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Abstract—Graph neural networks (GNNs) have well docu-
mented success in various learning over graph problems, from
drug discovery to recommender systems. These data hungry
models however, are challenged in applications with limited
available samples. Meta-learning paradigm provides principled
methods to empower GNNs to learn rapidly from a few la-
beled data only, particularly beneficial for tasks with small
datasets. Nonetheless, existing meta-learning frameworks for
graphs encounter difficulties when the labeled nodes or links
used during training are distant from those encountered during
testing, rendering meta-learning in graph tasks challenging. In
this context, current work leverages a suite of novel techniques
to enhance generalization performance of learning over graphs
with GNNs. A novel idea here is to further incorporate an
extra adversarial update step during “adaptation” phase of con-
ventional meta-learning algorithms. Additionally, our proposed
method incorporates curvature information of the loss landscape
during meta-updating to facilitate reliable knowledge transfer to
downstream tasks with slightly different structures. The proposed
methods are simple and with minimal computational costs on
training process. Numerical experiments conducted on learning
over graph problems validate the superiority of our algorithm
over the existing counterparts, showcasing effectiveness when
dealing with limited data resources.

Index Terms—Robust learning, Meta-learning, GNNs.

I. INTRODUCTION

Learning over graphs is prevalent in numerous real-world
applications, particularly when the interconnections among
data are represented by an underlying graph structure [1].
Examples include the analysis and inference tasks related to
social, brain, power, communication, biological, transporta-
tion, and sensor networks [2]. Graph neural networks (GNN5s)
has recently emerged as a power full parametric models to
efficiently learn complex functions defined over such graphs
[3]1-[5]. By combining graph-filters, topology information,
and point-wise nonlinearities GNNs form nested expressive
architectures. This has made them remarkably successful
across a wide range of learning problems over irregular graph-
structured inputs, including supervised, semi-supervised, and
unsupervised learning ones [3]-[6].

Similar to other deep neural networks (DNNs), GNNs have
their own shortcomings. A salient problem rises when having
only a handful of training data samples — a typical case
emerging in few-shot learning settings [7]. This becomes even
more challenging when dealing with large-scale graphs. To
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tackle this, recent efforts have focused on few-shot learning
with graph data by employing methods such as co-training
and self-training, all tailored for specific few-shot learning
tasks with predetermined classes [8], [9]. Another remedy
to deal with these challenges is to invoke meta-learning
algorithms [7], [10]; see also [11].

Meta-learning, also termed “learning to learn,” aims to
extract shared prior knowledge from a set of inter-related
tasks, facilitating rapid adaptation to an unseen yet related
new one with limited training samples [10], [12]. Meta-
learning holds the promise to obtain domain-agnostic inductive
biases that empower models to generalize better, adapt rapidly
to new tasks, while at the same time require fewer data
for training [8]. Applying meta-learning to GNNs for graph
problems is particularly important due to the diverse down-
stream applications that GNNs may encounter for the unseen
new tasks, spanning from node classification to link prediction.
Meta-learning over graphs enables identifying suitable prior
knowledge and encode such information into several hyper-
parameters that can be learned across tasks, and be then
fine-tuned using the validation data of all tasks [8]. The
predominant challenge however still persists, that is a small
subset of labeled nodes or links might not be directly relevant
for the downstream new unseen task. In node classification
problems for instance, the labeled nodes rarely resemble those
in the so-called support and query sets of a given task [7],
[13], [14]. Similarly in link prediction, the support and query
edges might be far apart in the underlying graph [7]. It thus
holds of paramount importance to investigate whether the
traditional meta-learning algorithms can be further improved
to effectively utilize the scarcely avaiable data samples per
task, beyond simply extracting prior knowledge.
Contributions. This work proposes simple, yet computation-
ally efficient methods to enhance performance of conventional
meta-learning algorithms. To this aim, the novel algorithm
enforces an extra adversarial update step during adaptation
phase, generating fask- and model-dependent adversarial data
samples on-the-fly, while exploiting the underlying data dis-
tribution. Additionally, it incorporates loss curvature while
updating meta-parameters to cope with potential variations
in new upcoming task. To manage arising computational
complexities of the proposed meta-update rule while main-
taining performance, an exploration-exploitation type step is
further introduced. While applicable to any meta-learning
problems, we evaluate its performance on graph-based node-
classification problems.



II. PROBLEM FORMULATION

Meta-learning is a bi-level optimization framework to ex-
tract prior knowledge from a collection of t = 1,...,T
inter-related tasks indexed by t, to facilitate learning on a
new unseen one. Each 1earning task ¢ has an annotated
dataset D; := {(x,y")} N, consisting of N; data samples,
drawn i.i.d from a distribution (x},y;) ~ P;. The dataset is
divided into a training subset D{™ C D, and a validation one
Dyal := D, /D™, In addition to these tasks, an unseen new
one indexed by * is given, w1th its training D", and unanno-

tated test set Dt :

{x"}n lt for which the corresponding
labels {ym}2~

n *Slt are to be inferred. The major assumption in
meta-learning is that the tasks are inter-related through e.g.,
their underlying data distributions. Such relationship facilitates
training a unified large-scale model such as a DNN to fit all
tasks, where each task tailored by its specific model parameter
¢, € R%. However, as the cardinality |D{™| can be much
smaller than d, directly optimizing ¢, over D" could be
challenging, if not impossible without incurring overfitting.

To alleviate this, meta-learning capitalizes on the relation-
ships among tasks. Specifically, as 7T is generally consid-
erably large, a reliable task-invariant prior knowledge can
be extracted from given tasks, thereby facilitating the data-
scarce per-task training. Such structure of prior extraction
and per-task yields a bilevel optimization problem. The inner-
level (task-level) optimizes the per-task parameter ¢, using
Di™ (ak.a. adaptation), and the prior provided by outer-
level, while the outer-level (meta-level) evaluates the trained
{¢,}1_, using {D}¥}_,, and refines a parameterized prior
6 € RP, Formally, this convenntional bi-level optimization
can be expressed as

T

min Y _ £(¢;(8); D) (1a)
=1

s. to @} (0) = arg¢min L(¢p; D) + R(p,;0)  (1b)

where the loss L assesses the fit of a task-specific model to
the dataset D™, and the regularizer R quantifies the impact
of task-invariant parameterized prior. A typical choice for this
regularization can be e.g., R(¢,;;0) := ||, — 0]|3 to enforce
proximity of the per-task parater ¢, to 8, signifying the impact
of learned prior from inter-related tasks.

Although intriguing, the problem in (1) even with prior
leverage, may not significantly improve the generalization
of task-level optimization, especially due to the scarcity of
samples in the inner-level optimization—a common char-
acteristic in few-shot learning over graph problems where
nodes or links are far apart in the underlying graph [8].
Another significant challenge arises in practice from potential
dissimilarity between the unseen downstream task and the
previously encountered ones [13]. Therefore, it is imperative
to design principled meta-level update rules promoting a more
reliable prior, ensuring adaptability of prior to the slightly
differing nature of incoming tasks. The forthcoming section
addresses this issue.

III. SHARPNESS-AWARE LEARNING FOR
OUTER-LEVEL UPDATES

Instead of relying on conventional meta-learning update rule
to find 8* by solving the outer-level optimization in (la),
we advocate a sharpness aware optimization counter part
[15] into our meta-update rule. That is, rather than finding
6 with small training loss, we prefer parameter 6 values
within a neighborhood that have uniformly low training loss
value across all the @ within this neighborhood. This means
searching for @ that not only has small loss value, but more
importantly resides in a neighborhood with a small curvature;
see e.g., [15] and references therein. Such an update rule is
essential when dealing with over-parameterized models such
as DNNs, where typical optimization approaches such as SGD
can easily obtain suboptimal solutions [15]. Such a sharpness-
aware update rule can hopefully guarantee the learned prior
encapsulated in @ generalizes well to unseen and even slightly
un-related tasks. Thus we advocate to solve the following
optimization problem for the outer-level update

T
mein mngE((l)f(@—i—e);Dtval), st lella<p. (2

t=1

To solve (2) one should note that typically neither the inner
maximization over € nor the outer minimization over 6 does
not admit closed forms. A remedy to solve (2) is thus to resort
to iterative alternative maximization and minimization steps
respectively to find €* and ™. In practice, the optimal value for
€* necessarily depends on the value of the parameter 8 as well.
Thus, such an intricate dependency may make it even more
challenging to solve this objective. To deal with this intricate
dependency, we resort to two-step Taylor series expansion of
the objective in (2). Specifically, at an iteration while having
a fixed given 0, it holds that

€"(0) := argmax Zt L(pf (0 +e); Dval) 3)
llell2<p
2 axg max ST £(67(6) + 34; (8)es DY)
lell2<p
b
% argmax Y, £(6](0) + & DY)
llell2<p
(©) T * val
~ argmax y , ,L(¢;(0); D;")
llell2<p
+€' Vol Dy
»L(;(6); D )¢t:¢:<e)
@ argmax € <Z?_1V¢t£(¢f(0); Dy ) .
llell2<p b, =05 (0)

where Jg- (@) is the Jacobean of vector valued function ¢}
at 0. The (a) is obtained using Taylor series expansion of ¢;
at current 6, that is ¢; (0 + €) =~ ¢;(0) + J4:(0) €, (b)
is due to our assumption that ¢; can be approximated by a
diagonal matrix (essentially meaning its entries are sufficiently
independent) and all the constant values in its diagonal entries
can be lumped into the corresponding entries of vector €, and



(c) is obtained by applying Taylor series expansion to scaler
valued function £(¢;(0) + €; D) at ¢} (0) + e, that is

L(¢;(0) + € D}") ~ 4)
L($}(0); Dy )+€' Vg, L(9;(0); D) + O([le13).

O(||€]|3) captures higher order dependencies on €, which are
simply ignored when deriving (c). Finally, (d) is obtained as
the first term in (c) does not depend on €.

Clearly, the optimal solution for (4) can be represented as

T * . Pva
6*(0) =) Z{lf;:lvﬁt't‘c((p*t (e)a,DVtall) )
122121V, £(97(0); D) |l

Replacing €*(0) back in (2) and apply one step gradient
descent to update the outer level minimization over € enables
to iteratively solve (2), and find an approximant for 6™,

Although one can iteratively find 8* using automatic differ-
entiation methods, unfortunately, the update rule resulted from
this process to find €* remains computationally expensive,
particularly due to the necessity of determining €* per iteration
of updating 6. Furthermore, empirical observations reveal
that consistently perturbing 6 does not consistently yield
enhanced performance. To address these challenges, we intro-
duce an exploration-exploitation type approach to update 6.
Specifically, we sporadically update model parameters using a
sharpness-aware approach described in (2) with a very small
probability of 7. However, all updates involve also directly
minimizing (la) using €* = 0. This approach offers two
main benefits: (i) updating @ towards desirable regions in the
feasible set; and at the same time, (ii) reducing computational
burdens, since most updates have €* = 0.

®)

IV. ROBUST ADAPTATION

Conventional adaptation phase of meta-learning algorithms
entails solving (1b) for all t. Due to the limited number
of available samples during adaptation — typical in few-shot
learning problems, the resultant models often suffer from
overfitting or exhibit poor generalization performance. This
challenge is further exacerbated by the intricate relationship
between the learned ¢; and the meta-parameter 6 in the outer
iteration (la). To offer robustness, we consider the following
robust adaptation rule, and approximately solve it as follows

¢} (0) = argmin L(¢p,; Di™) + 1 R(dy; 0)

t

(6a)

+112L(py; DIY).

here DY represents adversarial data samples for task t.
It essentially utilizes data augmentation techniques to craft
synthetic data, which are model-dependent and can improve
the performance of the learned model ¢; (). Specifically,
for each task ¢, a simple remedy is to pre-process each data

(6b)

Ny . .
sample {(x},y7")} 41 and create corresponding adversarial

samples {(x*"™ ym)}™  Note that here, only the features

are generated while the labels are kept unaltered. Clearly, a
adv,n Ny®
s n)} t

simple technique to obtain D := {(x{“"" yr)}. L, is to

rely on a notion of distance and craft samples that maximize
training loss subject to a constraint as

X" = argmax, £(ey; (x,37")), Vn @)
st dist(x37" x") < p.

One can for instance invoke /-2 to form dist (x*"", x7) =
[|x*%™ — x7||, and characterize the constraint. Stochastic gra-
dient ascent with a small step size can be leveraged to finding
x4V Such augmentation of data although interesting, simply
ignores most important aspect of the data — the underlying data
distribution. Here, instead of relying on per-datum based data
augmentation as proposed above, we consider data distribution
as well when generating D%, To formalize this, assume data
samples for task t are drawn from a nominal data distribution
z} ~ P, where z}' := (x},y;"). Targeting adversarially
generated data samples 22 € D, we form an adversarial
data distribution, that is 239 ~ P2V, To characterize P4
based on already available P, one can rely on momentum [16],
[17], KL divergence [18], statistical test [19], and Wasserstein
distance [19], [20]; see e.g., [21] for a recent overview. Among
all choices, it has been shown that the Wasserstein distance
results in a tractable approaches to generate samples 234 using
the given z; ones, thanks to the strong duality result of [19]
and [20]. To formalize this, consider two probability measures
P and @ supported on set Z and Z’, and let TI(P, Q) be the
set of all joint measures supported on Z x Z’, with marginals
P and Q. Let ¢ : Z x Z' — [0,00) measure the cost of
transporting a unit of mass from z in P to another element 2z’
in ). The Wasserstein distance of order p between probability
measures P and ) [22, Definition 6.1] is defined as

— P /

W,(P,Q) : ;rellf_IEﬂ [cP(z,2")]. (8)
Upon relying on this definition, the worst-case adversarial
data set D can be determined by solving the following
optimization problem to obtain P*3 and then draw samples
from the derived distribution

P .= sgp E.wq[L(¢;2)], st. W(P,Q)<p. (9

Constraint here entails solving an infinite-dimensional optimal
transport problem characterized in (8), which is intuitively
challenging, if not impossible to solve. In addition, even
if solvable, there is no guarantee one can efficiently draw
samples from resulting P*1V. Fortunately, these challenges
can be alleviated for a broad range of losses as well as
transport costs. Specifically, it has been shown that opti-
mization problem (9) satisfies strong duality condition under
some mild conditions; that is, the optimal objective of this
maximization and its Lagrangian dual optimal objective, are
equal [21], [23] . Interestingly. the dual problem involves
optimization over a one-dimensional dual variable, rather than
infinite dimensional-fictional learning. In addition, one can
directly arrive at the adversarial samples obtained from P
rather than forming the P4V, These two observations make it
possible to construct D" in the dual domain by levering this



Datasets [ Cora [ Citeseer |
Mo delsfew—shot I-shot | 3-shot I-shot | 3-shot
IDeepWalk 16.06 % | 25.67 % 14.52 % | 21.18 %
Node2Vec 15.15 % | 25.66 % 12.98 % | 20.02 %
GraphSAGE-Mean 50.89 % | 53.12 % 53.49 % | 55.01 %
GraphSAGE-Pool 48.53 % | 50.15 % 51.02 % | 53.98 %
SGC 61.64 % | 75.67 % 56.91 % | 65.67 %
Meta-SGC 56.06 % | 70.98 % 63.86 % | 82.34 %
[Proposed-Meta-SGC 67.27 % | 69.01 % 70.59 % | 85.27 %

TABLE I: Accuracy in % for node classification.

strong duality condition. The following Theorem elaborates
this in further details; see e.g., [21], [23].

Theorem. Let £ : ¢, x £ — [0,00) be upper semi-
continuous and integrable, and ¢ : £ x Z' — [0,00) be a
lower semi-continuos function. Then, for any given P, and
p > 0, it holds that

supExq[l(¢y; 2)] =
Q

inf {E,p| sup{l(0;¢)— ,C) — 10
inf {E. p[zgg{ (0;¢)—(c(z,¢) —p)}]}  (10)
where @ € {P|W,(P;, P) < p}.

Relying on this Theorem, and assuming knowledge of the
optimal dual variable v*, one can craft adversarially generated
samples by solving

Xidv,n _ argé’nax E(qbﬁc) +’Y*(P — C(z?7 ))7 Vn. (11)

Solving this problem to its global maximizer is not possible,
specifically if the model characterize by ¢, is a DNN. Instead,
one can approximately solve it using K iterates of gradient
ascent with a constant step size (3

¢"(k+1)=¢"(k)+ BV (¢4, C; zn)|gzgn(k) k=1---K

where ¢"(0) = 2", and ¥ (¢, ¢; 2") == L(y:C) +7*(p —
c(2%,¢)). Having solved (11), one can form D, Creating an
entire adversarial dataset D" in advance can be cumbersome,
specifically as it should happen in a batch form for each
training epoch. Here we instead generate adversarial samples
on-the-fly for each datum individually. This process involves
first applying gradient updates to the model based on the clean
input, then using the updated model to generate an adversarial
sample, followed by another round of gradient updates based
on this adversarially generated data. This approach approx-
imately solves the regularized learning problem in (6) by
relying on two steps of back propagation.

V. NUMERICAL TESTS

To assess the performance of the proposed algorithm, we
consider node-classification problem within a graph-based
learning framework. Objective is to classify nodes into new
classes with only a small K-number of samples available for
each class using two datasets, namely Cora and Citeseer [24];
see [7] for more details. In their original format, these data sets
have not been designed for few-shot learning problems over
graphs. We thus relied on [7] to make the necessary changes to
the dataset partitioning, tailoring them for few-shot learning.

ha
Kbt 1‘4‘8‘16‘32‘64‘
I-shot | 63.63%]70.37%66.06%|76.21% | 77.04% | 82.80% |
3-shot  [65.27%|70.83% | 712.34% | 78.86% | 81.36% | 82.65% |

TABLE II: Ablation on hidden dimension on Citeseer dataset.

The details of the modifications can be found in [7, Sec. 2.2].
Specifically, nodes in each dataset are partitioned into two
distinct sets, one for meta-training, the other for meta-testing.
The labels of the nodes in the meta-training set are chosen
to belong one of the classes captured in C™, while the labels
of the meta-testing nodes are coming from different classes
not seen during training, denoted by set C***'. This means that
nodes in the training set belong to known classes, while nodes
in the test set are associated with entirely new, unseen ones.
This setup allows to evaluate generalization performance to
unseen classes. In this setup, if having K labeled nodes per
class, the task is referred to as |C'**'|-way K -shot learning [7].

Our proposed method is compared against Meta-GNN im-
plemented in [7]. Specifically, we consider the Simplified
Graph Convolutional Network (SGC) as the backbone for our
GNN [5]. Conventional MAML algorithm was used for gra-
dient updates during Meta-GNN training. To implement pro-
posed method, we have tailored the vanilla MAML algorithm
to further incorporate the sharpness aware optimization step as
discussed in Sec. III, as well as the robust adaptation discussed
in Sec. IV. For the sharpness-aware updating rule, we used
a small n» = 0.01 for exploration-exploitation probability.
Besides Meta-GNN, we further report the performance agains
embedding based methods of DeepWalk [25], Node2Vec [26],
SGC, and GraphSAGE [4]. In addition, we set v* = 0.76 for
adversarial data generation, and thus p is no longer needed.

Numerical Test Results. Table I demonstrates performance
in classification accuracy (in %) of the proposed method
compared with the alternatives using 1000 epochs of training.
It is clear that the proposed method achieves the best accuracy
across both Cora and Citeseer datasets. GNN-based models
including ours effectively outperform the others on the few-
shot learning problems when dealing with new classes. In
contrast, GraphSAGE with Mean and Pool variants, although
being inductive methods, do not exhibit superior performance.
A probable reason for this is that inductive methods may
not generalize well to new unseen classes, but rather only
to new nodes (see also [4], [7]), as was the case in this toy
experiment. Finally, we have further investigated the impact
of hidden dimension of the SGC model on the performance
using only 100 epochs of training. The results of this ablation
study are reported in Table II, where it can be seen that
by increasing model capacity (i.e., hy), better performance is
generally expected.

VI. CONCLUSIONS

This work addressed meta-learning in graph-based prob-
lems, where limited labeled data samples were available. A
light weight sharpness-aware rule for updating parameterized
priors was proposed, along with an adversarially robust adap-
tation to further enhance generalization.
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