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Abstract—In many application domains including medical
imaging, experimental design, as well as robotics, labeled data
are expensive to acquire while unlabeled samples are abundant.
Such high labeling costs well motivate the active learning (AL)
paradigm that judiciously selects the most informative data
instances to label. Specifically, this paper considers a streaming
AL setting where unlabeled samples arrive sequentially and
an oracle decides to label them or not based on a certain
criterion. This active labeling process can benefit from a statistical
function model, that provides well-calibrated uncertainty values
to guide the oracle to make the informed labeling decision.
Towards statistical modeling with adaptivity and robustness in
the streaming setting, a recently developed ensemble Gaussian
process (EGP) model is leveraged that has weights adapted to
the labeled data collected incrementally. Building on this EGP
model, this work advocates a novel labeling criterion where the
oracle calculates the Kullback-Leibler divergence between the
predictive pdfs of each unlabeled instance to make the labeling
decision. Numerical tests on synthetic and real datasets in the
regression task showcase the merits of the proposed EGP-AL
approach relative to the competing alternatives.

Index terms— Active learning, Gaussian processes, online
learning

I. INTRODUCTION

In machine learning (ML) and artificial intelligence, a gamut
of learning tasks boil down to estimating a function. In
supervised learning, given a budget of input-output data the
goal is to learn a function that maps the input to the output
data. Identifying such function may necessitate a sufficient
number of input-output data. Although input data can be easily
obtained, in several practical settings acquiring the output data
(or labels) may be challenging due to privacy or high cost
considerations. For example, in medical applications where
labels can represent the medical condition of patients, obtain-
ing these labels may require well trained experts or costly
medical examinations, and in some cases cannot be revealed
to preserve confidentiality. To cope with this challenge, active
learning (AL) is a well motivated framework that provides
principled methods to seek for a few yet informative input
data to label, so that to effectively estimate the sought function
even with fewer data at hand [1].

AL can be broadly categorized into pool-based [1] where
the goal is to find the most informative unlabeled input data
to label from a pool of unlabeled instances, and stream-based
[2] where unlabeled instances arrive on-the-fly and the aim is
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to determine whether to label or disregard them. Emphasizing
on the latter which arises in applications ranging from spam
detection [3] to time series prediction [4], existing stream-
based AL approaches capitalize on deep neural network ar-
chitectures to devise acquisition strategies that decide whether
to query or not new coming unlabeled instances [5], [6].
Recently, an ensemble multi-kernel stream-based AL approach
was advocated in [7] that consists of a certain number of
kernel-based learners and leverages the similarities between
the function estimates of these learners so that to build an
acquisition criterion to decide to label or not new unlabeled
data. Albeit effective and appealing in several streaming
scenarios, the aforementioned deterministic approaches fall
short in inherently offering uncertainty quantification that
can readily guide and aid the AL process. To that end, the
Bayesian approaches in [8]–[10] rely on statistical models and
acquisition criteria to further account for the model-associated
uncertainty. Nonetheless, these approaches are tailored solely
for the classification learning task, instead of the regression
task that is the interest of the present work.

Focusing on the regression task, AL can benefit from the
so-termed Gaussian process (GP) model that is capable of
learning nonlinear functions with uncertainty quantification
in a sample-efficient manner [11]. Given a typically small
set of labeled data {xτ , yτ}tτ=1, learning with GPs yields
the posterior probability density function (pdf) p(f(x)|Lt)
of the sought function f(x) for any unlabeled x, which in
regression is Gaussian with mean and variance given in closed-
form. The model uncertainty captured by the posterior variance
can guide the acquisition step of new unlabeled instances
to be queried; see e.g., [12], [13]. Although interesting,
these GP-based approaches are designed only for pool-based
AL and not streaming AL that is the focus of the present
work. In addition, their performance relies on a pre-selected
kernel function, which significantly affects the performance
of GP-based learning. How to properly select the fitted kernel
function is a nontrivial task especially with only a few initially
labeled data at hand. To deal with this challenge, the works in
[14]–[17] advocate a Gaussian mixture (GM) posterior pdf that
adaptively learns the proper kernel function as new data are
processed online. Yet, this model is used only for conventional
prediction-oriented tasks or pool-based AL and not streaming
AL settings that the present work focuses on. Developing an
adaptive GP-based framework for streaming AL settings, and
devising acquisition criteria relying on this model to select
which arriving unlabeled instances to label, are yet to be
explored.
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Contributions. To address the aforementioned challenges, the
present work builds on an ensemble (E-) of GP models to
prudently adapt to the appropriate GP model as new data
arrive on-the-fly. Capitalizing on this EGP model, a novel
acquisition critetion is advocated that leverages the statistical
distance between the predictive pdfs of all GP models in the
ensemble for each unlabeled instance, to determine whether to
label it or not. Thorough tests on synthetic functions and real
robotic-based regression problems demonstrate the impressive
merits of the advocated EGP-based streaming AL method.

II. PRELIMINARIES

In typical supervised learning problems, given a budget of
labeled (or training) data L0 := {(xτ , yτ )}0τ=−L0+1

1 the goal
is to estimate a function f(·) that maps each input feature
vector xτ to the corresponding output yτ that can be either
a real number pertaining to a regression task or can belong
to a finite alphabet in classification tasks; that is to learn
f(·) : xτ → f(xτ ) → yτ , ∀τ . A reliable estimate of f(·) may
entail a sufficiently large number L0 of initial labeled data.
In several practical settings, although input data can be easily
obtained, acquiring the corresponding labels may be expensive
due to sampling costs or privacy considerations. In healthcare
for instance, a label representing the medical condition of
patients may not be revealed due to medical confidentiality
or may need costly medical examinations to obtain. To cope
with this challenge, one can rely on the AL paradigm that aims
to prudently select the most informative input data to label so
that to effectively estimate f in a data-efficient manner.

AL begins with the small-size initial set L0 of labeled
samples and relying on the corresponding set Lt at time slot
t, model-based AL typically adopts a probabilistic function
model p(f(x)|Lt) to capture the sought function f for any
input vector x. Focusing on the streaming AL setting where
data arrive sequentially, AL leverages the pdf p(f(x)|Lt) to
form the so-termed acquisition criterion (AC) that determines
whether to label or not each new coming input vector xt+1 [1].
If xt+1 is selected to be labeled, then upon querying an oracle
for the associated label yt+1, the labeled set is augmented
as Lt+1 := Lt ∪ {(xt+1, yt+1)}, and if not Lt+1 := Lt.
Apparently, the two critical choices are the model for f , and
the AC design. With emphasis on the regression task, next
we will outline the GP-based model for f along with the
associated AC.

A. GP-based streaming AL

GPs have been widely adopted to learn a nonparametric
function estimate along with its associated uncertainty in a
sample-efficient manner [11] that is appealing in AL settings.
Learning with GPs starts with the assumption that a GP prior
is postulated on f ; that is f ∼ GP(0, κ(x,x′)) with κ(x,x′)
denoting a positive-definite kernel function that measures the
pairwise similarity between two distinct input vectors x and
x′. This implies that random vector ft := [f(x1) . . . f(xt)]

⊤

1The negative instance index here is used for notational brevity as more
labeled data will be added next.

(where ⊤ denotes transposition) comprising the the func-
tion evaluations at inputs Xt := [x1 . . .xt]

⊤ is Gaussian
distributed as p(ft|Xt) = N (ft;0t,Kt)(∀t), where Kt is
the t × t covariance (kernel) matrix whose (i, j) entry is
[Kt]i,j = cov(f(xi), f(xj)) := κ(xi,xj) [11].

The next assumption that relates the random vector ft with
the (possibly noisy) output data yt := [y1 · · · yt]⊤, is that the
batch likelihood p(yt|ft;Xt) can be written as p(yt|ft;Xt) =∏t

τ=1 p(yτ |f(xτ )) where in the regression task the per-datum
likelihood is p(yτ |f(xτ )) = N (yτ ; f(xτ ), σ

2
n). With the GP

prior and batch likelihood at hand, it can be shown that the
posterior pdf p(f(xt+1)|yt;Xt) of a new unlabeled instance
xt+1 at slot t+ 1 is [11]

p(f(xt+1)|yt;Xt) = N (f(xt+1);µt(xt+1), σ
2
t (xt+1)) (1)

where

µt(xt+1) = k⊤
t (xt+1)(Kt + σ2

nIt)
−1yt (2a)

σ2
t (xt+1) =κ(xt+1,xt+1)−k⊤

t (xt+1)(Kt+σ2
nIt)

−1kt(xt+1)
(2b)

and kt(xt+1) := [κ(x1,xt+1), . . . , κ(xt,xt+1)]
⊤.

Note that the mean in (2a) is a point estimate of f(xt+1),
while the variance in (2b) quantifies the associated uncertainty,
where it is intuitive that the larger the variance the more
uncertain is the corresponding function estimate. Following
the uncertainty-based criteria in [13], [18] that select instances
to label with high uncertainty, the corresponding acquisition
criterion in the streaming AL is expressed as

σ2
t (xt+1) ≥ ησ (3)

where ησ is a pre-defined threshold. When the criterion in
(3) is satisfied, the uncertainty associated with f(xt+1) is
sufficiently large so that to query an oracle and obtain the
label yt+1.

Albeit interesting, the performance of GP-based AL hinges
on a preselected kernel function, which may exhibit limited
expressiveness. Finally, the acquisition criterion in (3) relies
solely on the posterior variance without taking into account
the information provided by the posterior mean. These limi-
tations can be ameliorated via a novel ensemble approach, as
delineated next.

III. STREAMING AL WITH AN ENSEMBLE (E) OF GPS

To bypass the nontrivial task of pre-selecting a proper
kernel, and to allow for a richer function space, we advocate
an ensemble (E) of M distinct GPs, each relying on a kernel
function selected from a given dictionary K := {κ1, . . . , κM}
that comprises kernels of different types and/or different
hyperparameters. For each GP m ∈ M := {1, . . . ,M}, a GP
prior is postulated as f |m ∼ GP(0, κm(x,x′)). Combining
all GP priors yields the EGP prior of f(x), expressed as

f(x) ∼
M∑

m=1

wm
0 GP(0, κm(x,x′)),

M∑
m=1

wm
0 = 1 (4)

where the per GP weight wm
0 := Pr(i = m) is deemed as

probability that assesses the contribution of GP model m in
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the ensemble. Note that the latent variable i is introduced to
indicate the contribution from GP model m. Although the
Gaussian mixture (GM) prior in (4) has been adopted for
online prediction-oriented tasks in [14], [19], the present work
is the first to adapt it to the streaming AL setting of interest,
where the design of an acquisition criterion is also needed.

A. EGP-based streaming AL with RF approximation

When the kernels in the dictionary K are shift-invariant,
for each GP model m the RF approximation draws D
independent and identically distributed (i.i.d) random vectors
{vm

j }Dj=1 from πm
κ̄ (v), which is the spectral density of

the standardized kernel κ̄m = κm/σ2
θm . These are used to

construct the per GP model RF vector defined as ϕvm(x):=
1√
D

[
sin(vm⊤

1 x), cos(vm⊤
1 x) · · · sin(vm⊤

D x), cos(vm⊤
D x)

]⊤
.

Then a generative model that relates f and the noisy output
y per GP m via the 2D × 1 vector θm is [20]

p(θm) = N (θm;02D, σ2
θmI2D)

p(f(x)|i = m,θm) = δ(f(x)− ϕm⊤
v (x)θm)

p(y|θm;x) = N (y;ϕm⊤
v (x)θm, σ2

n) . (5)

This parametric generative model allows each GP to char-
acterize the learning function via the parametric posterior
pdf p(θm|yt;Xt) = N (θm; θ̂m

t ,Σm
t ) along with the weight

wm
t := Pr(i = m|yt;Xt). Next we will show how the

ensemble posterior pdf is propagated at each time slot by
updating the set {wm

t ,θm
t ,Σm

t ,m ∈ M}, and introduce the
advocated EGP-based AC criterion that decides whether to
label or not each arriving unlabeled input vector.

At the end of slot t each model keeps track of its posterior
p(θm|yt;Xt) = N (θm; θ̂m

t ,Σm
t ), and upon the arrival of

xt+1 at slot t + 1 each GP model forms its predictive pdf
of yt+1 as

p(yt+1|i=m,yt;Xt+1) = N (yt+1; ŷ
m
t+1|t, (σ

m
t+1|t)

2) (6)

with (σm
t+1|t)

2 = ϕm⊤
v (xt+1)Σ

m
t ϕm

v (xt+1)+σ2
n and ŷmt+1|t =

ϕm⊤
v (xt+1)θ̂

m
t . Thus, the ensemble pdf of yt+1 is given by

p(yt+1|yt;Xt+1) =
M∑

m=1

wm
t N (yt+1; ŷ

m
t+1|t, (σ

m
t+1|t)

2). (7)

Next, a pre-selected AC (that will be discussed in the next
subsection) determines whether to obtain or not the label yt+1.
If the AC is satisfied, yt+1 is queried and the per-GP weight
wm

t+1 := Pr(i = m|yt+1;Xt+1) is then updated via Bayes’
rule as

wm
t+1 =

wm
t N

(
yt+1; ŷ

m
t+1|t,(σ

m
t+1|t)

2
)

∑M
m′=1w

m′
t N

(
yt+1;ŷm

′

t+1|t,(σ
m′

t+1|t)
2
) . (8)

In addition, the posterior pdf of θm is propagated in a
recursive Bayes manner as

p(θm|yt+1;Xt+1) =
p(θm|yt;Xt)p(yt+1|θm;xt+1)

p(yt+1|, i = m,Xt+1,yt)

= N (θm; θ̂m
t+1,Σ

m
t+1) (9)

with mean and covariance given by

θ̂m
t+1 = θ̂m

t +(σm
t+1|t)

−2Σm
t ϕm

v (xt+1)(yt+1 − ŷmt+1|t)

Σm
t+1 = Σm

t −(σm
t+1|t)

−2Σm
t ϕm

v(xt+1)ϕ
m⊤
v (xt+1)Σ

m
t .

Relying on the RF-based EGP model, the following subsec-
tion will introduce the EGP-based AC that decides if the label
yt+1 at slot t+ 1 is queried or not.

B. EGP-based AC
At slot t + 1, upon forming the per-GP predictive pdf (6)

for the label yt+1 of xt+1, the following novel AC is assessed
so as to make a decision on whether to query an oracle for
the ground-truth label value yt+1 or not

max
m′∈M

∑
m∈M

wm
t DKL(N (yt+1; ŷ

m
t+1|t, (σ

m
t+1|t)

2)||

N (yt+1; ŷ
m′

t+1|t, (σ
m′

t+1|t)
2)) ≤ ηk (10)

where ηk > 0 is a pre-defined parameter and DKL(P ||Q)
denotes the Kullback–Leibler (KL) divergence that is a mea-
sure of statistical distance between pdfs P and Q. This cri-
terion capitalizes on the pairwise similarities of the GP-based
predictive pdfs. Specifically, when the M GP models have
similar predictive pdfs of yt+1, it is intuitive that obtaining
the ground-truth label yt+1 will have a small influence on
the GP models weights (c.f. (8)). In this case, the label yt+1

is not queried from the oracle so that to ensure a sufficient
efficiency-accuracy trade-off. It is worth noticing that the AC
in (10) is assessed using only the predictive pdfs of all GP
models without knowledge of the true label yt+1.
Remark 1. The variance-based criterion in (3) can be readily
applied in the advocated EGP model by replacing the variance
of the single GP model with the variance of the GP mixture
of the function posterior (c.f. (7)) which is expressed as

(σens
t+1|t)

2 :=
M∑

m=1

wm
t ((σm

t+1|t)
2 + (ŷmt+1|t − ˆ̄yt+1|t)

2)

where ˆ̄yt+1|t :=
∑M

m=1 w
m
t ŷmt+1|t, yielding the criterion

(σens
t+1|t)

2 ≥ ησ . (11)

Nonetheless, compared to the advocated AC in (10) the
criterion in (11) focuses solely on the uncertainty offered by
the GM variance without taking into account the similarities
of the predictive pdfs of all GP models.
Remark 2. The deterministic RF-based ensemble multi-kernel
acquisition criterion counterpart for streaming AL advocated
in [7], relies on the similarities between the function estimates
of the different kernel-based learners. This criterion can be
equivalently written in the Bayesian EGP-based setting as
follows

max
m′∈M

∑
m∈M

wm
t (ŷmt+1|t − ŷm

′

t+1|t)
2 ≤ ηd . (12)

Although interesting and effective in several streaming AL
settings, the criterion in (12) does not consider the uncertainty
offered by the variances of the M GP models that can
markedly impact the streaming AL performance.
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Fig. 1: Average NMSE performance vs time slot (t) of all competing streaming AL approaches

Fig. 2: Average NPLL performance vs time slot (t) of all competing streaming AL approaches

IV. NUMERICAL TESTS

In this section, the performance of the novel EGP-based
streaming AL approach that leverages the AC in (10) (abbre-
viated as ‘EGP-KL-AC’) is evaluated on the Branin and Currin
exponential standard synthetic functions, and real robotic
problems whose description is given below
Robot pushing 4D. In this task, a robot pushes an object to a
certain location [21]. With input vector xτ := [rxτ , r

y
τ , t

p
τ , r

θ
τ ]

⊤

at each slot τ consisting of the robot location (rxτ , r
y
τ ),

the pushing duration tpτ and pushing angle rθτ , a regression
task is formed where the aim is to map xτ to the output
yτ := ||oτ −d||2 with oτ := (oxτ , o

y
τ ) representing the ending

location of the object and d := [dx, dy] denoting a pre-defined
position vector. This task is of practical interest in several
robotic problems such as obstacle avoidance; see e.g [21], [22].
SARCOS. This dataset considers a seven degrees-of-freedom
SARCOS anthropomorphic robot arm [11]. A regression task
is formed with input vector comprising seven joint positions,
seven joint velocities and seven joint accelerations, and output
value to be predicted representing the first of the corresponding
seven joint torques.

In our experimental setting, 10 and 50 initial labeled data
are used for training on the synthetic functions and robotic
problems respectively, and 1000 data are used for testing.
We compare the performance of the advocated ‘EGP-KL-
AC’ approach with the EGP-based approaches that utilize
the criteria in (11) and (12) which will be abbreviated as
‘EGP-Var-AC’ and ‘EGP-Deterministic-AC’ respectively. In
all competing approaches the kernel dictionary consists of
M = 11 distinct RBF kernels with characteristic lengthscale
selected from {10c}6c=−4, and the weights of all GP models
are initialized as wm

0 = 1/M, ∀m ∈ M. For the RF
approximation D is set to 50 and the kernel hyperparameters
for each GP model are obtained maximizing the marginal log-

likelihood using the initial labeled data. The performance of
all competing approaches is evaluated utilizing the normal-
ized mean square error (NMSE) and negative predictive log-
likelihood (NPLL) metrics that are similarly defined as in [23].
To further assess the accuracy-efficiency trade-off, the NMSE
and NPLL metrics are combined with the labeling rate (LR)
that is defined as LR = Tl/T where Tl denotes the number
of labeled instances in the AL process and T the total number
of new coming data that arrive sequentially.

The average NMSE and NPLL generalization performance
of all competing approaches along with the corresponding
standard deviation are reported for 10 independent runs.
In Figs. 1-2, it is evident that the advocated EGP-KL-AC
method consistently outperforms the EGP-Var-AC and EGP-
Deterministic-AC baselines in all datasets. It is worth mention-
ing that the EGP-KL-AC enjoys the lowest NMSE and NPLL
while also having the smallest LR value2, as can be seen in
Figs. 1-2, implying that the novel approach can achieve low
prediction error with less labeled samples and hence have the
best accuracy-efficiency trade-off compared to the baselines.
This corroborates the benefits of coupling the advocated EGP
model with the AC in (10) that considers the similarities of
the predictive pdfs of all GP models in the ensemble.

V. CONCLUSIONS

This work considered a streaming AL setting where unla-
beled data instances arrive sequentially and ask to be labeled.
Building on an ensemble of GP models that adaptively selects
the proper GP model on-the-fly, a novel AC was introduced
that relied on the KL divergence between any two predictive
pdfs for each unlabeled instance. Tests on synthetic and real
datasets showcase the merits of the advocated AL approach.

2The values of ηk, ησ and ηd are selected so that to have the LR values
reported in Figs 1-2, and are omitted due to space limitations
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