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Abstract

The random utility model is one of the most fundamental models in eco-
nomics. Falmagne (1978) provides an axiomatization but his axioms can be
applied only when choice frequencies of all alternatives from all subsets are ob-
servable. In reality, however, it is often the case that we do not observe choice
frequencies of some alternatives. For such a dataset, we obtain a finite system
of linear inequalities that is necessary and sufficient for the dataset to be ra-
tionalized by a random utility model. Moreover, the necessary and sufficient
condition is tight in the sense that none of the inequalities is implied by the
other inequalities, and dropping any one of the inequalities makes the condition

not sufficient.
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1 Introduction

Consider a population of individuals choosing an alternative across choice sets. It is

often the case that we do not observe choice frequencies of some alternatives. For ex-
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ample, consider the set of transportation methods that consists of bus, train, walking,
and driving. We may be able to estimate the market share of public transportation
methods (bus or train) based on the revenues of bus or train companies. However, it
may be difficult for us to know whether a person drives or walks (unless we conduct a
survey); thus, choice frequencies of walking and driving may not be available. There
are many other economically important examples in which we do observe choice fre-
quencies of some but not all alternatives.! In this paper we investigate a necessary
and sufficient condition on the observable choice frequencies under which they are
rationalized by a random utility model.

Falmagne (1978) provided an axiomatization of the random utility model, but
datasets we consider are outside his framework because he requires that frequencies of
choices of all alternatives from all subsets of the set of alternatives must be observed.
Not so much is known about the characterization when a dataset fails to meet this
requirement. (See our discussion on related literature for details.) One exception is
McFadden and Richter (1990), who have a characterization for such cases, but their
condition involves infinitely many inequalities and contains redundant inequalities. In
fact, it is known that obtaining a tight characterization of the random utility model is
very difficult in many cases; and a related problem has been proved to be NP hard.?
(For example, see Theorem 7 in Charon and Hudry (2010).)

We focus on a setup in which choice frequencies of some alternatives are always
missing but those for the others are observable. Given such a dataset, we obtain
a finite system of linear inequalities that is necessary and sufficient for the dataset
to be rationalized by a random utility model. Moreover, the necessary and sufficient
condition is tight in the sense that none of the inequalities is implied by any other, and
dropping one of them makes the condition insufficient.® Thus, our characterization
extends Falmagne (1978) and is useful in practice compared with that of McFadden
and Richter (1990).

'For another example, consider school choice among private schools. The government can often
obtain students’ choice data from public schools but not from private schools. In this situation,
choice frequencies over public schools are observable but those over private schools are not. See
Section 2.1 for details.

2In fact, when choice frequencies are observed only on binary choice sets, it has been unknown
how to obtain a tight characterization of a random utility since the 1980s. See Marti and Reinelt
(2011) for a survey.

3Falmagne (1978)’s characterization is also almost tight. Suck (2002) and Fiorini (2004) prove
that omitting just a few inequalities from Falmagne (1978) gives a tight characterization.



Our necessary and sufficient conditions consist of two types of conditions. The
first condition is the classical nonnegativity of the Block-Marschak polynomials, which
appear in Falmagne (1978)’s characterization. The second condition is novel: it
consists of inequalities obtained by the summation and subtraction of the Block-
Marschak polynomials. This novel condition means that the nonnegativity of the
Block-Marschak polynomials is not enough for the dataset to be rationalized by a
random utility model; balances across the values of Block-Marschak polynomials are
essential for the case of incomplete datasets.

To prove our result, we translate our problem into a network flow problem.
This approach is originally developed by Fiorini (2004), who gives a shorter proof of
the result of Falmagne (1978). Our methodological innovation is to use a feasibility
theorem in a network, which provides a necessary and sufficient condition for the
existence of a desirable network flow. This novel tool gives us a clear insight even in
the presence of some missing alternatives.

Our results have two practical implications. First, in the empirical literature,
researchers often put all unobservable alternatives together and treat them as an
aggregated alternative, called an outside option, even when they know which elements
are unobservable. Our result implies that this approach may ignore some features of
the random utility restriction; more precisely, it does not consider the second condition
(i.e., the balances across the values of the Block-Marschak polynomials). Second, we
demonstrate that our approach to the problem using of network flows not only is
useful for axiomatization but also provides efficiency when we test our conditions
with given datasets.

Once the dataset has turned out to be consistent with a random utility model,
another important question is “What can we say about missing parts in the dataset?”
To answer this question, we provide an efficient algorithm to obtain a tight bound
for the missing choice frequencies. This algorithm makes the most of the network
structure of our problem. Without the network formulation, the efficiency of the
algorithm is not guaranteed. See section 4 for details.

We now briefly discuss the related literature. As mentioned above, little is known
about the characterization of the random utility model in the case of incomplete
data. Our result differs from that of McFadden and Richter (1990) in that their
characterization involves infinitely many inequalities and entails redundancy, while

ours consists of finite inequalities and contains no redundant ones. In Section 5, we



will explain that the theorem obtained by McFadden and Richter (1990) is based on
the nonnegativity of some polynomials; and the polynomials contain redundancy in
an essential way, unlike BM polynomials. Thus, removing some redundancy from the
theorem of McFadden and Richter (1990) is possible but removing all redundancy
would be difficult.

Other than the papers mentioned so far, only a few papers have studied the
random utility characterization with incomplete data. McFadden (2006) considers
a nested structure of choice sets: if choice frequencies are observable in a set D of
alternatives, then choice frequencies are observable in any larger set E (i.e., E D D).
In this paper, we discuss the random utility characterization under this restriction
of available choice sets. Suck (2016) addresses the truncated complete choice envi-
ronment, in which only choice sets with at least & > 2 alternatives are observable.
Nevertheless, to the best of our knowledge, our setup, in which choice frequencies of
some alternatives are missing, is novel in the literature. Moreover, these results are
special cases of our theorem—cases in which there are no unobservable alternatives.

As mentioned, we use the network-flow theory to prove our results. Since the
publication of Fiorini (2004), some more recent papers have used the network-flow
theory to investigate different topics on random utility models. Turansick (2022)
characterizes the condition for the identification of random utility models. Chambers,
Masatlioglu, and Turansick (2021) provide a new model of random utility with more
than one agent. Doignon and Saito (2022) characterize the adjacency of vertices and
facets of a mulitiple-choice polytope, which corresponds to the set of random utility

models. None of these papers studies incomplete datasets.

2 Model

Let X be a finite set of alternatives. Let X* be a subset of X. We assume that
the choice frequencies of the elements of X* are not observable (even if a choice set
includes the alternatives).

Let D C 2% \ 0 be the set of choice sets. Unlike Falmagne (1978), we do not
assume that D = 2% \ (). Note that (D, C) is a partially ordered set, where C is
the set inclusion. Like McFadden (2006), we assume that D is an upper set (i.e., D
satisfies the following: D € D, E O D = E € D). To make our notation simple,
let M :={(D,z) e Dx X |z € D} and M* ={(D,z) €2¥ x X |z € D and [z €
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X*or D ¢ D]}. Note that for any (D, z) € M, the choice frequency over (D, ) is
unobservable if and only if (D, z) € M*.

Definition 2.1. A nonnegative vector p € RT\M* 1s called an incomplete dataset if

it satisfies the following conditions: for any D € D,

(i) if DNX* =0, then Y ., p(D,x) =1; and

(i) if DOX*#0, then 3 e prixeye P(D, ) < 1.

When the context is clear, we will simply call p a dataset instead of an incomplete
dataset. If p is an incomplete dataset, p is not defined on (D, x) € M*, i.e., p(D,x)
is not observeable for (D,z) € M*. This does not mean that we cannot know
anything about the choice frequencies of elements in X*. When z* € X* is the only
one unobservable alternative in the choice set D (i.e., when D N X* = {z*}), we can

calculate p(D, x*) as

p(D,x*)=1—= > p(D,y)*

yED\z*

Definition 2.2. A nonnegative vector p € Ri(D’m)‘xEDEQX} 15 called a complete dataset

if, for any D € 2%, % p(D,x) = 1.

2.1 Examples

Example 1 (Transportation): An analyst is often able to estimate the mar-
ket share of public transportation methods (i.e., bus or train) based on the rev-
enues of bus or train companies. However, it is sometimes difficult for the ana-
lyst to know separately the percentages of people who drive or walk. In this case,
X = {walk, drive, bus, train} and X* = {walk, drive}. An example of the set of
choice sets is D = {{w, b, t}, {w,d, b}, {w,d,t},{w,d,b,t}}, where w,d, b, and ¢ stand
for walk, drive, bus, and train, respectively. This set D can be obtained from the as-
sumption that depending on the location of homes, some transportation methods are

not available.®

4We often omit braces for singletons. Here, D \ 2* means D \ {z*}.

®Assuming that the analyst believes that the distribution of preferences is independent of the
location of homes, it would make sense to find a single distribution over ranking that describes the
choice frequencies across D.



Example 2 (Market Shares of Private Companies): One definition of market
share is the percentage of a company’s total sales divided by the market’s total sales.
The market’s total sales can be estimated by consumer surveys. However, private
companies occasionally do not disclose their financial information, including their to-
tal sales; thus the market shares of private companies are sometimes unobservable.
For example, suppose that there are four companies (i.e., X = {a,b, ¢, d}). If compa-
nies ¢ and d are private companies, then we do not know their sales (i.e., X* = {¢,d}).
Other companies {a,b} are public and the information from these companies is dis-
closed. In addition, the availability of products may vary across stores, which would

give a variation of choice sets (i.e., D).

Example 3 (School Choice for Private Schools): Applicants submit their choices
among public schools so the government knows the percentage of students choosing
each public school. However, it might not have access to information on how many
students choose each private school. For example, suppose that there are four schools
(i.e., X = {a,b,¢,d}). Among them, ¢ and d are private schools for which we do
not know the choice frequencies (i.e., X* = {¢,d}). The availability of schools may

depend on the location of homes, which would give a variation of choice sets (i.e., D).

2.2 Random-Utility Rationalization

Let £ be the set of rankings or strict preference relations on X, i.e., binary relations

that are irreflexive, asymmetric, transitive, and weakly complete.®

Definition 2.3. An incomplete dataset p is random-utility (RU) rationalizable if there
exists pp € A(L) such that, for any (D,z) € M\ M*,

p(D,x)=p( =€ L| x>y forally € D\ x).

We then say that p rationalizes p.

Definition 2.4. Let p € RUPDIEDELYS  For any (D, ) such that x € D, define

K(p,D,x) = Y (=1))"\PIp(E, z).

E:EDD

6A binary relation is weakly complete if, for any distinct elements x,y € X, either z >~ y or
Y-



K(p, D, x) is called a Block-Marschak (BM) polynomial.

Note that, given an incomplete dataset p € RT\M*, the BM polynomial K (p, D, x)
can be calculated if and only if (D,z) & M* (i.e.,, x ¢ X* and D € D).

3 Theorem

Recall that (2X7,C) is a partially ordered set with the set inclusion C . Consider a
collection & of subsets of X*; we assume that £ is an upper set.” The complement £°
is a lower set (i.e., £¢ satisfies the following: F € £ D CE = D € £¢).8

To characterize the RU-rationalizability of incomplete data, the class of choice

set defined in the following is fundamental.

Definition 3.1. A nonempty collection C of subsets of X is called a test collection if
there exist A C X \ X* and a nonempty upper set & C 2%X" such that C = {AUE |
E € £}. Moreover, the test collection is said to be essential if ) # A # X \ X* and
E#£ 2%,

The following is our main theorem.

Theorem 3.2. (a) An incomplete dataset p € RT\M* is RU-rationalizable if and
only if the following two conditions hold:

e (i) for any (D,x) € M\M* such that 1 < |D| < |X|, the polynomial K (p, D, x)

18 nonnegative; and

e (ii) for any essential test collection C C D,

( >  K(pDuzaz)- > K(p,FUy,y)>zo (1)

(D,z):DeC,DUxgC (Fyy):FgC,FUyeC,ygX*
(b) Moreover, the inequality conditions in (1) and (ii) are independent: for any in-
equality condition in (i) or (ii), there exists an incomplete dataset p € RT\M* that

violates the inequality but satisfies all the other conditions in (i) and (ii).

"Recall the property of an upper set: if D € £,D C E = E € £. In the example in which
X* ={d, e}, all upper sets in 2%~ are 0, {{d,e}}, {{d,e},{d}}, {{d,e},{e}}, {{d,e},{d},{e}}, and
{{d. e}, {d}, {e},0}.

8We use the concept of lower set in the proof.



We first make comments on statement (a) of the theorem. Recall that for any
(D,z) € M, the BM polynomial K(p, D,x) is computable based on the observable
data if and only if (D, z) ¢ M*. Thus, condition (i) is testable. Also, when C is a
test collection, D € C and DUx ¢ C imply that x ¢ X*.2 Thus, the first term as well
as the second term in condition (ii) can also be tested based on the available data.

The necessity of condition (i) in Theorem 3.2 follows from Falmagne (1978)
and McFadden (2006), who show that a complete dataset is RU-rationalizable if and
only if all BM polynomials are nonnegative. In fact, when X* = (), our theorem
reduces to the statement of Falmagne (1978) and McFadden (2006), although our
proof does not rely on their proofs. Novel conditions appear in (ii), which mean
that the nonnegativity of the Block-Marschak polynomials is in sufficient for the
dataset to be RU-rationalizasble because balances across the values of Block-Marschak
polynomials is essential for RU-rationalizability when the dataset is incomplete. For
example, one Block-Marschak polynomial being too large may not be a good sign for
RU-rationalizability. In Remark 3.10, we provide a further explanation of condition
(ii) in terms of network flows.

Statement (b) is an essential part of Theorem 3.2; not only does the theorem
give a necessary and sufficient condition, but it is also minimal in the sense of (b).!°
This is in contrast to the approach taken by McFadden and Richter (1990). As
we will explain in Section 5, the conditions in McFadden and Richter (1990) are
redundant in an essential way. Statement (b) in Theorem 3.2 may be surprising given
the known difficulty of obtaining a tight characterization of the random utility model
when datasets are incomplete. For instance, when choice frequencies are observed
only on binary choice sets, obtaining a tight characterization of a random utility has
been an open question since the 1980s, despite continuous effort across mathematics,
psychology, and economics. See Chapter 6 of Marti and Reinelt (2011) for a survey.

Finally, we mention two important implications of our results for applied work
as follows. In the existing empirical literature on industrial organization (10), it
is common practice for researchers to aggregate all unobservable alternatives into

a single category, commonly referred to as the outside option. This aggregation is

9Since C is a test collection, C = {AU E|E € £} for some A C X \ X* and an upper set £ C 2%
If x € X*, then D € C implies D U« € C by the definition of test collections (especially by the fact
that £ is an upper set).

10Geometrically speaking, our theorem identifies the set of all facet-defining inequalities of the
random utility polytope. (See B.1 for the definition of the polytope.)



undertaken even when there is clarity on the constituents of X*.

Our theorem posits that this outside option approach might overlook certain
facets of the random utility restriction. Specifically, it neglects the stipulations in (ii)
of Theorem 3.2. One central implication of our work is elucidating this discrepancy
clearly. We achieve this by providing a minimal set of testable conditions for observed
choice probabilities to be consistent with a random utility model.

Upon establishing that a dataset adheres to a random utility model, a pertinent
inquiry emerges: ”What insights can be gleaned about unobserved choice frequen-
cies?” In Section 4, we identify sets of possible values of unobservable choice frequen-
cies given Theorem 3.2. In Remark 4.4, we observe that the outside option approach
yields rather basic identified sets, while our method results in more insightful and
refined identified sets.

3.1 Sketch of the proof

In this subsection, we outline the proof of Theorem 3.2. All formal proofs are in the

appendix. Given an incomplete dataset p, RU-rationalizability is rewritten as follows:
(P1) JpeAL)
such that for any (D, z) € M\ M*,
p(Dyx)=p( =€ L|xz=yforally e D\ x). (2)

Based on Fiorini (2004), we can show the rationalization is possible if and only

if there exists a nonnegative solution r to the following problem:

(P2) 3re Ri_(D\x’D)‘wGD@X} (3)

such that

> r(X\zX) =1, (4)

zeX

Y r(D\x,D)=) r(D,DUy) for all D € 2% such that 1 < |D| < [X| -1, (5)

reD y&D



r(D\ z,z) = K(p, D, x) for all (D,z) € M\ M". (6)

Remember that for all (D, z) € M, K(p, D, z) can be calculated based on the incom-
plete dataset if and only if (D, z) & M*.
We first review Fiorini (2004)’s result:

Lemma 3.3 (Fiorini (2004)). Given a complete dataset p € R:{F(D’E)MEDGQX}, there
exists p € A(L) satisfying (2) for any (D, x) such that x € D € 2% if and only if
there ezists r € RgD\z’D)IwED@X} satisfying (4), (5) and r(D \ z,x) = K(p, D, z) for
all (D, z) such that x € D € 2.

Based on the result by Fiorini (2004), we prove the following equivalence for

incomplete datasets:

Lemma 3.4. Given an incomplete dataset p € RT\M*, a solution p exists to (P1)

if and only if a solution r exists to (P2).

Now, we can focus on the new problem (P2) instead of (P1). The advantage of
this translation is that (P2) can be seen as a feasibility problem on a network flow.
To see this, we review basic notions of the network-flow theory. Recall that a network
is a pair of a node set N and a set of edges A C N x A. ' Two nodes s (source)
and ¢ (terminal) play special roles as explained below.

For any node D € N, let f(D,N) =3 pcy [(D,E); f(N,D) =3 pep f(E, D)2
f(D,N) is the sum of outflows from D; f(N, D) is the sum of inflows to D.

A function f : A — R is called a flow on a network (N,.A) if it satisfies the

following conditions:

f(st)_f(N75>:17 (7)
f(D,N)— f(N,D)=0 VD e N\ {s,t}, (8)
f(N7t)_f(t7N):1‘ (9>

(7) means the net outflows from s is one; (8) means the inflows equal to outflows at

each node D ¢ {s,t}; (9) means the net inflows to ¢ is one.

1We define a specific network flow in the next page.
12We define f(D,N) =0 if (D, E) € A for any E € N; Similarly, f(N, D) = 0 if (E, D) & A for
any E € N.
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The following lemma provides a necessary and sufficient condition for the exis-
tence of a nonnegative flow satisfying some capacity constraints. For each arc (D, F),
let [(D, E) and u(D, E) be exogenously given lower and upper bounds of the flow
f(D, E) of the arc. We prove the result using maximum-flow theorem from Ford Jr
and Fulkerson (2015)."3

Lemma 3.5. Let l,u : A — Ry be such that I(D,E) < u(D,FE) for (D,E) € A.
There exists a flow f: A — R, such that

I(D,E) < f(D,E) <u(D,E) V(D,E)ec A (10)
if and only if the following condition holds for allC C N

1 iftéC,seC,
Y wD,E)y- > UDE)={ -1 ifteCs¢cC, (11)
(D,E)eCxCe (D,E)eCexC 0 otherwise.
We now interpret equation (11): for any collection C C N, f(D, E) is called
an outflow from C if D € C and E ¢ C; f(D,E) is called an inflow to C if D ¢ C
and £ € C. Thus the left-hand side is the sum of the upper bounds of outflows
from C minus the sum of the lower bounds of inflows to C.'* On the other hand, the
right-hand side is the net outflow from C.
By applying Lemma 3.5 to the network flow defined by (P2), we can obtain a
necessary and sufficient condition that is testable for the existence of a solution r
to (P2). Note that (4) corresponds to (7) ; (5) corresponds to (8); and (4) and (5)

implies >~ (0, ) = 1, which corresponds to (9). To incorporate our problem into

13We appreciate prof. Ui who pointed out a similar result appears in Rockafellar (1998).
14Tn network-flow theory, this value is called residual capacity of a cut (C,C¢).

11



Figure 1: Network Flow. The figure shows the Boolean lattice of degree four, which
corresponds to the network defined by (12) for the case in which X = {a,b,¢,d} and
X* = {¢,d} and D = 2% \ (). The solid arrows correspond to observable arcs: the
dotted arrows correspond to unobservable arcs.

the framework of Lemma 3.5, let

N = 2%,

A={(D,DUx)| D C X,z ¢ D},

s=10,

t=X, (12)

I(D,DUz)=u(D,DUz)=K(p,DUz,z)if (DUx,x) & M*,
(D,DUz)=0if (DUx,x) € M*,
w(D,DUx)=+oc0if (DUz,x) e M*

In the following, we say an arc (D, D U x) is observable if (D U z,z) ¢ M*!?;
(D,D U x) is unobservable if (D U x,z) € M*.'6 In the above formulation, we
set the values of flows on observable arcs by BM polynomials (i.e., {(D,D Ux) =
K(p,DUz,z) =u(D,DUx)), which correponds to constraint (6). For unobservable
arcs, we just require the nonnegativity (i.e., u(D,D U x) = +oo;l(D,D U x) = 0).
See Figure 1 for the case | X| = 4.

Remark 3.6. Given the setup (12), we can provide an intuition behind Lemma 3.5.
See Fiorini (2004) for details.

5 Equivalently, D Uz € D and = € X*.
Equivalently, DUz € D or x € X*.

12



e In the setup, each ) — X directed path corresponds to a unique ranking =. For
example, in the figure, the directed path \—{a}—{a,b}—{a,b,c}—X corresponds
to the ranking: d = ¢ = b = a. For each ranking =, let II” be the corresponding
() — X directed path.

e For each random utility model i € A(L), we can construct a flowr € RgD’Dux)leDezx}

on the network as follows: for each raking =, assign the value p(>=) on the di-
rected path I17.

e Given the construction of the network flow, the values of an arc (D, D U x)
becomes u({~| D=z = D\ z}) = K(p, D, x), where the equality holds by the
Mébius inversion. Note the constructed flow r satisfies all constraints in (4)
and (5) as well as (6) for all x € D € 2%,

Definition 3.7. A collection C C 2% is said to be complete if
DeC = Vxe X" DUz eC.

To apply Lemma 3.5, for C C 2%, define

5,(C) = >, KpDuzaz)- Y K(pEUyy)
(D,z):DeC,DUx¢C, (B,y):E¢C,EUyeC,
(DUz,z)gM* (EUy,y)gM*

+{X eC,hgCt—-1{0eC, X¢C} (13)
Remark 3.8.

e For any C C 2%, §,(C) is the net observable outflows from C. To see this notice
that the first term is the values of the observable outflows from C and the second

term is the values of the observable inflows to C.

e § can also be defined with D = 2X\ 0 and X* # 0. That is, for any complete
dataset p, define

pe) = > K@pDUuzx) - > K(pEUyy)
D,x E,
Deé,Du)xgc E&C(,E?{J)yec

13



+{X eC,0gC—1{0eC, X &C}

We will use this definition later.
Now, we can state our first feasibility result using Lemma 3.5.

Proposition 3.9. Given an incomplete dataset p, a solution to (P2) exists if and
only if §,(C) > 0 for any complete collection C such that ) & C.

The condition given in Proposition 3.9 uses only the observable choice data to

characterize a solution to (P2) since the above value (13) of 6, depend only on the

values of p on M\ M*.

Remark 3.10. We now can provide an intuition behind Proposition 3.9 by using
Figure 2 in which X = {a,b,c,d}, X* = {c,d}, and D = 2%\ (.

o Let C = {{a,c},{a,d},{a,c,d}}. Then C is a complete collection.

e Red flows are observable outflows from C; yellow flows are unobservable inflows
to C; blue flows are observable inflows to C. Note that there are no unobservable

outflows. This is because C is complete.

e By the equality between inflows and outflows, we have (Red outflows)=(Yellow
inflows) + (Blue inflows).

e Note also that (Red outflows)= 3 p .. pec pusge,(puraygm= K (p, DUz, x); (Blue

inflows)= 3" g ). pec.Buyec (Bugyyem= K (0 E Uy, y). Thus, 6,(C) = (Red out-
flows) — (Blue inflows).

o Although yellow flows are unobserbables we know they are nonnegative Thus we
have §,(C) = (Red outflows) — (Blue inflows) > 0. This explains the necessity

of our conditions (ii).

Although Proposition 3.9 together with Lemma 3.5 successfully characterizes
RU-rationalizability based only on the available data, the condition has some redun-
dancy. In the following, we will obtain a tight characterization.

First, we show checking all essential test collections belong to D, rather than all

complete collections, is enough (i.e., statement (a-ii) of Theorem 3.2);

14



Figure 2: Outflows from C and inflows to C. In the figure X = {a,b,c,d} and
X* ={ec,d} and D = 2X\(Q and C = {{a, c},{a,d},{a,c,d}}. Red flows are observable
outflows from C; yellow flows are unobservable inflows to C; blue flows are observable
inflows to C. Note that green flows are flows contained in C and are not relevant to
the value of §,(C), which is net observable outflows from C.

Lemma 3.11. If 6,(C) > 0 is for any test collection C C D, then 5p(é) >0 for any
complete collection C such that 0 ¢ C.

This lemma reduces the number of conditions to be checked because any test
collection is complete and it allows us to focus only on D. The next lemma shows that

we do not have to check the nonnegativity of J, for the nonessential test collections.

Lemma 3.12. Let C = {AUE | E € &£} be a test collection with A C X \ X*
and € C 2%, Assume that C C D. (i) If € = 2%, then §,(C) = 0; (ii) Suppose
K(p,D,z) >0 for all (D,x) € M\ M*. If A=X\ X* or A= 10, then §,(C) > 0.

Combining Proposition 3.9, Lemmas 3.11 and 3.12 immediately imply that check-
ing the essential collections belonging to D, rather than all test collections, is enough.
This is stated formally in the following corollary, which proves statement (a) of The-

orem 3.2.

Corollary 3.13. A solution to (P2) exists if and only if K(p,D,x) > 0 for all
(D,z) € M\ M* and §,(C) > 0 for any essential test collection C C D

Finally, we explain the outline of the proof of statement (b) of Theorem 3.2, which
claims the nonredundancy of conditions appear in (i) and (ii). This proof is the most

intricate part of our proofs. In the proof, we first obtain the the nonredundancy
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results assuming D = 2% \ (); then translate the results into the given incomplete
datasets. To explain the outline of the proof of the nonredundancy of inequality
condition (ii), fix an essential test collection C*. It suffices to show that there exists
an incomplete dataset p that satisfies all inequalities in (i) and all inequalities in (ii)
except the one for C*.

We first provide a preliminary lemma that allows us to convert a flow from 0 to

X into a complete dataset:

Lemma 3.14. Let D = 2X\ 0. If there exists r € RUP\@DIZEDELTY gupisfuing the
following three conditions: (i) Y .y r(X \ x,X) = 1; (i) for any D € D such that
1< D[ <X =1, >, cpr(D\a,D) =% .pr(D,DUy); (iii) for any x € D € D,
Y peopT(E\x,E) > 0, then there exists an complete dataset p € REF(D’:E”IED@X}
such that Y wepP(D,x) =1 for all D € D and K(p,D,z) = r(D \ z,D) for any

(D, ) such that x € D € 2%,

For any C C N, define

5,(C) = > r(D,DUz) — > r(E,EUy)

(D,x): (E,y):
DeC,DUzgC,xg X* E¢C,EUyeCygX*
+1{X eC,0gC—1{0eC, X &C}. (14)

Given Lemma 3.14, we will construct a flow r € RUP\&DIP2)EM} that satisfies
conditions (i)—(iii) in the lemma and the following two conditions: (a) r(D\x, D) > 0
for all x ¢ X*; (b) 6,(C*) < 0 and 6,(C) > 0 for any essential test collection C except
C*. (See Lemma A.3 in the appendix for the complete statements.) By using Lemma
3.14, we translate the flow r into a complete data set p € REF(D’:E)|I€D€2X}; then convert
p to a incomplete dataset p € RT\M*. (See Corollary A.4 in the appendix.) The
most difficult part is the construction of the flow . The difficulty comes from the fact
that we need to change the value of 9, only on one particular essential test collection
C* but not the others; the values of §,(C) across test collections C are interdependent
through the conservation law of the network flow; and essential test collections exist
across the network. We overcome this difficulty by constructing several flows and

combine them into one desirable flow r in an intricate way.
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4 Bounds for Unobservable Choice Probabilities

In the previous section, we established a necessary and sufficient condition for an
incomplete dataset to be RU-rationalizable. Given this result, in this section we
obtain bounds for unobservable choice probabilities.

In practice, predicting unobservable choice probabilities is important. Recall, for
instance, the transportation example (Example 1) in Section 2.1. In this example,
how people commute is not observable unless they use public transportation (i.e.,
X = {bus, train, walk, drive} and X* = {walk, drive}). Suppose that the government
is considering introducing a new tax on gasoline to encourage people to commute by
public transportation. To assess the potential impact of the new policy, it is crucial
for the government to know the percentage of people who commute by private car.

The most naive approach is merely to bound the fraction below by zero and
above by the percentage of people who did not use public transportation. We will
observe that this naive approach corresponds to the outside option approach, in which
the analyst aggregates all unobservable alternatives into a singular category, termed
the outside option.

A more careful way, which is the main object of interest here, is to character-
ize the upper and lower bounds of missing choice frequencies, assuming the choices
are consistent with the random utility model. While the naive approach, which cor-
responds to the outside option approach, is almost uninformative, the more careful
approach that we are proposing in this section is likely to produce a finer prediction
and to be helpful in policy making.

In this section, we will propose a method to compute the upper and lower bounds
of missing choice frequencies assuming that the dataset is RU-rationalizable. We ap-
ply the method to a rich dataset obtained by McCausland, Davis-Stober, Marley,
Park, and Brown (2020).'” We then compare the bounds we obtain with the bounds
the naive approach implies. By doing so, we clarify the difference between the naive
approach and our approach and demonstrate the practical importance of our ap-

proach.

1"The dataset is rich and unique in the sense that the authors collected all choice frequencies from
all subsets of alternatives to test the random utility model.
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4.1 Computation of Bounds

Let p € RT\M* be a given incomplete dataset.

" . . . A {(D,x)|zeDe2X}
Definition 4.1. Assume that p is RU-rationalizable. A complete dataset p € RY

is RU-consistent with p if (i) p = p on M\ M*, and (ii) there exists p € A(L) such
that for any (D,z) withx € D € 2%, p(D,x) = pu(~€ L |z =y for ally € D\ z).

Let T be the set of p € Ri(D’x)‘xeDezx} that is RU-consistent with the given
incomplete dataset p. Remember that p(D, x) is undefined (i.e., unobservable) if and
only if (D,z) € M*. With (D, z) € M* fixed, the goal in this section is to obtain
bounds of p(D, z) for some p € I'. Note that by using (P1) in section 3.1, " can be

written as follows:

be R{(D,x)\xeD@X} There exists a solution p € A(L) to (P1) that satisfies
* the condition (i) and (ii) in Definition 4.1

(15)

By Lemma 3.4, (P1) and (P2) are equivalent. Moreover, by the Mébius inversion,
the condition (ii) in Definition 4.1 can be written as follows: for all (D, x) such that = €
D € 2%, pu({~€ L|D® = z = D\ x}) = K(p,D,x). Since u({~€ L|D* = z =
D\ x})=r(D\ z, D), where p is a solution to (P1); and r is a solution to (P2), the

condition (ii) is equivalent to
r(D\ z,z) = K(p,D,z) for all (D, z) such that z € D € 2%, (16)
Thus we can rewrite the set I' (i.e., (15)) as follows:

5 e R{(D,J;)|meD62X} There exists a solution r € RgD\x’D)leDGQX} to (P2) that
P * satisfies (16) and p = p on M \ M*.
(17)

By eliminating observable flows r (i.e., r(D \ x, D) = K(p, D, z) for all (D, x) €
M\ M*) in (P2), it can be verified that the conditions (4) and (5) of (P2) are
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equivalent to'®

> r(D\y,D)- > r(D,DUy) =d,(D) forall D C X, (18)

(D,y)eM*:yeD (DUy,y)eM*:y¢ D

where §,(-) is defined by (13). Note that M* is the set where BM polynomials are
not computable based on the observable dataset. The left-hand side is based on
unobservable r, while the right-hand side 6,(D) is based on the observed incomplete
choice data p.

Using the Mobius inversion formula, we also can rewrite (16) into the following:
for all (D, z) such that z € D € 2%, we have

p(D,x)= Y r(E\zE), (19)
E:EDD
where r(E \ z,E) = K(p, E,x) for all (F,z) € M\ M*. These observations imply

that we can rewrite the set (17) into the following set:

Proposition 4.2. I is equal to

5 e R{(D,$)|J;6D62X} p=p on M\ M* and there exists r € RE_(D\I’D)IIEDGQX}
P * that satisfies (18) and (19). '

(20)

For each (D, z) € M*, we are interested in the set of possible values p(D, z) for
some p € I'. As is pointed out in Manski (2007), since I' is convex and all conditions
in (20) are linear, the identified set is an interval, and its upper and lower bounds are

given by p(D, z) = maxer p(D, x) and p(D, x) = minger p(D, x), respectively.

Corollary 4.3. For any (D, x) € M*, the upper bound is obtained by

p(D,x) = max > r(E\xE) (21)

X
reRi(D,z)\zGDGQ } E-BoD

subject to (18), where r(E \ z,E) = K(p, E,z) for all (E,x) & M\ M*. The lower

bound /_)(D, x) solves a similar problem with a min replacing the mazx.

18Condition (6) in (P2) is implied by (16) and p = p on M \ M*.
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Compared with the original formulation (15) based on (P1), the derivation of
bounds in Corollary 4.3 is computationally more efficient. This is because this prob-
lem can be seen as a minimum-cost transshipment problem, which is well known in
the network-flow theory literature. (See, for example, Ahuja, Magnanti, and Orlin
(1988) and Ford Jr and Fulkerson (2015) for details.) One of the key properties of
this problem is that it is a linear program with a constraint that has an incidence
matrix as its coefficient. An incidence matrix is a matrix-form representation of net-
work structure, which is defined as a matrix consisting only of 0,1 and —1 with each
column having exactly one element of 1 and —1. For this specific problem, a practi-
cal polynomial time algorithm, called the network simplex algorithm, can be applied.
Since this algorithm relies heavily on the fact that the coefficient of the constraint
is an incidence matrix, the original form (P1) does not have its benefit in terms of
computational efficiency. We refer readers to Orlin, Plotkin, and Tardos (1993) and
Orlin (1997) for further computational aspects of the algorithm. When D = 2% \ 0,
the bound (21) can be further simplified as shown in online appendix B.2.

In the following remark, we formalize the outside option approach. We observe
that in the outside option approach, the constraint of the random utility model does
not have any implication other than the naive constraint that the probabilities must

sum up to one.

Remark 4.4. Consider the naive approach in which we assume one outside option x
that represents all unobservable alternatives. Let X = (X \ X*)Uxg. For simplicity,
we consider the choice sets which do not contain any elements in X* or which contain
all elements in X*. (In other words, we ignore the data on choice sets that contain
only some (but not all) element(s) of X*.) For any D € D such that D N X* or
X*C D, define D as follows:

~ | D if DN X* = ()
(D\X*)Uzy if X* C D.

Define D = {D|D € D and [DNX* =0 or X* C D|}. Note that for any D € D, (i)

if zo € D, then D € D; and (ii) if zo € D, then (D \ z0) U X* € D.
For any D € D, (i) if g & D, then define p(D, x) = p(D, z) for any x € D; and
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(i) if zo € D, then define

1— Z p((D\xO)UX*,y) if x = xp;
ﬁ(D,I) = A?JGD\OCO
p((D\ xo) U X* ) if T # xo.

Then p is a complete dataset with the reduced choice sets D C 2%,

The question is how much the requirement of p being RU-rationalizable restricts
the identification bound for p(D,x) for some x € X*.'9 With the outside option
approach, it turns out the RU-rationalizability does not have any implications beyond

the fact that the probabilities must sum up to one; that is, the identified set is

0.1= > pl(D\ ) UX"y)|. (22

yeﬁ\xo

To see this, notice that if the complete data p is RU-rationalizable, then the identified
set will become (22). If p is not RU-rationalizable, then the identified set will become
the empty set.

4.2 Application to Lottery Data

We now apply this method to a stochastic-choice dataset from the experiment con-
ducted by McCausland et al. (2020). In the experiment, the authors fixed a set
X ={0,1,2,3,4} of five lotteries and asked 141 participants to choose one from each
subset of X. Each participant made decision six times for each choice set. See Mc-
Causland et al. (2020) for further details. We aggregate these choice frequencies to
construct a complete dataset denoted by p°%.

In this exercise, we mask the choice probabilities of lotteries 0 and 1 and pretend
not to observe them; in other words, we set X* = {0,1} and D = 2% \ (). Let D* be

the set of choice sets that contain at least two unobservables. Then, it follows that
D* = {{07 1}7 {O’ ]'7 2}7 {07 17 3}7 {O’ ]'7 4}7 {07 17 2’ 3}7 {07 17 27 4}’ {O’ ]‘7 37 4}7 {07 1’ 27 37 4}}

Under this setup, we will compute two types of bounds of the probability of lottery

191t is easy to see that if the incomplete data p is RU-rationalizable, then the complete data p is
RU-rationalizable.
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0 being chosen in a given choice set D that contains both lotteries 0 and 1. One of
them is the trivial bound (22) that is calculated by

0,1— Z p(D, )

zeDN{2,3,4}

As explained in Remark 4.4, this bound corresponds to the outside option approach
that treats all unobservable alternatives as one aggregated alternative.

The other bound is the one that takes RU-rationalizabity into account and is
computed by the linear program (21).2° The goal here is to examine how much the
random utility assumption shrinks the identified set and improves the prediction of
unobservable choice probabilities.

The lottery dataset is nearly but not exactly RU-rationalizable. As our method
can be applied only to RU-rationalizable datasets, we will first fit a multinomial logit
model to the dataset to get a calibrated dataset that is close to the original one but
is RU-rationalizable.?!

We will then solve the linear programs described above for the calibrated dataset
and obtain the bounds of the probability of lottery 0 being chosen. Specifically, for
a given choice set that contains both lotteries 0 and 1, we compute the identified set
of the probability of lottery 0 being chosen by applying our method to the calibrated
RU-rationalizable dataset. The result is presented in Figure 3, which reports the
two types of bounds and the actual choice probabilities in the data. Overall, the
identified sets of the random utility model, shown in red, are much smaller than the
naive bounds, shown in blue, especially when the choice set is large. Notice that
some data points are outside the identified sets because the original dataset is not
RU-rationalizable. However, even in such cases, they are sufficiently close to the
identified sets, and we believe that the drastic shrinkage of the intervals due to the

random utility assumption outweighs the risk of misspecification.

20In the dataset, we have D = 2% \ (). Under this setup, we can further simplify the bound (21)
into (27), as shown in the online appendix B.2. We use (27) to calculate the values.
21The detail is as follows: To find a RU-rati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>