
Published as a conference paper at ICLR 2024

INVESTIGATING THE BENEFITS OF PROJECTION HEAD
FOR REPRESENTATION LEARNING

Yihao Xue, Eric Gan, Jiayi Ni, Siddharth Joshi, Baharan Mirzasoleiman
Department of Computer Science,
University of California, Los Angeles
yihaoxue@g.ucla.edu, egan8@g.ucla.edu, nijiayi1119626@g.ucla.edu,
sjoshi804@cs.ucla.edu, baharan@cs.ucla.edu

ABSTRACT

An effective technique for obtaining high-quality representations is adding a pro-
jection head on top of the encoder during training, then discarding it and using the
pre-projection representations. Despite its proven practical effectiveness, the rea-
son behind the success of this technique is poorly understood. The pre-projection
representations are not directly optimized by the loss function, raising the question:
what makes them better? In this work, we provide a rigorous theoretical answer
to this question. We start by examining linear models trained with self-supervised
contrastive loss. We reveal that the implicit bias of training algorithms leads to layer-
wise progressive feature weighting, where features become increasingly unequal as
we go deeper into the layers. Consequently, lower layers tend to have more normal-
ized and less specialized representations. We theoretically characterize scenarios
where such representations are more beneficial, highlighting the intricate interplay
between data augmentation and input features. Additionally, we demonstrate that
introducing non-linearity into the network allows lower layers to learn features
that are completely absent in higher layers. Finally, we show how this mechanism
improves the robustness in supervised contrastive learning and supervised learning.
We empirically validate our results through various experiments on CIFAR-10/100,
UrbanCars and shifted versions of ImageNet. We also introduce a potential alterna-
tive to projection head, which offers a more interpretable and controllable design.

1 INTRODUCTION

Representation learning has been the subject of extensive study in the last decade (Chen et al., 2020;
Zbontar et al., 2021; Khosla et al., 2020; Ermolov et al., 2021). Despite the great progress, learning
representations that generalize well across various domains has remained challenging. Among the
existing techniques, contrastive self-supervised learning has gained a lot of attention, due to its ability
to learn robust representations that generalize better across various domains. Contrastive learning
(CL) learns representations by maximizing the agreement between different augmented views of the
same examples and minimizing that of different examples (Chen et al., 2020). Pre-training with CL
is often essential before transfering models to new or shifted domains (Hendrycks et al., 2019).

A key factor that enables contrastive learning to learn robust representations is projection head, a
shallow MLP that is used during pretraining and is discarded afterwards (Chen et al., 2020), which
has become a standard for learning high-quality representations (He et al., 2020; Yeh et al., 2022;
Bardes et al., 2022; Chuang et al., 2020; Grill et al., 2020; Garrido et al., 2022; Zbontar et al., 2021;
Ermolov et al., 2021; Joshi & Mirzasoleiman, 2023). It is particularly advantageous when there
is a misalignment between training and downstream objectives (Bordes et al., 2023). The benefit
of projection head extends beyond self-supervised learning to other representation learning methods,
including supervised contrastive learning (Khosla et al., 2020). However, the mechanism by which the
projection head improves the generalizability and robustness of representations is poorly understood.

Theoretically analyzing the effect of projection head for CL is challenging, as one needs to
understand feature learning both before and after the projection head and compare them. A few
recent studies (Tian et al., 2021; Wang et al., 2021; Wen & Li, 2022) have focused on non-contrastive
self-supervised methods and demonstrated that the projection head can mitigate the dimensional
collapse problem, where all inputs are mapped to the same representation. However, such results

1

Published as a conference paper at ICLR 2024

do not extend to contrastive methods due to its inherently different learning mechanism. Besides,
they do not provide an understanding of the projection head’s role in enhancing robustness under
misalignment between pretraining and downstream objectives.

In this work, we analyze the effect of projection head on the quality and robustness of representations
learned by CL, and extend our results to supervised CL (SCL) and supervised learning (SL). First, we
theoretically show that linear models progressively assign weights to features as they operate through
the layers. Thus, in deeper layers the features are represented more unequally and the representations
are more specialized toward the pretraining objective. Moreover, non-linear activations exacerbate this
effect allowing lower layers to learn features that are entirely absent in the outputs of the projection
head. We demonstrate that projection head provably improves the robustness and generalizability
of the representations, when data augmentation harms useful features of the pretraining data, or
when features relevant to the downstream task are too weak or too strong in the pretraining data.
Finally, we extend our results beyond CL to SCL and SL. In this setting, we reveal that lower
layers can learn subclass-level features that are not represented in the final layer, demonstrating how
representations before the final representation layer can significantly reduce class/neural collapse, a
problem previously observed in the final representations.

We conduct extensive experiments to confirm our theoretical analysis. First, we construct a semi-
synthetic dataset by adding MNIST (LeCun, 1998) digits to CIFAR10 (Krizhevsky et al., 2009)
images, and confirm that using projection head yields superior representations when data augmenta-
tion harms the downstream-relevant features, or when these features are either very strong or very
weak during pretraining. Then, we study supervised learning and demonstrate that using projection
head results in better course-to-fine transferability on CIFAR100, superior performance of few-shot
adaption to distribution shift on UrbanCars (Li et al., 2023), and better robustness against natural
distribution shifts in ImageNet (Xiao et al., 2020; Hendrycks et al., 2021a;b). We also demonstrate
how a fixed reweighting head can achieve performance comparable to the projection head, providing
further evidence for our theoretical conclusions and potentially inspiring future design.

2 ADDITIONAL RELATED WORK

Projection head. While projection head is widely used, the underlying reasons for its benefit have
not been fully understood. The empirical study by Bordes et al. (2023) suggests that the benefit of the
projection head is influenced by optimization, data, and downstream task, and is especially significant
when there is a misalignment between the training and downstream tasks. On the theoretical side,
Jing et al. (2021) suggests that projection head can alleviate dimensional collapse, but did not provide
insights into the significant role of the projection head in cases of misalignment between pretraining
and downstream tasks. Recently, Gui et al. (2023) analyzed the training of a linear projection head
using CL. However, their analysis is performed in the case where representations are fixed, and the
results only show how training a linear head on these representations can lead to worse post-projection
representations. This does not align with practical scenarios where encoder and projection are trained
simultaneously and does not reveal why adding a projection head is needed in the first place.
Generalizability and transferability of representations. A longstanding goal in machine learning
is to acquire representations that generalize and transfer across various tasks. Two key challenges
emerge in this pursuit. The first arises from shifts in labels between training and downstream tasks.
Notably, the issue of class or neural collapse (Papyan et al., 2020; Han et al., 2021; Zhu et al., 2021;
Zhou et al., 2022b;a; Lu & Steinerberger, 2022; Fang et al., 2021; Hui et al., 2022; Chen et al.,
2022; Graf et al., 2021; Xue et al., 2023), affecting both SCL and SL, where representations within
the same class become indistinguishable at a subclass level, rendering them unfit for fine-grained
labeling. We theoretically demonstrate that such issue can be alleviated by taking the pre-projection
head representations. The second challenge arises from shifts in input distributions, where neural
networks rely heavily on patterns specific to the training distribution that do not generalize (Zhu et al.,
2016; Geirhos et al., 2018; Ilyas et al., 2019; Barbu et al., 2019; Recht et al., 2019; Sagawa et al.,
2019; 2020; Xiao et al., 2020; Taori et al., 2020; Koh et al., 2021; Shankar et al., 2021). We explore
the benefits of projection head in the above two scenarios, but noting that our primary focus lies in
elucidating the broader concepts at play rather than addressing each specific problem.

3 EXPLORING THE ROLE OF PROJECTION HEAD IN SELF-SUPERVISED CL
In this section we consider self-supervised contrastive learning, a scenario where the concept of the
projection head is frequently employed and has a crucial role in achieving optimal performance.

2

Published as a conference paper at ICLR 2024

Pretraining data distribution. We define the following data distribution and data augmentation used
for pretraining with contrastive learning. We choose this setting for clarity in presenting our results,
but we note that our results can be generalized to more complex cases.
Definition 3.1 (Input distribution of pretraining data). The input data used for pretraining follows

distribution D, where, for an input xxx 2 d
, its i-th element is randomly drawn from {��i,�i}.

Definition 3.2 (Data augmentation). Given an input xxx, its augmentation follows the distribution

A(xxx). The augmentation operates on an input xxx in two steps. First, for each i, with probability ↵i, it

alters i-th element in xxx by randomizing its sign, resulting in a modified input denoted by xxx0
. Then, a

random noise ⇠⇠⇠ satisfying E[⇠⇠⇠] = 000 and E[⇠⇠⇠⇠⇠⇠>] = �2I is added to xxx0
, yielding augmentation xxx0 + ⇠⇠⇠.

Each coordinate of the input is an independent feature. At a high level, �i represents the magnitude of
a feature in the input data, while ↵i quantifies the level of disruption introduced by the augmentation.
If ↵i = 1, it means that this feature is completely ‘destroyed’ during augmentation, such that there is
no correlation between a positive pair (two augmented versions of the same input) at this coordinate.
This data augmentation is designed to mimic practical scenarios where data augmentation techniques
intentionally modify different features to varying degrees. For example, some features, like color
and texture, may be altered more significantly than core features of the main object. Additionally, the
noise ⇠⇠⇠ with variance �2 at each coordinate is included because data augmentation used in practice
unintentionally introduces certain level of noise.
Model. We consider 2-layer linear and non-linear models for the sake of clarity, as it suffices to
demonstrate our main findings, although our results generalize to multiple layers. Given an input
xxx 2 d, the output after the l-th layer is denoted as fl(xxx), with f2(xxx) = h(f1(xxx)). We will consider
linear and non-linear functions for f1(·) and h(·) in our analysis. The second layer h(·) serves as the
projection head and the first layer f1(·) serves as the encoder.
Contrastive loss. We consider the following spectral loss, which has been widely used in previous
theoretical and empirical studies (HaoChen et al., 2021; Xue et al., 2022; Saunshi et al., 2022;
HaoChen & Ma, 2022; Garrido et al., 2022; Xue et al., 2023). Given a model representing function
f(·), the loss is
LCL(f) = �2 xxx⇠D,xxx+

1 ⇠A(xxx),xxx+
2 ⇠A(xxx)[f(xxx

+
1)

>f(xxx+
2)] + xxx1⇠D,xxx2⇠D[

�
f(A(xxx1))

>f(A(xxx2))
�2
].

After training a model to minimize this loss, we utilize it in downstream tasks where we feed different
inputs, which may or may not follow the same distribution as the pretraining data, into the model.
We can leverage the representations provided by the model for various purposes, most commonly to
train a linear model on these representations and predict labels for the downstream data. When we
use the two-layer model, i.e., when LCL(f2) is minimized, we have the option to choose either the
post-projection representations generated by f2(·) or the pre-projection representations from f1(·)
for the downstream task.
Clarification on what we compare. To gain a comprehensive understanding, it’s necessary to
compare these three cases: (1) pre-projection, where we minimize LCL(f2) first and discard h(·),
using only f1(·) for the downstream task; (2) post-projection, where we minimize LCL(f2) and use
f2(·) for the downstream task; (3) no-projection, where we minimize LCL(f1) and using f1(·) for
the downstream task. The goal is to determine when pre-projection outperforms both of the other two
and understand the reasons behind it. However, in practical deep neural networks, there is typically no
significant difference between no-projection and post-projection as both scenarios use the network’s
final output for the downstream task and the difference is mainly an additional layer in post-projection.
Given that the networks are sufficiently large and expressive, this one-layer difference does not
significantly change the representations achieved at the output. Therefore, in theory, we consider
settings where f1(·) and f2(·) have the same expressiveness and yield equivalent representations when
used to minimize the loss, and then solely comparing pre-projection and post-projection is sufficient.

3.1 LAYER-WISE PROGRESSIVE FEATURE WEIGHTING IN LINEAR MODELS

Linear network. We consider a linear model in which f2(xxx) = WWW 2f1(xxx) = WWW 2WWW 1xxx, with
WWW 1 2 Rp⇥d and WWW 2 2 Rp⇥p representing the weights of the first and second layers, respectively.
Both the hidden and output dimensions are p, to ensure consistent dimensionality between pre-
projection and post-projection representations for a fair comparison.

3.1.1 STRUCTURE OF LAYER WEIGHTS

We begin by examining the weights at different layers within a model. Our investigations reveals the
relationship between these layer weights, which generally hold regardless of the data distribution.

3

Published as a conference paper at ICLR 2024

Firstly, we consider the weights of the minimum norm minimizer of the CL loss. This is pertinent
because gradient-based algorithms are shown to prefer minimizers with small norms (Neyshabur et al.,
2014; Gunasekar et al., 2017). Furthermore, many theoretical studies on CL (Ji et al., 2021; Liu et al.,
2021; Nakada et al., 2023) have considered regularization in the form of kWWW>WWWkF , which promotes
a small norm, and Xue et al. (2023) have shown that the minimum norm provides an explanation for
many intriguing phenomena in CL.
Theorem 3.3 (Weights of the minimum norm minimizer). The global minimizer of the CL loss LCL

with the smallest norm, defined as kWWW>
1 WWW 1k2F + kWWW>

2 WWW 2k2F , satisfies WWW 1WWW>
1 =WWW>

2 WWW 2.

In addition, we establish that a similar conclusion holds for models trained using gradient flow, which
is a continuous version of gradient descent widely adopted in theoretical analysis. In gradient flow, at
any time t, the weight updates are given by d

dtWWW
(t)
i = � @

@WWW (t)
i

LCL(WWW (t)), where i = 1, 2.

Theorem 3.4 (Weights of the model trained with gradient flow, proved in (Arora et al., 2018)).
Suppose the initialization satisfies WWW (0)

1 WWW (0)>
1 = WWW (0)>

2 WWW (0)
2 . Using gradient flow, at any time t,

we have WWW (t)
1 WWW (t)>

1 =WWW (t)>
2 WWW (t)

2 .

3.1.2 LAYER-WISE PROGRESSIVE FEATURE WEIGHTING

What insights can we gain from Theorems 3.3 and 3.4? Given that WWW 1WWW>
1 =WWW>

2 WWW 2, both layers
have the same singular values, and the left singular vectors of WWW 1 match the right singular vectors of
WWW 2. Consequently, the singular values of the joint weight matrix WWW 2WWW 1 are the squares of those in
the first layer, WWW 1. As a result, the differences in weights assigned to the features are smaller when
the input is passed through the first layer than when the input is passed through the whole network.
To illustrate this concept, we analyze the model trained on the data distribution given by Definition
3.1 and analyze the resulting representations.

The following analysis holds for both models obtained from either the minimum norm minimizer of
the loss (as in Theorem 3.3) or the model trained using gradient flow under the assumption that the
model converges to a global minimum (as in Theorem 3.4), as they are equivalent.

In our input data, we refer to the d independent coordinates as input features. Our interest lies in under-
standing the weight assigned to each feature in the pre- and post-projection representations. To achieve
this, we examine the quantities kfl(eeei)k, i = 1, . . . , d, and l = 1, 2, with eeei denoting i-th standard
basis. These quantities represent the scale of the representation of a unit feature at each coordinate.
The following theorem (see proof in Appendix A.2) shows the weights of the features in each layer:

Theorem 3.5. Define �i :=
(1�↵i)

2�2
i

�2
i+�2 and �i :=

q
(1�↵i)�i

�2
i+�2 . Let ⇧ := (j1, j2, . . . , jd) be a

permutation of indices {1, 2, . . . , d} such that �j1 � · · · � �jd . Then after pretraining,

kfl(eeei)k = �l
i if i 2 {j1, . . . , jmin{d,p}}, else 0.

What does the model do? According to this theorem, the model follows two key steps: (1) Feature
selection: The model selects the top p features with the highest �i values, which experience a low
level of disruption from augmentation (↵i) and/or have a large feature magnitude (�i). (2) Feature
weighting: These selected features are scaled by �i at each layer, with zero weight assigned to the
remaining features. The rescaling serves a dual purpose: (a) moderating the features by assigning
small weights to either overly strong or overly weak features in terms of their magnitude, as indicated
by �i ! 0 when �i approaches either 0 or +1; (b) giving larger weights to features that are less
disrupted by augmentation.

The difference between f1(·) and f2(·). (1) Both learn the same features but assign different weights
to them. (2) f1(·) treats features more equally, exhibiting a smaller gap between feature weights.

3.1.3 WHY AND WHEN CAN MORE NORMALIZED FEATURES BENEFIT A DOWNSTREAM TASK?

To address this question, we analyze the representations of downstream data drawn from the following
distribution: each input xxx 2 d is a vector, and its i-th element is independently drawn from the set
{��̂i, �̂i}. Note that �̂’s may differ from �i’s, as in real-world scenarios, the input data in the down-
stream task may follow a different distribution than the pretraining inputs. Additionally, each input

4

Published as a conference paper at ICLR 2024

xxx is labeled as sign(eee>j⇤xxx), where eeej⇤ is the j⇤-th standard basis vector. In simpler terms, the label
is determined by the sign of the j⇤-th coordinate of the input, that is the downstream-relevant feature.

To evaluate the informativeness of the learned representations for the downstream task, we input the
data (without any data augmentation, as is typically the case in practice) into the model that has been
pretrained with the CL objective. We then evaluate the quality of these representations at each layer
by analyzing the sample complexity of the hard SVM trained with labels on these representations,
which can be equivalently viewed as training a linear model with logistic losses using gradient descent
Soudry et al. (2018). This aligns with the standard linear evaluation protocol in practice (Ye et al.,
2019; Oord et al., 2018; Bachman et al., 2019; Kolesnikov et al., 2019; Chen et al., 2020).For a data
distribution that is separable with a (�, ⇢)-margin (see details in Appendix A.3), it is well-known that
the sample complexity only grows with r = (⇢/�)2, Bartlett & Shawe-Taylor (1999). Hence, we refer
to r as the sample complexity indicator and compare its values for pre-projection and post-projection
representations. The following theorem shows the conditions under which one has a higher sample
complexity indicator than the other. Note that a smaller sample complexity is preferable.
Theorem 3.6. Let r1 and r2 be the sample complexity indicators for pre-projection and post-

projection representations, respectively. Define � :=
P

1imin{d,p} and ji 6=j⇤ �̂
2
ji(

�2
ji

�2
j⇤
� �4

ji

�4
j⇤
). If

� < 0 then r1 < r2, and if � > 0 then r1 > r2.

� depends on the strength of the downstream-relevant feature and the weights of features. While
determining �’s value may seem complex, in general, the key factor is whether the model assigns
sufficient weight to the downstream-relevant feature. If this feature is underweighted by the model,
using the first layer is beneficial. To better understand when this occurs, we provide the following
interpretable examples
Corollary 3.7. In each of the following examples � < 0, i.e., the pre-projection representations

are preferred. (1) Data augmentation disrupts the useful feature too much. Example: all features

in both the pretraining and downstream data have a magnitude of 1, and ↵j⇤ is the p-th smallest

among all {↵}di=1, indicating that the data augmentation disrupts useful feature the most among the

p features that will be learned. (2) The downstream-relevant feature is too weak in pretraining.
Example: all ↵i’s are equal, p � 2, 8i �i  �, and �j⇤ is the p-th largest among all {�i}di=1. (3)

Multiple features are selected by the model, with the downstream-relevant being too strong in
pretraining. Example: all ↵i’s are equal, p � 2, 8i 6= j⇤ �j⇤ > max{�i,�/�i}.

It might seem surprising to include scenario 3 above, as having a strong downstream-relevant feature
in pretraining may be expected to benefit the downstream task. However, as we discussed after
Theorem 3.5, the model moderates the features and assigns small weights to overly strong ones.
This can potentially explain why the use of a projection head remains beneficial in cases where the
pretraining task seems to be a good match for the downstream task. Furthermore, we will validate
each of the above three observations in experiments in Section 5.1. We also provide a discussion on
multi-layer models in Appendix B.

3.2 LOWER LAYERS CAN LEARN MORE FEATURES THAN HIGHER LAYERS VIA
NON-LINEARITY

In the previous section on linear models, it’s worth noting that both layers select the same features,
albeit with different weightings. Now, let’s consider a scenario where augmentation disrupts the useful
feature excessively, for example, when pj⇤ = 1 such that the useful feature is assigned a weight of
�j⇤ = 0. In such cases, neither layer would learn this feature. However, in this section, we’ll explore
an interesting aspect of non-linear models. Specifically, we’ll demonstrate that pre-projection head
representations can learn features that are weighted as zero in post-projection head representations.

For clarity, we will present our result in the simplest case, although it holds in broader scenarios. For
the pretraining data, we let d � 2, and assume �1 = �2 = 1,� = 0. Additionally, we set p2 = 1 and
p1 = 0, meaning that the augmentation completely ‘destroys’ feature 2 while fully preserving feature

1. Consequently, during CL, the pretraining objective discourages the learning of feature 2.

Non-Linear diagonal network. We consider a diagonal non-linear network with
f1(xxx) = �(www1 � xxx, bbb1), f2(xxx) = h(f1(xxx)) = �(www2 � f1(xxx), bbb2), (1)

where www1,www2, bbb1, bbb2 2 d are the trainable weights and trainable biases, and �(·, ·) represents the
symmetrized ReLu activation function, defined as �(a, b) = ReLu(a� b)� ReLu(�a� b), applied

5

Published as a conference paper at ICLR 2024

element-wise. In this model, each coordinate in the input is processed independently without any
cross-coordinate connections. This design not only simplifies our analysis but also aligns with our
definition where the features at all coordinates are independent. Because of this definition, there is
no motivation for even a fully connected model to combine the features. Moreover, this model is
sufficient for characterizing the feature selection and weighting processes described in the previous
section, enabling us to understand the key aspects clearly. Our results derived with this model also
extend to fully connected ReLU networks, as we will empirically demonstrate in Section 5.1.

We train the model using gradient flow to minimize the contrastive loss LCL(f2). Interestingly, in
the following theorem, where we compare the pre-projection and post-projection representations, we
will observe that feature 2, which is discouraged from being learned during the pretraining process,
has zero weight post-projection but a non-zero weight pre-projection.

Theorem 3.8. If at initialization www(0)
1 = [w(0)

11 w(0)
12 . . .]>,www(0)

2 = [w(0)
21 w(0)

22 . . .]>, bbb(0)1 = bbb(0)2 =

[b(0) b(0) . . .]> with |w(0)
22 | 

p
b0 and |w(0)

22 |(|w
(0)
12 | � b0) � b0, then as t ! 1, kf2(eee2)k ! 0,

kf1(eee2)k �
p
b0.

The theorem indicates that pre-projection representations are more transferable. The ‘destroyed’
feature, feature 2, is weighted zero after the projection head but non-zero before the projection head.
Therefore, using the first layer representations allows us to successfully learn downstream tasks
where feature 2 is the downstream relevant feature, whereas we can’t do so with the second layer
representations. In practice, augmentations are imperfect and may inadvertently distort important
features. Additionally, there is no one-size-fits-all augmentation suitable for all downstream tasks.
With non-linear models, the projection head can save us from losing valuable information.

We note that the above advantage of the pre-projection representation diminishes when we use weight
decay. Indeed, we can show that kf1(eee2)k ! 0 in this case as weight decay tends to shrink the weights
considered unnecessary for minimizing the loss. However, we note that in practical scenarios, weight
decay values are often small, e.g., 10�6, and training epochs are finite, e.g., 100, as the default setting
in Chen et al. (2020). Therefore, we can estimate the effect as approximately (1�10�6)100 ⇡ 1�10�4

for a weight that receives zero gradient from other sources, indicating a limited effect. Consequently,
the benefit of pre-projection representations remains evident with reasonable weight decay. However,
using excessive weight decay will essentially remove this benefit, as shown empirically in Section 5.1.

4 HOW THE IDEA OF PROJECTION HEAD CAN BENEFIT SUPERVISED LEARNING

The idea of projection head has been adopted by supervised contrastive learning (Khosla et al., 2020),
yet its effects have not been systematically studied nor theoretically explored. Here, we provide the-
oretical insights into its benefits in both supervised CL (SCL) and standard supervised learning (SL).

4.1 THE GENERAL INSIGHTS FROM LINEAR MODELS

The insights gained from Section 3.1 can be carried over to understand the case of supervised
learning as well. The conclusion in Theorem 3.4 actually holds in more generality. In fact, when
employing a multi-layer linear model represented as f(xxx) = WWWLWWWL�1 . . .WWW 1xxx to minimize any
loss function via gradient flow with initialization WWW l(0)>WWW l(0) = WWW l+1(0)WWW l+1(0)> , one can
derive a conclusion in the form ofWWW l(t)>WWW l(t) =WWW l+1(t)WWW l+1(t)>, the proof of this relationship
can be found in Arora et al. (2018). The singular values of the matrix represented by the model
grow exponentially as we go deeper, making the model more specialized toward the pretraining
task. Therefore, when considering cutting off at lower layers, it leads to more generalizable and less
specialized representations. This is particularly beneficial when the target matrix WWW ⇤, determined
by the training data to be represented by the model using WWWL . . .WWW 1, doesn’t adequately weight
features that are important for downstream tasks.

4.2 ALLEVIATING CLASS COLLAPSE AND NEURAL COLLAPSE IN NON-LINEAR MODELS

When considering representations’ transferability, a crucial aspect is their utility for finer-grained
downstream tasks (e.g., distinguishing dog breeds) compared to the pretraining task (e.g.,
distinguishing dogs from cats). In both SCL and standard supervised learning, a common challenge
arises, where representations within each class become indistinguishable at a finer-grained level.
This is known as class collapse in SCL (Chen et al., 2022; Graf et al., 2021; Xue et al., 2023) and
neural collapse in standard SL Papyan et al. (2020); Han et al. (2021); Zhu et al. (2021); Zhou et al.
(2022b;a); Lu & Steinerberger (2022); Fang et al. (2021); Hui et al. (2022).

6

Published as a conference paper at ICLR 2024

Figure 1: Weights of features in a two-layer fully connected
ReLU network trained with CL. Left: With all features having
equal strength, those that are more disrupted by augmentation
have smaller/zero weights. Right: With augmentation treating
all features equally. features with the largest/smallest strength
are weighted less compared to those with intermediate strength.
In both right and left, weights are more equal pre-projection.

Figure 2: Left: Weights of features in a
two-layer fully connected ReLU network
trained using SCL. The subclass feature
is not represented post-projection but is
represented pre-projection. Right: As a
result, the four subclasses are only separable
in pre-projection representations.

(a) An illustration (b) Effect of data aug. (c) Effect of strength (d) Effect of wd
Figure 3: Results on MNIST-on-CIFAR-10. (a) The data augmentation keeps the digit for one image in the
positive pair and randomly drops the digit for the other with a probability pdrop. Pre-projection is more beneficial
(b) with more inappropriate augmentation (large pdrop) during pretraining, (c) when digits are very weak/strong
during pretraining, and (d) when weight decay is smaller.

Interestingly, we show that lower layers can learn subclass-level features not represented in the
final layer in supervised learning, suggesting that using and then discarding the projection head
can mitigate the issue of class/neural collapse. To theoretically characterize this, we consider the
following data distribution.
Definition 4.1. We have four subclasses represented by (y, ysub), where y 2 {1,�1} is the class

label, and ysub 2 {1,�1}. For each input vector xxx 2 d
in subclass (y, ysub), xxx = [y ysub . . .]>

with the other coordinates being independent and symmetrically distributed.

We consider training the non-linear diagonal network defined in Equation 1 on the above
data distribution. For supervised CL, we consider the following spectral loss, which a natural
generalization from that for self-supervised (LCL) (HaoChen et al., 2021; Xue et al., 2022; Saunshi
et al., 2022; HaoChen & Ma, 2022; Garrido et al., 2022; Xue et al., 2023).

LSCL(f2) = �2 xxx,xxx+⇠ the same class[f2(xxx)
>f2(xxx

+)] + xxx,xxx�independently drawn[
�
f2(xxx)

>f2(xxx
�)
�2
].

For standard supervised learning, we consider the Mean Squared Error (MSE) loss. Since the
network’s output f2(xxx) is d-dimensional, we map it to a scalar by adding a linear layer with all
weights set to 1. Let 111 2 d be a vector with all elements equal to 1, then the loss can be written as:

LSL(f2) =E(xxx,y)(f2(xxx)
>111� y)2.

According to Definition 4.1, we can use kfi(eee1)k and kfi(eee2)k to determine the model’s weighting of
the class feature and the subclass feature, respectively, in the i-th layer representations. Next theorem
demonstrates that the features indicating subclasses are learned pre-projection but not post-projection.

Theorem 4.2. Under the same assumption about initialization as in Theorem 3.8, and w(0)
12 w

(0)
22 > 0,

for either the model trained to minimize LSCL(f2) or LSL(f2) with gradient flow, as t ! 1,

kf2(eee2)k ! 0, kf1(eee2)k �
p
b0.

5 EXPERIMENTS

5.1 CONTROLLED EXPERIMENTS ON SELF-SUPERVISED CL

The empirical benefits of the projection head are already well-established, and evidence can be
found in numerous large-scale experiments. Instead, in this subsection, we focus on controlled

7

Published as a conference paper at ICLR 2024

proof-of-concept experiments, allowing us to see the underlying mechanisms that are not shown
in existing works and validate our theoretical results from Section 3.

Synthetic data. We train a two-layer ReLU network on data drawn from the distribution defined in
Definition 3.1, with the second ReLU layer serving as the projection head. The network is randomly
initialized. More details are in Appendix C.1. We conduct experiments in two settings. (1) In setting
1, we let all five features have equal strength and let the augmentation disrupts features differently,
with feature 1 perfectly preserved and feature 5 completely randomized. Figure 1 left shows the
weights assigned to features at pre- and post-projection. Consistent with the conclusion from Theorem
3.5, features disrupted more by data augmentation are assigned smaller weights. However, these
features are weighted more equally pre-projection. Notably, feature 5 has zero weight post-projection
but non-zero weights pre-projection, aligning with the finding in Theorem 3.8. (2) In setting 2, we
aim to demonstrate the moderating effect reflected in Theorem 3.5, We let ↵i’s be equal, controlling
the factor of data augmentation, then plot the weights of features with different strength in Figure
1 right. Features being either too strong or too weak are weighted less than intermediate strength
features, but in pre-projection, they are less underweighted compared to post-projection.

MNIST-on-CIFAR-10. We design the following dataset for pretraining, with the downstream task
on the original MNIST. The pretraining dataset is based on CIFAR-10, where each image combines
a CIFAR-10 image with a MNIST digit. Specifically, the pixel values within the digit area are
calculated as (1� s)⇥ CIFAR-10 image +s⇥MNIST digit, while the values outside this area remain
unchanged as in the CIFAR-10 image. Here s controls the strength of the downstream-relevant feature
(MNIST digits) during pretraining. We use the following data augmentation during pretraining. For
each positive pair, we keep one image’s digit, while dropping the other’s digit with probability pdrop.
A larger pdrop means that the augmentation disrupts the downstream-relevant feature more. See
Figure 3a for an illustration. The downstream task is classification on the original MNIST dataset.
We feed MNIST digits to the pretrained model and train a linear classifier on representations. We
pretrain ResNet-18s with one-hidden-layer MLP as the projection head using the popular SimCLR
loss (Chen et al., 2020) with varying s and pdrop and report the evaluation results in Figure 3.

Figure 3b shows the downstream accuracy against pdrop with s = 1. Pre-projection representations
outperform post-projection representations, and the gap widens as pdrop increases. This confirms that
inappropriate augmentations can significantly amplify the superiority of pre-projection representa-
tions, aligning with Corollary 3.7. Figure 3c shows the downstream accuracy against s, the strength
of digits, with pdrop = 0. While the pre-projection accuracy barely changes, the post-projection
accuracy increases and decreases, as s increases, making the benefit of using pre-projection more
pronounced when either the digit is too weak or too strong, aligning with Corollary 3.7. Figure 3d
with pdrop = 1 demonstrates the impact of weight decay. Larger weight decay diminishes the benefits
of pre-projection representations, aligning with our discussion in Section 3.2, and can even turn them
into a detriment. However, pre-projection remains superior with reasonable weight decay.

In Appendix D.1, we present two additional experiments involving minimally modified CIFAR-10 im-
ages to further support our conclusions. We also discuss the effect of early stopping in Appendix D.2.

5.2 PROJECTION HEAD IN SUPERVISED LEARNING

We present the following experiments showing broader implications of projection head in SCL and SL.

Coarse-to-fine transferability on synthetic data. We consider the data distribution in Definition 4.1.
A two-layer ReLU network is trained from random initialization on such data. Figure 2 visualizes
the weight assigned to each input component by the model (left) and the representations (right) at
each layer. Consistent with the conclusion from Theorem 4.2, we observe that the subclass feature
is assigned a weight of zero post-projection but has a non-zero weight pre-projection. As a result,
pre-projection representations do not suffer from class collapse, making them more transferable.

Table 1: The pre-projection reps. suffer less from class/neural
collapse, allowing for better fine-grained classification.

coarse fine
pre post pre post

SCL 55.2±0.4 53.6±0.1 36.0±0.1 25.7±0.7

SL 53.1±0.3 53.2±0.7 33.7±0.3 29.7±0.3

Coarse-to-fine transferability on
CIFAR-100. We pretrain a ResNet-18s
on CIFAR-100 with 20 coarse-grained
labels and conducted linear evaluation on
representations using both these 20 labels
and 100 fine-grained labels, separately
(details in Appendix C.1). The results

8

Published as a conference paper at ICLR 2024

Table 2: The fixed reweighting head can yield improvements comparable to those of the trainable
projection head. For the distribution shift scenario, we report the average test accuracies for 2, 4, 8,
16, 32, 64, and 128 shots adaption. More detaied results are in Appendix C.2.

Scenario Dataset Alg. Performance Measure Performance
vanilla proj reweight

synthetic M-on-C SSCL digit clf. acc. 77.0 97.3 97.3
coarse-to-fine CIFAR100 SCL fine-grained clf. acc. 21.8 36.0 30.2
coarse-to-fine CIFAR100 SL fine-grained clf. acc. 31.44 33.7 32.2

distribution shift UrbanCars SL few-shot adaption acc. 82.2 86.1 87.0

are compared in Table 1. Pre-projection representations yield higher accuracy in general, but
with the benefit much more significant in the fine-grained downstream task. This emphasizes
that pre-projection representations are less susceptible to class/neural collapse, resulting in more
distinguishable representations within each pretraining class.

Few-shot adaption to distribution shift on UrbanCars. Subpopulation shift typically in-
volves scenarios where some data groups are underrepresented in the source domain but well-
represented in the target domain. Recent works have demonstrated the effectiveness of retraining

Figure 4: Performance
of few-shot adaption.

the final linear layer using target data to adapt to distribution shifts Rosen-
feld et al. (2022); Kirichenko et al. (2022); Mehta et al. (2022). However,
it has been shown that this approach leads to suboptimal results when the
target data for training the linear layer is scarce Chen et al. (2023). This
could be attributed to the suboptimal quality of penultimate representations.
Here, in Figure 4, we demonstrate that by applying the projection head
technique and performing adaption on pre-projection representations can
lead to better performance. The details are provided in the Appendix C.1.
We also present experiments on shifted ImageNets in Appendix D.3.

6 REPLACING THE PROJECTION HEAD WITH A FIXED REWEIGHTING HEAD

Based on the observations above, we now explore an alternative design that employs a fixed re-
weighting head instead of a trainable projection head. Let r = [r1, . . . , rp]> be the representation
output by the encoder. The reweighting head hrw() acts as hrw(rrr) = [r1,

1
r2, . . . ,

1
p�1 rp]>, where

 > 1 is a hyperparameter. This mimics the role of the projection head described earlier. During
pretraining, the reweighting head unequally weight features by assigning different weights to the
dimensions of representations, with  controlling how unequal they are. This allows the encoder
before the head to weight input features more equally. Note that with a slightly large , dimensions
at the end will be almost ‘turned off’ after the head, which can result in representations after the head
representing fewer features than before. This mimics the effect discussed for non-linear models in
Sections 3 and 4. We evaluate this approach in the scenarios from Sec. 5.2 and demonstrate that
the fixed reweighting head can achieve improvements comparable to those of the projection head,
as shown in Table 2. This has two implications: (1) it serves as further evidence for our theoretical
conclusions in Sections 3 and 4, indicating that the reweighting effect accounts for all or most of
the improvements achieved by the projection head. (2) it opens up possibilities for designing more
straightforward and interpretable alternatives to the projection head. It would be interesting for future
work to explore the effects of making  trainable rather than fixed.

7 CONCLUSION

We provided the first theoretically rigorous explanation for the intriguing empirical success of using
the projection head for self-supervised contrastive learning, supervised contrastive learning, and
supervised learning. We demonstrated that lower layers represent features more evenly in linear
networks and can represent more features in non-linear networks. This enhances the generalizability
and transferability of the representations, especially when downstream-relevant features are weak
in the pretraining data or heavily distorted by data augmentations. Interestingly, we also show the
benefits when the downstream-relevant features are prominent in the pretraining data. We validated
our theoretical findings through extensive experiments on both synthetic and real-world data. Finally,
we demonstrate how a fixed reweighting head can achieve performance comparable to the projection
head, providing further evidence to support our theoretical conclusions. We also hope that this will
offer valuable guidance for future design choices.

9

Published as a conference paper at ICLR 2024

Acknowledgements This research is partially supported by the National Science Foundation CA-
REER Award 2146492.

REFERENCES

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In International Conference on Machine Learning, pp.
244–253. PMLR, 2018.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
mutual information across views. Advances in neural information processing systems, 32, 2019.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits
of object recognition models. Advances in neural information processing systems, 32, 2019.

Adrien Bardes, Jean Ponce, and Yann LeCun. Variance-invariance-covariance regularization for
self-supervised learning. ICLR, Vicreg, 1:2, 2022.

Peter L. Bartlett and John Shawe-Taylor. Generalization performance of support vector machines and
other pattern classifiers. 1999. URL https://api.semanticscholar.org/CorpusID:
61853586.

Florian Bordes, Randall Balestriero, Quentin Garrido, Adrien Bardes, and Pascal Vincent. Guillotine
regularization: Why removing layers is needed to improve generalization in self-supervised
learning. Transactions of Machine Learning Research (TMLR), 2023.

Annie S Chen, Yoonho Lee, Amrith Setlur, Sergey Levine, and Chelsea Finn. Project and probe:
Sample-efficient adaptation by interpolating orthogonal features. In The Twelfth International

Conference on Learning Representations, 2023.

Mayee Chen, Daniel Y Fu, Avanika Narayan, Michael Zhang, Zhao Song, Kayvon Fatahalian, and
Christopher Ré. Perfectly balanced: Improving transfer and robustness of supervised contrastive
learning. In International Conference on Machine Learning, pp. 3090–3122. PMLR, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka. De-
biased contrastive learning. Advances in neural information processing systems, 33:8765–8775,
2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for self-
supervised representation learning. In International Conference on Machine Learning, pp. 3015–
3024. PMLR, 2021.

Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks via layer-peeled
model: Minority collapse in imbalanced training. Proceedings of the National Academy of Sciences,
118(43):e2103091118, 2021.

Quentin Garrido, Yubei Chen, Adrien Bardes, Laurent Najman, and Yann Lecun. On the duality
between contrastive and non-contrastive self-supervised learning. arXiv preprint arXiv:2206.02574,
2022.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.

10

Published as a conference paper at ICLR 2024

Florian Graf, Christoph Hofer, Marc Niethammer, and Roland Kwitt. Dissecting supervised con-
strastive learning. In International Conference on Machine Learning, pp. 3821–3830. PMLR,
2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural

information processing systems, 33:21271–21284, 2020.

Yu Gui, Cong Ma, and Yiqiao Zhong. Unraveling projection heads in contrastive learning: Insights
from expansion and shrinkage. arXiv preprint arXiv:2306.03335, 2023.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. Advances in neural information processing systems,
30, 2017.

XY Han, Vardan Papyan, and David L Donoho. Neural collapse under mse loss: Proximity to and
dynamics on the central path. arXiv preprint arXiv:2106.02073, 2021.

Jeff Z HaoChen and Tengyu Ma. A theoretical study of inductive biases in contrastive learning. arXiv

preprint arXiv:2211.14699, 2022.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
deep learning with spectral contrastive loss. Advances in Neural Information Processing Systems,
34:5000–5011, 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pp. 9729–9738, 2020.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty. In International conference on machine learning, pp. 2712–2721. PMLR, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 8340–8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples, 2021b.

Like Hui, Mikhail Belkin, and Preetum Nakkiran. Limitations of neural collapse for understanding
generalization in deep learning. arXiv preprint arXiv:2202.08384, 2022.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. Advances in neural information

processing systems, 32, 2019.

Wenlong Ji, Zhun Deng, Ryumei Nakada, James Zou, and Linjun Zhang. The power of contrast for
feature learning: A theoretical analysis. arXiv preprint arXiv:2110.02473, 2021.

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

Siddharth Joshi and Baharan Mirzasoleiman. Data-efficient contrastive self-supervised learning:
Most beneficial examples for supervised learning contribute the least. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Pro-

ceedings of Machine Learning Research, pp. 15356–15370. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/joshi23b.html.

Siddharth Joshi, Yu Yang, Yihao Xue, Wenhan Yang, and Baharan Mirzasoleiman. Towards mitigating
spurious correlations in the wild: A benchmark and a more realistic dataset, 2023.

11

Published as a conference paper at ICLR 2024

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural

information processing systems, 33:18661–18673, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient
for robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,
pp. 5637–5664. PMLR, 2021.

Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-supervised visual repre-
sentation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pp. 1920–1929, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Zhiheng Li, Ivan Evtimov, Albert Gordo, Caner Hazirbas, Tal Hassner, Cristian Canton Ferrer,
Chenliang Xu, and Mark Ibrahim. A whac-a-mole dilemma: Shortcuts come in multiples where
mitigating one amplifies others. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 20071–20082, 2023.

Hong Liu, Jeff Z HaoChen, Adrien Gaidon, and Tengyu Ma. Self-supervised learning is more robust
to dataset imbalance. arXiv preprint arXiv:2110.05025, 2021.

Jianfeng Lu and Stefan Steinerberger. Neural collapse under cross-entropy loss. Applied and

Computational Harmonic Analysis, 59:224–241, 2022.

Raghav Mehta, Vítor Albiero, Li Chen, Ivan Evtimov, Tamar Glaser, Zhiheng Li, and Tal Hass-
ner. You only need a good embeddings extractor to fix spurious correlations. arXiv preprint

arXiv:2212.06254, 2022.

Ryumei Nakada, Halil Ibrahim Gulluk, Zhun Deng, Wenlong Ji, James Zou, and Linjun Zhang.
Understanding multimodal contrastive learning and incorporating unpaired data. In International

Conference on Artificial Intelligence and Statistics, pp. 4348–4380. PMLR, 2023.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. Domain-adjusted regression or: Erm
may already learn features sufficient for out-of-distribution generalization. arXiv preprint

arXiv:2202.06856, 2022.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
arXiv preprint arXiv:1911.08731, 2019.

12

Published as a conference paper at ICLR 2024

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why
overparameterization exacerbates spurious correlations. In International Conference on Machine

Learning, pp. 8346–8356. PMLR, 2020.

Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham
Kakade, and Akshay Krishnamurthy. Understanding contrastive learning requires incorporating
inductive biases. arXiv preprint arXiv:2202.14037, 2022.

Vaishaal Shankar, Achal Dave, Rebecca Roelofs, Deva Ramanan, Benjamin Recht, and Ludwig
Schmidt. Do image classifiers generalize across time? In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pp. 9661–9669, 2021.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):
2822–2878, 2018.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig Schmidt.
Measuring robustness to natural distribution shifts in image classification. Advances in Neural

Information Processing Systems, 33:18583–18599, 2020.

Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning dynamics
without contrastive pairs. In International Conference on Machine Learning, pp. 10268–10278.
PMLR, 2021.

Xiang Wang, Xinlei Chen, Simon S Du, and Yuandong Tian. Towards demystifying representation
learning with non-contrastive self-supervision. arXiv preprint arXiv:2110.04947, 2021.

Zixin Wen and Yuanzhi Li. The mechanism of prediction head in non-contrastive self-supervised
learning. Advances in Neural Information Processing Systems, 35:24794–24809, 2022.

Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The role of image
backgrounds in object recognition. arXiv preprint arXiv:2006.09994, 2020.

Yihao Xue, Kyle Whitecross, and Baharan Mirzasoleiman. Investigating why contrastive learning
benefits robustness against label noise. In International Conference on Machine Learning, pp.
24851–24871. PMLR, 2022.

Yihao Xue, Siddharth Joshi, Eric Gan, Pin-Yu Chen, and Baharan Mirzasoleiman. Which features
are learnt by contrastive learning? on the role of simplicity bias in class collapse and feature
suppression. arXiv preprint arXiv:2305.16536, 2023.

Mang Ye, Xu Zhang, Pong C Yuen, and Shih-Fu Chang. Unsupervised embedding learning via
invariant and spreading instance feature. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp. 6210–6219, 2019.

Chun-Hsiao Yeh, Cheng-Yao Hong, Yen-Chi Hsu, Tyng-Luh Liu, Yubei Chen, and Yann LeCun.
Decoupled contrastive learning. In European Conference on Computer Vision, pp. 668–684.
Springer, 2022.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In International Conference on Machine Learning, pp. 12310–
12320. PMLR, 2021.

Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing Qu, and Zhihui Zhu. On the optimization
landscape of neural collapse under mse loss: Global optimality with unconstrained features. In
International Conference on Machine Learning, pp. 27179–27202. PMLR, 2022a.

Jinxin Zhou, Chong You, Xiao Li, Kangning Liu, Sheng Liu, Qing Qu, and Zhihui Zhu. Are all
losses created equal: A neural collapse perspective. arXiv preprint arXiv:2210.02192, 2022b.

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A
geometric analysis of neural collapse with unconstrained features. Advances in Neural Information

Processing Systems, 34:29820–29834, 2021.

Zhuotun Zhu, Lingxi Xie, and Alan L Yuille. Object recognition with and without objects. arXiv

preprint arXiv:1611.06596, 2016.

13

Published as a conference paper at ICLR 2024

A THEORETICAL ANALYSIS

A.1 STRUCTURE OF WEIGHTS

Theorem A.1 (Weights of the minimum norm minimizer). The global minimizer of the CL loss LCL

with the smallest norm, defined as kWWW>
1 WWW 1k2F + kWWW>

2 WWW 2k2F , satisfies

WWW 1WWW
>
1 =WWW>

2 WWW 2.

Proof. Observe that

kWWW>
1 WWW 1k2F + kWWW>

2 WWW 2k2F = kWWW 1WWW
>
1 k2F + kWWW>

2 WWW 2k2F
= Tr((WWW 1WWW

>
1)

2 + (WWW>
2 WWW 2)

2)

= Tr((WWW 1WWW
>
1 �WWW>

2 WWW 2)
2 �WWW 1WWW

>
1 WWW

>
2 WWW 2 �WWW>

2 WWW 2WWW 1WWW
>
1)

= Tr((WWW 1WWW
>
1 �WWW>

2 WWW 2)
2)� 2Tr(WWW>

1 WWW
>
2 WWW 2WWW 1)

Consider any value of WWW =WWW 2WWW 1 that is a global minimizer of the CL loss. This determines the
value of Tr(WWW>

1 WWW
>
2 WWW 2WWW 1). Hence the norm is minimized when Tr((WWW 1WWW>

1 �WWW>
2 WWW 2)2) = 0.

But (WWW 1WWW>
1 �WWW>

2 WWW 2)2 is positive definite so this occurs if and only if WWW 1WWW>
1 =WWW>

2 WWW 2.

On the other hand, this minimum is achievable, since if WWW has SVD WWW = UUU⌃⌃⌃VVV >, then WWW 1 =
⌃⌃⌃

1
2VVV >,WWW 2 = UUU⌃⌃⌃

1
2 is a solution satisfying WWW 1WWW>

1 =WWW>
2 WWW 2.

Theorem A.2 (Weights of the model trained with gradient flow, proved in Arora et al. (2018)).
Suppose the initialization satisfies

WWW 1(0)WWW
>
1 (0) =WWW>

2 (0)WWW 2(0).

Using gradient flow, at any time t, we have

WWW 1(t)WWW
>
1 (t) =WWW>

2 (t)WWW 2(t).

Proof. We reiterate the proof. Let ZZZ = f(XXX) be the matrix of model outputs. Calculate that the
gradients are

@L
@WWW 1

=WWW>
2
@L
@ZZZ

XXX>

@L
@WWW 2

=
@L
@ZZZ

XXX>WWW>
1

In addition, the chain rule and gradient flow gives

d

dt
(WWW 1WWW

>
1) = �WWW 1

✓
@L
@WWW 1

◆>
� @L

@WWW 1
WWW>

1

d

dt
(WWW>

2 WWW 2) = �
✓

@L
@WWW 2

◆>
WWW 2 �WWW>

2
@L
@WWW 2

.

Substituting, we see that d
dt (WWW 1WWW>

1) =
d
dt (WWW

>
2 WWW 2). The conclusion follows.

A.2 WEIGHTS OF FEATURES

The following analysis is performed for self-supervised CL loss, under the condition that WWW 1WWW>
1 =

WWW>
2 WWW 2.

Define the covariance of augmented examples

MMM := E[A(xxx)(A(xxx))>] = Diag([�2
1 + �2 . . .�2

d + �2]), (2)

and the covariance of augmentation centers

M̃MM := E[EA(xxx)(EA(xxx))>] = Diag([(1� 2↵1)
2�2

1 . . . (1� 2↵d)
2�2

d]). (3)

14

Published as a conference paper at ICLR 2024

Let WWW = WWW 2WWW 1. By invoking Lemma B.2 in Xue et al. (2023) about the minimizer of the loss,
given the fact that MMM,M̃MM are full rank, we have

WWW>WWWMMM = [MMM�1M̃MM]p, (4)
where notation [AAA]p represents the matrix composed of the first p eigenvalues and eigenvectors of a
positive semidefinite AAA (if p � rankAAA then [AAA]p = AAA). Therefore, substituting yields

WWW>WWW = [Diag([(1� 2↵1)2�2
1

�2
1 + �2

. . .])]pDiag([1

�2
1 + �2

. . .]) :=DDD (5)

Note that [Diag([(1�2↵1)
2�2

1

�2
1+�2 . . .])]p is a matrix that only keeps the p largest diagonal entries of

Diag([(1�2↵1)
2�2

1

�2
1+�2 . . .]).

To avoid cluttered notations, below we consider the case where p  d. However, we note that similar
analysis holds for p > d. Now we can obtain WWW = UUU

p
DDD, where UUU 2 p⇥p is a matrix with

orthonormal rows. Then
kf2(eeei)k = kWWWeeeik = kUUU [i, :]

p
DDD[i, i]k =

p
DDD[i, i], (6)

which yields the conclusion about kf2(eeei)k in Theorem 3.5.

Now let’s examine kf1(eeei)k. LetUUU1SSS1VVV >
1 andUUU2SSS2VVV >

2 beWWW 1 andWWW 2’s SVD, respectively. Given
that WWW 1WWW>

1 =WWW>
2 WWW 2, we have

UUU1(SSS1SSS
>
1)UUU

>
1 = VVV 2SSS

2
2VVV

>
2 , (7)

implying that the non-zero singular values of WWW 1 and WWW 2 matches, and those singular values
corresponding columns in UUU1 match those in VVV 2. Given that WWW 2WWW 1 =WWW = UUU

p
DDD, we have

WWW 2WWW 1 =UUU2SSS2SSS1VVV
>
1 = UUU

p
D because singular vectors match

SSS2SSS1VVV
>
1 =UUU>

2 UUU
p
DDD because UUU2 2 p⇥p is unitary.

SSS1VVV
>
1 =UUU>

2 UUU
4
p
DDD because singular values match. (8)

Given equation 8, we have
kf1(eeei)k =kWWW 1eeeik

=kUUU1SSS1VVV
>
1 eeeik

=kSSS1VVV
>
1 eeeik

=kUUU>
2 UUU

4
p
DDDeeeik

=
4
p
DDD[i, i],

which completes the proof of Theorem 3.5.

A.3 COMPARING SAMPLE COMPLEXITY

Definition A.3. We say that a data distribution P is separable with a (�, ⇢) margin if where exists

www⇤, b⇤ s.t. kwww⇤k = 1 and

P({(xxx, y) : kxxxk  ⇢ ^ y(www⇤>xxx+ b⇤) � �} = 1).

It is well-known that the sample complexity of hard-margin SVM only grows with r := (⇢/�)2 (e.g.,
Bartlett & Shawe-Taylor (1999)). Therefore, we refer to r as the sample complexity indicator. From
the analysis in Section A.2, we know that

f1(eeei) = UUU1UUU2UUU
4
p
DDDeeei =

4
p
DDD[i, i](UUU1UUU2UUU)[i, :].

Since UUU1UUU2 is unitary and UUU has orthornormal rows, UUU1UUU2UUU also has orthornormal rows. Thus,
f1(eeei)’s are orthonormal. The same conclusion holds for fi(eeei)’s as well.

Now, given Definition A.3, by letting www⇤ =
fi(eeej⇤)

kfi(eeej⇤)k and b⇤ = 0, we can obtain � = kfi(eeej⇤)k�̂j⇤

for the i-th layer’s representations. We also have p =
qPp

j=1 kfi(eeej)k2�̂2
j . Thus, the sample

complexity indicator is ri = (

qPp
j=1 kfi(eeej)k2�̂2

j

kfi(eeej⇤)k�̂j⇤
)2, for i = 1, 2. Substituting the values of kfi(eeej)k’s

into the comparison between r1 and r2, with some algebraic manipulation yields Theorem 3.6.

15

Published as a conference paper at ICLR 2024

A.4 ANALYSIS FOR NON-LINEAR MODELS

We introduce the following two lemmas which allow us to analyze coordinates of the model separately.
Lemma A.4. Suppose the model fff can be decomposed coordinate-wise f1, . . . , fp and each fi is

odd. Also suppose the dataset D follows a coordinate wise symmetric distribution, namely the pdf p
satisfies

p(x1, . . . , xi�1, xi, xi+1, . . . xp) = p(x1, . . . , xi�1,�xi, xi+1, . . . xp) (9)

for any i. Then the contrastive loss can be decomposed coordinate-wise

L =
pX

i=1

�2E[fi(xi)fi(x
+
i)] + E

h�
fi(xi)fi(x

�
i)
�2i (10)

Proof.

L = �2E[f(x)f(x)f(x)>f(x)f(x)f(x)+] + E[(f(x)f(x)f(x)>f(x)f(x)f(x)�)
2] (11)

= �2E
"

pX

i=1

fi(xi)fi(x
+
i)

#
+ E

2

4

pX

i=1

fi(xi)fi(x
�
i)

!2
3

5 (12)

= �2E
"

pX

i=1

fi(xi)fi(x
+
i)

#
+ E

2

4E�i⇠Unif{�1,1}

2

4

pX

i=1

fi(�ixi)fi(x
�
i)

!2
3

5

3

5 (13)

= �2E
"

pX

i=1

fi(xi)fi(x
+
i)

#
+ E

2

4E�i⇠Unif{�1,1}

2

4

pX

i=1

�ifi(xi)fi(x
�
i)

!2
3

5

3

5 (14)

= �2E
"

pX

i=1

fi(xi)fi(x
+
i)

#
+ E

"
pX

i=1

�
fi(xi)fi(x

�
i)
�2
#

(15)

=
pX

i=1

�2E[fi(xi)fi(x
+
i)] + E

h�
fi(xi)fi(x

�
i)
�2i (16)

Note that this hold for both supervised and unsupervised contrastive loss, since they only differ in
how positive pairs are defined.

Lemma A.5. Under the same assumptions as A.4, MSE loss as defined in 2 can be decomposed

coordinate-wise.

Proof.

L = E(xxx,y)

⇥
(fff(xxx)>111� y)2

⇤
(17)

= E(xxx,y)

2

4

�y +

pX

i=1

fi(xi)

!2
3

5 (18)

= E(xxx,y)

2

4y2 � 2
pX

i=1

yfi(xi) + E�i⇠Unif{�1,1}

2

4

pX

i=1

fi(�ixi)

!2
3

5

3

5 (19)

= E(xxx,y)

2

4y2 � 2
pX

i=1

yfi(xi) + E�i⇠Unif{�1,1}

2

4

pX

i=1

�ifi(xi)

!2
3

5

3

5 (20)

= E(xxx,y)

"
y2 � 2

pX

i=1

yfi(xi) +
pX

i=1

(fi(xi))
2

#
(21)

= (1� p)Ey[y
2] +

pX

i=1

E(xxx,y)

h
(fi(xi)� y)2

i
(22)

16

Published as a conference paper at ICLR 2024

It is easy to check that the setting with the diagonal network and given data distribution satisfies the
conditions of the lemma.

By the above lemmas, we can consider optimizing over each coordinate separately.

Theorem A.6 (Contrastive Loss). Assume |w(0)
22 | 

p
b(0) and |w(0)

22 |(|w
(0)
12 |� b(0)) � b(0), then as

t!1, |f2(eee2)|! 0 and |f1(eee2)| �
p
b(0).

Proof. Let fff2(xxx) = (z1, . . . , zn) be the embeddings outputted by the second layer. Then the
coordinate-wise decomposition of the contrastive loss takes the form

L = Ez⇠f(D)[(z
2
1 � 1)2 + z42 + · · ·+ z4n] (23)

From here it is clear that the an optimal solution maps the second coordinate of every embedding to
zero. Writing down the gradients for the weights and threshold,

@L

@w22
= Exxx⇠D[4z

3
2�

0(w22�(w12x2, b12), b22)�(w12x2, b12)]

@L

@w12
= Exxx⇠D[4z

3
2�

0(w22�(w12x2, b12), b22)w22�
0(w12x2)x2]

@L

@b22
= Exxx⇠D[�4z32�0(w22�(w12x2, b12), b22)]

@L

@b12
= Exxx⇠D[�4z32�0(w22�(w12x2, b12), b22)w22]

Observe that |w12| and |w22| are both decreasing and b12, b22 are both increasing throughout training,
so that as t!1, the second coordinate of all embeddings goes to zero. Namely, this means that

|w(t)
22 |
⇣
|w(t)

12 |� b(t)12

⌘
 b(t)22 (24)

But since weights are decreasing and thresholds are increasing, |w(t)
22 | 

p
b(0) 

q
b(t)22 . It follows

that (|w(t)
12 |� b(t)12) �

q
b(t)22 �

p
b(0). Rearranging gives

|w(t)
12 | �

p
b(0) + b(t)12 ,

as desired.

Theorem A.7 (MSE Loss). Assume |w(0)
22 | 

p
b(0) and |w(0)

22 |(|w
(0)
12 |� b(0)) � b(0), and w(0)

22 and

w(0)
12 have the same sign, then as t!1, |f2(eee2)|! 0 and |f1(eee2)| �

p
b(0).

Proof. Let fff2(xxx) = (z1, . . . , zn) be the embeddings outputted by the second layer. Then the
coordinate-wise decomposition of the loss takes the form

L = Ez⇠f(D)[(z1 � 1)2 + z22 + · · ·+ z2n] + C (25)

where C is independent of the weights.

From here it is clear that the an optimal solution maps the second coordinate of every embedding to
zero. W.L.O.G., assume w(0)

12 , w
(0)
22 > 0. Writing down the gradients for the weights and threshold,

@L

@w22
= Exxx⇠D[2z2�

0(w22�(w12x2, b12), b22)�(w12x2, b12)]

@L

@w12
= Exxx⇠D[2z2�

0(w22�(w12x2, b12), b22)w22�
0(w12x2)x2]

@L

@b22
= Exxx⇠D[�2z2�0(w22�(w12x2, b12), b22)]

@L

@b12
= Exxx⇠D[�2z2�0(w22�(w12x2, b12), b22)w22]

17

Published as a conference paper at ICLR 2024

Figure 5: The value of the sample complexity indicator at different layers. Legends show the weight
assigned to the downstream relevant weight by the pretrained model. We observe that the optimal
layer shifts lower when the pretrained model assigns less weight to the downstream relevant features.

Observe that w12 and w22 are both decreasing and b12, b22 are both increasing throughout training,
so that as t!1, the second coordinate of all embeddings goes to zero. Namely, this means that

w(t)
22

⇣
w(t)

12 � b(t)12

⌘
 b(t)22 (26)

But since weights are decreasing and thresholds are increasing, w(t)
22 

p
b(0) 

q
b(t)22 . It follows

that (w(t)
12 � b(t)12) �

q
b(t)22 �

p
b(0). Rearranging gives

w(t)
12 �

p
b(0) + b(t)12 ,

as desired.

B DISCUSSION ON MULTI-LAYER LINEAR MODEL

As mentioned in Section 4, Theorem 3.4 can be extended to multi-layer models, which gives us
WWW l(t)>WWW l(t) =WWW l+1(t)WWW l+1(t)>. Based on this, going through a similar process as in Appendix
A.2 and Appendix A.3, we will obtain the following expression of the sample complexity indicator
for each layer l:

rl =

Pp
j=1 c

2l/L
j �̂2

j

c2l/Lj⇤ �̂j⇤

where

cj =

(
(1�↵j)�j

�2
j+�2 , if j 2 {j1, . . . , jmin{d,p}}

0, else

The definitions of j1, . . . , jmin{d,p} remain the same as in Theorem 3.5, and other quantities are
consistent with the definitions provided in Section 3. Here, cj represents the weight the full model
would allocate to the j-th feature. Although the expression appears complex, some intuition can be
gleaned from extreme scenarios: If cj⇤ is the largest, indicating that the full model assigns the most
weight to the downstream relevant feature, rl decreases with l. This means one should just use the
final-layer representations. 2. Conversely, if cj⇤ is the smallest among non-zero cj’s, indicating that
the full model assigns the least weight to the downstream relevant feature, rl increases with l. In this
case, using the lowest layer would be preferable. Applying these observations in conjunction with
the relationship between cj and ↵j ,�j , similar conclusions to those in Corollary 3.7 regarding the
impact of augmentation and feature strength for multi-layer models can be drawn.

18

Published as a conference paper at ICLR 2024

The greater the mismatch between the pretraining and downstream tasks, the lower the optimal
layer tends to be. What about situations that are more intricate, occurring between the above extreme
cases? To explore this, we consider the following setting for simulation. We let

L = 12, �̂j = 1, 8j  9, �̂j = 0.1, 8j � 10, j⇤ = 9,

cj = 0.4, 8j  8, cj = 0.6, 8j  10.

Then, we vary cj⇤ , the weight assigned to the downstream relevant feature from 0.4 to 0.6, and plot
rl vs l (i.e., sample complexity indicator vs depth) under each value of cj⇤ in Figure 5. We observe
that, for cj⇤ = 0.45, 0.5, 0.55, the best sample complexity is achieved by some intermediate layer.
Additionally, the optimal layer (corresponding to the bottom of the U-shaped curve) becomes lower
as the weight assigned to the relevant feature decreases, which indicates a larger mismatch between
the pretraining and downstream tasks.

Challenges in locating the optimal layer. Even in this simplified scenario, we observe that the
depth of the optimal layer is influenced by various factors, including the position of the downstream-
relevant feature, the strength of features in the downstream task, and the weights assigned to features
during pretraining. The last one is further a function of features, noise and augmentations for
pretraining data. In practical settings, we acknowledge that more factors may come into play, such
as the model architecture, which varies across layers. Therefore, determining the exact optimal
layer for downstream tasks is very challenging and represents an intriguing and valuable avenue
for future exploration. We believe the analytical framework established in this paper, capable of
expressing downstream sample complexity in closed form through various elements in pretraining
and downstream tasks, and explaining several observed phenomena (e.g., those depicted in Figure 3),
can significantly aid advancing research in this direction.

C EXPERIMENTAL DETAILS

C.1 SETUPS

Synthetic Experiments, CL. We train two-layer (symmetrized) ReLu Networks with momentum
SGD, with momentum set to 0.9. We use the spectral CL loss. (1) In setting 1, we set d = 5, p = 20
and �1 = · · · = �5 = 1, indicating that all five features have equal strength. We set ↵1,↵2,↵3,↵4,↵5

to 0, 0.25, 0.5, 0.75, 1, respectively, meaning that features are disrupted by the augmentation to
different extents. We let � = 0.01 and set learning rate to 0.05. (2) In setting 2, we set d = 9, p = 20,
�i = 3.2/2i, 8i, and � = 0.1. We use learning rate 0.01.

Synthetic Experiments, SCL. The data distribution is the same as described in Definition 4.1. We
let other coordinates be randomly drawn from {�0.001, 0.001}. We let d = 5, p = 20,� = 0.1,
learning rate = 0.01.

MNIST-on-CIFAR-10. The main data generation process is outlined in Section 5.1. To provide
further details, after processing the digits in each image, we apply standard data augmentations,
RandomResizedCrop and ColourDistortion. Additionally, we resize the digits to set their height to
16 pixels. We train ResNet-18 models. By default, we use a temperature of 0.5 and minimize the
SimCLR loss with the Adam optimizer. Our training batch size is 512, with a learning rate of 0.001
and weight decay set to 1 ⇥ 10�6. We train for 400 epochs. The projection head is a one-hidden
layer MLP with an output dimension of 128, and the hidden dimension is set to match the output
dimension of the ResNet-18 encoder.

Coarse-to-fine transfer on CIFAR-100. On CIFAR-100, we refer to the 10 super-classes as ‘coarse’
and the 100 classes as ‘fine’. (1) SCL. The pretraining is conducted with the 10 coarse-grained labels,
using the SCL loss in Khosla et al. (2020) with temperature 0.5. We use train a ResNet-18 with
momentum SGD, using learning rate = 0.1, momentum = 0.9 and weight decay 1e-6. We train with
batch size set to 512 for 400 epochs. The projection head is a one-hidden layer MLP with an output
dimension of 128, and the hidden dimension is set to match the output dimension of the ResNet-18
encoder. (2) SL. We use momentum SGD, with learning rate = 0.1 and momentum = 0.9. We train
for 200 epochs with batchsize 128 and weight decay 5e-4.

Few-shot adaption on UrbanCars. UrbanCars is constructed by Li et al. (2023), features multiple
spurious correlations. The task is classifying images as either urban cars or country cars. Each image

19

Published as a conference paper at ICLR 2024

Figure 6: Target test accuracy with respect to the number of target examples for adaptation, comparing
different representations.

has one background (BG) and one co-occurring object (CoObj). The BG is selected from either
urban or country backgrounds, and the CoObj is selected from either urban or country objects. In the
source distribution, for each class, images with common BG and CoObj constitute 90.25%, images
with uncommon BG and common CoObj, or with common BG and uncommon CoObj, constitute
4.75%, and images with both uncommon BG and CoObj constitute 0.25%. This dataset presents a
challenge due to multiple spurious correlations/shortcuts. We let the target distribution contains only
the subpopulations that are most underrepresented in the source distribution, i.e., images with both
uncommon BG and CoObj. We train the model on the source data using the SGD optimizer with a
batch size of 128, a learning rate of 0.01, and weight decay of 0.000001 for 50 epochs. The linear
layer is then trained on top of representations using a few (2 to 128) data from the target distribution.
Following Chen et al. (2023), for the training of the linear layer, we employ the Adam optimizer
Kingma & Ba (2014) with a batch size of 64 and train for 100 epochs. We tune both the learning rate
and weight decay in the range of 0.1, 0.01, 0.001, and report the configuration that yields the best
result. Each experiment is repeated 10 times, and we report the average. We use the implementation
from Joshi et al. (2023) for these experiments.

Experiments with reweighting heads. All setups remain the same as before. We set the values of 
to 1.05, 1.5, 1.2, and 1.01 for the four experiments in Table 2, from top to bottom, respectively.

C.2 DETAILS RESULTS FOR THE LAST ROW OF TABLE 2

Figure 6 presents the target test accuracy with respect to the number of target examples for adaptation,
comparing different representations. We observe that for both the projection head and the reweighting
head, the representations before the head are better than those after, and also better than the vanilla
approach, which does not add any head during pretraining. Furthermore, pre-reweighting-head
representations outperform pre-projection-head representations, underscoring the potential of the
reweighting head.

D ADDITIONAL EXPERIMENTS

D.1 TWO EXPERIMENTS ABOUT FEATURE STRENGTH IN NATURAL IMAGES

Dataset and Downstream Task. The experiment is based on images in CIFAR-10, aiming to validate
the second and third points outlined in Corollary 3.7 using real data. Given the subjective nature of
defining features in natural images, we select the feature ‘color,’ which offers a straightforward and
less controversial definition. This choice enables a controlled experiment with minimal modification
to the original natural images. Our downstream task involves predicting whether a given image is
categorized as ‘red,’ ‘green,’ or ‘blue’ based on the channel with the largest mean value. To vary the
the strength of the color feature in the pretraining data, we consider the following two approaches.

20

Published as a conference paper at ICLR 2024

(a) Acc v.s. Contrast. (b) Gap v.s. Contrast. (c) Acc v.s. color dist. (d) Gap v.s. color dist.

Figure 7: Accuracy and gap when the level of color distinguishability in the pretraining data is varied.
(a)(c) are for approach 1, (b)(d) are for approach 2.

We note that the second one involves no change to the images themselves, making sure all of them
are natural.

1. Varying Color Distinguishability by Processing the Image. During the training, we process
each image as follows: Let R, G, and B denote the average pixel value for the three channels. We
first find the largest two values among R, G, and B and calculates u as their mean. For the matrix
at each channel, denoted MR, MG, and MB for the red, green, and blue channels respectively, we
update each matrix as follows:

MR MR ⇥
✓
(R� u) · ↵+ u

R

◆
,

MG MG ⇥
✓
(G� u) · ↵+ u

G

◆
,

MB MB ⇥
✓
(B � u) · ↵+ u

B

◆
.

Then, the values are capped between 0 and 1. ↵ � 0 is a parameter that we denoted as contrast
strength. A larger ↵ increases the values in the dominant channel while decreasing the values in other
channels. Intuitively, larger ↵ means a larger gap between the dominant channel and the other two
channels, making the information about the dominant channel more obvious. We varied the ↵ in the
range of [0, 0.2, 0.5, 1, 2, 3, 4, 5].

2. Varying Color Distinguishability by Selecting a Subset. For each image, we choose the
channel that has the greatest mean pixel value as the dominant channel, and compute the color
distinguishability D = (dominant channel’s mean value / sum of the mean values for the three
channels). We sort images in each class of CIFAR-10 based on D from highest to lowest. Then we
select 1000 images from each class starting from the K-th image to form the training set. Intuitively,
a larger K leads to images with higher average color distinguishability D values being selected in the
pretraining data, and a higher color distinguishability means that the information about the dominant
channel is more obvious. We varied K in the range of [0, 500, 1000, 1500, 2000, 2500, 3000, 3500,
4000], which corresponds to the average color distinguishability of [0.4254, 0.3950, 0.3815, 0.3717,
0.3640, 0.3575, 0.3517, 0.3463, 0.3406].

Training Details. We train ResNet18 with a one hidden layer projection head with hidden dimension
2048 using SimCLR (Chen et al., 2020) on the selected trainset images for 400 epochs. We use Adam
optimizer with learning rate 0.001, weight decay 10�6, and batch size 512. We used temperature 0.5.

Results. Figure 7 presents the results for the above two experiments. In both cases, we see that the
gap between pre-projection and post-projection roughly show an decreasing-increasing trend. In
other words, using pre-projection is more beneficial when either the color distringuishability is very
high or very low, confirming our theoretical results in Corollary 3.7.

D.2 EFFECT OF EARLY STOPPING

We examine how the linear evaluation accuracy changes during training on MNIST-on–CIFAR-10.
The setting is consistent with the setting described in Section 5.1. Intuitively, early stopping should
result in a model that is less specialized towards the training objective, potentially benefiting the

21

Published as a conference paper at ICLR 2024

(a) pdrop = 0 (b) pdrop = 0.2

Figure 8: Linear evaluation accuracy during training. We see that early stopping reduces the gap
between pre-projection and post-projection when pdrop = 0, but not when pdrop = 0.2.

Figure 9: Pre-projection representations exhibit better robustness. OOD accuracy is evaluated across four
shifted ImageNets.

Figure 10: OOD-ID accuracy relation for models trained on Mixed-Rand.

downstream task when there is a misalignment. However, perhaps counter intuitively, the results in
Figure 8 reveal that early stopping improves post-projection with good augmentation (pdrop = 0), but
not with bad augmentation (pdrop = 0.2). A deeper analysis of training dynamics during the course
of training is required to fully grasp the effect of early stopping.

D.3 ROBUSTNESS TO DISTRIBUTION SHIFT ON IMAGENET

It is well-known that deep learning models trained on ImageNet Deng et al. (2009) tend to rely
heavily on backgrounds rather than the main objects for making predictions (Xiao et al., 2020; Zhu
et al., 2016), resulting in poor performance on test sets where backgrounds are random or absent.

Recently, Kirichenko et al. (2022) demonstrate that despite this poor performance, the representations
before the linear classifier actually contain information about the objects. Consequently, training
a new classifier on these representations using data that does not exhibit a correlation between
backgrounds and classes can lead to improved out-of-distribution (OOD) accuracy. We demonstrate

22

Published as a conference paper at ICLR 2024

that the quality of representations can be further enhanced by leveraging a non-linear projection
head. We take the ImageNet pretrained ResNet-50 model, and fine-tune the model with an dditional
projection head on ImageNet for 50 epochs. We find that the pre-projection representations result
in an improved in-distribution vs. OOD accuracy relationship (which is a standard measurement
of robustness (Taori et al., 2020)), as shown in Figure 9 where we compare it with post-projection
representations, representations provided by the original pretrained model and representations
obtained by fine-tuning the model for 50 epochs without the projection head.

Experimental details. Following Kirichenko et al. (2022), we use the datasets in Backgrounds
Challenge based on the ImageNet-9 dataset (Xiao et al., 2020) along with the ImageNet-R (Hendrycks
et al., 2021a) dataset. We use ImageNet-A (Hendrycks et al., 2021b) instead of Paintings-BG
(Kirichenko et al., 2022) due to limited dataset availability. We consider Original, Mix-Rand, and
FG-only datasets for Backgrounds Challenge. We finetune the ImageNet-pretrained ResNet-50
encoder along with an additional randomly initialized projection head and a randomly initialized
linear classifier. The projection head is an MLP with one hidden layer of size 2048. We finetune the
model for 50 epochs with batch size 256, momentum 0.9, weight decay 10�4, learning rate 0.01,
and a learning rate scheduler with step size 30 and � = 0.1. We also finetune the original ImageNet-
pretrained ResNet-50 model with the same hyperparameters. During the training, we follow the
same procedure as Kirichenko et al. (2022), using two train sets: Mixed-Rand and Combination of
Mixed-Rand and Original. The sizes of Original and Mixed-Rand are the same. We use the same
data preprocessing step as in Kirichenko et al. (2022). We train DFR on varied-sized random subsets
of the training data with Mixed-Rand data sizes in the range of {5000, 10000, 20000, 45405} for
1000 epochs using SGD with full batch, learning rate 1, and weight decay equal to 100 / size of the
data. For evaluation, we use four out-of-distribution datasets, Mixed-Rand, FG-Only, ImageNet-R,
ImageNet-A, and one in-distribution dataset, Original. We average the accuracy of the four in-
distribution datasets and present the out-of-distribution accuracy vs. in-distribution accuracy plot for
the four settings: pre-projection, post-projection, original (representing original ImageNet-pretrained
ResNet-50 model) and no-projection (representing finetuned ResNet-50 model without projection
head). The results for Combination of Mixed-Rand and Original and Mixed-Rand are shown in
Figures 9 and 10, respectively.

23

