>x + µkxk22 (19a)

= argmin
x
kx�

⇣
�c

µ

⌘
k
2
2 (19b)

where the above equality follows from expanding the square and cancelling constant terms,
which do not a↵ect the argmax. This provides an intuition as to the e↵ect of such a

quadratic regularization: it converts a LP problem into that of projecting the point
⇣
�c
µ

⌘

onto the feasible polytope, which results in a continuous mapping c! x?(c). Wilder et al.
(2019a) then train models in decision-focused paradigm by solving and backpropagating the
respective quadratic programming problem using the OptNet framework (Amos & Kolter,
2017), in order to learn to predict objective parameters with minimal regret. At test time,
the quadratic smoothing term is removed. Wilder et al. (2019a) refers to such regret-based
DFL with quadratically regularized linear programs as the Quadratic Programming Task
Loss method (QPTL).

Other forms of analytical smoothing for linear programs can be applied by adding dif-
ferent regularization functions to the objective function. Other regularization terms for
LPs include the entropy function H(x) =

P
i
xi log xi and the binary entropy function

Hb(x) = H(x) + H(1 � x). To di↵erentiate the resulting smoothed optimization prob-
lems, the framework of Agrawal et al. (2019a) can be used. Alternatively, problem-specific
approaches, without employing this framework, have also been proposed. For example,
Blondel et al. (2020) propose a method for problems where H smooths an LP for di↵eren-
tiable sorting and ranking, and Amos et al. (2019) propose a way to di↵erentiate using Hb

for multilabel classification problems. Both works propose fast implementations for both
the forward and backward passes of the respective optimization problems.

In a related approach, Mandi and Guns (2020) propose a general, di↵erentiable LP
solver based on log-barrier regularization. For a parametrized LP of standard form (8),
gradients are computed for the regularized form in which the constraints x � 0 are replaced
with log-barrier approximations as follows:

x?(c) = argmin
x

c>x� µ

dim(x)X

i=1

log(xi) (20a)

s.t. Ax = b (20b)

While this method, in this sense, is similar to the approach of Gould et al. (2016), it
exploits several e�ciencies specific to linear programming, in which the log-barrier term
serves a dual purpose of rendering (20) di↵erentiable and also aiding its solution (Mandi

118

Decision-Focused Learning: A Survey

& Guns, 2020). Rather than forming and solving this regularized LP problem directly, the
solver uses an interior point method to produce a sequence of log-barrier approximations to
the LP’s homogenous self-dual (HSD) embedding. Early stopping is applied in the interior
point method, producing a solution to (20) for some µ, which serves as a smooth surrogate
problem for di↵erentiation. A major advantage of this technique is that it only requires
optimization of a linear program, making it in general more e�cient than direct solution of
a regularized problem as in the approaches described above.

Analytical smoothing of integer linear programs. To di↵erentiate through ILPs,
Wilder et al. (2019a) propose to simply drop the integrality constraints, and to then smooth
and di↵erentiate through the resulting LP relaxation, which is observed to give satisfactory
performance in some cases. Ferber et al. (2020) later extended this work by using a more
systematic approach to generate the LP relaxation of the ILP problem. They use the
method of cutting planes to discover an LP problem that admits the same solution as
the ILP. Subsequently, the method of Wilder et al. (2019a) is applied to approximate the
LP mapping’s derivatives. Although this results in enhanced performance with respect to
regret, there are some practical scalability concerns, since the cut generation process is time
consuming but also must be repeated for each instance in each training epoch.

Although this subsection primarily surveys the smoothing of LPs and ILPs, as these
are the focal points of this paper, note that di↵erentiable relaxation of other optimiza-
tion problems has also received attention recently. For example, di↵erential relaxations
of MAXSAT (Wang, Donti, Wilder, & Kolter, 2019; Wang, Zhang, Guo, Chen, Yang, &
Yan, 2023) and submodular optimization problems (Djolonga & Krause, 2017; Tschiatschek,
Sahin, & Krause, 2018) have been developed to embed these problems into neural networks.

3.1.3 Smoothing by Random Perturbations

A central challenge in DFL is the need for smoothing operations of non-smooth optimization
mappings. In contrast to the DFL techniques surveyed in the previous subsection, which
perform the smoothing operation by adding explicit regularization functions to the objective
functions of optimization problems, this subsection focuses on techniques that use implicit
regularization through perturbations. These techniques construct smooth approximations
of the optimization mappings by adopting a probabilistic point of view. To introduce this
point of view, the CO problem in this section is not viewed as a mapping from c to x?(c).
Rather, it is viewed as a function that maps c onto a probability distribution over the feasible
region F . From this perspective, x?(c) can be viewed as a random variable, conditionally
dependent on c. The motivation behind representing x?(c) as a random variable is that the
rich literature of likelihood maximization with latent variables, in fields such as Probabilistic
Graphical Models (PGMs) (Koller & Friedman, 2009), can be exploited.

Implicit di↵erentiation by perturbation. One seminal work in the field of PGMs is
by Domke (2010). This work contains an important proposition, which deals with a setup
where a variable ✓1 is conditionally dependent on another variable ✓2 and the final loss L

is defined on the variable ✓1. Let p(✓1|✓2) and E[✓1|✓2] be the conditional distribution and
the conditional mean of ✓1. The loss L is measured on the conditional mean E[✓1|✓2] and
the goal is to compute the derivative of L with respect to ✓2. Domke (2010) proposes that
the derivative of L with respect to ✓2 can be approximated by the following finite di↵erence

119

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

method:
dL

d✓2
⇡

1

�

E[✓1|

�
✓2 + �

d

d✓1

�
L(E[✓1|✓2]

��
]� E[✓1|✓2]

!
(21)

where d

d✓1
[L(E[✓1])] is the derivative L with respect to ✓1 at E[✓1]. Notice that the first term

in (21) is the conditional mean after perturbing the parameter ✓2 where the magnitude of
the perturbation is modulated by the derivative of L with respect to ✓1. Taking inspiration
from this proposition, by defining a conditional distribution p(x?(ĉ)|ĉ), one can compute
the derivative of the regret with respect to ĉ in the context of DFL.

To perfectly represent the deterministic mapping c! x?(c), the straightforward choice
is to define a Dirac mass distribution, which assigns all probability mass to the optimal
point and none to other points, i.e.,

p(x|c) =

(
1 x = x?(c)

0 otherwise
(22)

Di↵erentiation of blackbox combinatorial solvers (DBB). Note that with the dis-
tribution in (22) Ex⇠p(x|c)[x|c] = x?(c). Hence, using conditional probability in the propo-

sition in (21), dL(x?(ĉ))
dĉ can be approximated in the following way:

dL(x?(ĉ))

dĉ
⇡ r

(DBB)
L(x?(ĉ)) =

x?

⇣
ĉ + �

dL(x?(ĉ))

dx?(ĉ)

⌘
� x?

⇣
ĉ
⌘!

(23)

The gradient computation technique proposed by Pogančić et al. (2020) takes the form of
(24). They interpret it as substituting the jump-discontinuous optimization mapping with a
piece-wise linear interpolation. It is a linear interpolation of the mapping ĉ! x?(ĉ) between

the points ĉ and ĉ + � dL(x?(ĉ))
dx |x=x?(ĉ). Pogančić et al. (2020) call this ‘di↵erentiation of

blackbox’ (DBB) solvers, because this approach considers the CO solver as a blackbox
oracle, i.e., it does not take into consideration how the solver works internally.

In a subsequent work, Sahoo, Paulus, Vlastelica, Musil, Kuleshov, and Martius (2023)
propose to treat the CO solver as as a negative identity matrix while backpropagating the
loss, i.e., they propose the following approximation of the derivative:

dL(x?(ĉ))

dĉ
⇡ �

dL(x?(ĉ))

dx?(ĉ)
(24)

However, they notice that such an approach might run into unstable learning for scale-
invariant optimization problems such as LPs and ILPs. To negate this e↵ect, they suggest
multiplying the cost vector with the matrix of the invariant transformation. In the case of
LPs and ILPs this can be achieved by normalizing the cost vector through projection
onto the unit sphere.

Perturb-and-MAP. However, at this point it is worth mentioning that Domke (2010)
assumes, in his proposition, that the distribution p(✓1|✓2) in (21) belongs to the exponential
family of distributions (Barndor↵-Nielsen, 1978). Note that the distribution defined in (22)
is not a distribution of the exponential family. Nevertheless, a tempered softmax (Hinton,

120

Decision-Focused Learning: A Survey

Vinyals, & Dean, 2015) distribution belonging to exponential family can be defined to
express the mapping in the following way:

p⌧ (x|c) =

(
exp(�f(x,c)/⌧)P

x02F exp(�f(x0,c)/⌧) x 2 F

0 otherwise
(25)

In this case, the log unnormalized probability mass at each x 2 F is proportional to
exp(�f(x, c)/⌧), the exponential of the negative of the tempered objective value. The
idea behind (25) is to assign a probability to each feasible solution such that solutions with
a better objective value have a larger probability. The parameter ⌧ a↵ects the way in which
objective values map to probabilities. When ⌧ ! 0, the distribution becomes the argmax
distribution in (22), when ⌧ ! 1, the distribution becomes uniform. In other words,
the value of ⌧ determines how drastically the probability changes because of a change in
objective value. Good values for ⌧ are problem-dependent, and thus tuning ⌧ is advised.

Note that (21) deals with conditional expectation. As in the case of the tempered
softmax distribution, the conditional expectation is not always equal to the solution to
the CO problem, it must be computed first to use the finite di↵erence method in (21).
However, computing the probability distribution function in (25) is not tractable, as the
denominator (also called the partition function) requires iterating over all feasible points in
F . Instead, Papandreou and Yuille (2011) propose a novel approach, known as perturb-and-
MAP, to estimate the probability using perturbations. It states that the distribution of the
maximizer after perturbing the log unnormalized probability mass by i.i.d. Gumbel(0, ✏)
noise has the same exponential distribution as (25). To make it more explicit, if c̃ = c+ ⌘,

where the perturbation vector ⌘
i.i.d.
⇠ Gumbel(0, ✏),

P[x = argmax
x0

�f(x0, c̃)] = p✏(x|c) (26)

The perturb-and-MAP framework can be viewed as a method of stochastic smoothing (Aber-
nethy, Lee, & Tewari, 2016). A smoothed approximation of the optimization mapping is
created by considering the average value of the solutions of a set of nearby perturbed points.
With the help of (26), the conditional distribution and hence the conditional mean can be
approximated by Monte Carlo simulation.

Di↵erentiable perturbed optimizers. Berthet, Blondel, Teboul, Cuturi, Vert, and
Bach (2020) propose another approach for perturbation-based di↵erentiation. They name it
di↵erentiable perturbed optimizers (DPO). They make use of the perturb-and-MAP frame-
work to draw samples from the conditional distribution p(x|c). In particular, they use the
reparameterization trick (Kingma & Welling, 2014; Rezende, Mohamed, & Wierstra, 2014)
to generate samples from p(x|c). The reparameterization trick uses a change of variables
to rewrite x as a deterministic function of c and a random variable ⌘. In this reformula-
tion, x is still a random variable, but the randomness comes from the variable ⌘. They
consider ⌘ to be a random variable having a density proportional to exp(�⌫(⌘)) for a
twice-di↵erentiable function ⌫. Moreover, they propose to multiply the random variable ⌘
with a temperature parameter ✏ > 0, which controls the strength of perturbing c by the
random variable ⌘. In summary, first c is perturbed with random perturbation vector ✏⌘,
where ⌘ is sampled from the aforementioned density function, and then the maximizer of

121

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

the perturbed vector c + ✏⌘ is viewed as a sample from the conditional distribution, i.e.,
x?
✏ (c) = x?(c + ✏⌘) is considered as a sample drawn from p(x|c) for given values of c and

✏. They call x?
✏ (c) a perturbed optimizer. Note that, for ✏! 0, x?

✏ (c)! x?(c). Like before,
x?
✏ (c) can be estimated by Monte Carlo simulation by sampling i.i.d. random noise ⌘(m)

from the aforementioned density function. The advantage is that the Monte Carlo estimate
is continuously di↵erentiable with respect to c. This Monte Carlo estimate x̄?

✏ (c) can be
expressed as:

x̄?

✏ (c) =
1

M

MX

m=1

x?

⇣
c + ✏⌘(m)

⌘
(27)

Moreover, its derivative can be estimated by Monte Carlo simulation too

dx̄?
✏ (c)

dc
=

1

✏

1

M

MX

m=1

x?(c + ✏⌘(m))⌫ 0(⌘(m))> (28)

where ⌫ 0 is the first order derivative of ⌫. They can approximate dx?(c)
dc by dx̄?

✏ (c)
dc to imple-

ment the backward pass. As mentioned before, if ✏! 0, the estimation will be an unbiased
estimate of x?(c). However, in practice, for low values of ✏, the variance of the Monte-
Carlo estimator will increase, leading to unstable and noisy gradients. This is in line with
the smoothing-versus-accuracy trade-o↵ mentioned before. Berthet et al. (2020) use this
DPO framework to di↵erentiate any CO problem with linear objective. For a CO problem
with discrete feasible space, they consider the convex hull of the discrete feasible region.
Furthermore, Berthet et al. (2020) construct the Fenchel-Young loss function and show for
Fenchel-Young loss function, the gradient can be approximated in the following way:

rL
FY (x?(ĉ)) = �

�
x̄?

✏ (ĉ)� x?(c)
�

(29)

In a later work, Dalle, Baty, Bouvier, and Parmentier (2022) extend the perturbation
approach, where they consider multiplicative perturbation. This is useful when the cost
parameter vector is restricted to be non-negative, such as in the applications of shortest
path problem variants. The work of Paulus, Choi, Tarlow, Krause, and Maddison (2020)
can also be viewed as an extension of the DPO framework. They introduce stochastic
softmax tricks (SST), a framework of Gumbel-softmax distributions, where they propose
di↵erentiable methods by sampling from more complex categorical distributions.

Implicit maximum likelihood estimation (I-MLE). The perturb-and-MAP frame-
work is also used by Niepert, Minervini, and Franceschi (2021). However, they do not sample
noise from the Gumbel distribution, rather they report better results when the noise ⌘� is
sampled from a Sum-of-Gamma distribution with hyperparameter �. Combining the finite
di↵erence approximation (21) with the perturb-and-MAP framework, the gradient takes
the following form:

dL(x?(ĉ))

dĉ
⇡ r

(IMLE)
L(x?(ĉ)) =

x?

⇣
ĉ + �

dL(x?(ĉ))

dx?(ĉ)
+ ✏⌘�

⌘
� x?

⇣
ĉ + ✏⌘�

⌘!
(30)

122

Decision-Focused Learning: A Survey

where � is the step size of the finite di↵erence approximation and ✏ > 0 is a temperature
parameter, which controls the strength of noise perturbation. Clearly, (30) turns into (24)
when there is no noise perturbation, i.e., if ⌘� = 0. A later work (Minervini, Franceschi,
& Niepert, 2023) extends I-MLE by adaptively selecting � based on the ratio between the

norm of the parameter ĉ and the norm of dL(x?(ĉ))
dx?(ĉ) .

Discussion. One major advantage of the techniques explained in this subsection is that
for gradient computation, they call the CO solver as a ‘blackbox oracle’ and only use the
solution returned by it for gradient computation. In essence, these techniques are not
concerned with how the CO problem is solved. The users can utilize any techniques of
their choice—constraint programming (CP) (Rossi, van Beek, & Walsh, 2006), Boolean
satisfiability (SAT) (Gomes, Kautz, Sabharwal, & Selman, 2008) or linear programming
(LP) and integer linear programming (ILP) to solve the CO problem.

3.1.4 Differentiation of Surrogate Loss Functions

The techniques explained in the preceding subsections can be viewed as implementations
of di↵erentiable optimization layers, which solve the CO problem in the forward pass and
return useful approximations of dx?(ĉ)

dĉ in the backward pass. Consequently, those techniques
can be used to introduce optimization layers anywhere in a neural network architecture,
and can be combined with arbitrary loss functions. In contrast, the techniques that will be
introduced next can only be used to di↵erentiate regret (3)—a specific task loss. Hence,
models can only be trained in an end-to-end fashion using these techniques when the CO
problem occurs in the final stage of the pipeline, as in the case of Predict-Then-Optimize
problems. Also note that the computation of the regret requires both the ground-truth cost
vector c; as well as ground-truth solution x?(c). If c is observed, x?(c) can be computed.
However, if only x?(c) is observed, c cannot directly be recovered. Hence, the techniques
that will be discussed next are not suitable when the true cost vectors c are not observed
in the training data.

Smart “Predict, Then Optimize”. Elmachtoub and Grigas (2022) develop Smart
“Predict, Then Optimize” (SPO), a seminal work in DFL. As the gradient of the regret
with respect to cost vector ĉ is zero almost everywhere, SPO instead uses a surrogate loss
function that has subgradients which are useful in training. They start by proposing a
convex surrogate upper bound of regret, which they call the SPO+ loss.

LSPO+(x?(ĉ)) = 2ĉ>x?(c)� c>x?(c) + max
x2F

{c>x� 2ĉ>x} (31)

Elmachtoub and Grigas (2022) directly minimize LSPO+ for a linear predictive model.
However, they note that directly minimizing LSPO+ is prohibitive for complex predictive
models such as NNs. Hence, they derive the following useful subgradient of LSPO+(x?(ĉ)):

x?(c)� x?(2ĉ� c) 2 @LSPO+ (32)

This subgradient is used in the backward pass for training NNs. While this technique
proposes a surrogate loss function, one could also view the solving of x?(2ĉ� c) as solving
of ĉ perturbed by the deterministic perturbation vector ĉ� c.

123

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

From a theoretical point of view, the SPO+ loss has the Fisher consistency property with
respect to the regret under certain distributional assumptions. A surrogate loss function
satisfies the Fisher consistency property if the function that minimizes the surrogate loss
also minimizes the true loss in expectation (Zou, Zhu, & Hastie, 2008). Concretely, this
means that minimizing the SPO+ loss corresponds to minimizing the regret in expectation.
While training ML models with a finite dataset, an important property of considerable
interest would be risk bounds (Massart & Nédélec, 2006). Liu and Grigas (2021) develop
risk bounds for SPO+ loss and show that low excess SPO+ loss risk translates to low excess
regret risk. Furthermore, El Balghiti, Elmachtoub, Grigas, and Tewari (2019) develop worst-
case generalization bounds of the SPO loss.

The SPO framework is applicable not only to LPs, but to any CO problems where the cost
parameters appear linearly in the objective function. This includes QPs, ILPs and MILPs.
Mandi et al. (2020) empirically investigated how the framework performs on ILP problems.
However, as these problems are much more computationally expensive to solve than the ones
considered by Elmachtoub and Grigas (2022), they compared the standard SPO framework
with a variant in which, it is significantly cheaper to solve the CO problem during training.
To be specific, they consider LP relaxations of the ILPs. These LP relaxations are obtained
by considering the continuous relaxation of the ILPs, i.e., they are variants of the ILPs
in which the integrality constraints are dropped. Using the LP relaxations significantly
expedite training, without any cost: Mandi et al. (2020) did not observe a significant
di↵erence in the final achieved regret between these two approaches, with both of them
performing better than the prediction-focused approach. However, one should be cautious
to generalize this result across di↵erent problems, as it might be dependent on the integrality
gap between the ILP and its LP relaxation.

Next, within this category, a di↵erent type of DFL techniques is being surveyed. In
these DFL techniques, the surrogate loss functions are supposed to reflect the decision
quality, but their computations do not involve solving the CO problems, thereby avoiding
the zero-gradient problem.

Noise contrastive estimation. One such approach is introduced by Mulamba et al.
(2021). Although their aim is still to minimize regret, computation of rĉRegret (x?(ĉ), c)
has been avoided by using a surrogate loss function. In their work, the CO problem is viewed
from a probabilistic perspective, as in (25). However, instead of maximum likelihood esti-
mation, the noise contrastive estimation (NCE) (Gutmann & Hyvärinen, 2010) method is
adopted. NCE has been extensively applied in many applications such as language mod-
eling (Mnih & Teh, 2012), information retrieval (Huang, He, Gao, Deng, Acero, & Heck,
2013) and entity linking (Gillick, Kulkarni, Lansing, Presta, Baldridge, Ie, & Garcia-Olano,
2019). Its basic idea is to learn to discriminate between data coming from the true un-
derlying distribution and data coming from a noise distribution. In the context of DFL,
this involves contrasting the likelihood of ground-truth solution x?(c) and a set of negative
examples S. In other words, the following ratio is maximized:

max
ĉ

X

x02S

p⌧ (x?(c)|ĉ)

p⌧ (x0|ĉ)
(33)

124

Decision-Focused Learning: A Survey

where x0
2 S is a negative example. Because the probability p⌧ (x?(c)|ĉ) is defined as in

(25), when ⌧ = 1, maximizing (33) corresponds to minimizing the following loss:

LNCE(ĉ, c) =
X

x02S
f(x?(c), ĉ)� f(x0, ĉ) (34)

In other words, this approach learns to predict a ĉ for which ground-truth solution x?(c)
achieves a good objective value, and for which other feasible solutions x0 achieve worse
objective values. Note that when f(x?(c), ĉ)  f(x0, ĉ) for all x0

2 F , it holds that x?(c) =
x?(ĉ), and thus the regret is zero. Also note that computing LNCE(ĉ, c) does not involve
computing x?(ĉ), circumventing the zero-gradient problem.

As an alternative to NCE, Mulamba et al. (2021) also introduce a maximum a posteriori
(MAP) approximation, in which they only contrast the ground-truth solution with the most
probable negative example from S according to the current model:

LMAP (ĉ, c) = max
x02S

f(x?(c), ĉ)� f(x0, ĉ)

= f(x?(c), ĉ)� f(x0, ĉ) where x0 = argmin
x2S

f(x, ĉ) (35)

Note that whenever x?(ĉ) 2 S, it holds that LMAP (ĉ, c) = f(x?(c), ĉ)�f(x?(ĉ), ĉ). This is
also known as self-contrastive estimation (SCE) (Goodfellow, 2015) since the ground-truth
is contrasted with the most likely output of the current model itself.

Also note that for optimization problems with a linear objective, the losses are LNCE(ĉ, c) =P
x02S ĉ>(x?(c)� x0) and LMAP (ĉ, c) = ĉ>(x?(c)� x0), where x0 = argminx2S f(x, ĉ). In

order to prevent the model from simply learning to predict ĉ = 0, the following alternate
loss functions are proposed for these kinds of problems:

L
(ĉ�c)
NCE

(ĉ, c) =
X

x02S
(ĉ� c)>(x?(c)� x0) (36)

L
(ĉ�c)
MAP

(ĉ, c) = max
x02S

(ĉ� c)>(x?(c)� x0) (37)

Construction of S. Forming S by sampling points from the feasible region F is a crucial
part of using the contrastive loss functions. To this end, Mulamba et al. (2021) proposes
to construct S by caching all the optimal solutions in the training data. That is why they
name S as ‘solution cache’. While training, more feasible points are gradually added to S
by solving for some of the predicted cost vectors. However, in order to avoid computational
cost, the solver call is not made for each predicted cost during training. Whether to solve for
a predicted cost vector is decided by pure random sampling, i.e., is based on a biased coin
toss with probability psolve. Intuitively, the psolve hyperparameter determines the proportion
of instances for which the CO problem is solved during training. Experimentally, it has
been reported that psolve = 5% of the time is often adequate, which translates to solving
for only 5% of the predicted instances. This translates to reducing the computational cost
by approximately 95%, since solving the CO problems represents the major bottleneck in
terms of computation time in DFL training.

125

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Technique CO Problem Forms Computation of Gradient
Di↵erentiable
Optimization

Layer

OptNet
(Amos & Kolter, 2017)

Convex QPs
Implicit di↵erentiation of

KKT conditions
4

Cvxpylayers
(Agrawal et al., 2019a)

Convex problems
Implicit di↵erentiation of
HSD of conic programs

4

Fold-opt
(Kotary et al., 2023b)

Convex and nonconvex
problems

Implicit di↵erentiation
based on unrolling

4

QPTL
(Wilder et al., 2019a)

LPs, ILPs
Implicit di↵erentiation

after transforming into QPs
by adding regularizer

4

Intopt
(Mandi & Guns, 2020)

LPs, ILPs
Implicit di↵erentiation of
HSD of (relaxed) LPs by

adding log-barrier relaxation
4

Mipaal
(Ferber et al., 2020)

ILPs
Conversion of ILPs into LPs
by method of cutting planes

before applying QPTL
4

DBB
(Pogančić et al., 2020)

Optimization problems
with a linear objective

Di↵erentiation of
linear interpolation

of optimization mapping
4

Negative identity
(Sahoo et al., 2023)

Optimization problems
with a linear objective

Treating the CO solver as
negative identity mapping

4

I-MLE
(Niepert et al., 2021)

Optimization problems
with a linear objective

Finite di↵erence approximation
with perturb-and-MAP

4

DPO
(Berthet et al., 2020)

Optimization problems
with a linear objective

Di↵erentiation of
perturbed optimizer

4

FY
(Berthet et al., 2020)

Optimization problems
with a linear objective

Di↵erentiation of perturbed
Fenchel-Young loss

8

SPO
(Elmachtoub & Grigas, 2022)

Optimization problems
with a linear objective

Di↵erentiation of
surrogate SPO+ loss

8

NCE
(Mulamba et al., 2021)

Generic optimization
problems

Di↵erentiation of
surrogate contrastive loss

8

LTR
(Mandi et al., 2022)

Generic optimization
problems

Di↵erentiation of
surrogate LTR loss

8

LODL
(Shah, Wang, Wilder, Perrault, & Tambe, 2022)

Generic optimization
problems

Di↵erentiation of a
learned convex local surrogate loss

8

Table 1: A concise overview of gradient modeling techniques in key DFL techniques that
use gradient-based learning.

Approximation of a solver by a solution-cache. Furthermore, Mulamba et al. (2021)
propose a solver-free training variant for any DFL technique that treats the CO solver as
a blackbox oracle. Such techniques include the aforementioned I-MLE, DBB, SPO. In this
solver-free implementation, solving the CO problem is substituted with a cache lookup
strategy, where the minimizer within the cache S ⇢ F is considered as a proxy for the
solution to the CO problem (i.e., the minimizer within F). This significantly reduces the
computational cost as solving an CO problem is replaced by a linear search within a limited
cache. Such an approximation can be useful in case the CO problem takes long to solve.

DFL as a learning to rank (LTR) problem. In a later work, Mandi et al. (2022)
observe that LNCE (34) can be derived by formulating DFL as a pairwise learning to rank
task (Joachims, 2002). The learning to rank task consists of learning the implicit order over
the solutions in S invoked by the objective function values achieved by the solutions with
respect to c. In other words, it involves learning to predict a ĉ that ranks the solutions in S

126

Decision-Focused Learning: A Survey

similarly to how c ranks them. In the pairwise approach, x?(c) and any x0
2 S are treated

as a pair and the model is trained to predict ĉ such that the ordering of each pair is the
same for c and ĉ. The loss is considered to be zero if ĉ>x?(c) is smaller than ĉ>x0 by at
least a margin of ⇥ > 0. The pairwise loss is formally defined in the following form:

LPairwise(ĉ, c) =
X

x02S
max

�
0,⇥+ (f(x?(c), ĉ)� f(x0, ĉ))

�
(38)

Another loss function is formulated by considering the di↵erence in di↵erences between
the objective values at the true optimal x?(c) and non-optimal x0 with c and ĉ as the
parameters.

LPairwiseDi↵erence(ĉ, c) =
X

x02S

✓�
f(x?(c), ĉ)� f(x0, ĉ)

�
�
�
f(x?(c), c)� f(x0, c)

�◆2

(39)

Further, motivated by the listwise learning to rank task (Cao, Qin, Liu, Tsai, & Li,
2007), a loss function is proposed by Mandi et al. (2022) where the ordering of all the items
in S is considered, rather than the ordering of pairs of items. Cao et al. (2007) define this
listwise loss based on a top-one probability measure. The top-one probability of an item is
the probability of it being the best of the set. Note that such probabilistic interpretation in
the context of DFL is already defined in Section 3.1.3. Mandi et al. (2022) make use of the
tempered softmax probability defined in (25). Recall that this p⌧ (x|c) can be interpreted as
a probability measure of x 2 F being the minimizer of f(x, c) in F for a given c. However,
as mentioned before, direct computation of p⌧ (x|c) requires iterating over all feasible points
in F , which is intractable. Therefore Mandi et al. (2022) compute the probability with
respect to S ⇢ F . This probability measure finally is used to define a listwise loss—the
cross-entropy loss between p⌧ (x|c) and p⌧ (x|ĉ), the distributions obtained for ground-truth
c and predicted ĉ. This can be written in the following form:

LListwise(ĉ, c) =

✓
�

1

|S|

X

x02S
p⌧ (x

0
|c) log p⌧ (x

0
|ĉ)

◆
(40)

The main advantage of (34), (35), (38), (39) and (40) is that they are di↵erentiable and
can be computed directly by any neural network library via automatic di↵erentiation. Also
note that the computation and di↵erentiation of the loss functions are solver-free, i.e., they
need not solve the CO problem to compute the loss or its derivative.

Learning e�cient surrogate losses. Another research direction without optimization
in the loop focuses on minimizing the computational burden of solving the CO problems
repeatedly. This is achieved by devising e�ciently computable and di↵erentiable surrogate
losses that approximate and substitute the true task loss. In this regard, Shah et al. (2022)
propose to learn a surrogate of the regret function using parametric local losses. Due to the
di�culty of learning a single convex surrogate function to estimate regret, a convex local
surrogate is learned for each data point in training, based on other points sampled around
these data points. By design, the surrogate losses are automatically di↵erentiable, and thus
they eliminate the need for a di↵erentiable optimization solver. In subsequent work, Shah,
Wilder, Perrault, and Tambe (2024) extended on this, by improving the sample e�ciency

127

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

of learning the surrogate losses, and by introducing a manner of producing surrogate losses
that are faithful to the true regret also outside of the local neighbourhoods around the
training examples.

DFL as a learning to optimize problem. DFL is viewed as an extension of learning
to optimize (LtO) by Kotary, Di Vito, Christopher, Van Hentenryck, and Fioretto (2023a).
In LtO, the goal is to train an ML model as an approximate CO solver, which maps the
parameters of a CO problem to its optimal solution. Kotary et al. (2023a) show that the
technique of LtO can be applied to the DFL setting, by treating the feature variables z as
inputs to the LtO model, which predicts x?(c). The resulting LtO models function as joint
prediction and optimization models, whose training is consistent with regret minimization
on the DFL task.

Discussion

So far, in this subsection, an extensive overview of di↵erent gradient-based DFL techniques
has been provided. For the ease of the readers, a summary of some of the key DFL tech-
niques, discussed so far, have been provided in Table 1. The second column of Table 1
highlights the form of the CO problem applicable to the technique. Note that although
some techniques are generally applicable to any CO problem forms, most techniques have
been evaluated so far using CO problems with linear objective functions. The third column
summarizes the gradient computation technique. The fourth column indicates whether that
particular technique is compatible with any generic task loss. Techniques, termed as im-
plementations of di↵erentiable optimization layers, can be embedded in any stage of an NN
architecture. The other techniques are applicable where optimization is the final stage of
the pipeline (such as in Predict-Then-Optimize problem formulations) and a particular loss
(most often regret) is used as the task loss.

3.2 Review of Gradient-free DFL Methodologies

The techniques reviewed so far implement DFL by gradient descent training, which is the
go-to approach for training neural networks. Next, we review DFL techniques, which do not
rely on gradient-based training. Note that, since these techniques do not utilize gradient-
based training, the predictive models in most cases consist of either tree-based methods or
explicitly specified models such as linear models.

First of all, as LSPO+(x?(ĉ)) is a convex loss function, it can be minimzed outside
gradient-based training if the predicive model is linear. Firstly, since LSPO+(x?(ĉ)) is a
convex loss function, it can be minimized using any convex solver without using gradient-
based training if the predictive model is linear. Elmachtoub, Liang, and McNellis (2020)
extend SPO considering the predictive model to be a decision tree or ensemble of decision
trees. Such models can be learned by recursive partitioning with respect to the regret
directly, and thus do not require the use of the SPO+ surrogate loss function introduced by
Elmachtoub and Grigas (2022). Alternatively, the tree learning problem can be posed as
a MILP and be solved by an o↵-the-shelf solver. Jeong, Jaggi, Butler, and Sanner (2022)
formulate the problem of minimizing regret as a mixed-integer linear program (MILP) for a
linear predictive model. They start from the bilevel optimization formulation, introduced in

128

Decision-Focused Learning: A Survey

(6a) and (6b). First, the transition points where the solution of the lower level program (6b)
changes are identified, and then the solution space is exhaustively partitioned, and for each
partition the solution is annotated. This paves the way to construct a MILP formulation
of the outer program (6a). This MILP problem is solved to learn the parameters ! of the
linear predictive model. The resulting model is guaranteed to be globally optimal, which is
not the case for gradient-based methods that might get stuck in a local optimum. However,
their method is limited to ML models that are linear and optimization problems that are
binary MILPs.

Demirović, Stuckey, Guns, Bailey, Leckie, Ramamohanarao, and Chan (2020) consider
linear ML models and represent the objective function of the CO problem as a piece-wise
linear function of the ML parameters. In this proposed technique, the ML parameters are
updated via a coordinate descent algorithm, where each component of the cost vector is
updated at a time to minimize the regret keeping other components fixed. This technique
requires identifying the transition points, where regret changes, as a function of each compo-
nent of the cost parameter. Demirović et al. (2020) consider CO problems that can be solved
by dynamic programming and identify the transition points using dynamic programming.
In a later work, Guler, Demirović, Chan, Bailey, Leckie, and Stuckey (2022) extend this
technique by employing a ‘divide-and-conquer’ algorithm to identify the transition points
for CO problems whose objective function is a bilinear function of the decision variables
and the predicted parameters. This development generalizes the previous work (Demirović
et al., 2020) to cover a much broader class of CO problems and o↵ers a substantial speed
improvement. The ‘branch & learn’ approach (Hu, Lee, Lee, & Zhong, 2022) also extends
the approach by Demirović et al. (2020) by developing a recursive algorithm, allowing to
tackle CO problems that can be solved by recursion.

3.3 Other Aspects of Decision-Focused Learning

In the following, some aspects related to DFL, that have not yet been discussed in this
survey paper so far, will be highlighted. To begin with, it should be noted that certain
CO problems may have multiple non-unique optimal solutions for a given cost vector. This
can occur for an LP when the cost vector of an LP is parallel to one of the faces of the
feasible polyhedron. Moreover, problems involving symmetric graphs, whose solution can be
transformed into other solutions through automorphisms (Bollobás, 2013), exhibit multiple
optimal solutions. If the predicted cost vector has multiple non-unique optimal solutions,
each of these solutions result in di↵erent values of regret. In such scenarios, Elmachtoub
and Grigas (2022) propose to consider the worst-case regret. If the set of optimal solutions
of ĉ is be represented by X

?(ĉ), the worst-case regret can be defined in the following form:

Regret (x?(ĉ), c) = max
x?(ĉ)2X ?(ĉ)

f(x?(ĉ), c)� f(x?(c), c) (41)

Having addressed the possibility of the presence of multiple non-unique optimal solutions
in a CO problem, the focus now turns to other important facets of DFL.

3.3.1 Prediction-Focused vs. Decision-Focused Learning

DFL methodologies are expected to deliver lower regret than a PFL approach in Predict-
Then-Optimize problems, as the ML model is directly trained to achieve low regret. How-

129

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

ever, as discussed before, the implementation of DFL poses significant challenges. In fact,
practitioners may be tempted to resort to a PFL approach to circumvent the computational
costs associated with DFL, when dealing with real-world Predict-Then-Optimize problems.
To motivate adoption of DFL methodologies among practitioners, it is crucial to investi-
gate scenarios where DFL methodologies outperform the PFL approach. To this end, El-
machtoub, Lam, Zhang, and Zhao (2023) conduct a theoretical comparison of the limiting
distributions of the optimality gaps between the two approaches in the context of stochas-
tic optimization. They show the PFL approach that does not consider the CO problem
while training the model asymptotically outperforms the integrated prediction and opti-
mization approach, employed by DFL methodologies, if the underlying prediction model
is well-specified. This is intuitive, as a well-specified model tends to produce highly accu-
rate predictions, which can contribute to the success of the PFL approach. In such cases,
the DFL methodologies might perform worse than PFL since training in DFL involves ap-
proximate gradients (because the true gradient is zero almost everywhere), whereas the
gradient is well-defined for a PFL approach. On the other hand, they show that if the
model is not well-specified, a PFL approach performs suboptimally compared to the DFL
approach. Hence, it is recommended to use DFL when there exists aleatoric or epistemic
uncertainty. As most real-world settings include various sorts of uncertainty—both aleatoric
and epistemic—DFL methodologies are expected to outperform the PFL approach. In a
separate work, Cameron, Hartford, Lundy, and Leyton-Brown (2022) show that the sub-
optimality of PFL becomes more pronounced in the presence of correlations between the
predicted parameters.

3.3.2 Multi-task Decision-Focused Learning

In most DFL works, a single task is considered. For instance, in the shortest path benchmark
considered by Elmachtoub and Grigas (2022), the grid structure and the start and end nodes
are the same in all instances. However, one often has to deal with multiple tasks at once, in
which it would be convenient to make decision-focused predictions, without having to train
a separate model for each task. A first step in this direction was recently taken by Tang
and Khalil (2023a). They propose a way of training a model in a decision-focused way with
respect to multiple tasks at once by considering two kinds of architectures. The first is a
regular multi-layer perceptron that outputs a single vector ĉ which is used in the di↵erent
tasks. The di↵erent resulting task losses then get aggregated to inform the update to weights
!, i.e., the weights ! are trained to produce a ĉ that generally works well for the di↵erent
tasks considered. The second architecture is a multi-headed one, consisting of one or more
shared first layers, followed by a dedicated head for every task. This produces a di↵erent
vector ĉi for every task. Their results show that they can train a model that can make
e↵ective decision-focused predictions for multiple tasks at once, and that this is particularly
beneficial when not that many training data are available. However, a remaining limitation
is that the model can still not be trained with the aim of generalizing to new tasks.

A related topic is studied by Dinh, Kotary, and Fioretto (2024), which focuses on DFL
in the context of fair multiobjective optimization. In the presence of multiple objective
functions, many applications call for pareto-optimal solutions which are ‘fair’ with respect
to the competing objective functions. In such cases, it is common to optimize the Ordered

130

Decision-Focused Learning: A Survey

Weighted Average (OWA) of those functions, which guarantees ‘equitably e�cient’ solutions
(Ogryczak & Śliwiński, 2003). Incorporating OWA optimization in DFL faces a unique
challenge, since the OWA objective itself is nondi↵erentiable. Dinh et al. (2024) mitigate
by replacing the OWA function by its smooth Moreau envelope approximation. This yields
a di↵erentiable approximate OWA optimization, and enables joint DFL learning of each
individual objective function’s parameters to minimize regret of their fair OWA aggregation.

3.3.3 Predicting Parameters in the Constraints

The majority of the works in DFL aim to predict parameters in the objective function
and assume that the feasible space is known. However, in many applications the unknown
parameters occur in the constraints as well as in the objectives. When the parameters
in the constraints are predicted and prescribed decisions are made using the predicted
parameters, one major issue is that the prescribed decisions might turn out to be infeasible
with respect to the true parameters. In this case, task loss to minimize the suboptimality
of the prescribed decisions is not enough, but it should also penalize if the prescribed
decisions become infeasible. Hence DFL methods for such problems entails a few additional
considerations. The first consideration deals with quantifying the extent of infeasibility
when the prescribed decisions become infeasible with respect to the true parameters. In this
regard, Garcia, Street, Homem-de Mello, and Muñoz (2021) propose to add artificial slack
variables with high penalty costs in the objective function to penalize infeasible decisions.
Hu et al. (2023c) introduce the notion of post-hoc regret. In post-hoc regret a non-negative
penalty is added to regret to account for correcting the infeasible solutions into feasible ones.
This idea of such a corrective actions shares a fundamental resemblance to the concept of
recourse actions in stochastic programming (Ruszczyński & Shapiro, 2003).

The next consideration is computing the gradients of this task loss with respect to the
parameters in the constraints. Some of the techniques discussed in Section 3.1.1 can be
utilized for this purpose. For example, the gradient can be obtained by solver unrolling.
Tan, Delong, and Terekhov (2019) compute the gradient by unrolling a LP. As the param-
eters in the constraints are also present in the the KKT conditions (13), it is possible to
compute the gradients for optimization problems, with di↵erentiable constraint functions
by di↵erentiating the KKT conditions using the techniques discussed in Section 3.1.1.

Tan, Terekhov, and Delong (2020) provide an ERM formulation for predicting parame-
ters in both the objective function and constraints of an LP. For parameters in the objective
function, the ERM accounts for suboptimality of the decision and for parameters within the
constraints, the ERM formulation considers the feasibility of optimal points observed in the
training data. This ERM formulation takes the form of a non-linear optimization program
and they propose to compute the derivative of the predicted parameters by considering its
sequential quadratic programming (SQP) approximation. For packing and covering LPs,
Hu et al. (2023c) compute the derivative of post-hoc regret with respect to the predicted
parameters in the constraints by considering the Lagrangian relaxation of the LP when the
corrective action is linear. Hu, Lee, and Lee (2023b) extend this approach by treating the
correction action also as an LP.

The task of computing the gradients of the task loss with respect to the parameters in the
constraints is particularly challenging for combinatorial optimization problems, which often

131

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

involve discrete feasible space. For combinatorial optimization problems, it might happen
that no constraints are active at the optimal point. So, slight changes in the parameters in
the constraints do not change the optimal solution, leading to the problem of zero gradients.
Hence, coming up with meaningful gradients for back-propagation is more challenging for
combinatorial optimization problems. If either the CO problem or the corrective action
is an ILP, Hu et al. (2023b) consider the corresponding LP relaxation. Paulus, Roĺınek,
Musil, Amos, and Martius (2021) develop a di↵erentiable optimization layer for ILPs that
considers the downstream gradient of the solution as an input and returns the directions
of updating the parameters in the backward pass. They update the parameters along the
directions so that the Euclidean distance between the solution of the updated parameter
and the updated solution with the downstream gradient is minimized. For ILPs, Nandwani,
Ranjan, Mausam, and Singla (2022) view the task of constraint learning from the lens of
learning hyperplanes, which is common in classification tasks. Such an approach requires
negative samples. However, the negative samples in this setting must also include infeasible
points, which is not the case for the solution-cache approach reviewed in Section 3.1.4. In
the realm of gradient-free methods, Hu et al. (2023a) apply ‘branch & learn’ (Hu et al.,
2022) to minimize post-hoc regret considering CO problems, solvable by recursion.

3.3.4 Model Robustness in Decision-Focused Learning

The issue of model robustness arises often in deep learning. As has been shown in many
works, it is often possible for malicious actors to craft inputs to a neural network in such
a way that the output is manipulated (evasion attacks) (Goodfellow, Shlens, & Szegedy,
2015), or to generate training data which cause adverse e↵ects on the performance of the
trained model (poisoning attacks). As a subset of ML, some adversarial settings also apply
in DFL.

Evasion attacks, despite being the most commonly studied adversarial attacks, do not
generalize straightforwardly to DFL since they inherently pertain to classification models
with finite output spaces. On the other hand, it is shown by Kinsey, Tuck, Sinha, and
Nguyen (2023) that e↵ective poisoning attacks can be made against DFL models. The
paper shows that while such attacks can be e↵ective, they are computationally expensive
due to the optimization which must be repeatedly evaluated to form the attacks. On the
other hand, it is also demonstrated that poisoning attacks designed against two-stage models
can be transferred to fully integrated DFL models.

Separately, Johnson-Yu, Wang, Finocchiaro, Taneja, and Tambe (2023) study robust-
ness of decision-focused learning under label noise. The paper provides bounds on the
degradation of regret when test-set labels are corrupted by noise relative to those of the
training set. An adversarial training scheme is also proposed to mitigate this e↵ect. The
robust training problem is equivalent to finding the equilibrium solution to a Stackelberg
game, in which a figurative adversary applies label noise that is optimized to raise regret,
while the main player seeks model parameters that minimize regret.

3.3.5 Stochastic Optimization

Settings in decision-focused learning based on stochastic optimization models are studied
by Donti, Kolter, and Amos (2017). In contrast to more typical settings, the downstream

132

Decision-Focused Learning: A Survey

decision model is considered to be a stochastic optimization problem. In this formulation, it
is only possible to predict parameters of a random distribution that models the parameters
of an optimization problem. For instance, the mean and variance of load demands in a
power scheduling problem could be modeled as parameters of the optimization problem.
Their work shows how such problems can be converted to DFL with deterministic decision
models and solved using the techniques described in this survey article. To this end, it
also introduces an e↵ective technique for approximating the derivatives through arbitrary
convex optimization problems, by forming and di↵erentiating their quadratic programming
approximations, as computed by sequential quadratic programming. A more elaborate
relation to stochastic optimization is provided by Sadana et al. (2024) within the context
of contextual stochastic optimization.

3.3.6 Active Learning Algorithm for DFL

Active learning concerns ML problems where labeled data are scarce or expensive to obtain.
To address the challenge of limited training data, active learning algorithms choose the
most informative instances for labeling (Settles, 2009). Liu, Grigas, Liu, and Shen (2023)
study active learning in DFL paradigm. To identify the features for which knowing the
cost parameter is most beneficial for training, they propose to use the notion of ‘distance
to degeneracy’ (El Balghiti et al., 2019). Distance to degeneracy measures how far the
predicted cost vector is from the set of cost vectors that have multiple optimal solutions.
They argue that if distance to degeneracy is higher at a datapoint, there is more certainty
regarding the solution (of the CO problem); hence they propose to acquire the label of a
datapoint if its distance to degeneracy is lower than a threshold.

We end this section with a remark that DFL can be extended to address optimization
problems beyond the ‘classical’ CO problem, as defined in (1). For instance, Wilder, Ewing,
Dilkina, and Tambe (2019b) embed K-means clustering as a layer in a neural network by
di↵erentiating through the clustering layer, using DFL techniques. Wang, Shah, Chen,
Perrault, Doshi-Velez, and Tambe (2021) employ a DFL approach to predict the parameters
of Markov decision processes (MDPs).

4. Applications of Decision-Focused Learning

The Predict-Then-Optimize problem occurs in many real-world applications, as optimal
decisions can be found by solving CO problems and due to the presence of uncertainty,
some parameters of the CO problems must be estimated. Having seen the development of
DFL for Predict-Then-Optimize problems in the preceding section, practical uses of DFL
in various application domains will be presented below. As this survey paper reviews DFL
techniques, which predict cost parameters in Section 3, the applications presented below
are related specifically to the task of predicting only the cost parameters.

Computer vision. The DBB framework (Pogančić et al., 2020) (reviewed in Section
3.1.3) has been employed in many interesting computer vision applications. Rolinek, Musil,
Paulus, Vlastelica, Michaelis, and Martius (2020a) use for di↵erentiating rank-based met-
rics such as precision and recall, whereas Roĺınek, Swoboda, Zietlow, Paulus, Musil, and
Martius (2020b) and Kainmueller, Jug, Rother, and Myers (2014) use it for di↵erentiat-

133

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

ing bipartite matching in deep graph and multi-graph matching problems respectively in
the application of semantic keypoint matching of images. Abbas and Swoboda (2021) use
DBB to di↵erentiate through a multiway cut combinatorial optimization problem for graph
partitioning allowing them to perform end-to-end panoptic segmentation of images.

Fair Learning to Rank. In learning to rank (LTR), a machine learning model must
produce rankings of documents in response to users’ search queries, in which those most
relevant to a given query are placed in the highest ranking positions. In this setting, the
relevance of documents to queries is often measured empirically by historical user click
rates (Cao et al., 2007). In fair learning to rank (FLTR), this relevance-based matching
must be performed subject to strict constraints on the relative exposure between predefined
groups. Due to the di�culty of enforcing such constraints on the outputs of a machine
learning model, many FLTR frameworks resort to a two-stage approach in which prediction
of query-document relevance scores is learned by a typical LTR model without constraints
on fairness of exposure. At test time, the predicted relevance scores inform the objective
of a separate fair ranking optimization program (Singh & Joachims, 2018). Kotary et al.
(2022) use DFL to unify the prediction of relevance scores with the subsequent optimization
of fair rankings, in an end-to-end model trained by SPO which learns to map user queries
directly to the fair ranking policies that optimize user relevance. The result is a FLTR
model which outperforms previous penalty-based models in terms of both user relevance
and fairness, with the ability to directly control their trade-o↵s by modifying the fairness
constraints of the optimization layer.

Route optimization. Ferber, Gri�n, Dilkina, Keskin, and Gore (2023a) present an inter-
esting application, where DFL is used to combat the challenge of wildlife tra�cking. They
consider the problem of predicting the flight trajectory of tra�ckers based on a given pair of
source and destination airports. It is framed as a shortest path problem in a graph, where
each node is an airport. In the prediction stage, the probability of using a directed edge
(i, j) to leave the node i is predicted. In the optimization stage, the most likely path from
the source to the destination is found by solving a shortest path problem where the negative
log probabilities are used as edge weights. In this Predict-Then-Optimize formulation, the
probabilities are predicted via DFL, using the DBB framework for gradient computation.

Solving a shortest path problem by considering the negative log probabilities as edge
weights has also been explored by Mandi, Canoy, Bucarey, and Guns (2021). In their work,
the objective is to prescribe most preferred routing in a capacitated vehicle routing problem
(CVRP) (Toth & Vigo, 2015) for last-mile delivery applications. A high probability value
for the edge (i, j) indicates that it is the preferred edge to leave the node i. However, they
do not observe any advantage of the DFL paradigm over the PFL paradigm and attribute
this to the lack of training data instances (fewer than 200 instances). DFL is used for
last-mile delivery applications by Chu, Zhang, Bai, and Chen (2023) too. However, there
the objective is to minimize total travel time. In the prediction stage, the travel times of
all the edges are predicted and in the optimization stage, the CVRP is solved to minimize
the total travel time. The underlying model is trained using the SPO framework to directly
minimize the total travel time.

Maritime transportation. The inspection of ships by port state control has been framed
as a Predict-Then-Optimize problem by Yang, Yan, and Wang (2022). Due to limited num-

134

Decision-Focused Learning: A Survey

ber of available personnel, the objective is to identify non-compliant ships that are more
likely to be detained, and then select those ships for inspection. A ship can be found to
be non-compliant by port state control in multiple categories. If a ship is found to be
non-compliant for a category, a ‘deficiency number’ will be recorded for the ship in that
category. In the prediction stage, a linear model is built to identify deficiency numbers
of the ships in all the categories and in the optimization stage, a CO problem is solved
to select ships maximizing the total ‘deficiency number’. Given the scale of the CO prob-
lem at hand, training with standard SPO framework becomes prohibitive. Therefore, they
employ pairwise-comparison based loss function, similar to Eq. (38) to implement DFL.
Ship maintenance activities by ship owners have been framed as Predict-Then-Optimize
problems by Tian, Yan, Liu, and Wang (2023). The ship owners have to schedule regular
maintenance activities to remain compliant. However, as maintenance activities are expen-
sive, the objective of identifying categories that may warrant immediate detentions by the
port state control, has been considered. To do so, in the prediction stage, a random for-
est model is built to predict the deficiency number (likelihood of non-compliance) for each
category. In the optimization stage, a CO problem is formulated considering maintenance
cost and detention cost to determine whether maintenance activity should be scheduled
for each category. The random forest models are trained to directly minimize regret using
SPOTs (Elmachtoub et al., 2020).

Power and energy systems. Wahdany, Schmitt, and Cremer (2023) provide a use-
case of DFL in renewable power system application. In their work, the prediction stage
involves the task of generating wind power forecasts. As these forecasts are further used
in power system energy scheduling, the predictive ML model is directly trained with the
objective of minimizing power system operating costs using cvxpylayers (Agrawal et al.,
2019a). Tschora, Guns, Pierre, Plantevit, and Robardet (2023) observe that electricity
prices are set by regulators by optimizing social welfare while maintaining a constant energy
balance. They formulate this optimization as a Mixed-Integer Quadratic Program (MIQP)
problem and embed the CO problem into the training loop of an electricity price forecasting
framework, which outperforms the conventional price forecasting approach. By analytically
di↵erentiating the CO problem, they derive a step function as the derivative, which is used
for training the ML model in DFL paradigm. Sang, Xu, Long, Hu, and Sun (2022) consider
another Predict-Then-Optimize problem in power system applications, where electricity
prices are predicted in the prediction stage and the optimization stage deals with optimal
energy storage system scheduling to maximize arbitrage benefits. Lower values of regret
have been reported in their work, when the prices are predicted using the SPO framework.

Communication technology. DFL is applied to mobile wireless communication tech-
nology applications by Chai, Wong, Tong, Chen, and Zhang (2022). Fluid antenna systems
(Wong, Tong, Zhang, & Zhongbin, 2020) are one of the recent developments in mobile wire-
less communication technology. However, its e↵ectiveness depends on the position of the
radiating element, known as the port. Chai et al. (2022) frame the port selection problem
as a Predict-Then-Optimize problem, where in the prediction stage signal-to-noise ratio for
each position of the port is predicted and then the optimal position of the port is decided
in the optimization stage. They use LSTM as the predictive model and report the SPO
framework is very e↵ective for such port selection applications.

135

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Problem Constraint Functions Decision Variables CO SOlver Predictive Model

Shortest path problem
on a 5⇥ 5 grid

Linear Continuous OR-Tools Linear

Portfolio optimization Quadratic Continuous Gurobi Linear

Warcraft shortest path Linear Continuous
Customized python

implementation of Dijkstra
CNN

Energy-cost aware
scheduling

Linear Discrete Gurobi Linear

Knapsack problem Linear Discrete OR-Tools Linear
Diverse bipartite matching Linear Discrete OR-Tools Multi-layer NN
Subset selections Linear Continuous Gurobi Linear

Table 2: Brief overview of the test problems considered for experimental evaluation. The
objective functions are linear for all the optimization problem.

Solving non-linear combinatorial optimization problems. Ferber et al. (2023b)
study the problem of learning a linear surrogate optimizer to solve non-linear optimization
problems. The objective is to learn a surrogate linear optimizer whose optimal solution is
the same as the solution to the non-linear optimization problem. Learning the parameters
of the surrogate linear optimizer entails backpropagating through the optimizer, which is
implemented using cvxpylayers (Agrawal et al., 2019a).

Further, interested readers are referred to the artcle by Mǐsić and Perakis (2020) for
more applications of Predict-Then-Optimize problems in various areas within OR.

5. Experimental Evaluation on Benchmark Problemsets

DFL recently has received increasing attention. The methodologies discussed in Section 3
have been tested so far on several di↵erent datasets. Because a common benchmark for the
field has not yet been set up, comparisons among techniques are sometimes inconsistent. In
this section, an e↵ort is made to propose several benchmark test problems for evaluating
DFL techniques. Then some of the techniques explained in Section 3 are compared on these
test problems.

5.1 Problem Descriptions

All the test problems, which are selected for benchmarking, have been previously used
in the DFL literature and their datasets are publicly available. All these problems are
Predict-Then-Optimize problems, meaning they encompass the two stages—prediction and
optimization. Moreover, all the optimization problems have linear objective functions. Ta-
ble 2 provides an overview of the experimental setups associated with each test problem,
including the specification of the CO problem and the type of predictive model. Next, these
test problems are described in detail.

5.1.1 Shortest Path Problem on a 5⇥ 5 grid

This experiment is adopted from the work of Elmachtoub and Grigas (2022). It is a shortest
path problem on a 5⇥ 5 grid, with the objective of going from the southwest corner of the
grid to the northeast corner where the edges can go either north or east. This grid consists
of 25 nodes and 40 edges.

136

Decision-Focused Learning: A Survey

Formulation of the optimization problem. The shortest path problem on a graph
with a set V of vertices and a set E of edges can be formulated as an LP problem in the
following form:

min
x

c>x (42a)

s.t.Ax = b (42b)

x � 0 (42c)

Where A 2 R|V |⇥|E| is the incidence matrix of the graph. The decision variable x 2 R|E| is
a binary vector whose entries are 1 only if the corresponding edge is selected for traversal.
b 2 R|V | is the vector whose entry corresponding to the source and sink nodes are 1 and
�1 respectively; all other entries are 0. The constraint (42b) must be satisfied to ensure
the path will go from the source to the sink node. The objective is to minimize the cost of
the path with respect to the (predicted) cost vector c 2 R|E|.

Synthetic data generation process. In this problem, the prediction task is to predict
the cost vector c from the feature vector z. The feature and cost vectors are generated
according to the data generation process defined by Elmachtoub and Grigas (2022). For
the sake of completeness, the data generation process is described below.1 Each problem
instance has cost vector of dimension |E| = 40 and feature vector of dimension p = 5. The
training data consists of {(zi, ci)}Ni=1, which are generated synthetically. The feature vectors
are sampled from a multivariate Gaussian distribution with zero mean and unit variance,
i.e., zi ⇠ N(0, Ip) To generate the cost vector, first a matrix B 2 R|E|⇥p is generated, which
represents the true underlying model. The cost vectors are then generated according to the
following formula:

cij =

✓
1
p

p

�
Bzi

�
+ 3

◆Deg

+ 1

�
⇠j
i

(43)

where cij is the jth component of cost vector ci. The Deg parameter specifies the extent
of model misspecification, because a linear model is used as a predictive model in the
experiment. The higher the value of Deg, the more the true relation between the features
and objective parameters deviates from a linear one and the larger the prediction errors will
be. Finally, ⇠j

i
is a multiplicative noise term sampled randomly from the uniform distribution

[1�#, 1+#]. The experimental evaluation involves five values of the parameter Deg, which
are 1, 2, 4, 6 and 8, and the noise-halfwidth parameter # being 0.5. Furthermore, for each
setting, a di↵erent training set of of size 1000 is used. In each case, the final performance
of the model is evaluated on a test set of size 10, 000.

Predictive model. In each setting, the underlying predictive model is a one-layer feed-
forward neural network without any hidden layer, i.e., a linear model. The input to the
model is a p dimensional vector, and output is a |E| dimensional vector. Note that a multi-
layer neural network model can be used to improve the accuracy of the predictive model.
The intuition behind using a simple predictive model is to test the e�cacy of the DFL
techniques when the predictions are not 100% accurate. The DFL techniques are trained to

1. The generator in https://github.com/paulgrigas/SmartPredictThenOptimize is used to generate the
dataset.

137

https://github.com/paulgrigas/SmartPredictThenOptimize

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

minimize regret, and the prediction-focused model is trained by minimizing the MSE loss
between the true and predicted cost vectors.

5.1.2 Portfolio Optimization Problem

A classic problem that combines prediction and optimization is the Markowitz portfolio
optimization problem, in which asset prices are predicted by a model based on empirical
data, and then subsequently, a risk-constrained optimization problem is solved for a port-
folio which maximizes expected return. This experiment is also adopted from the work of
Elmachtoub and Grigas (2022).

Formulation of the optimization problem. In portfolio optimization problem, the
objective is to choose a portfolio of assets having highest return subject to a constraint on
the total risk of the portfolio. The problem is formulated in the following form:

max
x

c>x (44a)

s.t. x>⌃x  � (44b)

1>x  1 (44c)

x � 0 (44d)

where 1 is the vector of all-ones of same dimension as x, c is the vector of asset prices,
and ⌃ is a predetermined matrix of covariances between asset returns. The objective (44a)
is to maximize the portfolio’s total value. Eq. (44b) is a risk constraint, which bounds
the overall variance of the portfolio, and (44c), (44d) model x as a vector of proportional
allocations among assets.

Synthetic data generation process. Synthetic input-target pairs (z, c) are randomly
generated, according to a random function with a specified degree of nonlinearity Deg 2 N.
The procedure for generating the random data as follows:

Given a number of assets d and input features of size p, input samples xi 2 Rp are
sampled element wise from i.i.d. standard normal distributions N(0, 1). A random matrix
B 2 Rd⇥p, whose elements Bij 2 {0, 1} are drawn from i.i.d. Bernoulli distributions which
take the value 1 with probability 0.5, is created. For a chosen noise magnitude #, L 2 Rn⇥4

whose entries are drawn uniformly over [�0.0025#, 0.0025#] is generated. Asset returns are
calculated first in terms of their conditional mean c̄ij as

c̄ij := (
0.05
p

p
(Bzi)j + (0.1)

1
Deg)Deg (45)

Then the observed return vectors ci are defined as cij := r̄i + Lf + 0.01#⇠, where f ⇠
N(0, I4) and noise ⇠ ⇠ N(0, Id) This causes the cij to obey the covariance matrix ⌃ :=
LL> + (0.01⇣)2I, which is also used to form the constraint (44b), along with a bound on
risk, defined as � := 2.25 e>⌃e where e is the equal-allocation solution (a constant vector).
Four values of the parameter Deg—1, 4, 8, 16 have been used in the experimal evaluation.
The value of noise magnitude parameter # is set to 1. It is assumed that the covariance
matrix of the asset returns does not depend on the features. The values of ⌃ and � are
constant, and randomly generated for each setting.

138

Decision-Focused Learning: A Survey

Predictive model. Like the previous experiment, the underlying predictive model is a
linear model, whose input is a feature vector z 2 Rp and output is the return vector c 2 Rd.

5.1.3 Warcraft Shortest Path Problem

This experiment was adopted from the work of Pogančić et al. (2020). Each instance in this
problem is an image of a terrain map using the Warcraft II tileset (Guyomarch, 2017). Each
image represents a grid of dimension d ⇥ d. Each of the d2 pixels has a fixed underlying
cost, which is unknown and to be predicted. The objective is to identify the minimum cost
path from the top-left pixel to the bottom-right pixel. From one pixel, one can go in eight
neighboring pixels—up, down, front, back, as well as four diagonal ones. Hence, it is a
shortest path problem on a graph with d2 vertices and O(d2) edges.

Formulation of the optimization problem. Note that this is a node-weighted shortest
path problem, where each node (pixel) in the grid is assigned a cost value; whereas in the
previous shortest path problem, each edge is assigned a cost value. However, this problem
can be easily reduced to the more familiar edge weighted shortest path problem by ‘node
splitting’. ‘Node splitting’ splits each node into two separate nodes—entry and exit nodes
and adds an edge, that has a weight equal to the node weight, from the entry node to the
exit node. For each original edge, an edge, with null weight, from the exit node of the source
node to the entry node of the sink node, is constructed.

Predictive model. The prediction task is to predict the cost associated with each pixel.
The actual cost ranges from 0.8 to 9.2 and is dependent on visible characteristics of the pixel.
For instance, cost changes depending on whether the pixel represents a water-body, land or
wood. To predicts the cost of each node (pixel), a convolutional neural network (CNN) is
employed. The CNN takes the d⇥ d image as an input and outputs costs of the d2 pixels.
The ResNet18 (He, Zhang, Ren, & Sun, 2016) architecture is slightly modified to form the
ML model. The first five layers of ResNet18 are followed by a max-pooling operation to
predict the underlying cost of each pixel. Furthermore, a Relu activation function (Agarap,
2019) is used to ensure the predicted cost remains positive, thereby avoiding the existence
of negative cycles in the shortest path edge weights.

5.1.4 Energy-Cost Aware Scheduling Problem

This experiment setup was adopted from the work of Mandi et al. (2020). This is a
resource-constrained day-ahead job scheduling problem (Simonis, O’Sullivan, Mehta, Hur-
ley, & Cauwer, 1999) with the objective of minimizing energy cost. Tasks must be assigned
to a given number of machines, where each task has a duration, an earliest start, a latest
end, a resource requirement and a power usage. Each machine has a resource capacity con-
straint. Also, tasks cannot be interrupted once started, nor migrated to another machine
and must be completed before midnight. The scheduling is done one day in advance. So,
the prediction task is to predict the energy prices of the next day.

Formulation of the optimization problem. The scheduling problem is formulated as
an ILP. Let J be the set of tasks to be scheduled on a set of machines I while maintaining
resource requirement of W resources. The tasks must be scheduled over T number of time

slots. Each task j is specified by its duration ⇣j , earliest start time ⇣(1)
j

, latest end time

139

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

⇣(2)
j

, power usage �j . Let ⇢jw be the resource usage of task j for resource w and qiw is the
capacity of machine i for resource w. Let xjit be a binary variable that takes the value 1
only if task j starts at time t on machine i. The objective of minimizing energy cost while
satisfying the required constraints can be expressed by the following ILP:

min
xjit

X

j2J

X

i2I

X

t2T
xjit

⇣ X

tt0<t+⇣j

�jct0
⌘

(46a)

s.t.

X

i2I

X

t2T
xjit = 1 , 8j2J (46b)

xjit = 0 8j2J8i2I8
t<⇣

(1)
j

(46c)

xjit = 0 8j2J8i2I8
t+⇣j>⇣

(2)
j

(46d)
X

j2J

X

t�⇣j<t0t

xjit0⇢jw  qiw, 8i2I8w2W8t2T (46e)

xjit 2 {0, 1}8j2J8i2I8t2T (46f)

The (46b) constraint ensures each task is scheduled once and only once. The constraints in
(46c) and (46d) ensure that the task scheduling abides by earliest start time and latest end
time constraints. (46e) imposes the constraints of resource requirement.

Data description. The prediction task is to predict the energy prices one day in advance.
The energy price dataset comes from the Irish Single Electricity Market Operator (SEMO)
(Ifrim, O’Sullivan, & Simonis, 2012). This dataset consists of historical energy price data at
30-minute intervals starting from midnight on the 1st of November, 2011 until the 31st of
December, 2013. In this setup, each day forms an optimization instance, which comprises
of 48 time slots, corresponding to 48 half-hour slots. Each half-hour instance of the data
has calendar attributes, day-ahead estimates of weather characteristics, SEMO day-ahead
forecasted energy-load, wind-energy production and prices, actual wind-speed, temperature
and CO2 intensity, which are used as features. So, the dimension of feature vector is 8.
Note that, in this dataset, each ct in the cost vector is associated with an eight dimensional
feature vector, i.e., c 2 R48 and z 2 R48⇥8.

Predictive model. As energy prices of each half-hour slot is associated with 8 features,
the input to the predictive model is a feature vector of dimension 8 and output is a scalar.
In this case also, the predictive model is a linear model, i.e., a feed forward neural network
without any hidden layer.

5.1.5 Knapsack Problem

This problem setup was also adopted from the work of Mandi et al. (2020). The objective
of the knapsack problem is to choose a maximal value subset from a given set of items,
subject to a capacity constraint. In this case, the weights of all items and the knapsack
capacity are known. What is unknown are the values of each item. Hence, the prediction
task is to predict the value of each item.

Formulation of the optimization problem. The formulation of the knapsack opti-
mization problem with unit weights has already been provided in Eq. (4). However, in

140

Decision-Focused Learning: A Survey

general the weights of all items are not equal. So, a general knapsack optimization problem
can be formulated as follows:

max
x

c>x (47a)

s.t. w>x  Capacity (47b)

x 2 {0, 1} (47c)

where w, c are the vector of weights and values respectively.

Data description. For this problem again, the dataset is adapted from the Irish Single
Electricity Market Operator (SEMO) (Ifrim et al., 2012). In this setup, each day forms
an optimization instance and each half-hour corresponds to a knapsack item. So the cost
vector c and the weights w are of length 48, corresponding to 48 half-hours. The motivation
can be framed as identifying half-hour slots that yield maximum revenue while adhering to
the constraint of booking each slot. Similar to the energy scheduling problem, each item
of the cost vector is associated with a feature vector of dimension 8. The weight vector is
fixed. The weights are generated synthetically as done by Mandi et al. (2020). The data
generation is as follows. First a weight wi is assigned to each of the 48 half-hour slots, by
sampling from the set {3, 5, 7}. In order to introduce correlation between the item weights
and the item values, the energy price vector is multiplied with the weight vector and then a
randomness is incorporated by adding Gaussian noise ⇠ ⇠ N(0, 25), which produces the final
item values ci. The motivation behind introducing correlation between the item weights
and the item values stems from the fact that solving a knapsack problem with correlated
item weights and values is considered to be hard to solve (Pisinger, 2005). The sum of the
weights of each instance is 240. 60, 120, and 180 are the three values of capacity with which
the experiments are performed.

Predictive model. The predictive model is same as the previous problem, i.e., a feed
forward neural network without any hidden layer.

5.1.6 Diverse Bipartite Matching Problem

This experimental setup is adopted from Ferber et al. (2020). In this problem, two disjoint
sets of nodes are provided and the objective is to match between the nodes of the two sets.
The graph topologies are taken from the CORA citation network (Sen, Namata, Bilgic,
Getoor, Galligher, & Eliassi-Rad, 2008), where a node represent an published article and
an edge represent a citation. So the goal of the matching problem is to identify the citations
between the two sets of articles. Furthermore, the matching must obey diversity constraints,
as described later.

Optimization problem formulation. Let S1 and S2 denote the two sets. The matching
must satisfy the following diversity constraints: a minimum ⇢1% and ⇢2% of the suggested
pairings should belong to same and distinct fields of study respectively. In this matching
problem, each edge does not have an associated cost in the true sense. The DFL approaches
consider the likelihood of the existence of each edge as the edge weights and then determine
which edges should be present while ensuring all the constraints are satisfied. Let cij be the
likelihood of an edge existing between article i and j, 8i 2 S1, j 2 S2. With this likelihood

141

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

value, the matching can be performed by solving the following ILP, which ensures the
diversity constraints:

max
x

X

i,j

cijxij (48a)

s.t.

X

j

xij  1 8i 2 S1 (48b)

X

i

xij  1 8j 2 S2 (48c)

X

i,j

�i,jxij � ⇢1
X

i,j

xij (48d)

X

i,j

(1� �ij)xij � ⇢2
X

i,j

xij (48e)

xij 2 {0, 1} 8i 2 S1, j 2 S2 (48f)

where �ij is an indicator, which takes the value 1 only if article i and j are of same field,
and 0 if they belong to two di↵erent fields.

Data description. The network is divided into 27 disjoint topologies, each of which forms
a distinct optimization problem instance containing 100 nodes. In each instance, the 100
nodes are split into two sets of 50 nodes S1 and S2; so each instance forms a bipartite
matching problem between two sets of cardinality 50. Each publication (node) has 1433
bag-of-words features. The feature of an edge is formed by concatenating features of the
two corresponding nodes. The prediction task is to estimate cij values. In this problem,
each individual cij is associated with a feature vector of length 2866.

Predictive model. Although the DFL paradigm considers the likelihood of the existence
of each edge as the edge weights, in the prediction-focused approach the model is trained by
directly predicting the presence or absence of each edge. The predictive model is a neural
network model. The input to the neural network is a 2866 dimensional vector and final
output is a scalar between 0 and 1. The neural network has one hidden layer and uses a
sigmoid activation function on the output.

5.1.7 Subset Selections

This experiment is a structured prediction task, in which the object is to learn a mapping
from feature vectors to binary vectors which represent subset selections. Unlike the other
experiments above, the ground-truth data take the form of optimal solutions to an opti-
mization problem, rather than its corresponding problem parameters. Thus, the regret loss
is not suitable for training a prediction model. Instead, a task loss based on the error of
the predicted solutions with respect to ground-truth solutions is used in this experiment.

Optimization problem formulation. For any c 2 Rn, the objective of the optimization
problem is to output a binary vector in Rn, where the non-zero values correspond to the

142

Decision-Focused Learning: A Survey

Hyperparameter
Techniques Utilizing
the Hyperparameter

Range

learning rate All {5⇥ 10�4, 1⇥ 10�3, 5⇥ 10�3, 0.01, 0.05, 0.1, 0.5, 1.0}

� I-MLE, DBB {0.1, 1, 10, 100}

✏ I-MLE, FY {0.05, 0.1, 0.5, 1, 2, 5}

 I-MLE {5, 10, 50}

⌧ Listwise {0.05, 0.1, 0.5, 1, 2, 5}

⇥ Pairwise {0.01, 0.05, 0.1, 1., 10., 50.}
µ QPTL, HSD {0.01, 0.1, 1., 10., }

Table 3: The range of hyperparameters for hyperparameter tuning by grid search.

top-k values of c. This can be formulated as an LP problem in the following form:

argmax
x

c>x (49a)

s.t. 1>x = k (49b)

0  x  1 (49c)

As a totally unimodular linear program with integral parameters, this problem has (binary)
integer optimal solutions. This mapping is known for its ability to represent subset selections
in structured prediction, and is useful for multilabel classification (Amos et al., 2019) .

Data Description. Let U(0, 1) be a uniform random distribution; then a collection of
feature vectors z are generated by z ⇠ U(0, 1)n. For each z, its corresponding target data
is a binary vector containing unit values corresponding to the top-k values of z, and zero
values elsewhere. Three datasets are generated, each of 1000 training samples, in which the
selection problem takes size n = 25, n = 50, and n = 100 respectively. The subset size k is
chosen to be one fifth of n, in each case.

Predictive model. Like the previous problem, the predictive model here also is a linear
model, i.e., a feed forward neural network without any hidden layer. In this problem, the
task loss to train the predicative model is the negated inner product between true selection
x and prescribed selection x̂, i.e., L(x̂,x) = x̂>x, which is minimized when x̂ = x. Since
the model is not regret-based, and does not assume access to the ground-truth parameters
c, techniques which rely on such assumptions are not tested on this problem.

5.2 Experimental Results and Analysis

In this subsection, results of comparative evaluations of some of the techniques introduced in
Section 3 on the datasets mentioned in Section 5 are presented. The following techniques are
considered for evaluations: 1. Prediction-focused (PF) approach, 2. Smart “Predict, Then
Optimize” (32) [SPO], 3. Di↵erentiation of blackbox combinatorial solvers (24) [DBB], 4.
Implicit maximum likelihood estimation (30) [I-MLE], 5. Fenchel-Young loss (29) [FY], 6.
Di↵erentiation of homogeneous self-dual embedding (20) [HSD], 7. Quadratic programming
task loss (19) [QPTL], 8. Listwise LTR loss (40) [Listwise], 9. Pairwise LTR loss (38)
[Pairwise], 10. Pairwise di↵erence LTR loss (39) [Pairwise(di↵)], 11. Maximum a posteriori

143

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

contrastive loss (37) [MAP]. The reason behind including prediction-focused approach is
that it is considered as a benchmark. Note that among these techniques, Listwise, Pairwise,
Pairwise(di↵), and MAP make use of a solution cache. The solution cache is implemented
using the procedure proposed by Mulamba et al. (2021). In this approach, the solution
cache is initialized by caching all the solutions in the training data and the cache is later
expanded by employing a psolve parameter value greater than zero. As in (Mulamba et al.,
2021; Mandi et al., 2022) it is reported that psolve = 5% is adequate for most applications,
the value of psolve is set to 5%. Next, the procedure systematically followed for the empirical
evaluations is explained.

Experimental setup and procedures. The performance of a technique is sensitive to
the choice of the technique specific hyperparameters as well as some other fundamental
hyperparameters, common in any neural network training such as learning rate. These are
called hyperparameters because they cannot be estimated by training the model, rather
they must be selected before training begins. Tuning hyperparameters is the process of
identifying the set of hyperparameter values that are expected to produce the best model
outcome. In the experimental evaluations, hyperparameter tuning is performed via grid
search. In the grid search, each of the hyperparameters is tried for a set of values. The
set of values to be tested for each hyperparameter is predetermined. Grid search su↵ers
from the curse of dimensionality in the hyperparameter space, as the number of combina-
tions grows exponentially with the number of hyperparameters. However, it is possible to
train the di↵erent models for di↵erent combinations of hyperparameters in parallel as the
combinations are independent.

The hyperparameter of each model for each experiment is selected based on performance
on the validation dataset. For each hyperparameter a range of values as defined in Table 3 is
considered. The hyperparameter combination which produces the lowest average regret on
the validation dataset is considered to be the ‘optimal’ one. For both validation and testing,
10 trials are run where in every trial the network weights are initialized with a di↵erent
seed. To be specific, values of seed from 0 to 9 have been considered. Each model for each
setup is trained using pytorch (Paszke et al., 2019) and pytorch-lightning (Falcon et al.,
2019) with the adam optimizer (Kingma & Ba, 2015) and ‘reduceLROnPlateau’(PyTorch,
2017) learning rate scheduler. As mentioned before, the learning rate of adam optimizer

is treated as a hyperparameter. For QPTL, the QP problems are solved using cvxpylayers

(Agrawal et al., 2019a). For other techniques, which treat the CO solver as a blackbox
solver, gurobi (Gurobi Optimization, 2021) or ortools (Perron & Furnon, 2020) is used as
the solver.

Evaluation metric. After selecting the ‘optimal’ hyperparameter combination for each
test problem, 10 trials of all the techniques with the ‘optimal’ hyperparameter combination
are run on test dataset. Unless otherwise mentioned the comparative evaluation is made
based on relative regret on the test dataset. The relative regret is defined as follows:

1

Ntest

NtestX

i=1

ci>(x?(ĉi)� x?(ci))

ci>x?(ci)
. (50)

In practice, c (or ĉ) can have non-unique optimal solutions. However, note that if all the
entries in c are continuous, it is very unlikely that c will have non-unique solutions. For

144

Decision-Focused Learning: A Survey

(a) Deg = 1

(b) Deg = 8

Figure 5: Comparative evaluations on the synthetic shortest path problem with noise-
halfwidth parameter # = 0.5. The boxplots show the distributions of relative regrets.

instance, in the case of an LP, the only circumstance in which the LP can have multiple
solutions is when c is parallel to one of the faces of the LP polyhedron. Nevertheless, if
the cost vector is predicted by an ML model, a pathological case might occur, especially at
the beginning of model training, when all the cost parameters are zero. This results in all
feasible solutions being optimal with zero cost. However, to avoid this complexity in the
experiments, it is assumed that the solution x?(ĉ) is obtained by calling a CO solver as
an oracle and that if there exist non-unique solutions, the oracle returns a single optimal
solution by breaking ties in a pre-specified manner. This is true if a commercial solver such
as Gurobi is used to solve the CO problem.

5.2.1 Comparative Evaluations

Next, the performances of the 11 DFL techniques across the 7 problems are presented for
comparative evaluation.

Shortest path problem on a 5⇥ 5 grid. The comparative evaluation for the synthetic
shortest path problem is shown in Figure 5 with the aid of box plots. To conserve space,
boxplots for two values of Deg are shown in Figure 5. The boxplots for all the five degrees
are shown in Figure A1 in the Appendix. In Figure 5, the value of #, the noise-halfwidth
parameter is 0.5 for all the experiments and the training set for each Deg contains 1000
instances. The predictive model is a simple linear model implemented as a neural network
model with no hidden layers.

145

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

(a) Deg = 1

(b) Deg = 16

Figure 6: Comparative evaluations on the synthetic portfolio optimization problem with
noise magnitude # = 1. The boxplots show the distributions of absolute regrets.

For Deg 1, the linear predictive model perfectly captures the data generation process.
Consequently, the PF approach is very accurate and it results in the lowest regret. SPO has
slightly higher regret than the PF approach. All the other DFL techniques have considerably
higher regrets compared to PF. In contrast, the relative regret worsens for the PF approach,
as the value of Deg parameter is increased. For Deg 8, PF is not the best as the predictive
model is misspecified. In this case, FY has the lowest regret; while DFL techniques, other
than Pairwise(di↵) results in lower regret than the PF approach. For Deg 6, the best one
FY, although its test regret is not very di↵erent from SPO, I-MLE and QPTL. For Deg
4, I-MLE has the lowest regret, closely followed by FY and SPO. For Deg 2, both PF and
SPO have lowest regret.

Among the DFL techniques, HSD exhibits higher regret and higher variances than the
other DFL approaches. It performs better than the PF approach only for Deg 6 and 8.

Portfolio optimization problem. Note that this is an optimization problem with con-
tinuous decision variables having quadratic constraints and a linear objective func-
tion. Hence, the HSD approach is not applicable for this problem, as it cannot handle
non-linear constraints. However, as cvxpylayers is used to implement QPTL, it can be ap-
plied in this problem. The boxplots of test regrets for noise magnitude parameter # being
1 are shown in Figure 6.

In this problem, in some problem instances, all the return values are negative, which
makes a portfolio with zero return to be the optimal portfolio. In such cases, relative regret
turns infinite as the denominator is zero in Eq. (50). Hence, for this problem set, the
absolute regret instead of relative regret is reported in Figure 6. The boxplots for Deg

146

Decision-Focused Learning: A Survey

(a) Image Size 12⇥ 12

(b) Image Size 30⇥ 30

Figure 7: Comparative evaluations on the Warcraft shortest path problem instances. The
boxplots show the distributions of relative regrets.

values of 1 and 16 are shown in The boxplots for all the four degrees are shown in Figure
A2 in the Appendix.

Apparently, the PF approach performs very well in this problem; but SPO manages to
outperform PF slightly in all cases except for Deg 1. It is evident in Figure 6 that DBB,
I-MLE, FY and QPTL perform miserably as they generate regret even higher than the PF
approach. All these techniques were proposed considering problems with linear constraints.
Hence concerns arise that these techniques might not be suitable in the presence of quadratic
constraints. On the other hand, LTR losses—Pairwise and Pairwise(di↵) and contrastive
loss function, MAP, perform even better than SPO for Deg 16. The Listwise LTR loss
exhibits high variance for Deg 1 and for Deg values of 4 and 8. For Deg 16, it generates
average test regret lower than SPO. In general, Figure 6 reveals DBB, I-MLE, FY and
QPTL perform poorly in this problem, whereas, SPO, MAP Pairwise and Pairwise(di↵)
seem to be the best performing DFL techniques for this problem.

Warcraft shortest path problem. Recall that this a shortest path problem in an image
with dimension d ⇥ d. The optimization problem can be e�ciently solved using Dijkstra’s
algorithm (Dijkstra, 1959), as underlying costs of all the pixel values are non-negative.
Hence the shortest path problem is solved using Dijkstra’s algorithm for the techniques
which view the CO solver as a blackbox oracle. However, HSD and QPTL require the
problem to be formulated as an LP and require a primal-dual solver. Note that in this
experiment, the predictive ML model is a CNN, which predicts the cost of each pixel. In
this case, training the ML model is challenging due to the large number of parameters.
Hence, combining this ML model with computation-intensive modules such as a primal-

147

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

(a) Instance 1

Figure 8: Comparative evaluations on the energy-cost aware scheduling problem instances.
This boxplot shows the distributions of relative regrets.

dual solver poses significant challenges. We could not run the experiments with HSD and
QPTL because of this computational burden.

The dataset contains four values of d: 12, 18, 24, 30. Clearly, as the value of d increases,
the number of parameters of the CO problem increases. The boxplots of comparative
evaluations are summarized in Figure 7. The boxplots of the other two values of d can be
found in Figure A3 in the Appendix. First, note that the PF approach, which is trained by
minimizing MSE loss between the predicted cost and the true cost, performs significantly
worse than the DFL techniques. In fact, the performance of the PF approach deteriorates
as the image size increases. As the size of the image increases, the same level of prediction
error induces greater inaccuracies in the solution. This is because an increase in the area of
the image involves dealing with a greater number of decision variables in the CO problem.
When the level of prediction error remains constant, the probability of the error in prediction
changing at least one of the decision variables also increases. Consequently, there is a higher
likelihood of error in the final solution. As the regret of the PF approach is significantly
higher, note that the scale of the y-axis is changed to fit it into the plot.

Among the DFL techniques, Listwise performs best for sizes 12, 18, and 30 and SPO
performs best for size 30. In fact, for sizes 12, 18, and 24, there are not many variations
between SPO, Listwise, and MAP. After them, the next three best-performing techniques
are Pairwise (di↵), I-MLE and DBB. However, for size 30, DBB comes third after Listwise
and MAP, followed by Pairwise (di↵), SPO, and I-MLE in that order. FY and Pairwise
perform slightly worse than the other DFL techniques. In general, this set of experiments
shows the advantage of the DFL approaches as all of them outperform the PF approach.

Energy-cost aware scheduling. There are three instances of this scheduling problem.
All the instances have 3 machines. The first, second, and third instances contain 10, 15, and
20 tasks, respectively. In this problem, the underlying ML model is a simple linear model
implemented as a neural network model with no hidden layers. The boxplot of comparative
evaluations for the first instance is presented in Figure 8. The boxplots of the other instances
can be found in Figure A4 in the Appendix.

Note that the scheduling problem is an ILP problem. For HSD and QPTL, the LPs
obtained by relaxing the integrality constraints have been considered. QPTL and HSD also
perform poorly in all three instances. Listwise and Pairwise LTR losses also result to higher

148

Decision-Focused Learning: A Survey

(a) Capacity= 60

Figure 9: Comparative evaluations on the knapsack problem instances. This boxplot shows
the distributions of relative regrets

regret than the PF approach. On the other hand, FY, SPO, I-MLE, Pairwise(di↵) and
MAP come out as the best performing ones closely followed by DBB.

In general, across the three problem instances, it is possible to identify some common
patterns. The first one is relaxing the integrality constraints fails to capture the essence
of the combinatorial nature of the LP. Consequently, HSD and QPTL perform poorly.
Secondly, Listwise and Pairwise ranking performances are significantly worse than the PF
approaches. The learning curve suggests (refer to Appendix B), these methods fail to
converge in these problem instances, although in some epochs, they are able to perform
significantly better than the PF approach, their performances never plateau. Lastly, SPO,
MAP, FY, and I-MLE perform consistently better than the rest.

Knapsack problem. Three instantiations of the knapsack problem are considered for the
experiment—each instantiation with a di↵erent capacity. The three capacity values are—
60, 120 and 180. The boxplot corresponding to capacity value 60 is presented in Figure
9. The boxplots of the other two capacities can be found in Figure A5 in the Appendix.
With a capacity of 60, QPTL performs the best, whereas DBB, and I-MLE, HSD, SPO,
and MAP also results in lower regret than the PF approach. With capacity values of 120
and 180, DBB has the lowest regret. Again I-MLE and SPO, HSD and QPTL result in
lower regret than PF. However, MAP, LTR losses, and FY perform poorly especially for
high capacity values.

Diverse bipartite matching. Three instantiations of the diverse bipartite matching
problem are formed by changing the values of ⇢1 and ⇢2. The values of (⇢1, ⇢2) for the three
instantiations are (10%, 10%), (25%, 25%), (50%, 50%) respectively. As mentioned before,
in this problem, each edge is not associated with an edge weight in the true sense. Hence,
the PF approach is trained by directly learning to predict whether an edge exists. So the
loss used for supervised learning for the PF approach is BCE loss. The DFL approaches
consider the predicted probability of each edge as the edge weight and then aim to minimize
regret.

The boxplot of comparative evaluations for (⇢1, ⇢2) being (50%, 50%), is presented in
Figure 10. The boxplots of the other two instances can be found in Figure A6 in the
Appendix. Firstly note that relative regrets of all the techniques are very high (higher than

149

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

(a) ⇢1 = ⇢2 = 50%

Figure 10: Comparative evaluations on the diverse bipartite matching problem instances.
This boxplot shows the distributions of relative regrets.

80%) for all three instances. With ⇢1 and ⇢2 being 10%, I-MLE performs considerably better
than all the other DFL techniques. When ⇢1 and ⇢2 take the value of 25%, QPTL, I-MLE
and HSD are the top there techniques, with significantly lower regret than the rest. In the
first two instances, other than I-MLE and QPTL, other DFL techniques do not significantly
better than the PF approach. DFL techniques such as SPO, FY, Listwise, Pairwise and
MAP perform considerably better than the PF approach only in the third instances.

Learning subset selections. Subset selection problems of three dimensions: n = 25,
n = 50, and n = 100 are considered for evaluation. In each case, the subset size k is chosen
to be n

5 . The error of any predicted subset x̂, with respect to ground truth x, is considered
to be the fraction of items which are selected in x but not in x̂. Such occurrences are
referred to as mismatches.

Figure 11 shows the average mismatch rates over the size n = 25 instances that were
achieved by each DFL technique listed in Table 1, excluding those which assume ground-
truth data in the form of problem parameters. Here, the ground-truth data are optimal
solutions of (49) representing subset selections. For each assessed technique, a distribution
of results is shown, corresponding to 10 di↵erent randomly generated training datsets.
Figure A7 shows similar results over the larger problem instances.

Note that it is suggested in (Amos et al., 2019) that the entropy function H(x) =P
i
xi log xi is particularly well-suited as a regularizer of the objective in (49), for the pur-

pose of multilabel classification, which is identical to the task in terms of its optimization
component and the form of its target data. Hence a Cvxpylayers implementation of this
model is included and referred to as ENT.

Figure A7 shows that most of the assessed techniques perform similarly, with DBB per-
forming worst regardless of the problem’s dimension. HSD is most sensitive with respect to
the randomly generated training set; the rest show consistent performance across datasets.
QPTL and IMLE each show a marginal advantage over the other techniques, but DPO
and ENT are also competitive. Across all techniques, variation in performance over the
randomly generated datasets tends to diminish as problem size increases.

150

Decision-Focused Learning: A Survey

Figure 11: Comparative evaluations on the subset selection problem instances of Size 25.
This boxplot shows the distributions of mismatch rates.

(a) Instance 2

(b) Instance 3

Figure 12: Comparative evaluations of per epoch training time of di↵erent DFL techniques
on the energy-cost aware scheduling problem.

5.2.2 Comparison on Runtime

While training the ML model to minimize the task loss is the primary challenge of DFL,
the computational cost associated with repeatedly solving CO problems gives rise to the
second challenge. DFL techniques with low computational cost are essential for scalability
for implementing DFL for real-world large-scale Predict-Then-Optimize problems. The
importance of scalability and low computational cost becomes significant while dealing with
large-scale CO problems, especially NP-hard combinatorial optimization problems. Note
that while the shortest path and the knapsack problems are relatively easy to solve; the
energy-cost aware scheduling problem is much more challenging. That is why the scheduling
problem is considered to compare the computational costs of the DFL techniques.

151

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

The median training time of an epoch during training of each technique for two instances
of the scheduling problem is shown Figure 12. Recall that the first, second and third
instances contain 10, 15 and 20 tasks respectively. So, the first one is the easiest of the
three and the third one is the hardest one. The complexity of the scheduling problem is
evident from the fact that a single instance of the knapsack problem takes 0.001 seconds to
solve, while solving the most di�cult instance of the scheduling problem takes 0.1 seconds,
both using Gurobi MIP solver. The readers are cautioned against placing excessive emphasis
on the absolute values of training times in Figure 12, as they are subject to system overhead.
However, some general conclusions can be drawn from the relative ordering of the training
times. The training time of the PF approach is the lowest, as it does not require solving the
CO problem for training. Training times of SPO, DBB, I-MLE and FY are almost 100 times
higher than the PF approach. Although QPTL and HSD consider the relaxed LP problem,
it is not always the case that they have lower training times. Recall that QPTL and HSD
solve and di↵erentiate the optimization problem using a primal-dual solver, which involves
matrix factorization. On the other hand, SPO, DBB, I-MLE and FY can leverage faster
commercial CO solvers, as they only require the optimal solution. However, for Instance 3,
it seems solving the ILP problem by calling a CO solver, is more computationally expensive
than solving and di↵erentiating the underlying QP problem using cvxpylayers.

On the other hand, Listwise, Pairwise, Pairwise(di↵) and MAP, all of which are run
with psolve = 5%, exhibit significantly lower training time than the other DFL techniques.
From this perspective, these techniques lie between PF and DFL approaches, balancing the
trade-o↵ between scalability and quality. The same conclusion generally holds true for other
experiments as well. However, for relatively easier CO problems, the system overhead time
may dominate over training time, which might disrupt the ordering of the training time.

5.2.3 Discussion

The experimental evaluations reveal that no single DFL technique performs the best across
all experiments. Some techniques work well on particular test problems, while others work
better on other test problems. Nevertheless, the following interesting characteristics can be
observed in the experimental evaluations:

(i) The performance of SPO is consistently robust across the test problems,
even though it may not outperform other techniques in every experiment.

(ii) I-MLE, FY, DBB and QPTL perform worse than the PF approach for the portfolio
optimization problem, where a quadratic constraint is present.

(iii) QPTL demonstrates robust performance when the relaxed LP is a good
approximation of the ILP. QPTL outperforms other techniques by a substantial
margin in the bipartite matching problem. However, QPTL performs poorly compared
to others in the scheduling problem, which is an ILP. In this case, the poor performance
may be attributed to the fact that QPTL considers a relaxation of the ILP. In this
problem, the LP solution might di↵er significantly from the true ILP solution. This
is not the case for the knapsack problem, because the solution of the relaxed LP does
not deviate significantly from the ILP solution for the knapsack problem.

152

Decision-Focused Learning: A Survey

(iv) MAP also demonstrates consistent performance across most test problems;
it exhibits higher regret specifically in the knapsack problem for Capacity=180 and
in the bipartite matching problem when ⇢1 and ⇢2 are 25%. It results in low regret
in the portfolio optimization problem; where some DFL techniques perform poorly.

(v) Among the LTR losses, Listwise and Pairwise often exhibit high variances,
especially in the scheduling and the knapsack problems. The performance
of Pairwise(di↵) stands out among the LTR losses due to its lower variance. Its
performance is comparable to or slightly worse than MAP for most problems other
than the synthetic shortest path problem with high values of Deg, i.e., when the
underlying predictive model is completely misspecified.

(vi) Due to the limitation of computational resources, it was not possible to run QPTL
and HSD on the Warcraft shortest path problem. This highlights the advantage of
DFL techniques which can make use of any blackbox combinatorial solver
(Dijkstra’s shortest path solver for instance) to solve the CO problem.

(vii) Continuing on this topic of computational cost, MAP and the LTR losses are
considerably faster and less computationally intensive when they are run
with low values of psolve. For large-scale real-world CO problems, the repeated
solving of which might be prohibitive, MAP could be used to implement DFL, as
MAP tends to have regret as low as SPO in most test problems.

6. Future Research Directions

While there is increasing interest in decision-focused learning research, more work is required
to enable its application in a wider range of real-world problems. This section aims to
summarize some challenges in DFL research that remain open.

Generalizing DFL across related tasks. Existing DFL methods typically tailor the
machine learning model to a specific combinatorial optimization task. However, in many
real-world applications, the CO problem can vary across di↵erent instances. For instance, in
the MIT-Amazon Last Mile Routing Challenge (Merchán, Arora, Pachon, Konduri, Winken-
bach, Parks, & Noszek, 2024), a Traveling Salesman Problem is solved daily to determine
the routing of last-mile package delivery. The nodes in these Traveling Salesman Problem
instances change daily as delivery locations vary. A promising research direction would be
to investigate the performance of a model trained to minimize regret on one CO problem
instance when evaluated on similar but di↵erent CO problem instances. Other research
directions could involve the integration of multi-task learning with decision focused learn-
ing. This exploration could lead to the development of more versatile and robust DFL
models capable of generalizing across a range of related tasks, thereby greatly enhancing
their practical applicability.

Non-linear objective function. Most DFL research has focused on optimization prob-
lems with linear objective functions, as those emphasized in the experimental evaluations
in this article. However, many real-world combinatorial optimization problems feature non-
linear objective functions and discrete decision variables. For instance, optimally locating

153

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

substations in an electrical network to minimize distribution costs is a problem often for-
mulated as non-linear programming (Lakhera, Shanbhag, & McInerney, 2011). Similarly,
minimizing the makespan in flowshop scheduling is another classic operations research prob-
lem that lacks a linear objective function. While cvxpylayers (Agrawal et al., 2019a) allows
for di↵erentiation through convex optimization problems with non-linear objective func-
tions, most techniques discussed in this paper are not equipped to handle such scenarios.
Future research should focus on developing and evaluating DFL techniques that can ef-
fectively address combinatorial optimization problems with non-linear objective functions.
This advancement would significantly expand the applicability and impact of DFL in solving
complex real-world problems.

Robust risk-sensitive DFL. Most DFL techniques formulate empirical risk minimiza-
tion problems to minimize expected regret. However, in many real-world applications, par-
ticularly those that are risk-sensitive, safety concerns renders the focus from expected regret
less relevant. A more viable alternative in these cases would be to focus on regret in dis-
tributional worst-case scenarios. This necessitates minimizing risk-sensitive losses, such as
value-at-risk or min-max regret. To address these cases, future research could draw inspira-
tion from robust optimization (Ben-Tal, El Ghaoui, & Nemirovski, 2009), a well-established
field within operations research that addresses worst-case regret within an uncertainty set.
The prediction-focused approach could be adapted to design an “estimate-then-optimize”
strategy (Qi, Grigas, & Shen, 2023), incorporating risk-sensitive loss functions by creating a
weight-based empirical distribution to represent the uncertainty set (Sun, Liu, & Li, 2023).
However, the DFL methodologies reviewed in this article are not designed to minimize
risk-sensitive losses. While a recent work (Chenreddy, Bandi, & Delage, 2022) proposes a
data-driven approach for constructing uncertainty sets using contextual features, the liter-
ature on robust DFL remains sparse, o↵ering ample opportunities for future research.

Decision-focused learning by zeroth-order gradient. An alternative approach to
gradient estimation is to adopt zeroth-order gradient estimation, particularly through the
score function gradient estimation technique (Williams, 1992). This method has been re-
cently adapted to DFL, where it assumes that the predicted parameter adheres to a specific
distribution, and the model is trained accordingly to predict this distribution’s parameters
(Silvestri, Berden, Mandi, İrfan Mahmutoğulları, Mulamba, Filippo, Guns, & Lombardi,
2023). In principle, this method can also be used to predict parameters in the constraints
of CO problems. However, despite providing an unbiased gradient, a significant drawback
of the score function gradient estimation is its susceptibility to high variances, which can
destabilize the learning process. Addressing this challenge could lead to substantial improve-
ments. Enhancements could focus on variance reduction techniques or the development of
more robust estimation algorithms.

Bilevel Optimization Techniques for DFL. As mentioned in Section 2.2, the empirical
regret minimization problem can be cast as a pessimistic bilevel optimization problem. A
deeper understanding of the mathematical foundations behind this learning process can
lead to the development of more e↵ective algorithms for DFL. Recent e↵orts by Bucarey,
Calderón, Muñoz, and Semet (2023) have reformulated the problem as a quadratic non-
convex optimization problem. However, the scalability of this approach remains a significant
challenge. This presents a valuable opportunity for the bilevel optimization community

154

Decision-Focused Learning: A Survey

to develop scalable and e�cient solutions, advancing the field of DFL and enhancing its
practical applications.

Scalable DFL. While surrogate solvers and solution caching aim to address the scala-
bility challenges in DFL, the trade-o↵ between quality and scalability of these methods is
not yet understood. In the context of solution caching, there is ample space for research to
investigate the trade-o↵ between the solution cache size and the resulting solution quality.
Determining the optimal cache size that balances computational e�ciency with high-quality
solutions could lead to significant improvements in DFL performance. Additionally, the ef-
fectiveness of using pre-trained surrogate models as proxy CO solvers remains an open
question. Specifically, it is unclear whether these surrogates can achieve regret levels com-
parable to those obtained using traditional CO solvers. Future research should explore the
conditions under which surrogate solvers can approximate the performance of CO solvers,
and identify strategies to enhance their accuracy and reliability. This line of research could
reveal new insights into the design of more scalable DFL systems, which is one of the most
important challenges to broaden their applicability to a wide range of complex problems.

Theoretical guarantees. While there has been extensive work on providing theoretical
guarantees for the SPO+ loss, not all DFL methods o↵er theoretical guarantees on min-
imizing regret. Empirical results presented in this article suggest that the performance
of some DFL methods may be suboptimal when dealing with combinatorial optimization
problems that contain non-linear constraints. This gap underscores the need for further the-
oretical developments to establish the reliability and e↵ectiveness of DFL methods across
a broader range of optimization scenarios. Ensuring robust theoretical guarantees for DFL
methods, particularly in the presence of non-linear constraints, would significantly enhance
their trustworthiness especially important for safety-critical applications. This involves de-
veloping new analytical tools and techniques to prove the regret-minimizing properties of
DFL methods under various conditions. Moreover, research should also focus on extending
existing theoretical frameworks to encompass a wider array of CO problems.

Uncertainty in the constraints. As reviewed in Section 3.3.3, some recent works have
focused on DFL methods for predicting parameters within the constraints of optimization
problems. However, these methods have not been explored to the same extent as those
predicting objective function parameters, leaving several open research directions for fu-
ture investigation. For instance, future studies could extend the Neural Combinatorial
Optimization (Bello, Pham, Le, Norouzi, & Bengio, 2017) and NCE (Mulamba et al., 2021)
approaches by considering the prediction of parameters within the constraints. A significant
challenge to implement the NCE approach in this setting is determining how to form the
solution cache. Moreover, when predicting parameters in the constraints, the incorporation
of risk-sensitive losses becomes particularly important. In these scenarios, the prescribed
decision might not be feasible with respect to the true parameters. An intriguing research
direction is to develop methods that recommend solutions feasible under extreme distribu-
tional variations of the parameters. This would involve creating a framework that jointly
optimizes average performance while minimizing worst-case constraint violations. Such a
framework could reveal new tracks for both theoretical research and practical applications,
ultimately enhancing the practical utility of DFL in problems where constraint parameters
are often uncertain and variable.

155

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Extending DFL to multistage settings. DFL primarily aims to predict parameters for
single combinatorial optimization problems. However, in many practical settings, decision-
making occurs over multiple time periods, resulting in multistage optimization problems
(Pflug & Pichler, 2014). This setting is prevalent in production and inventory management
(Goyal & Gunasekaran, 1990), where optimal decisions are made over an extended time
horizon in successive stages. At each stage, a subset of uncertain parameters is revealed
sequentially, and the decision-maker adjusts their decisions to account for this new infor-
mation. To date, no studies have investigated whether applying DFL to predict parameters
in multistage optimization leads to improved final objectives.

Furthermore, in numerous AI and ML applications, optimization tasks often serve as
intermediate steps between two machine learning stages. For example, consider the task
of selecting relevant patches in high-resolution images for a downstream image recognition
task. The patch selection task can be modeled as a Top-k selection problem (Cordonnier,
Mahendran, Dosovitskiy, Weissenborn, Uszkoreit, & Unterthiner, 2021) and embedded as
an intermediate layer between two neural networks. Here, the upstream neural network
assigns scores to each patch, and the downstream neural network performs the recognition
task using the Top-k patches. Techniques that implement di↵erentiable optimization layers,
such as I-MLE (Niepert et al., 2021), DBB (Pogančić et al., 2020), QPTL (Wilder et al.,
2019a), and DPO (Berthet et al., 2020) can be applied embedded between the two neural
networks. However, their e↵ectiveness in these contexts needs to be empirically evaluated.
Exploring DFL in multistage settings and its integration in intermediate ML tasks presents
a promising research direction that could lead to the development of methods capable of
handling sequential decision-making processes and complex optimization tasks embedded
within broader ML frameworks.

DFL with Real-World Multimodal Datasets. In real-world applications, uncertainty
can arise from various sources. Multimodal ML aims to train models that process data from
diverse sources (Baltrušaitis, Ahuja, & Morency, 2019). In a “multimodal” CO problem,
di↵erent parameters may be unknown and associated with distinct sets of features. For
instance, in a facility location problem, both the transport cost and customer demands
might be unknown (Cameron et al., 2022). Each of these parameters could be predicted
by di↵erent ML models tailored to their respective feature sets. Integrating DFL with
multimodal datasets introduces several new challenges and opportunities. Firstly, coordi-
nating the predictions from multiple ML models to inform a single CO problem requires
new methods to ensure coherence and compatibility between di↵erent predicted parameters.
This might involve developing novel fusion techniques to combine information from di↵er-
ent modalities e↵ectively. Secondly, the interdependencies between di↵erent parameters
need to be accurately captured. In multimodal settings, the prediction errors from di↵erent
models might interact in complex ways, a↵ecting the overall optimization outcome. Re-
search should explore ways to model these interdependencies and mitigate the compounded
impact of prediction errors. Finally, empirical evaluation of DFL methodologies on real-
world multimodal datasets would be a crucial avenue to understand their practical utility
and limitations. Such studies have the potential to significantly enhance the applicability
of DFL in solving complex, real-world optimization problems characterized by diverse and
uncertain data sources.

156

Decision-Focused Learning: A Survey

7. Conclusion

The survey article began by highligting the significance of Predict-Then-Optimize problem
formulations, wherein an ML model is followed by a CO problem. The Predict-Then-
Optimize problem has emerged as a powerful driving force in numerous real-world appli-
cations of AI, OR and business analytics. The key challenge in Predict-Then-Optimize
problems is predicting the unknown CO problem parameters in a manner that yields high-
quality solutions, in comparison to the retrospective solutions obtained when using the
groundtruth parameters. To address this challenge, the DFL paradigm has been proposed,
wherein the ML models are directly trained considering the CO problems using task losses
that capture the error encountered after the CO problems.

This survey article provides a comprehensive overview of DFL, highlighting recent tech-
nological advancements, applications and identifying potential future research directions.
Section 2, laid out the problem description with examples and then presented the two
fundamental challenges of DFL: di↵erentiation through the solutions of combinatorial op-
timization mapping and the computational cost associated with solving CO problems in
the ML training loop. Section 3 then distinguished gradient-based DFL techniques from
gradient-free DFL techniques, as well as categorizing gradient-based DFL into four dis-
tinct classes, thoroughly reviewing the trade-o↵s among them. Section 4 provided examples
of DFL applications addressing real-world Predict-Then-Optimize problems across various
domains. Furthermore, Section 5 o↵ered extensive comparative evaluations on di↵erent
problem sets, covering 11 DFL techniques.

Finally, Section 6 discussed some of the open challenges in DFL and outlined potential
research directions. Addressing these challenges can pave the way for more robust and
e↵ective DFL methodologies, further enhancing their practical utility in solving complex
optimization problems. We hope this survey and corresponding datasets and codes will
serve as a catalyst, inspiring the application of decision-focused learning in diverse domains
and contexts as well as stimulating further methodological research and advancements.

Acknowledgments

This research was partly funded by the European Research Council (ERC) under the
EU Horizon 2020 research and innovation programme (Grant No 101002802, CHAT-Opt)
and the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 101070149, project Tuples. This research is also partially supported by NSF
grants 2242931, 2232054, 2007164, and NSF CAREER award 2143706. Victor Bucarey was
funded by the ANID Fondecyt Iniciacion Grant no. 11220864.

Appendix A. Results on All Problem Instances

In the main text, boxplots of some problem instances are presented to save space in the
main text. In this section of Appendix, the boxplots of all the instances are provided. Fig-
ure A1, Figure A2, Figure A3, Figure A4, Figure A5, Figure A6, and Figure A7 display the
boxplots for all the instances of the grid shortest path problem, the portfolio optimization
problem, the Warcraft shortest path problem, the energy-cost aware scheduling problem,

157

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Figure A1: Comparative evaluations on the synthetic shortest path problem with noise-
halfwidth parameter # = 0.5. These boxplots show the distributions of relative regrets.

the knapsack problem, the diverse bipartite matching problem, and the subset selection
problem respectively.

Appendix B. Learning Curves

In this section, the learning curves of the LTR loss functions on the three instances of
the scheduling problem are presented. Figure A8 reveals that learning with Pairwise (di↵)
ranking loss is stable whereas learning with Listwise and Pairwise ranking losses do not
stabilize.

Appendix C. Details about Hyperparameter Configuration

The hyperparameters for each methodology in each experiment are selected through grid
search, as described in Section 5.2. For the sake of reproducibility, this section provides the
lists of optimal hyperparameter combinations found by grid search and used to evaluate all
the methodologies. Table ??, Table ??, Table ??, Table ??, Table ??, Table ?? present
the hyperaprameter combinations for the instances of the shortest path problem on the
grid, portfolio optimization problem, Warcraft shortest path problem, energy-cost aware
scheduling, knapsack problem and diverse bipartite matching problem respectively.

158

Decision-Focused Learning: A Survey

Figure A2: Comparative evaluations on the synthetic portfolio optimization problem with
noise magnitude # = 1. These boxplots show the distributions of absolute regrets.

159

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Figure A3: Comparative evaluations on the Warcraft shortest path problem instances.
These boxplots show the distributions of relative regrets.

160

Decision-Focused Learning: A Survey

Figure A4: Comparative evaluations on the energy-cost aware scheduling problem instances.
These boxplots show the distributions of relative regrets.

161

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Figure A5: Comparative evaluations on the knapsack problem instances. These boxplots
show the distributions of relative regrets.

162

Decision-Focused Learning: A Survey

Figure A6: Comparative evaluations on the diverse bipartite matching problem instances.
These boxplots show the distributions of relative regrets.

163

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Figure A7: Comparative evaluations on the subset selection problem instances. This boxplot
shows the distributions of mismatch rates.

164

Decision-Focused Learning: A Survey

Figure A8: Learning Curves on the energy scheduling problem instances of for the LTR
losses.

(a) ⇢1 = ⇢2 = 10% (b) ⇢1 = ⇢2 = 25% (c) ⇢1 = ⇢2 = 50%

(d)

Figure A9: Learning Curves on the diverse bipartite matching problem.

165

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

References

Abbas, A., & Swoboda, P. (2021). Combinatorial optimization for panoptic segmentation:
A fully di↵erentiable approach. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang,
P., & Vaughan, J. W. (Eds.), Advances in Neural Information Processing Systems,
Vol. 34, pp. 15635–15649. Curran Associates, Inc.

Abernethy, J., Lee, C., & Tewari, A. (2016). Perturbation techniques in online learning and
optimization. Perturbations, Optimization, and Statistics, 233.

Agarap, A. F. (2019). Deep learning using rectified linear units (relu)..

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019a). Di↵eren-
tiable convex optimization layers. Advances in neural information processing systems,
32.

Agrawal, A., Barratt, S., Boyd, S., Busseti, E., & Moursi, W. M. (2019b). Di↵erentiating
through a cone program. Journal of Applied and Numerical Optimization, 1 (2), 107
– 115.

Amos, B., & Kolter, J. Z. (2017). Optnet: Di↵erentiable optimization as a layer in neural
networks. In International Conference on Machine Learning, pp. 136–145. PMLR.

Amos, B., Koltun, V., & Kolter, J. Z. (2019). The limited multi-label projection layer..

Baltrušaitis, T., Ahuja, C., & Morency, L.-P. (2019). Multimodal machine learning: A survey
and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence,
41 (2), 423–443.

Barndor↵-Nielsen, O. (1978). Information and exponential families: in statistical theory.
John Wiley & Sons.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic
di↵erentiation in machine learning: a survey. Journal of Machine Learning Research,
18 (153), 1–43.

Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (2008). Linear programming and network
flows. John Wiley & Sons.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2017). Neural combinatorial
optimization with reinforcement learning. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track
Proceedings. OpenReview.net.

Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization, Vol. 28. Princeton
university press.

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-P., & Bach, F. (2020). Learning
with di↵erentiable perturbed optimizers. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M. F., & Lin, H. (Eds.), Advances in Neural Information Processing Systems,
Vol. 33, pp. 9508–9519.

Bertsimas, D., & Kallus, N. (2020). From predictive to prescriptive analytics. Management
Science, 66 (3), 1025–1044.

166

Decision-Focused Learning: A Survey

Blondel, M., Teboul, O., Berthet, Q., & Djolonga, J. (2020). Fast di↵erentiable sorting and
ranking. In International Conference on Machine Learning, pp. 950–959. PMLR.

Bollobás, B. (2013). Modern graph theory, Vol. 184. Springer Science & Business Media.

Boyd, S. P., & Vandenberghe, L. (2014). Convex Optimization. Cambridge University Press.

Bucarey, V., Calderón, S., Muñoz, G., & Semet, F. (2023). Decision-focused predictions via
pessimistic bilevel optimization: a computational study..

Busseti, E., Moursi, W. M., & Boyd, S. (2019). Solution refinement at regular points of
conic problems. Computational Optimization and Applications, 74 (3), 627–643.

Cameron, C., Hartford, J., Lundy, T., & Leyton-Brown, K. (2022). The perils of learning
before optimizing. Proceedings of the AAAI Conference on Artificial Intelligence,
36 (4), 3708–3715.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., & Li, H. (2007). Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on
Machine learning, pp. 129–136.

Chai, Z., Wong, K.-K., Tong, K.-F., Chen, Y., & Zhang, Y. (2022). Port selection for fluid
antenna systems. IEEE Communications Letters, 26 (5), 1180–1184.

Chenreddy, A. R., Bandi, N., & Delage, E. (2022). Data-driven conditional robust opti-
mization. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., & Oh, A.
(Eds.), Advances in Neural Information Processing Systems, Vol. 35, pp. 9525–9537.
Curran Associates, Inc.

Chu, H., Zhang, W., Bai, P., & Chen, Y. (2023). Data-driven optimization for last-mile
delivery. Complex & Intelligent Systems, 9 (3), 2271–2284.

Cordonnier, J.-B., Mahendran, A., Dosovitskiy, A., Weissenborn, D., Uszkoreit, J., & Un-
terthiner, T. (2021). Di↵erentiable patch selection for image recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2351–2360.

Dalle, G., Baty, L., Bouvier, L., & Parmentier, A. (2022). Learning with combinatorial
optimization layers: a probabilistic approach..

Delage, E., & Ye, Y. (2010). Distributionally robust optimization under moment uncertainty
with application to data-driven problems. Operations research, 58 (3), 595–612.

Demirović, E., Stuckey, P. J., Bailey, J., Chan, J., Leckie, C., Ramamohanarao, K., &
Guns, T. (2019). An investigation into prediction+ optimisation for the knapsack
problem. In Integration of Constraint Programming, Artificial Intelligence, and Oper-
ations Research: 16th International Conference, CPAIOR 2019, Thessaloniki, Greece,
June 4–7, 2019, Proceedings 16, pp. 241–257. Springer.

Demirović, E., Stuckey, P. J., Guns, T., Bailey, J., Leckie, C., Ramamohanarao, K., &
Chan, J. (2020). Dynamic programming for predict+optimise. Proceedings of the
AAAI Conference on Artificial Intelligence, 34 (02), 1444–1451.

den Hertog, D., & Postek, K. (2016). Bridging the gap between predictive and prescrip-
tive analytics-new optimization methodology needed. In Tilburg Univ, Tilburg, The
Netherlands.

167

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische Math-
ematik, 1 (1), 269–271.

Dinh, M. H., Kotary, J., & Fioretto, F. (2024). End-to-end learning for fair multiobjective
optimization under uncertainty..

Djolonga, J., & Krause, A. (2017). Di↵erentiable learning of submodular models. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., & Garnett,
R. (Eds.), Advances in Neural Information Processing Systems, Vol. 30. Curran As-
sociates, Inc.

Domke, J. (2010). Implicit di↵erentiation by perturbation. In La↵erty, J., Williams, C.,
Shawe-Taylor, J., Zemel, R., & Culotta, A. (Eds.), Advances in Neural Information
Processing Systems, Vol. 23. Curran Associates, Inc.

Domke, J. (2012). Generic methods for optimization-based modeling. In Artificial Intelli-
gence and Statistics, pp. 318–326. PMLR.

Donti, P. L., Kolter, J. Z., & Amos, B. (2017). Task-based end-to-end model learning in
stochastic optimization. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M.,
Fergus, R., Vishwanathan, S. V. N., & Garnett, R. (Eds.), Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5484–5494.

El Balghiti, O., Elmachtoub, A. N., Grigas, P., & Tewari, A. (2019). Generalization bounds
in the predict-then-optimize framework. In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., & Garnett, R. (Eds.), Advances in Neural Information
Processing Systems, Vol. 32. Curran Associates, Inc.

Elmachtoub, A., Liang, J. C. N., & McNellis, R. (2020). Decision trees for decision-making
under the predict-then-optimize framework. In International Conference on Machine
Learning, pp. 2858–2867. PMLR.

Elmachtoub, A. N., & Grigas, P. (2022). Smart “predict, then optimize”. Management
Science, 68 (1), 9–26.

Elmachtoub, A. N., Lam, H., Zhang, H., & Zhao, Y. (2023). Estimate-then-optimize versus
integrated-estimation-optimization: A stochastic dominance perspective..

Falcon, W., et al. (2019). Pytorch lightning. GitHub. Note: https://github.
com/PyTorchLightning/pytorch-lightning, 3 (6), 11.

Ferber, A., Gri�n, E., Dilkina, B., Keskin, B., & Gore, M. (2023a). Predicting wildlife
tra�cking routes with di↵erentiable shortest paths. In Proceedings of the Integration
of Constraint Programming, Artificial Intelligence, and Operations Research: 20th In-
ternational Conference, CPAIOR 2023.

Ferber, A. M., Huang, T., Zha, D., Schubert, M., Steiner, B., Dilkina, B., & Tian, Y.
(2023b). Surco: Learning linear surrogates for combinatorial nonlinear optimization
problems. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., & Scarlett,
J. (Eds.), International Conference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, Vol. 202 of Proceedings of Machine Learning Research,
pp. 10034–10052. PMLR.

168

Decision-Focused Learning: A Survey

Ferber, A. M., Wilder, B., Dilkina, B., & Tambe, M. (2020). Mipaal: Mixed integer program
as a layer. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 1504–1511.
AAAI Press.

Garcia, J. D., Street, A., Homem-de Mello, T., & Muñoz, F. D. (2021). Application-driven
learning: A closed-loop prediction and optimization approach applied to dynamic re-
serves and demand forecasting..

Garlappi, L., Uppal, R., & Wang, T. (2006). Portfolio Selection with Parameter and Model
Uncertainty: A Multi-Prior Approach. The Review of Financial Studies, 20 (1), 41–81.

Gillick, D., Kulkarni, S., Lansing, L., Presta, A., Baldridge, J., Ie, E., & Garcia-Olano,
D. (2019). Learning dense representations for entity retrieval. In Proceedings of the
23rd Conference on Computational Natural Language Learning (CoNLL), pp. 528–
537, Hong Kong, China. Association for Computational Linguistics.

Gomes, C. P., Kautz, H., Sabharwal, A., & Selman, B. (2008). Satisfiability solvers. Foun-
dations of Artificial Intelligence, 3, 89–134.

Goodfellow, I. J. (2015). On distinguishability criteria for estimating generative models. In
Proceedings of ICLR.

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial
examples. In Bengio, Y., & LeCun, Y. (Eds.), 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Gould, S., Fernando, B., Cherian, A., Anderson, P., Cruz, R. S., & Guo, E. (2016). On
di↵erentiating parameterized argmin and argmax problems with application to bi-
level optimization..

Goyal, S. K., & Gunasekaran, A. (1990). Multi-stage production-inventory systems. Euro-
pean Journal of Operational Research, 46 (1), 1–20.

Grant, M. C., & Boyd, S. P. (2008). Graph implementations for nonsmooth convex pro-
grams. In Recent advances in learning and control, pp. 95–110. Springer.

Guler, A. U., Demirović, E., Chan, J., Bailey, J., Leckie, C., & Stuckey, P. J. (2022). A divide
and conquer algorithm for predict+optimize with non-convex problems. Proceedings
of the AAAI Conference on Artificial Intelligence, 36 (4), 3749–3757.

Gurobi Optimization, L. (2021). Gurobi optimizer reference manual. http://www.gurobi.
com.

Gutmann, M., & Hyvärinen, A. (2010). Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics, pp. 297–304.

Guyomarch, J. (2017). Warcraft ii open-source map editor.
http://github.com/war2/war2edit.

169

http://www.gurobi.com
http://www.gurobi.com

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network..

Hu, W., Wang, P., & Gooi, H. B. (2016). Toward optimal energy management of microgrids
via robust two-stage optimization. IEEE Transactions on smart grid, 9 (2), 1161–1174.

Hu, X., Lee, J. C. H., & Lee, J. H. M. (2023a). Branch & learn with post-hoc correction
for predict+optimize with unknown parameters in constraints. In Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research, pp. 264–280.
Springer Nature Switzerland.

Hu, X., Lee, J. C. H., & Lee, J. H. (2023b). Two-stage predict+optimize for milps with un-
known parameters in constraints. In Oh, A., Naumann, T., Globerson, A., Saenko, K.,
Hardt, M., & Levine, S. (Eds.), Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023.

Hu, X., Lee, J. C., & Lee, J. H. (2023c). Predict+optimize for packing and covering lps with
unknown parameters in constraints. Proceedings of the AAAI Conference on Artificial
Intelligence, 37 (4), 3987–3995.

Hu, X., Lee, J. C., Lee, J. H., & Zhong, A. Z. (2022). Branch & learn for recursively
and iteratively solvable problems in predict+optimize. In Oh, A. H., Agarwal, A.,
Belgrave, D., & Cho, K. (Eds.), Advances in Neural Information Processing Systems.

Huang, P., He, X., Gao, J., Deng, L., Acero, A., & Heck, L. P. (2013). Learning deep
structured semantic models for web search using clickthrough data. In He, Q., Iyengar,
A., Nejdl, W., Pei, J., & Rastogi, R. (Eds.), 22nd ACM International Conference
on Information and Knowledge Management, CIKM’13, San Francisco, CA, USA,
October 27 - November 1, 2013, pp. 2333–2338. ACM.

Ifrim, G., O’Sullivan, B., & Simonis, H. (2012). Properties of energy-price forecasts for
scheduling. In International Conference on Principles and Practice of Constraint
Programming, pp. 957–972. Springer.

Ignizio, J. P., & Cavalier, T. M. (1994). Linear programming. Prentice-Hall, Inc.

Jeong, J., Jaggi, P., Butler, A., & Sanner, S. (2022). An exact symbolic reduction of linear
smart Predict+Optimize to mixed integer linear programming. In Proceedings of
the 39th International Conference on Machine Learning, Vol. 162 of Proceedings of
Machine Learning Research, pp. 10053–10067. PMLR.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada, pp. 133–142. ACM.

Johnson-Yu, S., Wang, K., Finocchiaro, J., Taneja, A., & Tambe, M. (2023). Modeling ro-
bustness in decision-focused learning as a stackelberg game. In The 22nd International
Conference on Autonomous Agents and Multiagent Systems.

170

Decision-Focused Learning: A Survey

Kainmueller, D., Jug, F., Rother, C., & Myers, G. (2014). Active graph matching for
automatic joint segmentation and annotation of c. elegans. In Golland, P., Hata,
N., Barillot, C., Hornegger, J., & Howe, R. D. (Eds.), Medical Image Computing
and Computer-Assisted Intervention - MICCAI 2014 - 17th International Conference,
Boston, MA, USA, September 14-18, 2014, Proceedings, Part I, Vol. 8673 of Lecture
Notes in Computer Science, pp. 81–88. Springer.

Kim, S., Lewis, M. E., & White, C. C. (2005). Optimal vehicle routing with real-time
tra�c information. IEEE Transactions on Intelligent Transportation Systems, 6 (2),
178–188.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio,
Y., & LeCun, Y. (Eds.), 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In Bengio, Y., &
LeCun, Y. (Eds.), 2nd International Conference on Learning Representations, ICLR
2014, Ban↵, AB, Canada, April 14-16, 2014, Conference Track Proceedings.

Kinsey, S. E., Tuck, W. W., Sinha, A., & Nguyen, T. H. (2023). An exploration of poisoning
attacks on data-based decision making. In Decision and Game Theory for Security:
13th International Conference, GameSec 2022, Pittsburgh, PA, USA, October 26–28,
2022, Proceedings, pp. 231–252. Springer.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques.
MIT press.

Konishi, T., & Fukunaga, T. (2021). End-to-end learning for prediction and optimization
with gradient boosting. In Hutter, F., Kersting, K., Lij�jt, J., & Valera, I. (Eds.), Ma-
chine Learning and Knowledge Discovery in Databases, pp. 191–207, Cham. Springer
International Publishing.

Kotary, J., Di Vito, V., Christopher, J., Van Hentenryck, P., & Fioretto, F. (2023a). Predict-
then-optimize by proxy: Learning joint models of prediction and optimization..

Kotary, J., Dinh, M. H., & Fioretto, F. (2023b). Backpropagation of unrolled solvers with
folded optimization. In Elkind, E. (Ed.), Proceedings of the Thirty-Second Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-23, pp. 1963–1970. Interna-
tional Joint Conferences on Artificial Intelligence Organization.

Kotary, J., Fioretto, F., Van Hentenryck, P., & Wilder, B. (2021). End-to-end constrained
optimization learning: A survey. In Zhou, Z.-H. (Ed.), Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4475–4482.
International Joint Conferences on Artificial Intelligence Organization. Survey Track.

Kotary, J., Fioretto, F., Van Hentenryck, P., & Zhu, Z. (2022). End-to-end learning for fair
ranking systems. In Proceedings of the ACM Web Conference 2022, pp. 3520–3530.

Lakhera, S., Shanbhag, U. V., & McInerney, M. K. (2011). Approximating electrical distri-
bution networks via mixed-integer nonlinear programming. International Journal of
Electrical Power & Energy Systems, 33 (2), 245–257.

171

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Levy, D., Carmon, Y., Duchi, J. C., & Sidford, A. (2020). Large-scale methods for distri-
butionally robust optimization. Advances in Neural Information Processing Systems,
33, 8847–8860.

Liu, B., & Liu, B. (2009). Theory and practice of uncertain programming, Vol. 239. Springer.

Liu, H., & Grigas, P. (2021). Risk bounds and calibration for a smart predict-then-optimize
method. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., & Vaughan, J. W.
(Eds.), Advances in Neural Information Processing Systems, Vol. 34, pp. 22083–22094.
Curran Associates, Inc.

Liu, M., Grigas, P., Liu, H., & Shen, Z.-J. M. (2023). Active learning in the predict-then-
optimize framework: A margin-based approach..

Mandi, J., Bucarey, V., Tchomba, M. M. K., & Guns, T. (2022). Decision-focused learning:
Through the lens of learning to rank. In Proceedings of the 39th International Con-
ference on Machine Learning, Vol. 162 of Proceedings of Machine Learning Research,
pp. 14935–14947. PMLR.

Mandi, J., Canoy, R., Bucarey, V., & Guns, T. (2021). Data Driven VRP: A Neural Network
Model to Learn Hidden Preferences for VRP. In Michel, L. D. (Ed.), 27th International
Conference on Principles and Practice of Constraint Programming (CP 2021), Vol.
210 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 42:1–42:17.

Mandi, J., Demirović, E., Stuckey, P. J., & Guns, T. (2020). Smart predict-and-optimize
for hard combinatorial optimization problems. Proceedings of the AAAI Conference
on Artificial Intelligence, 34 (02), 1603–1610.

Mandi, J., & Guns, T. (2020). Interior point solving for lp-based prediction+optimisation.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., & Lin, H. (Eds.), Advances
in Neural Information Processing Systems, Vol. 33, pp. 7272–7282.

Martins, A., & Astudillo, R. (2016). From softmax to sparsemax: A sparse model of attention
and multi-label classification. In International conference on machine learning, pp.
1614–1623. PMLR.

Massart, P., & Nédélec, É. (2006). Risk bounds for statistical learning. The Annals of
Statistics, 34 (5), 2326–2366.

Merchán, D., Arora, J., Pachon, J., Konduri, K., Winkenbach, M., Parks, S., & Noszek, J.
(2024). 2021 amazon last mile routing research challenge: Data set. Transportation
Science, 58 (1), 8–11.

Minervini, P., Franceschi, L., & Niepert, M. (2023). Adaptive perturbation-based gradient
estimation for discrete latent variable models. Proceedings of the AAAI Conference
on Artificial Intelligence, 37 (8), 9200–9208.

Mǐsić, V. V., & Perakis, G. (2020). Data analytics in operations management: A review.
Manufacturing & Service Operations Management, 22 (1), 158–169.

Mnih, A., & Teh, Y. W. (2012). A fast and simple algorithm for training neural probabilistic
language models. In Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc /
Omnipress.

172

Decision-Focused Learning: A Survey

Monga, V., Li, Y., & Eldar, Y. C. (2021). Algorithm unrolling: Interpretable, e�cient deep
learning for signal and image processing. IEEE Signal Processing Magazine, 38 (2),
18–44.

Mulamba, M., Mandi, J., Diligenti, M., Lombardi, M., Bucarey, V., & Guns, T. (2021).
Contrastive losses and solution caching for predict-and-optimize. In Zhou, Z.-H. (Ed.),
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, pp. 2833–2840. International Joint Conferences on Artificial Intelligence
Organization.

Nandwani, Y., Ranjan, R., Mausam, & Singla, P. (2022). A solver-free framework for
scalable learning in neural ilp architectures. In Koyejo, S., Mohamed, S., Agarwal, A.,
Belgrave, D., Cho, K., & Oh, A. (Eds.), Advances in Neural Information Processing
Systems, Vol. 35, pp. 7972–7986. Curran Associates, Inc.

Nemirovski, A. (2007). Advances in convex optimization: conic programming. In Interna-
tional Congress of Mathematicians, Vol. 1, pp. 413–444.

Niepert, M., Minervini, P., & Franceschi, L. (2021). Implicit mle: Backpropagating through
discrete exponential family distributions. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., & Vaughan, J. W. (Eds.), Advances in Neural Information Processing
Systems, Vol. 34, pp. 14567–14579. Curran Associates, Inc.

Ogryczak, W., & Śliwiński, T. (2003). On solving linear programs with the ordered weighted
averaging objective. European Journal of Operational Research, 148 (1), 80–91.

Papandreou, G., & Yuille, A. L. (2011). Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. In Metaxas, D. N., Quan,
L., Sanfeliu, A., & Gool, L. V. (Eds.), IEEE International Conference on Computer
Vision, ICCV 2011, Barcelona, Spain, November 6-13, 2011, pp. 193–200. IEEE Com-
puter Society.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems,
32.

Paulus, A., Roĺınek, M., Musil, V., Amos, B., & Martius, G. (2021). Comboptnet: Fit the
right np-hard problem by learning integer programming constraints. In International
Conference on Machine Learning, pp. 8443–8453. PMLR.

Paulus, M., Choi, D., Tarlow, D., Krause, A., & Maddison, C. J. (2020). Gradient estimation
with stochastic softmax tricks. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., & Lin, H. (Eds.), Advances in Neural Information Processing Systems, Vol. 33,
pp. 5691–5704. Curran Associates, Inc.

Perron, L., & Furnon, V. (2020). Or-tools..

Pflug, G. C., & Pichler, A. (2014). Multistage stochastic optimization, Vol. 1104. Springer.

Pisinger, D. (2005). Where are the hard knapsack problems?. Computers & Operations
Research, 32 (9), 2271–2284.

173

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

Pisinger, D., & Toth, P. (1998). Knapsack problems. In Handbook of combinatorial opti-
mization, pp. 299–428. Springer.

Pogančić, M. V., Paulus, A., Musil, V., Martius, G., & Rolinek, M. (2020). Di↵erentiation
of blackbox combinatorial solvers. In International Conference on Learning Represen-
tations.

PyTorch (2017). Pytorch: Reducelronplateau — pytorch 1.9.0 documentation..
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.

ReduceLROnPlateau.html#torch.optim.lr_scheduler.ReduceLROnPlateau.

Qi, M., Grigas, P., & Shen, Z.-J. M. (2023). Integrated conditional estimation-optimization..

Qi, M., & Shen, Z.-J. (2022). Integrating prediction/estimation and optimization with ap-
plications in operations management, pp. 36–58. INFORMS.

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and
approximate inference in deep generative models. In Xing, E. P., & Jebara, T. (Eds.),
Proceedings of the 31st International Conference on Machine Learning, Vol. 32 of
Proceedings of Machine Learning Research, pp. 1278–1286, Bejing, China. PMLR.

Rolinek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., & Martius, G. (2020a).
Optimizing rank-based metrics with blackbox di↵erentiation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Roĺınek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil, V., & Martius, G. (2020b). Deep
graph matching via blackbox di↵erentiation of combinatorial solvers. In Vedaldi, A.,
Bischof, H., Brox, T., & Frahm, J. (Eds.), Computer Vision - ECCV 2020 - 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXVIII,
Vol. 12373 of Lecture Notes in Computer Science, pp. 407–424. Springer.

Rossi, F., van Beek, P., & Walsh, T. (Eds.). (2006). Handbook of Constraint Programming,
Vol. 2 of Foundations of Artificial Intelligence. Elsevier.

Ruszczyński, A., & Shapiro, A. (2003). Stochastic programming models. Handbooks in
operations research and management science, 10, 1–64.

Sadana, U., Chenreddy, A., Delage, E., Forel, A., Frejinger, E., & Vidal, T. (2024). A
survey of contextual optimization methods for decision-making under uncertainty. In
European Journal of Operational Research.

Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and opportunities.
Computers & Chemical Engineering, 28 (6), 971–983.

Sahoo, S. S., Paulus, A., Vlastelica, M., Musil, V., Kuleshov, V., & Martius, G. (2023).
Backpropagation through combinatorial algorithms: Identity with projection works.
In The Eleventh International Conference on Learning Representations.

Sang, L., Xu, Y., Long, H., Hu, Q., & Sun, H. (2022). Electricity price prediction for energy
storage system arbitrage: A decision-focused approach. IEEE Transactions on Smart
Grid, 13 (4), 2822–2832.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Col-
lective classification in network data. AI Magazine, 29 (3), 93.

174

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html#torch.optim.lr_scheduler.ReduceLROnPlateau
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html#torch.optim.lr_scheduler.ReduceLROnPlateau

Decision-Focused Learning: A Survey

Settles, B. (2009). Active learning literature survey. Computer sciences technical report
1648, University of Wisconsin–Madison.

Shah, S., Wang, K., Wilder, B., Perrault, A., & Tambe, M. (2022). Decision-focused learn-
ing without decision-making: Learning locally optimized decision losses. In Oh, A. H.,
Agarwal, A., Belgrave, D., & Cho, K. (Eds.), Advances in Neural Information Pro-
cessing Systems.

Shah, S., Wilder, B., Perrault, A., & Tambe, M. (2024). Leaving the nest: Going beyond
local loss functions for predict-then-optimize. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 38, pp. 14902–14909.

Silvestri, M., Berden, S., Mandi, J., İrfan Mahmutoğulları, A., Mulamba, M., Filippo, A. D.,
Guns, T., & Lombardi, M. (2023). Score function gradient estimation to widen the
applicability of decision-focused learning..

Simonis, H., O’Sullivan, B., Mehta, D., Hurley, B., & Cauwer, M. D. (1999). CSPLib problem
059: Energy-cost aware scheduling. http://www.csplib.org/Problems/prob059.

Singh, A., & Joachims, T. (2018). Fairness of exposure in rankings. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining,
pp. 2219–2228.

Sun, C., Liu, L., & Li, X. (2023). Predict-then-calibrate: A new perspective of robust
contextual lp. In Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., &
Levine, S. (Eds.), Advances in Neural Information Processing Systems, Vol. 36, pp.
17713–17741. Curran Associates, Inc.

Tan, Y., Delong, A., & Terekhov, D. (2019). Deep inverse optimization. In Rousseau, L.,
& Stergiou, K. (Eds.), Integration of Constraint Programming, Artificial Intelligence,
and Operations Research - 16th International Conference, CPAIOR 2019, Thessa-
loniki, Greece, June 4-7, 2019, Proceedings, Vol. 11494 of Lecture Notes in Computer
Science, pp. 540–556. Springer.

Tan, Y., Terekhov, D., & Delong, A. (2020). Learning linear programs from optimal de-
cisions. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., & Lin, H. (Eds.),
Advances in Neural Information Processing Systems, Vol. 33, pp. 19738–19749.

Tang, B., & Khalil, E. B. (2023a). Multi-task predict-then-optimize. In Sellmann, M.,
& Tierney, K. (Eds.), Learning and Intelligent Optimization, pp. 506–522. Springer
International Publishing.

Tang, B., & Khalil, E. B. (2023b). Pyepo: A pytorch-based end-to-end predict-then-optimize
library for linear and integer programming..

Tian, X., Yan, R., Liu, Y., & Wang, S. (2023). A smart predict-then-optimize method for
targeted and cost-e↵ective maritime transportation. Transportation Research Part B:
Methodological, 172, 32–52.

Toth, P., & Vigo, D. (2015). Vehicle routing: Problems, methods, and applications. Society
for Industrial and Applied Mathematics.

Tschiatschek, S., Sahin, A., & Krause, A. (2018). Di↵erentiable submodular maximization.
In Lang, J. (Ed.), Proceedings of the Twenty-Seventh International Joint Conference

175

http://www.csplib.org/Problems/prob059

Mandi, Kotary, Berden, Mulamba, Bucarey, Guns, & Fioretto

on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pp. 2731–
2738. ijcai.org.

Tschora, L., Guns, T., Pierre, E., Plantevit, M., & Robardet, C. (2023). Electricity
price forecasting based on order books: a di↵erentiable optimization approach. In
2023 IEEE 10th International Conference on Data Science and Advanced Analytics
(DSAA), pp. 1–10.

Vapnik, V. (1999). An overview of statistical learning theory. IEEE Trans. Neural Networks,
10 (5), 988–999.

Wahdany, D., Schmitt, C., & Cremer, J. L. (2023). More than accuracy: end-to-end wind
power forecasting that optimises the energy system. Electric Power Systems Research,
221, 109384.

Wang, K., Shah, S., Chen, H., Perrault, A., Doshi-Velez, F., & Tambe, M. (2021). Learning
mdps from features: Predict-then-optimize for sequential decision making by reinforce-
ment learning. Advances in Neural Information Processing Systems, 34, 8795–8806.

Wang, P.-W., Donti, P., Wilder, B., & Kolter, Z. (2019). Satnet: Bridging deep learning and
logical reasoning using a di↵erentiable satisfiability solver. In International Conference
on Machine Learning, pp. 6545–6554. PMLR.

Wang, R., Zhang, Y., Guo, Z., Chen, T., Yang, X., & Yan, J. (2023). LinSATNet: The
positive linear satisfiability neural networks. In Krause, A., Brunskill, E., Cho, K.,
Engelhardt, B., Sabato, S., & Scarlett, J. (Eds.), Proceedings of the 40th Interna-
tional Conference on Machine Learning, Vol. 202 of Proceedings of Machine Learning
Research, pp. 36605–36625. PMLR.

Wilder, B., Dilkina, B., & Tambe, M. (2019a). Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In The Thirty-Third AAAI Confer-
ence on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pp. 1658–1665. AAAI Press.

Wilder, B., Ewing, E., Dilkina, B., & Tambe, M. (2019b). End to end learning and optimiza-
tion on graphs. In Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,
Fox, E. B., & Garnett, R. (Eds.), Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 4674–4685.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn., 8, 229–256.

Wong, K.-K., Tong, K.-F., Zhang, Y., & Zhongbin, Z. (2020). Fluid antenna system for
6g: When bruce lee inspires wireless communications. Electronics Letters, 56 (24),
1288–1290.

Yang, Y., Yan, R., & Wang, H. (2022). Pairwise-comparison based semi-spo method for
ship inspection planning in maritime transportation. Journal of Marine Science and
Engineering, 10 (11), 1696.

176

Decision-Focused Learning: A Survey

Zou, H., Zhu, J., & Hastie, T. (2008). New multicategory boosting algorithms based on
multicategory fisher-consistent losses. The Annals of Applied Statistics, 2 (4), 1290.

177

