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Abstract

While deep learning models have shown remarkable performance in various tasks,
they are susceptible to learning non-generalizable spurious features rather than
the core features that are genuinely correlated to the true label. In this paper,
beyond existing analyses of linear models, we theoretically examine the learning
process of a two-layer nonlinear convolutional neural network in the presence of
spurious features. Our analysis suggests that imbalanced data groups and easily
learnable spurious features can lead to the dominance of spurious features during
the learning process. In light of this, we propose a new training algorithm called
PDE that efficiently enhances the model’s robustness for a better worst-group
performance. PDE begins with a group-balanced subset of training data and
progressively expands it to facilitate the learning of the core features. Experiments
on synthetic and real-world benchmark datasets confirm the superior performance
of our method on models such as ResNets and Transformers. On average, our
method achieves a 2.8% improvement in worst-group accuracy compared with the
state-of-the-art method, while enjoying up to 10⇥ faster training efficiency. Codes
are available at https://github.com/uclaml/PDE.

1 Introduction

Despite the remarkable performance of deep learning models, recent studies (Sagawa et al., 2019,
2020; Izmailov et al., 2022; Haghtalab et al., 2022; Yang et al., 2022, 2023b,c; Joshi et al., 2023) have
identified their vulnerability to spurious correlations in data distributions. A spurious correlation refers
to an easily learned feature that, while unrelated to the task at hand, appears with high frequency
within a specific class. For instance, waterbirds frequently appear with water backgrounds, and
landbirds with land backgrounds. When training with empirical risk minimization (ERM), deep
learning models tend to exploit such correlations and fail to learn the more subtle features genuinely
correlated with the true labels, resulting in poor generalization performance on minority data (e.g.,
waterbirds with land backgrounds as shown in Figure 1). This observation raises a crucial question:
Does the model genuinely learn to classify birds, or does it merely learn to distinguish land from
water? The issue is particularly concerning because deep learning models are being deployed in
critical applications such as healthcare, finance, and autonomous vehicles, where we require a reliable
predictor.

Researchers formalized the problem by considering examples with various combinations of core
features (e.g., landbird/waterbird) and spurious features (e.g., land/water backgrounds) as different
groups. The model is more likely to make mistakes on certain groups if it learns the spurious
feature. The objective therefore becomes balancing and improving performance across all groups.
Under this formulation, we can divide the task into two sub-problems: (1) accurately identifying the
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Figure 1: An overview of the problem, our proposed solution, and the resultant outcomes. (A) We
demonstrate the data distribution and provide an example of the statistics of Waterbirds. (B) The
overall procedure of PDE. (C) We use GradCAM (Selvaraju et al., 2017) to show the attention of
the model trained with PDE as compared to ERM. While ERM focuses on the background, PDE
successfully trains the model to capture the birds.
groups, which are not always known in a dataset, and (2) effectively using the group information
to finally improve the model’s robustness. While numerous recent works (Nam et al., 2020; Liu
et al., 2021; Creager et al., 2021; Ahmed et al., 2021; Taghanaki et al., 2021; Zhang et al., 2022)
focus on the first sub-problem, the second sub-problem remains understudied. The pioneering
work (Sagawa et al., 2019) still serves as the best guidance for utilizing accurate group information.
In this paper, we focus on the second sub-problem and aim to provide a more effective and efficient
algorithm to utilize the group information. It is worth noting that the theoretical understanding
of spurious correlations lags behind the empirical advancements in mitigating spurious features.
Existing theoretical studies (Sagawa et al., 2020; Chen et al., 2020; Yang et al., 2022; Ye et al., 2022)
are limited to the setting of simple linear models and data distribution that are less reflective of real
application scenarios.

We begin by theoretically examining the learning process of spurious features when training a two-
layer nonlinear convolutional neural network (CNN) on a corresponding data model that captures
the influence of spurious correlations. We illustrate that the learning of spurious features swiftly
overshadows the learning of core features from the onset of training when groups are imbalanced and
spurious features are more easily learned than core features. Based upon our theoretical understanding,
we propose Progressive Data Expansion (PDE), a neat and novel training algorithm that efficiently
uses group information to enhance the model’s robustness against spurious correlations. Existing
approaches, such as GroupDRO (Sagawa et al., 2019) and upsampling techniques (Liu et al., 2021),
aim to balance the data groups in each batch throughout the training process. In contrast, we employ
a small balanced warm-up subset only at the beginning of the training. Following a brief period of
balanced training, we progressively expand the warm-up subset by adding small random subsets of
the remaining training data until using all of them, as shown in the top right of Figure 1. Here, we
utilize the momentum from the warm-up subset to prevent the model from learning spurious features
when adding new data. Empirical evaluations on both synthetic and real-world benchmark data
validate our theoretical findings and confirm the effectiveness of PDE. Additional ablation studies
also demonstrate the significance and impact of each component within our training scheme. In
summary, our contributions are highlighted as follows:

• We provide a theoretical understanding of the impact of spurious correlations beyond the linear
setting by considering a two-layer nonlinear CNN.

• We introduce PDE, a theory-inspired approach that effectively addresses the challenge posed by
spurious correlations.
– PDE achieves the best performance on benchmark vision and language datasets for models

including ResNets and Transformers. On average, it outperforms the state-of-the-art method by
2.8% in terms of worst-group accuracy.

– PDE enjoys superior training efficiency, being 10⇥ faster than the state-of-the-art methods.
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2 Why is Spurious Correlation Harmful to ERM?

In this section, we simplify the intricate real-world problem of spurious correlations into a theoretical
framework. We provide analysis on two-layer nonlinear CNNs, extending beyond the linear setting
prevalent in existing literature on this subject. Under this framework, we formally present our theory
concerning the training process of empirical risk minimization (ERM) in the presence of spurious
features. These theoretical insights motivate the design of our algorithm.

2.1 Empirical Risk Minimization

We begin with the formal definition of the ERM-based training objective for a binary classification
problem. Consider a training dataset S = {(xi, yi)}Ni=1, where xi 2 Rd is the input and y 2 {±1} is
the output label. We train a model f(x;W) with weight W to minimize the empirical loss function:

L(W) =
1

N

P
N

i=1`
�
yif(xi;W)

�
, (2.1)

where ` is the logistic loss defined as `(z) = log(1 + exp(�z)). The empirical risk minimizer
refers to W⇤ that minimizes the empirical loss: W⇤ := argminW L(W). Typically, gradient-based
optimization algorithms are employed for ERM. For example, at each iteration t, gradient descent
(GD) has the following update rule:

W(t+1) = W(t)
� ⌘rL(W(t)). (2.2)

Here, ⌘ > 0 is the learning rate. In the next subsection, we will show that even for a relatively simple
data model which consists of core features and spurious features, vanilla ERM will fail to learn the
core features that are correlated to the true label.

2.2 Data Distribution with Spurious Correlation Fails ERM

Previous work such as (Sagawa et al., 2020) considers a data model where the input consists of
core feature, spurious feature and noise patches at fixed positions, i.e., x = [xcore,xspu,xnoise]. In
real-world applications, however, features in an image do not always appear at the same pixels. Hence,
we consider a more realistic data model where the patches do not appear at fixed positions.
Definition 2.1 (Data model). A data point (x, y, a) 2 (Rd)P ⇥ {±1}⇥ {±1} is generated from the
distribution D as follows.

• Randomly generate the true label y 2 {±1}.
• Generate spurious label a 2 {±y}, where a = y with probability ↵ > 0.5.
• Generate x as a collection of P patches: x = (x(1)

,x(2)
, . . . ,x(P )) 2 (Rd)P , where

– Core feature. One and only one patch is given by �c · y · vc with kvck2 = 1.
– Spurious feature. One and only one patch is given by �s ·a·vs with kvsk2 = 1 and hvc,vsi = 0.
– Random noise. The rest of the P � 2 patches are Gaussian noises ⇠ that are independently

drawn from N(0, (�2
p
/d) · Id) with �p as an absolute constant.

And 0 < �c ⌧ �s 2 R.

Decision
boundarya=-1

a=+1

Figure 2: Visualization of the data.

Similar data models have also been considered in recent works
on feature learning (Allen-Zhu & Li, 2020; Zou et al., 2021;
Chen et al., 2022; Jelassi & Li, 2022), where the input data
is partitioned into feature and noise patches. We extend their
data models by further positing that certain feature patches
might be associated with the spurious label instead of the true
label. In the rest of the paper, we assume P = 3 for simplicity.
With the given data model, we consider the training dataset
S = {(xi, yi, ai)}Ni=1 and let S be partitioned into large group
S1 and small group S2 such that S1 contains all the training
data that can be correctly classified by the spurious feature, i.e., ai = yi, and S2 contains all the
training data that can only be correctly classified by the core feature, i.e., ai = �yi. We denote
b↵ = |S1|

N
and therefore 1� b↵ = |S2|

N
.

Visualization of our data. In Figure 2, we present the visualization in 2D space of the higher-
dimensional data generated from our data model using t-SNE (Van der Maaten & Hinton, 2008),
where data within each class naturally segregate into large and small groups. The spurious feature is
sufficient for accurate classification of the larger group data, but will lead to misclassification of the
small group data.
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2.3 Beyond Linear Models

We consider a two-layer nonlinear CNN defined as follows:

f(x;W) =
P

j2[J]

P
P

p=1�
�
hwj ,x(p)

i
�
, (2.3)

where wj 2 Rd is the weight vector of the j-th filter, J is the number of filters (neurons) of the
network, and �(z) = z

3 is the activation function. W = [w1, . . . ,wJ ] 2 Rd⇥J denotes the weight
matrix of the CNN. Similar two-layer CNN architectures are analyzed in in (Chen et al., 2022;
Jelassi & Li, 2022) but for different problems, where the cubic activation serves a simple function
that provides non-linearity. Similar to Jelassi & Li (2022); Cao et al. (2022), we assume a mild
overparameterization of the CNN with J = polylog(d). We initialize W(0)

⇠ N (0,�2
0), where

�
2
0 = polylog(d)/d. Due to the CNN structure, our analysis can handle data models where each data

can have an arbitrary order of patches while linear models fail to do so.

2.4 Understanding the Training Process with Spurious Correlation

In this subsection, we formally introduce our theoretical result on the training process of the two-layer
CNN using gradient descent in the presence of spurious features. We first define the performance met-
rics. A frequently considered metric is the test accuracy: Acc(W) = P(x,y,a)⇠D

⇥
sgn(f(x;W)) =

y
⇤
. With spurious correlations, researchers are more interested in the worst-group accuracy:

Accwg(W) = min
y2{±1},a2{±1}

P(x,y,a)⇠D
⇥
sgn(f(x;W)) = y

⇤
,

which accesses the worst accuracy of a model among all groups defined by combinations of y and a.
We then summarize the learning process of ERM in the following theorem. Our analysis focuses on
the learning of spurious and core features, represented by the growth of hw(t)

i
,vsi and hw(t)

i
,vci

respectively:
Theorem 2.2. Consider the training dataset S = {(xi, yi)}Ni=1 that follows the distribution in
Definition 2.1. Consider the two-layer nonlinear CNN model as in (2.3) initialized with W(0)

⇠

N (0,�2
0). After training with GD in (2.2) for T0 = e⇥

�
1/(⌘�3

s
�0)
�

iterations, for all j 2 [J ] and
t 2 [0, T0), we have

e⇥(⌘)�3
s
(2b↵� 1) · hw(t)

j
,vsi

2
 hw(t+1)

j
,vsi � hw(t)

j
,vsi 

e⇥(⌘)�3
s
b↵ · hw(t)

j
,vsi

2
, (2.4)

e⇥(⌘)�3
c
b↵ · hw(t)

j
,vci

2
 hw(t+1)

j
,vci � hw(t)

j
,vci 

e⇥(⌘)�3
c
· hw(t)

j
,vci

2
. (2.5)

After training for T0 iterations, with high probability, the learned weight has the following properties:
(1) it learns the spurious feature vs: maxj2[J]hw

(T )
j

,vsi �
e⌦(1/�s); (2) it almost does not learn the

core feature vc: maxj2[J]hw
(T )
j

,vci = eO(�0).

Discussion. The detailed proof is deferred to Appendix E, and we provide intuitive explanations of
the theorem as follows. A larger value of hw(t)

i
,vi for v 2 {vs,vc} implies better learning of the

feature vector v by neuron wi at iteration t. As illustrated in (2.4) and (2.5), the updates for both
spurious and core features are non-zero, as they depend on the squared terms of themselves with
non-zero coefficients, while the growth rate of hw(t)

i
,vsi is significantly faster than that of hw(t)

i
,vci.

Consequently, the neural network rapidly learns the spurious feature but barely learns the core feature,
as it remains almost unchanged from initialization as compared to the spurious feature.

We derive the neural network’s prediction after training for T0 iterations. For a randomly gener-
ated data example (x, y, a) ⇠ D, the neural network’s prediction is given by sgn

�
f(x;W)

�
=

sgn
�P

j2[J]

�
y�

3
c
hwj ,vci

3 + a�
3
s
hwj ,vsi

3 + hwj , ⇠i
3
��

. Since the term �
3
s
maxj2[J]hwj ,vsi

3

dominates the summation, the prediction will be sgn(f(x;W)) = a. Consequently, we obtain the
test accuracy as Acc(W) = ↵, since a = y with probability ↵, and the model accurately classifies the
large group. However, when considering the small group and examining examples where y 6= a, the
models consistently make errors, resulting in Accwg(W) = 0. To circumvent this poor performance
on worst-group accuracy, an algorithm that can avoid learning the spurious feature is in demand.

3 Theory-Inspired Two-Stage Training Algorithm

In this section, we introduce Progressive Data Expansion (PDE), a novel two-stage training algorithm
inspired by our analysis to enhance robustness against spurious correlations. We begin with illustrating
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the implications of our theory, where we provide insights into the data distributions that lead to the
rapid learning of spurious features and clarify scenarios under which the model remains unaffected.

3.1 Theoretical Implications

Notably in Theorem 2.2, the growth of the two sequences hw(t)
i
,vsi in (2.4) and hw(t)

i
,vci in (2.5)

follows the formula xt+1 = xt + ⌘Ax
2
t
, where xt represents the inner product sequence with regard

to iteration t and A is the coefficient containing b↵, �c or �s. This formula is closely related to the
analysis of tensor power methods (Allen-Zhu & Li, 2020). In simple terms, when two sequences
have slightly different growth rates, one of them will experience much faster growth in later times.
As we will show below, the key factors that determine the drastic difference between spurious and
core features in later times are the group size b↵ and feature strengths �c,�s.

• When the model learns spurious feature (�
3
c
< �

3
s
(2b↵ � 1)). We examine the lower bound

for the growth of hw(t)
i
,vsi in (2.4) and the upper bound for the growth of hw(t)

i
,vci in (2.5) in

Theorem 2.2. If �3
c
< �

3
s
(2b↵� 1), we can employ the tensor power method and deduce that the

spurious feature will be learned first and rapidly. The condition on data distribution imposes two
necessary conditions: b↵ > 1/2 (groups are imbalanced) and �c < �s (the spurious feature is
stronger). This observation is consistent with real-world datasets, such as the Waterbirds dataset,
where b↵ = 0.95 and the background is much easier to learn than the intricate features of the birds.

• When the model learns core feature (�c > �s). However, if we deviate from the aforementioned
conditions and consider �c > �s, we can examine the lower bound for the growth of hw(t)

i
,vci

in (2.5) and the upper bound for the growth of hw(t)
i
,vsi in (2.4). Once again, we apply the tensor

power method and determine that the model will learn the core feature rapidly. In real-world
datasets, this scenario corresponds to cases where the core feature is not only significant but also
easier to learn than the spurious feature. Even for imbalanced groups with b↵ > 1/2, the model
accurately learns the core feature. Consequently, enhancing the coefficients of the growth of the
core feature allows the model to tolerate imbalanced groups. We present verification through
synthetic experiments in the next section.

As we will show in the following subsection, we initially break the conditions of learning the spurious
feature by letting b↵ = 1/2 in a group-balanced data subset. Subsequently, we utilize the momentum
to amplify the core feature’s coefficient, allowing for tolerance of b↵ > 1/2 when adding new data.

3.2 PDE: A Two-Stage Training Algorithm

We present a new algorithm named Progressive Data Expansion (PDE) in Algorithm 1 and explain
the details below, which consist of (1) warm-up and (2) expansion stages.
Algorithm 1 Progressive Data Expansion (PDE)
Require: Number of iterations T0 for warm-up training; number of times K for dataset expansion; number

of iterations J for expansion training; number of data m for each expansion; learning rate ⌘; momentum
coefficient �; initialization scale �0; training set S = {(xi, yi, ai)}ni=1; model fW.

1: Initialize W(0).
Warm-up stage

2: Divide the S into groups by values of y and a: Sy,a = {(xi, yi, ai)}yi=y,ai=a.
3: Generate warm-up set S0 from S by randomly subsampling from each group of S such that |S0

y,a| =
miny0,a0 |Sy0,a0 | for y 2 {±1} and a 2 {±1}.

4: for t = 0, 1, . . . , T0 do

5: Compute loss on S0: LS0(W(t)) = 1
|S0|

P
i2S0 `(yif(xi;W

(t))).
6: Update W(t+1) by (3.1) and (3.2).
7: end for

Expansion stage

8: for k = 1, . . . ,K do

9: Draw m examples (S[m]) from S/Sk�1 and let Sk = Sk�1 [ S[m].
10: for t = 1, . . . , J do

11: Compute loss on Sk: LSk (W(T )) = 1
|Sk|

P
i2Sk `(yif(xi;W

(T ))), where T = T0+(k�1)⇤J+t.

12: Update W(T+1) by (3.1) and (3.2).
13: end for

14: end for

15: return W(t) = argmaxW(t0) Accval
wg(W

(t0)).
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As accelerated gradient methods are most commonly used in applications, we jointly consider the
property of momentum and our theoretical insights when designing the algorithm. For gradient
descent with momentum (GD+M), at each iteration t and with momentum coefficient � > 0, it
updates as follows

g(t+1) = �g(t) + (1� �)rL(W(t)), (3.1)

W(t+1) = W(t)
� ⌘ · g(t+1)

, (3.2)

Warm-up Stage. In this stage, we create a fully balanced dataset S0, in which each group is
randomly subsampled to match the size of the smallest group, and consider it as a warm-up dataset.
We train the model on the warm-up dataset for a fixed number of epochs. During this phase, the
model is anticipated to accurately learn the core feature without being influenced by the spurious
feature. Note that, under our data model, a completely balanced dataset will have b↵ = 1/2. We
present the following lemma as a theoretical basis for the warm-up stage.
Lemma 3.1. Given the balanced training dataset S0 = {(xi, yi, ai)}

N0
i=1 with b↵ = 1/2 as in

Definition 2.1 and CNN as in (2.3). The gradient on vs will be 0 from the beginning of training.

In particular, with b↵ = 1/2 we have |S
0
1 | = |S

0
2 |: an equal amount of data is positively correlated

with the spurious feature as the data negatively correlated with the spurious feature. In each update,
both groups contribute nearly the same amount of spurious feature gradient with different signs,
resulting in cancellation. Ultimately, this prevents the model from learning the spurious feature.
Detailed proofs can be found in Appendix F.

Expansion Stage. In this stage, we proceed to train the model by incrementally incorporating new
data into the training dataset. The rationale for this stage is grounded in the theoretical result by the
previous work (Jelassi & Li, 2022) on GD with momentum, which demonstrates that once gradient
descent with momentum initially increases its correlation with a feature v, it retains a substantial
historical gradient in the momentum containing v. Put it briefly, the initial learning phase has a
considerable influence on subsequent training for widely-used accelerated training algorithms. While
ERM learns the spurious feature vs and momentum does not help, as we will show in synthetic
experiments, PDE avoids learning vs and learns vc in the warm-up stage. This momentum from
warm-up, in turn, amplifies the core feature that is present in the gradients of newly added data,
facilitating the continued learning of vc in the expansion stage. For a specific illustration, the learning
of the core feature by GD+M will be

hw(t+1)
j

,vci = hw(t)
j

� ⌘
�
�g

(t) + (1� �)rwjL(W
(t))
�
,vci,

where g
(t) is the additional momentum as compared to GD with � = 0. While the current gradient

along vc might be small (i.e., �c), we can benefit from the historical gradient in g
(t) to amplify

the growth of hw(t+1)
j

,vci and make it larger than that of the spurious feature (i.e., �s). This
learning process will then correspond to the case when the model learns the core feature discussed in
Subsection 3.1. Practically, we consider randomly selecting m new examples for expansion every J

epochs by attempting to draw a similar number of examples from each group. During the last few
epochs of the expansion stage, we expect the newly incorporated data exclusively from the larger
group, as the smaller groups have been entirely integrated into the warm-up dataset.

It is worth noting that while many works address the issue of identifying groups from datasets
containing spurious correlations, we assume the group information is known and our algorithm
focuses on the crucial subsequent question of optimizing group information utilization. Aiming
to prevent the learning of spurious features, PDE distinguishes itself by employing a rapid and
lightweight warm-up stage and ensuring continuous improvement during the expansion stage with the
momentum acquired from the warm-up dataset. Our training framework is both concise and effective,
resulting in computational efficiency and ease of implementation.

4 Experiments

In this section, we present the experiment results from both synthetic and real datasets. Notably,
we report the worst-group accuracy, which assesses the minimum accuracy across all groups and is
commonly used to evaluate the model’s robustness against spurious correlations.

4.1 Synthetic Data
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Table 1: Synthetic data experiments. We report the worst-
group accuracy and the gap (i.e., overall - worst). We
further consider several variations of PDE to demonstrate
the importance of each component of our method. Reset:
we reset the momentum to zero after the warm-up stage.
Warmup+All: we let PDE incorporate all of the new
training data at once after the warm-up stage.

Worst-group (%) Gap (%)

ERM (GD) 0.00 97.71
ERM (GD+M) 0.00 97.71

Warmup+All (Reset) 67.69 31.18
Warmup+All 74.24 24.76
PDE (Reset) 92.51 2.29

PDE 93.01 0.03

In this section, we present synthetic ex-
periment results in verification of our the-
oretical findings. In Appendix A, we
illustrate the detailed data distribution,
hyper-parameters of the experiments and
more extensive experiment results. The
data used in this section is generated
following Definition 2.1. We consider
the worst-group and overall test accu-
racy. As illustrated in Table 1, ERM,
whether trained with GD or GD+M, is
unable to accurately predict the small
group in our specified data distribution
where b↵ = 0.98 and �c < �s. In con-
trast, our method significantly improves
worst-group accuracy while maintaining
overall test accuracy comparable to ERM. Furthermore, as depicted in Figure 3(a), ERM rapidly
learns the spurious feature as it minimizes the training loss, while barely learning the core feature.
Meanwhile, in Figure 3(b) we show the learning of ERM when the data distribution breaks the
conditions of our theory and has �c > �s instead. Even with the same b↵ as in Figure 3(a), ERM
correctly learns the core feature despite the imbalanced group size. These two figures support the
theoretical results we discussed to motivate our method. Consequently, on the same training dataset
as in Figure 3(a), Figure 3(c) shows that our approach allows the model to initially learn the core
feature using the warm-up dataset and continue learning when incorporating new data.

(a) ERM (case 1) (b) ERM (case 2)

Expansion stage

(c) PDE

Figure 3: Training process of ERM vs. PDE. We consider the same dataset generated from the
distribution as in Definition 2.1 for ERM (case 1) and PDE. On the same training data, ERM learns
the spurious feature while PDE successfully learns the core feature. We further consider ERM (case
2) when training on the data distribution where �c > �s and b↵ = 0.98. We show the growth of the
max inner product between the model’s neuron and core/spurious signal vector and the decrease of
training loss with regard to the number of iterations t.
4.2 Real Data

We conduct experiments on real benchmark datasets to (1) compare our approach with state-of-the-art
methods, highlighting its superior performance and efficiency, and (2) offer insights into the design
of our method through ablation studies.

Datasets. We evaluate on three wildly used datasets across vision and language tasks for spurious
correlation: (1) Waterbirds (Sagawa et al., 2019) contains bird images labeled as waterbird or
landbird, placed against a water or land background, where the smallest subgroup is waterbirds on
land background. (2) CelebA (Liu et al., 2015) is used to study gender as the spurious feature for hair
color classification, and the smallest group in this task is blond-haired males. (3) CivilComments-

WILDS (Koh et al., 2021b) classifies toxic and non-toxic online comments while dealing with
demographic information. It creates 16 overlapping groups for each of the 8 demographic identities.

Baselines. We compare our proposed algorithm against several state-of-the-art methods. Apart from
standard ERM, we include GroupDRO (Sagawa et al., 2019) and DFR (Kirichenko et al., 2023) that
assume access to the group labels. We note that DFRVal also uses the validation data for fine-tuning
the last layer of the model. We also design a baseline called subsample that simply trains the model
on the warm-up dataset only. Additionally, we evaluate three recent methods that address spurious
correlations without the need for group labels: LfF (Nam et al., 2020), EIIL (Creager et al., 2021),
and JTT (Liu et al., 2021). We report results for ERM, Subsample, GroupDRO and PDE based on
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Table 2: The worst-group and average accuracy (%) of PDE compared with state-of-the-art methods.
The bold numbers indicate the best results among the methods that require group information, while
the underscored numbers represent methods that only train once. All methods use validation data for
early stopping and model selection, while

pp
indicates that the method also re-trains the last layer

using the validation data
Group

info

Train
once

Val
info

Waterbirds CelebA CivilComments

Method Worst Average Worst Average Worst Average

ERM ⇥
p p

70.0±2.3 97.1±0.1 45.0±1.5 94.8±0.2 58.2±2.8 92.2±0.1

LfF ⇥ ⇥
p

78.0N/A 91.2N/A 77.2N/A 85.1N/A 58.8N/A 92.5N/A

EIIL ⇥ ⇥
p

77.2±1.0 96.5±0.2 81.7±0.8 85.7±0.1 67.0±2.4 90.5±0.2

JTT ⇥ ⇥
p

86.7N/A 93.3N/A 81.1N/A 88.0N/A 69.3N/A 91.1N/A

Subsample
p p p

86.9±2.3 89.2±1.2 86.1±1.9 91.3±0.2 64.7±7.8 83.7±3.4

DFRTr p
⇥

p
90.2±0.8 97.0±0.3 80.7±2.4 90.6±0.7 58.0±1.3 92.0±0.1

DFRVal p
⇥

pp
92.9±0.2 94.2±0.4 88.3±1.1 91.3±0.3 70.1±0.8 87.2±0.3

GroupDRO
p p p

86.7±0.6 93.2±0.5 86.3±1.1 92.9±0.3 69.4±0.9 89.6±0.5

PDE
p p p

90.3±0.3 92.4±0.8 91.0±0.4 92.0±0.6 71.5±0.5 86.3±1.7

Table 3: Training efficiency of PDE and GroupDRO on Waterbirds. We compare with GroupDRO at
their learning rate and weight decay, as well as at ours. We report the worst-group accuracy, average
accuracy and the number of epochs till early stopping as the model reached the best performance on
validation data. Note: for a fair comparison, we consider one training epoch as training over the N

data as the size of the training dataset.
Method Learning rate Weight decay Worst Average Early-stopping epoch*

GroupDRO 1e-5 1e-0 86.7±0.6 93.2±0.5 92±4

GroupDRO 1e-2 1e-2 77.3±2.0 97.1±0.5 15±15

PDE 1e-2 1e-2 90.3±0.3 92.4±0.8 8.9±1.8

our own runs using the WILDS library Koh et al. (2021a); for others, we directly reuse their reported
numbers.

We present the experiment details including dataset statistics and hyperparameters as well as compre-
hensive additional experiments in Appendix B.

4.2.1 Consistent Superior Worst-group Performance

We assess PDE on the mentioned datasets with state-of-the-art methods. Importantly, we emphasize
the comparison with GroupDRO, as it represents the best-performing method that utilizes group infor-
mation. As shown in Table 2, PDE considerably enhances the worst-performing group’s performance
across all datasets, while maintaining the average accuracy comparable to GroupDRO. Considering
all methods that only use validation data for model selection, GroupDRO still occasionally fails to
surpass other methods. Remarkably PDE’s performance consistently exceeds them in worst-group
accuracy.

4.2.2 Efficient Training

In this subsection, we show that our method is more efficient as it does not train a model twice
(as in JTT) and more importantly avoids the necessity for a small learning rate (as in GroupDRO).
Specifically, methods employing group-balanced batches like GroupDRO require a very small learning
rate coupled with a large weight decay in practice. We provide an intuitive explanation as follows.
When sampling to achieve balanced groups in each batch, smaller groups appear more frequently than
larger ones. If training progresses rapidly, the loss on smaller groups will be minimized quickly, while
the majority of the large group data remains unseen and contributes to most of the gradients in later
batches. Therefore, these methods necessitate slow training to ensure the model encounters diverse
data from larger groups before completely learning the smaller groups. We validate this observation in
Table 3, where GroupDRO trained faster than the default results in significantly poorer performance
similar to ERM. Conversely, PDE can be trained to converge rapidly on the warm-up set and reaches
better worst-group accuracy 10⇥ faster than GroupDRO at default. Note that methods which only
finetune the last layer (Kirichenko et al., 2023; Wei et al., 2023) are also efficient. However, they still
require training a model first using ERM on the entire training data till convergence. In contrast, PDE
does not require further finetuning of the model.
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4.2.3 Understanding the Two Stages

Table 4: Performance of PDE after each stage.
We report the worst-group and average accuracy.

Warm-up Addition
Dataset Worst Avg Worst Avg

Waterbirds 86.0 91.9 90.3 92.4
CelebA 87.8 92.1 91.0 92.0
CivilComm 67.7 78.8 71.5 86.3

We examine each component and demonstrate
their effect in PDE. In Table 4, we present the
worst-group and average accuracy of the model
trained following the warm-up and expansion
stages. Indeed, the majority of learning occurs in
the warm-up stage, during which a satisfactory
worst-group accuracy is established. In the ex-
pansion stage, the model persists in learning new
data along the established trajectory, leading to
continued performance improvement. In Figure 5,
we corroborate and emphasize that the model has acquired the appropriate features and maintains
learning based on its historical gradient stored in the momentum. As shown, if the optimizer is reset
after the warm-up stage and loses all its historical gradients (with reinitialization), it soon acquires
spurious features, resulting in a swift decline in performance accuracy as shown in the blue line.

(a) Worst-group accuracy. (b) Average accuracy.

Figure 4: The effect of resetting the momentum after the warm-up stage for PDE on Waterbirds.

4.2.4 Ablation Study on the Hyper-parameters of PDE

PDE is robust within a reasonable range of hyperparameter choices, although some configurations
outperform others. As shown in Table 5, it is necessary to limit the number of data points introduced
during each expansion to prevent performance degradation. Similarly, in Appendix A, we emphasize
the importance of gradual data expansion. In Table 6, we show that post-warmup learning rate
decay is essential, though PDE exhibits tolerance to the degree of this decay. Lastly, as illustrated in
Figure 5, adopting a smaller learning rate often necessitates increased data expansions. Nonetheless,
a reduced learning rate does not necessarily lead to improved performance.

(a) Worst-group accuracy. (b) Average accuracy.

Figure 5: The variations in both worst-group and average accuracy on the test set of Waterbirds
during the expansion stage under different expansion learning rates. Each vertical dashed line denotes
an expansion and the arrow denotes the early stopping.
Table 5: Ablation study on Waterbirds. Exp. size:
number of data points added in each expansion.

Exp. size Exp. lr Worst Average

5 1e-4 89.9±0.5 92.1±0.3

10 1e-4 90.3±0.3 92.4±0.8

50 1e-4 88.1±0.8 93.4±0.4

Table 6: Ablation study on Waterbirds. Exp. lr:
the learning rate in the expansion stage.

Exp. size Exp. lr Worst Average

10 1e-2 85.4±3.1 92.1±2.0

10 1e-3 89.4±0.7 92.6±0.3

10 1e-5 89.5±0.2 92.1±0.1
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5 Related Work

Existing approaches for improving robustness against spurious correlations can be categorized into
two lines of research based on the tackled subproblems. A line of research focuses on the same
subproblem we tackle: effectively using the group information to improve robustness. With group
information, one can use the distributionally robust optimization (DRO) framework and dynamically
increase the weight of the worst-group loss in minimization (Hu et al., 2018; Oren et al., 2019;
Sagawa et al., 2019; Zhang et al., 2021). Within this line of work, GroupDRO (Sagawa et al., 2019)
achieves state-of-the-art performances across multiple benchmarks. Other approaches use importance
weighting to reweight the groups (Shimodaira, 2000; Byrd & Lipton, 2019; Xu et al., 2021) and
class balancing to downsample the majority or upsample the minority (He & Garcia, 2009; Cui et al.,
2019; Sagawa et al., 2020). Alternatively, Goel et al. (2021) leverage group information to augment
the minority groups with synthetic examples generated using GAN. Another strategy (Cao et al.,
2019, 2020) involves imposing Lipschitz regularization around minority data points. Most recently,
methods that train a model using ERM first and then only finetune the last layer on balanced data
from training or validation (Kirichenko et al., 2023), or on mixed representations (Xue et al., 2023),
or learn post-doc scaling adjustments (Wei et al., 2023) are shown to be effective.

The other line of research focuses on the setting where group information is not available during
training and tackles the first subproblem we identified as accurately finding the groups. Recent
notable works (Nam et al., 2020; Liu et al., 2021; Creager et al., 2021; Zhang et al., 2022; Yang et al.,
2023a) mostly involve training two models, one of which is used to find group information. To finally
use the found groups, many approaches (Namkoong & Duchi, 2017; Duchi et al., 2019; Oren et al.,
2019; Sohoni et al., 2020) still follow the DRO framework.

The first theoretical analysis of spurious correlation is provided by Sagawa et al. (2020). For self-
supervised learning, Chen et al. (2020) shows that fine-tuning with pre-trained models can reduce
the harmful effects of spurious features. Ye et al. (2022) provides guarantees in the presence of
label noise that core features are learned well only when less noisy than spurious features. These
theoretical works only provide analyses of linear models. Meanwhile, a parallel line of work has
established theoretical analysis of nonlinear CNNs in the more realistic setting Allen-Zhu & Li
(2020); Zou et al. (2021); Wen & Li (2021); Chen et al. (2022); Jelassi & Li (2022). Our work builds
on this line of research and generalizes it to the study of spurious features. Lastly, we notice that
a concurrent work (Chen et al., 2023) also uses tensor power method (Allen-Zhu & Li, 2020) to
analyze the learning of spurious features v.s. invariant features, but in the setting of out-of-distribution
generalization.

6 Conclusion

In conclusion, this paper addressed the challenge of spurious correlations in training deep learning
models and focused on the most effective use of group information to improve robustness. We
provided a theoretical analysis based on a simplified data model and a two-layer nonlinear CNN.
Building upon this understanding, we proposed PDE, a novel training algorithm that effectively and
efficiently enhances model robustness against spurious correlations. This work contributes to both
the theoretical understanding and practical application of mitigating spurious correlations, paving the
way for more reliable and robust deep learning models.

Limitations and future work. Although beyond the linear setting, our analysis still focuses on
a relatively simplified binary classification data model. To better represent real-world application
scenarios, future work could involve extending to multi-class classification problems and examining
the training of transformer architectures. Practically, our proposed method requires the tuning of
additional hyperparameters, including the number of warm-up epochs, the number of times for dataset
expansion and the number of data to be added in each expansion.
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A Synthetic Experiments

Datasets. We generate 10, 000 training examples and 10, 000 test examples from the data distribution
defined in Definition 2.1 with dimension d = 50 and number of patches P = 3. Specifically, we
let ↵ = 0.98, �c = 0.2, �s = 1 and �p = 0.78 for Table 1 as well as Figure 3(a) and Figure 3(c).
For Figure 3(b), we consider a data distribution where ↵ = 0.98, �c = 1, �s = 0.2 and �p = 0.78.
Furthermore, we randomly shuffle the order of the patches of x after we generate data (x, y, a).

Training. We consider the performances of a nonlinear CNN trained with ERM and PDE. The
nonlinear CNN architecture follows (2.3) with the cubic activation function, where we let the number
of neurons/filters J = 40. We use gradient descent with momentum (GD+M) as the optimizer of
our method, setting the momentum to 0.9 and the learning rate to 0.03. The number of warm-up
iterations is set to 800. We consider ERM trained with GD with a learning rate 0.1 and without
momentum to align with our theoretical finding in both Table 1 and Figure 3. In Table 1, we also
show the experiment results for ERM trained with GD+M as same as PDE. All models are trained
until convergence.

Additional experiments. In Figure 6, we demonstrate the growth of maxj2[J]hw
(t)
j
,vsi and

maxj2[J]hw
(t)
j
,vci for ERM trained with GD+M under the same data generated in Figure 3. Simi-

larly, we observe that ERM learns the spurious feature quickly as the training loss is minimized under
our data distribution. Meanwhile, if the data is generated as in case 2 where �c > �s, ERM learns the
core feature correctly.

(a) ERM (case 1) (b) ERM (case 2)

Figure 6: Training process of ERM trained with GD+M. We consider the same dataset generated
in Figure 3 and observe almost the same training process as ERM with GD, except GD+M learns the
features faster.

Furthermore, we consider the following variation of our methods on the same dataset in Table 1 to
demonstrate the importance of gradual expansion. In Figure 7, we let PDE incorporate all of the
new training data at once after the warm-up stage. As demonstrated, adding all data at once makes
it harder for the model to continue learning core features, resulting in a worst-group accuracy of
74.24% as compared to 94.32% for progressive expansion.

Expansion stage

Figure 7: Variation of PDE. We consider the same dataset generated in Figure 3 and add all data at
once after the warm-up stage.

B Benchmark Datasets

Waterbirds. The Waterbirds dataset (Sagawa et al., 2019) was constructed to study object recognition
models relying on image backgrounds instead of the object itself. To this end, bird images from the
Caltech-UCSD Birds-200-2011 (CUB) dataset (Wah et al., 2011) were combined with backgrounds
from the Places dataset (Zhou et al., 2017). The dataset contains 4, 795 bird images labeled as a
waterbird or landbird and placed against a water or land background. Waterbirds are predominantly
located against a water background, while landbirds are situated against a land background. Notably,
the smallest subgroup in the dataset is waterbirds on land, consisting of only 56 examples.
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Table 7: Number of data in our warm-up dataset for PDE’s results in Table 2. We also report the
number of data in total for the three datasets.

Dataset Warm-up All

Waterbirds 224 4,795
CelebA 5,548 162,770
CivilComments-WILDS 13,705 269,038

CelebA. The CelebA dataset (Liu et al., 2015) is a popular face attribute dataset used to examine the
spurious associations between non-demographic and demographic attributes. Specifically, one of the
40 binary attributes, “blond hair", is used as the target attribute, and “male" is the spurious attribute.
The dataset contains 162, 770 training examples, with the smallest group being blond-haired males,
with only 1387 examples.

CivilComments-WILDS. The CivilComments-WILDS dataset (Koh et al., 2021b) is designed to
explore the challenge of classifying online comments as either toxic or non-toxic while dealing with
the spurious correlation between the label and demographic information such as gender, race, religion,
and sexual orientation. The dataset’s evaluation metric, as defined by Koh et al. (2021b), creates 16
overlapping groups for each of the eight demographic identities, resulting in a total of 512 distinct
groups. For each group, the metric calculates the worst-case performance of a classifier, which allows
for a robust evaluation of the model’s ability to generalize across diverse populations.

C Real Data Experiments

Setup. Our experiment settings strictly follow the same setting used for datasets introduced in
Appendix B in previous works (Sagawa et al., 2019; Liu et al., 2021; Nam et al., 2020; Creager et al.,
2021; Kirichenko et al., 2023). Specifically, we built our training pipeline with the WILDS package
(Koh et al., 2021a) which uses pretrained ResNet-50 model (He et al., 2016) in Pytorch (Paszke et al.,
2019) library for the image datasets (i.e., Waterbirds and CelebA) and Transformer (Vaswani et al.,
2017) in Transformers library (Wolf et al., 2020) for CivilComments-WILDS. All experiments were
conducted on a single NVIDIA RTX A6000 GPU with 48GB memory.

Training. In Table 7, we summarize the number of data used in the warm-up stage for PDE in Table 2
with the total number of data in the entire datasets. In Table 8, we report the hyperparameters used
for PDE with the notations in Algorithm 1. Specifically, T0 refers to the number of epochs for the
warm-up stage and J refers to the number of epochs for training after each data expansion. Lastly, m
is the number of added data for each data expansion. Our batch size is consistent with GroupDRO.

Table 8: Hyperparameters used for PDE’s results in Table 2. Note that T0 and J are in epochs of
PDE’s training set, which have fewer iterations than epochs of the full training set.

Dataset Learning rate Weight decay Batch size T0 J m

Waterbirds 1e-2 1e-2 64 140 10 10
CelebA 1e-2 1e-4 128 16 10 50
CivilComments-WILDS 1e-5 1e-2 16 15 2 300

Groups for CivilComments-WILDS. We note that the demographic tags in CivilComments-WILDS
can coexist in the input text. For example, a text can contain both tags of female and male. Therefore,
combining the 8 demographic tags with the binary classification label (toxic vs. non-toxic) results
in 16 overlapping groups, where each group counts as data from a class with/without a specific tag.
For computational efficiency, previous methods divide the data into four non-overlapping groups
either by the specific one demographic tag ai (groups are {y = ±1, ai = ±1}) (Koh et al., 2021b)
or by containing any one of the tags: a = 1 if any ai = 1 and a = �1 otherwise (groups are
{y = ±1, a = ±1}) (Liu et al., 2021; Creager et al., 2021). However, the data can actually be
partitioned into 512 distinct groups, with each group corresponding to different combinations of tags:
{y = ±1, a1 = ±1, a2 = ±1, . . . , an = ±1}. As GroupDRO requires computation per group at
each training batch, considering a large number of groups makes it harder for GroupDRO to train
efficiently. Meanwhile, having more groups does not impose an additional computational cost on
PDE, so we can consider all these data groups when constructing our warm-up set. As many groups
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are empty or contain very little data, we set a threshold to select at most 150 data points from each
group to ensure a balanced yet sufficient warm-up set.

Efficiency. In Table 9, we further report the training efficiency of PDE compared with GroupDRO
on CelebA and CivilComments-WILDS. Similar to what we observe on the Waterbirds dataset, PDE
achieves the best performance at a larger learning rate and smaller weight decay on CelebA with a
significant speedup as compared to GroupDRO. On CivilComments-WILDS, we can also observe an
improved efficiency.

Table 9: Training efficiency of PDE and GroupDRO on CelebA dataset.
Method Learning rate Weight decay Worst Average Early-stopping epoch*

GroupDRO 1e-5 1e-1 86.3±1.1 92.9±0.3 23.7±6.8

PDE 1e-2 1e-4 91.0±0.4 92.0±0.6 0.7±0.3

Table 10: Training efficiency of PDE and GroupDRO on CivilComments-WILDS dataset.
Method Learning rate Weight decay Worst Average Early-stopping epoch*

GroupDRO 1e-5 1e-2 69.4±0.9 89.6±0.5 3.3±2.1

PDE 1e-5 1e-2 71.5±0.5 86.3±1.7 2.1±1.1

Data Augmentation. Additionally, the increased training speed of our method facilitates the usage of
techniques such as data augmentation. While data augmentation is a common practice for improving
model generalization, DRO approaches have not incorporated it into their methods. We hypothesize
that this omission stems from the slower training process. Data augmentation introduces random
noise to the training data, which complicates convergence during training when using a very small
learning rate. As illustrated in Table 11, data augmentation leads to slightly worse performance for
GroupDRO. In contrast, our method effectively benefits from data augmentation.

Table 11: The effect of data augmentation on GroupDRO and PDE on Waterbirds dataset. We report
the worst-group and average accuracy.

GroupDRO PDE
Method Worst Avg Worst Avg

W/o data aug 86.7 93.2 88.9 89.5
W/ data aug 85.7 96.6 90.3 92.4

D Proof Preliminaries

Notation. In this paper, we use lowercase letters, lowercase boldface letters, and uppercase boldface
letters to respectively denote scalars (a), vectors (v), and matrices (W). We use sgn to denote the sign
function.For a vector v, we use kvk2 to denote its Euclidean norm. Given two sequences {xn} and
{yn}, we denote xn = O(yn) if |xn|  C1|yn| for some absolute positive constant C1, xn = ⌦(yn)
if |xn| � C2|yn| for some absolute positive constant C2, and xn = ⇥(yn) if C3|yn|  |xn|  C4|yn|

for some absolute constants C3, C4 > 0. We use eO(·) to hide logarithmic factors of d in O(·).

Before we go into the analysis, we first consider the following gradient,
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1

N

NX
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exp(�yif(xi;W(t)))
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Let’s denote the derivative of a data example i at iteration t to be

`
(t)
i

=
exp(�yif(xi;W(t)))

1 + exp(�yif(xi;W(t)))
= sigmoid(�yif(xi;W

(t))). (D.2)

Lemma D.1. (Gradient) Let the loss function L be as defined in (2.1). For t � 0 and j 2 [J ], the
gradient of the loss L with regard to neuron wj is
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Proof. We have the following gradient
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And let’s denote the derivative of a data example i at iteration t to be
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Then, we can further write the gradient as
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where the last equality holds due to that for i 2 S1 we have ai = yi and for i 2 S2 we have
ai = �yi.

With the gradient, we have the following:

Core feature gradient. The projection of the gradient on vc is then
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Spurious feature gradient. The projection of the gradient on vs is
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Noise gradient. The projection of the gradient on ⇠i is
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Derivative of data example i. `
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can be rewritten as
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Note that 0 < `
(t)
i

< 1 due to the property of the sigmoid function. Furthermore, we similarly consider
that the sum of the sigmoid terms for all time steps is bounded up to a logarithmic dependence (Chen
et al., 2022). The sigmoid term is considered small for a  such that

TX

t=0

1

1 + exp()
 eO(1),

which implies  � e⌦(1).

E Proof of Theorem 2.2

In this section, we present the detailed proofs that build up to Theorem 2.2. We begin by considering
the update for the spurious feature and core feature.
Lemma E.1 (Spurious feature update.). For all t � 0 and j 2 [J ], the spurious feature update is
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Proof. The spurious feature update is obtained by using the gradient update of W(t) and plugging in
(D.6):
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We first prove the upper bound. Consider the following,
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where the first inequality holds due to 0 < `
(t)
i

< 1, the second inequality holds due to Lemma G.4,
and the last equality holds due to |S1|/N = b↵. Then, for the lower bound, we consider the same
bound for i 2 S1 in Lemma G.4 and obtain
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Similarly, we have the update for the core feature as below.
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Lemma E.2 (Core feature update). For all t � 0 and j 2 [J ], the core feature update is
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Proof. The core feature update is obtained by using the gradient update of W(t) and plugging in
(D.5):
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We prove for the lower bound,
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where the first inequality holds due to 0 < `
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< 1 and the second inequality holds due to Lemma G.4.
And for the upper bound. we similarly have
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Note that hw(t+1)
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,vci is non-decreasing from the lower bound of Lemma E.2. As w(0)
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are initialized with small �0, the sigmoid terms `(t)
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are large in the initial iterations. And while l
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hw(t+1)

j
,vsi is also non-decreasing since b↵ ·⇥(1)�

P
i2S2

l
(t)
i
/N � 2b↵� 1 > 0 for l(t)

i
< 1 and
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of the above lemma in this early training stage.
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And similarly, for the core feature, we have

Lemma E.4 (Core feature update in early iterations). Let T0 > 0 be such that maxj2[J]hw
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which completes the proof.

With the updates of the spurious and core feature in the early iterations, we can now show with the
following lemma that GD will learn the spurious feature very quickly while hardly learning the core
feature.
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Theorem E.6 (Restatement of Theorem 2.2). Consider the training dataset S = {(xi, yi)}Ni=1
that follows the distribution in Definition 2.1. Consider the two-layer nonlinear CNN model as
in (2.3) initialized with W(0)

⇠ N (0,�2
0). After training with GD in (2.2) for T0 = e⇥
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After training for T0 iterations, with high probability, the learned weight has the following properties:
(1) it learns the spurious feature vs: maxj2[J]hw
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e⌦(1/�s); (2) it does not learn the core
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Proof. The updates directly follow the results from Lemma E.1 and Lemma E.2. And the result for
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,vci follows Lemma E.5. It remains to calculate the time T0. With Lemma G.2, we
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,vsi is non-decreasing in early iterations and with high probability, there exists an index
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,vsi � 0. Among all the possible indices i 2 [J ] that are initialized to have
positive inner product with vs, we focus on the max index r = argmaxj2[J]hw
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F Proof of Lemma 3.1

Lemma F.1 (Restatement of Lemma 3.1). Given the balanced training dataset S0 = {(xi, yi, ai)}
N0
i=1

with b↵ = 1/2 as in Definition 2.1 and CNN as in (2.3). The gradient on vs will be 0 from the
beginning of training.

Proof. With Lemma D.1, the projection of the gradient on vs in the initial iteration (t < T0) is
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where the first equality is due to `
(t)
i

= ⇥(1) in the initial iterations and the second equality is due to
b↵ = 0.5.

G Auxiliary Lemmas

Lemma G.1 (Lemma C.20, Allen-Zhu & Li 2020). Let {xt, yt}t=1,.. be two positive sequences that
satisfy

xt+1 � xt + ⌘ ·Ax
2
t
,

yt+1  yt + ⌘ ·By
2
t
,

for some A = ⇥(1) and B = o(1). Suppose y0 = O(x0) and ⌘ < O(x0), and for all C 2 [X0, O(1)],
let Tx be the first iteration such that xt � C. Then, we have Tx⌘ = ⇥(x�1

0 ) and
yTx  O(x0).
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Lemma G.2 (Lemma K.15, Jelassi & Li 2022). Let {zt}Tt=0 be a positive sequence defined by the
following recursions

zt+1 � zt +m(zt)
2
,

zt+1  zt +M(zt)
2
,

where z0 > 0 is the initialization and m,M > 0 are some constants. Let v > 0 such that z0  v.
Then, the time t0 such that zt � v for all t � t0 is

t0 =
3

mz0
+

8M

m

⇠
log(v/z0)

log(2)

⇡
.

We make the following assumptions for every t  T as the same in (Jelassi & Li, 2022).
Lemma G.3 (Induction hypothesis D.1, Jelassi & Li 2022). Throughout the training process using
GD for t  T , we maintain that, for every i 2 S1 and j 2 [J ],

|hw(t)
j
, ⇠ii|  eO(�0�

p

d). (G.1)

Lemma G.4. For i 2 S1, we have `
(t)
i

= ⇥(1)g1(t), where

g1(t) = sigmoid
�
�

X

j2[J]

(�3
c
hw(t)

j
,vci

3 + �
3
s
hw(t)

j
,vsi

3)
�
.

Proof. Given i 2 S1, we have from (D.8) that

`
(t)
i

= sigmoid
✓ JX

j=1

��
3
c
hwj ,vci

3
� �

3
s
hwj ,vsi

3
� yihwj , ⇠ii

3

◆

= 1

�✓
1 + exp

⇣ JX

j=1

�
3
c
hwj ,vci

3 + �
3
s
hwj ,vsi

3 + yihwj , ⇠ii
3
⌘◆

. (G.2)

Recall induction hypothesis G.3, we have the following for i 2 S1,

|yihw
(t)
j
, ⇠ii|  eO(�0�

p

d)

() � eO(�0�
p

d)  yihw
(t)
j
, ⇠ii  eO(�0�

p

d), (G.3)

where |yi| = 1. Plug (G.3) back into (G.2), we get

e
� eO(�0�

p
d)3

g1(t)  `
(t)
i

 e
eO(�0�

p
d)3

g1(t).

With our parameter setting, we have eO(�0�
p
d) = eO(�0) = eO(polylog(d)/d). Therefore,

e
± eO(�0�

p
d)3 = ⇥(1).
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