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Abstract

The principle of data minimization aims to reduce the amount of data collected,
processed or retained to minimize the potential for misuse, unauthorized access,
or data breaches. Rooted in privacy-by-design principles, data minimization has
been endorsed by various global data protection regulations. However, its practical
implementation remains a challenge due to the lack of a rigorous formulation.
This paper addresses this gap and introduces an optimization framework for data
minimization based on its legal definitions. It then adapts several optimization
algorithms to perform data minimization and conducts a comprehensive evaluation
in terms of their compliance with minimization objectives as well as their impact
on user privacy. Our analysis underscores the mismatch between the privacy
expectations of data minimization and the actual privacy benefits, emphasizing the
need for approaches that account for multiple facets of real-world privacy risks.

1 Introduction

The proliferation of data-driven systems and machine learning (ML) applications escalates a number
of privacy risks, including those related to unauthorized access to sensitive information [18, [29].
In response, international data protection frameworks like the European General Data Protection
Regulation (GDPR), the California Privacy Rights Act (CPRA), and the Brazilian General Data
Protection Law (LGPD) have adopted data minimization as a key principle to mitigate these risks [2].

At its core, the data minimization principle requires organizations to collect, process, and retain only
personal data that is adequate, relevant, and limited to what is necessary for specified objectives (see
Table|l|for further details). It’s grounded in the expectation that not all collected data is essential for
the objective and, instead, contributes to a heightened risk of information leakage [11} [19} 23} 26].
However, despite its legal significance and endorsement by global data protection regulations, the data
minimization principle lacks a mathematical formalization suitable for real-world ML applications. In
particular, as reviewed in the current discourse on data minimization practices often overlooks two
crucial aspects: (1) the individualized nature of minimization (e.g., information that is unimportant
for an individual may be critical for another) and (2) its intrinsic link to data privacy.

Contributions. To overcome these limitations, this paper introduces a formal framework for data
minimization in ML while being faithful to its legal notion (§§2, [3); adapts and evaluates various
optimization algorithms to solve the problem of data minimization (§4); and analyzes their com-
patibility with real-world privacy (§5). In particular, we seek to answer a critical question: “Do
current data minimization requirements in various regulations genuinely meet privacy expectations
in legal frameworks?” Our evaluations reveal that the answer is, unfortunately, no. While being an
implicit intention, the requirements of data minimization are not necessarily aligned with risk of
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Figure 1: Overview of our framework to study data minimization in a real-world ML pipeline. Behind
the data access “wall”, we highlight the formalization of data minimization and quantify the risks
of a data breach . Outside the “wall” with no direct data access, we establish the data minimization
objectives using utility measurement and study information leakage from the trained model.

reconstruction and re-identification and thus may not provide the expected privacy protection. In
summary, this paper makes the following contributions:

1. It examines various global data protection regulations and provides the first formalization of data
minimization for ML tasks that faithfully incorporates the individualized nature of minimization.

2. It compares several algorithms to solve the data minimization problem and conduct an exten-
sive evaluation focusing on key characteristics of the minimized datasets, including emergent
individualization and multiplicity.

3. Through extensive evaluations on re-identification and reconstruction attacks on the minimized
dataset, it assesses the shortcomings of current regulatory requirements of data minimization in
meeting the implicit privacy expectations.

4. Finally, it proposes simple yet effective modifications to the data minimization algorithms and
demonstrates that attention to privacy during minimization can provide better trade-offs between
user privacy and downstream utility.

This work aims to lay down a path for future research for developing privacy-preserving ML systems
in compliance with the legal requirements of data minimization.

2 The data minimization principle

To faithfully develop the proposed framework (illustrated in Figure[T), we inspect the data minimiza-
tion principle from six global data protection regulations. Building on existing work interpreting the
legal language [2, 120, [28]], we focus instead on operationalizing data minimization, grounded in the
common foundations of data privacy and security principles shared by these regulations. Relevant
extracts are summarized in Table[T, with complete details reported in §A| The table highlights two
core pillars of data minimization: (i) purpose limitation, and (ii) data relevance.

» Purpose limitation : Regulations mandate that data be collected for a legitimate, specific and
explicit purpose (LGPD, Brazil) and prohibit using the collected data for any other incompatible
purpose from the one disclosed (CPRA, USA). Thus, data collectors must define a clear, legal
objective before data collection and use the data solely for that objective. In machine learning, this
purpose translates to collecting data solely for training models to achieve optimal performance,
where the performance metric needs to be clearly defined [2].

» Data relevance : Regulations like the GDPR require that all collected data be adequate, relevant,
and limited to what is necessary for the purposes it was collected for. In other words, data
minimization aims to remove data that does not serve the purpose defined. In ML contexts, this
principle translates to retaining only data that contributes to the performance of the model. We
interpret this requirement as an optimization objective, minimizing data size while maintaining
model performance, under a binary interpretation that the data is either collected or not.



General Data Protection Regulation (GDPR), Europe gdpr-info.eu/

Atrticle 5(1)(b): Personal data shall be collected for specified, explicit and legitimate purposes and not furt-
her processed in a manner that is incompatible with those purposes;

Atrticle 5(1)(c): Personal data shall be adequate, relevant and limited to what is necessary in relation to the
purposes for which they are processed.

California Privacy Rights Act (CPRA), USA cppa.ca.gov/
Section 1798.100 (a)(1) & (a)(2): [... ] A business shall not collect additional categories of (sensitive)
personal information or use (sensitive) personal information collected for additional purposes that

are incompatible with the disclosed purpose for which the (sensitive) personal information was collected
without providing the consumer with notice consistent with this section.

General Personal Data Protection Law (LGPD), Brazil Igpd-brazil.info/

Atrticle 6: Activities of processing of personal data shall be subject to the following principles,

I: processing done for legitimate, specific and explicit purposes of which the data subject is informed, with
no possibility of subsequent processing that is incompatible with these purposes ;

II: compatibility of the processing with the purposes communicated to the data subject , in accordance
with the context of the processing;

HI: limitation of the processing to the minimum necessary to achieve its purposes, covering data that are
relevant, proportional and non-excessive in relation to purposes of the data processing |... ];

Table 1: Excerpts from various data protection regulations on the data minimization principle,
highlighting purpose limitation and data relevance.

2.1 Implications in practice

Building on the principles of purpose limitation and data relevance, this section examines three
practical implications of data minimization as framed in the reviewed regulations: (1) Individualized
nature of data minimization: Notice that different individuals may require different amounts and
types of information to fulfill a given purpose. For instance, in a loan approval scenario, personal
data such as age, income, and job history are crucial. However, the importance of additional data,
like medical history, can vary significantly among applicants. This variability underscores that data
relevance—-and therefore redundancy—-is not universal but contextually and individually defined.
(2) Data minimization is data dependent: Regulations describe the term “data collection” as
acquiring data from entities like government agencies, which typically involves selecting relevant data
from an already gathered large dataset. For instance, census data is often used for various analysis
tasks. This differs from field data collection, which lacks flexibility for individualized minimization
adjustments. Our framework focuses on the former interpretation, wherein minimization is contingent
on the data itself (as shown by the two distinct stages of “Data collection from individuals” and “Data
minimization” in Figure|1). (3) Privacy expectations through minimization: There is an implicit
expectation of privacy through minimization in data protection regulations [[11, 16}, 28]. However, this
expectation overlooks a crucial aspect of real-world data—the inherent correlations among various
features. Information about individuals is rarely isolated, thus, merely removing or not collecting
data, may allow for confident reconstruction inference [[10], as we will show in our work.

3 A formal framework for data minimization in ML

This section presents a data minimization framework for ML that aligns with the regulatory objectives
discussed above. Successively, we examine the tension between these minimization objectives and
their privacy implication and define various threat models to quantify real-world privacy risks.

3.1 Data minimization as optimization

Consider a dataset D = {X,Y} = {(x;,v:)}, drawn ii.d. from an unknown distribution
D ~ (X,)). Therein, x; € X is a p-dimensional feature vector and y; € Y is the output label.
Given a non-negative loss function { : Y x Y — R, the goal of learning is to learn a predictor
fo : X — ), with real-valued parameters 6 that minimizes the empirical risk function (i.e., ERM):

*

f=argmin J(0;X,Y) where J(6;X,Y) = 1 Zf(fe(wi),yi). (1
0 nia
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Data minimization can be modelled as minimizing the size of the dataset D by removing entries from
the features x; ( data relevance ) while also retaining similar performance as it would have on the
complete dataset ( purpose ). This objective can be formalized in the following bi-level optimization:

Minimize ||Bly  st: J(6:;X,Y)—J(@;X,Y)<a (2a)
Be{L,1}nxp
. 1 &
0 =argmin =" ¢(fo( @ © B: ),u) (2b)
4 i=1

where B is an n X p binary matrix, which we call the minimization matrix (visualized in Figure @,
taking values in the set { L, 1}, and the ¢;-norm of B, i.e., | B]|1, is simply the count of 1 in the
minimization matrix. Here, | represents the concealment or removal of a value, i.e., Vv € R :
v X L =1,and o > 0 is a parameter which bounds the permitted drop in model quality due to
data minimization. While we define ERM as our learning objective and the difference in loss on the
original dataset as the quality drop (equation [2a), these choices can be easily generalized.

The minimized input features X’ are defined as the element-wise product of the original features X
and the minimization matrix B, i.e., X’ = X @ B. Note that, data minimization produces features in
the space X’ U {_L}. While some learning algorithms can handle missing values (_L), data imputation
is needed in other cases. A discussion of imputation methods is delegated to

The optimization problem in equation [2 defines an operational method to remove entries from the
feature set X in a individualized manner, while adhering to pre-specified quality drop requirements on
the original dataset (equation 2a), for the final model trained on the minimized dataset (equation 2b).
While this optimization captures the legal formulation of data minimization, it is however intractable
to solve in practice. A discussion of tractable approximate algorithmic alternatives is delegated to
and we discuss next the privacy implications of this data minimization process.

3.2 Privacy leakage

The implicit objective of data minimization is to enhance privacy. Thus, the paper focuses on
assessing the minimized data using several threat models (Figure[I), to measure inference attacks
under various objectives and degrees of access available to the adversary.

Note that the expectation of data privacy from minimization in various regulations is focused on the
events of a data breach, i.e., situations in which the adversary has access to the minimized dataset.
For this reason, we primarily focus on reconstruction and re-identification risks. This is different
from conventional private ML settings [9, 22], which focuses on information leakage due to ML
inference (i.e., outside the "wall" in Figure E]) Nonetheless, we also examine how data minimization
privacy promise may hold under membership inference attacks and delegate this analysis to §E.

Reconstruction Risk (RCR). Real-world datasets often exhibit underlying associations between
various features, making it possible to reconstruct minimized data [[10]. Reconstruction attacks
thus aim to recover missing information from a target dataset. Given the minimized dataset X',
the attacker’s goal is to generate their reconstruction X% of the original set of features X. The
ReConstruction Risk (RCR) can be evaluated by measuring the similarity between the original
features z; € X and the reconstructed features z* € X%, computed using a gaussian kernel with
o =1][27] as:

1 ¢ R
RCR = =) "ellimedilz, 3
S 2C (3)

=1

If required, the reconstruction risk metric can also be adjusted further to prioritize the reconstruction
of certain features over others by introducing appropriate weights to the similarity measurement.

Re-identification Risk (RIR). Data breaches often lead to re-identification of individuals using partial
or anonymized data matched with an auxiliary dataset X“. The success of these re-identification
attacks can be measured by the mean reciprocal rank (MRR) scores. For each data point :c;“ in X4,
the adversary ranks data points in the minimized dataset X’ based on the likelihood of matching
identities. The Re-Identification Risk (RIR) is calculated as the average MRR score, assigning a
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Figure 2: (Left) Data minimization as a set of individualized binary decisions, visualizing the
minimization matrix B. (Right) Three baseline algorithms for data minimization.

score of 1 for a correct match and O otherwise, defined by the formula:

n

1 1
RIR = — . 4
n ; index (i, rank(z{!, X')) “®
In this, rank (z{', X') is the adversary’s predicted ranking, and index (e, A) gives the index of element
e in array A. It assumes a one-to-one match between auxiliary and minimized datasets.

4 Data minimization and utility

Having defined data minimization for ML as a bilevel optimization problem, this section outlines how
to operationalize data minimization, with three strong baselines and three algorithms from the bi-level
optimization literature to address the challenge formulated in equation [2| Note that although the data
minimization principle aims to optimize dataset size while maintaining model quality (see Constraint
[2a), these algorithms adopt a dual approach, optimizing model quality when trained on minimized
data under a given sparsity constraint || B||; < k. This dual approach offers the advantage of allowing
these algorithms to find a sparsity parameter k that meets the desired a-drop in performance.

Baseline techniques. The experiments implement three baseline methods, depicted pictorially in
Figure[2} (1) feature selection, (2) random subsampling, and (3) individualized random subsampling.
Feature selection 5] employs a breadth-based strategy that identifies and minimizes less important
features within the dataset. Random subsampling is a depth-based strategy that randomly selects a
subset of data points, thereby reducing the dataset size by excluding specific rows. Individualized
random subsampling further tailors this approach by randomly selecting specific entries (feature,
sample) for each individual, aiming to reduce dataset size in a more personalized manner. While these
baselines help to assess model quality degradation, they do not fully comply with legal standards of
data minimization, which require adherence to principles of purpose and data relevance, as discussed
earlier and further expanded in §C]

Data minimization algorithms. We briefly introduce three classes of algorithms adopted to solve
the optimization posed in Problem 2}

1. Approximating the target utility [14], which focuses on finding an approximate closed-form
solution to the lower-level problem, thus simplifying the original optimization.

2. Modelling the target utility [32]], which instead attempts to model the lower-level mapping and
estimate it online again without solving the optimization.

3. Evolutionary algorithms [23], which trade the advantage of carrying no assumption with slow
convergence and high computational demand.

Extensive details about these algorithms, their theoretical underpinning, and comparative analysis
can be found in §D] Throughout our experimental evaluation, baseline methods are depicted with
blue colours while the optimization algorithms for data minimization with red colours.

4.1 Experiment setup

Datasets. Our evaluations focus on classification for both tabular data (marked with symbol ©)
and image data (symbol ), to cover a diverse set of distributions and modalities. In this section,
we use (i) the bank marketing dataset [17], taken from a telemarketing campaign with financial
information of 11,162 customers, and (ii) the handwritten digits dataset [33]], containing a total of
1,797 handwritten digit images across 10 different classes (i.e., digits), Results on several additional
datasets and modalities, including text, are reported in §F}



S . V]
5 (a) Bank Marketing (b) Handwritten Digits Feature Selection
,15) 100% ——— Random Subsampling
g 80% Indv. Random Subsampling
s iOZO Approx. Target Utility
g 28 (; —— Modeling Target Utility
A 0 l; Evolutionary Algorithm
& 0
5% 2% 0% 5% 2% 0%
Acc. Drop Threshold (o) Acc. Drop Threshold (o)
(c) Bank Marketing: Multiplicity (d) Visualizing Minimized Data
5 Accuracy
Original Minimized Imputed
- - 24.77% - 24.66% 24.77%  75.59% — - i
« 24.77% 24.68% 24.29% 24.64%  76.04% " '

Runs

<+ 24.66% 24. 29% 24.17% | 76.18%

- B v -l oo 763

v 2471% 24.64% 25.00% 24. 17% 75.95%

Figure 3: (a, b) Percentage of dataset minimized under different accuracy drop thresholds (). (¢)
Pairwise overlap between minimized datasets across five runs with changing randomness. (d) Visual-
izing minimized datasets across modalities showing: (Left) emergent individualized minimization
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Data splits. Datasets are split into two equal groups, private and public data. The public data is used
as the test data, to calculate statistics for data imputation, and train reference models for membership
inference. The private data is further split into two equal groups, i.e. members and non-members.
The members are our training data X, i.e., also the data that will be minimized in our pipeline. The
non-members are only used for evaluating membership inference attacks (details in §E).

Learning setup and data imputation. The experiments use logistic regression for the tabular dataset,
and a fully connected neural network for the handwritten digits dataset. Both datasets are normalized
using MinMaxScaler. Data imputation is performed under the assumption of a multivariate Gaussian
distribution, utilizing the mean and covariance matrix of the public data to fill missing values with
the mean of the conditional distribution [13].

4.2 Efficacy of data minimization

First, this section assesses the ability of data minimization algorithms to reduce the dataset size across
several modalities. Figure [3 summarizes the results, comparing the amount of data that could be
minimized (y-axis) given a maximum drop in accuracy (x-axis) when compared to the accuracy
returned by the classifier trained over the original, not-minimized, dataset. The results indicate a
strong trend: A substantial amount of data can often be removed without sacrificing utility, suggesting
that much of the collected data is superfluous in the datasets analyzed.

Notably, the baseline methods for minimization are found effective in reducing substantial amounts
of data, possibly because they leverage existing structural redundancies in the dataset. For instance,
feature selection excels with the handwritten digit dataset, where outer boundary pixels are never
covered by the digits, and thus can be easily removed with minimal impact on model performance.
Nonetheless, the optimization algorithms consistently outperform the baselines across all datasets,
with different algorithms outshining others in specific scenarios. Evolutionary algorithms, for instance,
surpass others on the bank dataset, driving minimization to extreme sparsity. It highlights a strength of
minimization at its core: reducing the dataset size to a mere 18.75% (and 6.25%) subset of the original
bank dataset still allows the model to maintain utility with only a 2% (and 5%) drop in accuracy.
Similarly, approximating the target utility excels on the handwritten digits dataset, presumably due to



its compatibility with the values of redundant features in the dataset (empty pixels are represented
with 0, compatible with the zero-imputation assumption of the algorithm). An in-depth discussion of
the strengths and weaknesses of these algorithms is provided in §D!

4.3 Multiplicity, emergent individualization, and privacy in data minimization

Building on the previous section’s demonstration of data minimization’s effectiveness in various
settings, this section explores the concept of multiplicity of data minimization. We applied the
evolutionary algorithm five times to the bank dataset under different randomness settings, each
targeting 75% sparsity. Notably, the results, illustrated in Figure 3{c), show minimal overlap among
the datasets retained from each run, with the highest overlap being only 25.51%. Clearly, there are
many distinct ways to achieve data minimization while maintaining utility that meets data relevance
constraints (i.e., no further data can be removed without compromising utility). Such variability
underscores the flexibility of achieving data minimization through diverse algorithms. However,
this also suggests that different minimized datasets may pose varying privacy risks related to the
undisclosed features, as discussed in pointing to a misalignment in privacy outcomes.

Next, we visualize the minimized dataset and highlight some intriguing characteristics. Starting with
the bank dataset, minimized to 75% sparsity using the evolutionary algorithm, Figure [3[d)(Left) shows
that individualization trends naturally emerge from the optimization process, where no single feature
is consistently favoured over others. Similarly, the minimized images from the handwritten digits
dataset, processed by the evolutionary algorithm at 50% sparsity, are shown in Figure [3(d)(Right).
The trends here are more interpretable; for example, the central vertical line is preserved in the image
of the digit ‘1°, while the outer curves are retained for ‘0’. Notice however that despite reducing the
dataset to half its original size, a significant portion of the images can still be reconstructed using
statistics learned from public data. This provides a strong indication of privacy risks and suggests
that, as we will show next, a minimized dataset does not equate to enhanced privacy.

5 Data minimization and privacy

In the previous section, we showed that various algorithms can effectively minimize data while
focusing on utility. However, as discussed in there is an expectation of privacy associated with
minimization, currently unexplored in literature [3} 121} 23]]. Next, we conduct an important empirical
assessment of minimization algorithms on real-world privacy attacks and their alignment with the
minimization objective.

Defining inference attacks. During a reconstruction attack, the attacker aims to recover missing
information from the minimized dataset. To achieve this, we use the data imputation method described
in §4.T. In contrast, a re-identification attack involves the attacker attempting to identify an individual
using only partial information. Specifically, the attacker aims to find the best match in the minimized
dataset X’ for a data point from the auxiliary dataset (in our setup, X4 = X). For this purpose, we
use a modified Euclidean distance that disregards missing values and adjusts the distance scaling
accordingly, to accurately rank the best matches.

5.1 Evaluating privacy leakage

Data minimization and re-identification risk. We first focus on the re-identification risks for the
handwritten digits dataset, shown in Figure 4(b). A key observation is that re-identification risk
remains remarkably high, even after extensive minimization. For instance, the re-identification risk is
close to 1 for most algorithms even when the dataset is reduced to approximately 20% of its original
size. This behaviour is due to the dataset’s large feature space. Thus, while minimization algorithms
were able to reduce dataset size significantly while maintaining utility (as shown in Figure[3), they
do not achieve comparable reductions in re-identification risk. This underscores a fundamental
misalignment between the goals of data minimization and the actual privacy goals.

While this misalignment is less pronounced in the bank dataset (Figure d[a)), there are still regions in
which reducing dataset size does not correspondingly decrease re-identification risk. Notably, the
algorithm that approximates the target utility demonstrates a closer alignment with privacy goals
compared to other algorithms. Considering the lower amount of minimization by approximating the
target utility as observed in Figure[3] we can infer that the additional data minimized by the other two
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trends of dataset size. (c, f) Privacy risks under feature-level privacy scores. The lowest risk values
can be seen at § = 1.5, highlighting the importance of considering privacy during minimization.

algorithms was not aligned with re-identification risk. Thus, while these algorithms would have been
preferred if we only considered utility and dataset size (as we did in Figure[3), they do not provide
proportionate privacy improvements, highlighting a critical concern of misalignment.

Finally, observe that our baseline algorithms display notable trends across both datasets. Random
subsampling emerges as an effective strategy to reduce dataset size while being aligned with re-
identification risks. Indeed, completely removing a data point also eliminates any risk of its re-
identification. In contrast, feature selection, despite preserving reasonable utility post-minimization,
fails to effectively mitigate re-identification risks in any dataset. This inadequacy can be attributed to
the persistence of certain features in the minimized dataset that, even when isolated, can uniquely
identify individuals. This phenomenon suggests a general misalignment between breadth-based
minimization techniques [11} 21} 28] and the expected reduction in re-identification risks. Once
again, these observations highlight the disparity between mere reductions in dataset size and actual
improvements in privacy outcomes.

Data minimization and reconstruction risk. Next, we shift focus to the results of reconstruction
risks, shown in Figure E(d, e). Notably, even at the highest levels of data minimization (smallest
dataset size), reconstruction risks remain significant for both domains. This aspect is linked to the
ability to reconstruct features using overall dataset statistics, which, although decreasing in accuracy
as minimization increases, still retain some reconstructive value. Interestingly, we find that the
handwritten digits dataset is comparatively easier to protect against reconstruction, likely due to its
higher feature variance relative to the bank dataset. While the same high variance in features led to
worse re-identification risk, it instead helped the handwritten digits dataset achieve better alignment
with reconstruction risk. Thus, not only is the dataset size not aligned with privacy, but even different
privacy risks are not aligned with each other, motivating the explicit involvement of appropriate
privacy constraints during minimization.

The trends observed in re-identification risk also manifest in reconstruction risks, albeit with some
unique differences. Firstly, both random subsampling and individualized random subsampling have
linear relationships between dataset size and privacy, highlighting a strong alignment with privacy.
Secondly, the best-performing algorithm for dataset size might not always be the best choice overall.



Specifically, while the algorithm that approximates the target utility shows strong performance on
the bank marketing dataset and holds a significant advantage on the handwritten digits dataset, it
consistently presents higher reconstruction risks for both datasets. These trends emphasize the
importance of incorporating privacy considerations when selecting the most appropriate minimization
algorithm for a specific scenario.

5.2 Adapting minimization for better privacy

We now present a simple yet effective adjustment to the minimization problem to align better with
privacy and demonstrate the feasibility of a more comprehensive minimization objective, managing
both utility and privacy. Given the output of a minimization algorithm B® = [B] o, we define
privacy scores V', such that the score matrix C;; = B{; + SV;; determines the indices that should be
minimized. For simplicity, we will only define feature-level privacy scores, which are not personalized,
ie., Vi; =V, Yi,q € [n],j € [p]. Here, 3 serves as a hyperparameter to tune the emphasis on
privacy. Ultimately, we minimize values with the lowest C;; scores to achieve the target sparsity.
The privacy scores V' are normalized to [0, 1] before being combined with the minimization matrix.

* Privacy scores to reduce re-identification. In re-identification attacks, the risk arises from
disclosing unique features (e.g., phone number, SSN) rather than non-unique features (e.g., gender,
race), as they make it easier to identify individuals. Following this rationale, we propose using the
negative of the number of unique values for a feature as its privacy score. Minimizing distinctive
features can increase the difficulty of re-identification.

* Privacy scores to reduce reconstruction. In reconstruction attacks, the risk stems from features
that exhibit a high correlation with other features, exploited by adversaries to deduce missing values.
Thus, to mitigate reconstruction risks, we propose using the negative of the average correlation of
each feature with every other feature as a measure of its independence and thus its privacy score.

Evaluating privacy score modifications. For a given level of sparsity, it can be expected that
incorporating privacy scores will decrease data breach risks, but potentially reduce accuracy. The
critical question is whether we can attain a more favourable trade-off between privacy and utility,
regardless of the sparsity. We present the results in Figure[d(c, f) for the handwritten digits dataset,
varying the hyperparameter 3. Results for other datasets are present in §F|

At f = 1.5, integrating privacy scores enhances the privacy-utility trade-off, cutting the re-
identification risk by more than half while maintaining the same accuracy drop. The impact on
reconstruction risk is less dramatic, but improvements are evident. Increasing the focus on privacy
to 8 = 3 results in a less optimal trade-off, yet still better than at 5 = 0. This notable effect of
a basic feature-level privacy score underscores the necessity of directly addressing privacy in the
minimization process, instead of relying on its incidental emergence.

6 Discussion and conclusion

In proposing a formal framework for data minimization in ML, this paper reveals a disconnect
between legal mandates and their practical implementation. While data protection regulations aim
to limit data collection with an expectation of privacy, current objectives of minimization fall short
of providing robust privacy safeguards. Notice, however, that this is not to say that minimization is
incompatible with privacy; instead, we emphasize the need for approaches that incorporate privacy
into their objectives (as done in §5.2), rather than treating them as an afterthought.

Addressing this concern also brings forth a variety of optimization challenges. The optimization
problem is complicated further under alternative interpretations of data collection, such as gathering
a range of data rather than exact values [11, 28|]. These challenges are particularly significant in
large-scale applications where both time and accuracy are critical factors. Therefore, future work
should focus on the development of efficient minimization algorithms able to make good trade-offs
between utility and privacy. The ethical and fairness considerations of data minimization also add to
its complexity. By design, data minimization is likely to remove data that resembles the majority [3],
leaving the minority more vulnerable to privacy risks. Thus, developing fairness-aware mechanisms
for minimization is an important avenue for future research.

In summary, our study marks a crucial step in aligning the legal requirements with practical, technical
solutions for data minimization in ML. It sets the stage for future work aimed at developing compre-



hensive, efficient, and ethically sound methodologies for minimization. It hopes to guide the creation
of ML systems that are both respectful of individual privacy and compliant with legal norms, thereby
emphasizing the need for multidisciplinary approaches to the challenges of data minimization.
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A Legal language

Table[2 summarizes relevant excerpts from six data protection regulations from around the world.
Along with purpose limitation and data relevance , we also highlight excerpts that show the expec-
tation of data privacy through minimization.

In various data protection regulations, data minimization is defined on personal data, emphasizing
that it is the personal data that needs to be minimized. Personal data is defined as any information
that directly identifies a particular individual, or can be indirectly combined with other information
to identify a particular individual (PIPA, South Korea). It is clear that these regulations prioritize
data minimization to avoid collecting unnecessary information that could compromise an individual’s
privacy, hence the expectation of enhanced privacy under minimization.

B Related work

Data Minimization. Existing research on minimization in the context of data protection regulations
can be broadly divided into breadth-based and depth-based techniques. Breadth-based strategies aim
to minimize data by limiting the number of features [21] or introducing feature generalization [11}28]].
On the other hand, depth-based approaches focus on reducing the number of unique data points by
using methods like data pruning [[19} 23} 26]]. While there are some discussions on individualized
minimization for recommender systems [3} 6], they are limited in their ability to generalize to other
settings in ML.

On a separate note, most studies in data minimization aim to simply reduce the raw size of the
datasets [3,16, 21, 123]] and don’t give any attention to privacy concerns [16]. Although some works
do go beyond dataset size and discuss other aspects of information leakage [L1], they still lack
connections with real-world privacy risks. The work closest to ours is a concurrent work by Staab et al.
[28], which also introduces real-world privacy attacks to quantify privacy leakage after minimization.
However, unlike our approach, Staab et al. [28] concentrates on breadth-based methods, thus missing
the individualized nature of minimization.

Some studies have also formalized data minimization during inference, emphasizing the personalized
nature of the process and delving into its privacy implications [15,[31]. However, data minimization
during inference is distinctly different from data minimization during training, which is the primary
focus of our paper.

Privacy Auditing with Inference Attacks. Privacy auditing often involves the application of
inference attacks to assess real-world privacy leakage. These attacks serve as powerful tools to expose
potential vulnerabilities and by simulating realistic scenarios [[12} 24, [34]], auditors can evaluate the
effectiveness of privacy protection mechanisms and identify areas where sensitive information may
be revealed.

C Theoretical analysis of baseline techniques

We provide the theoretical properties of the model learned on minimized data for feature selection
and individualized random subsampling in this section.

C.1 Feature selection

As introduced in the main text, the feature selection framework sorts the importance of features based
on their importance in learning task and then remove the least important features. We denote .S € [p)
to be the subset of the weakest features that will be not used. The following Theorem|[I] provides the
Bayes Mean Squared Error (MSE) when using all features [p] and using a subset of features [p] \ S.

Theorem 1. Suppose all input features and labels are jointly Gaussian, i.e., [z,y] ~ N (u, ), where
E — |:Ea:,:c7 Ew,y

Y, x5 S,y
the covariance matrix ¥4 5 = diag([o

]. Furthermore, we assume that all input features are mutually independent, i.e.,

22_.) is a diagonal matrix and o? = Var|x?] the variance of
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General Data Protection Regulation (GDPR), Europe gdpr-info.eu/

Article  4(1): “personal  data” means any information relating to an
identified or identifiable natural person (“data subject”) [...];

Atrticle 5(1)(b): Personal data shall be collected for specified, explicit and legitimate purposes and not
further processed in a manner that is incompatible with those purposes;

Article 5(1)(c): Personal data shall be adequate, relevant and limited to what is necessary in relation to the
purposes for which they are processed.

California Privacy Rights Act (CPRA), USA cppa.ca.gov/
Section 1798.100 (a)(1) & (@)(2): [...] A business shall

not collect additional categories of (sensitive) personal information or use (sensitive) per-
sonal information collected for additional purposes that are incompatible with the
disclosed purpose for which the (sensitive) personal information was collected without  providing
the consumer with notice consistent with this section.

Section  1798.140  (v)(1): “Personal  information”  means  information  that

identifies, relates to, describes, is reasonably capable of being associated with, or could reasonably be
linked, directly or indirectly, with a particular consumer or household .

General Personal Data Protection Law (LGPD), Brazil 1gpd-brazil.info/

Atrticle 5(1): personal data: information regarding an identified or identifiable natural person ;

Article 6: Activities of processing of personal data shall be subject to the following principles,

I: processing done for legitimate, specific and explicit purposes of which the data subject is informed, with
no possibility of subsequent processing that is incompatible with these purposes ;

II: compatibility of the processing with the purposes communicated to the data subject , in accordance
with the context of the processing;

1II: limitation of the processing to the minimum necessary to achieve its purposes, covering data that are
relevant, proportional and non-excessive in relation to purposes of the data processing [... ];

Protection of Personal Information Act (POPIA), South Africa popia.co.za/

Section 1: “personal information” means information relating to an identifiable, living, natural person ,
[...]

Section 10: Personal information may only be processed if, given the purpose for which it is processed, it
is adequate, relevant and not excessive .

Section 13(1): Personal information must be collected for a specific, explicitly defined and lawful purpose

[..]

Consumer Data Rights (CDR), Australia www.legislation.gov.au/Details/F2023C00735

Rule 1.8(a): An accredited person complies with the data minimisation principle if when mak-
ing a consumer data request on behalf of a CDR consumer, it does not seek to collect: (i)
more CDR data than is reasonably needed ; |[... |

Rule 4.11(1)(a): When asking a CDR consumer to give a consent, an accredited person must allow the
CDR consumer to choose the types of CDR data to which the consent will apply by enabling the CDR
consumer to actively select or otherwise clearly indicate: (i)..; and (ii) in the case of a use consent—
the specific uses of collected data to which they are consenting ; [... |

Personal Information Protection Act (PIPA), South Korea www.pipc.go.kr/eng/index.do

Article 2(1): The term “personal information” means any of the following information relating to
a living individual: (a) Information that identifies a particular individual [...]; (b) Information
which, even if it by itself does not identify a particular individual, may be easily combined with
other information to identify a particular individual |... ];

Atrticle 3(1): The personal information controller shall specify explicitly the purposes for which personal
information is processed s and shall collect personal information
lawfully and fairly to the minimum extent necessary for such purposes .

Table 2: Excerpts from various data protection regulations from across the globe on the principle of

data minimization, highlighting language on purpose limitation, data relevance , and references to

the expectations of data privacy .

it" feature. Then the Bayes MSE when using all input features [p] and using a subset of input features
7\\2 1112
in [p]\ S in turn are: Varly] — >F_, 7(COU(:2"” V21 and Varly] — Lielp)\s corly )

95
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Theorem |1|suggests data minimization procedure based on feature selection introduces an additional
) i\)2 i)\2 7\)2
MSE of Y7, (Covlyzl)) Yiclp\s Covly @) — s % As long as all features in

o2 o?); 2 .
the removed feature set .S have small correlation with the label, i.e. Cov(y, ') = 0, such additional
MSE is neligible.

Proof. Our proof relies on the properties of multivariate Gaussian variables. In particular, when
feature and label are jointly Gaussian, [x, y] ~ N (u, ) then for any subset of features A € [p] we
can derive the following conditional density of label y given partial input features x 4 [4]:

P(y|1’A) = N(Ny + ZmA,yE;,%,Ey,ma Ey,y - EmA,yE;,lmzy,wA)-

In the above equation, ¥, , is the variance of the label y, ie., ¥, , = Var(y), while ¥, , or
Yy.@4 1s the covariance between y and a subset of features x 4. The Bayes MSE for Gaussian
distribution is just the conditional variance [30]. Hence the Bayes MSE when using all features,
ie A = [plis: ¥y, — ¥y X, Y, By the assumption that the input features are mutually

independent ¥, , = diag([c?]7_,), the Bayes MSE using all features can be further reduced as:
: ] Cov(y,x;))>
Varly] — 5y adiag([55)_1) Sa,y = Varly] = 2,ep,) C2G20

o

Similarly, we can derive the Bayes MSE when using a subset of features d \ S as: Varly] —
S (Cov(y,zi))* 0
icld)\S > :

U’L

C.2 Personalized random subsampling

As introduced in the main text, the personalized random subsampling method works by randomly
setting the entries of the minimization B;; = L with a probability k,, which controls the sparsity

of the minimized dataset (Here, &k, = %). This can also be rewritten as randomly selecting a

subset S € {(i,7)]¢ € [n],j € [p]]} of a given size |S| = np — k, and remove the entries in S. To
understand the theoretical behaviour of this method, we first consider the optimal model parameter
60*(X) = argming J(0;X,Y) as a function of the data X. Using this notation, the model learnt on
minimized data can be represented as § = 0* (X’) while the model parameter learned on original
data §= 0* (X). We then have the following Lemmathat derives the gradient of the optimal model
parameter 6*(X) w.r.t data X

Lemma 1 (Sensitivity of model parameter w.r.t input X). Assume the loss function J(0;X,Y) is
differentiable w.r.t 0 and X, suppose 0*(X) = argming J(0; X,Y) then the following holds:

86*(X)
X

=-H'G, )

2 * .
where H = W is the Hessian matrix of the loss w.r.t model parameter, while G =

2 * .
%};){(,Y) is the second derivative of the loss w.r.t model parameter and input data.

Proof. Since the model parameter 0*(X) = arg ming J(6; X, Y) hence the gradient of the loss J(.)
w.r.t model parameter vanishes at 8*(X). In other words

9J(6"(X); X, Y)

=07,
00

Take the derivative w.r.t X on both sides of the above equation, it follows:

9 0J(6"(X);X,Y)
oX 00

=07, (6)

The L.H.S can be rewritten as
g@J(G*(X);X,Y) 0 [0J(0*(X);X,Y) 00*(X) n 0J(0*(X); X,Y) 67X

00 0X 00 0 0X 0X 0X
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_ 9RI(07(X): X, Y) 00" (X) | 9%I(07(X): X, Y)
- 062 oX 900X ’

where the first equation is due to the chain rule. If we put H = %

and G = W, then the L.H.S of Equation@can be rewritten as:

(the Hessian matrix)

96" (X)

H(’)X

+G =07,

S 90%(X) _
which implies =55~ = —H~'G.

O

Lemma [T tells us how much the optimal model parameter changes when the data input changes.
Based on this Lemma[I| we can prove the following Lemma 2] regarding the target utility.

Lemma 2 (Sensitivity of target utility w.r.t input X). Given the same settings and conditions as in
Lemmall} then the following holds:

8.J(6%(X),X,Y)
X

= -LH G, (7

where H and G were provided in LemmaE, and L = W

model parameter.

is the gradient of loss w.r.t

Proof. The proof is based directly on the chain rule:

8J(6*(X),X,Y)  0J(0*(X),X,Y)0"(bX)
X T 067(bX) X

=—-LH'G,

where the last equation is by Lemmal[T} O

Based on Lemma|_|we have the followmg Theorem|_|that derives the target utility J (0 X,Y) bound
based on the original utiltiy J(; X,Y) as follows:
Theorem 2. Consider the personalized random subsampling framework, in which all features in

a random set S € {(i,7)|i € [n],j € [p]} is removed to form the minimized dataset X', then the
following holds:

T(0;X,Y) < J(6:X,Y) + V2[S||X oo | LH Gl + O(IS]] X %) ®

Proof. The proof rehes on the first-order Taylor approx1mat10n First, we consider both optimal

model parameters 6, § as a function of the input data, i.e., 8 = 8*(X’) and §= 6*(X). Based on the
first-order Taylor approximation around X it follows that

0J(0*(X),X,Y) n

J(O*(X'); X, Y) ~ J(O*(X); X, Y) + (X - X)T B

o(IIX' - X[3) ©
By Lemma MX)’X’Y) = —LH~'G. Furthermore

X" = Xllzfzz Xi;—Xi)?= Y (Xi; - X,)?

i=1 j=1 (i,7)€8 (10)
< D 2X|% = 218X
(i,7)€S

where the second equation is due to the fact we only remove features in S while the other entries
are kept the same. The inequality is due to the fact that |X} ; — X; ;| < 2max; ; [X; j| = 2[X]| o,
since the the imputed data is in the range X; ; € [min; ; X; ;, max; ; X; ;].
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By Equation [9]and Cauchy-Schwarz inequality for vectors it follows that:

dJ(0%(X),X,Y) _
T [ nkat) o _ 1
T S IX = Xal| - LH TGy an

< V2S[I1X]|o | LH G2

(X' - X)

Applying the results from Equation [I0]and Equation [[T]to Equation[|we verify the correctness of the
statement.

O

D Data minimization algorithms
We provide additional details on various algorithms used in the paper.

D.1 Baseline techniques

Feature Selection [5]. Feature selection is a breadth-based minimization strategy that retains only
the most important features in the data. The algorithm works by first sorting the features of the
dataset in order of their importance, using a pre-established criterion, to identify a subset .S of the
least important features. The minimized dataset X’ is formed from X by removing all features in S.
In our paper, the importance criterion is the absolute correlation between each feature and the output
label, and the algorithm sets:

B,;=1 VYien]l,jes (12)

where | S| is a parameter controlling the minimization sparsity.

Random Subsampling. Random subsampling is a depth-based minimization strategy that randomly
chooses a subset of data points from the original dataset. In the context of data minimization, it sets
the minimization matrix B as:

B;; = L Vj € [p], with probability k,, (13)

where 0 < k,, < 1 is a probability value chosen so that nk, rows of the dataset D are minimized, in
expectation.

Individualized Random Subsampling. Individualized random subsampling is an extension of
random subsampling, but it removes individual entries (feature, sample) rather than complete rows,
i.e., it performs individualized minimization. The minimization matrix B is defined as:

B;; = 1  with probability %,, (14)

where 0 < k, < 11is chosen so that npk,, elements of the dataset D are minimized, in expectation.

D.2 Data minimization algorithms

Approximating the Lower Level Program [14]. Solving the bi-level optimization discussed is
challenging due to the nested structure of the problem which requires solving a non-convex lower-
level optimization within a non-convex upper-level optimization. When the lower-level problem has a
unique solution that can be explicitly expressed in a closed form, then the overall bilevel program can
be rewritten as a single-level program which is much simpler to solve. The underlying idea behind
the proposed framework lies in approximating the target utility via the original utility by the first
Taylor approximation (see again Equation[9). Assuming that the second order component associated
with || X" — X||2 is negligible, the difference in model’s utility is

JO;X,Y) = J(:X,Y) ~ —=(X' = X)"LH™'G.

where L, H, G are the gradients w.r.t. the model’s parameters, the Hessian w.r.t. the model’s parame-
ters, and the second-order derivative w.r.t. the model’s parameters and the dataset, respectively, of the

original utility on the complete dataset .J (0, X,Y). This simplifies the original optimization as:

Minimize || B st.: (X=XN'LH™'G<a. (15)
Be{l,1}nxp
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Suppose, we perform a simple zero imputation, i.e., setting | = 0, then X’ = X ©® B. The above
problem now is a binary integer linear programming and the dual problem can be rewritten as below:

Minimize (X © B -X)'LH™'G (16a)
Be{l,1}nxp
st.: | Bl < k. (16b)

Recall again that it is often convenient to view the optimization expressed in equation [2|as a program
that minimizes the loss J(#; X, Y') under sparsity constraint over the minimization matrix B. It turns
out that for this binary linear programming, we can obtain a closed-form solution by setting B;; = 1
for k largest entries of (X;; — X},) © (LH ~1@);;, and B;; = L otherwise. Note that this proposed
method is applicable when the imputed data is given (e.g., zero imputation) before running the method.
Complicated data imputation like mean/mode/median imputation by the non-missing entries of the
same column in the minimized data will result in a non-linear objective in the dual problem. This
poses a difficulty since there is no efficient method to solve the binary integer non-linear programming
in general.

Modeling the Target Utility [32]. Instead of relying on the assumptions of low sparsity to approx-
imate the target utility as above, we can take a more general approach by directly modelling and
learning the mapping between the target utility and the minimized dataset. In other words, we want to
learn a parametrized function m,,(B) &~ J(#; X, Y), where w is a vector of parameters, to estimate

the target utility without solving the lower-level optimization for 6.

To learn a tractable mapping m,, (B), we restrict ourselves to linear functions of B and assume that
each index of the dataset has an independent influence on the target utility. Therefore, if we quantify
the influence of each index on the target utility as Z;;, the mapping m,, (B) becomes:

R 1 X E
J(0:X,Y) ~ my(B) = . Z > T (17)

i=1 j=1

Here Z;; can only exist in one of two binary states, i.e., Z;; = 1, =1 - Iilj + 1iB,,=1" Ifj- To
learn the values of Z}, and Iﬁ;, we generate a large number of minimization matrix-target utility pairs
by solving the lower-level optimization for each pair. We can then learn these parameters for each
index ij by averaging the target utility when B;; = 1 and L, respectively. The final optimization
thus becomes:

L 1 ¢~y *

Bl\é[ﬁl}glnziep | B||1 s.t.: " ZZLJ J(0;X,Y) < a. (18)
i=1 j=1

When considering a sparsity constraint || B||; < k on the minimization matrix, the solution to this

formulation is retaining the k entries with the highest value of the term Z;- — Z}.. Although the

assumption of independent influence may not hold in all cases, our results (illustrated in the next

section) show that this approach can substantially improve the accuracy of existing baselines.

We need to generate minimization matrix-target utility pairs. We start by generating a random
minimization matrix B, with the target sparsity k. This is the same as performing personalized
random subsampling. We then solve the lower-level program for this B and obtain the final target
utility of the trained model. We repeat these steps multiple times to create a dataset to learn the
parameters of the mapping m, (B).

To learn the mapping m,, (B), we simply need to learn the parameters Iilj , Ifj- Given the assumption
of the independent influence of each index on the minimization matrix, we can learn these parameters
by calculating the average loss when B;; = 1 and B;; = L:

P!
1 ~
I} = 7] > J(0py;X,Y) where P':={B|B;; =1} (19)
qg=1
i
é:ﬁzt](ép#;)(,y) where P+ :={B|B;; = 1} (20)
g=1
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. 1 <&
where 0Op = argmianE(fg(wl-@Pi),yi). (21
6 "3

Evolutionary Algorithms [25]. So far, we have discussed methods that approximate the original
optimization problem under various assumptions, enabling us to solve it more easily. An orthogonal
class of algorithms, often applied to solve bi-level programs, are evolutionary algorithms. They trade
the advantage of carrying no assumption with slow convergence, i.e., high computational demand,
and higher risks of overfitting.

In our implementation of the evolutionary algorithm, we begin with a population of randomly
generated minimization matrices B and then evolve them across iterations to reach our objective.
We mutate and breed the current population at each stage of the process to create a larger pool of
choices and carry out the lower-level optimization for every member of this pool, only retaining the
best performers for the next generation. The entire process is repeated until convergence, or for a
fixed number of iterations.

Mutation: In our paper, we mutate a minimization matrix B by flipping the value of exactly 10
randomly chosen indices from 1 — _L, and exactly 10 randomly chosen indices from L — 1.

Breeding: When breeding between two parent minimization matrices B* and B?, we keep the
same value in the child B¢ at indices where both parents agree to be the same, while we randomly
choose values for indices where they don’t agree to maintain target sparsity. In simpler terms,

c 1 = 1 2
B, < Bl if BY, = B, (22)

B;; < L with probability %', otherwise (23)

where 0 < k/ < 1 is a value chosen so that the sparsity k is maintained, in expectation.

D.3 Summary

We provide a summary of various strengths and weaknesses of all algorithms used in our paper in
Table[3]

E Membership inference attacks and data minimization

In this section, we focus on threat models outside the “wall”, specifically addressing inference attacks
on the trained model without direct access to the minimized dataset.

E.1 Membership inference risk and inference attack

Membership Inference Risk (MIR). Membership inference attacks [24] aim to discern if an
individual’s data was in the dataset before minimization, focusing on an attacker accessing the model

0 trained on this minimized dataset. In these attacks, the adversary calculates a likelihood score L(x,)
for each query x,, representing its probability of being in the original dataset X using the model
6. The score is given by L(xz,) = Pr [mq e X| é} . Using these scores for both original dataset X
and non-members X,,,,,, binary membership predictions can be made at any threshold ¢, denoted
as 1y,(z,)>¢ The overall Membership Inference Risk (MIR) is assessed as the area under the curve

H
(AUC) of true positive rates (t—pl>“) and false positive rates (fpr) across various thresholds:
%
MIR = AUC(tpt, fpr) (24)

Attack Details. The attacker aims to determine the presence or absence of an individual in the
original training dataset. We use the SOTA membership inference attack RMIA [35], by training 8
reference models on random 50% subsets of the public data split. We operate under the practical
assumption that the adversary is unaware of the data minimization applied before training the target
model and evaluate the membership inference on the original dataset.
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Approximating Lower-

Level Program

Modeling Target Utility

Evolutionary Algorithms

Assumptions

Hyperparameter
Sensitivity

Consistency

Convergence Be-
havior

Runtime Consid-
erations

Selection Crite-
ria

All errors between the orig-
inal and minimized data be-
yond the first order are con-
sidered insignificant and ig-
nored. This might not hold
when sparsity is high.

No hyperparameters.

No randomness in the pro-
cess, but it inherits the ran-
domness of the lower-level
learning model.

Provides an exact solution
under the given assump-
tions.

Closed form solution, but re-
quires second-order deriva-
tives. Fast for simpler set-
tings, but does not scale well
with either dataset size or
model complexity.

Choose in simple settings
with a small amount of min-
imization required for fast
and accurate results.

The influence of the pres-
ence or absence of every
value in the data is mod-
elled independently. This
can break for datasets with
highly correlated features.

Large number of iterations
required to create better data
when modelling the lower
optimization.

Highly inconsistent across
changing randomness. But
consistent across sparsity,
i.e. data minimized at lower
sparsity will also be mini-
mized at higher sparsity.

No convergence guarantees.

Requires training the learn-
ing model multiple times.
Relatively slower for sim-
pler settings, but scales bet-
ter with increasing complex-

ity.

Choose in more complex
settings and when algorithm
runtime is as important as
the accuracy of the method.

No assumptions are made
about the structure of the
problem setting.

Large number of iterations
as well as a large active pop-
ulation size will facilitate
better solutions.

Highly inconsistent across
both randomness and spar-
sity. Data minimized may
not remain minimized under
changing randomness or in-
creasing sparsity.

Convergence guarantees un-
der a sufficiently large num-
ber of iterations.

Requires training the learn-
ing model a significantly
larger number of times. Fur-
thermore, needs to be re-
peated for every unique out-
put sparsity required.

Choose in a setting where
the accuracy of the method
is of the utmost importance,
even at the cost of compute.

Table 3: A summary of strengths and weaknesses of various algorithms.

E.2 Privacy leakage through membership inference

Finally, we assess the membership inference risk under various minimization algorithms in Figure
[5(a). As previously mentioned, information leakage through a trained model is not an expected
benefit of data minimization, which mainly aims to address data breach scenarios. Nevertheless, we
still observe that certain minimization algorithms are effective at reducing membership inference
risks with decreasing dataset size, i.e., models trained on minimized datasets leak less information.
Yet, these improvements are not perfectly aligned, carrying forward the same trends we saw in the
two data breach scenarios above.

E.3 DP-SGD to improve privacy-utility trade-off

We analyze modifications in data minimization to counter membership inference. An effective
mitigation can be obtained by introducing a differentially private learning algorithm, DP-SGD [1],
into the lower-level program of the bi-level optimization in equation[2, We test its compatibility
with data minimization by re-evaluating membership inference in this new setting. Note, we do not
introduce DP-SGD into utility calculation, i.e., once the data is minimized, the rest of the pipeline
outside the “wall” remains unchanged.

Evaluating DP-SGD Modifications. By incorporating DP-SGD into the minimization optimization
without altering other components, we want to assess the compatibility between these two methods.
The results, collected in Figure[5|b), clearly demonstrate a reduction in membership inference risks at
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Figure 5: Membership inference risks under changing sparsity on the handwritten digits dataset.
The minimization algorithms can reduce inference risks and are pushed to even better trade-offs by
introducing DP-SGD in the lower-level objective.

the same accuracy threshold, with prominent improvements for methods that were more susceptible
to information leakage, such as modelling target utility algorithms. DP-SGD is indeed compatible
with minimization, reinforcing the benefits of considering privacy during minimization.

F Additional experiments

F.1 Results on additional datasets

We also provide results for utility and privacy across changing sparsity on additional datasets. This
includes the wine quality dataset [7]], a dataset containing various attributes of 6,463 unique wines
and a binary label to classify them as red or white wine, and the ACSIncome and ACSEmployment
tasks of the folktables dataset [8]], with census information about individuals and a label marking
whether their income is above $50, 000 for ACSIncome or whether they are employed or not for
ACSEmployment. Similar to 20 newsgroup dataset, we only choose a random subset of 5000 data
points from both ACSIncome and ACSEmployment datasets. We also provide detailed results on the
bank dataset, the handwritten digits dataset, and the 20 newsgroup dataset, in this section.

The results for utility and privacy are collected in Figure[6]and Figure[7] respectively. The trends of
utility match the behaviour seen in the main text, i.e., these datasets have redundant information that
can be removed without suffering any performance loss. Similarly, for privacy results, we see the
trends of main text like feature selection highly misaligned with re-identification, and all methods
containing high reconstruction risks even after extreme minimization, replicated in these datasets.
Thus, there is a clear misalignment between data minimization and privacy expectations.

F.2 Additional results for privacy-based modifications

We provide additional results for privacy-based modifications to the data minimization algorithm on
other datasets, as well as the raw trends on the handwritten dataset. The results for the handwritten
dataset are collected in Figure([] for the bank dataset are collected in Figure[9] and for the employment
dataset are collected in Figure The results show similar improvement as in the main text for the
bank dataset, however, we don’t see similar benefits on the employment dataset. We believe that’s
because these results are quite sensitive to the choice of hyperparameter 3, and a more thorough
search for 8 can show improvements for other datasets as well. Despite this discrepancy, the aim of
these modifications was not to propose a novel method of incorporating privacy in minimization, but
instead to highlight that minimization and privacy are compatible, and thus one can perform data
minimization in line with the regulations while making sure they respect individual privacy in the
dataset.
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Figure 6: Utility of the minimized data across various sparsities on all datasets.
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Figure 7: Re-identification and reconstruction risks under changing sparsity on additional datasets.
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Figure 8: Re-identification and reconstruction risks (zoomed in) on the handwritten digits dataset,
using feature-level privacy scores.
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Figure 9: Re-identification and reconstruction risks (zoomed in) on the bank dataset, using feature-
level privacy scores.
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Figure 10: Re-identification and reconstruction risks (zoomed in) on ACSEmployment, using feature-
level privacy scores.
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